1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/livepatch.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/signal.h> 52 53 #include <asm/param.h> 54 #include <linux/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/siginfo.h> 57 #include <asm/cacheflush.h> 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current) && 185 !klp_patch_pending(current)) 186 clear_thread_flag(TIF_SIGPENDING); 187 188 } 189 EXPORT_SYMBOL(recalc_sigpending); 190 191 void calculate_sigpending(void) 192 { 193 /* Have any signals or users of TIF_SIGPENDING been delayed 194 * until after fork? 195 */ 196 spin_lock_irq(¤t->sighand->siglock); 197 set_tsk_thread_flag(current, TIF_SIGPENDING); 198 recalc_sigpending(); 199 spin_unlock_irq(¤t->sighand->siglock); 200 } 201 202 /* Given the mask, find the first available signal that should be serviced. */ 203 204 #define SYNCHRONOUS_MASK \ 205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 207 208 int next_signal(struct sigpending *pending, sigset_t *mask) 209 { 210 unsigned long i, *s, *m, x; 211 int sig = 0; 212 213 s = pending->signal.sig; 214 m = mask->sig; 215 216 /* 217 * Handle the first word specially: it contains the 218 * synchronous signals that need to be dequeued first. 219 */ 220 x = *s &~ *m; 221 if (x) { 222 if (x & SYNCHRONOUS_MASK) 223 x &= SYNCHRONOUS_MASK; 224 sig = ffz(~x) + 1; 225 return sig; 226 } 227 228 switch (_NSIG_WORDS) { 229 default: 230 for (i = 1; i < _NSIG_WORDS; ++i) { 231 x = *++s &~ *++m; 232 if (!x) 233 continue; 234 sig = ffz(~x) + i*_NSIG_BPW + 1; 235 break; 236 } 237 break; 238 239 case 2: 240 x = s[1] &~ m[1]; 241 if (!x) 242 break; 243 sig = ffz(~x) + _NSIG_BPW + 1; 244 break; 245 246 case 1: 247 /* Nothing to do */ 248 break; 249 } 250 251 return sig; 252 } 253 254 static inline void print_dropped_signal(int sig) 255 { 256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 257 258 if (!print_fatal_signals) 259 return; 260 261 if (!__ratelimit(&ratelimit_state)) 262 return; 263 264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 265 current->comm, current->pid, sig); 266 } 267 268 /** 269 * task_set_jobctl_pending - set jobctl pending bits 270 * @task: target task 271 * @mask: pending bits to set 272 * 273 * Clear @mask from @task->jobctl. @mask must be subset of 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 276 * cleared. If @task is already being killed or exiting, this function 277 * becomes noop. 278 * 279 * CONTEXT: 280 * Must be called with @task->sighand->siglock held. 281 * 282 * RETURNS: 283 * %true if @mask is set, %false if made noop because @task was dying. 284 */ 285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 286 { 287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 290 291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 292 return false; 293 294 if (mask & JOBCTL_STOP_SIGMASK) 295 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 296 297 task->jobctl |= mask; 298 return true; 299 } 300 301 /** 302 * task_clear_jobctl_trapping - clear jobctl trapping bit 303 * @task: target task 304 * 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 306 * Clear it and wake up the ptracer. Note that we don't need any further 307 * locking. @task->siglock guarantees that @task->parent points to the 308 * ptracer. 309 * 310 * CONTEXT: 311 * Must be called with @task->sighand->siglock held. 312 */ 313 void task_clear_jobctl_trapping(struct task_struct *task) 314 { 315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 316 task->jobctl &= ~JOBCTL_TRAPPING; 317 smp_mb(); /* advised by wake_up_bit() */ 318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 319 } 320 } 321 322 /** 323 * task_clear_jobctl_pending - clear jobctl pending bits 324 * @task: target task 325 * @mask: pending bits to clear 326 * 327 * Clear @mask from @task->jobctl. @mask must be subset of 328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 329 * STOP bits are cleared together. 330 * 331 * If clearing of @mask leaves no stop or trap pending, this function calls 332 * task_clear_jobctl_trapping(). 333 * 334 * CONTEXT: 335 * Must be called with @task->sighand->siglock held. 336 */ 337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 338 { 339 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 340 341 if (mask & JOBCTL_STOP_PENDING) 342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 343 344 task->jobctl &= ~mask; 345 346 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 347 task_clear_jobctl_trapping(task); 348 } 349 350 /** 351 * task_participate_group_stop - participate in a group stop 352 * @task: task participating in a group stop 353 * 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 355 * Group stop states are cleared and the group stop count is consumed if 356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 357 * stop, the appropriate `SIGNAL_*` flags are set. 358 * 359 * CONTEXT: 360 * Must be called with @task->sighand->siglock held. 361 * 362 * RETURNS: 363 * %true if group stop completion should be notified to the parent, %false 364 * otherwise. 365 */ 366 static bool task_participate_group_stop(struct task_struct *task) 367 { 368 struct signal_struct *sig = task->signal; 369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 370 371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 372 373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 374 375 if (!consume) 376 return false; 377 378 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 379 sig->group_stop_count--; 380 381 /* 382 * Tell the caller to notify completion iff we are entering into a 383 * fresh group stop. Read comment in do_signal_stop() for details. 384 */ 385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 387 return true; 388 } 389 return false; 390 } 391 392 void task_join_group_stop(struct task_struct *task) 393 { 394 /* Have the new thread join an on-going signal group stop */ 395 unsigned long jobctl = current->jobctl; 396 if (jobctl & JOBCTL_STOP_PENDING) { 397 struct signal_struct *sig = current->signal; 398 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK; 399 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 400 if (task_set_jobctl_pending(task, signr | gstop)) { 401 sig->group_stop_count++; 402 } 403 } 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 413 { 414 struct sigqueue *q = NULL; 415 struct user_struct *user; 416 int sigpending; 417 418 /* 419 * Protect access to @t credentials. This can go away when all 420 * callers hold rcu read lock. 421 * 422 * NOTE! A pending signal will hold on to the user refcount, 423 * and we get/put the refcount only when the sigpending count 424 * changes from/to zero. 425 */ 426 rcu_read_lock(); 427 user = __task_cred(t)->user; 428 sigpending = atomic_inc_return(&user->sigpending); 429 if (sigpending == 1) 430 get_uid(user); 431 rcu_read_unlock(); 432 433 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 434 q = kmem_cache_alloc(sigqueue_cachep, flags); 435 } else { 436 print_dropped_signal(sig); 437 } 438 439 if (unlikely(q == NULL)) { 440 if (atomic_dec_and_test(&user->sigpending)) 441 free_uid(user); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = 0; 445 q->user = user; 446 } 447 448 return q; 449 } 450 451 static void __sigqueue_free(struct sigqueue *q) 452 { 453 if (q->flags & SIGQUEUE_PREALLOC) 454 return; 455 if (atomic_dec_and_test(&q->user->sigpending)) 456 free_uid(q->user); 457 kmem_cache_free(sigqueue_cachep, q); 458 } 459 460 void flush_sigqueue(struct sigpending *queue) 461 { 462 struct sigqueue *q; 463 464 sigemptyset(&queue->signal); 465 while (!list_empty(&queue->list)) { 466 q = list_entry(queue->list.next, struct sigqueue , list); 467 list_del_init(&q->list); 468 __sigqueue_free(q); 469 } 470 } 471 472 /* 473 * Flush all pending signals for this kthread. 474 */ 475 void flush_signals(struct task_struct *t) 476 { 477 unsigned long flags; 478 479 spin_lock_irqsave(&t->sighand->siglock, flags); 480 clear_tsk_thread_flag(t, TIF_SIGPENDING); 481 flush_sigqueue(&t->pending); 482 flush_sigqueue(&t->signal->shared_pending); 483 spin_unlock_irqrestore(&t->sighand->siglock, flags); 484 } 485 EXPORT_SYMBOL(flush_signals); 486 487 #ifdef CONFIG_POSIX_TIMERS 488 static void __flush_itimer_signals(struct sigpending *pending) 489 { 490 sigset_t signal, retain; 491 struct sigqueue *q, *n; 492 493 signal = pending->signal; 494 sigemptyset(&retain); 495 496 list_for_each_entry_safe(q, n, &pending->list, list) { 497 int sig = q->info.si_signo; 498 499 if (likely(q->info.si_code != SI_TIMER)) { 500 sigaddset(&retain, sig); 501 } else { 502 sigdelset(&signal, sig); 503 list_del_init(&q->list); 504 __sigqueue_free(q); 505 } 506 } 507 508 sigorsets(&pending->signal, &signal, &retain); 509 } 510 511 void flush_itimer_signals(void) 512 { 513 struct task_struct *tsk = current; 514 unsigned long flags; 515 516 spin_lock_irqsave(&tsk->sighand->siglock, flags); 517 __flush_itimer_signals(&tsk->pending); 518 __flush_itimer_signals(&tsk->signal->shared_pending); 519 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 520 } 521 #endif 522 523 void ignore_signals(struct task_struct *t) 524 { 525 int i; 526 527 for (i = 0; i < _NSIG; ++i) 528 t->sighand->action[i].sa.sa_handler = SIG_IGN; 529 530 flush_signals(t); 531 } 532 533 /* 534 * Flush all handlers for a task. 535 */ 536 537 void 538 flush_signal_handlers(struct task_struct *t, int force_default) 539 { 540 int i; 541 struct k_sigaction *ka = &t->sighand->action[0]; 542 for (i = _NSIG ; i != 0 ; i--) { 543 if (force_default || ka->sa.sa_handler != SIG_IGN) 544 ka->sa.sa_handler = SIG_DFL; 545 ka->sa.sa_flags = 0; 546 #ifdef __ARCH_HAS_SA_RESTORER 547 ka->sa.sa_restorer = NULL; 548 #endif 549 sigemptyset(&ka->sa.sa_mask); 550 ka++; 551 } 552 } 553 554 bool unhandled_signal(struct task_struct *tsk, int sig) 555 { 556 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 557 if (is_global_init(tsk)) 558 return true; 559 560 if (handler != SIG_IGN && handler != SIG_DFL) 561 return false; 562 563 /* if ptraced, let the tracer determine */ 564 return !tsk->ptrace; 565 } 566 567 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 568 bool *resched_timer) 569 { 570 struct sigqueue *q, *first = NULL; 571 572 /* 573 * Collect the siginfo appropriate to this signal. Check if 574 * there is another siginfo for the same signal. 575 */ 576 list_for_each_entry(q, &list->list, list) { 577 if (q->info.si_signo == sig) { 578 if (first) 579 goto still_pending; 580 first = q; 581 } 582 } 583 584 sigdelset(&list->signal, sig); 585 586 if (first) { 587 still_pending: 588 list_del_init(&first->list); 589 copy_siginfo(info, &first->info); 590 591 *resched_timer = 592 (first->flags & SIGQUEUE_PREALLOC) && 593 (info->si_code == SI_TIMER) && 594 (info->si_sys_private); 595 596 __sigqueue_free(first); 597 } else { 598 /* 599 * Ok, it wasn't in the queue. This must be 600 * a fast-pathed signal or we must have been 601 * out of queue space. So zero out the info. 602 */ 603 clear_siginfo(info); 604 info->si_signo = sig; 605 info->si_errno = 0; 606 info->si_code = SI_USER; 607 info->si_pid = 0; 608 info->si_uid = 0; 609 } 610 } 611 612 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 613 kernel_siginfo_t *info, bool *resched_timer) 614 { 615 int sig = next_signal(pending, mask); 616 617 if (sig) 618 collect_signal(sig, pending, info, resched_timer); 619 return sig; 620 } 621 622 /* 623 * Dequeue a signal and return the element to the caller, which is 624 * expected to free it. 625 * 626 * All callers have to hold the siglock. 627 */ 628 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 629 { 630 bool resched_timer = false; 631 int signr; 632 633 /* We only dequeue private signals from ourselves, we don't let 634 * signalfd steal them 635 */ 636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 637 if (!signr) { 638 signr = __dequeue_signal(&tsk->signal->shared_pending, 639 mask, info, &resched_timer); 640 #ifdef CONFIG_POSIX_TIMERS 641 /* 642 * itimer signal ? 643 * 644 * itimers are process shared and we restart periodic 645 * itimers in the signal delivery path to prevent DoS 646 * attacks in the high resolution timer case. This is 647 * compliant with the old way of self-restarting 648 * itimers, as the SIGALRM is a legacy signal and only 649 * queued once. Changing the restart behaviour to 650 * restart the timer in the signal dequeue path is 651 * reducing the timer noise on heavy loaded !highres 652 * systems too. 653 */ 654 if (unlikely(signr == SIGALRM)) { 655 struct hrtimer *tmr = &tsk->signal->real_timer; 656 657 if (!hrtimer_is_queued(tmr) && 658 tsk->signal->it_real_incr != 0) { 659 hrtimer_forward(tmr, tmr->base->get_time(), 660 tsk->signal->it_real_incr); 661 hrtimer_restart(tmr); 662 } 663 } 664 #endif 665 } 666 667 recalc_sigpending(); 668 if (!signr) 669 return 0; 670 671 if (unlikely(sig_kernel_stop(signr))) { 672 /* 673 * Set a marker that we have dequeued a stop signal. Our 674 * caller might release the siglock and then the pending 675 * stop signal it is about to process is no longer in the 676 * pending bitmasks, but must still be cleared by a SIGCONT 677 * (and overruled by a SIGKILL). So those cases clear this 678 * shared flag after we've set it. Note that this flag may 679 * remain set after the signal we return is ignored or 680 * handled. That doesn't matter because its only purpose 681 * is to alert stop-signal processing code when another 682 * processor has come along and cleared the flag. 683 */ 684 current->jobctl |= JOBCTL_STOP_DEQUEUED; 685 } 686 #ifdef CONFIG_POSIX_TIMERS 687 if (resched_timer) { 688 /* 689 * Release the siglock to ensure proper locking order 690 * of timer locks outside of siglocks. Note, we leave 691 * irqs disabled here, since the posix-timers code is 692 * about to disable them again anyway. 693 */ 694 spin_unlock(&tsk->sighand->siglock); 695 posixtimer_rearm(info); 696 spin_lock(&tsk->sighand->siglock); 697 698 /* Don't expose the si_sys_private value to userspace */ 699 info->si_sys_private = 0; 700 } 701 #endif 702 return signr; 703 } 704 EXPORT_SYMBOL_GPL(dequeue_signal); 705 706 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 707 { 708 struct task_struct *tsk = current; 709 struct sigpending *pending = &tsk->pending; 710 struct sigqueue *q, *sync = NULL; 711 712 /* 713 * Might a synchronous signal be in the queue? 714 */ 715 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 716 return 0; 717 718 /* 719 * Return the first synchronous signal in the queue. 720 */ 721 list_for_each_entry(q, &pending->list, list) { 722 /* Synchronous signals have a positive si_code */ 723 if ((q->info.si_code > SI_USER) && 724 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 725 sync = q; 726 goto next; 727 } 728 } 729 return 0; 730 next: 731 /* 732 * Check if there is another siginfo for the same signal. 733 */ 734 list_for_each_entry_continue(q, &pending->list, list) { 735 if (q->info.si_signo == sync->info.si_signo) 736 goto still_pending; 737 } 738 739 sigdelset(&pending->signal, sync->info.si_signo); 740 recalc_sigpending(); 741 still_pending: 742 list_del_init(&sync->list); 743 copy_siginfo(info, &sync->info); 744 __sigqueue_free(sync); 745 return info->si_signo; 746 } 747 748 /* 749 * Tell a process that it has a new active signal.. 750 * 751 * NOTE! we rely on the previous spin_lock to 752 * lock interrupts for us! We can only be called with 753 * "siglock" held, and the local interrupt must 754 * have been disabled when that got acquired! 755 * 756 * No need to set need_resched since signal event passing 757 * goes through ->blocked 758 */ 759 void signal_wake_up_state(struct task_struct *t, unsigned int state) 760 { 761 set_tsk_thread_flag(t, TIF_SIGPENDING); 762 /* 763 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 764 * case. We don't check t->state here because there is a race with it 765 * executing another processor and just now entering stopped state. 766 * By using wake_up_state, we ensure the process will wake up and 767 * handle its death signal. 768 */ 769 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 770 kick_process(t); 771 } 772 773 /* 774 * Remove signals in mask from the pending set and queue. 775 * Returns 1 if any signals were found. 776 * 777 * All callers must be holding the siglock. 778 */ 779 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 780 { 781 struct sigqueue *q, *n; 782 sigset_t m; 783 784 sigandsets(&m, mask, &s->signal); 785 if (sigisemptyset(&m)) 786 return; 787 788 sigandnsets(&s->signal, &s->signal, mask); 789 list_for_each_entry_safe(q, n, &s->list, list) { 790 if (sigismember(mask, q->info.si_signo)) { 791 list_del_init(&q->list); 792 __sigqueue_free(q); 793 } 794 } 795 } 796 797 static inline int is_si_special(const struct kernel_siginfo *info) 798 { 799 return info <= SEND_SIG_PRIV; 800 } 801 802 static inline bool si_fromuser(const struct kernel_siginfo *info) 803 { 804 return info == SEND_SIG_NOINFO || 805 (!is_si_special(info) && SI_FROMUSER(info)); 806 } 807 808 /* 809 * called with RCU read lock from check_kill_permission() 810 */ 811 static bool kill_ok_by_cred(struct task_struct *t) 812 { 813 const struct cred *cred = current_cred(); 814 const struct cred *tcred = __task_cred(t); 815 816 return uid_eq(cred->euid, tcred->suid) || 817 uid_eq(cred->euid, tcred->uid) || 818 uid_eq(cred->uid, tcred->suid) || 819 uid_eq(cred->uid, tcred->uid) || 820 ns_capable(tcred->user_ns, CAP_KILL); 821 } 822 823 /* 824 * Bad permissions for sending the signal 825 * - the caller must hold the RCU read lock 826 */ 827 static int check_kill_permission(int sig, struct kernel_siginfo *info, 828 struct task_struct *t) 829 { 830 struct pid *sid; 831 int error; 832 833 if (!valid_signal(sig)) 834 return -EINVAL; 835 836 if (!si_fromuser(info)) 837 return 0; 838 839 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 840 if (error) 841 return error; 842 843 if (!same_thread_group(current, t) && 844 !kill_ok_by_cred(t)) { 845 switch (sig) { 846 case SIGCONT: 847 sid = task_session(t); 848 /* 849 * We don't return the error if sid == NULL. The 850 * task was unhashed, the caller must notice this. 851 */ 852 if (!sid || sid == task_session(current)) 853 break; 854 /* fall through */ 855 default: 856 return -EPERM; 857 } 858 } 859 860 return security_task_kill(t, info, sig, NULL); 861 } 862 863 /** 864 * ptrace_trap_notify - schedule trap to notify ptracer 865 * @t: tracee wanting to notify tracer 866 * 867 * This function schedules sticky ptrace trap which is cleared on the next 868 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 869 * ptracer. 870 * 871 * If @t is running, STOP trap will be taken. If trapped for STOP and 872 * ptracer is listening for events, tracee is woken up so that it can 873 * re-trap for the new event. If trapped otherwise, STOP trap will be 874 * eventually taken without returning to userland after the existing traps 875 * are finished by PTRACE_CONT. 876 * 877 * CONTEXT: 878 * Must be called with @task->sighand->siglock held. 879 */ 880 static void ptrace_trap_notify(struct task_struct *t) 881 { 882 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 883 assert_spin_locked(&t->sighand->siglock); 884 885 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 886 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 887 } 888 889 /* 890 * Handle magic process-wide effects of stop/continue signals. Unlike 891 * the signal actions, these happen immediately at signal-generation 892 * time regardless of blocking, ignoring, or handling. This does the 893 * actual continuing for SIGCONT, but not the actual stopping for stop 894 * signals. The process stop is done as a signal action for SIG_DFL. 895 * 896 * Returns true if the signal should be actually delivered, otherwise 897 * it should be dropped. 898 */ 899 static bool prepare_signal(int sig, struct task_struct *p, bool force) 900 { 901 struct signal_struct *signal = p->signal; 902 struct task_struct *t; 903 sigset_t flush; 904 905 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 906 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 907 return sig == SIGKILL; 908 /* 909 * The process is in the middle of dying, nothing to do. 910 */ 911 } else if (sig_kernel_stop(sig)) { 912 /* 913 * This is a stop signal. Remove SIGCONT from all queues. 914 */ 915 siginitset(&flush, sigmask(SIGCONT)); 916 flush_sigqueue_mask(&flush, &signal->shared_pending); 917 for_each_thread(p, t) 918 flush_sigqueue_mask(&flush, &t->pending); 919 } else if (sig == SIGCONT) { 920 unsigned int why; 921 /* 922 * Remove all stop signals from all queues, wake all threads. 923 */ 924 siginitset(&flush, SIG_KERNEL_STOP_MASK); 925 flush_sigqueue_mask(&flush, &signal->shared_pending); 926 for_each_thread(p, t) { 927 flush_sigqueue_mask(&flush, &t->pending); 928 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 929 if (likely(!(t->ptrace & PT_SEIZED))) 930 wake_up_state(t, __TASK_STOPPED); 931 else 932 ptrace_trap_notify(t); 933 } 934 935 /* 936 * Notify the parent with CLD_CONTINUED if we were stopped. 937 * 938 * If we were in the middle of a group stop, we pretend it 939 * was already finished, and then continued. Since SIGCHLD 940 * doesn't queue we report only CLD_STOPPED, as if the next 941 * CLD_CONTINUED was dropped. 942 */ 943 why = 0; 944 if (signal->flags & SIGNAL_STOP_STOPPED) 945 why |= SIGNAL_CLD_CONTINUED; 946 else if (signal->group_stop_count) 947 why |= SIGNAL_CLD_STOPPED; 948 949 if (why) { 950 /* 951 * The first thread which returns from do_signal_stop() 952 * will take ->siglock, notice SIGNAL_CLD_MASK, and 953 * notify its parent. See get_signal(). 954 */ 955 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 956 signal->group_stop_count = 0; 957 signal->group_exit_code = 0; 958 } 959 } 960 961 return !sig_ignored(p, sig, force); 962 } 963 964 /* 965 * Test if P wants to take SIG. After we've checked all threads with this, 966 * it's equivalent to finding no threads not blocking SIG. Any threads not 967 * blocking SIG were ruled out because they are not running and already 968 * have pending signals. Such threads will dequeue from the shared queue 969 * as soon as they're available, so putting the signal on the shared queue 970 * will be equivalent to sending it to one such thread. 971 */ 972 static inline bool wants_signal(int sig, struct task_struct *p) 973 { 974 if (sigismember(&p->blocked, sig)) 975 return false; 976 977 if (p->flags & PF_EXITING) 978 return false; 979 980 if (sig == SIGKILL) 981 return true; 982 983 if (task_is_stopped_or_traced(p)) 984 return false; 985 986 return task_curr(p) || !signal_pending(p); 987 } 988 989 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 990 { 991 struct signal_struct *signal = p->signal; 992 struct task_struct *t; 993 994 /* 995 * Now find a thread we can wake up to take the signal off the queue. 996 * 997 * If the main thread wants the signal, it gets first crack. 998 * Probably the least surprising to the average bear. 999 */ 1000 if (wants_signal(sig, p)) 1001 t = p; 1002 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1003 /* 1004 * There is just one thread and it does not need to be woken. 1005 * It will dequeue unblocked signals before it runs again. 1006 */ 1007 return; 1008 else { 1009 /* 1010 * Otherwise try to find a suitable thread. 1011 */ 1012 t = signal->curr_target; 1013 while (!wants_signal(sig, t)) { 1014 t = next_thread(t); 1015 if (t == signal->curr_target) 1016 /* 1017 * No thread needs to be woken. 1018 * Any eligible threads will see 1019 * the signal in the queue soon. 1020 */ 1021 return; 1022 } 1023 signal->curr_target = t; 1024 } 1025 1026 /* 1027 * Found a killable thread. If the signal will be fatal, 1028 * then start taking the whole group down immediately. 1029 */ 1030 if (sig_fatal(p, sig) && 1031 !(signal->flags & SIGNAL_GROUP_EXIT) && 1032 !sigismember(&t->real_blocked, sig) && 1033 (sig == SIGKILL || !p->ptrace)) { 1034 /* 1035 * This signal will be fatal to the whole group. 1036 */ 1037 if (!sig_kernel_coredump(sig)) { 1038 /* 1039 * Start a group exit and wake everybody up. 1040 * This way we don't have other threads 1041 * running and doing things after a slower 1042 * thread has the fatal signal pending. 1043 */ 1044 signal->flags = SIGNAL_GROUP_EXIT; 1045 signal->group_exit_code = sig; 1046 signal->group_stop_count = 0; 1047 t = p; 1048 do { 1049 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1050 sigaddset(&t->pending.signal, SIGKILL); 1051 signal_wake_up(t, 1); 1052 } while_each_thread(p, t); 1053 return; 1054 } 1055 } 1056 1057 /* 1058 * The signal is already in the shared-pending queue. 1059 * Tell the chosen thread to wake up and dequeue it. 1060 */ 1061 signal_wake_up(t, sig == SIGKILL); 1062 return; 1063 } 1064 1065 static inline bool legacy_queue(struct sigpending *signals, int sig) 1066 { 1067 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1068 } 1069 1070 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1071 enum pid_type type, bool force) 1072 { 1073 struct sigpending *pending; 1074 struct sigqueue *q; 1075 int override_rlimit; 1076 int ret = 0, result; 1077 1078 assert_spin_locked(&t->sighand->siglock); 1079 1080 result = TRACE_SIGNAL_IGNORED; 1081 if (!prepare_signal(sig, t, force)) 1082 goto ret; 1083 1084 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1085 /* 1086 * Short-circuit ignored signals and support queuing 1087 * exactly one non-rt signal, so that we can get more 1088 * detailed information about the cause of the signal. 1089 */ 1090 result = TRACE_SIGNAL_ALREADY_PENDING; 1091 if (legacy_queue(pending, sig)) 1092 goto ret; 1093 1094 result = TRACE_SIGNAL_DELIVERED; 1095 /* 1096 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1097 */ 1098 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1099 goto out_set; 1100 1101 /* 1102 * Real-time signals must be queued if sent by sigqueue, or 1103 * some other real-time mechanism. It is implementation 1104 * defined whether kill() does so. We attempt to do so, on 1105 * the principle of least surprise, but since kill is not 1106 * allowed to fail with EAGAIN when low on memory we just 1107 * make sure at least one signal gets delivered and don't 1108 * pass on the info struct. 1109 */ 1110 if (sig < SIGRTMIN) 1111 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1112 else 1113 override_rlimit = 0; 1114 1115 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1116 if (q) { 1117 list_add_tail(&q->list, &pending->list); 1118 switch ((unsigned long) info) { 1119 case (unsigned long) SEND_SIG_NOINFO: 1120 clear_siginfo(&q->info); 1121 q->info.si_signo = sig; 1122 q->info.si_errno = 0; 1123 q->info.si_code = SI_USER; 1124 q->info.si_pid = task_tgid_nr_ns(current, 1125 task_active_pid_ns(t)); 1126 rcu_read_lock(); 1127 q->info.si_uid = 1128 from_kuid_munged(task_cred_xxx(t, user_ns), 1129 current_uid()); 1130 rcu_read_unlock(); 1131 break; 1132 case (unsigned long) SEND_SIG_PRIV: 1133 clear_siginfo(&q->info); 1134 q->info.si_signo = sig; 1135 q->info.si_errno = 0; 1136 q->info.si_code = SI_KERNEL; 1137 q->info.si_pid = 0; 1138 q->info.si_uid = 0; 1139 break; 1140 default: 1141 copy_siginfo(&q->info, info); 1142 break; 1143 } 1144 } else if (!is_si_special(info) && 1145 sig >= SIGRTMIN && info->si_code != SI_USER) { 1146 /* 1147 * Queue overflow, abort. We may abort if the 1148 * signal was rt and sent by user using something 1149 * other than kill(). 1150 */ 1151 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1152 ret = -EAGAIN; 1153 goto ret; 1154 } else { 1155 /* 1156 * This is a silent loss of information. We still 1157 * send the signal, but the *info bits are lost. 1158 */ 1159 result = TRACE_SIGNAL_LOSE_INFO; 1160 } 1161 1162 out_set: 1163 signalfd_notify(t, sig); 1164 sigaddset(&pending->signal, sig); 1165 1166 /* Let multiprocess signals appear after on-going forks */ 1167 if (type > PIDTYPE_TGID) { 1168 struct multiprocess_signals *delayed; 1169 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1170 sigset_t *signal = &delayed->signal; 1171 /* Can't queue both a stop and a continue signal */ 1172 if (sig == SIGCONT) 1173 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1174 else if (sig_kernel_stop(sig)) 1175 sigdelset(signal, SIGCONT); 1176 sigaddset(signal, sig); 1177 } 1178 } 1179 1180 complete_signal(sig, t, type); 1181 ret: 1182 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1183 return ret; 1184 } 1185 1186 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1187 { 1188 bool ret = false; 1189 switch (siginfo_layout(info->si_signo, info->si_code)) { 1190 case SIL_KILL: 1191 case SIL_CHLD: 1192 case SIL_RT: 1193 ret = true; 1194 break; 1195 case SIL_TIMER: 1196 case SIL_POLL: 1197 case SIL_FAULT: 1198 case SIL_FAULT_MCEERR: 1199 case SIL_FAULT_BNDERR: 1200 case SIL_FAULT_PKUERR: 1201 case SIL_SYS: 1202 ret = false; 1203 break; 1204 } 1205 return ret; 1206 } 1207 1208 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1209 enum pid_type type) 1210 { 1211 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1212 bool force = false; 1213 1214 if (info == SEND_SIG_NOINFO) { 1215 /* Force if sent from an ancestor pid namespace */ 1216 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1217 } else if (info == SEND_SIG_PRIV) { 1218 /* Don't ignore kernel generated signals */ 1219 force = true; 1220 } else if (has_si_pid_and_uid(info)) { 1221 /* SIGKILL and SIGSTOP is special or has ids */ 1222 struct user_namespace *t_user_ns; 1223 1224 rcu_read_lock(); 1225 t_user_ns = task_cred_xxx(t, user_ns); 1226 if (current_user_ns() != t_user_ns) { 1227 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1228 info->si_uid = from_kuid_munged(t_user_ns, uid); 1229 } 1230 rcu_read_unlock(); 1231 1232 /* A kernel generated signal? */ 1233 force = (info->si_code == SI_KERNEL); 1234 1235 /* From an ancestor pid namespace? */ 1236 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1237 info->si_pid = 0; 1238 force = true; 1239 } 1240 } 1241 return __send_signal(sig, info, t, type, force); 1242 } 1243 1244 static void print_fatal_signal(int signr) 1245 { 1246 struct pt_regs *regs = signal_pt_regs(); 1247 pr_info("potentially unexpected fatal signal %d.\n", signr); 1248 1249 #if defined(__i386__) && !defined(__arch_um__) 1250 pr_info("code at %08lx: ", regs->ip); 1251 { 1252 int i; 1253 for (i = 0; i < 16; i++) { 1254 unsigned char insn; 1255 1256 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1257 break; 1258 pr_cont("%02x ", insn); 1259 } 1260 } 1261 pr_cont("\n"); 1262 #endif 1263 preempt_disable(); 1264 show_regs(regs); 1265 preempt_enable(); 1266 } 1267 1268 static int __init setup_print_fatal_signals(char *str) 1269 { 1270 get_option (&str, &print_fatal_signals); 1271 1272 return 1; 1273 } 1274 1275 __setup("print-fatal-signals=", setup_print_fatal_signals); 1276 1277 int 1278 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1279 { 1280 return send_signal(sig, info, p, PIDTYPE_TGID); 1281 } 1282 1283 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1284 enum pid_type type) 1285 { 1286 unsigned long flags; 1287 int ret = -ESRCH; 1288 1289 if (lock_task_sighand(p, &flags)) { 1290 ret = send_signal(sig, info, p, type); 1291 unlock_task_sighand(p, &flags); 1292 } 1293 1294 return ret; 1295 } 1296 1297 /* 1298 * Force a signal that the process can't ignore: if necessary 1299 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1300 * 1301 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1302 * since we do not want to have a signal handler that was blocked 1303 * be invoked when user space had explicitly blocked it. 1304 * 1305 * We don't want to have recursive SIGSEGV's etc, for example, 1306 * that is why we also clear SIGNAL_UNKILLABLE. 1307 */ 1308 static int 1309 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) 1310 { 1311 unsigned long int flags; 1312 int ret, blocked, ignored; 1313 struct k_sigaction *action; 1314 int sig = info->si_signo; 1315 1316 spin_lock_irqsave(&t->sighand->siglock, flags); 1317 action = &t->sighand->action[sig-1]; 1318 ignored = action->sa.sa_handler == SIG_IGN; 1319 blocked = sigismember(&t->blocked, sig); 1320 if (blocked || ignored) { 1321 action->sa.sa_handler = SIG_DFL; 1322 if (blocked) { 1323 sigdelset(&t->blocked, sig); 1324 recalc_sigpending_and_wake(t); 1325 } 1326 } 1327 /* 1328 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1329 * debugging to leave init killable. 1330 */ 1331 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1332 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1333 ret = send_signal(sig, info, t, PIDTYPE_PID); 1334 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1335 1336 return ret; 1337 } 1338 1339 int force_sig_info(struct kernel_siginfo *info) 1340 { 1341 return force_sig_info_to_task(info, current); 1342 } 1343 1344 /* 1345 * Nuke all other threads in the group. 1346 */ 1347 int zap_other_threads(struct task_struct *p) 1348 { 1349 struct task_struct *t = p; 1350 int count = 0; 1351 1352 p->signal->group_stop_count = 0; 1353 1354 while_each_thread(p, t) { 1355 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1356 count++; 1357 1358 /* Don't bother with already dead threads */ 1359 if (t->exit_state) 1360 continue; 1361 sigaddset(&t->pending.signal, SIGKILL); 1362 signal_wake_up(t, 1); 1363 } 1364 1365 return count; 1366 } 1367 1368 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1369 unsigned long *flags) 1370 { 1371 struct sighand_struct *sighand; 1372 1373 rcu_read_lock(); 1374 for (;;) { 1375 sighand = rcu_dereference(tsk->sighand); 1376 if (unlikely(sighand == NULL)) 1377 break; 1378 1379 /* 1380 * This sighand can be already freed and even reused, but 1381 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1382 * initializes ->siglock: this slab can't go away, it has 1383 * the same object type, ->siglock can't be reinitialized. 1384 * 1385 * We need to ensure that tsk->sighand is still the same 1386 * after we take the lock, we can race with de_thread() or 1387 * __exit_signal(). In the latter case the next iteration 1388 * must see ->sighand == NULL. 1389 */ 1390 spin_lock_irqsave(&sighand->siglock, *flags); 1391 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1392 break; 1393 spin_unlock_irqrestore(&sighand->siglock, *flags); 1394 } 1395 rcu_read_unlock(); 1396 1397 return sighand; 1398 } 1399 1400 /* 1401 * send signal info to all the members of a group 1402 */ 1403 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1404 struct task_struct *p, enum pid_type type) 1405 { 1406 int ret; 1407 1408 rcu_read_lock(); 1409 ret = check_kill_permission(sig, info, p); 1410 rcu_read_unlock(); 1411 1412 if (!ret && sig) 1413 ret = do_send_sig_info(sig, info, p, type); 1414 1415 return ret; 1416 } 1417 1418 /* 1419 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1420 * control characters do (^C, ^Z etc) 1421 * - the caller must hold at least a readlock on tasklist_lock 1422 */ 1423 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1424 { 1425 struct task_struct *p = NULL; 1426 int retval, success; 1427 1428 success = 0; 1429 retval = -ESRCH; 1430 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1431 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1432 success |= !err; 1433 retval = err; 1434 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1435 return success ? 0 : retval; 1436 } 1437 1438 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1439 { 1440 int error = -ESRCH; 1441 struct task_struct *p; 1442 1443 for (;;) { 1444 rcu_read_lock(); 1445 p = pid_task(pid, PIDTYPE_PID); 1446 if (p) 1447 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1448 rcu_read_unlock(); 1449 if (likely(!p || error != -ESRCH)) 1450 return error; 1451 1452 /* 1453 * The task was unhashed in between, try again. If it 1454 * is dead, pid_task() will return NULL, if we race with 1455 * de_thread() it will find the new leader. 1456 */ 1457 } 1458 } 1459 1460 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1461 { 1462 int error; 1463 rcu_read_lock(); 1464 error = kill_pid_info(sig, info, find_vpid(pid)); 1465 rcu_read_unlock(); 1466 return error; 1467 } 1468 1469 static inline bool kill_as_cred_perm(const struct cred *cred, 1470 struct task_struct *target) 1471 { 1472 const struct cred *pcred = __task_cred(target); 1473 1474 return uid_eq(cred->euid, pcred->suid) || 1475 uid_eq(cred->euid, pcred->uid) || 1476 uid_eq(cred->uid, pcred->suid) || 1477 uid_eq(cred->uid, pcred->uid); 1478 } 1479 1480 /* 1481 * The usb asyncio usage of siginfo is wrong. The glibc support 1482 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1483 * AKA after the generic fields: 1484 * kernel_pid_t si_pid; 1485 * kernel_uid32_t si_uid; 1486 * sigval_t si_value; 1487 * 1488 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1489 * after the generic fields is: 1490 * void __user *si_addr; 1491 * 1492 * This is a practical problem when there is a 64bit big endian kernel 1493 * and a 32bit userspace. As the 32bit address will encoded in the low 1494 * 32bits of the pointer. Those low 32bits will be stored at higher 1495 * address than appear in a 32 bit pointer. So userspace will not 1496 * see the address it was expecting for it's completions. 1497 * 1498 * There is nothing in the encoding that can allow 1499 * copy_siginfo_to_user32 to detect this confusion of formats, so 1500 * handle this by requiring the caller of kill_pid_usb_asyncio to 1501 * notice when this situration takes place and to store the 32bit 1502 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1503 * parameter. 1504 */ 1505 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1506 struct pid *pid, const struct cred *cred) 1507 { 1508 struct kernel_siginfo info; 1509 struct task_struct *p; 1510 unsigned long flags; 1511 int ret = -EINVAL; 1512 1513 if (!valid_signal(sig)) 1514 return ret; 1515 1516 clear_siginfo(&info); 1517 info.si_signo = sig; 1518 info.si_errno = errno; 1519 info.si_code = SI_ASYNCIO; 1520 *((sigval_t *)&info.si_pid) = addr; 1521 1522 rcu_read_lock(); 1523 p = pid_task(pid, PIDTYPE_PID); 1524 if (!p) { 1525 ret = -ESRCH; 1526 goto out_unlock; 1527 } 1528 if (!kill_as_cred_perm(cred, p)) { 1529 ret = -EPERM; 1530 goto out_unlock; 1531 } 1532 ret = security_task_kill(p, &info, sig, cred); 1533 if (ret) 1534 goto out_unlock; 1535 1536 if (sig) { 1537 if (lock_task_sighand(p, &flags)) { 1538 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1539 unlock_task_sighand(p, &flags); 1540 } else 1541 ret = -ESRCH; 1542 } 1543 out_unlock: 1544 rcu_read_unlock(); 1545 return ret; 1546 } 1547 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1548 1549 /* 1550 * kill_something_info() interprets pid in interesting ways just like kill(2). 1551 * 1552 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1553 * is probably wrong. Should make it like BSD or SYSV. 1554 */ 1555 1556 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1557 { 1558 int ret; 1559 1560 if (pid > 0) 1561 return kill_proc_info(sig, info, pid); 1562 1563 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1564 if (pid == INT_MIN) 1565 return -ESRCH; 1566 1567 read_lock(&tasklist_lock); 1568 if (pid != -1) { 1569 ret = __kill_pgrp_info(sig, info, 1570 pid ? find_vpid(-pid) : task_pgrp(current)); 1571 } else { 1572 int retval = 0, count = 0; 1573 struct task_struct * p; 1574 1575 for_each_process(p) { 1576 if (task_pid_vnr(p) > 1 && 1577 !same_thread_group(p, current)) { 1578 int err = group_send_sig_info(sig, info, p, 1579 PIDTYPE_MAX); 1580 ++count; 1581 if (err != -EPERM) 1582 retval = err; 1583 } 1584 } 1585 ret = count ? retval : -ESRCH; 1586 } 1587 read_unlock(&tasklist_lock); 1588 1589 return ret; 1590 } 1591 1592 /* 1593 * These are for backward compatibility with the rest of the kernel source. 1594 */ 1595 1596 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1597 { 1598 /* 1599 * Make sure legacy kernel users don't send in bad values 1600 * (normal paths check this in check_kill_permission). 1601 */ 1602 if (!valid_signal(sig)) 1603 return -EINVAL; 1604 1605 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1606 } 1607 EXPORT_SYMBOL(send_sig_info); 1608 1609 #define __si_special(priv) \ 1610 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1611 1612 int 1613 send_sig(int sig, struct task_struct *p, int priv) 1614 { 1615 return send_sig_info(sig, __si_special(priv), p); 1616 } 1617 EXPORT_SYMBOL(send_sig); 1618 1619 void force_sig(int sig) 1620 { 1621 struct kernel_siginfo info; 1622 1623 clear_siginfo(&info); 1624 info.si_signo = sig; 1625 info.si_errno = 0; 1626 info.si_code = SI_KERNEL; 1627 info.si_pid = 0; 1628 info.si_uid = 0; 1629 force_sig_info(&info); 1630 } 1631 EXPORT_SYMBOL(force_sig); 1632 1633 /* 1634 * When things go south during signal handling, we 1635 * will force a SIGSEGV. And if the signal that caused 1636 * the problem was already a SIGSEGV, we'll want to 1637 * make sure we don't even try to deliver the signal.. 1638 */ 1639 void force_sigsegv(int sig) 1640 { 1641 struct task_struct *p = current; 1642 1643 if (sig == SIGSEGV) { 1644 unsigned long flags; 1645 spin_lock_irqsave(&p->sighand->siglock, flags); 1646 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1647 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1648 } 1649 force_sig(SIGSEGV); 1650 } 1651 1652 int force_sig_fault_to_task(int sig, int code, void __user *addr 1653 ___ARCH_SI_TRAPNO(int trapno) 1654 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1655 , struct task_struct *t) 1656 { 1657 struct kernel_siginfo info; 1658 1659 clear_siginfo(&info); 1660 info.si_signo = sig; 1661 info.si_errno = 0; 1662 info.si_code = code; 1663 info.si_addr = addr; 1664 #ifdef __ARCH_SI_TRAPNO 1665 info.si_trapno = trapno; 1666 #endif 1667 #ifdef __ia64__ 1668 info.si_imm = imm; 1669 info.si_flags = flags; 1670 info.si_isr = isr; 1671 #endif 1672 return force_sig_info_to_task(&info, t); 1673 } 1674 1675 int force_sig_fault(int sig, int code, void __user *addr 1676 ___ARCH_SI_TRAPNO(int trapno) 1677 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1678 { 1679 return force_sig_fault_to_task(sig, code, addr 1680 ___ARCH_SI_TRAPNO(trapno) 1681 ___ARCH_SI_IA64(imm, flags, isr), current); 1682 } 1683 1684 int send_sig_fault(int sig, int code, void __user *addr 1685 ___ARCH_SI_TRAPNO(int trapno) 1686 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1687 , struct task_struct *t) 1688 { 1689 struct kernel_siginfo info; 1690 1691 clear_siginfo(&info); 1692 info.si_signo = sig; 1693 info.si_errno = 0; 1694 info.si_code = code; 1695 info.si_addr = addr; 1696 #ifdef __ARCH_SI_TRAPNO 1697 info.si_trapno = trapno; 1698 #endif 1699 #ifdef __ia64__ 1700 info.si_imm = imm; 1701 info.si_flags = flags; 1702 info.si_isr = isr; 1703 #endif 1704 return send_sig_info(info.si_signo, &info, t); 1705 } 1706 1707 int force_sig_mceerr(int code, void __user *addr, short lsb) 1708 { 1709 struct kernel_siginfo info; 1710 1711 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1712 clear_siginfo(&info); 1713 info.si_signo = SIGBUS; 1714 info.si_errno = 0; 1715 info.si_code = code; 1716 info.si_addr = addr; 1717 info.si_addr_lsb = lsb; 1718 return force_sig_info(&info); 1719 } 1720 1721 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1722 { 1723 struct kernel_siginfo info; 1724 1725 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1726 clear_siginfo(&info); 1727 info.si_signo = SIGBUS; 1728 info.si_errno = 0; 1729 info.si_code = code; 1730 info.si_addr = addr; 1731 info.si_addr_lsb = lsb; 1732 return send_sig_info(info.si_signo, &info, t); 1733 } 1734 EXPORT_SYMBOL(send_sig_mceerr); 1735 1736 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1737 { 1738 struct kernel_siginfo info; 1739 1740 clear_siginfo(&info); 1741 info.si_signo = SIGSEGV; 1742 info.si_errno = 0; 1743 info.si_code = SEGV_BNDERR; 1744 info.si_addr = addr; 1745 info.si_lower = lower; 1746 info.si_upper = upper; 1747 return force_sig_info(&info); 1748 } 1749 1750 #ifdef SEGV_PKUERR 1751 int force_sig_pkuerr(void __user *addr, u32 pkey) 1752 { 1753 struct kernel_siginfo info; 1754 1755 clear_siginfo(&info); 1756 info.si_signo = SIGSEGV; 1757 info.si_errno = 0; 1758 info.si_code = SEGV_PKUERR; 1759 info.si_addr = addr; 1760 info.si_pkey = pkey; 1761 return force_sig_info(&info); 1762 } 1763 #endif 1764 1765 /* For the crazy architectures that include trap information in 1766 * the errno field, instead of an actual errno value. 1767 */ 1768 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1769 { 1770 struct kernel_siginfo info; 1771 1772 clear_siginfo(&info); 1773 info.si_signo = SIGTRAP; 1774 info.si_errno = errno; 1775 info.si_code = TRAP_HWBKPT; 1776 info.si_addr = addr; 1777 return force_sig_info(&info); 1778 } 1779 1780 int kill_pgrp(struct pid *pid, int sig, int priv) 1781 { 1782 int ret; 1783 1784 read_lock(&tasklist_lock); 1785 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1786 read_unlock(&tasklist_lock); 1787 1788 return ret; 1789 } 1790 EXPORT_SYMBOL(kill_pgrp); 1791 1792 int kill_pid(struct pid *pid, int sig, int priv) 1793 { 1794 return kill_pid_info(sig, __si_special(priv), pid); 1795 } 1796 EXPORT_SYMBOL(kill_pid); 1797 1798 /* 1799 * These functions support sending signals using preallocated sigqueue 1800 * structures. This is needed "because realtime applications cannot 1801 * afford to lose notifications of asynchronous events, like timer 1802 * expirations or I/O completions". In the case of POSIX Timers 1803 * we allocate the sigqueue structure from the timer_create. If this 1804 * allocation fails we are able to report the failure to the application 1805 * with an EAGAIN error. 1806 */ 1807 struct sigqueue *sigqueue_alloc(void) 1808 { 1809 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1810 1811 if (q) 1812 q->flags |= SIGQUEUE_PREALLOC; 1813 1814 return q; 1815 } 1816 1817 void sigqueue_free(struct sigqueue *q) 1818 { 1819 unsigned long flags; 1820 spinlock_t *lock = ¤t->sighand->siglock; 1821 1822 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1823 /* 1824 * We must hold ->siglock while testing q->list 1825 * to serialize with collect_signal() or with 1826 * __exit_signal()->flush_sigqueue(). 1827 */ 1828 spin_lock_irqsave(lock, flags); 1829 q->flags &= ~SIGQUEUE_PREALLOC; 1830 /* 1831 * If it is queued it will be freed when dequeued, 1832 * like the "regular" sigqueue. 1833 */ 1834 if (!list_empty(&q->list)) 1835 q = NULL; 1836 spin_unlock_irqrestore(lock, flags); 1837 1838 if (q) 1839 __sigqueue_free(q); 1840 } 1841 1842 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1843 { 1844 int sig = q->info.si_signo; 1845 struct sigpending *pending; 1846 struct task_struct *t; 1847 unsigned long flags; 1848 int ret, result; 1849 1850 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1851 1852 ret = -1; 1853 rcu_read_lock(); 1854 t = pid_task(pid, type); 1855 if (!t || !likely(lock_task_sighand(t, &flags))) 1856 goto ret; 1857 1858 ret = 1; /* the signal is ignored */ 1859 result = TRACE_SIGNAL_IGNORED; 1860 if (!prepare_signal(sig, t, false)) 1861 goto out; 1862 1863 ret = 0; 1864 if (unlikely(!list_empty(&q->list))) { 1865 /* 1866 * If an SI_TIMER entry is already queue just increment 1867 * the overrun count. 1868 */ 1869 BUG_ON(q->info.si_code != SI_TIMER); 1870 q->info.si_overrun++; 1871 result = TRACE_SIGNAL_ALREADY_PENDING; 1872 goto out; 1873 } 1874 q->info.si_overrun = 0; 1875 1876 signalfd_notify(t, sig); 1877 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1878 list_add_tail(&q->list, &pending->list); 1879 sigaddset(&pending->signal, sig); 1880 complete_signal(sig, t, type); 1881 result = TRACE_SIGNAL_DELIVERED; 1882 out: 1883 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1884 unlock_task_sighand(t, &flags); 1885 ret: 1886 rcu_read_unlock(); 1887 return ret; 1888 } 1889 1890 static void do_notify_pidfd(struct task_struct *task) 1891 { 1892 struct pid *pid; 1893 1894 WARN_ON(task->exit_state == 0); 1895 pid = task_pid(task); 1896 wake_up_all(&pid->wait_pidfd); 1897 } 1898 1899 /* 1900 * Let a parent know about the death of a child. 1901 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1902 * 1903 * Returns true if our parent ignored us and so we've switched to 1904 * self-reaping. 1905 */ 1906 bool do_notify_parent(struct task_struct *tsk, int sig) 1907 { 1908 struct kernel_siginfo info; 1909 unsigned long flags; 1910 struct sighand_struct *psig; 1911 bool autoreap = false; 1912 u64 utime, stime; 1913 1914 BUG_ON(sig == -1); 1915 1916 /* do_notify_parent_cldstop should have been called instead. */ 1917 BUG_ON(task_is_stopped_or_traced(tsk)); 1918 1919 BUG_ON(!tsk->ptrace && 1920 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1921 1922 /* Wake up all pidfd waiters */ 1923 do_notify_pidfd(tsk); 1924 1925 if (sig != SIGCHLD) { 1926 /* 1927 * This is only possible if parent == real_parent. 1928 * Check if it has changed security domain. 1929 */ 1930 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 1931 sig = SIGCHLD; 1932 } 1933 1934 clear_siginfo(&info); 1935 info.si_signo = sig; 1936 info.si_errno = 0; 1937 /* 1938 * We are under tasklist_lock here so our parent is tied to 1939 * us and cannot change. 1940 * 1941 * task_active_pid_ns will always return the same pid namespace 1942 * until a task passes through release_task. 1943 * 1944 * write_lock() currently calls preempt_disable() which is the 1945 * same as rcu_read_lock(), but according to Oleg, this is not 1946 * correct to rely on this 1947 */ 1948 rcu_read_lock(); 1949 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1950 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1951 task_uid(tsk)); 1952 rcu_read_unlock(); 1953 1954 task_cputime(tsk, &utime, &stime); 1955 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1956 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1957 1958 info.si_status = tsk->exit_code & 0x7f; 1959 if (tsk->exit_code & 0x80) 1960 info.si_code = CLD_DUMPED; 1961 else if (tsk->exit_code & 0x7f) 1962 info.si_code = CLD_KILLED; 1963 else { 1964 info.si_code = CLD_EXITED; 1965 info.si_status = tsk->exit_code >> 8; 1966 } 1967 1968 psig = tsk->parent->sighand; 1969 spin_lock_irqsave(&psig->siglock, flags); 1970 if (!tsk->ptrace && sig == SIGCHLD && 1971 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1972 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1973 /* 1974 * We are exiting and our parent doesn't care. POSIX.1 1975 * defines special semantics for setting SIGCHLD to SIG_IGN 1976 * or setting the SA_NOCLDWAIT flag: we should be reaped 1977 * automatically and not left for our parent's wait4 call. 1978 * Rather than having the parent do it as a magic kind of 1979 * signal handler, we just set this to tell do_exit that we 1980 * can be cleaned up without becoming a zombie. Note that 1981 * we still call __wake_up_parent in this case, because a 1982 * blocked sys_wait4 might now return -ECHILD. 1983 * 1984 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1985 * is implementation-defined: we do (if you don't want 1986 * it, just use SIG_IGN instead). 1987 */ 1988 autoreap = true; 1989 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1990 sig = 0; 1991 } 1992 /* 1993 * Send with __send_signal as si_pid and si_uid are in the 1994 * parent's namespaces. 1995 */ 1996 if (valid_signal(sig) && sig) 1997 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 1998 __wake_up_parent(tsk, tsk->parent); 1999 spin_unlock_irqrestore(&psig->siglock, flags); 2000 2001 return autoreap; 2002 } 2003 2004 /** 2005 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2006 * @tsk: task reporting the state change 2007 * @for_ptracer: the notification is for ptracer 2008 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2009 * 2010 * Notify @tsk's parent that the stopped/continued state has changed. If 2011 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2012 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2013 * 2014 * CONTEXT: 2015 * Must be called with tasklist_lock at least read locked. 2016 */ 2017 static void do_notify_parent_cldstop(struct task_struct *tsk, 2018 bool for_ptracer, int why) 2019 { 2020 struct kernel_siginfo info; 2021 unsigned long flags; 2022 struct task_struct *parent; 2023 struct sighand_struct *sighand; 2024 u64 utime, stime; 2025 2026 if (for_ptracer) { 2027 parent = tsk->parent; 2028 } else { 2029 tsk = tsk->group_leader; 2030 parent = tsk->real_parent; 2031 } 2032 2033 clear_siginfo(&info); 2034 info.si_signo = SIGCHLD; 2035 info.si_errno = 0; 2036 /* 2037 * see comment in do_notify_parent() about the following 4 lines 2038 */ 2039 rcu_read_lock(); 2040 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2041 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2042 rcu_read_unlock(); 2043 2044 task_cputime(tsk, &utime, &stime); 2045 info.si_utime = nsec_to_clock_t(utime); 2046 info.si_stime = nsec_to_clock_t(stime); 2047 2048 info.si_code = why; 2049 switch (why) { 2050 case CLD_CONTINUED: 2051 info.si_status = SIGCONT; 2052 break; 2053 case CLD_STOPPED: 2054 info.si_status = tsk->signal->group_exit_code & 0x7f; 2055 break; 2056 case CLD_TRAPPED: 2057 info.si_status = tsk->exit_code & 0x7f; 2058 break; 2059 default: 2060 BUG(); 2061 } 2062 2063 sighand = parent->sighand; 2064 spin_lock_irqsave(&sighand->siglock, flags); 2065 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2066 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2067 __group_send_sig_info(SIGCHLD, &info, parent); 2068 /* 2069 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2070 */ 2071 __wake_up_parent(tsk, parent); 2072 spin_unlock_irqrestore(&sighand->siglock, flags); 2073 } 2074 2075 static inline bool may_ptrace_stop(void) 2076 { 2077 if (!likely(current->ptrace)) 2078 return false; 2079 /* 2080 * Are we in the middle of do_coredump? 2081 * If so and our tracer is also part of the coredump stopping 2082 * is a deadlock situation, and pointless because our tracer 2083 * is dead so don't allow us to stop. 2084 * If SIGKILL was already sent before the caller unlocked 2085 * ->siglock we must see ->core_state != NULL. Otherwise it 2086 * is safe to enter schedule(). 2087 * 2088 * This is almost outdated, a task with the pending SIGKILL can't 2089 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2090 * after SIGKILL was already dequeued. 2091 */ 2092 if (unlikely(current->mm->core_state) && 2093 unlikely(current->mm == current->parent->mm)) 2094 return false; 2095 2096 return true; 2097 } 2098 2099 /* 2100 * Return non-zero if there is a SIGKILL that should be waking us up. 2101 * Called with the siglock held. 2102 */ 2103 static bool sigkill_pending(struct task_struct *tsk) 2104 { 2105 return sigismember(&tsk->pending.signal, SIGKILL) || 2106 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2107 } 2108 2109 /* 2110 * This must be called with current->sighand->siglock held. 2111 * 2112 * This should be the path for all ptrace stops. 2113 * We always set current->last_siginfo while stopped here. 2114 * That makes it a way to test a stopped process for 2115 * being ptrace-stopped vs being job-control-stopped. 2116 * 2117 * If we actually decide not to stop at all because the tracer 2118 * is gone, we keep current->exit_code unless clear_code. 2119 */ 2120 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2121 __releases(¤t->sighand->siglock) 2122 __acquires(¤t->sighand->siglock) 2123 { 2124 bool gstop_done = false; 2125 2126 if (arch_ptrace_stop_needed(exit_code, info)) { 2127 /* 2128 * The arch code has something special to do before a 2129 * ptrace stop. This is allowed to block, e.g. for faults 2130 * on user stack pages. We can't keep the siglock while 2131 * calling arch_ptrace_stop, so we must release it now. 2132 * To preserve proper semantics, we must do this before 2133 * any signal bookkeeping like checking group_stop_count. 2134 * Meanwhile, a SIGKILL could come in before we retake the 2135 * siglock. That must prevent us from sleeping in TASK_TRACED. 2136 * So after regaining the lock, we must check for SIGKILL. 2137 */ 2138 spin_unlock_irq(¤t->sighand->siglock); 2139 arch_ptrace_stop(exit_code, info); 2140 spin_lock_irq(¤t->sighand->siglock); 2141 if (sigkill_pending(current)) 2142 return; 2143 } 2144 2145 set_special_state(TASK_TRACED); 2146 2147 /* 2148 * We're committing to trapping. TRACED should be visible before 2149 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2150 * Also, transition to TRACED and updates to ->jobctl should be 2151 * atomic with respect to siglock and should be done after the arch 2152 * hook as siglock is released and regrabbed across it. 2153 * 2154 * TRACER TRACEE 2155 * 2156 * ptrace_attach() 2157 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2158 * do_wait() 2159 * set_current_state() smp_wmb(); 2160 * ptrace_do_wait() 2161 * wait_task_stopped() 2162 * task_stopped_code() 2163 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2164 */ 2165 smp_wmb(); 2166 2167 current->last_siginfo = info; 2168 current->exit_code = exit_code; 2169 2170 /* 2171 * If @why is CLD_STOPPED, we're trapping to participate in a group 2172 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2173 * across siglock relocks since INTERRUPT was scheduled, PENDING 2174 * could be clear now. We act as if SIGCONT is received after 2175 * TASK_TRACED is entered - ignore it. 2176 */ 2177 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2178 gstop_done = task_participate_group_stop(current); 2179 2180 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2181 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2182 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2183 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2184 2185 /* entering a trap, clear TRAPPING */ 2186 task_clear_jobctl_trapping(current); 2187 2188 spin_unlock_irq(¤t->sighand->siglock); 2189 read_lock(&tasklist_lock); 2190 if (may_ptrace_stop()) { 2191 /* 2192 * Notify parents of the stop. 2193 * 2194 * While ptraced, there are two parents - the ptracer and 2195 * the real_parent of the group_leader. The ptracer should 2196 * know about every stop while the real parent is only 2197 * interested in the completion of group stop. The states 2198 * for the two don't interact with each other. Notify 2199 * separately unless they're gonna be duplicates. 2200 */ 2201 do_notify_parent_cldstop(current, true, why); 2202 if (gstop_done && ptrace_reparented(current)) 2203 do_notify_parent_cldstop(current, false, why); 2204 2205 /* 2206 * Don't want to allow preemption here, because 2207 * sys_ptrace() needs this task to be inactive. 2208 * 2209 * XXX: implement read_unlock_no_resched(). 2210 */ 2211 preempt_disable(); 2212 read_unlock(&tasklist_lock); 2213 cgroup_enter_frozen(); 2214 preempt_enable_no_resched(); 2215 freezable_schedule(); 2216 cgroup_leave_frozen(true); 2217 } else { 2218 /* 2219 * By the time we got the lock, our tracer went away. 2220 * Don't drop the lock yet, another tracer may come. 2221 * 2222 * If @gstop_done, the ptracer went away between group stop 2223 * completion and here. During detach, it would have set 2224 * JOBCTL_STOP_PENDING on us and we'll re-enter 2225 * TASK_STOPPED in do_signal_stop() on return, so notifying 2226 * the real parent of the group stop completion is enough. 2227 */ 2228 if (gstop_done) 2229 do_notify_parent_cldstop(current, false, why); 2230 2231 /* tasklist protects us from ptrace_freeze_traced() */ 2232 __set_current_state(TASK_RUNNING); 2233 if (clear_code) 2234 current->exit_code = 0; 2235 read_unlock(&tasklist_lock); 2236 } 2237 2238 /* 2239 * We are back. Now reacquire the siglock before touching 2240 * last_siginfo, so that we are sure to have synchronized with 2241 * any signal-sending on another CPU that wants to examine it. 2242 */ 2243 spin_lock_irq(¤t->sighand->siglock); 2244 current->last_siginfo = NULL; 2245 2246 /* LISTENING can be set only during STOP traps, clear it */ 2247 current->jobctl &= ~JOBCTL_LISTENING; 2248 2249 /* 2250 * Queued signals ignored us while we were stopped for tracing. 2251 * So check for any that we should take before resuming user mode. 2252 * This sets TIF_SIGPENDING, but never clears it. 2253 */ 2254 recalc_sigpending_tsk(current); 2255 } 2256 2257 static void ptrace_do_notify(int signr, int exit_code, int why) 2258 { 2259 kernel_siginfo_t info; 2260 2261 clear_siginfo(&info); 2262 info.si_signo = signr; 2263 info.si_code = exit_code; 2264 info.si_pid = task_pid_vnr(current); 2265 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2266 2267 /* Let the debugger run. */ 2268 ptrace_stop(exit_code, why, 1, &info); 2269 } 2270 2271 void ptrace_notify(int exit_code) 2272 { 2273 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2274 if (unlikely(current->task_works)) 2275 task_work_run(); 2276 2277 spin_lock_irq(¤t->sighand->siglock); 2278 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2279 spin_unlock_irq(¤t->sighand->siglock); 2280 } 2281 2282 /** 2283 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2284 * @signr: signr causing group stop if initiating 2285 * 2286 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2287 * and participate in it. If already set, participate in the existing 2288 * group stop. If participated in a group stop (and thus slept), %true is 2289 * returned with siglock released. 2290 * 2291 * If ptraced, this function doesn't handle stop itself. Instead, 2292 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2293 * untouched. The caller must ensure that INTERRUPT trap handling takes 2294 * places afterwards. 2295 * 2296 * CONTEXT: 2297 * Must be called with @current->sighand->siglock held, which is released 2298 * on %true return. 2299 * 2300 * RETURNS: 2301 * %false if group stop is already cancelled or ptrace trap is scheduled. 2302 * %true if participated in group stop. 2303 */ 2304 static bool do_signal_stop(int signr) 2305 __releases(¤t->sighand->siglock) 2306 { 2307 struct signal_struct *sig = current->signal; 2308 2309 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2310 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2311 struct task_struct *t; 2312 2313 /* signr will be recorded in task->jobctl for retries */ 2314 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2315 2316 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2317 unlikely(signal_group_exit(sig))) 2318 return false; 2319 /* 2320 * There is no group stop already in progress. We must 2321 * initiate one now. 2322 * 2323 * While ptraced, a task may be resumed while group stop is 2324 * still in effect and then receive a stop signal and 2325 * initiate another group stop. This deviates from the 2326 * usual behavior as two consecutive stop signals can't 2327 * cause two group stops when !ptraced. That is why we 2328 * also check !task_is_stopped(t) below. 2329 * 2330 * The condition can be distinguished by testing whether 2331 * SIGNAL_STOP_STOPPED is already set. Don't generate 2332 * group_exit_code in such case. 2333 * 2334 * This is not necessary for SIGNAL_STOP_CONTINUED because 2335 * an intervening stop signal is required to cause two 2336 * continued events regardless of ptrace. 2337 */ 2338 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2339 sig->group_exit_code = signr; 2340 2341 sig->group_stop_count = 0; 2342 2343 if (task_set_jobctl_pending(current, signr | gstop)) 2344 sig->group_stop_count++; 2345 2346 t = current; 2347 while_each_thread(current, t) { 2348 /* 2349 * Setting state to TASK_STOPPED for a group 2350 * stop is always done with the siglock held, 2351 * so this check has no races. 2352 */ 2353 if (!task_is_stopped(t) && 2354 task_set_jobctl_pending(t, signr | gstop)) { 2355 sig->group_stop_count++; 2356 if (likely(!(t->ptrace & PT_SEIZED))) 2357 signal_wake_up(t, 0); 2358 else 2359 ptrace_trap_notify(t); 2360 } 2361 } 2362 } 2363 2364 if (likely(!current->ptrace)) { 2365 int notify = 0; 2366 2367 /* 2368 * If there are no other threads in the group, or if there 2369 * is a group stop in progress and we are the last to stop, 2370 * report to the parent. 2371 */ 2372 if (task_participate_group_stop(current)) 2373 notify = CLD_STOPPED; 2374 2375 set_special_state(TASK_STOPPED); 2376 spin_unlock_irq(¤t->sighand->siglock); 2377 2378 /* 2379 * Notify the parent of the group stop completion. Because 2380 * we're not holding either the siglock or tasklist_lock 2381 * here, ptracer may attach inbetween; however, this is for 2382 * group stop and should always be delivered to the real 2383 * parent of the group leader. The new ptracer will get 2384 * its notification when this task transitions into 2385 * TASK_TRACED. 2386 */ 2387 if (notify) { 2388 read_lock(&tasklist_lock); 2389 do_notify_parent_cldstop(current, false, notify); 2390 read_unlock(&tasklist_lock); 2391 } 2392 2393 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2394 cgroup_enter_frozen(); 2395 freezable_schedule(); 2396 return true; 2397 } else { 2398 /* 2399 * While ptraced, group stop is handled by STOP trap. 2400 * Schedule it and let the caller deal with it. 2401 */ 2402 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2403 return false; 2404 } 2405 } 2406 2407 /** 2408 * do_jobctl_trap - take care of ptrace jobctl traps 2409 * 2410 * When PT_SEIZED, it's used for both group stop and explicit 2411 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2412 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2413 * the stop signal; otherwise, %SIGTRAP. 2414 * 2415 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2416 * number as exit_code and no siginfo. 2417 * 2418 * CONTEXT: 2419 * Must be called with @current->sighand->siglock held, which may be 2420 * released and re-acquired before returning with intervening sleep. 2421 */ 2422 static void do_jobctl_trap(void) 2423 { 2424 struct signal_struct *signal = current->signal; 2425 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2426 2427 if (current->ptrace & PT_SEIZED) { 2428 if (!signal->group_stop_count && 2429 !(signal->flags & SIGNAL_STOP_STOPPED)) 2430 signr = SIGTRAP; 2431 WARN_ON_ONCE(!signr); 2432 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2433 CLD_STOPPED); 2434 } else { 2435 WARN_ON_ONCE(!signr); 2436 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2437 current->exit_code = 0; 2438 } 2439 } 2440 2441 /** 2442 * do_freezer_trap - handle the freezer jobctl trap 2443 * 2444 * Puts the task into frozen state, if only the task is not about to quit. 2445 * In this case it drops JOBCTL_TRAP_FREEZE. 2446 * 2447 * CONTEXT: 2448 * Must be called with @current->sighand->siglock held, 2449 * which is always released before returning. 2450 */ 2451 static void do_freezer_trap(void) 2452 __releases(¤t->sighand->siglock) 2453 { 2454 /* 2455 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2456 * let's make another loop to give it a chance to be handled. 2457 * In any case, we'll return back. 2458 */ 2459 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2460 JOBCTL_TRAP_FREEZE) { 2461 spin_unlock_irq(¤t->sighand->siglock); 2462 return; 2463 } 2464 2465 /* 2466 * Now we're sure that there is no pending fatal signal and no 2467 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2468 * immediately (if there is a non-fatal signal pending), and 2469 * put the task into sleep. 2470 */ 2471 __set_current_state(TASK_INTERRUPTIBLE); 2472 clear_thread_flag(TIF_SIGPENDING); 2473 spin_unlock_irq(¤t->sighand->siglock); 2474 cgroup_enter_frozen(); 2475 freezable_schedule(); 2476 } 2477 2478 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2479 { 2480 /* 2481 * We do not check sig_kernel_stop(signr) but set this marker 2482 * unconditionally because we do not know whether debugger will 2483 * change signr. This flag has no meaning unless we are going 2484 * to stop after return from ptrace_stop(). In this case it will 2485 * be checked in do_signal_stop(), we should only stop if it was 2486 * not cleared by SIGCONT while we were sleeping. See also the 2487 * comment in dequeue_signal(). 2488 */ 2489 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2490 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2491 2492 /* We're back. Did the debugger cancel the sig? */ 2493 signr = current->exit_code; 2494 if (signr == 0) 2495 return signr; 2496 2497 current->exit_code = 0; 2498 2499 /* 2500 * Update the siginfo structure if the signal has 2501 * changed. If the debugger wanted something 2502 * specific in the siginfo structure then it should 2503 * have updated *info via PTRACE_SETSIGINFO. 2504 */ 2505 if (signr != info->si_signo) { 2506 clear_siginfo(info); 2507 info->si_signo = signr; 2508 info->si_errno = 0; 2509 info->si_code = SI_USER; 2510 rcu_read_lock(); 2511 info->si_pid = task_pid_vnr(current->parent); 2512 info->si_uid = from_kuid_munged(current_user_ns(), 2513 task_uid(current->parent)); 2514 rcu_read_unlock(); 2515 } 2516 2517 /* If the (new) signal is now blocked, requeue it. */ 2518 if (sigismember(¤t->blocked, signr)) { 2519 send_signal(signr, info, current, PIDTYPE_PID); 2520 signr = 0; 2521 } 2522 2523 return signr; 2524 } 2525 2526 bool get_signal(struct ksignal *ksig) 2527 { 2528 struct sighand_struct *sighand = current->sighand; 2529 struct signal_struct *signal = current->signal; 2530 int signr; 2531 2532 if (unlikely(uprobe_deny_signal())) 2533 return false; 2534 2535 /* 2536 * Do this once, we can't return to user-mode if freezing() == T. 2537 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2538 * thus do not need another check after return. 2539 */ 2540 try_to_freeze(); 2541 2542 relock: 2543 spin_lock_irq(&sighand->siglock); 2544 /* 2545 * Make sure we can safely read ->jobctl() in task_work add. As Oleg 2546 * states: 2547 * 2548 * It pairs with mb (implied by cmpxchg) before READ_ONCE. So we 2549 * roughly have 2550 * 2551 * task_work_add: get_signal: 2552 * STORE(task->task_works, new_work); STORE(task->jobctl); 2553 * mb(); mb(); 2554 * LOAD(task->jobctl); LOAD(task->task_works); 2555 * 2556 * and we can rely on STORE-MB-LOAD [ in task_work_add]. 2557 */ 2558 smp_store_mb(current->jobctl, current->jobctl & ~JOBCTL_TASK_WORK); 2559 if (unlikely(current->task_works)) { 2560 spin_unlock_irq(&sighand->siglock); 2561 task_work_run(); 2562 goto relock; 2563 } 2564 2565 /* 2566 * Every stopped thread goes here after wakeup. Check to see if 2567 * we should notify the parent, prepare_signal(SIGCONT) encodes 2568 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2569 */ 2570 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2571 int why; 2572 2573 if (signal->flags & SIGNAL_CLD_CONTINUED) 2574 why = CLD_CONTINUED; 2575 else 2576 why = CLD_STOPPED; 2577 2578 signal->flags &= ~SIGNAL_CLD_MASK; 2579 2580 spin_unlock_irq(&sighand->siglock); 2581 2582 /* 2583 * Notify the parent that we're continuing. This event is 2584 * always per-process and doesn't make whole lot of sense 2585 * for ptracers, who shouldn't consume the state via 2586 * wait(2) either, but, for backward compatibility, notify 2587 * the ptracer of the group leader too unless it's gonna be 2588 * a duplicate. 2589 */ 2590 read_lock(&tasklist_lock); 2591 do_notify_parent_cldstop(current, false, why); 2592 2593 if (ptrace_reparented(current->group_leader)) 2594 do_notify_parent_cldstop(current->group_leader, 2595 true, why); 2596 read_unlock(&tasklist_lock); 2597 2598 goto relock; 2599 } 2600 2601 /* Has this task already been marked for death? */ 2602 if (signal_group_exit(signal)) { 2603 ksig->info.si_signo = signr = SIGKILL; 2604 sigdelset(¤t->pending.signal, SIGKILL); 2605 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2606 &sighand->action[SIGKILL - 1]); 2607 recalc_sigpending(); 2608 goto fatal; 2609 } 2610 2611 for (;;) { 2612 struct k_sigaction *ka; 2613 2614 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2615 do_signal_stop(0)) 2616 goto relock; 2617 2618 if (unlikely(current->jobctl & 2619 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2620 if (current->jobctl & JOBCTL_TRAP_MASK) { 2621 do_jobctl_trap(); 2622 spin_unlock_irq(&sighand->siglock); 2623 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2624 do_freezer_trap(); 2625 2626 goto relock; 2627 } 2628 2629 /* 2630 * If the task is leaving the frozen state, let's update 2631 * cgroup counters and reset the frozen bit. 2632 */ 2633 if (unlikely(cgroup_task_frozen(current))) { 2634 spin_unlock_irq(&sighand->siglock); 2635 cgroup_leave_frozen(false); 2636 goto relock; 2637 } 2638 2639 /* 2640 * Signals generated by the execution of an instruction 2641 * need to be delivered before any other pending signals 2642 * so that the instruction pointer in the signal stack 2643 * frame points to the faulting instruction. 2644 */ 2645 signr = dequeue_synchronous_signal(&ksig->info); 2646 if (!signr) 2647 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2648 2649 if (!signr) 2650 break; /* will return 0 */ 2651 2652 if (unlikely(current->ptrace) && signr != SIGKILL) { 2653 signr = ptrace_signal(signr, &ksig->info); 2654 if (!signr) 2655 continue; 2656 } 2657 2658 ka = &sighand->action[signr-1]; 2659 2660 /* Trace actually delivered signals. */ 2661 trace_signal_deliver(signr, &ksig->info, ka); 2662 2663 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2664 continue; 2665 if (ka->sa.sa_handler != SIG_DFL) { 2666 /* Run the handler. */ 2667 ksig->ka = *ka; 2668 2669 if (ka->sa.sa_flags & SA_ONESHOT) 2670 ka->sa.sa_handler = SIG_DFL; 2671 2672 break; /* will return non-zero "signr" value */ 2673 } 2674 2675 /* 2676 * Now we are doing the default action for this signal. 2677 */ 2678 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2679 continue; 2680 2681 /* 2682 * Global init gets no signals it doesn't want. 2683 * Container-init gets no signals it doesn't want from same 2684 * container. 2685 * 2686 * Note that if global/container-init sees a sig_kernel_only() 2687 * signal here, the signal must have been generated internally 2688 * or must have come from an ancestor namespace. In either 2689 * case, the signal cannot be dropped. 2690 */ 2691 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2692 !sig_kernel_only(signr)) 2693 continue; 2694 2695 if (sig_kernel_stop(signr)) { 2696 /* 2697 * The default action is to stop all threads in 2698 * the thread group. The job control signals 2699 * do nothing in an orphaned pgrp, but SIGSTOP 2700 * always works. Note that siglock needs to be 2701 * dropped during the call to is_orphaned_pgrp() 2702 * because of lock ordering with tasklist_lock. 2703 * This allows an intervening SIGCONT to be posted. 2704 * We need to check for that and bail out if necessary. 2705 */ 2706 if (signr != SIGSTOP) { 2707 spin_unlock_irq(&sighand->siglock); 2708 2709 /* signals can be posted during this window */ 2710 2711 if (is_current_pgrp_orphaned()) 2712 goto relock; 2713 2714 spin_lock_irq(&sighand->siglock); 2715 } 2716 2717 if (likely(do_signal_stop(ksig->info.si_signo))) { 2718 /* It released the siglock. */ 2719 goto relock; 2720 } 2721 2722 /* 2723 * We didn't actually stop, due to a race 2724 * with SIGCONT or something like that. 2725 */ 2726 continue; 2727 } 2728 2729 fatal: 2730 spin_unlock_irq(&sighand->siglock); 2731 if (unlikely(cgroup_task_frozen(current))) 2732 cgroup_leave_frozen(true); 2733 2734 /* 2735 * Anything else is fatal, maybe with a core dump. 2736 */ 2737 current->flags |= PF_SIGNALED; 2738 2739 if (sig_kernel_coredump(signr)) { 2740 if (print_fatal_signals) 2741 print_fatal_signal(ksig->info.si_signo); 2742 proc_coredump_connector(current); 2743 /* 2744 * If it was able to dump core, this kills all 2745 * other threads in the group and synchronizes with 2746 * their demise. If we lost the race with another 2747 * thread getting here, it set group_exit_code 2748 * first and our do_group_exit call below will use 2749 * that value and ignore the one we pass it. 2750 */ 2751 do_coredump(&ksig->info); 2752 } 2753 2754 /* 2755 * Death signals, no core dump. 2756 */ 2757 do_group_exit(ksig->info.si_signo); 2758 /* NOTREACHED */ 2759 } 2760 spin_unlock_irq(&sighand->siglock); 2761 2762 ksig->sig = signr; 2763 return ksig->sig > 0; 2764 } 2765 2766 /** 2767 * signal_delivered - 2768 * @ksig: kernel signal struct 2769 * @stepping: nonzero if debugger single-step or block-step in use 2770 * 2771 * This function should be called when a signal has successfully been 2772 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2773 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2774 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2775 */ 2776 static void signal_delivered(struct ksignal *ksig, int stepping) 2777 { 2778 sigset_t blocked; 2779 2780 /* A signal was successfully delivered, and the 2781 saved sigmask was stored on the signal frame, 2782 and will be restored by sigreturn. So we can 2783 simply clear the restore sigmask flag. */ 2784 clear_restore_sigmask(); 2785 2786 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2787 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2788 sigaddset(&blocked, ksig->sig); 2789 set_current_blocked(&blocked); 2790 tracehook_signal_handler(stepping); 2791 } 2792 2793 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2794 { 2795 if (failed) 2796 force_sigsegv(ksig->sig); 2797 else 2798 signal_delivered(ksig, stepping); 2799 } 2800 2801 /* 2802 * It could be that complete_signal() picked us to notify about the 2803 * group-wide signal. Other threads should be notified now to take 2804 * the shared signals in @which since we will not. 2805 */ 2806 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2807 { 2808 sigset_t retarget; 2809 struct task_struct *t; 2810 2811 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2812 if (sigisemptyset(&retarget)) 2813 return; 2814 2815 t = tsk; 2816 while_each_thread(tsk, t) { 2817 if (t->flags & PF_EXITING) 2818 continue; 2819 2820 if (!has_pending_signals(&retarget, &t->blocked)) 2821 continue; 2822 /* Remove the signals this thread can handle. */ 2823 sigandsets(&retarget, &retarget, &t->blocked); 2824 2825 if (!signal_pending(t)) 2826 signal_wake_up(t, 0); 2827 2828 if (sigisemptyset(&retarget)) 2829 break; 2830 } 2831 } 2832 2833 void exit_signals(struct task_struct *tsk) 2834 { 2835 int group_stop = 0; 2836 sigset_t unblocked; 2837 2838 /* 2839 * @tsk is about to have PF_EXITING set - lock out users which 2840 * expect stable threadgroup. 2841 */ 2842 cgroup_threadgroup_change_begin(tsk); 2843 2844 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2845 tsk->flags |= PF_EXITING; 2846 cgroup_threadgroup_change_end(tsk); 2847 return; 2848 } 2849 2850 spin_lock_irq(&tsk->sighand->siglock); 2851 /* 2852 * From now this task is not visible for group-wide signals, 2853 * see wants_signal(), do_signal_stop(). 2854 */ 2855 tsk->flags |= PF_EXITING; 2856 2857 cgroup_threadgroup_change_end(tsk); 2858 2859 if (!signal_pending(tsk)) 2860 goto out; 2861 2862 unblocked = tsk->blocked; 2863 signotset(&unblocked); 2864 retarget_shared_pending(tsk, &unblocked); 2865 2866 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2867 task_participate_group_stop(tsk)) 2868 group_stop = CLD_STOPPED; 2869 out: 2870 spin_unlock_irq(&tsk->sighand->siglock); 2871 2872 /* 2873 * If group stop has completed, deliver the notification. This 2874 * should always go to the real parent of the group leader. 2875 */ 2876 if (unlikely(group_stop)) { 2877 read_lock(&tasklist_lock); 2878 do_notify_parent_cldstop(tsk, false, group_stop); 2879 read_unlock(&tasklist_lock); 2880 } 2881 } 2882 2883 /* 2884 * System call entry points. 2885 */ 2886 2887 /** 2888 * sys_restart_syscall - restart a system call 2889 */ 2890 SYSCALL_DEFINE0(restart_syscall) 2891 { 2892 struct restart_block *restart = ¤t->restart_block; 2893 return restart->fn(restart); 2894 } 2895 2896 long do_no_restart_syscall(struct restart_block *param) 2897 { 2898 return -EINTR; 2899 } 2900 2901 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2902 { 2903 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2904 sigset_t newblocked; 2905 /* A set of now blocked but previously unblocked signals. */ 2906 sigandnsets(&newblocked, newset, ¤t->blocked); 2907 retarget_shared_pending(tsk, &newblocked); 2908 } 2909 tsk->blocked = *newset; 2910 recalc_sigpending(); 2911 } 2912 2913 /** 2914 * set_current_blocked - change current->blocked mask 2915 * @newset: new mask 2916 * 2917 * It is wrong to change ->blocked directly, this helper should be used 2918 * to ensure the process can't miss a shared signal we are going to block. 2919 */ 2920 void set_current_blocked(sigset_t *newset) 2921 { 2922 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2923 __set_current_blocked(newset); 2924 } 2925 2926 void __set_current_blocked(const sigset_t *newset) 2927 { 2928 struct task_struct *tsk = current; 2929 2930 /* 2931 * In case the signal mask hasn't changed, there is nothing we need 2932 * to do. The current->blocked shouldn't be modified by other task. 2933 */ 2934 if (sigequalsets(&tsk->blocked, newset)) 2935 return; 2936 2937 spin_lock_irq(&tsk->sighand->siglock); 2938 __set_task_blocked(tsk, newset); 2939 spin_unlock_irq(&tsk->sighand->siglock); 2940 } 2941 2942 /* 2943 * This is also useful for kernel threads that want to temporarily 2944 * (or permanently) block certain signals. 2945 * 2946 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2947 * interface happily blocks "unblockable" signals like SIGKILL 2948 * and friends. 2949 */ 2950 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2951 { 2952 struct task_struct *tsk = current; 2953 sigset_t newset; 2954 2955 /* Lockless, only current can change ->blocked, never from irq */ 2956 if (oldset) 2957 *oldset = tsk->blocked; 2958 2959 switch (how) { 2960 case SIG_BLOCK: 2961 sigorsets(&newset, &tsk->blocked, set); 2962 break; 2963 case SIG_UNBLOCK: 2964 sigandnsets(&newset, &tsk->blocked, set); 2965 break; 2966 case SIG_SETMASK: 2967 newset = *set; 2968 break; 2969 default: 2970 return -EINVAL; 2971 } 2972 2973 __set_current_blocked(&newset); 2974 return 0; 2975 } 2976 EXPORT_SYMBOL(sigprocmask); 2977 2978 /* 2979 * The api helps set app-provided sigmasks. 2980 * 2981 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2982 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 2983 * 2984 * Note that it does set_restore_sigmask() in advance, so it must be always 2985 * paired with restore_saved_sigmask_unless() before return from syscall. 2986 */ 2987 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 2988 { 2989 sigset_t kmask; 2990 2991 if (!umask) 2992 return 0; 2993 if (sigsetsize != sizeof(sigset_t)) 2994 return -EINVAL; 2995 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 2996 return -EFAULT; 2997 2998 set_restore_sigmask(); 2999 current->saved_sigmask = current->blocked; 3000 set_current_blocked(&kmask); 3001 3002 return 0; 3003 } 3004 3005 #ifdef CONFIG_COMPAT 3006 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3007 size_t sigsetsize) 3008 { 3009 sigset_t kmask; 3010 3011 if (!umask) 3012 return 0; 3013 if (sigsetsize != sizeof(compat_sigset_t)) 3014 return -EINVAL; 3015 if (get_compat_sigset(&kmask, umask)) 3016 return -EFAULT; 3017 3018 set_restore_sigmask(); 3019 current->saved_sigmask = current->blocked; 3020 set_current_blocked(&kmask); 3021 3022 return 0; 3023 } 3024 #endif 3025 3026 /** 3027 * sys_rt_sigprocmask - change the list of currently blocked signals 3028 * @how: whether to add, remove, or set signals 3029 * @nset: stores pending signals 3030 * @oset: previous value of signal mask if non-null 3031 * @sigsetsize: size of sigset_t type 3032 */ 3033 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3034 sigset_t __user *, oset, size_t, sigsetsize) 3035 { 3036 sigset_t old_set, new_set; 3037 int error; 3038 3039 /* XXX: Don't preclude handling different sized sigset_t's. */ 3040 if (sigsetsize != sizeof(sigset_t)) 3041 return -EINVAL; 3042 3043 old_set = current->blocked; 3044 3045 if (nset) { 3046 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3047 return -EFAULT; 3048 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3049 3050 error = sigprocmask(how, &new_set, NULL); 3051 if (error) 3052 return error; 3053 } 3054 3055 if (oset) { 3056 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3057 return -EFAULT; 3058 } 3059 3060 return 0; 3061 } 3062 3063 #ifdef CONFIG_COMPAT 3064 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3065 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3066 { 3067 sigset_t old_set = current->blocked; 3068 3069 /* XXX: Don't preclude handling different sized sigset_t's. */ 3070 if (sigsetsize != sizeof(sigset_t)) 3071 return -EINVAL; 3072 3073 if (nset) { 3074 sigset_t new_set; 3075 int error; 3076 if (get_compat_sigset(&new_set, nset)) 3077 return -EFAULT; 3078 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3079 3080 error = sigprocmask(how, &new_set, NULL); 3081 if (error) 3082 return error; 3083 } 3084 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3085 } 3086 #endif 3087 3088 static void do_sigpending(sigset_t *set) 3089 { 3090 spin_lock_irq(¤t->sighand->siglock); 3091 sigorsets(set, ¤t->pending.signal, 3092 ¤t->signal->shared_pending.signal); 3093 spin_unlock_irq(¤t->sighand->siglock); 3094 3095 /* Outside the lock because only this thread touches it. */ 3096 sigandsets(set, ¤t->blocked, set); 3097 } 3098 3099 /** 3100 * sys_rt_sigpending - examine a pending signal that has been raised 3101 * while blocked 3102 * @uset: stores pending signals 3103 * @sigsetsize: size of sigset_t type or larger 3104 */ 3105 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3106 { 3107 sigset_t set; 3108 3109 if (sigsetsize > sizeof(*uset)) 3110 return -EINVAL; 3111 3112 do_sigpending(&set); 3113 3114 if (copy_to_user(uset, &set, sigsetsize)) 3115 return -EFAULT; 3116 3117 return 0; 3118 } 3119 3120 #ifdef CONFIG_COMPAT 3121 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3122 compat_size_t, sigsetsize) 3123 { 3124 sigset_t set; 3125 3126 if (sigsetsize > sizeof(*uset)) 3127 return -EINVAL; 3128 3129 do_sigpending(&set); 3130 3131 return put_compat_sigset(uset, &set, sigsetsize); 3132 } 3133 #endif 3134 3135 static const struct { 3136 unsigned char limit, layout; 3137 } sig_sicodes[] = { 3138 [SIGILL] = { NSIGILL, SIL_FAULT }, 3139 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3140 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3141 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3142 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3143 #if defined(SIGEMT) 3144 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3145 #endif 3146 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3147 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3148 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3149 }; 3150 3151 static bool known_siginfo_layout(unsigned sig, int si_code) 3152 { 3153 if (si_code == SI_KERNEL) 3154 return true; 3155 else if ((si_code > SI_USER)) { 3156 if (sig_specific_sicodes(sig)) { 3157 if (si_code <= sig_sicodes[sig].limit) 3158 return true; 3159 } 3160 else if (si_code <= NSIGPOLL) 3161 return true; 3162 } 3163 else if (si_code >= SI_DETHREAD) 3164 return true; 3165 else if (si_code == SI_ASYNCNL) 3166 return true; 3167 return false; 3168 } 3169 3170 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3171 { 3172 enum siginfo_layout layout = SIL_KILL; 3173 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3174 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3175 (si_code <= sig_sicodes[sig].limit)) { 3176 layout = sig_sicodes[sig].layout; 3177 /* Handle the exceptions */ 3178 if ((sig == SIGBUS) && 3179 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3180 layout = SIL_FAULT_MCEERR; 3181 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3182 layout = SIL_FAULT_BNDERR; 3183 #ifdef SEGV_PKUERR 3184 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3185 layout = SIL_FAULT_PKUERR; 3186 #endif 3187 } 3188 else if (si_code <= NSIGPOLL) 3189 layout = SIL_POLL; 3190 } else { 3191 if (si_code == SI_TIMER) 3192 layout = SIL_TIMER; 3193 else if (si_code == SI_SIGIO) 3194 layout = SIL_POLL; 3195 else if (si_code < 0) 3196 layout = SIL_RT; 3197 } 3198 return layout; 3199 } 3200 3201 static inline char __user *si_expansion(const siginfo_t __user *info) 3202 { 3203 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3204 } 3205 3206 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3207 { 3208 char __user *expansion = si_expansion(to); 3209 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3210 return -EFAULT; 3211 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3212 return -EFAULT; 3213 return 0; 3214 } 3215 3216 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3217 const siginfo_t __user *from) 3218 { 3219 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3220 char __user *expansion = si_expansion(from); 3221 char buf[SI_EXPANSION_SIZE]; 3222 int i; 3223 /* 3224 * An unknown si_code might need more than 3225 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3226 * extra bytes are 0. This guarantees copy_siginfo_to_user 3227 * will return this data to userspace exactly. 3228 */ 3229 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3230 return -EFAULT; 3231 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3232 if (buf[i] != 0) 3233 return -E2BIG; 3234 } 3235 } 3236 return 0; 3237 } 3238 3239 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3240 const siginfo_t __user *from) 3241 { 3242 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3243 return -EFAULT; 3244 to->si_signo = signo; 3245 return post_copy_siginfo_from_user(to, from); 3246 } 3247 3248 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3249 { 3250 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3251 return -EFAULT; 3252 return post_copy_siginfo_from_user(to, from); 3253 } 3254 3255 #ifdef CONFIG_COMPAT 3256 /** 3257 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3258 * @to: compat siginfo destination 3259 * @from: kernel siginfo source 3260 * 3261 * Note: This function does not work properly for the SIGCHLD on x32, but 3262 * fortunately it doesn't have to. The only valid callers for this function are 3263 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3264 * The latter does not care because SIGCHLD will never cause a coredump. 3265 */ 3266 void copy_siginfo_to_external32(struct compat_siginfo *to, 3267 const struct kernel_siginfo *from) 3268 { 3269 memset(to, 0, sizeof(*to)); 3270 3271 to->si_signo = from->si_signo; 3272 to->si_errno = from->si_errno; 3273 to->si_code = from->si_code; 3274 switch(siginfo_layout(from->si_signo, from->si_code)) { 3275 case SIL_KILL: 3276 to->si_pid = from->si_pid; 3277 to->si_uid = from->si_uid; 3278 break; 3279 case SIL_TIMER: 3280 to->si_tid = from->si_tid; 3281 to->si_overrun = from->si_overrun; 3282 to->si_int = from->si_int; 3283 break; 3284 case SIL_POLL: 3285 to->si_band = from->si_band; 3286 to->si_fd = from->si_fd; 3287 break; 3288 case SIL_FAULT: 3289 to->si_addr = ptr_to_compat(from->si_addr); 3290 #ifdef __ARCH_SI_TRAPNO 3291 to->si_trapno = from->si_trapno; 3292 #endif 3293 break; 3294 case SIL_FAULT_MCEERR: 3295 to->si_addr = ptr_to_compat(from->si_addr); 3296 #ifdef __ARCH_SI_TRAPNO 3297 to->si_trapno = from->si_trapno; 3298 #endif 3299 to->si_addr_lsb = from->si_addr_lsb; 3300 break; 3301 case SIL_FAULT_BNDERR: 3302 to->si_addr = ptr_to_compat(from->si_addr); 3303 #ifdef __ARCH_SI_TRAPNO 3304 to->si_trapno = from->si_trapno; 3305 #endif 3306 to->si_lower = ptr_to_compat(from->si_lower); 3307 to->si_upper = ptr_to_compat(from->si_upper); 3308 break; 3309 case SIL_FAULT_PKUERR: 3310 to->si_addr = ptr_to_compat(from->si_addr); 3311 #ifdef __ARCH_SI_TRAPNO 3312 to->si_trapno = from->si_trapno; 3313 #endif 3314 to->si_pkey = from->si_pkey; 3315 break; 3316 case SIL_CHLD: 3317 to->si_pid = from->si_pid; 3318 to->si_uid = from->si_uid; 3319 to->si_status = from->si_status; 3320 to->si_utime = from->si_utime; 3321 to->si_stime = from->si_stime; 3322 break; 3323 case SIL_RT: 3324 to->si_pid = from->si_pid; 3325 to->si_uid = from->si_uid; 3326 to->si_int = from->si_int; 3327 break; 3328 case SIL_SYS: 3329 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3330 to->si_syscall = from->si_syscall; 3331 to->si_arch = from->si_arch; 3332 break; 3333 } 3334 } 3335 3336 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3337 const struct kernel_siginfo *from) 3338 { 3339 struct compat_siginfo new; 3340 3341 copy_siginfo_to_external32(&new, from); 3342 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3343 return -EFAULT; 3344 return 0; 3345 } 3346 3347 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3348 const struct compat_siginfo *from) 3349 { 3350 clear_siginfo(to); 3351 to->si_signo = from->si_signo; 3352 to->si_errno = from->si_errno; 3353 to->si_code = from->si_code; 3354 switch(siginfo_layout(from->si_signo, from->si_code)) { 3355 case SIL_KILL: 3356 to->si_pid = from->si_pid; 3357 to->si_uid = from->si_uid; 3358 break; 3359 case SIL_TIMER: 3360 to->si_tid = from->si_tid; 3361 to->si_overrun = from->si_overrun; 3362 to->si_int = from->si_int; 3363 break; 3364 case SIL_POLL: 3365 to->si_band = from->si_band; 3366 to->si_fd = from->si_fd; 3367 break; 3368 case SIL_FAULT: 3369 to->si_addr = compat_ptr(from->si_addr); 3370 #ifdef __ARCH_SI_TRAPNO 3371 to->si_trapno = from->si_trapno; 3372 #endif 3373 break; 3374 case SIL_FAULT_MCEERR: 3375 to->si_addr = compat_ptr(from->si_addr); 3376 #ifdef __ARCH_SI_TRAPNO 3377 to->si_trapno = from->si_trapno; 3378 #endif 3379 to->si_addr_lsb = from->si_addr_lsb; 3380 break; 3381 case SIL_FAULT_BNDERR: 3382 to->si_addr = compat_ptr(from->si_addr); 3383 #ifdef __ARCH_SI_TRAPNO 3384 to->si_trapno = from->si_trapno; 3385 #endif 3386 to->si_lower = compat_ptr(from->si_lower); 3387 to->si_upper = compat_ptr(from->si_upper); 3388 break; 3389 case SIL_FAULT_PKUERR: 3390 to->si_addr = compat_ptr(from->si_addr); 3391 #ifdef __ARCH_SI_TRAPNO 3392 to->si_trapno = from->si_trapno; 3393 #endif 3394 to->si_pkey = from->si_pkey; 3395 break; 3396 case SIL_CHLD: 3397 to->si_pid = from->si_pid; 3398 to->si_uid = from->si_uid; 3399 to->si_status = from->si_status; 3400 #ifdef CONFIG_X86_X32_ABI 3401 if (in_x32_syscall()) { 3402 to->si_utime = from->_sifields._sigchld_x32._utime; 3403 to->si_stime = from->_sifields._sigchld_x32._stime; 3404 } else 3405 #endif 3406 { 3407 to->si_utime = from->si_utime; 3408 to->si_stime = from->si_stime; 3409 } 3410 break; 3411 case SIL_RT: 3412 to->si_pid = from->si_pid; 3413 to->si_uid = from->si_uid; 3414 to->si_int = from->si_int; 3415 break; 3416 case SIL_SYS: 3417 to->si_call_addr = compat_ptr(from->si_call_addr); 3418 to->si_syscall = from->si_syscall; 3419 to->si_arch = from->si_arch; 3420 break; 3421 } 3422 return 0; 3423 } 3424 3425 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3426 const struct compat_siginfo __user *ufrom) 3427 { 3428 struct compat_siginfo from; 3429 3430 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3431 return -EFAULT; 3432 3433 from.si_signo = signo; 3434 return post_copy_siginfo_from_user32(to, &from); 3435 } 3436 3437 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3438 const struct compat_siginfo __user *ufrom) 3439 { 3440 struct compat_siginfo from; 3441 3442 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3443 return -EFAULT; 3444 3445 return post_copy_siginfo_from_user32(to, &from); 3446 } 3447 #endif /* CONFIG_COMPAT */ 3448 3449 /** 3450 * do_sigtimedwait - wait for queued signals specified in @which 3451 * @which: queued signals to wait for 3452 * @info: if non-null, the signal's siginfo is returned here 3453 * @ts: upper bound on process time suspension 3454 */ 3455 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3456 const struct timespec64 *ts) 3457 { 3458 ktime_t *to = NULL, timeout = KTIME_MAX; 3459 struct task_struct *tsk = current; 3460 sigset_t mask = *which; 3461 int sig, ret = 0; 3462 3463 if (ts) { 3464 if (!timespec64_valid(ts)) 3465 return -EINVAL; 3466 timeout = timespec64_to_ktime(*ts); 3467 to = &timeout; 3468 } 3469 3470 /* 3471 * Invert the set of allowed signals to get those we want to block. 3472 */ 3473 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3474 signotset(&mask); 3475 3476 spin_lock_irq(&tsk->sighand->siglock); 3477 sig = dequeue_signal(tsk, &mask, info); 3478 if (!sig && timeout) { 3479 /* 3480 * None ready, temporarily unblock those we're interested 3481 * while we are sleeping in so that we'll be awakened when 3482 * they arrive. Unblocking is always fine, we can avoid 3483 * set_current_blocked(). 3484 */ 3485 tsk->real_blocked = tsk->blocked; 3486 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3487 recalc_sigpending(); 3488 spin_unlock_irq(&tsk->sighand->siglock); 3489 3490 __set_current_state(TASK_INTERRUPTIBLE); 3491 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3492 HRTIMER_MODE_REL); 3493 spin_lock_irq(&tsk->sighand->siglock); 3494 __set_task_blocked(tsk, &tsk->real_blocked); 3495 sigemptyset(&tsk->real_blocked); 3496 sig = dequeue_signal(tsk, &mask, info); 3497 } 3498 spin_unlock_irq(&tsk->sighand->siglock); 3499 3500 if (sig) 3501 return sig; 3502 return ret ? -EINTR : -EAGAIN; 3503 } 3504 3505 /** 3506 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3507 * in @uthese 3508 * @uthese: queued signals to wait for 3509 * @uinfo: if non-null, the signal's siginfo is returned here 3510 * @uts: upper bound on process time suspension 3511 * @sigsetsize: size of sigset_t type 3512 */ 3513 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3514 siginfo_t __user *, uinfo, 3515 const struct __kernel_timespec __user *, uts, 3516 size_t, sigsetsize) 3517 { 3518 sigset_t these; 3519 struct timespec64 ts; 3520 kernel_siginfo_t info; 3521 int ret; 3522 3523 /* XXX: Don't preclude handling different sized sigset_t's. */ 3524 if (sigsetsize != sizeof(sigset_t)) 3525 return -EINVAL; 3526 3527 if (copy_from_user(&these, uthese, sizeof(these))) 3528 return -EFAULT; 3529 3530 if (uts) { 3531 if (get_timespec64(&ts, uts)) 3532 return -EFAULT; 3533 } 3534 3535 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3536 3537 if (ret > 0 && uinfo) { 3538 if (copy_siginfo_to_user(uinfo, &info)) 3539 ret = -EFAULT; 3540 } 3541 3542 return ret; 3543 } 3544 3545 #ifdef CONFIG_COMPAT_32BIT_TIME 3546 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3547 siginfo_t __user *, uinfo, 3548 const struct old_timespec32 __user *, uts, 3549 size_t, sigsetsize) 3550 { 3551 sigset_t these; 3552 struct timespec64 ts; 3553 kernel_siginfo_t info; 3554 int ret; 3555 3556 if (sigsetsize != sizeof(sigset_t)) 3557 return -EINVAL; 3558 3559 if (copy_from_user(&these, uthese, sizeof(these))) 3560 return -EFAULT; 3561 3562 if (uts) { 3563 if (get_old_timespec32(&ts, uts)) 3564 return -EFAULT; 3565 } 3566 3567 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3568 3569 if (ret > 0 && uinfo) { 3570 if (copy_siginfo_to_user(uinfo, &info)) 3571 ret = -EFAULT; 3572 } 3573 3574 return ret; 3575 } 3576 #endif 3577 3578 #ifdef CONFIG_COMPAT 3579 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3580 struct compat_siginfo __user *, uinfo, 3581 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3582 { 3583 sigset_t s; 3584 struct timespec64 t; 3585 kernel_siginfo_t info; 3586 long ret; 3587 3588 if (sigsetsize != sizeof(sigset_t)) 3589 return -EINVAL; 3590 3591 if (get_compat_sigset(&s, uthese)) 3592 return -EFAULT; 3593 3594 if (uts) { 3595 if (get_timespec64(&t, uts)) 3596 return -EFAULT; 3597 } 3598 3599 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3600 3601 if (ret > 0 && uinfo) { 3602 if (copy_siginfo_to_user32(uinfo, &info)) 3603 ret = -EFAULT; 3604 } 3605 3606 return ret; 3607 } 3608 3609 #ifdef CONFIG_COMPAT_32BIT_TIME 3610 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3611 struct compat_siginfo __user *, uinfo, 3612 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3613 { 3614 sigset_t s; 3615 struct timespec64 t; 3616 kernel_siginfo_t info; 3617 long ret; 3618 3619 if (sigsetsize != sizeof(sigset_t)) 3620 return -EINVAL; 3621 3622 if (get_compat_sigset(&s, uthese)) 3623 return -EFAULT; 3624 3625 if (uts) { 3626 if (get_old_timespec32(&t, uts)) 3627 return -EFAULT; 3628 } 3629 3630 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3631 3632 if (ret > 0 && uinfo) { 3633 if (copy_siginfo_to_user32(uinfo, &info)) 3634 ret = -EFAULT; 3635 } 3636 3637 return ret; 3638 } 3639 #endif 3640 #endif 3641 3642 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3643 { 3644 clear_siginfo(info); 3645 info->si_signo = sig; 3646 info->si_errno = 0; 3647 info->si_code = SI_USER; 3648 info->si_pid = task_tgid_vnr(current); 3649 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3650 } 3651 3652 /** 3653 * sys_kill - send a signal to a process 3654 * @pid: the PID of the process 3655 * @sig: signal to be sent 3656 */ 3657 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3658 { 3659 struct kernel_siginfo info; 3660 3661 prepare_kill_siginfo(sig, &info); 3662 3663 return kill_something_info(sig, &info, pid); 3664 } 3665 3666 /* 3667 * Verify that the signaler and signalee either are in the same pid namespace 3668 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3669 * namespace. 3670 */ 3671 static bool access_pidfd_pidns(struct pid *pid) 3672 { 3673 struct pid_namespace *active = task_active_pid_ns(current); 3674 struct pid_namespace *p = ns_of_pid(pid); 3675 3676 for (;;) { 3677 if (!p) 3678 return false; 3679 if (p == active) 3680 break; 3681 p = p->parent; 3682 } 3683 3684 return true; 3685 } 3686 3687 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info) 3688 { 3689 #ifdef CONFIG_COMPAT 3690 /* 3691 * Avoid hooking up compat syscalls and instead handle necessary 3692 * conversions here. Note, this is a stop-gap measure and should not be 3693 * considered a generic solution. 3694 */ 3695 if (in_compat_syscall()) 3696 return copy_siginfo_from_user32( 3697 kinfo, (struct compat_siginfo __user *)info); 3698 #endif 3699 return copy_siginfo_from_user(kinfo, info); 3700 } 3701 3702 static struct pid *pidfd_to_pid(const struct file *file) 3703 { 3704 struct pid *pid; 3705 3706 pid = pidfd_pid(file); 3707 if (!IS_ERR(pid)) 3708 return pid; 3709 3710 return tgid_pidfd_to_pid(file); 3711 } 3712 3713 /** 3714 * sys_pidfd_send_signal - Signal a process through a pidfd 3715 * @pidfd: file descriptor of the process 3716 * @sig: signal to send 3717 * @info: signal info 3718 * @flags: future flags 3719 * 3720 * The syscall currently only signals via PIDTYPE_PID which covers 3721 * kill(<positive-pid>, <signal>. It does not signal threads or process 3722 * groups. 3723 * In order to extend the syscall to threads and process groups the @flags 3724 * argument should be used. In essence, the @flags argument will determine 3725 * what is signaled and not the file descriptor itself. Put in other words, 3726 * grouping is a property of the flags argument not a property of the file 3727 * descriptor. 3728 * 3729 * Return: 0 on success, negative errno on failure 3730 */ 3731 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3732 siginfo_t __user *, info, unsigned int, flags) 3733 { 3734 int ret; 3735 struct fd f; 3736 struct pid *pid; 3737 kernel_siginfo_t kinfo; 3738 3739 /* Enforce flags be set to 0 until we add an extension. */ 3740 if (flags) 3741 return -EINVAL; 3742 3743 f = fdget(pidfd); 3744 if (!f.file) 3745 return -EBADF; 3746 3747 /* Is this a pidfd? */ 3748 pid = pidfd_to_pid(f.file); 3749 if (IS_ERR(pid)) { 3750 ret = PTR_ERR(pid); 3751 goto err; 3752 } 3753 3754 ret = -EINVAL; 3755 if (!access_pidfd_pidns(pid)) 3756 goto err; 3757 3758 if (info) { 3759 ret = copy_siginfo_from_user_any(&kinfo, info); 3760 if (unlikely(ret)) 3761 goto err; 3762 3763 ret = -EINVAL; 3764 if (unlikely(sig != kinfo.si_signo)) 3765 goto err; 3766 3767 /* Only allow sending arbitrary signals to yourself. */ 3768 ret = -EPERM; 3769 if ((task_pid(current) != pid) && 3770 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3771 goto err; 3772 } else { 3773 prepare_kill_siginfo(sig, &kinfo); 3774 } 3775 3776 ret = kill_pid_info(sig, &kinfo, pid); 3777 3778 err: 3779 fdput(f); 3780 return ret; 3781 } 3782 3783 static int 3784 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3785 { 3786 struct task_struct *p; 3787 int error = -ESRCH; 3788 3789 rcu_read_lock(); 3790 p = find_task_by_vpid(pid); 3791 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3792 error = check_kill_permission(sig, info, p); 3793 /* 3794 * The null signal is a permissions and process existence 3795 * probe. No signal is actually delivered. 3796 */ 3797 if (!error && sig) { 3798 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3799 /* 3800 * If lock_task_sighand() failed we pretend the task 3801 * dies after receiving the signal. The window is tiny, 3802 * and the signal is private anyway. 3803 */ 3804 if (unlikely(error == -ESRCH)) 3805 error = 0; 3806 } 3807 } 3808 rcu_read_unlock(); 3809 3810 return error; 3811 } 3812 3813 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3814 { 3815 struct kernel_siginfo info; 3816 3817 clear_siginfo(&info); 3818 info.si_signo = sig; 3819 info.si_errno = 0; 3820 info.si_code = SI_TKILL; 3821 info.si_pid = task_tgid_vnr(current); 3822 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3823 3824 return do_send_specific(tgid, pid, sig, &info); 3825 } 3826 3827 /** 3828 * sys_tgkill - send signal to one specific thread 3829 * @tgid: the thread group ID of the thread 3830 * @pid: the PID of the thread 3831 * @sig: signal to be sent 3832 * 3833 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3834 * exists but it's not belonging to the target process anymore. This 3835 * method solves the problem of threads exiting and PIDs getting reused. 3836 */ 3837 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3838 { 3839 /* This is only valid for single tasks */ 3840 if (pid <= 0 || tgid <= 0) 3841 return -EINVAL; 3842 3843 return do_tkill(tgid, pid, sig); 3844 } 3845 3846 /** 3847 * sys_tkill - send signal to one specific task 3848 * @pid: the PID of the task 3849 * @sig: signal to be sent 3850 * 3851 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3852 */ 3853 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3854 { 3855 /* This is only valid for single tasks */ 3856 if (pid <= 0) 3857 return -EINVAL; 3858 3859 return do_tkill(0, pid, sig); 3860 } 3861 3862 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3863 { 3864 /* Not even root can pretend to send signals from the kernel. 3865 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3866 */ 3867 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3868 (task_pid_vnr(current) != pid)) 3869 return -EPERM; 3870 3871 /* POSIX.1b doesn't mention process groups. */ 3872 return kill_proc_info(sig, info, pid); 3873 } 3874 3875 /** 3876 * sys_rt_sigqueueinfo - send signal information to a signal 3877 * @pid: the PID of the thread 3878 * @sig: signal to be sent 3879 * @uinfo: signal info to be sent 3880 */ 3881 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3882 siginfo_t __user *, uinfo) 3883 { 3884 kernel_siginfo_t info; 3885 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3886 if (unlikely(ret)) 3887 return ret; 3888 return do_rt_sigqueueinfo(pid, sig, &info); 3889 } 3890 3891 #ifdef CONFIG_COMPAT 3892 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3893 compat_pid_t, pid, 3894 int, sig, 3895 struct compat_siginfo __user *, uinfo) 3896 { 3897 kernel_siginfo_t info; 3898 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3899 if (unlikely(ret)) 3900 return ret; 3901 return do_rt_sigqueueinfo(pid, sig, &info); 3902 } 3903 #endif 3904 3905 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3906 { 3907 /* This is only valid for single tasks */ 3908 if (pid <= 0 || tgid <= 0) 3909 return -EINVAL; 3910 3911 /* Not even root can pretend to send signals from the kernel. 3912 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3913 */ 3914 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3915 (task_pid_vnr(current) != pid)) 3916 return -EPERM; 3917 3918 return do_send_specific(tgid, pid, sig, info); 3919 } 3920 3921 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3922 siginfo_t __user *, uinfo) 3923 { 3924 kernel_siginfo_t info; 3925 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3926 if (unlikely(ret)) 3927 return ret; 3928 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3929 } 3930 3931 #ifdef CONFIG_COMPAT 3932 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3933 compat_pid_t, tgid, 3934 compat_pid_t, pid, 3935 int, sig, 3936 struct compat_siginfo __user *, uinfo) 3937 { 3938 kernel_siginfo_t info; 3939 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3940 if (unlikely(ret)) 3941 return ret; 3942 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3943 } 3944 #endif 3945 3946 /* 3947 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3948 */ 3949 void kernel_sigaction(int sig, __sighandler_t action) 3950 { 3951 spin_lock_irq(¤t->sighand->siglock); 3952 current->sighand->action[sig - 1].sa.sa_handler = action; 3953 if (action == SIG_IGN) { 3954 sigset_t mask; 3955 3956 sigemptyset(&mask); 3957 sigaddset(&mask, sig); 3958 3959 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3960 flush_sigqueue_mask(&mask, ¤t->pending); 3961 recalc_sigpending(); 3962 } 3963 spin_unlock_irq(¤t->sighand->siglock); 3964 } 3965 EXPORT_SYMBOL(kernel_sigaction); 3966 3967 void __weak sigaction_compat_abi(struct k_sigaction *act, 3968 struct k_sigaction *oact) 3969 { 3970 } 3971 3972 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3973 { 3974 struct task_struct *p = current, *t; 3975 struct k_sigaction *k; 3976 sigset_t mask; 3977 3978 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3979 return -EINVAL; 3980 3981 k = &p->sighand->action[sig-1]; 3982 3983 spin_lock_irq(&p->sighand->siglock); 3984 if (oact) 3985 *oact = *k; 3986 3987 sigaction_compat_abi(act, oact); 3988 3989 if (act) { 3990 sigdelsetmask(&act->sa.sa_mask, 3991 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3992 *k = *act; 3993 /* 3994 * POSIX 3.3.1.3: 3995 * "Setting a signal action to SIG_IGN for a signal that is 3996 * pending shall cause the pending signal to be discarded, 3997 * whether or not it is blocked." 3998 * 3999 * "Setting a signal action to SIG_DFL for a signal that is 4000 * pending and whose default action is to ignore the signal 4001 * (for example, SIGCHLD), shall cause the pending signal to 4002 * be discarded, whether or not it is blocked" 4003 */ 4004 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4005 sigemptyset(&mask); 4006 sigaddset(&mask, sig); 4007 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4008 for_each_thread(p, t) 4009 flush_sigqueue_mask(&mask, &t->pending); 4010 } 4011 } 4012 4013 spin_unlock_irq(&p->sighand->siglock); 4014 return 0; 4015 } 4016 4017 static int 4018 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4019 size_t min_ss_size) 4020 { 4021 struct task_struct *t = current; 4022 4023 if (oss) { 4024 memset(oss, 0, sizeof(stack_t)); 4025 oss->ss_sp = (void __user *) t->sas_ss_sp; 4026 oss->ss_size = t->sas_ss_size; 4027 oss->ss_flags = sas_ss_flags(sp) | 4028 (current->sas_ss_flags & SS_FLAG_BITS); 4029 } 4030 4031 if (ss) { 4032 void __user *ss_sp = ss->ss_sp; 4033 size_t ss_size = ss->ss_size; 4034 unsigned ss_flags = ss->ss_flags; 4035 int ss_mode; 4036 4037 if (unlikely(on_sig_stack(sp))) 4038 return -EPERM; 4039 4040 ss_mode = ss_flags & ~SS_FLAG_BITS; 4041 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4042 ss_mode != 0)) 4043 return -EINVAL; 4044 4045 if (ss_mode == SS_DISABLE) { 4046 ss_size = 0; 4047 ss_sp = NULL; 4048 } else { 4049 if (unlikely(ss_size < min_ss_size)) 4050 return -ENOMEM; 4051 } 4052 4053 t->sas_ss_sp = (unsigned long) ss_sp; 4054 t->sas_ss_size = ss_size; 4055 t->sas_ss_flags = ss_flags; 4056 } 4057 return 0; 4058 } 4059 4060 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4061 { 4062 stack_t new, old; 4063 int err; 4064 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4065 return -EFAULT; 4066 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4067 current_user_stack_pointer(), 4068 MINSIGSTKSZ); 4069 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4070 err = -EFAULT; 4071 return err; 4072 } 4073 4074 int restore_altstack(const stack_t __user *uss) 4075 { 4076 stack_t new; 4077 if (copy_from_user(&new, uss, sizeof(stack_t))) 4078 return -EFAULT; 4079 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4080 MINSIGSTKSZ); 4081 /* squash all but EFAULT for now */ 4082 return 0; 4083 } 4084 4085 int __save_altstack(stack_t __user *uss, unsigned long sp) 4086 { 4087 struct task_struct *t = current; 4088 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4089 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4090 __put_user(t->sas_ss_size, &uss->ss_size); 4091 if (err) 4092 return err; 4093 if (t->sas_ss_flags & SS_AUTODISARM) 4094 sas_ss_reset(t); 4095 return 0; 4096 } 4097 4098 #ifdef CONFIG_COMPAT 4099 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4100 compat_stack_t __user *uoss_ptr) 4101 { 4102 stack_t uss, uoss; 4103 int ret; 4104 4105 if (uss_ptr) { 4106 compat_stack_t uss32; 4107 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4108 return -EFAULT; 4109 uss.ss_sp = compat_ptr(uss32.ss_sp); 4110 uss.ss_flags = uss32.ss_flags; 4111 uss.ss_size = uss32.ss_size; 4112 } 4113 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4114 compat_user_stack_pointer(), 4115 COMPAT_MINSIGSTKSZ); 4116 if (ret >= 0 && uoss_ptr) { 4117 compat_stack_t old; 4118 memset(&old, 0, sizeof(old)); 4119 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4120 old.ss_flags = uoss.ss_flags; 4121 old.ss_size = uoss.ss_size; 4122 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4123 ret = -EFAULT; 4124 } 4125 return ret; 4126 } 4127 4128 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4129 const compat_stack_t __user *, uss_ptr, 4130 compat_stack_t __user *, uoss_ptr) 4131 { 4132 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4133 } 4134 4135 int compat_restore_altstack(const compat_stack_t __user *uss) 4136 { 4137 int err = do_compat_sigaltstack(uss, NULL); 4138 /* squash all but -EFAULT for now */ 4139 return err == -EFAULT ? err : 0; 4140 } 4141 4142 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4143 { 4144 int err; 4145 struct task_struct *t = current; 4146 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4147 &uss->ss_sp) | 4148 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4149 __put_user(t->sas_ss_size, &uss->ss_size); 4150 if (err) 4151 return err; 4152 if (t->sas_ss_flags & SS_AUTODISARM) 4153 sas_ss_reset(t); 4154 return 0; 4155 } 4156 #endif 4157 4158 #ifdef __ARCH_WANT_SYS_SIGPENDING 4159 4160 /** 4161 * sys_sigpending - examine pending signals 4162 * @uset: where mask of pending signal is returned 4163 */ 4164 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4165 { 4166 sigset_t set; 4167 4168 if (sizeof(old_sigset_t) > sizeof(*uset)) 4169 return -EINVAL; 4170 4171 do_sigpending(&set); 4172 4173 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4174 return -EFAULT; 4175 4176 return 0; 4177 } 4178 4179 #ifdef CONFIG_COMPAT 4180 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4181 { 4182 sigset_t set; 4183 4184 do_sigpending(&set); 4185 4186 return put_user(set.sig[0], set32); 4187 } 4188 #endif 4189 4190 #endif 4191 4192 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4193 /** 4194 * sys_sigprocmask - examine and change blocked signals 4195 * @how: whether to add, remove, or set signals 4196 * @nset: signals to add or remove (if non-null) 4197 * @oset: previous value of signal mask if non-null 4198 * 4199 * Some platforms have their own version with special arguments; 4200 * others support only sys_rt_sigprocmask. 4201 */ 4202 4203 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4204 old_sigset_t __user *, oset) 4205 { 4206 old_sigset_t old_set, new_set; 4207 sigset_t new_blocked; 4208 4209 old_set = current->blocked.sig[0]; 4210 4211 if (nset) { 4212 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4213 return -EFAULT; 4214 4215 new_blocked = current->blocked; 4216 4217 switch (how) { 4218 case SIG_BLOCK: 4219 sigaddsetmask(&new_blocked, new_set); 4220 break; 4221 case SIG_UNBLOCK: 4222 sigdelsetmask(&new_blocked, new_set); 4223 break; 4224 case SIG_SETMASK: 4225 new_blocked.sig[0] = new_set; 4226 break; 4227 default: 4228 return -EINVAL; 4229 } 4230 4231 set_current_blocked(&new_blocked); 4232 } 4233 4234 if (oset) { 4235 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4236 return -EFAULT; 4237 } 4238 4239 return 0; 4240 } 4241 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4242 4243 #ifndef CONFIG_ODD_RT_SIGACTION 4244 /** 4245 * sys_rt_sigaction - alter an action taken by a process 4246 * @sig: signal to be sent 4247 * @act: new sigaction 4248 * @oact: used to save the previous sigaction 4249 * @sigsetsize: size of sigset_t type 4250 */ 4251 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4252 const struct sigaction __user *, act, 4253 struct sigaction __user *, oact, 4254 size_t, sigsetsize) 4255 { 4256 struct k_sigaction new_sa, old_sa; 4257 int ret; 4258 4259 /* XXX: Don't preclude handling different sized sigset_t's. */ 4260 if (sigsetsize != sizeof(sigset_t)) 4261 return -EINVAL; 4262 4263 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4264 return -EFAULT; 4265 4266 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4267 if (ret) 4268 return ret; 4269 4270 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4271 return -EFAULT; 4272 4273 return 0; 4274 } 4275 #ifdef CONFIG_COMPAT 4276 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4277 const struct compat_sigaction __user *, act, 4278 struct compat_sigaction __user *, oact, 4279 compat_size_t, sigsetsize) 4280 { 4281 struct k_sigaction new_ka, old_ka; 4282 #ifdef __ARCH_HAS_SA_RESTORER 4283 compat_uptr_t restorer; 4284 #endif 4285 int ret; 4286 4287 /* XXX: Don't preclude handling different sized sigset_t's. */ 4288 if (sigsetsize != sizeof(compat_sigset_t)) 4289 return -EINVAL; 4290 4291 if (act) { 4292 compat_uptr_t handler; 4293 ret = get_user(handler, &act->sa_handler); 4294 new_ka.sa.sa_handler = compat_ptr(handler); 4295 #ifdef __ARCH_HAS_SA_RESTORER 4296 ret |= get_user(restorer, &act->sa_restorer); 4297 new_ka.sa.sa_restorer = compat_ptr(restorer); 4298 #endif 4299 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4300 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4301 if (ret) 4302 return -EFAULT; 4303 } 4304 4305 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4306 if (!ret && oact) { 4307 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4308 &oact->sa_handler); 4309 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4310 sizeof(oact->sa_mask)); 4311 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4312 #ifdef __ARCH_HAS_SA_RESTORER 4313 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4314 &oact->sa_restorer); 4315 #endif 4316 } 4317 return ret; 4318 } 4319 #endif 4320 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4321 4322 #ifdef CONFIG_OLD_SIGACTION 4323 SYSCALL_DEFINE3(sigaction, int, sig, 4324 const struct old_sigaction __user *, act, 4325 struct old_sigaction __user *, oact) 4326 { 4327 struct k_sigaction new_ka, old_ka; 4328 int ret; 4329 4330 if (act) { 4331 old_sigset_t mask; 4332 if (!access_ok(act, sizeof(*act)) || 4333 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4334 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4335 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4336 __get_user(mask, &act->sa_mask)) 4337 return -EFAULT; 4338 #ifdef __ARCH_HAS_KA_RESTORER 4339 new_ka.ka_restorer = NULL; 4340 #endif 4341 siginitset(&new_ka.sa.sa_mask, mask); 4342 } 4343 4344 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4345 4346 if (!ret && oact) { 4347 if (!access_ok(oact, sizeof(*oact)) || 4348 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4349 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4350 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4351 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4352 return -EFAULT; 4353 } 4354 4355 return ret; 4356 } 4357 #endif 4358 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4359 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4360 const struct compat_old_sigaction __user *, act, 4361 struct compat_old_sigaction __user *, oact) 4362 { 4363 struct k_sigaction new_ka, old_ka; 4364 int ret; 4365 compat_old_sigset_t mask; 4366 compat_uptr_t handler, restorer; 4367 4368 if (act) { 4369 if (!access_ok(act, sizeof(*act)) || 4370 __get_user(handler, &act->sa_handler) || 4371 __get_user(restorer, &act->sa_restorer) || 4372 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4373 __get_user(mask, &act->sa_mask)) 4374 return -EFAULT; 4375 4376 #ifdef __ARCH_HAS_KA_RESTORER 4377 new_ka.ka_restorer = NULL; 4378 #endif 4379 new_ka.sa.sa_handler = compat_ptr(handler); 4380 new_ka.sa.sa_restorer = compat_ptr(restorer); 4381 siginitset(&new_ka.sa.sa_mask, mask); 4382 } 4383 4384 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4385 4386 if (!ret && oact) { 4387 if (!access_ok(oact, sizeof(*oact)) || 4388 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4389 &oact->sa_handler) || 4390 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4391 &oact->sa_restorer) || 4392 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4393 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4394 return -EFAULT; 4395 } 4396 return ret; 4397 } 4398 #endif 4399 4400 #ifdef CONFIG_SGETMASK_SYSCALL 4401 4402 /* 4403 * For backwards compatibility. Functionality superseded by sigprocmask. 4404 */ 4405 SYSCALL_DEFINE0(sgetmask) 4406 { 4407 /* SMP safe */ 4408 return current->blocked.sig[0]; 4409 } 4410 4411 SYSCALL_DEFINE1(ssetmask, int, newmask) 4412 { 4413 int old = current->blocked.sig[0]; 4414 sigset_t newset; 4415 4416 siginitset(&newset, newmask); 4417 set_current_blocked(&newset); 4418 4419 return old; 4420 } 4421 #endif /* CONFIG_SGETMASK_SYSCALL */ 4422 4423 #ifdef __ARCH_WANT_SYS_SIGNAL 4424 /* 4425 * For backwards compatibility. Functionality superseded by sigaction. 4426 */ 4427 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4428 { 4429 struct k_sigaction new_sa, old_sa; 4430 int ret; 4431 4432 new_sa.sa.sa_handler = handler; 4433 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4434 sigemptyset(&new_sa.sa.sa_mask); 4435 4436 ret = do_sigaction(sig, &new_sa, &old_sa); 4437 4438 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4439 } 4440 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4441 4442 #ifdef __ARCH_WANT_SYS_PAUSE 4443 4444 SYSCALL_DEFINE0(pause) 4445 { 4446 while (!signal_pending(current)) { 4447 __set_current_state(TASK_INTERRUPTIBLE); 4448 schedule(); 4449 } 4450 return -ERESTARTNOHAND; 4451 } 4452 4453 #endif 4454 4455 static int sigsuspend(sigset_t *set) 4456 { 4457 current->saved_sigmask = current->blocked; 4458 set_current_blocked(set); 4459 4460 while (!signal_pending(current)) { 4461 __set_current_state(TASK_INTERRUPTIBLE); 4462 schedule(); 4463 } 4464 set_restore_sigmask(); 4465 return -ERESTARTNOHAND; 4466 } 4467 4468 /** 4469 * sys_rt_sigsuspend - replace the signal mask for a value with the 4470 * @unewset value until a signal is received 4471 * @unewset: new signal mask value 4472 * @sigsetsize: size of sigset_t type 4473 */ 4474 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4475 { 4476 sigset_t newset; 4477 4478 /* XXX: Don't preclude handling different sized sigset_t's. */ 4479 if (sigsetsize != sizeof(sigset_t)) 4480 return -EINVAL; 4481 4482 if (copy_from_user(&newset, unewset, sizeof(newset))) 4483 return -EFAULT; 4484 return sigsuspend(&newset); 4485 } 4486 4487 #ifdef CONFIG_COMPAT 4488 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4489 { 4490 sigset_t newset; 4491 4492 /* XXX: Don't preclude handling different sized sigset_t's. */ 4493 if (sigsetsize != sizeof(sigset_t)) 4494 return -EINVAL; 4495 4496 if (get_compat_sigset(&newset, unewset)) 4497 return -EFAULT; 4498 return sigsuspend(&newset); 4499 } 4500 #endif 4501 4502 #ifdef CONFIG_OLD_SIGSUSPEND 4503 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4504 { 4505 sigset_t blocked; 4506 siginitset(&blocked, mask); 4507 return sigsuspend(&blocked); 4508 } 4509 #endif 4510 #ifdef CONFIG_OLD_SIGSUSPEND3 4511 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4512 { 4513 sigset_t blocked; 4514 siginitset(&blocked, mask); 4515 return sigsuspend(&blocked); 4516 } 4517 #endif 4518 4519 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4520 { 4521 return NULL; 4522 } 4523 4524 static inline void siginfo_buildtime_checks(void) 4525 { 4526 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4527 4528 /* Verify the offsets in the two siginfos match */ 4529 #define CHECK_OFFSET(field) \ 4530 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4531 4532 /* kill */ 4533 CHECK_OFFSET(si_pid); 4534 CHECK_OFFSET(si_uid); 4535 4536 /* timer */ 4537 CHECK_OFFSET(si_tid); 4538 CHECK_OFFSET(si_overrun); 4539 CHECK_OFFSET(si_value); 4540 4541 /* rt */ 4542 CHECK_OFFSET(si_pid); 4543 CHECK_OFFSET(si_uid); 4544 CHECK_OFFSET(si_value); 4545 4546 /* sigchld */ 4547 CHECK_OFFSET(si_pid); 4548 CHECK_OFFSET(si_uid); 4549 CHECK_OFFSET(si_status); 4550 CHECK_OFFSET(si_utime); 4551 CHECK_OFFSET(si_stime); 4552 4553 /* sigfault */ 4554 CHECK_OFFSET(si_addr); 4555 CHECK_OFFSET(si_addr_lsb); 4556 CHECK_OFFSET(si_lower); 4557 CHECK_OFFSET(si_upper); 4558 CHECK_OFFSET(si_pkey); 4559 4560 /* sigpoll */ 4561 CHECK_OFFSET(si_band); 4562 CHECK_OFFSET(si_fd); 4563 4564 /* sigsys */ 4565 CHECK_OFFSET(si_call_addr); 4566 CHECK_OFFSET(si_syscall); 4567 CHECK_OFFSET(si_arch); 4568 #undef CHECK_OFFSET 4569 4570 /* usb asyncio */ 4571 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4572 offsetof(struct siginfo, si_addr)); 4573 if (sizeof(int) == sizeof(void __user *)) { 4574 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4575 sizeof(void __user *)); 4576 } else { 4577 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4578 sizeof_field(struct siginfo, si_uid)) != 4579 sizeof(void __user *)); 4580 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4581 offsetof(struct siginfo, si_uid)); 4582 } 4583 #ifdef CONFIG_COMPAT 4584 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4585 offsetof(struct compat_siginfo, si_addr)); 4586 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4587 sizeof(compat_uptr_t)); 4588 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4589 sizeof_field(struct siginfo, si_pid)); 4590 #endif 4591 } 4592 4593 void __init signals_init(void) 4594 { 4595 siginfo_buildtime_checks(); 4596 4597 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4598 } 4599 4600 #ifdef CONFIG_KGDB_KDB 4601 #include <linux/kdb.h> 4602 /* 4603 * kdb_send_sig - Allows kdb to send signals without exposing 4604 * signal internals. This function checks if the required locks are 4605 * available before calling the main signal code, to avoid kdb 4606 * deadlocks. 4607 */ 4608 void kdb_send_sig(struct task_struct *t, int sig) 4609 { 4610 static struct task_struct *kdb_prev_t; 4611 int new_t, ret; 4612 if (!spin_trylock(&t->sighand->siglock)) { 4613 kdb_printf("Can't do kill command now.\n" 4614 "The sigmask lock is held somewhere else in " 4615 "kernel, try again later\n"); 4616 return; 4617 } 4618 new_t = kdb_prev_t != t; 4619 kdb_prev_t = t; 4620 if (t->state != TASK_RUNNING && new_t) { 4621 spin_unlock(&t->sighand->siglock); 4622 kdb_printf("Process is not RUNNING, sending a signal from " 4623 "kdb risks deadlock\n" 4624 "on the run queue locks. " 4625 "The signal has _not_ been sent.\n" 4626 "Reissue the kill command if you want to risk " 4627 "the deadlock.\n"); 4628 return; 4629 } 4630 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4631 spin_unlock(&t->sighand->siglock); 4632 if (ret) 4633 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4634 sig, t->pid); 4635 else 4636 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4637 } 4638 #endif /* CONFIG_KGDB_KDB */ 4639