xref: /openbmc/linux/kernel/signal.c (revision 4a3fad70)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
46 
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h"	/* audit_signal_info() */
53 
54 /*
55  * SLAB caches for signal bits.
56  */
57 
58 static struct kmem_cache *sigqueue_cachep;
59 
60 int print_fatal_signals __read_mostly;
61 
62 static void __user *sig_handler(struct task_struct *t, int sig)
63 {
64 	return t->sighand->action[sig - 1].sa.sa_handler;
65 }
66 
67 static int sig_handler_ignored(void __user *handler, int sig)
68 {
69 	/* Is it explicitly or implicitly ignored? */
70 	return handler == SIG_IGN ||
71 		(handler == SIG_DFL && sig_kernel_ignore(sig));
72 }
73 
74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
75 {
76 	void __user *handler;
77 
78 	handler = sig_handler(t, sig);
79 
80 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
81 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
82 		return 1;
83 
84 	return sig_handler_ignored(handler, sig);
85 }
86 
87 static int sig_ignored(struct task_struct *t, int sig, bool force)
88 {
89 	/*
90 	 * Blocked signals are never ignored, since the
91 	 * signal handler may change by the time it is
92 	 * unblocked.
93 	 */
94 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
95 		return 0;
96 
97 	/*
98 	 * Tracers may want to know about even ignored signal unless it
99 	 * is SIGKILL which can't be reported anyway but can be ignored
100 	 * by SIGNAL_UNKILLABLE task.
101 	 */
102 	if (t->ptrace && sig != SIGKILL)
103 		return 0;
104 
105 	return sig_task_ignored(t, sig, force);
106 }
107 
108 /*
109  * Re-calculate pending state from the set of locally pending
110  * signals, globally pending signals, and blocked signals.
111  */
112 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
113 {
114 	unsigned long ready;
115 	long i;
116 
117 	switch (_NSIG_WORDS) {
118 	default:
119 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
120 			ready |= signal->sig[i] &~ blocked->sig[i];
121 		break;
122 
123 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
124 		ready |= signal->sig[2] &~ blocked->sig[2];
125 		ready |= signal->sig[1] &~ blocked->sig[1];
126 		ready |= signal->sig[0] &~ blocked->sig[0];
127 		break;
128 
129 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
130 		ready |= signal->sig[0] &~ blocked->sig[0];
131 		break;
132 
133 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
134 	}
135 	return ready !=	0;
136 }
137 
138 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
139 
140 static int recalc_sigpending_tsk(struct task_struct *t)
141 {
142 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
143 	    PENDING(&t->pending, &t->blocked) ||
144 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
145 		set_tsk_thread_flag(t, TIF_SIGPENDING);
146 		return 1;
147 	}
148 	/*
149 	 * We must never clear the flag in another thread, or in current
150 	 * when it's possible the current syscall is returning -ERESTART*.
151 	 * So we don't clear it here, and only callers who know they should do.
152 	 */
153 	return 0;
154 }
155 
156 /*
157  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
158  * This is superfluous when called on current, the wakeup is a harmless no-op.
159  */
160 void recalc_sigpending_and_wake(struct task_struct *t)
161 {
162 	if (recalc_sigpending_tsk(t))
163 		signal_wake_up(t, 0);
164 }
165 
166 void recalc_sigpending(void)
167 {
168 	if (!recalc_sigpending_tsk(current) && !freezing(current))
169 		clear_thread_flag(TIF_SIGPENDING);
170 
171 }
172 
173 /* Given the mask, find the first available signal that should be serviced. */
174 
175 #define SYNCHRONOUS_MASK \
176 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
177 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
178 
179 int next_signal(struct sigpending *pending, sigset_t *mask)
180 {
181 	unsigned long i, *s, *m, x;
182 	int sig = 0;
183 
184 	s = pending->signal.sig;
185 	m = mask->sig;
186 
187 	/*
188 	 * Handle the first word specially: it contains the
189 	 * synchronous signals that need to be dequeued first.
190 	 */
191 	x = *s &~ *m;
192 	if (x) {
193 		if (x & SYNCHRONOUS_MASK)
194 			x &= SYNCHRONOUS_MASK;
195 		sig = ffz(~x) + 1;
196 		return sig;
197 	}
198 
199 	switch (_NSIG_WORDS) {
200 	default:
201 		for (i = 1; i < _NSIG_WORDS; ++i) {
202 			x = *++s &~ *++m;
203 			if (!x)
204 				continue;
205 			sig = ffz(~x) + i*_NSIG_BPW + 1;
206 			break;
207 		}
208 		break;
209 
210 	case 2:
211 		x = s[1] &~ m[1];
212 		if (!x)
213 			break;
214 		sig = ffz(~x) + _NSIG_BPW + 1;
215 		break;
216 
217 	case 1:
218 		/* Nothing to do */
219 		break;
220 	}
221 
222 	return sig;
223 }
224 
225 static inline void print_dropped_signal(int sig)
226 {
227 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
228 
229 	if (!print_fatal_signals)
230 		return;
231 
232 	if (!__ratelimit(&ratelimit_state))
233 		return;
234 
235 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
236 				current->comm, current->pid, sig);
237 }
238 
239 /**
240  * task_set_jobctl_pending - set jobctl pending bits
241  * @task: target task
242  * @mask: pending bits to set
243  *
244  * Clear @mask from @task->jobctl.  @mask must be subset of
245  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
246  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
247  * cleared.  If @task is already being killed or exiting, this function
248  * becomes noop.
249  *
250  * CONTEXT:
251  * Must be called with @task->sighand->siglock held.
252  *
253  * RETURNS:
254  * %true if @mask is set, %false if made noop because @task was dying.
255  */
256 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
257 {
258 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
259 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
260 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
261 
262 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
263 		return false;
264 
265 	if (mask & JOBCTL_STOP_SIGMASK)
266 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
267 
268 	task->jobctl |= mask;
269 	return true;
270 }
271 
272 /**
273  * task_clear_jobctl_trapping - clear jobctl trapping bit
274  * @task: target task
275  *
276  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
277  * Clear it and wake up the ptracer.  Note that we don't need any further
278  * locking.  @task->siglock guarantees that @task->parent points to the
279  * ptracer.
280  *
281  * CONTEXT:
282  * Must be called with @task->sighand->siglock held.
283  */
284 void task_clear_jobctl_trapping(struct task_struct *task)
285 {
286 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
287 		task->jobctl &= ~JOBCTL_TRAPPING;
288 		smp_mb();	/* advised by wake_up_bit() */
289 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
290 	}
291 }
292 
293 /**
294  * task_clear_jobctl_pending - clear jobctl pending bits
295  * @task: target task
296  * @mask: pending bits to clear
297  *
298  * Clear @mask from @task->jobctl.  @mask must be subset of
299  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
300  * STOP bits are cleared together.
301  *
302  * If clearing of @mask leaves no stop or trap pending, this function calls
303  * task_clear_jobctl_trapping().
304  *
305  * CONTEXT:
306  * Must be called with @task->sighand->siglock held.
307  */
308 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
309 {
310 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
311 
312 	if (mask & JOBCTL_STOP_PENDING)
313 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
314 
315 	task->jobctl &= ~mask;
316 
317 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
318 		task_clear_jobctl_trapping(task);
319 }
320 
321 /**
322  * task_participate_group_stop - participate in a group stop
323  * @task: task participating in a group stop
324  *
325  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
326  * Group stop states are cleared and the group stop count is consumed if
327  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
328  * stop, the appropriate %SIGNAL_* flags are set.
329  *
330  * CONTEXT:
331  * Must be called with @task->sighand->siglock held.
332  *
333  * RETURNS:
334  * %true if group stop completion should be notified to the parent, %false
335  * otherwise.
336  */
337 static bool task_participate_group_stop(struct task_struct *task)
338 {
339 	struct signal_struct *sig = task->signal;
340 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
341 
342 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
343 
344 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
345 
346 	if (!consume)
347 		return false;
348 
349 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
350 		sig->group_stop_count--;
351 
352 	/*
353 	 * Tell the caller to notify completion iff we are entering into a
354 	 * fresh group stop.  Read comment in do_signal_stop() for details.
355 	 */
356 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
357 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
358 		return true;
359 	}
360 	return false;
361 }
362 
363 /*
364  * allocate a new signal queue record
365  * - this may be called without locks if and only if t == current, otherwise an
366  *   appropriate lock must be held to stop the target task from exiting
367  */
368 static struct sigqueue *
369 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
370 {
371 	struct sigqueue *q = NULL;
372 	struct user_struct *user;
373 
374 	/*
375 	 * Protect access to @t credentials. This can go away when all
376 	 * callers hold rcu read lock.
377 	 */
378 	rcu_read_lock();
379 	user = get_uid(__task_cred(t)->user);
380 	atomic_inc(&user->sigpending);
381 	rcu_read_unlock();
382 
383 	if (override_rlimit ||
384 	    atomic_read(&user->sigpending) <=
385 			task_rlimit(t, RLIMIT_SIGPENDING)) {
386 		q = kmem_cache_alloc(sigqueue_cachep, flags);
387 	} else {
388 		print_dropped_signal(sig);
389 	}
390 
391 	if (unlikely(q == NULL)) {
392 		atomic_dec(&user->sigpending);
393 		free_uid(user);
394 	} else {
395 		INIT_LIST_HEAD(&q->list);
396 		q->flags = 0;
397 		q->user = user;
398 	}
399 
400 	return q;
401 }
402 
403 static void __sigqueue_free(struct sigqueue *q)
404 {
405 	if (q->flags & SIGQUEUE_PREALLOC)
406 		return;
407 	atomic_dec(&q->user->sigpending);
408 	free_uid(q->user);
409 	kmem_cache_free(sigqueue_cachep, q);
410 }
411 
412 void flush_sigqueue(struct sigpending *queue)
413 {
414 	struct sigqueue *q;
415 
416 	sigemptyset(&queue->signal);
417 	while (!list_empty(&queue->list)) {
418 		q = list_entry(queue->list.next, struct sigqueue , list);
419 		list_del_init(&q->list);
420 		__sigqueue_free(q);
421 	}
422 }
423 
424 /*
425  * Flush all pending signals for this kthread.
426  */
427 void flush_signals(struct task_struct *t)
428 {
429 	unsigned long flags;
430 
431 	spin_lock_irqsave(&t->sighand->siglock, flags);
432 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
433 	flush_sigqueue(&t->pending);
434 	flush_sigqueue(&t->signal->shared_pending);
435 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
436 }
437 
438 #ifdef CONFIG_POSIX_TIMERS
439 static void __flush_itimer_signals(struct sigpending *pending)
440 {
441 	sigset_t signal, retain;
442 	struct sigqueue *q, *n;
443 
444 	signal = pending->signal;
445 	sigemptyset(&retain);
446 
447 	list_for_each_entry_safe(q, n, &pending->list, list) {
448 		int sig = q->info.si_signo;
449 
450 		if (likely(q->info.si_code != SI_TIMER)) {
451 			sigaddset(&retain, sig);
452 		} else {
453 			sigdelset(&signal, sig);
454 			list_del_init(&q->list);
455 			__sigqueue_free(q);
456 		}
457 	}
458 
459 	sigorsets(&pending->signal, &signal, &retain);
460 }
461 
462 void flush_itimer_signals(void)
463 {
464 	struct task_struct *tsk = current;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
468 	__flush_itimer_signals(&tsk->pending);
469 	__flush_itimer_signals(&tsk->signal->shared_pending);
470 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
471 }
472 #endif
473 
474 void ignore_signals(struct task_struct *t)
475 {
476 	int i;
477 
478 	for (i = 0; i < _NSIG; ++i)
479 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
480 
481 	flush_signals(t);
482 }
483 
484 /*
485  * Flush all handlers for a task.
486  */
487 
488 void
489 flush_signal_handlers(struct task_struct *t, int force_default)
490 {
491 	int i;
492 	struct k_sigaction *ka = &t->sighand->action[0];
493 	for (i = _NSIG ; i != 0 ; i--) {
494 		if (force_default || ka->sa.sa_handler != SIG_IGN)
495 			ka->sa.sa_handler = SIG_DFL;
496 		ka->sa.sa_flags = 0;
497 #ifdef __ARCH_HAS_SA_RESTORER
498 		ka->sa.sa_restorer = NULL;
499 #endif
500 		sigemptyset(&ka->sa.sa_mask);
501 		ka++;
502 	}
503 }
504 
505 int unhandled_signal(struct task_struct *tsk, int sig)
506 {
507 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
508 	if (is_global_init(tsk))
509 		return 1;
510 	if (handler != SIG_IGN && handler != SIG_DFL)
511 		return 0;
512 	/* if ptraced, let the tracer determine */
513 	return !tsk->ptrace;
514 }
515 
516 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
517 			   bool *resched_timer)
518 {
519 	struct sigqueue *q, *first = NULL;
520 
521 	/*
522 	 * Collect the siginfo appropriate to this signal.  Check if
523 	 * there is another siginfo for the same signal.
524 	*/
525 	list_for_each_entry(q, &list->list, list) {
526 		if (q->info.si_signo == sig) {
527 			if (first)
528 				goto still_pending;
529 			first = q;
530 		}
531 	}
532 
533 	sigdelset(&list->signal, sig);
534 
535 	if (first) {
536 still_pending:
537 		list_del_init(&first->list);
538 		copy_siginfo(info, &first->info);
539 
540 		*resched_timer =
541 			(first->flags & SIGQUEUE_PREALLOC) &&
542 			(info->si_code == SI_TIMER) &&
543 			(info->si_sys_private);
544 
545 		__sigqueue_free(first);
546 	} else {
547 		/*
548 		 * Ok, it wasn't in the queue.  This must be
549 		 * a fast-pathed signal or we must have been
550 		 * out of queue space.  So zero out the info.
551 		 */
552 		info->si_signo = sig;
553 		info->si_errno = 0;
554 		info->si_code = SI_USER;
555 		info->si_pid = 0;
556 		info->si_uid = 0;
557 	}
558 }
559 
560 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
561 			siginfo_t *info, bool *resched_timer)
562 {
563 	int sig = next_signal(pending, mask);
564 
565 	if (sig)
566 		collect_signal(sig, pending, info, resched_timer);
567 	return sig;
568 }
569 
570 /*
571  * Dequeue a signal and return the element to the caller, which is
572  * expected to free it.
573  *
574  * All callers have to hold the siglock.
575  */
576 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
577 {
578 	bool resched_timer = false;
579 	int signr;
580 
581 	/* We only dequeue private signals from ourselves, we don't let
582 	 * signalfd steal them
583 	 */
584 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
585 	if (!signr) {
586 		signr = __dequeue_signal(&tsk->signal->shared_pending,
587 					 mask, info, &resched_timer);
588 #ifdef CONFIG_POSIX_TIMERS
589 		/*
590 		 * itimer signal ?
591 		 *
592 		 * itimers are process shared and we restart periodic
593 		 * itimers in the signal delivery path to prevent DoS
594 		 * attacks in the high resolution timer case. This is
595 		 * compliant with the old way of self-restarting
596 		 * itimers, as the SIGALRM is a legacy signal and only
597 		 * queued once. Changing the restart behaviour to
598 		 * restart the timer in the signal dequeue path is
599 		 * reducing the timer noise on heavy loaded !highres
600 		 * systems too.
601 		 */
602 		if (unlikely(signr == SIGALRM)) {
603 			struct hrtimer *tmr = &tsk->signal->real_timer;
604 
605 			if (!hrtimer_is_queued(tmr) &&
606 			    tsk->signal->it_real_incr != 0) {
607 				hrtimer_forward(tmr, tmr->base->get_time(),
608 						tsk->signal->it_real_incr);
609 				hrtimer_restart(tmr);
610 			}
611 		}
612 #endif
613 	}
614 
615 	recalc_sigpending();
616 	if (!signr)
617 		return 0;
618 
619 	if (unlikely(sig_kernel_stop(signr))) {
620 		/*
621 		 * Set a marker that we have dequeued a stop signal.  Our
622 		 * caller might release the siglock and then the pending
623 		 * stop signal it is about to process is no longer in the
624 		 * pending bitmasks, but must still be cleared by a SIGCONT
625 		 * (and overruled by a SIGKILL).  So those cases clear this
626 		 * shared flag after we've set it.  Note that this flag may
627 		 * remain set after the signal we return is ignored or
628 		 * handled.  That doesn't matter because its only purpose
629 		 * is to alert stop-signal processing code when another
630 		 * processor has come along and cleared the flag.
631 		 */
632 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
633 	}
634 #ifdef CONFIG_POSIX_TIMERS
635 	if (resched_timer) {
636 		/*
637 		 * Release the siglock to ensure proper locking order
638 		 * of timer locks outside of siglocks.  Note, we leave
639 		 * irqs disabled here, since the posix-timers code is
640 		 * about to disable them again anyway.
641 		 */
642 		spin_unlock(&tsk->sighand->siglock);
643 		posixtimer_rearm(info);
644 		spin_lock(&tsk->sighand->siglock);
645 	}
646 #endif
647 	return signr;
648 }
649 
650 /*
651  * Tell a process that it has a new active signal..
652  *
653  * NOTE! we rely on the previous spin_lock to
654  * lock interrupts for us! We can only be called with
655  * "siglock" held, and the local interrupt must
656  * have been disabled when that got acquired!
657  *
658  * No need to set need_resched since signal event passing
659  * goes through ->blocked
660  */
661 void signal_wake_up_state(struct task_struct *t, unsigned int state)
662 {
663 	set_tsk_thread_flag(t, TIF_SIGPENDING);
664 	/*
665 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
666 	 * case. We don't check t->state here because there is a race with it
667 	 * executing another processor and just now entering stopped state.
668 	 * By using wake_up_state, we ensure the process will wake up and
669 	 * handle its death signal.
670 	 */
671 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
672 		kick_process(t);
673 }
674 
675 /*
676  * Remove signals in mask from the pending set and queue.
677  * Returns 1 if any signals were found.
678  *
679  * All callers must be holding the siglock.
680  */
681 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
682 {
683 	struct sigqueue *q, *n;
684 	sigset_t m;
685 
686 	sigandsets(&m, mask, &s->signal);
687 	if (sigisemptyset(&m))
688 		return 0;
689 
690 	sigandnsets(&s->signal, &s->signal, mask);
691 	list_for_each_entry_safe(q, n, &s->list, list) {
692 		if (sigismember(mask, q->info.si_signo)) {
693 			list_del_init(&q->list);
694 			__sigqueue_free(q);
695 		}
696 	}
697 	return 1;
698 }
699 
700 static inline int is_si_special(const struct siginfo *info)
701 {
702 	return info <= SEND_SIG_FORCED;
703 }
704 
705 static inline bool si_fromuser(const struct siginfo *info)
706 {
707 	return info == SEND_SIG_NOINFO ||
708 		(!is_si_special(info) && SI_FROMUSER(info));
709 }
710 
711 /*
712  * called with RCU read lock from check_kill_permission()
713  */
714 static int kill_ok_by_cred(struct task_struct *t)
715 {
716 	const struct cred *cred = current_cred();
717 	const struct cred *tcred = __task_cred(t);
718 
719 	if (uid_eq(cred->euid, tcred->suid) ||
720 	    uid_eq(cred->euid, tcred->uid)  ||
721 	    uid_eq(cred->uid,  tcred->suid) ||
722 	    uid_eq(cred->uid,  tcred->uid))
723 		return 1;
724 
725 	if (ns_capable(tcred->user_ns, CAP_KILL))
726 		return 1;
727 
728 	return 0;
729 }
730 
731 /*
732  * Bad permissions for sending the signal
733  * - the caller must hold the RCU read lock
734  */
735 static int check_kill_permission(int sig, struct siginfo *info,
736 				 struct task_struct *t)
737 {
738 	struct pid *sid;
739 	int error;
740 
741 	if (!valid_signal(sig))
742 		return -EINVAL;
743 
744 	if (!si_fromuser(info))
745 		return 0;
746 
747 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
748 	if (error)
749 		return error;
750 
751 	if (!same_thread_group(current, t) &&
752 	    !kill_ok_by_cred(t)) {
753 		switch (sig) {
754 		case SIGCONT:
755 			sid = task_session(t);
756 			/*
757 			 * We don't return the error if sid == NULL. The
758 			 * task was unhashed, the caller must notice this.
759 			 */
760 			if (!sid || sid == task_session(current))
761 				break;
762 		default:
763 			return -EPERM;
764 		}
765 	}
766 
767 	return security_task_kill(t, info, sig, 0);
768 }
769 
770 /**
771  * ptrace_trap_notify - schedule trap to notify ptracer
772  * @t: tracee wanting to notify tracer
773  *
774  * This function schedules sticky ptrace trap which is cleared on the next
775  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
776  * ptracer.
777  *
778  * If @t is running, STOP trap will be taken.  If trapped for STOP and
779  * ptracer is listening for events, tracee is woken up so that it can
780  * re-trap for the new event.  If trapped otherwise, STOP trap will be
781  * eventually taken without returning to userland after the existing traps
782  * are finished by PTRACE_CONT.
783  *
784  * CONTEXT:
785  * Must be called with @task->sighand->siglock held.
786  */
787 static void ptrace_trap_notify(struct task_struct *t)
788 {
789 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
790 	assert_spin_locked(&t->sighand->siglock);
791 
792 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
793 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
794 }
795 
796 /*
797  * Handle magic process-wide effects of stop/continue signals. Unlike
798  * the signal actions, these happen immediately at signal-generation
799  * time regardless of blocking, ignoring, or handling.  This does the
800  * actual continuing for SIGCONT, but not the actual stopping for stop
801  * signals. The process stop is done as a signal action for SIG_DFL.
802  *
803  * Returns true if the signal should be actually delivered, otherwise
804  * it should be dropped.
805  */
806 static bool prepare_signal(int sig, struct task_struct *p, bool force)
807 {
808 	struct signal_struct *signal = p->signal;
809 	struct task_struct *t;
810 	sigset_t flush;
811 
812 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
813 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
814 			return sig == SIGKILL;
815 		/*
816 		 * The process is in the middle of dying, nothing to do.
817 		 */
818 	} else if (sig_kernel_stop(sig)) {
819 		/*
820 		 * This is a stop signal.  Remove SIGCONT from all queues.
821 		 */
822 		siginitset(&flush, sigmask(SIGCONT));
823 		flush_sigqueue_mask(&flush, &signal->shared_pending);
824 		for_each_thread(p, t)
825 			flush_sigqueue_mask(&flush, &t->pending);
826 	} else if (sig == SIGCONT) {
827 		unsigned int why;
828 		/*
829 		 * Remove all stop signals from all queues, wake all threads.
830 		 */
831 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
832 		flush_sigqueue_mask(&flush, &signal->shared_pending);
833 		for_each_thread(p, t) {
834 			flush_sigqueue_mask(&flush, &t->pending);
835 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
836 			if (likely(!(t->ptrace & PT_SEIZED)))
837 				wake_up_state(t, __TASK_STOPPED);
838 			else
839 				ptrace_trap_notify(t);
840 		}
841 
842 		/*
843 		 * Notify the parent with CLD_CONTINUED if we were stopped.
844 		 *
845 		 * If we were in the middle of a group stop, we pretend it
846 		 * was already finished, and then continued. Since SIGCHLD
847 		 * doesn't queue we report only CLD_STOPPED, as if the next
848 		 * CLD_CONTINUED was dropped.
849 		 */
850 		why = 0;
851 		if (signal->flags & SIGNAL_STOP_STOPPED)
852 			why |= SIGNAL_CLD_CONTINUED;
853 		else if (signal->group_stop_count)
854 			why |= SIGNAL_CLD_STOPPED;
855 
856 		if (why) {
857 			/*
858 			 * The first thread which returns from do_signal_stop()
859 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
860 			 * notify its parent. See get_signal_to_deliver().
861 			 */
862 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
863 			signal->group_stop_count = 0;
864 			signal->group_exit_code = 0;
865 		}
866 	}
867 
868 	return !sig_ignored(p, sig, force);
869 }
870 
871 /*
872  * Test if P wants to take SIG.  After we've checked all threads with this,
873  * it's equivalent to finding no threads not blocking SIG.  Any threads not
874  * blocking SIG were ruled out because they are not running and already
875  * have pending signals.  Such threads will dequeue from the shared queue
876  * as soon as they're available, so putting the signal on the shared queue
877  * will be equivalent to sending it to one such thread.
878  */
879 static inline int wants_signal(int sig, struct task_struct *p)
880 {
881 	if (sigismember(&p->blocked, sig))
882 		return 0;
883 	if (p->flags & PF_EXITING)
884 		return 0;
885 	if (sig == SIGKILL)
886 		return 1;
887 	if (task_is_stopped_or_traced(p))
888 		return 0;
889 	return task_curr(p) || !signal_pending(p);
890 }
891 
892 static void complete_signal(int sig, struct task_struct *p, int group)
893 {
894 	struct signal_struct *signal = p->signal;
895 	struct task_struct *t;
896 
897 	/*
898 	 * Now find a thread we can wake up to take the signal off the queue.
899 	 *
900 	 * If the main thread wants the signal, it gets first crack.
901 	 * Probably the least surprising to the average bear.
902 	 */
903 	if (wants_signal(sig, p))
904 		t = p;
905 	else if (!group || thread_group_empty(p))
906 		/*
907 		 * There is just one thread and it does not need to be woken.
908 		 * It will dequeue unblocked signals before it runs again.
909 		 */
910 		return;
911 	else {
912 		/*
913 		 * Otherwise try to find a suitable thread.
914 		 */
915 		t = signal->curr_target;
916 		while (!wants_signal(sig, t)) {
917 			t = next_thread(t);
918 			if (t == signal->curr_target)
919 				/*
920 				 * No thread needs to be woken.
921 				 * Any eligible threads will see
922 				 * the signal in the queue soon.
923 				 */
924 				return;
925 		}
926 		signal->curr_target = t;
927 	}
928 
929 	/*
930 	 * Found a killable thread.  If the signal will be fatal,
931 	 * then start taking the whole group down immediately.
932 	 */
933 	if (sig_fatal(p, sig) &&
934 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
935 	    !sigismember(&t->real_blocked, sig) &&
936 	    (sig == SIGKILL || !p->ptrace)) {
937 		/*
938 		 * This signal will be fatal to the whole group.
939 		 */
940 		if (!sig_kernel_coredump(sig)) {
941 			/*
942 			 * Start a group exit and wake everybody up.
943 			 * This way we don't have other threads
944 			 * running and doing things after a slower
945 			 * thread has the fatal signal pending.
946 			 */
947 			signal->flags = SIGNAL_GROUP_EXIT;
948 			signal->group_exit_code = sig;
949 			signal->group_stop_count = 0;
950 			t = p;
951 			do {
952 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
953 				sigaddset(&t->pending.signal, SIGKILL);
954 				signal_wake_up(t, 1);
955 			} while_each_thread(p, t);
956 			return;
957 		}
958 	}
959 
960 	/*
961 	 * The signal is already in the shared-pending queue.
962 	 * Tell the chosen thread to wake up and dequeue it.
963 	 */
964 	signal_wake_up(t, sig == SIGKILL);
965 	return;
966 }
967 
968 static inline int legacy_queue(struct sigpending *signals, int sig)
969 {
970 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
971 }
972 
973 #ifdef CONFIG_USER_NS
974 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
975 {
976 	if (current_user_ns() == task_cred_xxx(t, user_ns))
977 		return;
978 
979 	if (SI_FROMKERNEL(info))
980 		return;
981 
982 	rcu_read_lock();
983 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
984 					make_kuid(current_user_ns(), info->si_uid));
985 	rcu_read_unlock();
986 }
987 #else
988 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
989 {
990 	return;
991 }
992 #endif
993 
994 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
995 			int group, int from_ancestor_ns)
996 {
997 	struct sigpending *pending;
998 	struct sigqueue *q;
999 	int override_rlimit;
1000 	int ret = 0, result;
1001 
1002 	assert_spin_locked(&t->sighand->siglock);
1003 
1004 	result = TRACE_SIGNAL_IGNORED;
1005 	if (!prepare_signal(sig, t,
1006 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1007 		goto ret;
1008 
1009 	pending = group ? &t->signal->shared_pending : &t->pending;
1010 	/*
1011 	 * Short-circuit ignored signals and support queuing
1012 	 * exactly one non-rt signal, so that we can get more
1013 	 * detailed information about the cause of the signal.
1014 	 */
1015 	result = TRACE_SIGNAL_ALREADY_PENDING;
1016 	if (legacy_queue(pending, sig))
1017 		goto ret;
1018 
1019 	result = TRACE_SIGNAL_DELIVERED;
1020 	/*
1021 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1022 	 * or SIGKILL.
1023 	 */
1024 	if (info == SEND_SIG_FORCED)
1025 		goto out_set;
1026 
1027 	/*
1028 	 * Real-time signals must be queued if sent by sigqueue, or
1029 	 * some other real-time mechanism.  It is implementation
1030 	 * defined whether kill() does so.  We attempt to do so, on
1031 	 * the principle of least surprise, but since kill is not
1032 	 * allowed to fail with EAGAIN when low on memory we just
1033 	 * make sure at least one signal gets delivered and don't
1034 	 * pass on the info struct.
1035 	 */
1036 	if (sig < SIGRTMIN)
1037 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1038 	else
1039 		override_rlimit = 0;
1040 
1041 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1042 	if (q) {
1043 		list_add_tail(&q->list, &pending->list);
1044 		switch ((unsigned long) info) {
1045 		case (unsigned long) SEND_SIG_NOINFO:
1046 			q->info.si_signo = sig;
1047 			q->info.si_errno = 0;
1048 			q->info.si_code = SI_USER;
1049 			q->info.si_pid = task_tgid_nr_ns(current,
1050 							task_active_pid_ns(t));
1051 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1052 			break;
1053 		case (unsigned long) SEND_SIG_PRIV:
1054 			q->info.si_signo = sig;
1055 			q->info.si_errno = 0;
1056 			q->info.si_code = SI_KERNEL;
1057 			q->info.si_pid = 0;
1058 			q->info.si_uid = 0;
1059 			break;
1060 		default:
1061 			copy_siginfo(&q->info, info);
1062 			if (from_ancestor_ns)
1063 				q->info.si_pid = 0;
1064 			break;
1065 		}
1066 
1067 		userns_fixup_signal_uid(&q->info, t);
1068 
1069 	} else if (!is_si_special(info)) {
1070 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1071 			/*
1072 			 * Queue overflow, abort.  We may abort if the
1073 			 * signal was rt and sent by user using something
1074 			 * other than kill().
1075 			 */
1076 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1077 			ret = -EAGAIN;
1078 			goto ret;
1079 		} else {
1080 			/*
1081 			 * This is a silent loss of information.  We still
1082 			 * send the signal, but the *info bits are lost.
1083 			 */
1084 			result = TRACE_SIGNAL_LOSE_INFO;
1085 		}
1086 	}
1087 
1088 out_set:
1089 	signalfd_notify(t, sig);
1090 	sigaddset(&pending->signal, sig);
1091 	complete_signal(sig, t, group);
1092 ret:
1093 	trace_signal_generate(sig, info, t, group, result);
1094 	return ret;
1095 }
1096 
1097 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1098 			int group)
1099 {
1100 	int from_ancestor_ns = 0;
1101 
1102 #ifdef CONFIG_PID_NS
1103 	from_ancestor_ns = si_fromuser(info) &&
1104 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1105 #endif
1106 
1107 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1108 }
1109 
1110 static void print_fatal_signal(int signr)
1111 {
1112 	struct pt_regs *regs = signal_pt_regs();
1113 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1114 
1115 #if defined(__i386__) && !defined(__arch_um__)
1116 	pr_info("code at %08lx: ", regs->ip);
1117 	{
1118 		int i;
1119 		for (i = 0; i < 16; i++) {
1120 			unsigned char insn;
1121 
1122 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1123 				break;
1124 			pr_cont("%02x ", insn);
1125 		}
1126 	}
1127 	pr_cont("\n");
1128 #endif
1129 	preempt_disable();
1130 	show_regs(regs);
1131 	preempt_enable();
1132 }
1133 
1134 static int __init setup_print_fatal_signals(char *str)
1135 {
1136 	get_option (&str, &print_fatal_signals);
1137 
1138 	return 1;
1139 }
1140 
1141 __setup("print-fatal-signals=", setup_print_fatal_signals);
1142 
1143 int
1144 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1145 {
1146 	return send_signal(sig, info, p, 1);
1147 }
1148 
1149 static int
1150 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1151 {
1152 	return send_signal(sig, info, t, 0);
1153 }
1154 
1155 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1156 			bool group)
1157 {
1158 	unsigned long flags;
1159 	int ret = -ESRCH;
1160 
1161 	if (lock_task_sighand(p, &flags)) {
1162 		ret = send_signal(sig, info, p, group);
1163 		unlock_task_sighand(p, &flags);
1164 	}
1165 
1166 	return ret;
1167 }
1168 
1169 /*
1170  * Force a signal that the process can't ignore: if necessary
1171  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1172  *
1173  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1174  * since we do not want to have a signal handler that was blocked
1175  * be invoked when user space had explicitly blocked it.
1176  *
1177  * We don't want to have recursive SIGSEGV's etc, for example,
1178  * that is why we also clear SIGNAL_UNKILLABLE.
1179  */
1180 int
1181 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1182 {
1183 	unsigned long int flags;
1184 	int ret, blocked, ignored;
1185 	struct k_sigaction *action;
1186 
1187 	spin_lock_irqsave(&t->sighand->siglock, flags);
1188 	action = &t->sighand->action[sig-1];
1189 	ignored = action->sa.sa_handler == SIG_IGN;
1190 	blocked = sigismember(&t->blocked, sig);
1191 	if (blocked || ignored) {
1192 		action->sa.sa_handler = SIG_DFL;
1193 		if (blocked) {
1194 			sigdelset(&t->blocked, sig);
1195 			recalc_sigpending_and_wake(t);
1196 		}
1197 	}
1198 	/*
1199 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1200 	 * debugging to leave init killable.
1201 	 */
1202 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1203 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1204 	ret = specific_send_sig_info(sig, info, t);
1205 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1206 
1207 	return ret;
1208 }
1209 
1210 /*
1211  * Nuke all other threads in the group.
1212  */
1213 int zap_other_threads(struct task_struct *p)
1214 {
1215 	struct task_struct *t = p;
1216 	int count = 0;
1217 
1218 	p->signal->group_stop_count = 0;
1219 
1220 	while_each_thread(p, t) {
1221 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1222 		count++;
1223 
1224 		/* Don't bother with already dead threads */
1225 		if (t->exit_state)
1226 			continue;
1227 		sigaddset(&t->pending.signal, SIGKILL);
1228 		signal_wake_up(t, 1);
1229 	}
1230 
1231 	return count;
1232 }
1233 
1234 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1235 					   unsigned long *flags)
1236 {
1237 	struct sighand_struct *sighand;
1238 
1239 	for (;;) {
1240 		/*
1241 		 * Disable interrupts early to avoid deadlocks.
1242 		 * See rcu_read_unlock() comment header for details.
1243 		 */
1244 		local_irq_save(*flags);
1245 		rcu_read_lock();
1246 		sighand = rcu_dereference(tsk->sighand);
1247 		if (unlikely(sighand == NULL)) {
1248 			rcu_read_unlock();
1249 			local_irq_restore(*flags);
1250 			break;
1251 		}
1252 		/*
1253 		 * This sighand can be already freed and even reused, but
1254 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1255 		 * initializes ->siglock: this slab can't go away, it has
1256 		 * the same object type, ->siglock can't be reinitialized.
1257 		 *
1258 		 * We need to ensure that tsk->sighand is still the same
1259 		 * after we take the lock, we can race with de_thread() or
1260 		 * __exit_signal(). In the latter case the next iteration
1261 		 * must see ->sighand == NULL.
1262 		 */
1263 		spin_lock(&sighand->siglock);
1264 		if (likely(sighand == tsk->sighand)) {
1265 			rcu_read_unlock();
1266 			break;
1267 		}
1268 		spin_unlock(&sighand->siglock);
1269 		rcu_read_unlock();
1270 		local_irq_restore(*flags);
1271 	}
1272 
1273 	return sighand;
1274 }
1275 
1276 /*
1277  * send signal info to all the members of a group
1278  */
1279 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1280 {
1281 	int ret;
1282 
1283 	rcu_read_lock();
1284 	ret = check_kill_permission(sig, info, p);
1285 	rcu_read_unlock();
1286 
1287 	if (!ret && sig)
1288 		ret = do_send_sig_info(sig, info, p, true);
1289 
1290 	return ret;
1291 }
1292 
1293 /*
1294  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1295  * control characters do (^C, ^Z etc)
1296  * - the caller must hold at least a readlock on tasklist_lock
1297  */
1298 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1299 {
1300 	struct task_struct *p = NULL;
1301 	int retval, success;
1302 
1303 	success = 0;
1304 	retval = -ESRCH;
1305 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1306 		int err = group_send_sig_info(sig, info, p);
1307 		success |= !err;
1308 		retval = err;
1309 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1310 	return success ? 0 : retval;
1311 }
1312 
1313 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1314 {
1315 	int error = -ESRCH;
1316 	struct task_struct *p;
1317 
1318 	for (;;) {
1319 		rcu_read_lock();
1320 		p = pid_task(pid, PIDTYPE_PID);
1321 		if (p)
1322 			error = group_send_sig_info(sig, info, p);
1323 		rcu_read_unlock();
1324 		if (likely(!p || error != -ESRCH))
1325 			return error;
1326 
1327 		/*
1328 		 * The task was unhashed in between, try again.  If it
1329 		 * is dead, pid_task() will return NULL, if we race with
1330 		 * de_thread() it will find the new leader.
1331 		 */
1332 	}
1333 }
1334 
1335 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1336 {
1337 	int error;
1338 	rcu_read_lock();
1339 	error = kill_pid_info(sig, info, find_vpid(pid));
1340 	rcu_read_unlock();
1341 	return error;
1342 }
1343 
1344 static int kill_as_cred_perm(const struct cred *cred,
1345 			     struct task_struct *target)
1346 {
1347 	const struct cred *pcred = __task_cred(target);
1348 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1349 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1350 		return 0;
1351 	return 1;
1352 }
1353 
1354 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1355 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1356 			 const struct cred *cred, u32 secid)
1357 {
1358 	int ret = -EINVAL;
1359 	struct task_struct *p;
1360 	unsigned long flags;
1361 
1362 	if (!valid_signal(sig))
1363 		return ret;
1364 
1365 	rcu_read_lock();
1366 	p = pid_task(pid, PIDTYPE_PID);
1367 	if (!p) {
1368 		ret = -ESRCH;
1369 		goto out_unlock;
1370 	}
1371 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1372 		ret = -EPERM;
1373 		goto out_unlock;
1374 	}
1375 	ret = security_task_kill(p, info, sig, secid);
1376 	if (ret)
1377 		goto out_unlock;
1378 
1379 	if (sig) {
1380 		if (lock_task_sighand(p, &flags)) {
1381 			ret = __send_signal(sig, info, p, 1, 0);
1382 			unlock_task_sighand(p, &flags);
1383 		} else
1384 			ret = -ESRCH;
1385 	}
1386 out_unlock:
1387 	rcu_read_unlock();
1388 	return ret;
1389 }
1390 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1391 
1392 /*
1393  * kill_something_info() interprets pid in interesting ways just like kill(2).
1394  *
1395  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1396  * is probably wrong.  Should make it like BSD or SYSV.
1397  */
1398 
1399 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1400 {
1401 	int ret;
1402 
1403 	if (pid > 0) {
1404 		rcu_read_lock();
1405 		ret = kill_pid_info(sig, info, find_vpid(pid));
1406 		rcu_read_unlock();
1407 		return ret;
1408 	}
1409 
1410 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1411 	if (pid == INT_MIN)
1412 		return -ESRCH;
1413 
1414 	read_lock(&tasklist_lock);
1415 	if (pid != -1) {
1416 		ret = __kill_pgrp_info(sig, info,
1417 				pid ? find_vpid(-pid) : task_pgrp(current));
1418 	} else {
1419 		int retval = 0, count = 0;
1420 		struct task_struct * p;
1421 
1422 		for_each_process(p) {
1423 			if (task_pid_vnr(p) > 1 &&
1424 					!same_thread_group(p, current)) {
1425 				int err = group_send_sig_info(sig, info, p);
1426 				++count;
1427 				if (err != -EPERM)
1428 					retval = err;
1429 			}
1430 		}
1431 		ret = count ? retval : -ESRCH;
1432 	}
1433 	read_unlock(&tasklist_lock);
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * These are for backward compatibility with the rest of the kernel source.
1440  */
1441 
1442 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1443 {
1444 	/*
1445 	 * Make sure legacy kernel users don't send in bad values
1446 	 * (normal paths check this in check_kill_permission).
1447 	 */
1448 	if (!valid_signal(sig))
1449 		return -EINVAL;
1450 
1451 	return do_send_sig_info(sig, info, p, false);
1452 }
1453 
1454 #define __si_special(priv) \
1455 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1456 
1457 int
1458 send_sig(int sig, struct task_struct *p, int priv)
1459 {
1460 	return send_sig_info(sig, __si_special(priv), p);
1461 }
1462 
1463 void
1464 force_sig(int sig, struct task_struct *p)
1465 {
1466 	force_sig_info(sig, SEND_SIG_PRIV, p);
1467 }
1468 
1469 /*
1470  * When things go south during signal handling, we
1471  * will force a SIGSEGV. And if the signal that caused
1472  * the problem was already a SIGSEGV, we'll want to
1473  * make sure we don't even try to deliver the signal..
1474  */
1475 int
1476 force_sigsegv(int sig, struct task_struct *p)
1477 {
1478 	if (sig == SIGSEGV) {
1479 		unsigned long flags;
1480 		spin_lock_irqsave(&p->sighand->siglock, flags);
1481 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1482 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1483 	}
1484 	force_sig(SIGSEGV, p);
1485 	return 0;
1486 }
1487 
1488 int kill_pgrp(struct pid *pid, int sig, int priv)
1489 {
1490 	int ret;
1491 
1492 	read_lock(&tasklist_lock);
1493 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1494 	read_unlock(&tasklist_lock);
1495 
1496 	return ret;
1497 }
1498 EXPORT_SYMBOL(kill_pgrp);
1499 
1500 int kill_pid(struct pid *pid, int sig, int priv)
1501 {
1502 	return kill_pid_info(sig, __si_special(priv), pid);
1503 }
1504 EXPORT_SYMBOL(kill_pid);
1505 
1506 /*
1507  * These functions support sending signals using preallocated sigqueue
1508  * structures.  This is needed "because realtime applications cannot
1509  * afford to lose notifications of asynchronous events, like timer
1510  * expirations or I/O completions".  In the case of POSIX Timers
1511  * we allocate the sigqueue structure from the timer_create.  If this
1512  * allocation fails we are able to report the failure to the application
1513  * with an EAGAIN error.
1514  */
1515 struct sigqueue *sigqueue_alloc(void)
1516 {
1517 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1518 
1519 	if (q)
1520 		q->flags |= SIGQUEUE_PREALLOC;
1521 
1522 	return q;
1523 }
1524 
1525 void sigqueue_free(struct sigqueue *q)
1526 {
1527 	unsigned long flags;
1528 	spinlock_t *lock = &current->sighand->siglock;
1529 
1530 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1531 	/*
1532 	 * We must hold ->siglock while testing q->list
1533 	 * to serialize with collect_signal() or with
1534 	 * __exit_signal()->flush_sigqueue().
1535 	 */
1536 	spin_lock_irqsave(lock, flags);
1537 	q->flags &= ~SIGQUEUE_PREALLOC;
1538 	/*
1539 	 * If it is queued it will be freed when dequeued,
1540 	 * like the "regular" sigqueue.
1541 	 */
1542 	if (!list_empty(&q->list))
1543 		q = NULL;
1544 	spin_unlock_irqrestore(lock, flags);
1545 
1546 	if (q)
1547 		__sigqueue_free(q);
1548 }
1549 
1550 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1551 {
1552 	int sig = q->info.si_signo;
1553 	struct sigpending *pending;
1554 	unsigned long flags;
1555 	int ret, result;
1556 
1557 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1558 
1559 	ret = -1;
1560 	if (!likely(lock_task_sighand(t, &flags)))
1561 		goto ret;
1562 
1563 	ret = 1; /* the signal is ignored */
1564 	result = TRACE_SIGNAL_IGNORED;
1565 	if (!prepare_signal(sig, t, false))
1566 		goto out;
1567 
1568 	ret = 0;
1569 	if (unlikely(!list_empty(&q->list))) {
1570 		/*
1571 		 * If an SI_TIMER entry is already queue just increment
1572 		 * the overrun count.
1573 		 */
1574 		BUG_ON(q->info.si_code != SI_TIMER);
1575 		q->info.si_overrun++;
1576 		result = TRACE_SIGNAL_ALREADY_PENDING;
1577 		goto out;
1578 	}
1579 	q->info.si_overrun = 0;
1580 
1581 	signalfd_notify(t, sig);
1582 	pending = group ? &t->signal->shared_pending : &t->pending;
1583 	list_add_tail(&q->list, &pending->list);
1584 	sigaddset(&pending->signal, sig);
1585 	complete_signal(sig, t, group);
1586 	result = TRACE_SIGNAL_DELIVERED;
1587 out:
1588 	trace_signal_generate(sig, &q->info, t, group, result);
1589 	unlock_task_sighand(t, &flags);
1590 ret:
1591 	return ret;
1592 }
1593 
1594 /*
1595  * Let a parent know about the death of a child.
1596  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1597  *
1598  * Returns true if our parent ignored us and so we've switched to
1599  * self-reaping.
1600  */
1601 bool do_notify_parent(struct task_struct *tsk, int sig)
1602 {
1603 	struct siginfo info;
1604 	unsigned long flags;
1605 	struct sighand_struct *psig;
1606 	bool autoreap = false;
1607 	u64 utime, stime;
1608 
1609 	BUG_ON(sig == -1);
1610 
1611  	/* do_notify_parent_cldstop should have been called instead.  */
1612  	BUG_ON(task_is_stopped_or_traced(tsk));
1613 
1614 	BUG_ON(!tsk->ptrace &&
1615 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1616 
1617 	if (sig != SIGCHLD) {
1618 		/*
1619 		 * This is only possible if parent == real_parent.
1620 		 * Check if it has changed security domain.
1621 		 */
1622 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1623 			sig = SIGCHLD;
1624 	}
1625 
1626 	info.si_signo = sig;
1627 	info.si_errno = 0;
1628 	/*
1629 	 * We are under tasklist_lock here so our parent is tied to
1630 	 * us and cannot change.
1631 	 *
1632 	 * task_active_pid_ns will always return the same pid namespace
1633 	 * until a task passes through release_task.
1634 	 *
1635 	 * write_lock() currently calls preempt_disable() which is the
1636 	 * same as rcu_read_lock(), but according to Oleg, this is not
1637 	 * correct to rely on this
1638 	 */
1639 	rcu_read_lock();
1640 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1641 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1642 				       task_uid(tsk));
1643 	rcu_read_unlock();
1644 
1645 	task_cputime(tsk, &utime, &stime);
1646 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1647 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1648 
1649 	info.si_status = tsk->exit_code & 0x7f;
1650 	if (tsk->exit_code & 0x80)
1651 		info.si_code = CLD_DUMPED;
1652 	else if (tsk->exit_code & 0x7f)
1653 		info.si_code = CLD_KILLED;
1654 	else {
1655 		info.si_code = CLD_EXITED;
1656 		info.si_status = tsk->exit_code >> 8;
1657 	}
1658 
1659 	psig = tsk->parent->sighand;
1660 	spin_lock_irqsave(&psig->siglock, flags);
1661 	if (!tsk->ptrace && sig == SIGCHLD &&
1662 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1663 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1664 		/*
1665 		 * We are exiting and our parent doesn't care.  POSIX.1
1666 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1667 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1668 		 * automatically and not left for our parent's wait4 call.
1669 		 * Rather than having the parent do it as a magic kind of
1670 		 * signal handler, we just set this to tell do_exit that we
1671 		 * can be cleaned up without becoming a zombie.  Note that
1672 		 * we still call __wake_up_parent in this case, because a
1673 		 * blocked sys_wait4 might now return -ECHILD.
1674 		 *
1675 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1676 		 * is implementation-defined: we do (if you don't want
1677 		 * it, just use SIG_IGN instead).
1678 		 */
1679 		autoreap = true;
1680 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1681 			sig = 0;
1682 	}
1683 	if (valid_signal(sig) && sig)
1684 		__group_send_sig_info(sig, &info, tsk->parent);
1685 	__wake_up_parent(tsk, tsk->parent);
1686 	spin_unlock_irqrestore(&psig->siglock, flags);
1687 
1688 	return autoreap;
1689 }
1690 
1691 /**
1692  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1693  * @tsk: task reporting the state change
1694  * @for_ptracer: the notification is for ptracer
1695  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1696  *
1697  * Notify @tsk's parent that the stopped/continued state has changed.  If
1698  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1699  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1700  *
1701  * CONTEXT:
1702  * Must be called with tasklist_lock at least read locked.
1703  */
1704 static void do_notify_parent_cldstop(struct task_struct *tsk,
1705 				     bool for_ptracer, int why)
1706 {
1707 	struct siginfo info;
1708 	unsigned long flags;
1709 	struct task_struct *parent;
1710 	struct sighand_struct *sighand;
1711 	u64 utime, stime;
1712 
1713 	if (for_ptracer) {
1714 		parent = tsk->parent;
1715 	} else {
1716 		tsk = tsk->group_leader;
1717 		parent = tsk->real_parent;
1718 	}
1719 
1720 	info.si_signo = SIGCHLD;
1721 	info.si_errno = 0;
1722 	/*
1723 	 * see comment in do_notify_parent() about the following 4 lines
1724 	 */
1725 	rcu_read_lock();
1726 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1727 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1728 	rcu_read_unlock();
1729 
1730 	task_cputime(tsk, &utime, &stime);
1731 	info.si_utime = nsec_to_clock_t(utime);
1732 	info.si_stime = nsec_to_clock_t(stime);
1733 
1734  	info.si_code = why;
1735  	switch (why) {
1736  	case CLD_CONTINUED:
1737  		info.si_status = SIGCONT;
1738  		break;
1739  	case CLD_STOPPED:
1740  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1741  		break;
1742  	case CLD_TRAPPED:
1743  		info.si_status = tsk->exit_code & 0x7f;
1744  		break;
1745  	default:
1746  		BUG();
1747  	}
1748 
1749 	sighand = parent->sighand;
1750 	spin_lock_irqsave(&sighand->siglock, flags);
1751 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1752 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1753 		__group_send_sig_info(SIGCHLD, &info, parent);
1754 	/*
1755 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1756 	 */
1757 	__wake_up_parent(tsk, parent);
1758 	spin_unlock_irqrestore(&sighand->siglock, flags);
1759 }
1760 
1761 static inline int may_ptrace_stop(void)
1762 {
1763 	if (!likely(current->ptrace))
1764 		return 0;
1765 	/*
1766 	 * Are we in the middle of do_coredump?
1767 	 * If so and our tracer is also part of the coredump stopping
1768 	 * is a deadlock situation, and pointless because our tracer
1769 	 * is dead so don't allow us to stop.
1770 	 * If SIGKILL was already sent before the caller unlocked
1771 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1772 	 * is safe to enter schedule().
1773 	 *
1774 	 * This is almost outdated, a task with the pending SIGKILL can't
1775 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1776 	 * after SIGKILL was already dequeued.
1777 	 */
1778 	if (unlikely(current->mm->core_state) &&
1779 	    unlikely(current->mm == current->parent->mm))
1780 		return 0;
1781 
1782 	return 1;
1783 }
1784 
1785 /*
1786  * Return non-zero if there is a SIGKILL that should be waking us up.
1787  * Called with the siglock held.
1788  */
1789 static int sigkill_pending(struct task_struct *tsk)
1790 {
1791 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1792 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1793 }
1794 
1795 /*
1796  * This must be called with current->sighand->siglock held.
1797  *
1798  * This should be the path for all ptrace stops.
1799  * We always set current->last_siginfo while stopped here.
1800  * That makes it a way to test a stopped process for
1801  * being ptrace-stopped vs being job-control-stopped.
1802  *
1803  * If we actually decide not to stop at all because the tracer
1804  * is gone, we keep current->exit_code unless clear_code.
1805  */
1806 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1807 	__releases(&current->sighand->siglock)
1808 	__acquires(&current->sighand->siglock)
1809 {
1810 	bool gstop_done = false;
1811 
1812 	if (arch_ptrace_stop_needed(exit_code, info)) {
1813 		/*
1814 		 * The arch code has something special to do before a
1815 		 * ptrace stop.  This is allowed to block, e.g. for faults
1816 		 * on user stack pages.  We can't keep the siglock while
1817 		 * calling arch_ptrace_stop, so we must release it now.
1818 		 * To preserve proper semantics, we must do this before
1819 		 * any signal bookkeeping like checking group_stop_count.
1820 		 * Meanwhile, a SIGKILL could come in before we retake the
1821 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1822 		 * So after regaining the lock, we must check for SIGKILL.
1823 		 */
1824 		spin_unlock_irq(&current->sighand->siglock);
1825 		arch_ptrace_stop(exit_code, info);
1826 		spin_lock_irq(&current->sighand->siglock);
1827 		if (sigkill_pending(current))
1828 			return;
1829 	}
1830 
1831 	/*
1832 	 * We're committing to trapping.  TRACED should be visible before
1833 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1834 	 * Also, transition to TRACED and updates to ->jobctl should be
1835 	 * atomic with respect to siglock and should be done after the arch
1836 	 * hook as siglock is released and regrabbed across it.
1837 	 */
1838 	set_current_state(TASK_TRACED);
1839 
1840 	current->last_siginfo = info;
1841 	current->exit_code = exit_code;
1842 
1843 	/*
1844 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1845 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1846 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1847 	 * could be clear now.  We act as if SIGCONT is received after
1848 	 * TASK_TRACED is entered - ignore it.
1849 	 */
1850 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1851 		gstop_done = task_participate_group_stop(current);
1852 
1853 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1854 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1855 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1856 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1857 
1858 	/* entering a trap, clear TRAPPING */
1859 	task_clear_jobctl_trapping(current);
1860 
1861 	spin_unlock_irq(&current->sighand->siglock);
1862 	read_lock(&tasklist_lock);
1863 	if (may_ptrace_stop()) {
1864 		/*
1865 		 * Notify parents of the stop.
1866 		 *
1867 		 * While ptraced, there are two parents - the ptracer and
1868 		 * the real_parent of the group_leader.  The ptracer should
1869 		 * know about every stop while the real parent is only
1870 		 * interested in the completion of group stop.  The states
1871 		 * for the two don't interact with each other.  Notify
1872 		 * separately unless they're gonna be duplicates.
1873 		 */
1874 		do_notify_parent_cldstop(current, true, why);
1875 		if (gstop_done && ptrace_reparented(current))
1876 			do_notify_parent_cldstop(current, false, why);
1877 
1878 		/*
1879 		 * Don't want to allow preemption here, because
1880 		 * sys_ptrace() needs this task to be inactive.
1881 		 *
1882 		 * XXX: implement read_unlock_no_resched().
1883 		 */
1884 		preempt_disable();
1885 		read_unlock(&tasklist_lock);
1886 		preempt_enable_no_resched();
1887 		freezable_schedule();
1888 	} else {
1889 		/*
1890 		 * By the time we got the lock, our tracer went away.
1891 		 * Don't drop the lock yet, another tracer may come.
1892 		 *
1893 		 * If @gstop_done, the ptracer went away between group stop
1894 		 * completion and here.  During detach, it would have set
1895 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1896 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1897 		 * the real parent of the group stop completion is enough.
1898 		 */
1899 		if (gstop_done)
1900 			do_notify_parent_cldstop(current, false, why);
1901 
1902 		/* tasklist protects us from ptrace_freeze_traced() */
1903 		__set_current_state(TASK_RUNNING);
1904 		if (clear_code)
1905 			current->exit_code = 0;
1906 		read_unlock(&tasklist_lock);
1907 	}
1908 
1909 	/*
1910 	 * We are back.  Now reacquire the siglock before touching
1911 	 * last_siginfo, so that we are sure to have synchronized with
1912 	 * any signal-sending on another CPU that wants to examine it.
1913 	 */
1914 	spin_lock_irq(&current->sighand->siglock);
1915 	current->last_siginfo = NULL;
1916 
1917 	/* LISTENING can be set only during STOP traps, clear it */
1918 	current->jobctl &= ~JOBCTL_LISTENING;
1919 
1920 	/*
1921 	 * Queued signals ignored us while we were stopped for tracing.
1922 	 * So check for any that we should take before resuming user mode.
1923 	 * This sets TIF_SIGPENDING, but never clears it.
1924 	 */
1925 	recalc_sigpending_tsk(current);
1926 }
1927 
1928 static void ptrace_do_notify(int signr, int exit_code, int why)
1929 {
1930 	siginfo_t info;
1931 
1932 	memset(&info, 0, sizeof info);
1933 	info.si_signo = signr;
1934 	info.si_code = exit_code;
1935 	info.si_pid = task_pid_vnr(current);
1936 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1937 
1938 	/* Let the debugger run.  */
1939 	ptrace_stop(exit_code, why, 1, &info);
1940 }
1941 
1942 void ptrace_notify(int exit_code)
1943 {
1944 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1945 	if (unlikely(current->task_works))
1946 		task_work_run();
1947 
1948 	spin_lock_irq(&current->sighand->siglock);
1949 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1950 	spin_unlock_irq(&current->sighand->siglock);
1951 }
1952 
1953 /**
1954  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1955  * @signr: signr causing group stop if initiating
1956  *
1957  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1958  * and participate in it.  If already set, participate in the existing
1959  * group stop.  If participated in a group stop (and thus slept), %true is
1960  * returned with siglock released.
1961  *
1962  * If ptraced, this function doesn't handle stop itself.  Instead,
1963  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1964  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1965  * places afterwards.
1966  *
1967  * CONTEXT:
1968  * Must be called with @current->sighand->siglock held, which is released
1969  * on %true return.
1970  *
1971  * RETURNS:
1972  * %false if group stop is already cancelled or ptrace trap is scheduled.
1973  * %true if participated in group stop.
1974  */
1975 static bool do_signal_stop(int signr)
1976 	__releases(&current->sighand->siglock)
1977 {
1978 	struct signal_struct *sig = current->signal;
1979 
1980 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1981 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1982 		struct task_struct *t;
1983 
1984 		/* signr will be recorded in task->jobctl for retries */
1985 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1986 
1987 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1988 		    unlikely(signal_group_exit(sig)))
1989 			return false;
1990 		/*
1991 		 * There is no group stop already in progress.  We must
1992 		 * initiate one now.
1993 		 *
1994 		 * While ptraced, a task may be resumed while group stop is
1995 		 * still in effect and then receive a stop signal and
1996 		 * initiate another group stop.  This deviates from the
1997 		 * usual behavior as two consecutive stop signals can't
1998 		 * cause two group stops when !ptraced.  That is why we
1999 		 * also check !task_is_stopped(t) below.
2000 		 *
2001 		 * The condition can be distinguished by testing whether
2002 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2003 		 * group_exit_code in such case.
2004 		 *
2005 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2006 		 * an intervening stop signal is required to cause two
2007 		 * continued events regardless of ptrace.
2008 		 */
2009 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2010 			sig->group_exit_code = signr;
2011 
2012 		sig->group_stop_count = 0;
2013 
2014 		if (task_set_jobctl_pending(current, signr | gstop))
2015 			sig->group_stop_count++;
2016 
2017 		t = current;
2018 		while_each_thread(current, t) {
2019 			/*
2020 			 * Setting state to TASK_STOPPED for a group
2021 			 * stop is always done with the siglock held,
2022 			 * so this check has no races.
2023 			 */
2024 			if (!task_is_stopped(t) &&
2025 			    task_set_jobctl_pending(t, signr | gstop)) {
2026 				sig->group_stop_count++;
2027 				if (likely(!(t->ptrace & PT_SEIZED)))
2028 					signal_wake_up(t, 0);
2029 				else
2030 					ptrace_trap_notify(t);
2031 			}
2032 		}
2033 	}
2034 
2035 	if (likely(!current->ptrace)) {
2036 		int notify = 0;
2037 
2038 		/*
2039 		 * If there are no other threads in the group, or if there
2040 		 * is a group stop in progress and we are the last to stop,
2041 		 * report to the parent.
2042 		 */
2043 		if (task_participate_group_stop(current))
2044 			notify = CLD_STOPPED;
2045 
2046 		__set_current_state(TASK_STOPPED);
2047 		spin_unlock_irq(&current->sighand->siglock);
2048 
2049 		/*
2050 		 * Notify the parent of the group stop completion.  Because
2051 		 * we're not holding either the siglock or tasklist_lock
2052 		 * here, ptracer may attach inbetween; however, this is for
2053 		 * group stop and should always be delivered to the real
2054 		 * parent of the group leader.  The new ptracer will get
2055 		 * its notification when this task transitions into
2056 		 * TASK_TRACED.
2057 		 */
2058 		if (notify) {
2059 			read_lock(&tasklist_lock);
2060 			do_notify_parent_cldstop(current, false, notify);
2061 			read_unlock(&tasklist_lock);
2062 		}
2063 
2064 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2065 		freezable_schedule();
2066 		return true;
2067 	} else {
2068 		/*
2069 		 * While ptraced, group stop is handled by STOP trap.
2070 		 * Schedule it and let the caller deal with it.
2071 		 */
2072 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2073 		return false;
2074 	}
2075 }
2076 
2077 /**
2078  * do_jobctl_trap - take care of ptrace jobctl traps
2079  *
2080  * When PT_SEIZED, it's used for both group stop and explicit
2081  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2082  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2083  * the stop signal; otherwise, %SIGTRAP.
2084  *
2085  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2086  * number as exit_code and no siginfo.
2087  *
2088  * CONTEXT:
2089  * Must be called with @current->sighand->siglock held, which may be
2090  * released and re-acquired before returning with intervening sleep.
2091  */
2092 static void do_jobctl_trap(void)
2093 {
2094 	struct signal_struct *signal = current->signal;
2095 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2096 
2097 	if (current->ptrace & PT_SEIZED) {
2098 		if (!signal->group_stop_count &&
2099 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2100 			signr = SIGTRAP;
2101 		WARN_ON_ONCE(!signr);
2102 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2103 				 CLD_STOPPED);
2104 	} else {
2105 		WARN_ON_ONCE(!signr);
2106 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2107 		current->exit_code = 0;
2108 	}
2109 }
2110 
2111 static int ptrace_signal(int signr, siginfo_t *info)
2112 {
2113 	/*
2114 	 * We do not check sig_kernel_stop(signr) but set this marker
2115 	 * unconditionally because we do not know whether debugger will
2116 	 * change signr. This flag has no meaning unless we are going
2117 	 * to stop after return from ptrace_stop(). In this case it will
2118 	 * be checked in do_signal_stop(), we should only stop if it was
2119 	 * not cleared by SIGCONT while we were sleeping. See also the
2120 	 * comment in dequeue_signal().
2121 	 */
2122 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2123 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2124 
2125 	/* We're back.  Did the debugger cancel the sig?  */
2126 	signr = current->exit_code;
2127 	if (signr == 0)
2128 		return signr;
2129 
2130 	current->exit_code = 0;
2131 
2132 	/*
2133 	 * Update the siginfo structure if the signal has
2134 	 * changed.  If the debugger wanted something
2135 	 * specific in the siginfo structure then it should
2136 	 * have updated *info via PTRACE_SETSIGINFO.
2137 	 */
2138 	if (signr != info->si_signo) {
2139 		info->si_signo = signr;
2140 		info->si_errno = 0;
2141 		info->si_code = SI_USER;
2142 		rcu_read_lock();
2143 		info->si_pid = task_pid_vnr(current->parent);
2144 		info->si_uid = from_kuid_munged(current_user_ns(),
2145 						task_uid(current->parent));
2146 		rcu_read_unlock();
2147 	}
2148 
2149 	/* If the (new) signal is now blocked, requeue it.  */
2150 	if (sigismember(&current->blocked, signr)) {
2151 		specific_send_sig_info(signr, info, current);
2152 		signr = 0;
2153 	}
2154 
2155 	return signr;
2156 }
2157 
2158 int get_signal(struct ksignal *ksig)
2159 {
2160 	struct sighand_struct *sighand = current->sighand;
2161 	struct signal_struct *signal = current->signal;
2162 	int signr;
2163 
2164 	if (unlikely(current->task_works))
2165 		task_work_run();
2166 
2167 	if (unlikely(uprobe_deny_signal()))
2168 		return 0;
2169 
2170 	/*
2171 	 * Do this once, we can't return to user-mode if freezing() == T.
2172 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2173 	 * thus do not need another check after return.
2174 	 */
2175 	try_to_freeze();
2176 
2177 relock:
2178 	spin_lock_irq(&sighand->siglock);
2179 	/*
2180 	 * Every stopped thread goes here after wakeup. Check to see if
2181 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2182 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2183 	 */
2184 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2185 		int why;
2186 
2187 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2188 			why = CLD_CONTINUED;
2189 		else
2190 			why = CLD_STOPPED;
2191 
2192 		signal->flags &= ~SIGNAL_CLD_MASK;
2193 
2194 		spin_unlock_irq(&sighand->siglock);
2195 
2196 		/*
2197 		 * Notify the parent that we're continuing.  This event is
2198 		 * always per-process and doesn't make whole lot of sense
2199 		 * for ptracers, who shouldn't consume the state via
2200 		 * wait(2) either, but, for backward compatibility, notify
2201 		 * the ptracer of the group leader too unless it's gonna be
2202 		 * a duplicate.
2203 		 */
2204 		read_lock(&tasklist_lock);
2205 		do_notify_parent_cldstop(current, false, why);
2206 
2207 		if (ptrace_reparented(current->group_leader))
2208 			do_notify_parent_cldstop(current->group_leader,
2209 						true, why);
2210 		read_unlock(&tasklist_lock);
2211 
2212 		goto relock;
2213 	}
2214 
2215 	for (;;) {
2216 		struct k_sigaction *ka;
2217 
2218 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2219 		    do_signal_stop(0))
2220 			goto relock;
2221 
2222 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2223 			do_jobctl_trap();
2224 			spin_unlock_irq(&sighand->siglock);
2225 			goto relock;
2226 		}
2227 
2228 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2229 
2230 		if (!signr)
2231 			break; /* will return 0 */
2232 
2233 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2234 			signr = ptrace_signal(signr, &ksig->info);
2235 			if (!signr)
2236 				continue;
2237 		}
2238 
2239 		ka = &sighand->action[signr-1];
2240 
2241 		/* Trace actually delivered signals. */
2242 		trace_signal_deliver(signr, &ksig->info, ka);
2243 
2244 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2245 			continue;
2246 		if (ka->sa.sa_handler != SIG_DFL) {
2247 			/* Run the handler.  */
2248 			ksig->ka = *ka;
2249 
2250 			if (ka->sa.sa_flags & SA_ONESHOT)
2251 				ka->sa.sa_handler = SIG_DFL;
2252 
2253 			break; /* will return non-zero "signr" value */
2254 		}
2255 
2256 		/*
2257 		 * Now we are doing the default action for this signal.
2258 		 */
2259 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2260 			continue;
2261 
2262 		/*
2263 		 * Global init gets no signals it doesn't want.
2264 		 * Container-init gets no signals it doesn't want from same
2265 		 * container.
2266 		 *
2267 		 * Note that if global/container-init sees a sig_kernel_only()
2268 		 * signal here, the signal must have been generated internally
2269 		 * or must have come from an ancestor namespace. In either
2270 		 * case, the signal cannot be dropped.
2271 		 */
2272 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2273 				!sig_kernel_only(signr))
2274 			continue;
2275 
2276 		if (sig_kernel_stop(signr)) {
2277 			/*
2278 			 * The default action is to stop all threads in
2279 			 * the thread group.  The job control signals
2280 			 * do nothing in an orphaned pgrp, but SIGSTOP
2281 			 * always works.  Note that siglock needs to be
2282 			 * dropped during the call to is_orphaned_pgrp()
2283 			 * because of lock ordering with tasklist_lock.
2284 			 * This allows an intervening SIGCONT to be posted.
2285 			 * We need to check for that and bail out if necessary.
2286 			 */
2287 			if (signr != SIGSTOP) {
2288 				spin_unlock_irq(&sighand->siglock);
2289 
2290 				/* signals can be posted during this window */
2291 
2292 				if (is_current_pgrp_orphaned())
2293 					goto relock;
2294 
2295 				spin_lock_irq(&sighand->siglock);
2296 			}
2297 
2298 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2299 				/* It released the siglock.  */
2300 				goto relock;
2301 			}
2302 
2303 			/*
2304 			 * We didn't actually stop, due to a race
2305 			 * with SIGCONT or something like that.
2306 			 */
2307 			continue;
2308 		}
2309 
2310 		spin_unlock_irq(&sighand->siglock);
2311 
2312 		/*
2313 		 * Anything else is fatal, maybe with a core dump.
2314 		 */
2315 		current->flags |= PF_SIGNALED;
2316 
2317 		if (sig_kernel_coredump(signr)) {
2318 			if (print_fatal_signals)
2319 				print_fatal_signal(ksig->info.si_signo);
2320 			proc_coredump_connector(current);
2321 			/*
2322 			 * If it was able to dump core, this kills all
2323 			 * other threads in the group and synchronizes with
2324 			 * their demise.  If we lost the race with another
2325 			 * thread getting here, it set group_exit_code
2326 			 * first and our do_group_exit call below will use
2327 			 * that value and ignore the one we pass it.
2328 			 */
2329 			do_coredump(&ksig->info);
2330 		}
2331 
2332 		/*
2333 		 * Death signals, no core dump.
2334 		 */
2335 		do_group_exit(ksig->info.si_signo);
2336 		/* NOTREACHED */
2337 	}
2338 	spin_unlock_irq(&sighand->siglock);
2339 
2340 	ksig->sig = signr;
2341 	return ksig->sig > 0;
2342 }
2343 
2344 /**
2345  * signal_delivered -
2346  * @ksig:		kernel signal struct
2347  * @stepping:		nonzero if debugger single-step or block-step in use
2348  *
2349  * This function should be called when a signal has successfully been
2350  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2351  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2352  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2353  */
2354 static void signal_delivered(struct ksignal *ksig, int stepping)
2355 {
2356 	sigset_t blocked;
2357 
2358 	/* A signal was successfully delivered, and the
2359 	   saved sigmask was stored on the signal frame,
2360 	   and will be restored by sigreturn.  So we can
2361 	   simply clear the restore sigmask flag.  */
2362 	clear_restore_sigmask();
2363 
2364 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2365 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2366 		sigaddset(&blocked, ksig->sig);
2367 	set_current_blocked(&blocked);
2368 	tracehook_signal_handler(stepping);
2369 }
2370 
2371 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2372 {
2373 	if (failed)
2374 		force_sigsegv(ksig->sig, current);
2375 	else
2376 		signal_delivered(ksig, stepping);
2377 }
2378 
2379 /*
2380  * It could be that complete_signal() picked us to notify about the
2381  * group-wide signal. Other threads should be notified now to take
2382  * the shared signals in @which since we will not.
2383  */
2384 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2385 {
2386 	sigset_t retarget;
2387 	struct task_struct *t;
2388 
2389 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2390 	if (sigisemptyset(&retarget))
2391 		return;
2392 
2393 	t = tsk;
2394 	while_each_thread(tsk, t) {
2395 		if (t->flags & PF_EXITING)
2396 			continue;
2397 
2398 		if (!has_pending_signals(&retarget, &t->blocked))
2399 			continue;
2400 		/* Remove the signals this thread can handle. */
2401 		sigandsets(&retarget, &retarget, &t->blocked);
2402 
2403 		if (!signal_pending(t))
2404 			signal_wake_up(t, 0);
2405 
2406 		if (sigisemptyset(&retarget))
2407 			break;
2408 	}
2409 }
2410 
2411 void exit_signals(struct task_struct *tsk)
2412 {
2413 	int group_stop = 0;
2414 	sigset_t unblocked;
2415 
2416 	/*
2417 	 * @tsk is about to have PF_EXITING set - lock out users which
2418 	 * expect stable threadgroup.
2419 	 */
2420 	cgroup_threadgroup_change_begin(tsk);
2421 
2422 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2423 		tsk->flags |= PF_EXITING;
2424 		cgroup_threadgroup_change_end(tsk);
2425 		return;
2426 	}
2427 
2428 	spin_lock_irq(&tsk->sighand->siglock);
2429 	/*
2430 	 * From now this task is not visible for group-wide signals,
2431 	 * see wants_signal(), do_signal_stop().
2432 	 */
2433 	tsk->flags |= PF_EXITING;
2434 
2435 	cgroup_threadgroup_change_end(tsk);
2436 
2437 	if (!signal_pending(tsk))
2438 		goto out;
2439 
2440 	unblocked = tsk->blocked;
2441 	signotset(&unblocked);
2442 	retarget_shared_pending(tsk, &unblocked);
2443 
2444 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2445 	    task_participate_group_stop(tsk))
2446 		group_stop = CLD_STOPPED;
2447 out:
2448 	spin_unlock_irq(&tsk->sighand->siglock);
2449 
2450 	/*
2451 	 * If group stop has completed, deliver the notification.  This
2452 	 * should always go to the real parent of the group leader.
2453 	 */
2454 	if (unlikely(group_stop)) {
2455 		read_lock(&tasklist_lock);
2456 		do_notify_parent_cldstop(tsk, false, group_stop);
2457 		read_unlock(&tasklist_lock);
2458 	}
2459 }
2460 
2461 EXPORT_SYMBOL(recalc_sigpending);
2462 EXPORT_SYMBOL_GPL(dequeue_signal);
2463 EXPORT_SYMBOL(flush_signals);
2464 EXPORT_SYMBOL(force_sig);
2465 EXPORT_SYMBOL(send_sig);
2466 EXPORT_SYMBOL(send_sig_info);
2467 EXPORT_SYMBOL(sigprocmask);
2468 
2469 /*
2470  * System call entry points.
2471  */
2472 
2473 /**
2474  *  sys_restart_syscall - restart a system call
2475  */
2476 SYSCALL_DEFINE0(restart_syscall)
2477 {
2478 	struct restart_block *restart = &current->restart_block;
2479 	return restart->fn(restart);
2480 }
2481 
2482 long do_no_restart_syscall(struct restart_block *param)
2483 {
2484 	return -EINTR;
2485 }
2486 
2487 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2488 {
2489 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2490 		sigset_t newblocked;
2491 		/* A set of now blocked but previously unblocked signals. */
2492 		sigandnsets(&newblocked, newset, &current->blocked);
2493 		retarget_shared_pending(tsk, &newblocked);
2494 	}
2495 	tsk->blocked = *newset;
2496 	recalc_sigpending();
2497 }
2498 
2499 /**
2500  * set_current_blocked - change current->blocked mask
2501  * @newset: new mask
2502  *
2503  * It is wrong to change ->blocked directly, this helper should be used
2504  * to ensure the process can't miss a shared signal we are going to block.
2505  */
2506 void set_current_blocked(sigset_t *newset)
2507 {
2508 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2509 	__set_current_blocked(newset);
2510 }
2511 
2512 void __set_current_blocked(const sigset_t *newset)
2513 {
2514 	struct task_struct *tsk = current;
2515 
2516 	/*
2517 	 * In case the signal mask hasn't changed, there is nothing we need
2518 	 * to do. The current->blocked shouldn't be modified by other task.
2519 	 */
2520 	if (sigequalsets(&tsk->blocked, newset))
2521 		return;
2522 
2523 	spin_lock_irq(&tsk->sighand->siglock);
2524 	__set_task_blocked(tsk, newset);
2525 	spin_unlock_irq(&tsk->sighand->siglock);
2526 }
2527 
2528 /*
2529  * This is also useful for kernel threads that want to temporarily
2530  * (or permanently) block certain signals.
2531  *
2532  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2533  * interface happily blocks "unblockable" signals like SIGKILL
2534  * and friends.
2535  */
2536 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2537 {
2538 	struct task_struct *tsk = current;
2539 	sigset_t newset;
2540 
2541 	/* Lockless, only current can change ->blocked, never from irq */
2542 	if (oldset)
2543 		*oldset = tsk->blocked;
2544 
2545 	switch (how) {
2546 	case SIG_BLOCK:
2547 		sigorsets(&newset, &tsk->blocked, set);
2548 		break;
2549 	case SIG_UNBLOCK:
2550 		sigandnsets(&newset, &tsk->blocked, set);
2551 		break;
2552 	case SIG_SETMASK:
2553 		newset = *set;
2554 		break;
2555 	default:
2556 		return -EINVAL;
2557 	}
2558 
2559 	__set_current_blocked(&newset);
2560 	return 0;
2561 }
2562 
2563 /**
2564  *  sys_rt_sigprocmask - change the list of currently blocked signals
2565  *  @how: whether to add, remove, or set signals
2566  *  @nset: stores pending signals
2567  *  @oset: previous value of signal mask if non-null
2568  *  @sigsetsize: size of sigset_t type
2569  */
2570 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2571 		sigset_t __user *, oset, size_t, sigsetsize)
2572 {
2573 	sigset_t old_set, new_set;
2574 	int error;
2575 
2576 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2577 	if (sigsetsize != sizeof(sigset_t))
2578 		return -EINVAL;
2579 
2580 	old_set = current->blocked;
2581 
2582 	if (nset) {
2583 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2584 			return -EFAULT;
2585 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2586 
2587 		error = sigprocmask(how, &new_set, NULL);
2588 		if (error)
2589 			return error;
2590 	}
2591 
2592 	if (oset) {
2593 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2594 			return -EFAULT;
2595 	}
2596 
2597 	return 0;
2598 }
2599 
2600 #ifdef CONFIG_COMPAT
2601 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2602 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2603 {
2604 	sigset_t old_set = current->blocked;
2605 
2606 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2607 	if (sigsetsize != sizeof(sigset_t))
2608 		return -EINVAL;
2609 
2610 	if (nset) {
2611 		sigset_t new_set;
2612 		int error;
2613 		if (get_compat_sigset(&new_set, nset))
2614 			return -EFAULT;
2615 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2616 
2617 		error = sigprocmask(how, &new_set, NULL);
2618 		if (error)
2619 			return error;
2620 	}
2621 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2622 }
2623 #endif
2624 
2625 static int do_sigpending(sigset_t *set)
2626 {
2627 	spin_lock_irq(&current->sighand->siglock);
2628 	sigorsets(set, &current->pending.signal,
2629 		  &current->signal->shared_pending.signal);
2630 	spin_unlock_irq(&current->sighand->siglock);
2631 
2632 	/* Outside the lock because only this thread touches it.  */
2633 	sigandsets(set, &current->blocked, set);
2634 	return 0;
2635 }
2636 
2637 /**
2638  *  sys_rt_sigpending - examine a pending signal that has been raised
2639  *			while blocked
2640  *  @uset: stores pending signals
2641  *  @sigsetsize: size of sigset_t type or larger
2642  */
2643 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2644 {
2645 	sigset_t set;
2646 	int err;
2647 
2648 	if (sigsetsize > sizeof(*uset))
2649 		return -EINVAL;
2650 
2651 	err = do_sigpending(&set);
2652 	if (!err && copy_to_user(uset, &set, sigsetsize))
2653 		err = -EFAULT;
2654 	return err;
2655 }
2656 
2657 #ifdef CONFIG_COMPAT
2658 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2659 		compat_size_t, sigsetsize)
2660 {
2661 	sigset_t set;
2662 	int err;
2663 
2664 	if (sigsetsize > sizeof(*uset))
2665 		return -EINVAL;
2666 
2667 	err = do_sigpending(&set);
2668 	if (!err)
2669 		err = put_compat_sigset(uset, &set, sigsetsize);
2670 	return err;
2671 }
2672 #endif
2673 
2674 enum siginfo_layout siginfo_layout(int sig, int si_code)
2675 {
2676 	enum siginfo_layout layout = SIL_KILL;
2677 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2678 		static const struct {
2679 			unsigned char limit, layout;
2680 		} filter[] = {
2681 			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2682 			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2683 			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2684 			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2685 			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2686 #if defined(SIGEMT) && defined(NSIGEMT)
2687 			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2688 #endif
2689 			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2690 			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2691 #ifdef __ARCH_SIGSYS
2692 			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2693 #endif
2694 		};
2695 		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2696 			layout = filter[sig].layout;
2697 		else if (si_code <= NSIGPOLL)
2698 			layout = SIL_POLL;
2699 	} else {
2700 		if (si_code == SI_TIMER)
2701 			layout = SIL_TIMER;
2702 		else if (si_code == SI_SIGIO)
2703 			layout = SIL_POLL;
2704 		else if (si_code < 0)
2705 			layout = SIL_RT;
2706 		/* Tests to support buggy kernel ABIs */
2707 #ifdef TRAP_FIXME
2708 		if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2709 			layout = SIL_FAULT;
2710 #endif
2711 #ifdef FPE_FIXME
2712 		if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2713 			layout = SIL_FAULT;
2714 #endif
2715 	}
2716 	return layout;
2717 }
2718 
2719 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2720 
2721 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2722 {
2723 	int err;
2724 
2725 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2726 		return -EFAULT;
2727 	if (from->si_code < 0)
2728 		return __copy_to_user(to, from, sizeof(siginfo_t))
2729 			? -EFAULT : 0;
2730 	/*
2731 	 * If you change siginfo_t structure, please be sure
2732 	 * this code is fixed accordingly.
2733 	 * Please remember to update the signalfd_copyinfo() function
2734 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2735 	 * It should never copy any pad contained in the structure
2736 	 * to avoid security leaks, but must copy the generic
2737 	 * 3 ints plus the relevant union member.
2738 	 */
2739 	err = __put_user(from->si_signo, &to->si_signo);
2740 	err |= __put_user(from->si_errno, &to->si_errno);
2741 	err |= __put_user(from->si_code, &to->si_code);
2742 	switch (siginfo_layout(from->si_signo, from->si_code)) {
2743 	case SIL_KILL:
2744 		err |= __put_user(from->si_pid, &to->si_pid);
2745 		err |= __put_user(from->si_uid, &to->si_uid);
2746 		break;
2747 	case SIL_TIMER:
2748 		/* Unreached SI_TIMER is negative */
2749 		break;
2750 	case SIL_POLL:
2751 		err |= __put_user(from->si_band, &to->si_band);
2752 		err |= __put_user(from->si_fd, &to->si_fd);
2753 		break;
2754 	case SIL_FAULT:
2755 		err |= __put_user(from->si_addr, &to->si_addr);
2756 #ifdef __ARCH_SI_TRAPNO
2757 		err |= __put_user(from->si_trapno, &to->si_trapno);
2758 #endif
2759 #ifdef BUS_MCEERR_AO
2760 		/*
2761 		 * Other callers might not initialize the si_lsb field,
2762 		 * so check explicitly for the right codes here.
2763 		 */
2764 		if (from->si_signo == SIGBUS &&
2765 		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2766 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2767 #endif
2768 #ifdef SEGV_BNDERR
2769 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2770 			err |= __put_user(from->si_lower, &to->si_lower);
2771 			err |= __put_user(from->si_upper, &to->si_upper);
2772 		}
2773 #endif
2774 #ifdef SEGV_PKUERR
2775 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2776 			err |= __put_user(from->si_pkey, &to->si_pkey);
2777 #endif
2778 		break;
2779 	case SIL_CHLD:
2780 		err |= __put_user(from->si_pid, &to->si_pid);
2781 		err |= __put_user(from->si_uid, &to->si_uid);
2782 		err |= __put_user(from->si_status, &to->si_status);
2783 		err |= __put_user(from->si_utime, &to->si_utime);
2784 		err |= __put_user(from->si_stime, &to->si_stime);
2785 		break;
2786 	case SIL_RT:
2787 		err |= __put_user(from->si_pid, &to->si_pid);
2788 		err |= __put_user(from->si_uid, &to->si_uid);
2789 		err |= __put_user(from->si_ptr, &to->si_ptr);
2790 		break;
2791 #ifdef __ARCH_SIGSYS
2792 	case SIL_SYS:
2793 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2794 		err |= __put_user(from->si_syscall, &to->si_syscall);
2795 		err |= __put_user(from->si_arch, &to->si_arch);
2796 		break;
2797 #endif
2798 	}
2799 	return err;
2800 }
2801 
2802 #endif
2803 
2804 /**
2805  *  do_sigtimedwait - wait for queued signals specified in @which
2806  *  @which: queued signals to wait for
2807  *  @info: if non-null, the signal's siginfo is returned here
2808  *  @ts: upper bound on process time suspension
2809  */
2810 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2811 		    const struct timespec *ts)
2812 {
2813 	ktime_t *to = NULL, timeout = KTIME_MAX;
2814 	struct task_struct *tsk = current;
2815 	sigset_t mask = *which;
2816 	int sig, ret = 0;
2817 
2818 	if (ts) {
2819 		if (!timespec_valid(ts))
2820 			return -EINVAL;
2821 		timeout = timespec_to_ktime(*ts);
2822 		to = &timeout;
2823 	}
2824 
2825 	/*
2826 	 * Invert the set of allowed signals to get those we want to block.
2827 	 */
2828 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2829 	signotset(&mask);
2830 
2831 	spin_lock_irq(&tsk->sighand->siglock);
2832 	sig = dequeue_signal(tsk, &mask, info);
2833 	if (!sig && timeout) {
2834 		/*
2835 		 * None ready, temporarily unblock those we're interested
2836 		 * while we are sleeping in so that we'll be awakened when
2837 		 * they arrive. Unblocking is always fine, we can avoid
2838 		 * set_current_blocked().
2839 		 */
2840 		tsk->real_blocked = tsk->blocked;
2841 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2842 		recalc_sigpending();
2843 		spin_unlock_irq(&tsk->sighand->siglock);
2844 
2845 		__set_current_state(TASK_INTERRUPTIBLE);
2846 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2847 							 HRTIMER_MODE_REL);
2848 		spin_lock_irq(&tsk->sighand->siglock);
2849 		__set_task_blocked(tsk, &tsk->real_blocked);
2850 		sigemptyset(&tsk->real_blocked);
2851 		sig = dequeue_signal(tsk, &mask, info);
2852 	}
2853 	spin_unlock_irq(&tsk->sighand->siglock);
2854 
2855 	if (sig)
2856 		return sig;
2857 	return ret ? -EINTR : -EAGAIN;
2858 }
2859 
2860 /**
2861  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2862  *			in @uthese
2863  *  @uthese: queued signals to wait for
2864  *  @uinfo: if non-null, the signal's siginfo is returned here
2865  *  @uts: upper bound on process time suspension
2866  *  @sigsetsize: size of sigset_t type
2867  */
2868 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2869 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2870 		size_t, sigsetsize)
2871 {
2872 	sigset_t these;
2873 	struct timespec ts;
2874 	siginfo_t info;
2875 	int ret;
2876 
2877 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2878 	if (sigsetsize != sizeof(sigset_t))
2879 		return -EINVAL;
2880 
2881 	if (copy_from_user(&these, uthese, sizeof(these)))
2882 		return -EFAULT;
2883 
2884 	if (uts) {
2885 		if (copy_from_user(&ts, uts, sizeof(ts)))
2886 			return -EFAULT;
2887 	}
2888 
2889 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2890 
2891 	if (ret > 0 && uinfo) {
2892 		if (copy_siginfo_to_user(uinfo, &info))
2893 			ret = -EFAULT;
2894 	}
2895 
2896 	return ret;
2897 }
2898 
2899 #ifdef CONFIG_COMPAT
2900 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
2901 		struct compat_siginfo __user *, uinfo,
2902 		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
2903 {
2904 	sigset_t s;
2905 	struct timespec t;
2906 	siginfo_t info;
2907 	long ret;
2908 
2909 	if (sigsetsize != sizeof(sigset_t))
2910 		return -EINVAL;
2911 
2912 	if (get_compat_sigset(&s, uthese))
2913 		return -EFAULT;
2914 
2915 	if (uts) {
2916 		if (compat_get_timespec(&t, uts))
2917 			return -EFAULT;
2918 	}
2919 
2920 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
2921 
2922 	if (ret > 0 && uinfo) {
2923 		if (copy_siginfo_to_user32(uinfo, &info))
2924 			ret = -EFAULT;
2925 	}
2926 
2927 	return ret;
2928 }
2929 #endif
2930 
2931 /**
2932  *  sys_kill - send a signal to a process
2933  *  @pid: the PID of the process
2934  *  @sig: signal to be sent
2935  */
2936 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2937 {
2938 	struct siginfo info;
2939 
2940 	info.si_signo = sig;
2941 	info.si_errno = 0;
2942 	info.si_code = SI_USER;
2943 	info.si_pid = task_tgid_vnr(current);
2944 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2945 
2946 	return kill_something_info(sig, &info, pid);
2947 }
2948 
2949 static int
2950 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2951 {
2952 	struct task_struct *p;
2953 	int error = -ESRCH;
2954 
2955 	rcu_read_lock();
2956 	p = find_task_by_vpid(pid);
2957 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2958 		error = check_kill_permission(sig, info, p);
2959 		/*
2960 		 * The null signal is a permissions and process existence
2961 		 * probe.  No signal is actually delivered.
2962 		 */
2963 		if (!error && sig) {
2964 			error = do_send_sig_info(sig, info, p, false);
2965 			/*
2966 			 * If lock_task_sighand() failed we pretend the task
2967 			 * dies after receiving the signal. The window is tiny,
2968 			 * and the signal is private anyway.
2969 			 */
2970 			if (unlikely(error == -ESRCH))
2971 				error = 0;
2972 		}
2973 	}
2974 	rcu_read_unlock();
2975 
2976 	return error;
2977 }
2978 
2979 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2980 {
2981 	struct siginfo info = {};
2982 
2983 	info.si_signo = sig;
2984 	info.si_errno = 0;
2985 	info.si_code = SI_TKILL;
2986 	info.si_pid = task_tgid_vnr(current);
2987 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2988 
2989 	return do_send_specific(tgid, pid, sig, &info);
2990 }
2991 
2992 /**
2993  *  sys_tgkill - send signal to one specific thread
2994  *  @tgid: the thread group ID of the thread
2995  *  @pid: the PID of the thread
2996  *  @sig: signal to be sent
2997  *
2998  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2999  *  exists but it's not belonging to the target process anymore. This
3000  *  method solves the problem of threads exiting and PIDs getting reused.
3001  */
3002 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3003 {
3004 	/* This is only valid for single tasks */
3005 	if (pid <= 0 || tgid <= 0)
3006 		return -EINVAL;
3007 
3008 	return do_tkill(tgid, pid, sig);
3009 }
3010 
3011 /**
3012  *  sys_tkill - send signal to one specific task
3013  *  @pid: the PID of the task
3014  *  @sig: signal to be sent
3015  *
3016  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3017  */
3018 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3019 {
3020 	/* This is only valid for single tasks */
3021 	if (pid <= 0)
3022 		return -EINVAL;
3023 
3024 	return do_tkill(0, pid, sig);
3025 }
3026 
3027 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3028 {
3029 	/* Not even root can pretend to send signals from the kernel.
3030 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3031 	 */
3032 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3033 	    (task_pid_vnr(current) != pid))
3034 		return -EPERM;
3035 
3036 	info->si_signo = sig;
3037 
3038 	/* POSIX.1b doesn't mention process groups.  */
3039 	return kill_proc_info(sig, info, pid);
3040 }
3041 
3042 /**
3043  *  sys_rt_sigqueueinfo - send signal information to a signal
3044  *  @pid: the PID of the thread
3045  *  @sig: signal to be sent
3046  *  @uinfo: signal info to be sent
3047  */
3048 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3049 		siginfo_t __user *, uinfo)
3050 {
3051 	siginfo_t info;
3052 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3053 		return -EFAULT;
3054 	return do_rt_sigqueueinfo(pid, sig, &info);
3055 }
3056 
3057 #ifdef CONFIG_COMPAT
3058 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3059 			compat_pid_t, pid,
3060 			int, sig,
3061 			struct compat_siginfo __user *, uinfo)
3062 {
3063 	siginfo_t info = {};
3064 	int ret = copy_siginfo_from_user32(&info, uinfo);
3065 	if (unlikely(ret))
3066 		return ret;
3067 	return do_rt_sigqueueinfo(pid, sig, &info);
3068 }
3069 #endif
3070 
3071 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3072 {
3073 	/* This is only valid for single tasks */
3074 	if (pid <= 0 || tgid <= 0)
3075 		return -EINVAL;
3076 
3077 	/* Not even root can pretend to send signals from the kernel.
3078 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3079 	 */
3080 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3081 	    (task_pid_vnr(current) != pid))
3082 		return -EPERM;
3083 
3084 	info->si_signo = sig;
3085 
3086 	return do_send_specific(tgid, pid, sig, info);
3087 }
3088 
3089 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3090 		siginfo_t __user *, uinfo)
3091 {
3092 	siginfo_t info;
3093 
3094 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3095 		return -EFAULT;
3096 
3097 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3098 }
3099 
3100 #ifdef CONFIG_COMPAT
3101 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3102 			compat_pid_t, tgid,
3103 			compat_pid_t, pid,
3104 			int, sig,
3105 			struct compat_siginfo __user *, uinfo)
3106 {
3107 	siginfo_t info = {};
3108 
3109 	if (copy_siginfo_from_user32(&info, uinfo))
3110 		return -EFAULT;
3111 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3112 }
3113 #endif
3114 
3115 /*
3116  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3117  */
3118 void kernel_sigaction(int sig, __sighandler_t action)
3119 {
3120 	spin_lock_irq(&current->sighand->siglock);
3121 	current->sighand->action[sig - 1].sa.sa_handler = action;
3122 	if (action == SIG_IGN) {
3123 		sigset_t mask;
3124 
3125 		sigemptyset(&mask);
3126 		sigaddset(&mask, sig);
3127 
3128 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3129 		flush_sigqueue_mask(&mask, &current->pending);
3130 		recalc_sigpending();
3131 	}
3132 	spin_unlock_irq(&current->sighand->siglock);
3133 }
3134 EXPORT_SYMBOL(kernel_sigaction);
3135 
3136 void __weak sigaction_compat_abi(struct k_sigaction *act,
3137 		struct k_sigaction *oact)
3138 {
3139 }
3140 
3141 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3142 {
3143 	struct task_struct *p = current, *t;
3144 	struct k_sigaction *k;
3145 	sigset_t mask;
3146 
3147 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3148 		return -EINVAL;
3149 
3150 	k = &p->sighand->action[sig-1];
3151 
3152 	spin_lock_irq(&p->sighand->siglock);
3153 	if (oact)
3154 		*oact = *k;
3155 
3156 	sigaction_compat_abi(act, oact);
3157 
3158 	if (act) {
3159 		sigdelsetmask(&act->sa.sa_mask,
3160 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3161 		*k = *act;
3162 		/*
3163 		 * POSIX 3.3.1.3:
3164 		 *  "Setting a signal action to SIG_IGN for a signal that is
3165 		 *   pending shall cause the pending signal to be discarded,
3166 		 *   whether or not it is blocked."
3167 		 *
3168 		 *  "Setting a signal action to SIG_DFL for a signal that is
3169 		 *   pending and whose default action is to ignore the signal
3170 		 *   (for example, SIGCHLD), shall cause the pending signal to
3171 		 *   be discarded, whether or not it is blocked"
3172 		 */
3173 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3174 			sigemptyset(&mask);
3175 			sigaddset(&mask, sig);
3176 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3177 			for_each_thread(p, t)
3178 				flush_sigqueue_mask(&mask, &t->pending);
3179 		}
3180 	}
3181 
3182 	spin_unlock_irq(&p->sighand->siglock);
3183 	return 0;
3184 }
3185 
3186 static int
3187 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3188 {
3189 	struct task_struct *t = current;
3190 
3191 	if (oss) {
3192 		memset(oss, 0, sizeof(stack_t));
3193 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3194 		oss->ss_size = t->sas_ss_size;
3195 		oss->ss_flags = sas_ss_flags(sp) |
3196 			(current->sas_ss_flags & SS_FLAG_BITS);
3197 	}
3198 
3199 	if (ss) {
3200 		void __user *ss_sp = ss->ss_sp;
3201 		size_t ss_size = ss->ss_size;
3202 		unsigned ss_flags = ss->ss_flags;
3203 		int ss_mode;
3204 
3205 		if (unlikely(on_sig_stack(sp)))
3206 			return -EPERM;
3207 
3208 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3209 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3210 				ss_mode != 0))
3211 			return -EINVAL;
3212 
3213 		if (ss_mode == SS_DISABLE) {
3214 			ss_size = 0;
3215 			ss_sp = NULL;
3216 		} else {
3217 			if (unlikely(ss_size < MINSIGSTKSZ))
3218 				return -ENOMEM;
3219 		}
3220 
3221 		t->sas_ss_sp = (unsigned long) ss_sp;
3222 		t->sas_ss_size = ss_size;
3223 		t->sas_ss_flags = ss_flags;
3224 	}
3225 	return 0;
3226 }
3227 
3228 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3229 {
3230 	stack_t new, old;
3231 	int err;
3232 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3233 		return -EFAULT;
3234 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3235 			      current_user_stack_pointer());
3236 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3237 		err = -EFAULT;
3238 	return err;
3239 }
3240 
3241 int restore_altstack(const stack_t __user *uss)
3242 {
3243 	stack_t new;
3244 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3245 		return -EFAULT;
3246 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3247 	/* squash all but EFAULT for now */
3248 	return 0;
3249 }
3250 
3251 int __save_altstack(stack_t __user *uss, unsigned long sp)
3252 {
3253 	struct task_struct *t = current;
3254 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3255 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3256 		__put_user(t->sas_ss_size, &uss->ss_size);
3257 	if (err)
3258 		return err;
3259 	if (t->sas_ss_flags & SS_AUTODISARM)
3260 		sas_ss_reset(t);
3261 	return 0;
3262 }
3263 
3264 #ifdef CONFIG_COMPAT
3265 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3266 			const compat_stack_t __user *, uss_ptr,
3267 			compat_stack_t __user *, uoss_ptr)
3268 {
3269 	stack_t uss, uoss;
3270 	int ret;
3271 
3272 	if (uss_ptr) {
3273 		compat_stack_t uss32;
3274 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3275 			return -EFAULT;
3276 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3277 		uss.ss_flags = uss32.ss_flags;
3278 		uss.ss_size = uss32.ss_size;
3279 	}
3280 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3281 			     compat_user_stack_pointer());
3282 	if (ret >= 0 && uoss_ptr)  {
3283 		compat_stack_t old;
3284 		memset(&old, 0, sizeof(old));
3285 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3286 		old.ss_flags = uoss.ss_flags;
3287 		old.ss_size = uoss.ss_size;
3288 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3289 			ret = -EFAULT;
3290 	}
3291 	return ret;
3292 }
3293 
3294 int compat_restore_altstack(const compat_stack_t __user *uss)
3295 {
3296 	int err = compat_sys_sigaltstack(uss, NULL);
3297 	/* squash all but -EFAULT for now */
3298 	return err == -EFAULT ? err : 0;
3299 }
3300 
3301 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3302 {
3303 	int err;
3304 	struct task_struct *t = current;
3305 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3306 			 &uss->ss_sp) |
3307 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3308 		__put_user(t->sas_ss_size, &uss->ss_size);
3309 	if (err)
3310 		return err;
3311 	if (t->sas_ss_flags & SS_AUTODISARM)
3312 		sas_ss_reset(t);
3313 	return 0;
3314 }
3315 #endif
3316 
3317 #ifdef __ARCH_WANT_SYS_SIGPENDING
3318 
3319 /**
3320  *  sys_sigpending - examine pending signals
3321  *  @set: where mask of pending signal is returned
3322  */
3323 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3324 {
3325 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3326 }
3327 
3328 #ifdef CONFIG_COMPAT
3329 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3330 {
3331 	sigset_t set;
3332 	int err = do_sigpending(&set);
3333 	if (!err)
3334 		err = put_user(set.sig[0], set32);
3335 	return err;
3336 }
3337 #endif
3338 
3339 #endif
3340 
3341 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3342 /**
3343  *  sys_sigprocmask - examine and change blocked signals
3344  *  @how: whether to add, remove, or set signals
3345  *  @nset: signals to add or remove (if non-null)
3346  *  @oset: previous value of signal mask if non-null
3347  *
3348  * Some platforms have their own version with special arguments;
3349  * others support only sys_rt_sigprocmask.
3350  */
3351 
3352 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3353 		old_sigset_t __user *, oset)
3354 {
3355 	old_sigset_t old_set, new_set;
3356 	sigset_t new_blocked;
3357 
3358 	old_set = current->blocked.sig[0];
3359 
3360 	if (nset) {
3361 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3362 			return -EFAULT;
3363 
3364 		new_blocked = current->blocked;
3365 
3366 		switch (how) {
3367 		case SIG_BLOCK:
3368 			sigaddsetmask(&new_blocked, new_set);
3369 			break;
3370 		case SIG_UNBLOCK:
3371 			sigdelsetmask(&new_blocked, new_set);
3372 			break;
3373 		case SIG_SETMASK:
3374 			new_blocked.sig[0] = new_set;
3375 			break;
3376 		default:
3377 			return -EINVAL;
3378 		}
3379 
3380 		set_current_blocked(&new_blocked);
3381 	}
3382 
3383 	if (oset) {
3384 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3385 			return -EFAULT;
3386 	}
3387 
3388 	return 0;
3389 }
3390 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3391 
3392 #ifndef CONFIG_ODD_RT_SIGACTION
3393 /**
3394  *  sys_rt_sigaction - alter an action taken by a process
3395  *  @sig: signal to be sent
3396  *  @act: new sigaction
3397  *  @oact: used to save the previous sigaction
3398  *  @sigsetsize: size of sigset_t type
3399  */
3400 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3401 		const struct sigaction __user *, act,
3402 		struct sigaction __user *, oact,
3403 		size_t, sigsetsize)
3404 {
3405 	struct k_sigaction new_sa, old_sa;
3406 	int ret = -EINVAL;
3407 
3408 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3409 	if (sigsetsize != sizeof(sigset_t))
3410 		goto out;
3411 
3412 	if (act) {
3413 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3414 			return -EFAULT;
3415 	}
3416 
3417 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3418 
3419 	if (!ret && oact) {
3420 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3421 			return -EFAULT;
3422 	}
3423 out:
3424 	return ret;
3425 }
3426 #ifdef CONFIG_COMPAT
3427 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3428 		const struct compat_sigaction __user *, act,
3429 		struct compat_sigaction __user *, oact,
3430 		compat_size_t, sigsetsize)
3431 {
3432 	struct k_sigaction new_ka, old_ka;
3433 #ifdef __ARCH_HAS_SA_RESTORER
3434 	compat_uptr_t restorer;
3435 #endif
3436 	int ret;
3437 
3438 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3439 	if (sigsetsize != sizeof(compat_sigset_t))
3440 		return -EINVAL;
3441 
3442 	if (act) {
3443 		compat_uptr_t handler;
3444 		ret = get_user(handler, &act->sa_handler);
3445 		new_ka.sa.sa_handler = compat_ptr(handler);
3446 #ifdef __ARCH_HAS_SA_RESTORER
3447 		ret |= get_user(restorer, &act->sa_restorer);
3448 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3449 #endif
3450 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3451 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3452 		if (ret)
3453 			return -EFAULT;
3454 	}
3455 
3456 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3457 	if (!ret && oact) {
3458 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3459 			       &oact->sa_handler);
3460 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3461 					 sizeof(oact->sa_mask));
3462 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3463 #ifdef __ARCH_HAS_SA_RESTORER
3464 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3465 				&oact->sa_restorer);
3466 #endif
3467 	}
3468 	return ret;
3469 }
3470 #endif
3471 #endif /* !CONFIG_ODD_RT_SIGACTION */
3472 
3473 #ifdef CONFIG_OLD_SIGACTION
3474 SYSCALL_DEFINE3(sigaction, int, sig,
3475 		const struct old_sigaction __user *, act,
3476 	        struct old_sigaction __user *, oact)
3477 {
3478 	struct k_sigaction new_ka, old_ka;
3479 	int ret;
3480 
3481 	if (act) {
3482 		old_sigset_t mask;
3483 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3484 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3485 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3486 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3487 		    __get_user(mask, &act->sa_mask))
3488 			return -EFAULT;
3489 #ifdef __ARCH_HAS_KA_RESTORER
3490 		new_ka.ka_restorer = NULL;
3491 #endif
3492 		siginitset(&new_ka.sa.sa_mask, mask);
3493 	}
3494 
3495 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3496 
3497 	if (!ret && oact) {
3498 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3499 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3500 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3501 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3502 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3503 			return -EFAULT;
3504 	}
3505 
3506 	return ret;
3507 }
3508 #endif
3509 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3510 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3511 		const struct compat_old_sigaction __user *, act,
3512 	        struct compat_old_sigaction __user *, oact)
3513 {
3514 	struct k_sigaction new_ka, old_ka;
3515 	int ret;
3516 	compat_old_sigset_t mask;
3517 	compat_uptr_t handler, restorer;
3518 
3519 	if (act) {
3520 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3521 		    __get_user(handler, &act->sa_handler) ||
3522 		    __get_user(restorer, &act->sa_restorer) ||
3523 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3524 		    __get_user(mask, &act->sa_mask))
3525 			return -EFAULT;
3526 
3527 #ifdef __ARCH_HAS_KA_RESTORER
3528 		new_ka.ka_restorer = NULL;
3529 #endif
3530 		new_ka.sa.sa_handler = compat_ptr(handler);
3531 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3532 		siginitset(&new_ka.sa.sa_mask, mask);
3533 	}
3534 
3535 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3536 
3537 	if (!ret && oact) {
3538 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3539 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3540 			       &oact->sa_handler) ||
3541 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3542 			       &oact->sa_restorer) ||
3543 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3544 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3545 			return -EFAULT;
3546 	}
3547 	return ret;
3548 }
3549 #endif
3550 
3551 #ifdef CONFIG_SGETMASK_SYSCALL
3552 
3553 /*
3554  * For backwards compatibility.  Functionality superseded by sigprocmask.
3555  */
3556 SYSCALL_DEFINE0(sgetmask)
3557 {
3558 	/* SMP safe */
3559 	return current->blocked.sig[0];
3560 }
3561 
3562 SYSCALL_DEFINE1(ssetmask, int, newmask)
3563 {
3564 	int old = current->blocked.sig[0];
3565 	sigset_t newset;
3566 
3567 	siginitset(&newset, newmask);
3568 	set_current_blocked(&newset);
3569 
3570 	return old;
3571 }
3572 #endif /* CONFIG_SGETMASK_SYSCALL */
3573 
3574 #ifdef __ARCH_WANT_SYS_SIGNAL
3575 /*
3576  * For backwards compatibility.  Functionality superseded by sigaction.
3577  */
3578 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3579 {
3580 	struct k_sigaction new_sa, old_sa;
3581 	int ret;
3582 
3583 	new_sa.sa.sa_handler = handler;
3584 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3585 	sigemptyset(&new_sa.sa.sa_mask);
3586 
3587 	ret = do_sigaction(sig, &new_sa, &old_sa);
3588 
3589 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3590 }
3591 #endif /* __ARCH_WANT_SYS_SIGNAL */
3592 
3593 #ifdef __ARCH_WANT_SYS_PAUSE
3594 
3595 SYSCALL_DEFINE0(pause)
3596 {
3597 	while (!signal_pending(current)) {
3598 		__set_current_state(TASK_INTERRUPTIBLE);
3599 		schedule();
3600 	}
3601 	return -ERESTARTNOHAND;
3602 }
3603 
3604 #endif
3605 
3606 static int sigsuspend(sigset_t *set)
3607 {
3608 	current->saved_sigmask = current->blocked;
3609 	set_current_blocked(set);
3610 
3611 	while (!signal_pending(current)) {
3612 		__set_current_state(TASK_INTERRUPTIBLE);
3613 		schedule();
3614 	}
3615 	set_restore_sigmask();
3616 	return -ERESTARTNOHAND;
3617 }
3618 
3619 /**
3620  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3621  *	@unewset value until a signal is received
3622  *  @unewset: new signal mask value
3623  *  @sigsetsize: size of sigset_t type
3624  */
3625 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3626 {
3627 	sigset_t newset;
3628 
3629 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3630 	if (sigsetsize != sizeof(sigset_t))
3631 		return -EINVAL;
3632 
3633 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3634 		return -EFAULT;
3635 	return sigsuspend(&newset);
3636 }
3637 
3638 #ifdef CONFIG_COMPAT
3639 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3640 {
3641 	sigset_t newset;
3642 
3643 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3644 	if (sigsetsize != sizeof(sigset_t))
3645 		return -EINVAL;
3646 
3647 	if (get_compat_sigset(&newset, unewset))
3648 		return -EFAULT;
3649 	return sigsuspend(&newset);
3650 }
3651 #endif
3652 
3653 #ifdef CONFIG_OLD_SIGSUSPEND
3654 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3655 {
3656 	sigset_t blocked;
3657 	siginitset(&blocked, mask);
3658 	return sigsuspend(&blocked);
3659 }
3660 #endif
3661 #ifdef CONFIG_OLD_SIGSUSPEND3
3662 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3663 {
3664 	sigset_t blocked;
3665 	siginitset(&blocked, mask);
3666 	return sigsuspend(&blocked);
3667 }
3668 #endif
3669 
3670 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3671 {
3672 	return NULL;
3673 }
3674 
3675 void __init signals_init(void)
3676 {
3677 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3678 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3679 		!= offsetof(struct siginfo, _sifields._pad));
3680 
3681 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3682 }
3683 
3684 #ifdef CONFIG_KGDB_KDB
3685 #include <linux/kdb.h>
3686 /*
3687  * kdb_send_sig_info - Allows kdb to send signals without exposing
3688  * signal internals.  This function checks if the required locks are
3689  * available before calling the main signal code, to avoid kdb
3690  * deadlocks.
3691  */
3692 void
3693 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3694 {
3695 	static struct task_struct *kdb_prev_t;
3696 	int sig, new_t;
3697 	if (!spin_trylock(&t->sighand->siglock)) {
3698 		kdb_printf("Can't do kill command now.\n"
3699 			   "The sigmask lock is held somewhere else in "
3700 			   "kernel, try again later\n");
3701 		return;
3702 	}
3703 	spin_unlock(&t->sighand->siglock);
3704 	new_t = kdb_prev_t != t;
3705 	kdb_prev_t = t;
3706 	if (t->state != TASK_RUNNING && new_t) {
3707 		kdb_printf("Process is not RUNNING, sending a signal from "
3708 			   "kdb risks deadlock\n"
3709 			   "on the run queue locks. "
3710 			   "The signal has _not_ been sent.\n"
3711 			   "Reissue the kill command if you want to risk "
3712 			   "the deadlock.\n");
3713 		return;
3714 	}
3715 	sig = info->si_signo;
3716 	if (send_sig_info(sig, info, t))
3717 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3718 			   sig, t->pid);
3719 	else
3720 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3721 }
3722 #endif	/* CONFIG_KGDB_KDB */
3723