1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/task_work.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 630 kernel_siginfo_t *info, enum pid_type *type) 631 { 632 bool resched_timer = false; 633 int signr; 634 635 /* We only dequeue private signals from ourselves, we don't let 636 * signalfd steal them 637 */ 638 *type = PIDTYPE_PID; 639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 640 if (!signr) { 641 *type = PIDTYPE_TGID; 642 signr = __dequeue_signal(&tsk->signal->shared_pending, 643 mask, info, &resched_timer); 644 #ifdef CONFIG_POSIX_TIMERS 645 /* 646 * itimer signal ? 647 * 648 * itimers are process shared and we restart periodic 649 * itimers in the signal delivery path to prevent DoS 650 * attacks in the high resolution timer case. This is 651 * compliant with the old way of self-restarting 652 * itimers, as the SIGALRM is a legacy signal and only 653 * queued once. Changing the restart behaviour to 654 * restart the timer in the signal dequeue path is 655 * reducing the timer noise on heavy loaded !highres 656 * systems too. 657 */ 658 if (unlikely(signr == SIGALRM)) { 659 struct hrtimer *tmr = &tsk->signal->real_timer; 660 661 if (!hrtimer_is_queued(tmr) && 662 tsk->signal->it_real_incr != 0) { 663 hrtimer_forward(tmr, tmr->base->get_time(), 664 tsk->signal->it_real_incr); 665 hrtimer_restart(tmr); 666 } 667 } 668 #endif 669 } 670 671 recalc_sigpending(); 672 if (!signr) 673 return 0; 674 675 if (unlikely(sig_kernel_stop(signr))) { 676 /* 677 * Set a marker that we have dequeued a stop signal. Our 678 * caller might release the siglock and then the pending 679 * stop signal it is about to process is no longer in the 680 * pending bitmasks, but must still be cleared by a SIGCONT 681 * (and overruled by a SIGKILL). So those cases clear this 682 * shared flag after we've set it. Note that this flag may 683 * remain set after the signal we return is ignored or 684 * handled. That doesn't matter because its only purpose 685 * is to alert stop-signal processing code when another 686 * processor has come along and cleared the flag. 687 */ 688 current->jobctl |= JOBCTL_STOP_DEQUEUED; 689 } 690 #ifdef CONFIG_POSIX_TIMERS 691 if (resched_timer) { 692 /* 693 * Release the siglock to ensure proper locking order 694 * of timer locks outside of siglocks. Note, we leave 695 * irqs disabled here, since the posix-timers code is 696 * about to disable them again anyway. 697 */ 698 spin_unlock(&tsk->sighand->siglock); 699 posixtimer_rearm(info); 700 spin_lock(&tsk->sighand->siglock); 701 702 /* Don't expose the si_sys_private value to userspace */ 703 info->si_sys_private = 0; 704 } 705 #endif 706 return signr; 707 } 708 EXPORT_SYMBOL_GPL(dequeue_signal); 709 710 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 711 { 712 struct task_struct *tsk = current; 713 struct sigpending *pending = &tsk->pending; 714 struct sigqueue *q, *sync = NULL; 715 716 /* 717 * Might a synchronous signal be in the queue? 718 */ 719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 720 return 0; 721 722 /* 723 * Return the first synchronous signal in the queue. 724 */ 725 list_for_each_entry(q, &pending->list, list) { 726 /* Synchronous signals have a positive si_code */ 727 if ((q->info.si_code > SI_USER) && 728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 729 sync = q; 730 goto next; 731 } 732 } 733 return 0; 734 next: 735 /* 736 * Check if there is another siginfo for the same signal. 737 */ 738 list_for_each_entry_continue(q, &pending->list, list) { 739 if (q->info.si_signo == sync->info.si_signo) 740 goto still_pending; 741 } 742 743 sigdelset(&pending->signal, sync->info.si_signo); 744 recalc_sigpending(); 745 still_pending: 746 list_del_init(&sync->list); 747 copy_siginfo(info, &sync->info); 748 __sigqueue_free(sync); 749 return info->si_signo; 750 } 751 752 /* 753 * Tell a process that it has a new active signal.. 754 * 755 * NOTE! we rely on the previous spin_lock to 756 * lock interrupts for us! We can only be called with 757 * "siglock" held, and the local interrupt must 758 * have been disabled when that got acquired! 759 * 760 * No need to set need_resched since signal event passing 761 * goes through ->blocked 762 */ 763 void signal_wake_up_state(struct task_struct *t, unsigned int state) 764 { 765 set_tsk_thread_flag(t, TIF_SIGPENDING); 766 /* 767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 768 * case. We don't check t->state here because there is a race with it 769 * executing another processor and just now entering stopped state. 770 * By using wake_up_state, we ensure the process will wake up and 771 * handle its death signal. 772 */ 773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 774 kick_process(t); 775 } 776 777 /* 778 * Remove signals in mask from the pending set and queue. 779 * Returns 1 if any signals were found. 780 * 781 * All callers must be holding the siglock. 782 */ 783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 784 { 785 struct sigqueue *q, *n; 786 sigset_t m; 787 788 sigandsets(&m, mask, &s->signal); 789 if (sigisemptyset(&m)) 790 return; 791 792 sigandnsets(&s->signal, &s->signal, mask); 793 list_for_each_entry_safe(q, n, &s->list, list) { 794 if (sigismember(mask, q->info.si_signo)) { 795 list_del_init(&q->list); 796 __sigqueue_free(q); 797 } 798 } 799 } 800 801 static inline int is_si_special(const struct kernel_siginfo *info) 802 { 803 return info <= SEND_SIG_PRIV; 804 } 805 806 static inline bool si_fromuser(const struct kernel_siginfo *info) 807 { 808 return info == SEND_SIG_NOINFO || 809 (!is_si_special(info) && SI_FROMUSER(info)); 810 } 811 812 /* 813 * called with RCU read lock from check_kill_permission() 814 */ 815 static bool kill_ok_by_cred(struct task_struct *t) 816 { 817 const struct cred *cred = current_cred(); 818 const struct cred *tcred = __task_cred(t); 819 820 return uid_eq(cred->euid, tcred->suid) || 821 uid_eq(cred->euid, tcred->uid) || 822 uid_eq(cred->uid, tcred->suid) || 823 uid_eq(cred->uid, tcred->uid) || 824 ns_capable(tcred->user_ns, CAP_KILL); 825 } 826 827 /* 828 * Bad permissions for sending the signal 829 * - the caller must hold the RCU read lock 830 */ 831 static int check_kill_permission(int sig, struct kernel_siginfo *info, 832 struct task_struct *t) 833 { 834 struct pid *sid; 835 int error; 836 837 if (!valid_signal(sig)) 838 return -EINVAL; 839 840 if (!si_fromuser(info)) 841 return 0; 842 843 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 844 if (error) 845 return error; 846 847 if (!same_thread_group(current, t) && 848 !kill_ok_by_cred(t)) { 849 switch (sig) { 850 case SIGCONT: 851 sid = task_session(t); 852 /* 853 * We don't return the error if sid == NULL. The 854 * task was unhashed, the caller must notice this. 855 */ 856 if (!sid || sid == task_session(current)) 857 break; 858 fallthrough; 859 default: 860 return -EPERM; 861 } 862 } 863 864 return security_task_kill(t, info, sig, NULL); 865 } 866 867 /** 868 * ptrace_trap_notify - schedule trap to notify ptracer 869 * @t: tracee wanting to notify tracer 870 * 871 * This function schedules sticky ptrace trap which is cleared on the next 872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 873 * ptracer. 874 * 875 * If @t is running, STOP trap will be taken. If trapped for STOP and 876 * ptracer is listening for events, tracee is woken up so that it can 877 * re-trap for the new event. If trapped otherwise, STOP trap will be 878 * eventually taken without returning to userland after the existing traps 879 * are finished by PTRACE_CONT. 880 * 881 * CONTEXT: 882 * Must be called with @task->sighand->siglock held. 883 */ 884 static void ptrace_trap_notify(struct task_struct *t) 885 { 886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 887 assert_spin_locked(&t->sighand->siglock); 888 889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 891 } 892 893 /* 894 * Handle magic process-wide effects of stop/continue signals. Unlike 895 * the signal actions, these happen immediately at signal-generation 896 * time regardless of blocking, ignoring, or handling. This does the 897 * actual continuing for SIGCONT, but not the actual stopping for stop 898 * signals. The process stop is done as a signal action for SIG_DFL. 899 * 900 * Returns true if the signal should be actually delivered, otherwise 901 * it should be dropped. 902 */ 903 static bool prepare_signal(int sig, struct task_struct *p, bool force) 904 { 905 struct signal_struct *signal = p->signal; 906 struct task_struct *t; 907 sigset_t flush; 908 909 if (signal->flags & SIGNAL_GROUP_EXIT) { 910 if (signal->core_state) 911 return sig == SIGKILL; 912 /* 913 * The process is in the middle of dying, nothing to do. 914 */ 915 } else if (sig_kernel_stop(sig)) { 916 /* 917 * This is a stop signal. Remove SIGCONT from all queues. 918 */ 919 siginitset(&flush, sigmask(SIGCONT)); 920 flush_sigqueue_mask(&flush, &signal->shared_pending); 921 for_each_thread(p, t) 922 flush_sigqueue_mask(&flush, &t->pending); 923 } else if (sig == SIGCONT) { 924 unsigned int why; 925 /* 926 * Remove all stop signals from all queues, wake all threads. 927 */ 928 siginitset(&flush, SIG_KERNEL_STOP_MASK); 929 flush_sigqueue_mask(&flush, &signal->shared_pending); 930 for_each_thread(p, t) { 931 flush_sigqueue_mask(&flush, &t->pending); 932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 933 if (likely(!(t->ptrace & PT_SEIZED))) 934 wake_up_state(t, __TASK_STOPPED); 935 else 936 ptrace_trap_notify(t); 937 } 938 939 /* 940 * Notify the parent with CLD_CONTINUED if we were stopped. 941 * 942 * If we were in the middle of a group stop, we pretend it 943 * was already finished, and then continued. Since SIGCHLD 944 * doesn't queue we report only CLD_STOPPED, as if the next 945 * CLD_CONTINUED was dropped. 946 */ 947 why = 0; 948 if (signal->flags & SIGNAL_STOP_STOPPED) 949 why |= SIGNAL_CLD_CONTINUED; 950 else if (signal->group_stop_count) 951 why |= SIGNAL_CLD_STOPPED; 952 953 if (why) { 954 /* 955 * The first thread which returns from do_signal_stop() 956 * will take ->siglock, notice SIGNAL_CLD_MASK, and 957 * notify its parent. See get_signal(). 958 */ 959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 960 signal->group_stop_count = 0; 961 signal->group_exit_code = 0; 962 } 963 } 964 965 return !sig_ignored(p, sig, force); 966 } 967 968 /* 969 * Test if P wants to take SIG. After we've checked all threads with this, 970 * it's equivalent to finding no threads not blocking SIG. Any threads not 971 * blocking SIG were ruled out because they are not running and already 972 * have pending signals. Such threads will dequeue from the shared queue 973 * as soon as they're available, so putting the signal on the shared queue 974 * will be equivalent to sending it to one such thread. 975 */ 976 static inline bool wants_signal(int sig, struct task_struct *p) 977 { 978 if (sigismember(&p->blocked, sig)) 979 return false; 980 981 if (p->flags & PF_EXITING) 982 return false; 983 984 if (sig == SIGKILL) 985 return true; 986 987 if (task_is_stopped_or_traced(p)) 988 return false; 989 990 return task_curr(p) || !task_sigpending(p); 991 } 992 993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 994 { 995 struct signal_struct *signal = p->signal; 996 struct task_struct *t; 997 998 /* 999 * Now find a thread we can wake up to take the signal off the queue. 1000 * 1001 * If the main thread wants the signal, it gets first crack. 1002 * Probably the least surprising to the average bear. 1003 */ 1004 if (wants_signal(sig, p)) 1005 t = p; 1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1007 /* 1008 * There is just one thread and it does not need to be woken. 1009 * It will dequeue unblocked signals before it runs again. 1010 */ 1011 return; 1012 else { 1013 /* 1014 * Otherwise try to find a suitable thread. 1015 */ 1016 t = signal->curr_target; 1017 while (!wants_signal(sig, t)) { 1018 t = next_thread(t); 1019 if (t == signal->curr_target) 1020 /* 1021 * No thread needs to be woken. 1022 * Any eligible threads will see 1023 * the signal in the queue soon. 1024 */ 1025 return; 1026 } 1027 signal->curr_target = t; 1028 } 1029 1030 /* 1031 * Found a killable thread. If the signal will be fatal, 1032 * then start taking the whole group down immediately. 1033 */ 1034 if (sig_fatal(p, sig) && 1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1036 !sigismember(&t->real_blocked, sig) && 1037 (sig == SIGKILL || !p->ptrace)) { 1038 /* 1039 * This signal will be fatal to the whole group. 1040 */ 1041 if (!sig_kernel_coredump(sig)) { 1042 /* 1043 * Start a group exit and wake everybody up. 1044 * This way we don't have other threads 1045 * running and doing things after a slower 1046 * thread has the fatal signal pending. 1047 */ 1048 signal->flags = SIGNAL_GROUP_EXIT; 1049 signal->group_exit_code = sig; 1050 signal->group_stop_count = 0; 1051 t = p; 1052 do { 1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1054 sigaddset(&t->pending.signal, SIGKILL); 1055 signal_wake_up(t, 1); 1056 } while_each_thread(p, t); 1057 return; 1058 } 1059 } 1060 1061 /* 1062 * The signal is already in the shared-pending queue. 1063 * Tell the chosen thread to wake up and dequeue it. 1064 */ 1065 signal_wake_up(t, sig == SIGKILL); 1066 return; 1067 } 1068 1069 static inline bool legacy_queue(struct sigpending *signals, int sig) 1070 { 1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1072 } 1073 1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1075 enum pid_type type, bool force) 1076 { 1077 struct sigpending *pending; 1078 struct sigqueue *q; 1079 int override_rlimit; 1080 int ret = 0, result; 1081 1082 assert_spin_locked(&t->sighand->siglock); 1083 1084 result = TRACE_SIGNAL_IGNORED; 1085 if (!prepare_signal(sig, t, force)) 1086 goto ret; 1087 1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1089 /* 1090 * Short-circuit ignored signals and support queuing 1091 * exactly one non-rt signal, so that we can get more 1092 * detailed information about the cause of the signal. 1093 */ 1094 result = TRACE_SIGNAL_ALREADY_PENDING; 1095 if (legacy_queue(pending, sig)) 1096 goto ret; 1097 1098 result = TRACE_SIGNAL_DELIVERED; 1099 /* 1100 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1101 */ 1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1103 goto out_set; 1104 1105 /* 1106 * Real-time signals must be queued if sent by sigqueue, or 1107 * some other real-time mechanism. It is implementation 1108 * defined whether kill() does so. We attempt to do so, on 1109 * the principle of least surprise, but since kill is not 1110 * allowed to fail with EAGAIN when low on memory we just 1111 * make sure at least one signal gets delivered and don't 1112 * pass on the info struct. 1113 */ 1114 if (sig < SIGRTMIN) 1115 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1116 else 1117 override_rlimit = 0; 1118 1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1120 1121 if (q) { 1122 list_add_tail(&q->list, &pending->list); 1123 switch ((unsigned long) info) { 1124 case (unsigned long) SEND_SIG_NOINFO: 1125 clear_siginfo(&q->info); 1126 q->info.si_signo = sig; 1127 q->info.si_errno = 0; 1128 q->info.si_code = SI_USER; 1129 q->info.si_pid = task_tgid_nr_ns(current, 1130 task_active_pid_ns(t)); 1131 rcu_read_lock(); 1132 q->info.si_uid = 1133 from_kuid_munged(task_cred_xxx(t, user_ns), 1134 current_uid()); 1135 rcu_read_unlock(); 1136 break; 1137 case (unsigned long) SEND_SIG_PRIV: 1138 clear_siginfo(&q->info); 1139 q->info.si_signo = sig; 1140 q->info.si_errno = 0; 1141 q->info.si_code = SI_KERNEL; 1142 q->info.si_pid = 0; 1143 q->info.si_uid = 0; 1144 break; 1145 default: 1146 copy_siginfo(&q->info, info); 1147 break; 1148 } 1149 } else if (!is_si_special(info) && 1150 sig >= SIGRTMIN && info->si_code != SI_USER) { 1151 /* 1152 * Queue overflow, abort. We may abort if the 1153 * signal was rt and sent by user using something 1154 * other than kill(). 1155 */ 1156 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1157 ret = -EAGAIN; 1158 goto ret; 1159 } else { 1160 /* 1161 * This is a silent loss of information. We still 1162 * send the signal, but the *info bits are lost. 1163 */ 1164 result = TRACE_SIGNAL_LOSE_INFO; 1165 } 1166 1167 out_set: 1168 signalfd_notify(t, sig); 1169 sigaddset(&pending->signal, sig); 1170 1171 /* Let multiprocess signals appear after on-going forks */ 1172 if (type > PIDTYPE_TGID) { 1173 struct multiprocess_signals *delayed; 1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1175 sigset_t *signal = &delayed->signal; 1176 /* Can't queue both a stop and a continue signal */ 1177 if (sig == SIGCONT) 1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1179 else if (sig_kernel_stop(sig)) 1180 sigdelset(signal, SIGCONT); 1181 sigaddset(signal, sig); 1182 } 1183 } 1184 1185 complete_signal(sig, t, type); 1186 ret: 1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1188 return ret; 1189 } 1190 1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1192 { 1193 bool ret = false; 1194 switch (siginfo_layout(info->si_signo, info->si_code)) { 1195 case SIL_KILL: 1196 case SIL_CHLD: 1197 case SIL_RT: 1198 ret = true; 1199 break; 1200 case SIL_TIMER: 1201 case SIL_POLL: 1202 case SIL_FAULT: 1203 case SIL_FAULT_TRAPNO: 1204 case SIL_FAULT_MCEERR: 1205 case SIL_FAULT_BNDERR: 1206 case SIL_FAULT_PKUERR: 1207 case SIL_FAULT_PERF_EVENT: 1208 case SIL_SYS: 1209 ret = false; 1210 break; 1211 } 1212 return ret; 1213 } 1214 1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1216 enum pid_type type) 1217 { 1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1219 bool force = false; 1220 1221 if (info == SEND_SIG_NOINFO) { 1222 /* Force if sent from an ancestor pid namespace */ 1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1224 } else if (info == SEND_SIG_PRIV) { 1225 /* Don't ignore kernel generated signals */ 1226 force = true; 1227 } else if (has_si_pid_and_uid(info)) { 1228 /* SIGKILL and SIGSTOP is special or has ids */ 1229 struct user_namespace *t_user_ns; 1230 1231 rcu_read_lock(); 1232 t_user_ns = task_cred_xxx(t, user_ns); 1233 if (current_user_ns() != t_user_ns) { 1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1235 info->si_uid = from_kuid_munged(t_user_ns, uid); 1236 } 1237 rcu_read_unlock(); 1238 1239 /* A kernel generated signal? */ 1240 force = (info->si_code == SI_KERNEL); 1241 1242 /* From an ancestor pid namespace? */ 1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1244 info->si_pid = 0; 1245 force = true; 1246 } 1247 } 1248 return __send_signal(sig, info, t, type, force); 1249 } 1250 1251 static void print_fatal_signal(int signr) 1252 { 1253 struct pt_regs *regs = signal_pt_regs(); 1254 pr_info("potentially unexpected fatal signal %d.\n", signr); 1255 1256 #if defined(__i386__) && !defined(__arch_um__) 1257 pr_info("code at %08lx: ", regs->ip); 1258 { 1259 int i; 1260 for (i = 0; i < 16; i++) { 1261 unsigned char insn; 1262 1263 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1264 break; 1265 pr_cont("%02x ", insn); 1266 } 1267 } 1268 pr_cont("\n"); 1269 #endif 1270 preempt_disable(); 1271 show_regs(regs); 1272 preempt_enable(); 1273 } 1274 1275 static int __init setup_print_fatal_signals(char *str) 1276 { 1277 get_option (&str, &print_fatal_signals); 1278 1279 return 1; 1280 } 1281 1282 __setup("print-fatal-signals=", setup_print_fatal_signals); 1283 1284 int 1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1286 { 1287 return send_signal(sig, info, p, PIDTYPE_TGID); 1288 } 1289 1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1291 enum pid_type type) 1292 { 1293 unsigned long flags; 1294 int ret = -ESRCH; 1295 1296 if (lock_task_sighand(p, &flags)) { 1297 ret = send_signal(sig, info, p, type); 1298 unlock_task_sighand(p, &flags); 1299 } 1300 1301 return ret; 1302 } 1303 1304 enum sig_handler { 1305 HANDLER_CURRENT, /* If reachable use the current handler */ 1306 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1307 HANDLER_EXIT, /* Only visible as the process exit code */ 1308 }; 1309 1310 /* 1311 * Force a signal that the process can't ignore: if necessary 1312 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1313 * 1314 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1315 * since we do not want to have a signal handler that was blocked 1316 * be invoked when user space had explicitly blocked it. 1317 * 1318 * We don't want to have recursive SIGSEGV's etc, for example, 1319 * that is why we also clear SIGNAL_UNKILLABLE. 1320 */ 1321 static int 1322 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1323 enum sig_handler handler) 1324 { 1325 unsigned long int flags; 1326 int ret, blocked, ignored; 1327 struct k_sigaction *action; 1328 int sig = info->si_signo; 1329 1330 spin_lock_irqsave(&t->sighand->siglock, flags); 1331 action = &t->sighand->action[sig-1]; 1332 ignored = action->sa.sa_handler == SIG_IGN; 1333 blocked = sigismember(&t->blocked, sig); 1334 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1335 action->sa.sa_handler = SIG_DFL; 1336 if (handler == HANDLER_EXIT) 1337 action->sa.sa_flags |= SA_IMMUTABLE; 1338 if (blocked) { 1339 sigdelset(&t->blocked, sig); 1340 recalc_sigpending_and_wake(t); 1341 } 1342 } 1343 /* 1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1345 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1346 */ 1347 if (action->sa.sa_handler == SIG_DFL && 1348 (!t->ptrace || (handler == HANDLER_EXIT))) 1349 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1350 ret = send_signal(sig, info, t, PIDTYPE_PID); 1351 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1352 1353 return ret; 1354 } 1355 1356 int force_sig_info(struct kernel_siginfo *info) 1357 { 1358 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1359 } 1360 1361 /* 1362 * Nuke all other threads in the group. 1363 */ 1364 int zap_other_threads(struct task_struct *p) 1365 { 1366 struct task_struct *t = p; 1367 int count = 0; 1368 1369 p->signal->group_stop_count = 0; 1370 1371 while_each_thread(p, t) { 1372 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1373 count++; 1374 1375 /* Don't bother with already dead threads */ 1376 if (t->exit_state) 1377 continue; 1378 sigaddset(&t->pending.signal, SIGKILL); 1379 signal_wake_up(t, 1); 1380 } 1381 1382 return count; 1383 } 1384 1385 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1386 unsigned long *flags) 1387 { 1388 struct sighand_struct *sighand; 1389 1390 rcu_read_lock(); 1391 for (;;) { 1392 sighand = rcu_dereference(tsk->sighand); 1393 if (unlikely(sighand == NULL)) 1394 break; 1395 1396 /* 1397 * This sighand can be already freed and even reused, but 1398 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1399 * initializes ->siglock: this slab can't go away, it has 1400 * the same object type, ->siglock can't be reinitialized. 1401 * 1402 * We need to ensure that tsk->sighand is still the same 1403 * after we take the lock, we can race with de_thread() or 1404 * __exit_signal(). In the latter case the next iteration 1405 * must see ->sighand == NULL. 1406 */ 1407 spin_lock_irqsave(&sighand->siglock, *flags); 1408 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1409 break; 1410 spin_unlock_irqrestore(&sighand->siglock, *flags); 1411 } 1412 rcu_read_unlock(); 1413 1414 return sighand; 1415 } 1416 1417 #ifdef CONFIG_LOCKDEP 1418 void lockdep_assert_task_sighand_held(struct task_struct *task) 1419 { 1420 struct sighand_struct *sighand; 1421 1422 rcu_read_lock(); 1423 sighand = rcu_dereference(task->sighand); 1424 if (sighand) 1425 lockdep_assert_held(&sighand->siglock); 1426 else 1427 WARN_ON_ONCE(1); 1428 rcu_read_unlock(); 1429 } 1430 #endif 1431 1432 /* 1433 * send signal info to all the members of a group 1434 */ 1435 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1436 struct task_struct *p, enum pid_type type) 1437 { 1438 int ret; 1439 1440 rcu_read_lock(); 1441 ret = check_kill_permission(sig, info, p); 1442 rcu_read_unlock(); 1443 1444 if (!ret && sig) 1445 ret = do_send_sig_info(sig, info, p, type); 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1452 * control characters do (^C, ^Z etc) 1453 * - the caller must hold at least a readlock on tasklist_lock 1454 */ 1455 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1456 { 1457 struct task_struct *p = NULL; 1458 int retval, success; 1459 1460 success = 0; 1461 retval = -ESRCH; 1462 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1463 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1464 success |= !err; 1465 retval = err; 1466 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1467 return success ? 0 : retval; 1468 } 1469 1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1471 { 1472 int error = -ESRCH; 1473 struct task_struct *p; 1474 1475 for (;;) { 1476 rcu_read_lock(); 1477 p = pid_task(pid, PIDTYPE_PID); 1478 if (p) 1479 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1480 rcu_read_unlock(); 1481 if (likely(!p || error != -ESRCH)) 1482 return error; 1483 1484 /* 1485 * The task was unhashed in between, try again. If it 1486 * is dead, pid_task() will return NULL, if we race with 1487 * de_thread() it will find the new leader. 1488 */ 1489 } 1490 } 1491 1492 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1493 { 1494 int error; 1495 rcu_read_lock(); 1496 error = kill_pid_info(sig, info, find_vpid(pid)); 1497 rcu_read_unlock(); 1498 return error; 1499 } 1500 1501 static inline bool kill_as_cred_perm(const struct cred *cred, 1502 struct task_struct *target) 1503 { 1504 const struct cred *pcred = __task_cred(target); 1505 1506 return uid_eq(cred->euid, pcred->suid) || 1507 uid_eq(cred->euid, pcred->uid) || 1508 uid_eq(cred->uid, pcred->suid) || 1509 uid_eq(cred->uid, pcred->uid); 1510 } 1511 1512 /* 1513 * The usb asyncio usage of siginfo is wrong. The glibc support 1514 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1515 * AKA after the generic fields: 1516 * kernel_pid_t si_pid; 1517 * kernel_uid32_t si_uid; 1518 * sigval_t si_value; 1519 * 1520 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1521 * after the generic fields is: 1522 * void __user *si_addr; 1523 * 1524 * This is a practical problem when there is a 64bit big endian kernel 1525 * and a 32bit userspace. As the 32bit address will encoded in the low 1526 * 32bits of the pointer. Those low 32bits will be stored at higher 1527 * address than appear in a 32 bit pointer. So userspace will not 1528 * see the address it was expecting for it's completions. 1529 * 1530 * There is nothing in the encoding that can allow 1531 * copy_siginfo_to_user32 to detect this confusion of formats, so 1532 * handle this by requiring the caller of kill_pid_usb_asyncio to 1533 * notice when this situration takes place and to store the 32bit 1534 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1535 * parameter. 1536 */ 1537 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1538 struct pid *pid, const struct cred *cred) 1539 { 1540 struct kernel_siginfo info; 1541 struct task_struct *p; 1542 unsigned long flags; 1543 int ret = -EINVAL; 1544 1545 if (!valid_signal(sig)) 1546 return ret; 1547 1548 clear_siginfo(&info); 1549 info.si_signo = sig; 1550 info.si_errno = errno; 1551 info.si_code = SI_ASYNCIO; 1552 *((sigval_t *)&info.si_pid) = addr; 1553 1554 rcu_read_lock(); 1555 p = pid_task(pid, PIDTYPE_PID); 1556 if (!p) { 1557 ret = -ESRCH; 1558 goto out_unlock; 1559 } 1560 if (!kill_as_cred_perm(cred, p)) { 1561 ret = -EPERM; 1562 goto out_unlock; 1563 } 1564 ret = security_task_kill(p, &info, sig, cred); 1565 if (ret) 1566 goto out_unlock; 1567 1568 if (sig) { 1569 if (lock_task_sighand(p, &flags)) { 1570 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1571 unlock_task_sighand(p, &flags); 1572 } else 1573 ret = -ESRCH; 1574 } 1575 out_unlock: 1576 rcu_read_unlock(); 1577 return ret; 1578 } 1579 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1580 1581 /* 1582 * kill_something_info() interprets pid in interesting ways just like kill(2). 1583 * 1584 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1585 * is probably wrong. Should make it like BSD or SYSV. 1586 */ 1587 1588 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1589 { 1590 int ret; 1591 1592 if (pid > 0) 1593 return kill_proc_info(sig, info, pid); 1594 1595 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1596 if (pid == INT_MIN) 1597 return -ESRCH; 1598 1599 read_lock(&tasklist_lock); 1600 if (pid != -1) { 1601 ret = __kill_pgrp_info(sig, info, 1602 pid ? find_vpid(-pid) : task_pgrp(current)); 1603 } else { 1604 int retval = 0, count = 0; 1605 struct task_struct * p; 1606 1607 for_each_process(p) { 1608 if (task_pid_vnr(p) > 1 && 1609 !same_thread_group(p, current)) { 1610 int err = group_send_sig_info(sig, info, p, 1611 PIDTYPE_MAX); 1612 ++count; 1613 if (err != -EPERM) 1614 retval = err; 1615 } 1616 } 1617 ret = count ? retval : -ESRCH; 1618 } 1619 read_unlock(&tasklist_lock); 1620 1621 return ret; 1622 } 1623 1624 /* 1625 * These are for backward compatibility with the rest of the kernel source. 1626 */ 1627 1628 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1629 { 1630 /* 1631 * Make sure legacy kernel users don't send in bad values 1632 * (normal paths check this in check_kill_permission). 1633 */ 1634 if (!valid_signal(sig)) 1635 return -EINVAL; 1636 1637 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1638 } 1639 EXPORT_SYMBOL(send_sig_info); 1640 1641 #define __si_special(priv) \ 1642 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1643 1644 int 1645 send_sig(int sig, struct task_struct *p, int priv) 1646 { 1647 return send_sig_info(sig, __si_special(priv), p); 1648 } 1649 EXPORT_SYMBOL(send_sig); 1650 1651 void force_sig(int sig) 1652 { 1653 struct kernel_siginfo info; 1654 1655 clear_siginfo(&info); 1656 info.si_signo = sig; 1657 info.si_errno = 0; 1658 info.si_code = SI_KERNEL; 1659 info.si_pid = 0; 1660 info.si_uid = 0; 1661 force_sig_info(&info); 1662 } 1663 EXPORT_SYMBOL(force_sig); 1664 1665 void force_fatal_sig(int sig) 1666 { 1667 struct kernel_siginfo info; 1668 1669 clear_siginfo(&info); 1670 info.si_signo = sig; 1671 info.si_errno = 0; 1672 info.si_code = SI_KERNEL; 1673 info.si_pid = 0; 1674 info.si_uid = 0; 1675 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1676 } 1677 1678 void force_exit_sig(int sig) 1679 { 1680 struct kernel_siginfo info; 1681 1682 clear_siginfo(&info); 1683 info.si_signo = sig; 1684 info.si_errno = 0; 1685 info.si_code = SI_KERNEL; 1686 info.si_pid = 0; 1687 info.si_uid = 0; 1688 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1689 } 1690 1691 /* 1692 * When things go south during signal handling, we 1693 * will force a SIGSEGV. And if the signal that caused 1694 * the problem was already a SIGSEGV, we'll want to 1695 * make sure we don't even try to deliver the signal.. 1696 */ 1697 void force_sigsegv(int sig) 1698 { 1699 if (sig == SIGSEGV) 1700 force_fatal_sig(SIGSEGV); 1701 else 1702 force_sig(SIGSEGV); 1703 } 1704 1705 int force_sig_fault_to_task(int sig, int code, void __user *addr 1706 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1707 , struct task_struct *t) 1708 { 1709 struct kernel_siginfo info; 1710 1711 clear_siginfo(&info); 1712 info.si_signo = sig; 1713 info.si_errno = 0; 1714 info.si_code = code; 1715 info.si_addr = addr; 1716 #ifdef __ia64__ 1717 info.si_imm = imm; 1718 info.si_flags = flags; 1719 info.si_isr = isr; 1720 #endif 1721 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1722 } 1723 1724 int force_sig_fault(int sig, int code, void __user *addr 1725 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1726 { 1727 return force_sig_fault_to_task(sig, code, addr 1728 ___ARCH_SI_IA64(imm, flags, isr), current); 1729 } 1730 1731 int send_sig_fault(int sig, int code, void __user *addr 1732 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1733 , struct task_struct *t) 1734 { 1735 struct kernel_siginfo info; 1736 1737 clear_siginfo(&info); 1738 info.si_signo = sig; 1739 info.si_errno = 0; 1740 info.si_code = code; 1741 info.si_addr = addr; 1742 #ifdef __ia64__ 1743 info.si_imm = imm; 1744 info.si_flags = flags; 1745 info.si_isr = isr; 1746 #endif 1747 return send_sig_info(info.si_signo, &info, t); 1748 } 1749 1750 int force_sig_mceerr(int code, void __user *addr, short lsb) 1751 { 1752 struct kernel_siginfo info; 1753 1754 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1755 clear_siginfo(&info); 1756 info.si_signo = SIGBUS; 1757 info.si_errno = 0; 1758 info.si_code = code; 1759 info.si_addr = addr; 1760 info.si_addr_lsb = lsb; 1761 return force_sig_info(&info); 1762 } 1763 1764 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1765 { 1766 struct kernel_siginfo info; 1767 1768 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1769 clear_siginfo(&info); 1770 info.si_signo = SIGBUS; 1771 info.si_errno = 0; 1772 info.si_code = code; 1773 info.si_addr = addr; 1774 info.si_addr_lsb = lsb; 1775 return send_sig_info(info.si_signo, &info, t); 1776 } 1777 EXPORT_SYMBOL(send_sig_mceerr); 1778 1779 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1780 { 1781 struct kernel_siginfo info; 1782 1783 clear_siginfo(&info); 1784 info.si_signo = SIGSEGV; 1785 info.si_errno = 0; 1786 info.si_code = SEGV_BNDERR; 1787 info.si_addr = addr; 1788 info.si_lower = lower; 1789 info.si_upper = upper; 1790 return force_sig_info(&info); 1791 } 1792 1793 #ifdef SEGV_PKUERR 1794 int force_sig_pkuerr(void __user *addr, u32 pkey) 1795 { 1796 struct kernel_siginfo info; 1797 1798 clear_siginfo(&info); 1799 info.si_signo = SIGSEGV; 1800 info.si_errno = 0; 1801 info.si_code = SEGV_PKUERR; 1802 info.si_addr = addr; 1803 info.si_pkey = pkey; 1804 return force_sig_info(&info); 1805 } 1806 #endif 1807 1808 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1809 { 1810 struct kernel_siginfo info; 1811 1812 clear_siginfo(&info); 1813 info.si_signo = SIGTRAP; 1814 info.si_errno = 0; 1815 info.si_code = TRAP_PERF; 1816 info.si_addr = addr; 1817 info.si_perf_data = sig_data; 1818 info.si_perf_type = type; 1819 1820 return force_sig_info(&info); 1821 } 1822 1823 /** 1824 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1825 * @syscall: syscall number to send to userland 1826 * @reason: filter-supplied reason code to send to userland (via si_errno) 1827 * @force_coredump: true to trigger a coredump 1828 * 1829 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1830 */ 1831 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1832 { 1833 struct kernel_siginfo info; 1834 1835 clear_siginfo(&info); 1836 info.si_signo = SIGSYS; 1837 info.si_code = SYS_SECCOMP; 1838 info.si_call_addr = (void __user *)KSTK_EIP(current); 1839 info.si_errno = reason; 1840 info.si_arch = syscall_get_arch(current); 1841 info.si_syscall = syscall; 1842 return force_sig_info_to_task(&info, current, 1843 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1844 } 1845 1846 /* For the crazy architectures that include trap information in 1847 * the errno field, instead of an actual errno value. 1848 */ 1849 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1850 { 1851 struct kernel_siginfo info; 1852 1853 clear_siginfo(&info); 1854 info.si_signo = SIGTRAP; 1855 info.si_errno = errno; 1856 info.si_code = TRAP_HWBKPT; 1857 info.si_addr = addr; 1858 return force_sig_info(&info); 1859 } 1860 1861 /* For the rare architectures that include trap information using 1862 * si_trapno. 1863 */ 1864 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1865 { 1866 struct kernel_siginfo info; 1867 1868 clear_siginfo(&info); 1869 info.si_signo = sig; 1870 info.si_errno = 0; 1871 info.si_code = code; 1872 info.si_addr = addr; 1873 info.si_trapno = trapno; 1874 return force_sig_info(&info); 1875 } 1876 1877 /* For the rare architectures that include trap information using 1878 * si_trapno. 1879 */ 1880 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1881 struct task_struct *t) 1882 { 1883 struct kernel_siginfo info; 1884 1885 clear_siginfo(&info); 1886 info.si_signo = sig; 1887 info.si_errno = 0; 1888 info.si_code = code; 1889 info.si_addr = addr; 1890 info.si_trapno = trapno; 1891 return send_sig_info(info.si_signo, &info, t); 1892 } 1893 1894 int kill_pgrp(struct pid *pid, int sig, int priv) 1895 { 1896 int ret; 1897 1898 read_lock(&tasklist_lock); 1899 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1900 read_unlock(&tasklist_lock); 1901 1902 return ret; 1903 } 1904 EXPORT_SYMBOL(kill_pgrp); 1905 1906 int kill_pid(struct pid *pid, int sig, int priv) 1907 { 1908 return kill_pid_info(sig, __si_special(priv), pid); 1909 } 1910 EXPORT_SYMBOL(kill_pid); 1911 1912 /* 1913 * These functions support sending signals using preallocated sigqueue 1914 * structures. This is needed "because realtime applications cannot 1915 * afford to lose notifications of asynchronous events, like timer 1916 * expirations or I/O completions". In the case of POSIX Timers 1917 * we allocate the sigqueue structure from the timer_create. If this 1918 * allocation fails we are able to report the failure to the application 1919 * with an EAGAIN error. 1920 */ 1921 struct sigqueue *sigqueue_alloc(void) 1922 { 1923 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1924 } 1925 1926 void sigqueue_free(struct sigqueue *q) 1927 { 1928 unsigned long flags; 1929 spinlock_t *lock = ¤t->sighand->siglock; 1930 1931 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1932 /* 1933 * We must hold ->siglock while testing q->list 1934 * to serialize with collect_signal() or with 1935 * __exit_signal()->flush_sigqueue(). 1936 */ 1937 spin_lock_irqsave(lock, flags); 1938 q->flags &= ~SIGQUEUE_PREALLOC; 1939 /* 1940 * If it is queued it will be freed when dequeued, 1941 * like the "regular" sigqueue. 1942 */ 1943 if (!list_empty(&q->list)) 1944 q = NULL; 1945 spin_unlock_irqrestore(lock, flags); 1946 1947 if (q) 1948 __sigqueue_free(q); 1949 } 1950 1951 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1952 { 1953 int sig = q->info.si_signo; 1954 struct sigpending *pending; 1955 struct task_struct *t; 1956 unsigned long flags; 1957 int ret, result; 1958 1959 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1960 1961 ret = -1; 1962 rcu_read_lock(); 1963 t = pid_task(pid, type); 1964 if (!t || !likely(lock_task_sighand(t, &flags))) 1965 goto ret; 1966 1967 ret = 1; /* the signal is ignored */ 1968 result = TRACE_SIGNAL_IGNORED; 1969 if (!prepare_signal(sig, t, false)) 1970 goto out; 1971 1972 ret = 0; 1973 if (unlikely(!list_empty(&q->list))) { 1974 /* 1975 * If an SI_TIMER entry is already queue just increment 1976 * the overrun count. 1977 */ 1978 BUG_ON(q->info.si_code != SI_TIMER); 1979 q->info.si_overrun++; 1980 result = TRACE_SIGNAL_ALREADY_PENDING; 1981 goto out; 1982 } 1983 q->info.si_overrun = 0; 1984 1985 signalfd_notify(t, sig); 1986 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1987 list_add_tail(&q->list, &pending->list); 1988 sigaddset(&pending->signal, sig); 1989 complete_signal(sig, t, type); 1990 result = TRACE_SIGNAL_DELIVERED; 1991 out: 1992 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1993 unlock_task_sighand(t, &flags); 1994 ret: 1995 rcu_read_unlock(); 1996 return ret; 1997 } 1998 1999 static void do_notify_pidfd(struct task_struct *task) 2000 { 2001 struct pid *pid; 2002 2003 WARN_ON(task->exit_state == 0); 2004 pid = task_pid(task); 2005 wake_up_all(&pid->wait_pidfd); 2006 } 2007 2008 /* 2009 * Let a parent know about the death of a child. 2010 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2011 * 2012 * Returns true if our parent ignored us and so we've switched to 2013 * self-reaping. 2014 */ 2015 bool do_notify_parent(struct task_struct *tsk, int sig) 2016 { 2017 struct kernel_siginfo info; 2018 unsigned long flags; 2019 struct sighand_struct *psig; 2020 bool autoreap = false; 2021 u64 utime, stime; 2022 2023 BUG_ON(sig == -1); 2024 2025 /* do_notify_parent_cldstop should have been called instead. */ 2026 BUG_ON(task_is_stopped_or_traced(tsk)); 2027 2028 BUG_ON(!tsk->ptrace && 2029 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2030 2031 /* Wake up all pidfd waiters */ 2032 do_notify_pidfd(tsk); 2033 2034 if (sig != SIGCHLD) { 2035 /* 2036 * This is only possible if parent == real_parent. 2037 * Check if it has changed security domain. 2038 */ 2039 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2040 sig = SIGCHLD; 2041 } 2042 2043 clear_siginfo(&info); 2044 info.si_signo = sig; 2045 info.si_errno = 0; 2046 /* 2047 * We are under tasklist_lock here so our parent is tied to 2048 * us and cannot change. 2049 * 2050 * task_active_pid_ns will always return the same pid namespace 2051 * until a task passes through release_task. 2052 * 2053 * write_lock() currently calls preempt_disable() which is the 2054 * same as rcu_read_lock(), but according to Oleg, this is not 2055 * correct to rely on this 2056 */ 2057 rcu_read_lock(); 2058 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2059 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2060 task_uid(tsk)); 2061 rcu_read_unlock(); 2062 2063 task_cputime(tsk, &utime, &stime); 2064 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2065 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2066 2067 info.si_status = tsk->exit_code & 0x7f; 2068 if (tsk->exit_code & 0x80) 2069 info.si_code = CLD_DUMPED; 2070 else if (tsk->exit_code & 0x7f) 2071 info.si_code = CLD_KILLED; 2072 else { 2073 info.si_code = CLD_EXITED; 2074 info.si_status = tsk->exit_code >> 8; 2075 } 2076 2077 psig = tsk->parent->sighand; 2078 spin_lock_irqsave(&psig->siglock, flags); 2079 if (!tsk->ptrace && sig == SIGCHLD && 2080 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2081 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2082 /* 2083 * We are exiting and our parent doesn't care. POSIX.1 2084 * defines special semantics for setting SIGCHLD to SIG_IGN 2085 * or setting the SA_NOCLDWAIT flag: we should be reaped 2086 * automatically and not left for our parent's wait4 call. 2087 * Rather than having the parent do it as a magic kind of 2088 * signal handler, we just set this to tell do_exit that we 2089 * can be cleaned up without becoming a zombie. Note that 2090 * we still call __wake_up_parent in this case, because a 2091 * blocked sys_wait4 might now return -ECHILD. 2092 * 2093 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2094 * is implementation-defined: we do (if you don't want 2095 * it, just use SIG_IGN instead). 2096 */ 2097 autoreap = true; 2098 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2099 sig = 0; 2100 } 2101 /* 2102 * Send with __send_signal as si_pid and si_uid are in the 2103 * parent's namespaces. 2104 */ 2105 if (valid_signal(sig) && sig) 2106 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2107 __wake_up_parent(tsk, tsk->parent); 2108 spin_unlock_irqrestore(&psig->siglock, flags); 2109 2110 return autoreap; 2111 } 2112 2113 /** 2114 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2115 * @tsk: task reporting the state change 2116 * @for_ptracer: the notification is for ptracer 2117 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2118 * 2119 * Notify @tsk's parent that the stopped/continued state has changed. If 2120 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2121 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2122 * 2123 * CONTEXT: 2124 * Must be called with tasklist_lock at least read locked. 2125 */ 2126 static void do_notify_parent_cldstop(struct task_struct *tsk, 2127 bool for_ptracer, int why) 2128 { 2129 struct kernel_siginfo info; 2130 unsigned long flags; 2131 struct task_struct *parent; 2132 struct sighand_struct *sighand; 2133 u64 utime, stime; 2134 2135 if (for_ptracer) { 2136 parent = tsk->parent; 2137 } else { 2138 tsk = tsk->group_leader; 2139 parent = tsk->real_parent; 2140 } 2141 2142 clear_siginfo(&info); 2143 info.si_signo = SIGCHLD; 2144 info.si_errno = 0; 2145 /* 2146 * see comment in do_notify_parent() about the following 4 lines 2147 */ 2148 rcu_read_lock(); 2149 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2150 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2151 rcu_read_unlock(); 2152 2153 task_cputime(tsk, &utime, &stime); 2154 info.si_utime = nsec_to_clock_t(utime); 2155 info.si_stime = nsec_to_clock_t(stime); 2156 2157 info.si_code = why; 2158 switch (why) { 2159 case CLD_CONTINUED: 2160 info.si_status = SIGCONT; 2161 break; 2162 case CLD_STOPPED: 2163 info.si_status = tsk->signal->group_exit_code & 0x7f; 2164 break; 2165 case CLD_TRAPPED: 2166 info.si_status = tsk->exit_code & 0x7f; 2167 break; 2168 default: 2169 BUG(); 2170 } 2171 2172 sighand = parent->sighand; 2173 spin_lock_irqsave(&sighand->siglock, flags); 2174 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2175 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2176 __group_send_sig_info(SIGCHLD, &info, parent); 2177 /* 2178 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2179 */ 2180 __wake_up_parent(tsk, parent); 2181 spin_unlock_irqrestore(&sighand->siglock, flags); 2182 } 2183 2184 /* 2185 * This must be called with current->sighand->siglock held. 2186 * 2187 * This should be the path for all ptrace stops. 2188 * We always set current->last_siginfo while stopped here. 2189 * That makes it a way to test a stopped process for 2190 * being ptrace-stopped vs being job-control-stopped. 2191 * 2192 * Returns the signal the ptracer requested the code resume 2193 * with. If the code did not stop because the tracer is gone, 2194 * the stop signal remains unchanged unless clear_code. 2195 */ 2196 static int ptrace_stop(int exit_code, int why, int clear_code, 2197 unsigned long message, kernel_siginfo_t *info) 2198 __releases(¤t->sighand->siglock) 2199 __acquires(¤t->sighand->siglock) 2200 { 2201 bool gstop_done = false; 2202 bool read_code = true; 2203 2204 if (arch_ptrace_stop_needed()) { 2205 /* 2206 * The arch code has something special to do before a 2207 * ptrace stop. This is allowed to block, e.g. for faults 2208 * on user stack pages. We can't keep the siglock while 2209 * calling arch_ptrace_stop, so we must release it now. 2210 * To preserve proper semantics, we must do this before 2211 * any signal bookkeeping like checking group_stop_count. 2212 */ 2213 spin_unlock_irq(¤t->sighand->siglock); 2214 arch_ptrace_stop(); 2215 spin_lock_irq(¤t->sighand->siglock); 2216 } 2217 2218 /* 2219 * schedule() will not sleep if there is a pending signal that 2220 * can awaken the task. 2221 */ 2222 set_special_state(TASK_TRACED); 2223 2224 /* 2225 * We're committing to trapping. TRACED should be visible before 2226 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2227 * Also, transition to TRACED and updates to ->jobctl should be 2228 * atomic with respect to siglock and should be done after the arch 2229 * hook as siglock is released and regrabbed across it. 2230 * 2231 * TRACER TRACEE 2232 * 2233 * ptrace_attach() 2234 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2235 * do_wait() 2236 * set_current_state() smp_wmb(); 2237 * ptrace_do_wait() 2238 * wait_task_stopped() 2239 * task_stopped_code() 2240 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2241 */ 2242 smp_wmb(); 2243 2244 current->ptrace_message = message; 2245 current->last_siginfo = info; 2246 current->exit_code = exit_code; 2247 2248 /* 2249 * If @why is CLD_STOPPED, we're trapping to participate in a group 2250 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2251 * across siglock relocks since INTERRUPT was scheduled, PENDING 2252 * could be clear now. We act as if SIGCONT is received after 2253 * TASK_TRACED is entered - ignore it. 2254 */ 2255 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2256 gstop_done = task_participate_group_stop(current); 2257 2258 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2259 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2260 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2261 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2262 2263 /* entering a trap, clear TRAPPING */ 2264 task_clear_jobctl_trapping(current); 2265 2266 spin_unlock_irq(¤t->sighand->siglock); 2267 read_lock(&tasklist_lock); 2268 if (likely(current->ptrace)) { 2269 /* 2270 * Notify parents of the stop. 2271 * 2272 * While ptraced, there are two parents - the ptracer and 2273 * the real_parent of the group_leader. The ptracer should 2274 * know about every stop while the real parent is only 2275 * interested in the completion of group stop. The states 2276 * for the two don't interact with each other. Notify 2277 * separately unless they're gonna be duplicates. 2278 */ 2279 do_notify_parent_cldstop(current, true, why); 2280 if (gstop_done && ptrace_reparented(current)) 2281 do_notify_parent_cldstop(current, false, why); 2282 2283 /* 2284 * Don't want to allow preemption here, because 2285 * sys_ptrace() needs this task to be inactive. 2286 * 2287 * XXX: implement read_unlock_no_resched(). 2288 */ 2289 preempt_disable(); 2290 read_unlock(&tasklist_lock); 2291 cgroup_enter_frozen(); 2292 preempt_enable_no_resched(); 2293 freezable_schedule(); 2294 cgroup_leave_frozen(true); 2295 } else { 2296 /* 2297 * By the time we got the lock, our tracer went away. 2298 * Don't drop the lock yet, another tracer may come. 2299 * 2300 * If @gstop_done, the ptracer went away between group stop 2301 * completion and here. During detach, it would have set 2302 * JOBCTL_STOP_PENDING on us and we'll re-enter 2303 * TASK_STOPPED in do_signal_stop() on return, so notifying 2304 * the real parent of the group stop completion is enough. 2305 */ 2306 if (gstop_done) 2307 do_notify_parent_cldstop(current, false, why); 2308 2309 /* tasklist protects us from ptrace_freeze_traced() */ 2310 __set_current_state(TASK_RUNNING); 2311 read_code = false; 2312 if (clear_code) 2313 exit_code = 0; 2314 read_unlock(&tasklist_lock); 2315 } 2316 2317 /* 2318 * We are back. Now reacquire the siglock before touching 2319 * last_siginfo, so that we are sure to have synchronized with 2320 * any signal-sending on another CPU that wants to examine it. 2321 */ 2322 spin_lock_irq(¤t->sighand->siglock); 2323 if (read_code) 2324 exit_code = current->exit_code; 2325 current->last_siginfo = NULL; 2326 current->ptrace_message = 0; 2327 current->exit_code = 0; 2328 2329 /* LISTENING can be set only during STOP traps, clear it */ 2330 current->jobctl &= ~JOBCTL_LISTENING; 2331 2332 /* 2333 * Queued signals ignored us while we were stopped for tracing. 2334 * So check for any that we should take before resuming user mode. 2335 * This sets TIF_SIGPENDING, but never clears it. 2336 */ 2337 recalc_sigpending_tsk(current); 2338 return exit_code; 2339 } 2340 2341 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2342 { 2343 kernel_siginfo_t info; 2344 2345 clear_siginfo(&info); 2346 info.si_signo = signr; 2347 info.si_code = exit_code; 2348 info.si_pid = task_pid_vnr(current); 2349 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2350 2351 /* Let the debugger run. */ 2352 return ptrace_stop(exit_code, why, 1, message, &info); 2353 } 2354 2355 int ptrace_notify(int exit_code, unsigned long message) 2356 { 2357 int signr; 2358 2359 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2360 if (unlikely(task_work_pending(current))) 2361 task_work_run(); 2362 2363 spin_lock_irq(¤t->sighand->siglock); 2364 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2365 spin_unlock_irq(¤t->sighand->siglock); 2366 return signr; 2367 } 2368 2369 /** 2370 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2371 * @signr: signr causing group stop if initiating 2372 * 2373 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2374 * and participate in it. If already set, participate in the existing 2375 * group stop. If participated in a group stop (and thus slept), %true is 2376 * returned with siglock released. 2377 * 2378 * If ptraced, this function doesn't handle stop itself. Instead, 2379 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2380 * untouched. The caller must ensure that INTERRUPT trap handling takes 2381 * places afterwards. 2382 * 2383 * CONTEXT: 2384 * Must be called with @current->sighand->siglock held, which is released 2385 * on %true return. 2386 * 2387 * RETURNS: 2388 * %false if group stop is already cancelled or ptrace trap is scheduled. 2389 * %true if participated in group stop. 2390 */ 2391 static bool do_signal_stop(int signr) 2392 __releases(¤t->sighand->siglock) 2393 { 2394 struct signal_struct *sig = current->signal; 2395 2396 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2397 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2398 struct task_struct *t; 2399 2400 /* signr will be recorded in task->jobctl for retries */ 2401 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2402 2403 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2404 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2405 unlikely(sig->group_exec_task)) 2406 return false; 2407 /* 2408 * There is no group stop already in progress. We must 2409 * initiate one now. 2410 * 2411 * While ptraced, a task may be resumed while group stop is 2412 * still in effect and then receive a stop signal and 2413 * initiate another group stop. This deviates from the 2414 * usual behavior as two consecutive stop signals can't 2415 * cause two group stops when !ptraced. That is why we 2416 * also check !task_is_stopped(t) below. 2417 * 2418 * The condition can be distinguished by testing whether 2419 * SIGNAL_STOP_STOPPED is already set. Don't generate 2420 * group_exit_code in such case. 2421 * 2422 * This is not necessary for SIGNAL_STOP_CONTINUED because 2423 * an intervening stop signal is required to cause two 2424 * continued events regardless of ptrace. 2425 */ 2426 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2427 sig->group_exit_code = signr; 2428 2429 sig->group_stop_count = 0; 2430 2431 if (task_set_jobctl_pending(current, signr | gstop)) 2432 sig->group_stop_count++; 2433 2434 t = current; 2435 while_each_thread(current, t) { 2436 /* 2437 * Setting state to TASK_STOPPED for a group 2438 * stop is always done with the siglock held, 2439 * so this check has no races. 2440 */ 2441 if (!task_is_stopped(t) && 2442 task_set_jobctl_pending(t, signr | gstop)) { 2443 sig->group_stop_count++; 2444 if (likely(!(t->ptrace & PT_SEIZED))) 2445 signal_wake_up(t, 0); 2446 else 2447 ptrace_trap_notify(t); 2448 } 2449 } 2450 } 2451 2452 if (likely(!current->ptrace)) { 2453 int notify = 0; 2454 2455 /* 2456 * If there are no other threads in the group, or if there 2457 * is a group stop in progress and we are the last to stop, 2458 * report to the parent. 2459 */ 2460 if (task_participate_group_stop(current)) 2461 notify = CLD_STOPPED; 2462 2463 set_special_state(TASK_STOPPED); 2464 spin_unlock_irq(¤t->sighand->siglock); 2465 2466 /* 2467 * Notify the parent of the group stop completion. Because 2468 * we're not holding either the siglock or tasklist_lock 2469 * here, ptracer may attach inbetween; however, this is for 2470 * group stop and should always be delivered to the real 2471 * parent of the group leader. The new ptracer will get 2472 * its notification when this task transitions into 2473 * TASK_TRACED. 2474 */ 2475 if (notify) { 2476 read_lock(&tasklist_lock); 2477 do_notify_parent_cldstop(current, false, notify); 2478 read_unlock(&tasklist_lock); 2479 } 2480 2481 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2482 cgroup_enter_frozen(); 2483 freezable_schedule(); 2484 return true; 2485 } else { 2486 /* 2487 * While ptraced, group stop is handled by STOP trap. 2488 * Schedule it and let the caller deal with it. 2489 */ 2490 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2491 return false; 2492 } 2493 } 2494 2495 /** 2496 * do_jobctl_trap - take care of ptrace jobctl traps 2497 * 2498 * When PT_SEIZED, it's used for both group stop and explicit 2499 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2500 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2501 * the stop signal; otherwise, %SIGTRAP. 2502 * 2503 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2504 * number as exit_code and no siginfo. 2505 * 2506 * CONTEXT: 2507 * Must be called with @current->sighand->siglock held, which may be 2508 * released and re-acquired before returning with intervening sleep. 2509 */ 2510 static void do_jobctl_trap(void) 2511 { 2512 struct signal_struct *signal = current->signal; 2513 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2514 2515 if (current->ptrace & PT_SEIZED) { 2516 if (!signal->group_stop_count && 2517 !(signal->flags & SIGNAL_STOP_STOPPED)) 2518 signr = SIGTRAP; 2519 WARN_ON_ONCE(!signr); 2520 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2521 CLD_STOPPED, 0); 2522 } else { 2523 WARN_ON_ONCE(!signr); 2524 ptrace_stop(signr, CLD_STOPPED, 0, 0, NULL); 2525 } 2526 } 2527 2528 /** 2529 * do_freezer_trap - handle the freezer jobctl trap 2530 * 2531 * Puts the task into frozen state, if only the task is not about to quit. 2532 * In this case it drops JOBCTL_TRAP_FREEZE. 2533 * 2534 * CONTEXT: 2535 * Must be called with @current->sighand->siglock held, 2536 * which is always released before returning. 2537 */ 2538 static void do_freezer_trap(void) 2539 __releases(¤t->sighand->siglock) 2540 { 2541 /* 2542 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2543 * let's make another loop to give it a chance to be handled. 2544 * In any case, we'll return back. 2545 */ 2546 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2547 JOBCTL_TRAP_FREEZE) { 2548 spin_unlock_irq(¤t->sighand->siglock); 2549 return; 2550 } 2551 2552 /* 2553 * Now we're sure that there is no pending fatal signal and no 2554 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2555 * immediately (if there is a non-fatal signal pending), and 2556 * put the task into sleep. 2557 */ 2558 __set_current_state(TASK_INTERRUPTIBLE); 2559 clear_thread_flag(TIF_SIGPENDING); 2560 spin_unlock_irq(¤t->sighand->siglock); 2561 cgroup_enter_frozen(); 2562 freezable_schedule(); 2563 } 2564 2565 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2566 { 2567 /* 2568 * We do not check sig_kernel_stop(signr) but set this marker 2569 * unconditionally because we do not know whether debugger will 2570 * change signr. This flag has no meaning unless we are going 2571 * to stop after return from ptrace_stop(). In this case it will 2572 * be checked in do_signal_stop(), we should only stop if it was 2573 * not cleared by SIGCONT while we were sleeping. See also the 2574 * comment in dequeue_signal(). 2575 */ 2576 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2577 signr = ptrace_stop(signr, CLD_TRAPPED, 0, 0, info); 2578 2579 /* We're back. Did the debugger cancel the sig? */ 2580 if (signr == 0) 2581 return signr; 2582 2583 /* 2584 * Update the siginfo structure if the signal has 2585 * changed. If the debugger wanted something 2586 * specific in the siginfo structure then it should 2587 * have updated *info via PTRACE_SETSIGINFO. 2588 */ 2589 if (signr != info->si_signo) { 2590 clear_siginfo(info); 2591 info->si_signo = signr; 2592 info->si_errno = 0; 2593 info->si_code = SI_USER; 2594 rcu_read_lock(); 2595 info->si_pid = task_pid_vnr(current->parent); 2596 info->si_uid = from_kuid_munged(current_user_ns(), 2597 task_uid(current->parent)); 2598 rcu_read_unlock(); 2599 } 2600 2601 /* If the (new) signal is now blocked, requeue it. */ 2602 if (sigismember(¤t->blocked, signr) || 2603 fatal_signal_pending(current)) { 2604 send_signal(signr, info, current, type); 2605 signr = 0; 2606 } 2607 2608 return signr; 2609 } 2610 2611 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2612 { 2613 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2614 case SIL_FAULT: 2615 case SIL_FAULT_TRAPNO: 2616 case SIL_FAULT_MCEERR: 2617 case SIL_FAULT_BNDERR: 2618 case SIL_FAULT_PKUERR: 2619 case SIL_FAULT_PERF_EVENT: 2620 ksig->info.si_addr = arch_untagged_si_addr( 2621 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2622 break; 2623 case SIL_KILL: 2624 case SIL_TIMER: 2625 case SIL_POLL: 2626 case SIL_CHLD: 2627 case SIL_RT: 2628 case SIL_SYS: 2629 break; 2630 } 2631 } 2632 2633 bool get_signal(struct ksignal *ksig) 2634 { 2635 struct sighand_struct *sighand = current->sighand; 2636 struct signal_struct *signal = current->signal; 2637 int signr; 2638 2639 clear_notify_signal(); 2640 if (unlikely(task_work_pending(current))) 2641 task_work_run(); 2642 2643 if (!task_sigpending(current)) 2644 return false; 2645 2646 if (unlikely(uprobe_deny_signal())) 2647 return false; 2648 2649 /* 2650 * Do this once, we can't return to user-mode if freezing() == T. 2651 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2652 * thus do not need another check after return. 2653 */ 2654 try_to_freeze(); 2655 2656 relock: 2657 spin_lock_irq(&sighand->siglock); 2658 2659 /* 2660 * Every stopped thread goes here after wakeup. Check to see if 2661 * we should notify the parent, prepare_signal(SIGCONT) encodes 2662 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2663 */ 2664 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2665 int why; 2666 2667 if (signal->flags & SIGNAL_CLD_CONTINUED) 2668 why = CLD_CONTINUED; 2669 else 2670 why = CLD_STOPPED; 2671 2672 signal->flags &= ~SIGNAL_CLD_MASK; 2673 2674 spin_unlock_irq(&sighand->siglock); 2675 2676 /* 2677 * Notify the parent that we're continuing. This event is 2678 * always per-process and doesn't make whole lot of sense 2679 * for ptracers, who shouldn't consume the state via 2680 * wait(2) either, but, for backward compatibility, notify 2681 * the ptracer of the group leader too unless it's gonna be 2682 * a duplicate. 2683 */ 2684 read_lock(&tasklist_lock); 2685 do_notify_parent_cldstop(current, false, why); 2686 2687 if (ptrace_reparented(current->group_leader)) 2688 do_notify_parent_cldstop(current->group_leader, 2689 true, why); 2690 read_unlock(&tasklist_lock); 2691 2692 goto relock; 2693 } 2694 2695 for (;;) { 2696 struct k_sigaction *ka; 2697 enum pid_type type; 2698 2699 /* Has this task already been marked for death? */ 2700 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2701 signal->group_exec_task) { 2702 ksig->info.si_signo = signr = SIGKILL; 2703 sigdelset(¤t->pending.signal, SIGKILL); 2704 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2705 &sighand->action[SIGKILL - 1]); 2706 recalc_sigpending(); 2707 goto fatal; 2708 } 2709 2710 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2711 do_signal_stop(0)) 2712 goto relock; 2713 2714 if (unlikely(current->jobctl & 2715 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2716 if (current->jobctl & JOBCTL_TRAP_MASK) { 2717 do_jobctl_trap(); 2718 spin_unlock_irq(&sighand->siglock); 2719 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2720 do_freezer_trap(); 2721 2722 goto relock; 2723 } 2724 2725 /* 2726 * If the task is leaving the frozen state, let's update 2727 * cgroup counters and reset the frozen bit. 2728 */ 2729 if (unlikely(cgroup_task_frozen(current))) { 2730 spin_unlock_irq(&sighand->siglock); 2731 cgroup_leave_frozen(false); 2732 goto relock; 2733 } 2734 2735 /* 2736 * Signals generated by the execution of an instruction 2737 * need to be delivered before any other pending signals 2738 * so that the instruction pointer in the signal stack 2739 * frame points to the faulting instruction. 2740 */ 2741 type = PIDTYPE_PID; 2742 signr = dequeue_synchronous_signal(&ksig->info); 2743 if (!signr) 2744 signr = dequeue_signal(current, ¤t->blocked, 2745 &ksig->info, &type); 2746 2747 if (!signr) 2748 break; /* will return 0 */ 2749 2750 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2751 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2752 signr = ptrace_signal(signr, &ksig->info, type); 2753 if (!signr) 2754 continue; 2755 } 2756 2757 ka = &sighand->action[signr-1]; 2758 2759 /* Trace actually delivered signals. */ 2760 trace_signal_deliver(signr, &ksig->info, ka); 2761 2762 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2763 continue; 2764 if (ka->sa.sa_handler != SIG_DFL) { 2765 /* Run the handler. */ 2766 ksig->ka = *ka; 2767 2768 if (ka->sa.sa_flags & SA_ONESHOT) 2769 ka->sa.sa_handler = SIG_DFL; 2770 2771 break; /* will return non-zero "signr" value */ 2772 } 2773 2774 /* 2775 * Now we are doing the default action for this signal. 2776 */ 2777 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2778 continue; 2779 2780 /* 2781 * Global init gets no signals it doesn't want. 2782 * Container-init gets no signals it doesn't want from same 2783 * container. 2784 * 2785 * Note that if global/container-init sees a sig_kernel_only() 2786 * signal here, the signal must have been generated internally 2787 * or must have come from an ancestor namespace. In either 2788 * case, the signal cannot be dropped. 2789 */ 2790 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2791 !sig_kernel_only(signr)) 2792 continue; 2793 2794 if (sig_kernel_stop(signr)) { 2795 /* 2796 * The default action is to stop all threads in 2797 * the thread group. The job control signals 2798 * do nothing in an orphaned pgrp, but SIGSTOP 2799 * always works. Note that siglock needs to be 2800 * dropped during the call to is_orphaned_pgrp() 2801 * because of lock ordering with tasklist_lock. 2802 * This allows an intervening SIGCONT to be posted. 2803 * We need to check for that and bail out if necessary. 2804 */ 2805 if (signr != SIGSTOP) { 2806 spin_unlock_irq(&sighand->siglock); 2807 2808 /* signals can be posted during this window */ 2809 2810 if (is_current_pgrp_orphaned()) 2811 goto relock; 2812 2813 spin_lock_irq(&sighand->siglock); 2814 } 2815 2816 if (likely(do_signal_stop(ksig->info.si_signo))) { 2817 /* It released the siglock. */ 2818 goto relock; 2819 } 2820 2821 /* 2822 * We didn't actually stop, due to a race 2823 * with SIGCONT or something like that. 2824 */ 2825 continue; 2826 } 2827 2828 fatal: 2829 spin_unlock_irq(&sighand->siglock); 2830 if (unlikely(cgroup_task_frozen(current))) 2831 cgroup_leave_frozen(true); 2832 2833 /* 2834 * Anything else is fatal, maybe with a core dump. 2835 */ 2836 current->flags |= PF_SIGNALED; 2837 2838 if (sig_kernel_coredump(signr)) { 2839 if (print_fatal_signals) 2840 print_fatal_signal(ksig->info.si_signo); 2841 proc_coredump_connector(current); 2842 /* 2843 * If it was able to dump core, this kills all 2844 * other threads in the group and synchronizes with 2845 * their demise. If we lost the race with another 2846 * thread getting here, it set group_exit_code 2847 * first and our do_group_exit call below will use 2848 * that value and ignore the one we pass it. 2849 */ 2850 do_coredump(&ksig->info); 2851 } 2852 2853 /* 2854 * PF_IO_WORKER threads will catch and exit on fatal signals 2855 * themselves. They have cleanup that must be performed, so 2856 * we cannot call do_exit() on their behalf. 2857 */ 2858 if (current->flags & PF_IO_WORKER) 2859 goto out; 2860 2861 /* 2862 * Death signals, no core dump. 2863 */ 2864 do_group_exit(ksig->info.si_signo); 2865 /* NOTREACHED */ 2866 } 2867 spin_unlock_irq(&sighand->siglock); 2868 out: 2869 ksig->sig = signr; 2870 2871 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2872 hide_si_addr_tag_bits(ksig); 2873 2874 return ksig->sig > 0; 2875 } 2876 2877 /** 2878 * signal_delivered - called after signal delivery to update blocked signals 2879 * @ksig: kernel signal struct 2880 * @stepping: nonzero if debugger single-step or block-step in use 2881 * 2882 * This function should be called when a signal has successfully been 2883 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2884 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2885 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2886 */ 2887 static void signal_delivered(struct ksignal *ksig, int stepping) 2888 { 2889 sigset_t blocked; 2890 2891 /* A signal was successfully delivered, and the 2892 saved sigmask was stored on the signal frame, 2893 and will be restored by sigreturn. So we can 2894 simply clear the restore sigmask flag. */ 2895 clear_restore_sigmask(); 2896 2897 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2898 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2899 sigaddset(&blocked, ksig->sig); 2900 set_current_blocked(&blocked); 2901 if (current->sas_ss_flags & SS_AUTODISARM) 2902 sas_ss_reset(current); 2903 if (stepping) 2904 ptrace_notify(SIGTRAP, 0); 2905 } 2906 2907 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2908 { 2909 if (failed) 2910 force_sigsegv(ksig->sig); 2911 else 2912 signal_delivered(ksig, stepping); 2913 } 2914 2915 /* 2916 * It could be that complete_signal() picked us to notify about the 2917 * group-wide signal. Other threads should be notified now to take 2918 * the shared signals in @which since we will not. 2919 */ 2920 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2921 { 2922 sigset_t retarget; 2923 struct task_struct *t; 2924 2925 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2926 if (sigisemptyset(&retarget)) 2927 return; 2928 2929 t = tsk; 2930 while_each_thread(tsk, t) { 2931 if (t->flags & PF_EXITING) 2932 continue; 2933 2934 if (!has_pending_signals(&retarget, &t->blocked)) 2935 continue; 2936 /* Remove the signals this thread can handle. */ 2937 sigandsets(&retarget, &retarget, &t->blocked); 2938 2939 if (!task_sigpending(t)) 2940 signal_wake_up(t, 0); 2941 2942 if (sigisemptyset(&retarget)) 2943 break; 2944 } 2945 } 2946 2947 void exit_signals(struct task_struct *tsk) 2948 { 2949 int group_stop = 0; 2950 sigset_t unblocked; 2951 2952 /* 2953 * @tsk is about to have PF_EXITING set - lock out users which 2954 * expect stable threadgroup. 2955 */ 2956 cgroup_threadgroup_change_begin(tsk); 2957 2958 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2959 tsk->flags |= PF_EXITING; 2960 cgroup_threadgroup_change_end(tsk); 2961 return; 2962 } 2963 2964 spin_lock_irq(&tsk->sighand->siglock); 2965 /* 2966 * From now this task is not visible for group-wide signals, 2967 * see wants_signal(), do_signal_stop(). 2968 */ 2969 tsk->flags |= PF_EXITING; 2970 2971 cgroup_threadgroup_change_end(tsk); 2972 2973 if (!task_sigpending(tsk)) 2974 goto out; 2975 2976 unblocked = tsk->blocked; 2977 signotset(&unblocked); 2978 retarget_shared_pending(tsk, &unblocked); 2979 2980 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2981 task_participate_group_stop(tsk)) 2982 group_stop = CLD_STOPPED; 2983 out: 2984 spin_unlock_irq(&tsk->sighand->siglock); 2985 2986 /* 2987 * If group stop has completed, deliver the notification. This 2988 * should always go to the real parent of the group leader. 2989 */ 2990 if (unlikely(group_stop)) { 2991 read_lock(&tasklist_lock); 2992 do_notify_parent_cldstop(tsk, false, group_stop); 2993 read_unlock(&tasklist_lock); 2994 } 2995 } 2996 2997 /* 2998 * System call entry points. 2999 */ 3000 3001 /** 3002 * sys_restart_syscall - restart a system call 3003 */ 3004 SYSCALL_DEFINE0(restart_syscall) 3005 { 3006 struct restart_block *restart = ¤t->restart_block; 3007 return restart->fn(restart); 3008 } 3009 3010 long do_no_restart_syscall(struct restart_block *param) 3011 { 3012 return -EINTR; 3013 } 3014 3015 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3016 { 3017 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3018 sigset_t newblocked; 3019 /* A set of now blocked but previously unblocked signals. */ 3020 sigandnsets(&newblocked, newset, ¤t->blocked); 3021 retarget_shared_pending(tsk, &newblocked); 3022 } 3023 tsk->blocked = *newset; 3024 recalc_sigpending(); 3025 } 3026 3027 /** 3028 * set_current_blocked - change current->blocked mask 3029 * @newset: new mask 3030 * 3031 * It is wrong to change ->blocked directly, this helper should be used 3032 * to ensure the process can't miss a shared signal we are going to block. 3033 */ 3034 void set_current_blocked(sigset_t *newset) 3035 { 3036 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3037 __set_current_blocked(newset); 3038 } 3039 3040 void __set_current_blocked(const sigset_t *newset) 3041 { 3042 struct task_struct *tsk = current; 3043 3044 /* 3045 * In case the signal mask hasn't changed, there is nothing we need 3046 * to do. The current->blocked shouldn't be modified by other task. 3047 */ 3048 if (sigequalsets(&tsk->blocked, newset)) 3049 return; 3050 3051 spin_lock_irq(&tsk->sighand->siglock); 3052 __set_task_blocked(tsk, newset); 3053 spin_unlock_irq(&tsk->sighand->siglock); 3054 } 3055 3056 /* 3057 * This is also useful for kernel threads that want to temporarily 3058 * (or permanently) block certain signals. 3059 * 3060 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3061 * interface happily blocks "unblockable" signals like SIGKILL 3062 * and friends. 3063 */ 3064 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3065 { 3066 struct task_struct *tsk = current; 3067 sigset_t newset; 3068 3069 /* Lockless, only current can change ->blocked, never from irq */ 3070 if (oldset) 3071 *oldset = tsk->blocked; 3072 3073 switch (how) { 3074 case SIG_BLOCK: 3075 sigorsets(&newset, &tsk->blocked, set); 3076 break; 3077 case SIG_UNBLOCK: 3078 sigandnsets(&newset, &tsk->blocked, set); 3079 break; 3080 case SIG_SETMASK: 3081 newset = *set; 3082 break; 3083 default: 3084 return -EINVAL; 3085 } 3086 3087 __set_current_blocked(&newset); 3088 return 0; 3089 } 3090 EXPORT_SYMBOL(sigprocmask); 3091 3092 /* 3093 * The api helps set app-provided sigmasks. 3094 * 3095 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3096 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3097 * 3098 * Note that it does set_restore_sigmask() in advance, so it must be always 3099 * paired with restore_saved_sigmask_unless() before return from syscall. 3100 */ 3101 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3102 { 3103 sigset_t kmask; 3104 3105 if (!umask) 3106 return 0; 3107 if (sigsetsize != sizeof(sigset_t)) 3108 return -EINVAL; 3109 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3110 return -EFAULT; 3111 3112 set_restore_sigmask(); 3113 current->saved_sigmask = current->blocked; 3114 set_current_blocked(&kmask); 3115 3116 return 0; 3117 } 3118 3119 #ifdef CONFIG_COMPAT 3120 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3121 size_t sigsetsize) 3122 { 3123 sigset_t kmask; 3124 3125 if (!umask) 3126 return 0; 3127 if (sigsetsize != sizeof(compat_sigset_t)) 3128 return -EINVAL; 3129 if (get_compat_sigset(&kmask, umask)) 3130 return -EFAULT; 3131 3132 set_restore_sigmask(); 3133 current->saved_sigmask = current->blocked; 3134 set_current_blocked(&kmask); 3135 3136 return 0; 3137 } 3138 #endif 3139 3140 /** 3141 * sys_rt_sigprocmask - change the list of currently blocked signals 3142 * @how: whether to add, remove, or set signals 3143 * @nset: stores pending signals 3144 * @oset: previous value of signal mask if non-null 3145 * @sigsetsize: size of sigset_t type 3146 */ 3147 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3148 sigset_t __user *, oset, size_t, sigsetsize) 3149 { 3150 sigset_t old_set, new_set; 3151 int error; 3152 3153 /* XXX: Don't preclude handling different sized sigset_t's. */ 3154 if (sigsetsize != sizeof(sigset_t)) 3155 return -EINVAL; 3156 3157 old_set = current->blocked; 3158 3159 if (nset) { 3160 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3161 return -EFAULT; 3162 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3163 3164 error = sigprocmask(how, &new_set, NULL); 3165 if (error) 3166 return error; 3167 } 3168 3169 if (oset) { 3170 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3171 return -EFAULT; 3172 } 3173 3174 return 0; 3175 } 3176 3177 #ifdef CONFIG_COMPAT 3178 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3179 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3180 { 3181 sigset_t old_set = current->blocked; 3182 3183 /* XXX: Don't preclude handling different sized sigset_t's. */ 3184 if (sigsetsize != sizeof(sigset_t)) 3185 return -EINVAL; 3186 3187 if (nset) { 3188 sigset_t new_set; 3189 int error; 3190 if (get_compat_sigset(&new_set, nset)) 3191 return -EFAULT; 3192 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3193 3194 error = sigprocmask(how, &new_set, NULL); 3195 if (error) 3196 return error; 3197 } 3198 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3199 } 3200 #endif 3201 3202 static void do_sigpending(sigset_t *set) 3203 { 3204 spin_lock_irq(¤t->sighand->siglock); 3205 sigorsets(set, ¤t->pending.signal, 3206 ¤t->signal->shared_pending.signal); 3207 spin_unlock_irq(¤t->sighand->siglock); 3208 3209 /* Outside the lock because only this thread touches it. */ 3210 sigandsets(set, ¤t->blocked, set); 3211 } 3212 3213 /** 3214 * sys_rt_sigpending - examine a pending signal that has been raised 3215 * while blocked 3216 * @uset: stores pending signals 3217 * @sigsetsize: size of sigset_t type or larger 3218 */ 3219 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3220 { 3221 sigset_t set; 3222 3223 if (sigsetsize > sizeof(*uset)) 3224 return -EINVAL; 3225 3226 do_sigpending(&set); 3227 3228 if (copy_to_user(uset, &set, sigsetsize)) 3229 return -EFAULT; 3230 3231 return 0; 3232 } 3233 3234 #ifdef CONFIG_COMPAT 3235 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3236 compat_size_t, sigsetsize) 3237 { 3238 sigset_t set; 3239 3240 if (sigsetsize > sizeof(*uset)) 3241 return -EINVAL; 3242 3243 do_sigpending(&set); 3244 3245 return put_compat_sigset(uset, &set, sigsetsize); 3246 } 3247 #endif 3248 3249 static const struct { 3250 unsigned char limit, layout; 3251 } sig_sicodes[] = { 3252 [SIGILL] = { NSIGILL, SIL_FAULT }, 3253 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3254 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3255 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3256 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3257 #if defined(SIGEMT) 3258 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3259 #endif 3260 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3261 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3262 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3263 }; 3264 3265 static bool known_siginfo_layout(unsigned sig, int si_code) 3266 { 3267 if (si_code == SI_KERNEL) 3268 return true; 3269 else if ((si_code > SI_USER)) { 3270 if (sig_specific_sicodes(sig)) { 3271 if (si_code <= sig_sicodes[sig].limit) 3272 return true; 3273 } 3274 else if (si_code <= NSIGPOLL) 3275 return true; 3276 } 3277 else if (si_code >= SI_DETHREAD) 3278 return true; 3279 else if (si_code == SI_ASYNCNL) 3280 return true; 3281 return false; 3282 } 3283 3284 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3285 { 3286 enum siginfo_layout layout = SIL_KILL; 3287 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3288 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3289 (si_code <= sig_sicodes[sig].limit)) { 3290 layout = sig_sicodes[sig].layout; 3291 /* Handle the exceptions */ 3292 if ((sig == SIGBUS) && 3293 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3294 layout = SIL_FAULT_MCEERR; 3295 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3296 layout = SIL_FAULT_BNDERR; 3297 #ifdef SEGV_PKUERR 3298 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3299 layout = SIL_FAULT_PKUERR; 3300 #endif 3301 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3302 layout = SIL_FAULT_PERF_EVENT; 3303 else if (IS_ENABLED(CONFIG_SPARC) && 3304 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3305 layout = SIL_FAULT_TRAPNO; 3306 else if (IS_ENABLED(CONFIG_ALPHA) && 3307 ((sig == SIGFPE) || 3308 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3309 layout = SIL_FAULT_TRAPNO; 3310 } 3311 else if (si_code <= NSIGPOLL) 3312 layout = SIL_POLL; 3313 } else { 3314 if (si_code == SI_TIMER) 3315 layout = SIL_TIMER; 3316 else if (si_code == SI_SIGIO) 3317 layout = SIL_POLL; 3318 else if (si_code < 0) 3319 layout = SIL_RT; 3320 } 3321 return layout; 3322 } 3323 3324 static inline char __user *si_expansion(const siginfo_t __user *info) 3325 { 3326 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3327 } 3328 3329 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3330 { 3331 char __user *expansion = si_expansion(to); 3332 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3333 return -EFAULT; 3334 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3335 return -EFAULT; 3336 return 0; 3337 } 3338 3339 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3340 const siginfo_t __user *from) 3341 { 3342 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3343 char __user *expansion = si_expansion(from); 3344 char buf[SI_EXPANSION_SIZE]; 3345 int i; 3346 /* 3347 * An unknown si_code might need more than 3348 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3349 * extra bytes are 0. This guarantees copy_siginfo_to_user 3350 * will return this data to userspace exactly. 3351 */ 3352 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3353 return -EFAULT; 3354 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3355 if (buf[i] != 0) 3356 return -E2BIG; 3357 } 3358 } 3359 return 0; 3360 } 3361 3362 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3363 const siginfo_t __user *from) 3364 { 3365 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3366 return -EFAULT; 3367 to->si_signo = signo; 3368 return post_copy_siginfo_from_user(to, from); 3369 } 3370 3371 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3372 { 3373 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3374 return -EFAULT; 3375 return post_copy_siginfo_from_user(to, from); 3376 } 3377 3378 #ifdef CONFIG_COMPAT 3379 /** 3380 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3381 * @to: compat siginfo destination 3382 * @from: kernel siginfo source 3383 * 3384 * Note: This function does not work properly for the SIGCHLD on x32, but 3385 * fortunately it doesn't have to. The only valid callers for this function are 3386 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3387 * The latter does not care because SIGCHLD will never cause a coredump. 3388 */ 3389 void copy_siginfo_to_external32(struct compat_siginfo *to, 3390 const struct kernel_siginfo *from) 3391 { 3392 memset(to, 0, sizeof(*to)); 3393 3394 to->si_signo = from->si_signo; 3395 to->si_errno = from->si_errno; 3396 to->si_code = from->si_code; 3397 switch(siginfo_layout(from->si_signo, from->si_code)) { 3398 case SIL_KILL: 3399 to->si_pid = from->si_pid; 3400 to->si_uid = from->si_uid; 3401 break; 3402 case SIL_TIMER: 3403 to->si_tid = from->si_tid; 3404 to->si_overrun = from->si_overrun; 3405 to->si_int = from->si_int; 3406 break; 3407 case SIL_POLL: 3408 to->si_band = from->si_band; 3409 to->si_fd = from->si_fd; 3410 break; 3411 case SIL_FAULT: 3412 to->si_addr = ptr_to_compat(from->si_addr); 3413 break; 3414 case SIL_FAULT_TRAPNO: 3415 to->si_addr = ptr_to_compat(from->si_addr); 3416 to->si_trapno = from->si_trapno; 3417 break; 3418 case SIL_FAULT_MCEERR: 3419 to->si_addr = ptr_to_compat(from->si_addr); 3420 to->si_addr_lsb = from->si_addr_lsb; 3421 break; 3422 case SIL_FAULT_BNDERR: 3423 to->si_addr = ptr_to_compat(from->si_addr); 3424 to->si_lower = ptr_to_compat(from->si_lower); 3425 to->si_upper = ptr_to_compat(from->si_upper); 3426 break; 3427 case SIL_FAULT_PKUERR: 3428 to->si_addr = ptr_to_compat(from->si_addr); 3429 to->si_pkey = from->si_pkey; 3430 break; 3431 case SIL_FAULT_PERF_EVENT: 3432 to->si_addr = ptr_to_compat(from->si_addr); 3433 to->si_perf_data = from->si_perf_data; 3434 to->si_perf_type = from->si_perf_type; 3435 break; 3436 case SIL_CHLD: 3437 to->si_pid = from->si_pid; 3438 to->si_uid = from->si_uid; 3439 to->si_status = from->si_status; 3440 to->si_utime = from->si_utime; 3441 to->si_stime = from->si_stime; 3442 break; 3443 case SIL_RT: 3444 to->si_pid = from->si_pid; 3445 to->si_uid = from->si_uid; 3446 to->si_int = from->si_int; 3447 break; 3448 case SIL_SYS: 3449 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3450 to->si_syscall = from->si_syscall; 3451 to->si_arch = from->si_arch; 3452 break; 3453 } 3454 } 3455 3456 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3457 const struct kernel_siginfo *from) 3458 { 3459 struct compat_siginfo new; 3460 3461 copy_siginfo_to_external32(&new, from); 3462 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3463 return -EFAULT; 3464 return 0; 3465 } 3466 3467 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3468 const struct compat_siginfo *from) 3469 { 3470 clear_siginfo(to); 3471 to->si_signo = from->si_signo; 3472 to->si_errno = from->si_errno; 3473 to->si_code = from->si_code; 3474 switch(siginfo_layout(from->si_signo, from->si_code)) { 3475 case SIL_KILL: 3476 to->si_pid = from->si_pid; 3477 to->si_uid = from->si_uid; 3478 break; 3479 case SIL_TIMER: 3480 to->si_tid = from->si_tid; 3481 to->si_overrun = from->si_overrun; 3482 to->si_int = from->si_int; 3483 break; 3484 case SIL_POLL: 3485 to->si_band = from->si_band; 3486 to->si_fd = from->si_fd; 3487 break; 3488 case SIL_FAULT: 3489 to->si_addr = compat_ptr(from->si_addr); 3490 break; 3491 case SIL_FAULT_TRAPNO: 3492 to->si_addr = compat_ptr(from->si_addr); 3493 to->si_trapno = from->si_trapno; 3494 break; 3495 case SIL_FAULT_MCEERR: 3496 to->si_addr = compat_ptr(from->si_addr); 3497 to->si_addr_lsb = from->si_addr_lsb; 3498 break; 3499 case SIL_FAULT_BNDERR: 3500 to->si_addr = compat_ptr(from->si_addr); 3501 to->si_lower = compat_ptr(from->si_lower); 3502 to->si_upper = compat_ptr(from->si_upper); 3503 break; 3504 case SIL_FAULT_PKUERR: 3505 to->si_addr = compat_ptr(from->si_addr); 3506 to->si_pkey = from->si_pkey; 3507 break; 3508 case SIL_FAULT_PERF_EVENT: 3509 to->si_addr = compat_ptr(from->si_addr); 3510 to->si_perf_data = from->si_perf_data; 3511 to->si_perf_type = from->si_perf_type; 3512 break; 3513 case SIL_CHLD: 3514 to->si_pid = from->si_pid; 3515 to->si_uid = from->si_uid; 3516 to->si_status = from->si_status; 3517 #ifdef CONFIG_X86_X32_ABI 3518 if (in_x32_syscall()) { 3519 to->si_utime = from->_sifields._sigchld_x32._utime; 3520 to->si_stime = from->_sifields._sigchld_x32._stime; 3521 } else 3522 #endif 3523 { 3524 to->si_utime = from->si_utime; 3525 to->si_stime = from->si_stime; 3526 } 3527 break; 3528 case SIL_RT: 3529 to->si_pid = from->si_pid; 3530 to->si_uid = from->si_uid; 3531 to->si_int = from->si_int; 3532 break; 3533 case SIL_SYS: 3534 to->si_call_addr = compat_ptr(from->si_call_addr); 3535 to->si_syscall = from->si_syscall; 3536 to->si_arch = from->si_arch; 3537 break; 3538 } 3539 return 0; 3540 } 3541 3542 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3543 const struct compat_siginfo __user *ufrom) 3544 { 3545 struct compat_siginfo from; 3546 3547 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3548 return -EFAULT; 3549 3550 from.si_signo = signo; 3551 return post_copy_siginfo_from_user32(to, &from); 3552 } 3553 3554 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3555 const struct compat_siginfo __user *ufrom) 3556 { 3557 struct compat_siginfo from; 3558 3559 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3560 return -EFAULT; 3561 3562 return post_copy_siginfo_from_user32(to, &from); 3563 } 3564 #endif /* CONFIG_COMPAT */ 3565 3566 /** 3567 * do_sigtimedwait - wait for queued signals specified in @which 3568 * @which: queued signals to wait for 3569 * @info: if non-null, the signal's siginfo is returned here 3570 * @ts: upper bound on process time suspension 3571 */ 3572 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3573 const struct timespec64 *ts) 3574 { 3575 ktime_t *to = NULL, timeout = KTIME_MAX; 3576 struct task_struct *tsk = current; 3577 sigset_t mask = *which; 3578 enum pid_type type; 3579 int sig, ret = 0; 3580 3581 if (ts) { 3582 if (!timespec64_valid(ts)) 3583 return -EINVAL; 3584 timeout = timespec64_to_ktime(*ts); 3585 to = &timeout; 3586 } 3587 3588 /* 3589 * Invert the set of allowed signals to get those we want to block. 3590 */ 3591 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3592 signotset(&mask); 3593 3594 spin_lock_irq(&tsk->sighand->siglock); 3595 sig = dequeue_signal(tsk, &mask, info, &type); 3596 if (!sig && timeout) { 3597 /* 3598 * None ready, temporarily unblock those we're interested 3599 * while we are sleeping in so that we'll be awakened when 3600 * they arrive. Unblocking is always fine, we can avoid 3601 * set_current_blocked(). 3602 */ 3603 tsk->real_blocked = tsk->blocked; 3604 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3605 recalc_sigpending(); 3606 spin_unlock_irq(&tsk->sighand->siglock); 3607 3608 __set_current_state(TASK_INTERRUPTIBLE); 3609 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3610 HRTIMER_MODE_REL); 3611 spin_lock_irq(&tsk->sighand->siglock); 3612 __set_task_blocked(tsk, &tsk->real_blocked); 3613 sigemptyset(&tsk->real_blocked); 3614 sig = dequeue_signal(tsk, &mask, info, &type); 3615 } 3616 spin_unlock_irq(&tsk->sighand->siglock); 3617 3618 if (sig) 3619 return sig; 3620 return ret ? -EINTR : -EAGAIN; 3621 } 3622 3623 /** 3624 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3625 * in @uthese 3626 * @uthese: queued signals to wait for 3627 * @uinfo: if non-null, the signal's siginfo is returned here 3628 * @uts: upper bound on process time suspension 3629 * @sigsetsize: size of sigset_t type 3630 */ 3631 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3632 siginfo_t __user *, uinfo, 3633 const struct __kernel_timespec __user *, uts, 3634 size_t, sigsetsize) 3635 { 3636 sigset_t these; 3637 struct timespec64 ts; 3638 kernel_siginfo_t info; 3639 int ret; 3640 3641 /* XXX: Don't preclude handling different sized sigset_t's. */ 3642 if (sigsetsize != sizeof(sigset_t)) 3643 return -EINVAL; 3644 3645 if (copy_from_user(&these, uthese, sizeof(these))) 3646 return -EFAULT; 3647 3648 if (uts) { 3649 if (get_timespec64(&ts, uts)) 3650 return -EFAULT; 3651 } 3652 3653 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3654 3655 if (ret > 0 && uinfo) { 3656 if (copy_siginfo_to_user(uinfo, &info)) 3657 ret = -EFAULT; 3658 } 3659 3660 return ret; 3661 } 3662 3663 #ifdef CONFIG_COMPAT_32BIT_TIME 3664 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3665 siginfo_t __user *, uinfo, 3666 const struct old_timespec32 __user *, uts, 3667 size_t, sigsetsize) 3668 { 3669 sigset_t these; 3670 struct timespec64 ts; 3671 kernel_siginfo_t info; 3672 int ret; 3673 3674 if (sigsetsize != sizeof(sigset_t)) 3675 return -EINVAL; 3676 3677 if (copy_from_user(&these, uthese, sizeof(these))) 3678 return -EFAULT; 3679 3680 if (uts) { 3681 if (get_old_timespec32(&ts, uts)) 3682 return -EFAULT; 3683 } 3684 3685 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3686 3687 if (ret > 0 && uinfo) { 3688 if (copy_siginfo_to_user(uinfo, &info)) 3689 ret = -EFAULT; 3690 } 3691 3692 return ret; 3693 } 3694 #endif 3695 3696 #ifdef CONFIG_COMPAT 3697 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3698 struct compat_siginfo __user *, uinfo, 3699 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3700 { 3701 sigset_t s; 3702 struct timespec64 t; 3703 kernel_siginfo_t info; 3704 long ret; 3705 3706 if (sigsetsize != sizeof(sigset_t)) 3707 return -EINVAL; 3708 3709 if (get_compat_sigset(&s, uthese)) 3710 return -EFAULT; 3711 3712 if (uts) { 3713 if (get_timespec64(&t, uts)) 3714 return -EFAULT; 3715 } 3716 3717 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3718 3719 if (ret > 0 && uinfo) { 3720 if (copy_siginfo_to_user32(uinfo, &info)) 3721 ret = -EFAULT; 3722 } 3723 3724 return ret; 3725 } 3726 3727 #ifdef CONFIG_COMPAT_32BIT_TIME 3728 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3729 struct compat_siginfo __user *, uinfo, 3730 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3731 { 3732 sigset_t s; 3733 struct timespec64 t; 3734 kernel_siginfo_t info; 3735 long ret; 3736 3737 if (sigsetsize != sizeof(sigset_t)) 3738 return -EINVAL; 3739 3740 if (get_compat_sigset(&s, uthese)) 3741 return -EFAULT; 3742 3743 if (uts) { 3744 if (get_old_timespec32(&t, uts)) 3745 return -EFAULT; 3746 } 3747 3748 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3749 3750 if (ret > 0 && uinfo) { 3751 if (copy_siginfo_to_user32(uinfo, &info)) 3752 ret = -EFAULT; 3753 } 3754 3755 return ret; 3756 } 3757 #endif 3758 #endif 3759 3760 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3761 { 3762 clear_siginfo(info); 3763 info->si_signo = sig; 3764 info->si_errno = 0; 3765 info->si_code = SI_USER; 3766 info->si_pid = task_tgid_vnr(current); 3767 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3768 } 3769 3770 /** 3771 * sys_kill - send a signal to a process 3772 * @pid: the PID of the process 3773 * @sig: signal to be sent 3774 */ 3775 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3776 { 3777 struct kernel_siginfo info; 3778 3779 prepare_kill_siginfo(sig, &info); 3780 3781 return kill_something_info(sig, &info, pid); 3782 } 3783 3784 /* 3785 * Verify that the signaler and signalee either are in the same pid namespace 3786 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3787 * namespace. 3788 */ 3789 static bool access_pidfd_pidns(struct pid *pid) 3790 { 3791 struct pid_namespace *active = task_active_pid_ns(current); 3792 struct pid_namespace *p = ns_of_pid(pid); 3793 3794 for (;;) { 3795 if (!p) 3796 return false; 3797 if (p == active) 3798 break; 3799 p = p->parent; 3800 } 3801 3802 return true; 3803 } 3804 3805 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3806 siginfo_t __user *info) 3807 { 3808 #ifdef CONFIG_COMPAT 3809 /* 3810 * Avoid hooking up compat syscalls and instead handle necessary 3811 * conversions here. Note, this is a stop-gap measure and should not be 3812 * considered a generic solution. 3813 */ 3814 if (in_compat_syscall()) 3815 return copy_siginfo_from_user32( 3816 kinfo, (struct compat_siginfo __user *)info); 3817 #endif 3818 return copy_siginfo_from_user(kinfo, info); 3819 } 3820 3821 static struct pid *pidfd_to_pid(const struct file *file) 3822 { 3823 struct pid *pid; 3824 3825 pid = pidfd_pid(file); 3826 if (!IS_ERR(pid)) 3827 return pid; 3828 3829 return tgid_pidfd_to_pid(file); 3830 } 3831 3832 /** 3833 * sys_pidfd_send_signal - Signal a process through a pidfd 3834 * @pidfd: file descriptor of the process 3835 * @sig: signal to send 3836 * @info: signal info 3837 * @flags: future flags 3838 * 3839 * The syscall currently only signals via PIDTYPE_PID which covers 3840 * kill(<positive-pid>, <signal>. It does not signal threads or process 3841 * groups. 3842 * In order to extend the syscall to threads and process groups the @flags 3843 * argument should be used. In essence, the @flags argument will determine 3844 * what is signaled and not the file descriptor itself. Put in other words, 3845 * grouping is a property of the flags argument not a property of the file 3846 * descriptor. 3847 * 3848 * Return: 0 on success, negative errno on failure 3849 */ 3850 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3851 siginfo_t __user *, info, unsigned int, flags) 3852 { 3853 int ret; 3854 struct fd f; 3855 struct pid *pid; 3856 kernel_siginfo_t kinfo; 3857 3858 /* Enforce flags be set to 0 until we add an extension. */ 3859 if (flags) 3860 return -EINVAL; 3861 3862 f = fdget(pidfd); 3863 if (!f.file) 3864 return -EBADF; 3865 3866 /* Is this a pidfd? */ 3867 pid = pidfd_to_pid(f.file); 3868 if (IS_ERR(pid)) { 3869 ret = PTR_ERR(pid); 3870 goto err; 3871 } 3872 3873 ret = -EINVAL; 3874 if (!access_pidfd_pidns(pid)) 3875 goto err; 3876 3877 if (info) { 3878 ret = copy_siginfo_from_user_any(&kinfo, info); 3879 if (unlikely(ret)) 3880 goto err; 3881 3882 ret = -EINVAL; 3883 if (unlikely(sig != kinfo.si_signo)) 3884 goto err; 3885 3886 /* Only allow sending arbitrary signals to yourself. */ 3887 ret = -EPERM; 3888 if ((task_pid(current) != pid) && 3889 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3890 goto err; 3891 } else { 3892 prepare_kill_siginfo(sig, &kinfo); 3893 } 3894 3895 ret = kill_pid_info(sig, &kinfo, pid); 3896 3897 err: 3898 fdput(f); 3899 return ret; 3900 } 3901 3902 static int 3903 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3904 { 3905 struct task_struct *p; 3906 int error = -ESRCH; 3907 3908 rcu_read_lock(); 3909 p = find_task_by_vpid(pid); 3910 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3911 error = check_kill_permission(sig, info, p); 3912 /* 3913 * The null signal is a permissions and process existence 3914 * probe. No signal is actually delivered. 3915 */ 3916 if (!error && sig) { 3917 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3918 /* 3919 * If lock_task_sighand() failed we pretend the task 3920 * dies after receiving the signal. The window is tiny, 3921 * and the signal is private anyway. 3922 */ 3923 if (unlikely(error == -ESRCH)) 3924 error = 0; 3925 } 3926 } 3927 rcu_read_unlock(); 3928 3929 return error; 3930 } 3931 3932 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3933 { 3934 struct kernel_siginfo info; 3935 3936 clear_siginfo(&info); 3937 info.si_signo = sig; 3938 info.si_errno = 0; 3939 info.si_code = SI_TKILL; 3940 info.si_pid = task_tgid_vnr(current); 3941 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3942 3943 return do_send_specific(tgid, pid, sig, &info); 3944 } 3945 3946 /** 3947 * sys_tgkill - send signal to one specific thread 3948 * @tgid: the thread group ID of the thread 3949 * @pid: the PID of the thread 3950 * @sig: signal to be sent 3951 * 3952 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3953 * exists but it's not belonging to the target process anymore. This 3954 * method solves the problem of threads exiting and PIDs getting reused. 3955 */ 3956 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3957 { 3958 /* This is only valid for single tasks */ 3959 if (pid <= 0 || tgid <= 0) 3960 return -EINVAL; 3961 3962 return do_tkill(tgid, pid, sig); 3963 } 3964 3965 /** 3966 * sys_tkill - send signal to one specific task 3967 * @pid: the PID of the task 3968 * @sig: signal to be sent 3969 * 3970 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3971 */ 3972 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3973 { 3974 /* This is only valid for single tasks */ 3975 if (pid <= 0) 3976 return -EINVAL; 3977 3978 return do_tkill(0, pid, sig); 3979 } 3980 3981 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3982 { 3983 /* Not even root can pretend to send signals from the kernel. 3984 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3985 */ 3986 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3987 (task_pid_vnr(current) != pid)) 3988 return -EPERM; 3989 3990 /* POSIX.1b doesn't mention process groups. */ 3991 return kill_proc_info(sig, info, pid); 3992 } 3993 3994 /** 3995 * sys_rt_sigqueueinfo - send signal information to a signal 3996 * @pid: the PID of the thread 3997 * @sig: signal to be sent 3998 * @uinfo: signal info to be sent 3999 */ 4000 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4001 siginfo_t __user *, uinfo) 4002 { 4003 kernel_siginfo_t info; 4004 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4005 if (unlikely(ret)) 4006 return ret; 4007 return do_rt_sigqueueinfo(pid, sig, &info); 4008 } 4009 4010 #ifdef CONFIG_COMPAT 4011 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4012 compat_pid_t, pid, 4013 int, sig, 4014 struct compat_siginfo __user *, uinfo) 4015 { 4016 kernel_siginfo_t info; 4017 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4018 if (unlikely(ret)) 4019 return ret; 4020 return do_rt_sigqueueinfo(pid, sig, &info); 4021 } 4022 #endif 4023 4024 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4025 { 4026 /* This is only valid for single tasks */ 4027 if (pid <= 0 || tgid <= 0) 4028 return -EINVAL; 4029 4030 /* Not even root can pretend to send signals from the kernel. 4031 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4032 */ 4033 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4034 (task_pid_vnr(current) != pid)) 4035 return -EPERM; 4036 4037 return do_send_specific(tgid, pid, sig, info); 4038 } 4039 4040 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4041 siginfo_t __user *, uinfo) 4042 { 4043 kernel_siginfo_t info; 4044 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4045 if (unlikely(ret)) 4046 return ret; 4047 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4048 } 4049 4050 #ifdef CONFIG_COMPAT 4051 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4052 compat_pid_t, tgid, 4053 compat_pid_t, pid, 4054 int, sig, 4055 struct compat_siginfo __user *, uinfo) 4056 { 4057 kernel_siginfo_t info; 4058 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4059 if (unlikely(ret)) 4060 return ret; 4061 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4062 } 4063 #endif 4064 4065 /* 4066 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4067 */ 4068 void kernel_sigaction(int sig, __sighandler_t action) 4069 { 4070 spin_lock_irq(¤t->sighand->siglock); 4071 current->sighand->action[sig - 1].sa.sa_handler = action; 4072 if (action == SIG_IGN) { 4073 sigset_t mask; 4074 4075 sigemptyset(&mask); 4076 sigaddset(&mask, sig); 4077 4078 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4079 flush_sigqueue_mask(&mask, ¤t->pending); 4080 recalc_sigpending(); 4081 } 4082 spin_unlock_irq(¤t->sighand->siglock); 4083 } 4084 EXPORT_SYMBOL(kernel_sigaction); 4085 4086 void __weak sigaction_compat_abi(struct k_sigaction *act, 4087 struct k_sigaction *oact) 4088 { 4089 } 4090 4091 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4092 { 4093 struct task_struct *p = current, *t; 4094 struct k_sigaction *k; 4095 sigset_t mask; 4096 4097 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4098 return -EINVAL; 4099 4100 k = &p->sighand->action[sig-1]; 4101 4102 spin_lock_irq(&p->sighand->siglock); 4103 if (k->sa.sa_flags & SA_IMMUTABLE) { 4104 spin_unlock_irq(&p->sighand->siglock); 4105 return -EINVAL; 4106 } 4107 if (oact) 4108 *oact = *k; 4109 4110 /* 4111 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4112 * e.g. by having an architecture use the bit in their uapi. 4113 */ 4114 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4115 4116 /* 4117 * Clear unknown flag bits in order to allow userspace to detect missing 4118 * support for flag bits and to allow the kernel to use non-uapi bits 4119 * internally. 4120 */ 4121 if (act) 4122 act->sa.sa_flags &= UAPI_SA_FLAGS; 4123 if (oact) 4124 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4125 4126 sigaction_compat_abi(act, oact); 4127 4128 if (act) { 4129 sigdelsetmask(&act->sa.sa_mask, 4130 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4131 *k = *act; 4132 /* 4133 * POSIX 3.3.1.3: 4134 * "Setting a signal action to SIG_IGN for a signal that is 4135 * pending shall cause the pending signal to be discarded, 4136 * whether or not it is blocked." 4137 * 4138 * "Setting a signal action to SIG_DFL for a signal that is 4139 * pending and whose default action is to ignore the signal 4140 * (for example, SIGCHLD), shall cause the pending signal to 4141 * be discarded, whether or not it is blocked" 4142 */ 4143 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4144 sigemptyset(&mask); 4145 sigaddset(&mask, sig); 4146 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4147 for_each_thread(p, t) 4148 flush_sigqueue_mask(&mask, &t->pending); 4149 } 4150 } 4151 4152 spin_unlock_irq(&p->sighand->siglock); 4153 return 0; 4154 } 4155 4156 #ifdef CONFIG_DYNAMIC_SIGFRAME 4157 static inline void sigaltstack_lock(void) 4158 __acquires(¤t->sighand->siglock) 4159 { 4160 spin_lock_irq(¤t->sighand->siglock); 4161 } 4162 4163 static inline void sigaltstack_unlock(void) 4164 __releases(¤t->sighand->siglock) 4165 { 4166 spin_unlock_irq(¤t->sighand->siglock); 4167 } 4168 #else 4169 static inline void sigaltstack_lock(void) { } 4170 static inline void sigaltstack_unlock(void) { } 4171 #endif 4172 4173 static int 4174 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4175 size_t min_ss_size) 4176 { 4177 struct task_struct *t = current; 4178 int ret = 0; 4179 4180 if (oss) { 4181 memset(oss, 0, sizeof(stack_t)); 4182 oss->ss_sp = (void __user *) t->sas_ss_sp; 4183 oss->ss_size = t->sas_ss_size; 4184 oss->ss_flags = sas_ss_flags(sp) | 4185 (current->sas_ss_flags & SS_FLAG_BITS); 4186 } 4187 4188 if (ss) { 4189 void __user *ss_sp = ss->ss_sp; 4190 size_t ss_size = ss->ss_size; 4191 unsigned ss_flags = ss->ss_flags; 4192 int ss_mode; 4193 4194 if (unlikely(on_sig_stack(sp))) 4195 return -EPERM; 4196 4197 ss_mode = ss_flags & ~SS_FLAG_BITS; 4198 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4199 ss_mode != 0)) 4200 return -EINVAL; 4201 4202 /* 4203 * Return before taking any locks if no actual 4204 * sigaltstack changes were requested. 4205 */ 4206 if (t->sas_ss_sp == (unsigned long)ss_sp && 4207 t->sas_ss_size == ss_size && 4208 t->sas_ss_flags == ss_flags) 4209 return 0; 4210 4211 sigaltstack_lock(); 4212 if (ss_mode == SS_DISABLE) { 4213 ss_size = 0; 4214 ss_sp = NULL; 4215 } else { 4216 if (unlikely(ss_size < min_ss_size)) 4217 ret = -ENOMEM; 4218 if (!sigaltstack_size_valid(ss_size)) 4219 ret = -ENOMEM; 4220 } 4221 if (!ret) { 4222 t->sas_ss_sp = (unsigned long) ss_sp; 4223 t->sas_ss_size = ss_size; 4224 t->sas_ss_flags = ss_flags; 4225 } 4226 sigaltstack_unlock(); 4227 } 4228 return ret; 4229 } 4230 4231 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4232 { 4233 stack_t new, old; 4234 int err; 4235 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4236 return -EFAULT; 4237 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4238 current_user_stack_pointer(), 4239 MINSIGSTKSZ); 4240 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4241 err = -EFAULT; 4242 return err; 4243 } 4244 4245 int restore_altstack(const stack_t __user *uss) 4246 { 4247 stack_t new; 4248 if (copy_from_user(&new, uss, sizeof(stack_t))) 4249 return -EFAULT; 4250 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4251 MINSIGSTKSZ); 4252 /* squash all but EFAULT for now */ 4253 return 0; 4254 } 4255 4256 int __save_altstack(stack_t __user *uss, unsigned long sp) 4257 { 4258 struct task_struct *t = current; 4259 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4260 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4261 __put_user(t->sas_ss_size, &uss->ss_size); 4262 return err; 4263 } 4264 4265 #ifdef CONFIG_COMPAT 4266 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4267 compat_stack_t __user *uoss_ptr) 4268 { 4269 stack_t uss, uoss; 4270 int ret; 4271 4272 if (uss_ptr) { 4273 compat_stack_t uss32; 4274 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4275 return -EFAULT; 4276 uss.ss_sp = compat_ptr(uss32.ss_sp); 4277 uss.ss_flags = uss32.ss_flags; 4278 uss.ss_size = uss32.ss_size; 4279 } 4280 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4281 compat_user_stack_pointer(), 4282 COMPAT_MINSIGSTKSZ); 4283 if (ret >= 0 && uoss_ptr) { 4284 compat_stack_t old; 4285 memset(&old, 0, sizeof(old)); 4286 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4287 old.ss_flags = uoss.ss_flags; 4288 old.ss_size = uoss.ss_size; 4289 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4290 ret = -EFAULT; 4291 } 4292 return ret; 4293 } 4294 4295 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4296 const compat_stack_t __user *, uss_ptr, 4297 compat_stack_t __user *, uoss_ptr) 4298 { 4299 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4300 } 4301 4302 int compat_restore_altstack(const compat_stack_t __user *uss) 4303 { 4304 int err = do_compat_sigaltstack(uss, NULL); 4305 /* squash all but -EFAULT for now */ 4306 return err == -EFAULT ? err : 0; 4307 } 4308 4309 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4310 { 4311 int err; 4312 struct task_struct *t = current; 4313 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4314 &uss->ss_sp) | 4315 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4316 __put_user(t->sas_ss_size, &uss->ss_size); 4317 return err; 4318 } 4319 #endif 4320 4321 #ifdef __ARCH_WANT_SYS_SIGPENDING 4322 4323 /** 4324 * sys_sigpending - examine pending signals 4325 * @uset: where mask of pending signal is returned 4326 */ 4327 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4328 { 4329 sigset_t set; 4330 4331 if (sizeof(old_sigset_t) > sizeof(*uset)) 4332 return -EINVAL; 4333 4334 do_sigpending(&set); 4335 4336 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4337 return -EFAULT; 4338 4339 return 0; 4340 } 4341 4342 #ifdef CONFIG_COMPAT 4343 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4344 { 4345 sigset_t set; 4346 4347 do_sigpending(&set); 4348 4349 return put_user(set.sig[0], set32); 4350 } 4351 #endif 4352 4353 #endif 4354 4355 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4356 /** 4357 * sys_sigprocmask - examine and change blocked signals 4358 * @how: whether to add, remove, or set signals 4359 * @nset: signals to add or remove (if non-null) 4360 * @oset: previous value of signal mask if non-null 4361 * 4362 * Some platforms have their own version with special arguments; 4363 * others support only sys_rt_sigprocmask. 4364 */ 4365 4366 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4367 old_sigset_t __user *, oset) 4368 { 4369 old_sigset_t old_set, new_set; 4370 sigset_t new_blocked; 4371 4372 old_set = current->blocked.sig[0]; 4373 4374 if (nset) { 4375 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4376 return -EFAULT; 4377 4378 new_blocked = current->blocked; 4379 4380 switch (how) { 4381 case SIG_BLOCK: 4382 sigaddsetmask(&new_blocked, new_set); 4383 break; 4384 case SIG_UNBLOCK: 4385 sigdelsetmask(&new_blocked, new_set); 4386 break; 4387 case SIG_SETMASK: 4388 new_blocked.sig[0] = new_set; 4389 break; 4390 default: 4391 return -EINVAL; 4392 } 4393 4394 set_current_blocked(&new_blocked); 4395 } 4396 4397 if (oset) { 4398 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4399 return -EFAULT; 4400 } 4401 4402 return 0; 4403 } 4404 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4405 4406 #ifndef CONFIG_ODD_RT_SIGACTION 4407 /** 4408 * sys_rt_sigaction - alter an action taken by a process 4409 * @sig: signal to be sent 4410 * @act: new sigaction 4411 * @oact: used to save the previous sigaction 4412 * @sigsetsize: size of sigset_t type 4413 */ 4414 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4415 const struct sigaction __user *, act, 4416 struct sigaction __user *, oact, 4417 size_t, sigsetsize) 4418 { 4419 struct k_sigaction new_sa, old_sa; 4420 int ret; 4421 4422 /* XXX: Don't preclude handling different sized sigset_t's. */ 4423 if (sigsetsize != sizeof(sigset_t)) 4424 return -EINVAL; 4425 4426 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4427 return -EFAULT; 4428 4429 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4430 if (ret) 4431 return ret; 4432 4433 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4434 return -EFAULT; 4435 4436 return 0; 4437 } 4438 #ifdef CONFIG_COMPAT 4439 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4440 const struct compat_sigaction __user *, act, 4441 struct compat_sigaction __user *, oact, 4442 compat_size_t, sigsetsize) 4443 { 4444 struct k_sigaction new_ka, old_ka; 4445 #ifdef __ARCH_HAS_SA_RESTORER 4446 compat_uptr_t restorer; 4447 #endif 4448 int ret; 4449 4450 /* XXX: Don't preclude handling different sized sigset_t's. */ 4451 if (sigsetsize != sizeof(compat_sigset_t)) 4452 return -EINVAL; 4453 4454 if (act) { 4455 compat_uptr_t handler; 4456 ret = get_user(handler, &act->sa_handler); 4457 new_ka.sa.sa_handler = compat_ptr(handler); 4458 #ifdef __ARCH_HAS_SA_RESTORER 4459 ret |= get_user(restorer, &act->sa_restorer); 4460 new_ka.sa.sa_restorer = compat_ptr(restorer); 4461 #endif 4462 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4463 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4464 if (ret) 4465 return -EFAULT; 4466 } 4467 4468 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4469 if (!ret && oact) { 4470 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4471 &oact->sa_handler); 4472 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4473 sizeof(oact->sa_mask)); 4474 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4475 #ifdef __ARCH_HAS_SA_RESTORER 4476 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4477 &oact->sa_restorer); 4478 #endif 4479 } 4480 return ret; 4481 } 4482 #endif 4483 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4484 4485 #ifdef CONFIG_OLD_SIGACTION 4486 SYSCALL_DEFINE3(sigaction, int, sig, 4487 const struct old_sigaction __user *, act, 4488 struct old_sigaction __user *, oact) 4489 { 4490 struct k_sigaction new_ka, old_ka; 4491 int ret; 4492 4493 if (act) { 4494 old_sigset_t mask; 4495 if (!access_ok(act, sizeof(*act)) || 4496 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4497 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4498 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4499 __get_user(mask, &act->sa_mask)) 4500 return -EFAULT; 4501 #ifdef __ARCH_HAS_KA_RESTORER 4502 new_ka.ka_restorer = NULL; 4503 #endif 4504 siginitset(&new_ka.sa.sa_mask, mask); 4505 } 4506 4507 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4508 4509 if (!ret && oact) { 4510 if (!access_ok(oact, sizeof(*oact)) || 4511 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4512 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4513 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4514 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4515 return -EFAULT; 4516 } 4517 4518 return ret; 4519 } 4520 #endif 4521 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4522 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4523 const struct compat_old_sigaction __user *, act, 4524 struct compat_old_sigaction __user *, oact) 4525 { 4526 struct k_sigaction new_ka, old_ka; 4527 int ret; 4528 compat_old_sigset_t mask; 4529 compat_uptr_t handler, restorer; 4530 4531 if (act) { 4532 if (!access_ok(act, sizeof(*act)) || 4533 __get_user(handler, &act->sa_handler) || 4534 __get_user(restorer, &act->sa_restorer) || 4535 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4536 __get_user(mask, &act->sa_mask)) 4537 return -EFAULT; 4538 4539 #ifdef __ARCH_HAS_KA_RESTORER 4540 new_ka.ka_restorer = NULL; 4541 #endif 4542 new_ka.sa.sa_handler = compat_ptr(handler); 4543 new_ka.sa.sa_restorer = compat_ptr(restorer); 4544 siginitset(&new_ka.sa.sa_mask, mask); 4545 } 4546 4547 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4548 4549 if (!ret && oact) { 4550 if (!access_ok(oact, sizeof(*oact)) || 4551 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4552 &oact->sa_handler) || 4553 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4554 &oact->sa_restorer) || 4555 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4556 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4557 return -EFAULT; 4558 } 4559 return ret; 4560 } 4561 #endif 4562 4563 #ifdef CONFIG_SGETMASK_SYSCALL 4564 4565 /* 4566 * For backwards compatibility. Functionality superseded by sigprocmask. 4567 */ 4568 SYSCALL_DEFINE0(sgetmask) 4569 { 4570 /* SMP safe */ 4571 return current->blocked.sig[0]; 4572 } 4573 4574 SYSCALL_DEFINE1(ssetmask, int, newmask) 4575 { 4576 int old = current->blocked.sig[0]; 4577 sigset_t newset; 4578 4579 siginitset(&newset, newmask); 4580 set_current_blocked(&newset); 4581 4582 return old; 4583 } 4584 #endif /* CONFIG_SGETMASK_SYSCALL */ 4585 4586 #ifdef __ARCH_WANT_SYS_SIGNAL 4587 /* 4588 * For backwards compatibility. Functionality superseded by sigaction. 4589 */ 4590 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4591 { 4592 struct k_sigaction new_sa, old_sa; 4593 int ret; 4594 4595 new_sa.sa.sa_handler = handler; 4596 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4597 sigemptyset(&new_sa.sa.sa_mask); 4598 4599 ret = do_sigaction(sig, &new_sa, &old_sa); 4600 4601 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4602 } 4603 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4604 4605 #ifdef __ARCH_WANT_SYS_PAUSE 4606 4607 SYSCALL_DEFINE0(pause) 4608 { 4609 while (!signal_pending(current)) { 4610 __set_current_state(TASK_INTERRUPTIBLE); 4611 schedule(); 4612 } 4613 return -ERESTARTNOHAND; 4614 } 4615 4616 #endif 4617 4618 static int sigsuspend(sigset_t *set) 4619 { 4620 current->saved_sigmask = current->blocked; 4621 set_current_blocked(set); 4622 4623 while (!signal_pending(current)) { 4624 __set_current_state(TASK_INTERRUPTIBLE); 4625 schedule(); 4626 } 4627 set_restore_sigmask(); 4628 return -ERESTARTNOHAND; 4629 } 4630 4631 /** 4632 * sys_rt_sigsuspend - replace the signal mask for a value with the 4633 * @unewset value until a signal is received 4634 * @unewset: new signal mask value 4635 * @sigsetsize: size of sigset_t type 4636 */ 4637 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4638 { 4639 sigset_t newset; 4640 4641 /* XXX: Don't preclude handling different sized sigset_t's. */ 4642 if (sigsetsize != sizeof(sigset_t)) 4643 return -EINVAL; 4644 4645 if (copy_from_user(&newset, unewset, sizeof(newset))) 4646 return -EFAULT; 4647 return sigsuspend(&newset); 4648 } 4649 4650 #ifdef CONFIG_COMPAT 4651 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4652 { 4653 sigset_t newset; 4654 4655 /* XXX: Don't preclude handling different sized sigset_t's. */ 4656 if (sigsetsize != sizeof(sigset_t)) 4657 return -EINVAL; 4658 4659 if (get_compat_sigset(&newset, unewset)) 4660 return -EFAULT; 4661 return sigsuspend(&newset); 4662 } 4663 #endif 4664 4665 #ifdef CONFIG_OLD_SIGSUSPEND 4666 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4667 { 4668 sigset_t blocked; 4669 siginitset(&blocked, mask); 4670 return sigsuspend(&blocked); 4671 } 4672 #endif 4673 #ifdef CONFIG_OLD_SIGSUSPEND3 4674 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4675 { 4676 sigset_t blocked; 4677 siginitset(&blocked, mask); 4678 return sigsuspend(&blocked); 4679 } 4680 #endif 4681 4682 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4683 { 4684 return NULL; 4685 } 4686 4687 static inline void siginfo_buildtime_checks(void) 4688 { 4689 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4690 4691 /* Verify the offsets in the two siginfos match */ 4692 #define CHECK_OFFSET(field) \ 4693 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4694 4695 /* kill */ 4696 CHECK_OFFSET(si_pid); 4697 CHECK_OFFSET(si_uid); 4698 4699 /* timer */ 4700 CHECK_OFFSET(si_tid); 4701 CHECK_OFFSET(si_overrun); 4702 CHECK_OFFSET(si_value); 4703 4704 /* rt */ 4705 CHECK_OFFSET(si_pid); 4706 CHECK_OFFSET(si_uid); 4707 CHECK_OFFSET(si_value); 4708 4709 /* sigchld */ 4710 CHECK_OFFSET(si_pid); 4711 CHECK_OFFSET(si_uid); 4712 CHECK_OFFSET(si_status); 4713 CHECK_OFFSET(si_utime); 4714 CHECK_OFFSET(si_stime); 4715 4716 /* sigfault */ 4717 CHECK_OFFSET(si_addr); 4718 CHECK_OFFSET(si_trapno); 4719 CHECK_OFFSET(si_addr_lsb); 4720 CHECK_OFFSET(si_lower); 4721 CHECK_OFFSET(si_upper); 4722 CHECK_OFFSET(si_pkey); 4723 CHECK_OFFSET(si_perf_data); 4724 CHECK_OFFSET(si_perf_type); 4725 4726 /* sigpoll */ 4727 CHECK_OFFSET(si_band); 4728 CHECK_OFFSET(si_fd); 4729 4730 /* sigsys */ 4731 CHECK_OFFSET(si_call_addr); 4732 CHECK_OFFSET(si_syscall); 4733 CHECK_OFFSET(si_arch); 4734 #undef CHECK_OFFSET 4735 4736 /* usb asyncio */ 4737 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4738 offsetof(struct siginfo, si_addr)); 4739 if (sizeof(int) == sizeof(void __user *)) { 4740 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4741 sizeof(void __user *)); 4742 } else { 4743 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4744 sizeof_field(struct siginfo, si_uid)) != 4745 sizeof(void __user *)); 4746 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4747 offsetof(struct siginfo, si_uid)); 4748 } 4749 #ifdef CONFIG_COMPAT 4750 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4751 offsetof(struct compat_siginfo, si_addr)); 4752 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4753 sizeof(compat_uptr_t)); 4754 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4755 sizeof_field(struct siginfo, si_pid)); 4756 #endif 4757 } 4758 4759 void __init signals_init(void) 4760 { 4761 siginfo_buildtime_checks(); 4762 4763 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4764 } 4765 4766 #ifdef CONFIG_KGDB_KDB 4767 #include <linux/kdb.h> 4768 /* 4769 * kdb_send_sig - Allows kdb to send signals without exposing 4770 * signal internals. This function checks if the required locks are 4771 * available before calling the main signal code, to avoid kdb 4772 * deadlocks. 4773 */ 4774 void kdb_send_sig(struct task_struct *t, int sig) 4775 { 4776 static struct task_struct *kdb_prev_t; 4777 int new_t, ret; 4778 if (!spin_trylock(&t->sighand->siglock)) { 4779 kdb_printf("Can't do kill command now.\n" 4780 "The sigmask lock is held somewhere else in " 4781 "kernel, try again later\n"); 4782 return; 4783 } 4784 new_t = kdb_prev_t != t; 4785 kdb_prev_t = t; 4786 if (!task_is_running(t) && new_t) { 4787 spin_unlock(&t->sighand->siglock); 4788 kdb_printf("Process is not RUNNING, sending a signal from " 4789 "kdb risks deadlock\n" 4790 "on the run queue locks. " 4791 "The signal has _not_ been sent.\n" 4792 "Reissue the kill command if you want to risk " 4793 "the deadlock.\n"); 4794 return; 4795 } 4796 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4797 spin_unlock(&t->sighand->siglock); 4798 if (ret) 4799 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4800 sig, t->pid); 4801 else 4802 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4803 } 4804 #endif /* CONFIG_KGDB_KDB */ 4805