1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 #include <linux/posix-timers.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/signal.h> 46 47 #include <asm/param.h> 48 #include <linux/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/siginfo.h> 51 #include <asm/cacheflush.h> 52 #include "audit.h" /* audit_signal_info() */ 53 54 /* 55 * SLAB caches for signal bits. 56 */ 57 58 static struct kmem_cache *sigqueue_cachep; 59 60 int print_fatal_signals __read_mostly; 61 62 static void __user *sig_handler(struct task_struct *t, int sig) 63 { 64 return t->sighand->action[sig - 1].sa.sa_handler; 65 } 66 67 static int sig_handler_ignored(void __user *handler, int sig) 68 { 69 /* Is it explicitly or implicitly ignored? */ 70 return handler == SIG_IGN || 71 (handler == SIG_DFL && sig_kernel_ignore(sig)); 72 } 73 74 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 75 { 76 void __user *handler; 77 78 handler = sig_handler(t, sig); 79 80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 81 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 82 return 1; 83 84 return sig_handler_ignored(handler, sig); 85 } 86 87 static int sig_ignored(struct task_struct *t, int sig, bool force) 88 { 89 /* 90 * Blocked signals are never ignored, since the 91 * signal handler may change by the time it is 92 * unblocked. 93 */ 94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 95 return 0; 96 97 /* 98 * Tracers may want to know about even ignored signal unless it 99 * is SIGKILL which can't be reported anyway but can be ignored 100 * by SIGNAL_UNKILLABLE task. 101 */ 102 if (t->ptrace && sig != SIGKILL) 103 return 0; 104 105 return sig_task_ignored(t, sig, force); 106 } 107 108 /* 109 * Re-calculate pending state from the set of locally pending 110 * signals, globally pending signals, and blocked signals. 111 */ 112 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 113 { 114 unsigned long ready; 115 long i; 116 117 switch (_NSIG_WORDS) { 118 default: 119 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 120 ready |= signal->sig[i] &~ blocked->sig[i]; 121 break; 122 123 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 124 ready |= signal->sig[2] &~ blocked->sig[2]; 125 ready |= signal->sig[1] &~ blocked->sig[1]; 126 ready |= signal->sig[0] &~ blocked->sig[0]; 127 break; 128 129 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 130 ready |= signal->sig[0] &~ blocked->sig[0]; 131 break; 132 133 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 134 } 135 return ready != 0; 136 } 137 138 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 139 140 static int recalc_sigpending_tsk(struct task_struct *t) 141 { 142 if ((t->jobctl & JOBCTL_PENDING_MASK) || 143 PENDING(&t->pending, &t->blocked) || 144 PENDING(&t->signal->shared_pending, &t->blocked)) { 145 set_tsk_thread_flag(t, TIF_SIGPENDING); 146 return 1; 147 } 148 /* 149 * We must never clear the flag in another thread, or in current 150 * when it's possible the current syscall is returning -ERESTART*. 151 * So we don't clear it here, and only callers who know they should do. 152 */ 153 return 0; 154 } 155 156 /* 157 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 158 * This is superfluous when called on current, the wakeup is a harmless no-op. 159 */ 160 void recalc_sigpending_and_wake(struct task_struct *t) 161 { 162 if (recalc_sigpending_tsk(t)) 163 signal_wake_up(t, 0); 164 } 165 166 void recalc_sigpending(void) 167 { 168 if (!recalc_sigpending_tsk(current) && !freezing(current)) 169 clear_thread_flag(TIF_SIGPENDING); 170 171 } 172 173 /* Given the mask, find the first available signal that should be serviced. */ 174 175 #define SYNCHRONOUS_MASK \ 176 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 177 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 178 179 int next_signal(struct sigpending *pending, sigset_t *mask) 180 { 181 unsigned long i, *s, *m, x; 182 int sig = 0; 183 184 s = pending->signal.sig; 185 m = mask->sig; 186 187 /* 188 * Handle the first word specially: it contains the 189 * synchronous signals that need to be dequeued first. 190 */ 191 x = *s &~ *m; 192 if (x) { 193 if (x & SYNCHRONOUS_MASK) 194 x &= SYNCHRONOUS_MASK; 195 sig = ffz(~x) + 1; 196 return sig; 197 } 198 199 switch (_NSIG_WORDS) { 200 default: 201 for (i = 1; i < _NSIG_WORDS; ++i) { 202 x = *++s &~ *++m; 203 if (!x) 204 continue; 205 sig = ffz(~x) + i*_NSIG_BPW + 1; 206 break; 207 } 208 break; 209 210 case 2: 211 x = s[1] &~ m[1]; 212 if (!x) 213 break; 214 sig = ffz(~x) + _NSIG_BPW + 1; 215 break; 216 217 case 1: 218 /* Nothing to do */ 219 break; 220 } 221 222 return sig; 223 } 224 225 static inline void print_dropped_signal(int sig) 226 { 227 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 228 229 if (!print_fatal_signals) 230 return; 231 232 if (!__ratelimit(&ratelimit_state)) 233 return; 234 235 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 236 current->comm, current->pid, sig); 237 } 238 239 /** 240 * task_set_jobctl_pending - set jobctl pending bits 241 * @task: target task 242 * @mask: pending bits to set 243 * 244 * Clear @mask from @task->jobctl. @mask must be subset of 245 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 246 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 247 * cleared. If @task is already being killed or exiting, this function 248 * becomes noop. 249 * 250 * CONTEXT: 251 * Must be called with @task->sighand->siglock held. 252 * 253 * RETURNS: 254 * %true if @mask is set, %false if made noop because @task was dying. 255 */ 256 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 257 { 258 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 259 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 260 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 261 262 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 263 return false; 264 265 if (mask & JOBCTL_STOP_SIGMASK) 266 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 267 268 task->jobctl |= mask; 269 return true; 270 } 271 272 /** 273 * task_clear_jobctl_trapping - clear jobctl trapping bit 274 * @task: target task 275 * 276 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 277 * Clear it and wake up the ptracer. Note that we don't need any further 278 * locking. @task->siglock guarantees that @task->parent points to the 279 * ptracer. 280 * 281 * CONTEXT: 282 * Must be called with @task->sighand->siglock held. 283 */ 284 void task_clear_jobctl_trapping(struct task_struct *task) 285 { 286 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 287 task->jobctl &= ~JOBCTL_TRAPPING; 288 smp_mb(); /* advised by wake_up_bit() */ 289 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 290 } 291 } 292 293 /** 294 * task_clear_jobctl_pending - clear jobctl pending bits 295 * @task: target task 296 * @mask: pending bits to clear 297 * 298 * Clear @mask from @task->jobctl. @mask must be subset of 299 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 300 * STOP bits are cleared together. 301 * 302 * If clearing of @mask leaves no stop or trap pending, this function calls 303 * task_clear_jobctl_trapping(). 304 * 305 * CONTEXT: 306 * Must be called with @task->sighand->siglock held. 307 */ 308 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 309 { 310 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 311 312 if (mask & JOBCTL_STOP_PENDING) 313 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 314 315 task->jobctl &= ~mask; 316 317 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 318 task_clear_jobctl_trapping(task); 319 } 320 321 /** 322 * task_participate_group_stop - participate in a group stop 323 * @task: task participating in a group stop 324 * 325 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 326 * Group stop states are cleared and the group stop count is consumed if 327 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 328 * stop, the appropriate %SIGNAL_* flags are set. 329 * 330 * CONTEXT: 331 * Must be called with @task->sighand->siglock held. 332 * 333 * RETURNS: 334 * %true if group stop completion should be notified to the parent, %false 335 * otherwise. 336 */ 337 static bool task_participate_group_stop(struct task_struct *task) 338 { 339 struct signal_struct *sig = task->signal; 340 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 341 342 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 343 344 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 345 346 if (!consume) 347 return false; 348 349 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 350 sig->group_stop_count--; 351 352 /* 353 * Tell the caller to notify completion iff we are entering into a 354 * fresh group stop. Read comment in do_signal_stop() for details. 355 */ 356 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 357 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 358 return true; 359 } 360 return false; 361 } 362 363 /* 364 * allocate a new signal queue record 365 * - this may be called without locks if and only if t == current, otherwise an 366 * appropriate lock must be held to stop the target task from exiting 367 */ 368 static struct sigqueue * 369 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 370 { 371 struct sigqueue *q = NULL; 372 struct user_struct *user; 373 374 /* 375 * Protect access to @t credentials. This can go away when all 376 * callers hold rcu read lock. 377 */ 378 rcu_read_lock(); 379 user = get_uid(__task_cred(t)->user); 380 atomic_inc(&user->sigpending); 381 rcu_read_unlock(); 382 383 if (override_rlimit || 384 atomic_read(&user->sigpending) <= 385 task_rlimit(t, RLIMIT_SIGPENDING)) { 386 q = kmem_cache_alloc(sigqueue_cachep, flags); 387 } else { 388 print_dropped_signal(sig); 389 } 390 391 if (unlikely(q == NULL)) { 392 atomic_dec(&user->sigpending); 393 free_uid(user); 394 } else { 395 INIT_LIST_HEAD(&q->list); 396 q->flags = 0; 397 q->user = user; 398 } 399 400 return q; 401 } 402 403 static void __sigqueue_free(struct sigqueue *q) 404 { 405 if (q->flags & SIGQUEUE_PREALLOC) 406 return; 407 atomic_dec(&q->user->sigpending); 408 free_uid(q->user); 409 kmem_cache_free(sigqueue_cachep, q); 410 } 411 412 void flush_sigqueue(struct sigpending *queue) 413 { 414 struct sigqueue *q; 415 416 sigemptyset(&queue->signal); 417 while (!list_empty(&queue->list)) { 418 q = list_entry(queue->list.next, struct sigqueue , list); 419 list_del_init(&q->list); 420 __sigqueue_free(q); 421 } 422 } 423 424 /* 425 * Flush all pending signals for this kthread. 426 */ 427 void flush_signals(struct task_struct *t) 428 { 429 unsigned long flags; 430 431 spin_lock_irqsave(&t->sighand->siglock, flags); 432 clear_tsk_thread_flag(t, TIF_SIGPENDING); 433 flush_sigqueue(&t->pending); 434 flush_sigqueue(&t->signal->shared_pending); 435 spin_unlock_irqrestore(&t->sighand->siglock, flags); 436 } 437 438 #ifdef CONFIG_POSIX_TIMERS 439 static void __flush_itimer_signals(struct sigpending *pending) 440 { 441 sigset_t signal, retain; 442 struct sigqueue *q, *n; 443 444 signal = pending->signal; 445 sigemptyset(&retain); 446 447 list_for_each_entry_safe(q, n, &pending->list, list) { 448 int sig = q->info.si_signo; 449 450 if (likely(q->info.si_code != SI_TIMER)) { 451 sigaddset(&retain, sig); 452 } else { 453 sigdelset(&signal, sig); 454 list_del_init(&q->list); 455 __sigqueue_free(q); 456 } 457 } 458 459 sigorsets(&pending->signal, &signal, &retain); 460 } 461 462 void flush_itimer_signals(void) 463 { 464 struct task_struct *tsk = current; 465 unsigned long flags; 466 467 spin_lock_irqsave(&tsk->sighand->siglock, flags); 468 __flush_itimer_signals(&tsk->pending); 469 __flush_itimer_signals(&tsk->signal->shared_pending); 470 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 471 } 472 #endif 473 474 void ignore_signals(struct task_struct *t) 475 { 476 int i; 477 478 for (i = 0; i < _NSIG; ++i) 479 t->sighand->action[i].sa.sa_handler = SIG_IGN; 480 481 flush_signals(t); 482 } 483 484 /* 485 * Flush all handlers for a task. 486 */ 487 488 void 489 flush_signal_handlers(struct task_struct *t, int force_default) 490 { 491 int i; 492 struct k_sigaction *ka = &t->sighand->action[0]; 493 for (i = _NSIG ; i != 0 ; i--) { 494 if (force_default || ka->sa.sa_handler != SIG_IGN) 495 ka->sa.sa_handler = SIG_DFL; 496 ka->sa.sa_flags = 0; 497 #ifdef __ARCH_HAS_SA_RESTORER 498 ka->sa.sa_restorer = NULL; 499 #endif 500 sigemptyset(&ka->sa.sa_mask); 501 ka++; 502 } 503 } 504 505 int unhandled_signal(struct task_struct *tsk, int sig) 506 { 507 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 508 if (is_global_init(tsk)) 509 return 1; 510 if (handler != SIG_IGN && handler != SIG_DFL) 511 return 0; 512 /* if ptraced, let the tracer determine */ 513 return !tsk->ptrace; 514 } 515 516 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info, 517 bool *resched_timer) 518 { 519 struct sigqueue *q, *first = NULL; 520 521 /* 522 * Collect the siginfo appropriate to this signal. Check if 523 * there is another siginfo for the same signal. 524 */ 525 list_for_each_entry(q, &list->list, list) { 526 if (q->info.si_signo == sig) { 527 if (first) 528 goto still_pending; 529 first = q; 530 } 531 } 532 533 sigdelset(&list->signal, sig); 534 535 if (first) { 536 still_pending: 537 list_del_init(&first->list); 538 copy_siginfo(info, &first->info); 539 540 *resched_timer = 541 (first->flags & SIGQUEUE_PREALLOC) && 542 (info->si_code == SI_TIMER) && 543 (info->si_sys_private); 544 545 __sigqueue_free(first); 546 } else { 547 /* 548 * Ok, it wasn't in the queue. This must be 549 * a fast-pathed signal or we must have been 550 * out of queue space. So zero out the info. 551 */ 552 info->si_signo = sig; 553 info->si_errno = 0; 554 info->si_code = SI_USER; 555 info->si_pid = 0; 556 info->si_uid = 0; 557 } 558 } 559 560 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 561 siginfo_t *info, bool *resched_timer) 562 { 563 int sig = next_signal(pending, mask); 564 565 if (sig) 566 collect_signal(sig, pending, info, resched_timer); 567 return sig; 568 } 569 570 /* 571 * Dequeue a signal and return the element to the caller, which is 572 * expected to free it. 573 * 574 * All callers have to hold the siglock. 575 */ 576 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 577 { 578 bool resched_timer = false; 579 int signr; 580 581 /* We only dequeue private signals from ourselves, we don't let 582 * signalfd steal them 583 */ 584 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 585 if (!signr) { 586 signr = __dequeue_signal(&tsk->signal->shared_pending, 587 mask, info, &resched_timer); 588 #ifdef CONFIG_POSIX_TIMERS 589 /* 590 * itimer signal ? 591 * 592 * itimers are process shared and we restart periodic 593 * itimers in the signal delivery path to prevent DoS 594 * attacks in the high resolution timer case. This is 595 * compliant with the old way of self-restarting 596 * itimers, as the SIGALRM is a legacy signal and only 597 * queued once. Changing the restart behaviour to 598 * restart the timer in the signal dequeue path is 599 * reducing the timer noise on heavy loaded !highres 600 * systems too. 601 */ 602 if (unlikely(signr == SIGALRM)) { 603 struct hrtimer *tmr = &tsk->signal->real_timer; 604 605 if (!hrtimer_is_queued(tmr) && 606 tsk->signal->it_real_incr != 0) { 607 hrtimer_forward(tmr, tmr->base->get_time(), 608 tsk->signal->it_real_incr); 609 hrtimer_restart(tmr); 610 } 611 } 612 #endif 613 } 614 615 recalc_sigpending(); 616 if (!signr) 617 return 0; 618 619 if (unlikely(sig_kernel_stop(signr))) { 620 /* 621 * Set a marker that we have dequeued a stop signal. Our 622 * caller might release the siglock and then the pending 623 * stop signal it is about to process is no longer in the 624 * pending bitmasks, but must still be cleared by a SIGCONT 625 * (and overruled by a SIGKILL). So those cases clear this 626 * shared flag after we've set it. Note that this flag may 627 * remain set after the signal we return is ignored or 628 * handled. That doesn't matter because its only purpose 629 * is to alert stop-signal processing code when another 630 * processor has come along and cleared the flag. 631 */ 632 current->jobctl |= JOBCTL_STOP_DEQUEUED; 633 } 634 #ifdef CONFIG_POSIX_TIMERS 635 if (resched_timer) { 636 /* 637 * Release the siglock to ensure proper locking order 638 * of timer locks outside of siglocks. Note, we leave 639 * irqs disabled here, since the posix-timers code is 640 * about to disable them again anyway. 641 */ 642 spin_unlock(&tsk->sighand->siglock); 643 posixtimer_rearm(info); 644 spin_lock(&tsk->sighand->siglock); 645 } 646 #endif 647 return signr; 648 } 649 650 /* 651 * Tell a process that it has a new active signal.. 652 * 653 * NOTE! we rely on the previous spin_lock to 654 * lock interrupts for us! We can only be called with 655 * "siglock" held, and the local interrupt must 656 * have been disabled when that got acquired! 657 * 658 * No need to set need_resched since signal event passing 659 * goes through ->blocked 660 */ 661 void signal_wake_up_state(struct task_struct *t, unsigned int state) 662 { 663 set_tsk_thread_flag(t, TIF_SIGPENDING); 664 /* 665 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 666 * case. We don't check t->state here because there is a race with it 667 * executing another processor and just now entering stopped state. 668 * By using wake_up_state, we ensure the process will wake up and 669 * handle its death signal. 670 */ 671 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 672 kick_process(t); 673 } 674 675 /* 676 * Remove signals in mask from the pending set and queue. 677 * Returns 1 if any signals were found. 678 * 679 * All callers must be holding the siglock. 680 */ 681 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 682 { 683 struct sigqueue *q, *n; 684 sigset_t m; 685 686 sigandsets(&m, mask, &s->signal); 687 if (sigisemptyset(&m)) 688 return 0; 689 690 sigandnsets(&s->signal, &s->signal, mask); 691 list_for_each_entry_safe(q, n, &s->list, list) { 692 if (sigismember(mask, q->info.si_signo)) { 693 list_del_init(&q->list); 694 __sigqueue_free(q); 695 } 696 } 697 return 1; 698 } 699 700 static inline int is_si_special(const struct siginfo *info) 701 { 702 return info <= SEND_SIG_FORCED; 703 } 704 705 static inline bool si_fromuser(const struct siginfo *info) 706 { 707 return info == SEND_SIG_NOINFO || 708 (!is_si_special(info) && SI_FROMUSER(info)); 709 } 710 711 /* 712 * called with RCU read lock from check_kill_permission() 713 */ 714 static int kill_ok_by_cred(struct task_struct *t) 715 { 716 const struct cred *cred = current_cred(); 717 const struct cred *tcred = __task_cred(t); 718 719 if (uid_eq(cred->euid, tcred->suid) || 720 uid_eq(cred->euid, tcred->uid) || 721 uid_eq(cred->uid, tcred->suid) || 722 uid_eq(cred->uid, tcred->uid)) 723 return 1; 724 725 if (ns_capable(tcred->user_ns, CAP_KILL)) 726 return 1; 727 728 return 0; 729 } 730 731 /* 732 * Bad permissions for sending the signal 733 * - the caller must hold the RCU read lock 734 */ 735 static int check_kill_permission(int sig, struct siginfo *info, 736 struct task_struct *t) 737 { 738 struct pid *sid; 739 int error; 740 741 if (!valid_signal(sig)) 742 return -EINVAL; 743 744 if (!si_fromuser(info)) 745 return 0; 746 747 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 748 if (error) 749 return error; 750 751 if (!same_thread_group(current, t) && 752 !kill_ok_by_cred(t)) { 753 switch (sig) { 754 case SIGCONT: 755 sid = task_session(t); 756 /* 757 * We don't return the error if sid == NULL. The 758 * task was unhashed, the caller must notice this. 759 */ 760 if (!sid || sid == task_session(current)) 761 break; 762 default: 763 return -EPERM; 764 } 765 } 766 767 return security_task_kill(t, info, sig, 0); 768 } 769 770 /** 771 * ptrace_trap_notify - schedule trap to notify ptracer 772 * @t: tracee wanting to notify tracer 773 * 774 * This function schedules sticky ptrace trap which is cleared on the next 775 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 776 * ptracer. 777 * 778 * If @t is running, STOP trap will be taken. If trapped for STOP and 779 * ptracer is listening for events, tracee is woken up so that it can 780 * re-trap for the new event. If trapped otherwise, STOP trap will be 781 * eventually taken without returning to userland after the existing traps 782 * are finished by PTRACE_CONT. 783 * 784 * CONTEXT: 785 * Must be called with @task->sighand->siglock held. 786 */ 787 static void ptrace_trap_notify(struct task_struct *t) 788 { 789 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 790 assert_spin_locked(&t->sighand->siglock); 791 792 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 793 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 794 } 795 796 /* 797 * Handle magic process-wide effects of stop/continue signals. Unlike 798 * the signal actions, these happen immediately at signal-generation 799 * time regardless of blocking, ignoring, or handling. This does the 800 * actual continuing for SIGCONT, but not the actual stopping for stop 801 * signals. The process stop is done as a signal action for SIG_DFL. 802 * 803 * Returns true if the signal should be actually delivered, otherwise 804 * it should be dropped. 805 */ 806 static bool prepare_signal(int sig, struct task_struct *p, bool force) 807 { 808 struct signal_struct *signal = p->signal; 809 struct task_struct *t; 810 sigset_t flush; 811 812 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 813 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 814 return sig == SIGKILL; 815 /* 816 * The process is in the middle of dying, nothing to do. 817 */ 818 } else if (sig_kernel_stop(sig)) { 819 /* 820 * This is a stop signal. Remove SIGCONT from all queues. 821 */ 822 siginitset(&flush, sigmask(SIGCONT)); 823 flush_sigqueue_mask(&flush, &signal->shared_pending); 824 for_each_thread(p, t) 825 flush_sigqueue_mask(&flush, &t->pending); 826 } else if (sig == SIGCONT) { 827 unsigned int why; 828 /* 829 * Remove all stop signals from all queues, wake all threads. 830 */ 831 siginitset(&flush, SIG_KERNEL_STOP_MASK); 832 flush_sigqueue_mask(&flush, &signal->shared_pending); 833 for_each_thread(p, t) { 834 flush_sigqueue_mask(&flush, &t->pending); 835 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 836 if (likely(!(t->ptrace & PT_SEIZED))) 837 wake_up_state(t, __TASK_STOPPED); 838 else 839 ptrace_trap_notify(t); 840 } 841 842 /* 843 * Notify the parent with CLD_CONTINUED if we were stopped. 844 * 845 * If we were in the middle of a group stop, we pretend it 846 * was already finished, and then continued. Since SIGCHLD 847 * doesn't queue we report only CLD_STOPPED, as if the next 848 * CLD_CONTINUED was dropped. 849 */ 850 why = 0; 851 if (signal->flags & SIGNAL_STOP_STOPPED) 852 why |= SIGNAL_CLD_CONTINUED; 853 else if (signal->group_stop_count) 854 why |= SIGNAL_CLD_STOPPED; 855 856 if (why) { 857 /* 858 * The first thread which returns from do_signal_stop() 859 * will take ->siglock, notice SIGNAL_CLD_MASK, and 860 * notify its parent. See get_signal_to_deliver(). 861 */ 862 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 863 signal->group_stop_count = 0; 864 signal->group_exit_code = 0; 865 } 866 } 867 868 return !sig_ignored(p, sig, force); 869 } 870 871 /* 872 * Test if P wants to take SIG. After we've checked all threads with this, 873 * it's equivalent to finding no threads not blocking SIG. Any threads not 874 * blocking SIG were ruled out because they are not running and already 875 * have pending signals. Such threads will dequeue from the shared queue 876 * as soon as they're available, so putting the signal on the shared queue 877 * will be equivalent to sending it to one such thread. 878 */ 879 static inline int wants_signal(int sig, struct task_struct *p) 880 { 881 if (sigismember(&p->blocked, sig)) 882 return 0; 883 if (p->flags & PF_EXITING) 884 return 0; 885 if (sig == SIGKILL) 886 return 1; 887 if (task_is_stopped_or_traced(p)) 888 return 0; 889 return task_curr(p) || !signal_pending(p); 890 } 891 892 static void complete_signal(int sig, struct task_struct *p, int group) 893 { 894 struct signal_struct *signal = p->signal; 895 struct task_struct *t; 896 897 /* 898 * Now find a thread we can wake up to take the signal off the queue. 899 * 900 * If the main thread wants the signal, it gets first crack. 901 * Probably the least surprising to the average bear. 902 */ 903 if (wants_signal(sig, p)) 904 t = p; 905 else if (!group || thread_group_empty(p)) 906 /* 907 * There is just one thread and it does not need to be woken. 908 * It will dequeue unblocked signals before it runs again. 909 */ 910 return; 911 else { 912 /* 913 * Otherwise try to find a suitable thread. 914 */ 915 t = signal->curr_target; 916 while (!wants_signal(sig, t)) { 917 t = next_thread(t); 918 if (t == signal->curr_target) 919 /* 920 * No thread needs to be woken. 921 * Any eligible threads will see 922 * the signal in the queue soon. 923 */ 924 return; 925 } 926 signal->curr_target = t; 927 } 928 929 /* 930 * Found a killable thread. If the signal will be fatal, 931 * then start taking the whole group down immediately. 932 */ 933 if (sig_fatal(p, sig) && 934 !(signal->flags & SIGNAL_GROUP_EXIT) && 935 !sigismember(&t->real_blocked, sig) && 936 (sig == SIGKILL || !p->ptrace)) { 937 /* 938 * This signal will be fatal to the whole group. 939 */ 940 if (!sig_kernel_coredump(sig)) { 941 /* 942 * Start a group exit and wake everybody up. 943 * This way we don't have other threads 944 * running and doing things after a slower 945 * thread has the fatal signal pending. 946 */ 947 signal->flags = SIGNAL_GROUP_EXIT; 948 signal->group_exit_code = sig; 949 signal->group_stop_count = 0; 950 t = p; 951 do { 952 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 953 sigaddset(&t->pending.signal, SIGKILL); 954 signal_wake_up(t, 1); 955 } while_each_thread(p, t); 956 return; 957 } 958 } 959 960 /* 961 * The signal is already in the shared-pending queue. 962 * Tell the chosen thread to wake up and dequeue it. 963 */ 964 signal_wake_up(t, sig == SIGKILL); 965 return; 966 } 967 968 static inline int legacy_queue(struct sigpending *signals, int sig) 969 { 970 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 971 } 972 973 #ifdef CONFIG_USER_NS 974 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 975 { 976 if (current_user_ns() == task_cred_xxx(t, user_ns)) 977 return; 978 979 if (SI_FROMKERNEL(info)) 980 return; 981 982 rcu_read_lock(); 983 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 984 make_kuid(current_user_ns(), info->si_uid)); 985 rcu_read_unlock(); 986 } 987 #else 988 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 989 { 990 return; 991 } 992 #endif 993 994 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 995 int group, int from_ancestor_ns) 996 { 997 struct sigpending *pending; 998 struct sigqueue *q; 999 int override_rlimit; 1000 int ret = 0, result; 1001 1002 assert_spin_locked(&t->sighand->siglock); 1003 1004 result = TRACE_SIGNAL_IGNORED; 1005 if (!prepare_signal(sig, t, 1006 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1007 goto ret; 1008 1009 pending = group ? &t->signal->shared_pending : &t->pending; 1010 /* 1011 * Short-circuit ignored signals and support queuing 1012 * exactly one non-rt signal, so that we can get more 1013 * detailed information about the cause of the signal. 1014 */ 1015 result = TRACE_SIGNAL_ALREADY_PENDING; 1016 if (legacy_queue(pending, sig)) 1017 goto ret; 1018 1019 result = TRACE_SIGNAL_DELIVERED; 1020 /* 1021 * fast-pathed signals for kernel-internal things like SIGSTOP 1022 * or SIGKILL. 1023 */ 1024 if (info == SEND_SIG_FORCED) 1025 goto out_set; 1026 1027 /* 1028 * Real-time signals must be queued if sent by sigqueue, or 1029 * some other real-time mechanism. It is implementation 1030 * defined whether kill() does so. We attempt to do so, on 1031 * the principle of least surprise, but since kill is not 1032 * allowed to fail with EAGAIN when low on memory we just 1033 * make sure at least one signal gets delivered and don't 1034 * pass on the info struct. 1035 */ 1036 if (sig < SIGRTMIN) 1037 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1038 else 1039 override_rlimit = 0; 1040 1041 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1042 if (q) { 1043 list_add_tail(&q->list, &pending->list); 1044 switch ((unsigned long) info) { 1045 case (unsigned long) SEND_SIG_NOINFO: 1046 q->info.si_signo = sig; 1047 q->info.si_errno = 0; 1048 q->info.si_code = SI_USER; 1049 q->info.si_pid = task_tgid_nr_ns(current, 1050 task_active_pid_ns(t)); 1051 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1052 break; 1053 case (unsigned long) SEND_SIG_PRIV: 1054 q->info.si_signo = sig; 1055 q->info.si_errno = 0; 1056 q->info.si_code = SI_KERNEL; 1057 q->info.si_pid = 0; 1058 q->info.si_uid = 0; 1059 break; 1060 default: 1061 copy_siginfo(&q->info, info); 1062 if (from_ancestor_ns) 1063 q->info.si_pid = 0; 1064 break; 1065 } 1066 1067 userns_fixup_signal_uid(&q->info, t); 1068 1069 } else if (!is_si_special(info)) { 1070 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1071 /* 1072 * Queue overflow, abort. We may abort if the 1073 * signal was rt and sent by user using something 1074 * other than kill(). 1075 */ 1076 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1077 ret = -EAGAIN; 1078 goto ret; 1079 } else { 1080 /* 1081 * This is a silent loss of information. We still 1082 * send the signal, but the *info bits are lost. 1083 */ 1084 result = TRACE_SIGNAL_LOSE_INFO; 1085 } 1086 } 1087 1088 out_set: 1089 signalfd_notify(t, sig); 1090 sigaddset(&pending->signal, sig); 1091 complete_signal(sig, t, group); 1092 ret: 1093 trace_signal_generate(sig, info, t, group, result); 1094 return ret; 1095 } 1096 1097 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1098 int group) 1099 { 1100 int from_ancestor_ns = 0; 1101 1102 #ifdef CONFIG_PID_NS 1103 from_ancestor_ns = si_fromuser(info) && 1104 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1105 #endif 1106 1107 return __send_signal(sig, info, t, group, from_ancestor_ns); 1108 } 1109 1110 static void print_fatal_signal(int signr) 1111 { 1112 struct pt_regs *regs = signal_pt_regs(); 1113 pr_info("potentially unexpected fatal signal %d.\n", signr); 1114 1115 #if defined(__i386__) && !defined(__arch_um__) 1116 pr_info("code at %08lx: ", regs->ip); 1117 { 1118 int i; 1119 for (i = 0; i < 16; i++) { 1120 unsigned char insn; 1121 1122 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1123 break; 1124 pr_cont("%02x ", insn); 1125 } 1126 } 1127 pr_cont("\n"); 1128 #endif 1129 preempt_disable(); 1130 show_regs(regs); 1131 preempt_enable(); 1132 } 1133 1134 static int __init setup_print_fatal_signals(char *str) 1135 { 1136 get_option (&str, &print_fatal_signals); 1137 1138 return 1; 1139 } 1140 1141 __setup("print-fatal-signals=", setup_print_fatal_signals); 1142 1143 int 1144 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1145 { 1146 return send_signal(sig, info, p, 1); 1147 } 1148 1149 static int 1150 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1151 { 1152 return send_signal(sig, info, t, 0); 1153 } 1154 1155 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1156 bool group) 1157 { 1158 unsigned long flags; 1159 int ret = -ESRCH; 1160 1161 if (lock_task_sighand(p, &flags)) { 1162 ret = send_signal(sig, info, p, group); 1163 unlock_task_sighand(p, &flags); 1164 } 1165 1166 return ret; 1167 } 1168 1169 /* 1170 * Force a signal that the process can't ignore: if necessary 1171 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1172 * 1173 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1174 * since we do not want to have a signal handler that was blocked 1175 * be invoked when user space had explicitly blocked it. 1176 * 1177 * We don't want to have recursive SIGSEGV's etc, for example, 1178 * that is why we also clear SIGNAL_UNKILLABLE. 1179 */ 1180 int 1181 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1182 { 1183 unsigned long int flags; 1184 int ret, blocked, ignored; 1185 struct k_sigaction *action; 1186 1187 spin_lock_irqsave(&t->sighand->siglock, flags); 1188 action = &t->sighand->action[sig-1]; 1189 ignored = action->sa.sa_handler == SIG_IGN; 1190 blocked = sigismember(&t->blocked, sig); 1191 if (blocked || ignored) { 1192 action->sa.sa_handler = SIG_DFL; 1193 if (blocked) { 1194 sigdelset(&t->blocked, sig); 1195 recalc_sigpending_and_wake(t); 1196 } 1197 } 1198 /* 1199 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1200 * debugging to leave init killable. 1201 */ 1202 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1203 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1204 ret = specific_send_sig_info(sig, info, t); 1205 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1206 1207 return ret; 1208 } 1209 1210 /* 1211 * Nuke all other threads in the group. 1212 */ 1213 int zap_other_threads(struct task_struct *p) 1214 { 1215 struct task_struct *t = p; 1216 int count = 0; 1217 1218 p->signal->group_stop_count = 0; 1219 1220 while_each_thread(p, t) { 1221 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1222 count++; 1223 1224 /* Don't bother with already dead threads */ 1225 if (t->exit_state) 1226 continue; 1227 sigaddset(&t->pending.signal, SIGKILL); 1228 signal_wake_up(t, 1); 1229 } 1230 1231 return count; 1232 } 1233 1234 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1235 unsigned long *flags) 1236 { 1237 struct sighand_struct *sighand; 1238 1239 for (;;) { 1240 /* 1241 * Disable interrupts early to avoid deadlocks. 1242 * See rcu_read_unlock() comment header for details. 1243 */ 1244 local_irq_save(*flags); 1245 rcu_read_lock(); 1246 sighand = rcu_dereference(tsk->sighand); 1247 if (unlikely(sighand == NULL)) { 1248 rcu_read_unlock(); 1249 local_irq_restore(*flags); 1250 break; 1251 } 1252 /* 1253 * This sighand can be already freed and even reused, but 1254 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1255 * initializes ->siglock: this slab can't go away, it has 1256 * the same object type, ->siglock can't be reinitialized. 1257 * 1258 * We need to ensure that tsk->sighand is still the same 1259 * after we take the lock, we can race with de_thread() or 1260 * __exit_signal(). In the latter case the next iteration 1261 * must see ->sighand == NULL. 1262 */ 1263 spin_lock(&sighand->siglock); 1264 if (likely(sighand == tsk->sighand)) { 1265 rcu_read_unlock(); 1266 break; 1267 } 1268 spin_unlock(&sighand->siglock); 1269 rcu_read_unlock(); 1270 local_irq_restore(*flags); 1271 } 1272 1273 return sighand; 1274 } 1275 1276 /* 1277 * send signal info to all the members of a group 1278 */ 1279 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1280 { 1281 int ret; 1282 1283 rcu_read_lock(); 1284 ret = check_kill_permission(sig, info, p); 1285 rcu_read_unlock(); 1286 1287 if (!ret && sig) 1288 ret = do_send_sig_info(sig, info, p, true); 1289 1290 return ret; 1291 } 1292 1293 /* 1294 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1295 * control characters do (^C, ^Z etc) 1296 * - the caller must hold at least a readlock on tasklist_lock 1297 */ 1298 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1299 { 1300 struct task_struct *p = NULL; 1301 int retval, success; 1302 1303 success = 0; 1304 retval = -ESRCH; 1305 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1306 int err = group_send_sig_info(sig, info, p); 1307 success |= !err; 1308 retval = err; 1309 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1310 return success ? 0 : retval; 1311 } 1312 1313 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1314 { 1315 int error = -ESRCH; 1316 struct task_struct *p; 1317 1318 for (;;) { 1319 rcu_read_lock(); 1320 p = pid_task(pid, PIDTYPE_PID); 1321 if (p) 1322 error = group_send_sig_info(sig, info, p); 1323 rcu_read_unlock(); 1324 if (likely(!p || error != -ESRCH)) 1325 return error; 1326 1327 /* 1328 * The task was unhashed in between, try again. If it 1329 * is dead, pid_task() will return NULL, if we race with 1330 * de_thread() it will find the new leader. 1331 */ 1332 } 1333 } 1334 1335 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1336 { 1337 int error; 1338 rcu_read_lock(); 1339 error = kill_pid_info(sig, info, find_vpid(pid)); 1340 rcu_read_unlock(); 1341 return error; 1342 } 1343 1344 static int kill_as_cred_perm(const struct cred *cred, 1345 struct task_struct *target) 1346 { 1347 const struct cred *pcred = __task_cred(target); 1348 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1349 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1350 return 0; 1351 return 1; 1352 } 1353 1354 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1355 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1356 const struct cred *cred, u32 secid) 1357 { 1358 int ret = -EINVAL; 1359 struct task_struct *p; 1360 unsigned long flags; 1361 1362 if (!valid_signal(sig)) 1363 return ret; 1364 1365 rcu_read_lock(); 1366 p = pid_task(pid, PIDTYPE_PID); 1367 if (!p) { 1368 ret = -ESRCH; 1369 goto out_unlock; 1370 } 1371 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1372 ret = -EPERM; 1373 goto out_unlock; 1374 } 1375 ret = security_task_kill(p, info, sig, secid); 1376 if (ret) 1377 goto out_unlock; 1378 1379 if (sig) { 1380 if (lock_task_sighand(p, &flags)) { 1381 ret = __send_signal(sig, info, p, 1, 0); 1382 unlock_task_sighand(p, &flags); 1383 } else 1384 ret = -ESRCH; 1385 } 1386 out_unlock: 1387 rcu_read_unlock(); 1388 return ret; 1389 } 1390 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1391 1392 /* 1393 * kill_something_info() interprets pid in interesting ways just like kill(2). 1394 * 1395 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1396 * is probably wrong. Should make it like BSD or SYSV. 1397 */ 1398 1399 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1400 { 1401 int ret; 1402 1403 if (pid > 0) { 1404 rcu_read_lock(); 1405 ret = kill_pid_info(sig, info, find_vpid(pid)); 1406 rcu_read_unlock(); 1407 return ret; 1408 } 1409 1410 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1411 if (pid == INT_MIN) 1412 return -ESRCH; 1413 1414 read_lock(&tasklist_lock); 1415 if (pid != -1) { 1416 ret = __kill_pgrp_info(sig, info, 1417 pid ? find_vpid(-pid) : task_pgrp(current)); 1418 } else { 1419 int retval = 0, count = 0; 1420 struct task_struct * p; 1421 1422 for_each_process(p) { 1423 if (task_pid_vnr(p) > 1 && 1424 !same_thread_group(p, current)) { 1425 int err = group_send_sig_info(sig, info, p); 1426 ++count; 1427 if (err != -EPERM) 1428 retval = err; 1429 } 1430 } 1431 ret = count ? retval : -ESRCH; 1432 } 1433 read_unlock(&tasklist_lock); 1434 1435 return ret; 1436 } 1437 1438 /* 1439 * These are for backward compatibility with the rest of the kernel source. 1440 */ 1441 1442 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1443 { 1444 /* 1445 * Make sure legacy kernel users don't send in bad values 1446 * (normal paths check this in check_kill_permission). 1447 */ 1448 if (!valid_signal(sig)) 1449 return -EINVAL; 1450 1451 return do_send_sig_info(sig, info, p, false); 1452 } 1453 1454 #define __si_special(priv) \ 1455 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1456 1457 int 1458 send_sig(int sig, struct task_struct *p, int priv) 1459 { 1460 return send_sig_info(sig, __si_special(priv), p); 1461 } 1462 1463 void 1464 force_sig(int sig, struct task_struct *p) 1465 { 1466 force_sig_info(sig, SEND_SIG_PRIV, p); 1467 } 1468 1469 /* 1470 * When things go south during signal handling, we 1471 * will force a SIGSEGV. And if the signal that caused 1472 * the problem was already a SIGSEGV, we'll want to 1473 * make sure we don't even try to deliver the signal.. 1474 */ 1475 int 1476 force_sigsegv(int sig, struct task_struct *p) 1477 { 1478 if (sig == SIGSEGV) { 1479 unsigned long flags; 1480 spin_lock_irqsave(&p->sighand->siglock, flags); 1481 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1482 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1483 } 1484 force_sig(SIGSEGV, p); 1485 return 0; 1486 } 1487 1488 int kill_pgrp(struct pid *pid, int sig, int priv) 1489 { 1490 int ret; 1491 1492 read_lock(&tasklist_lock); 1493 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1494 read_unlock(&tasklist_lock); 1495 1496 return ret; 1497 } 1498 EXPORT_SYMBOL(kill_pgrp); 1499 1500 int kill_pid(struct pid *pid, int sig, int priv) 1501 { 1502 return kill_pid_info(sig, __si_special(priv), pid); 1503 } 1504 EXPORT_SYMBOL(kill_pid); 1505 1506 /* 1507 * These functions support sending signals using preallocated sigqueue 1508 * structures. This is needed "because realtime applications cannot 1509 * afford to lose notifications of asynchronous events, like timer 1510 * expirations or I/O completions". In the case of POSIX Timers 1511 * we allocate the sigqueue structure from the timer_create. If this 1512 * allocation fails we are able to report the failure to the application 1513 * with an EAGAIN error. 1514 */ 1515 struct sigqueue *sigqueue_alloc(void) 1516 { 1517 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1518 1519 if (q) 1520 q->flags |= SIGQUEUE_PREALLOC; 1521 1522 return q; 1523 } 1524 1525 void sigqueue_free(struct sigqueue *q) 1526 { 1527 unsigned long flags; 1528 spinlock_t *lock = ¤t->sighand->siglock; 1529 1530 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1531 /* 1532 * We must hold ->siglock while testing q->list 1533 * to serialize with collect_signal() or with 1534 * __exit_signal()->flush_sigqueue(). 1535 */ 1536 spin_lock_irqsave(lock, flags); 1537 q->flags &= ~SIGQUEUE_PREALLOC; 1538 /* 1539 * If it is queued it will be freed when dequeued, 1540 * like the "regular" sigqueue. 1541 */ 1542 if (!list_empty(&q->list)) 1543 q = NULL; 1544 spin_unlock_irqrestore(lock, flags); 1545 1546 if (q) 1547 __sigqueue_free(q); 1548 } 1549 1550 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1551 { 1552 int sig = q->info.si_signo; 1553 struct sigpending *pending; 1554 unsigned long flags; 1555 int ret, result; 1556 1557 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1558 1559 ret = -1; 1560 if (!likely(lock_task_sighand(t, &flags))) 1561 goto ret; 1562 1563 ret = 1; /* the signal is ignored */ 1564 result = TRACE_SIGNAL_IGNORED; 1565 if (!prepare_signal(sig, t, false)) 1566 goto out; 1567 1568 ret = 0; 1569 if (unlikely(!list_empty(&q->list))) { 1570 /* 1571 * If an SI_TIMER entry is already queue just increment 1572 * the overrun count. 1573 */ 1574 BUG_ON(q->info.si_code != SI_TIMER); 1575 q->info.si_overrun++; 1576 result = TRACE_SIGNAL_ALREADY_PENDING; 1577 goto out; 1578 } 1579 q->info.si_overrun = 0; 1580 1581 signalfd_notify(t, sig); 1582 pending = group ? &t->signal->shared_pending : &t->pending; 1583 list_add_tail(&q->list, &pending->list); 1584 sigaddset(&pending->signal, sig); 1585 complete_signal(sig, t, group); 1586 result = TRACE_SIGNAL_DELIVERED; 1587 out: 1588 trace_signal_generate(sig, &q->info, t, group, result); 1589 unlock_task_sighand(t, &flags); 1590 ret: 1591 return ret; 1592 } 1593 1594 /* 1595 * Let a parent know about the death of a child. 1596 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1597 * 1598 * Returns true if our parent ignored us and so we've switched to 1599 * self-reaping. 1600 */ 1601 bool do_notify_parent(struct task_struct *tsk, int sig) 1602 { 1603 struct siginfo info; 1604 unsigned long flags; 1605 struct sighand_struct *psig; 1606 bool autoreap = false; 1607 u64 utime, stime; 1608 1609 BUG_ON(sig == -1); 1610 1611 /* do_notify_parent_cldstop should have been called instead. */ 1612 BUG_ON(task_is_stopped_or_traced(tsk)); 1613 1614 BUG_ON(!tsk->ptrace && 1615 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1616 1617 if (sig != SIGCHLD) { 1618 /* 1619 * This is only possible if parent == real_parent. 1620 * Check if it has changed security domain. 1621 */ 1622 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1623 sig = SIGCHLD; 1624 } 1625 1626 info.si_signo = sig; 1627 info.si_errno = 0; 1628 /* 1629 * We are under tasklist_lock here so our parent is tied to 1630 * us and cannot change. 1631 * 1632 * task_active_pid_ns will always return the same pid namespace 1633 * until a task passes through release_task. 1634 * 1635 * write_lock() currently calls preempt_disable() which is the 1636 * same as rcu_read_lock(), but according to Oleg, this is not 1637 * correct to rely on this 1638 */ 1639 rcu_read_lock(); 1640 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1641 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1642 task_uid(tsk)); 1643 rcu_read_unlock(); 1644 1645 task_cputime(tsk, &utime, &stime); 1646 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1647 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1648 1649 info.si_status = tsk->exit_code & 0x7f; 1650 if (tsk->exit_code & 0x80) 1651 info.si_code = CLD_DUMPED; 1652 else if (tsk->exit_code & 0x7f) 1653 info.si_code = CLD_KILLED; 1654 else { 1655 info.si_code = CLD_EXITED; 1656 info.si_status = tsk->exit_code >> 8; 1657 } 1658 1659 psig = tsk->parent->sighand; 1660 spin_lock_irqsave(&psig->siglock, flags); 1661 if (!tsk->ptrace && sig == SIGCHLD && 1662 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1663 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1664 /* 1665 * We are exiting and our parent doesn't care. POSIX.1 1666 * defines special semantics for setting SIGCHLD to SIG_IGN 1667 * or setting the SA_NOCLDWAIT flag: we should be reaped 1668 * automatically and not left for our parent's wait4 call. 1669 * Rather than having the parent do it as a magic kind of 1670 * signal handler, we just set this to tell do_exit that we 1671 * can be cleaned up without becoming a zombie. Note that 1672 * we still call __wake_up_parent in this case, because a 1673 * blocked sys_wait4 might now return -ECHILD. 1674 * 1675 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1676 * is implementation-defined: we do (if you don't want 1677 * it, just use SIG_IGN instead). 1678 */ 1679 autoreap = true; 1680 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1681 sig = 0; 1682 } 1683 if (valid_signal(sig) && sig) 1684 __group_send_sig_info(sig, &info, tsk->parent); 1685 __wake_up_parent(tsk, tsk->parent); 1686 spin_unlock_irqrestore(&psig->siglock, flags); 1687 1688 return autoreap; 1689 } 1690 1691 /** 1692 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1693 * @tsk: task reporting the state change 1694 * @for_ptracer: the notification is for ptracer 1695 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1696 * 1697 * Notify @tsk's parent that the stopped/continued state has changed. If 1698 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1699 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1700 * 1701 * CONTEXT: 1702 * Must be called with tasklist_lock at least read locked. 1703 */ 1704 static void do_notify_parent_cldstop(struct task_struct *tsk, 1705 bool for_ptracer, int why) 1706 { 1707 struct siginfo info; 1708 unsigned long flags; 1709 struct task_struct *parent; 1710 struct sighand_struct *sighand; 1711 u64 utime, stime; 1712 1713 if (for_ptracer) { 1714 parent = tsk->parent; 1715 } else { 1716 tsk = tsk->group_leader; 1717 parent = tsk->real_parent; 1718 } 1719 1720 info.si_signo = SIGCHLD; 1721 info.si_errno = 0; 1722 /* 1723 * see comment in do_notify_parent() about the following 4 lines 1724 */ 1725 rcu_read_lock(); 1726 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1727 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1728 rcu_read_unlock(); 1729 1730 task_cputime(tsk, &utime, &stime); 1731 info.si_utime = nsec_to_clock_t(utime); 1732 info.si_stime = nsec_to_clock_t(stime); 1733 1734 info.si_code = why; 1735 switch (why) { 1736 case CLD_CONTINUED: 1737 info.si_status = SIGCONT; 1738 break; 1739 case CLD_STOPPED: 1740 info.si_status = tsk->signal->group_exit_code & 0x7f; 1741 break; 1742 case CLD_TRAPPED: 1743 info.si_status = tsk->exit_code & 0x7f; 1744 break; 1745 default: 1746 BUG(); 1747 } 1748 1749 sighand = parent->sighand; 1750 spin_lock_irqsave(&sighand->siglock, flags); 1751 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1752 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1753 __group_send_sig_info(SIGCHLD, &info, parent); 1754 /* 1755 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1756 */ 1757 __wake_up_parent(tsk, parent); 1758 spin_unlock_irqrestore(&sighand->siglock, flags); 1759 } 1760 1761 static inline int may_ptrace_stop(void) 1762 { 1763 if (!likely(current->ptrace)) 1764 return 0; 1765 /* 1766 * Are we in the middle of do_coredump? 1767 * If so and our tracer is also part of the coredump stopping 1768 * is a deadlock situation, and pointless because our tracer 1769 * is dead so don't allow us to stop. 1770 * If SIGKILL was already sent before the caller unlocked 1771 * ->siglock we must see ->core_state != NULL. Otherwise it 1772 * is safe to enter schedule(). 1773 * 1774 * This is almost outdated, a task with the pending SIGKILL can't 1775 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1776 * after SIGKILL was already dequeued. 1777 */ 1778 if (unlikely(current->mm->core_state) && 1779 unlikely(current->mm == current->parent->mm)) 1780 return 0; 1781 1782 return 1; 1783 } 1784 1785 /* 1786 * Return non-zero if there is a SIGKILL that should be waking us up. 1787 * Called with the siglock held. 1788 */ 1789 static int sigkill_pending(struct task_struct *tsk) 1790 { 1791 return sigismember(&tsk->pending.signal, SIGKILL) || 1792 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1793 } 1794 1795 /* 1796 * This must be called with current->sighand->siglock held. 1797 * 1798 * This should be the path for all ptrace stops. 1799 * We always set current->last_siginfo while stopped here. 1800 * That makes it a way to test a stopped process for 1801 * being ptrace-stopped vs being job-control-stopped. 1802 * 1803 * If we actually decide not to stop at all because the tracer 1804 * is gone, we keep current->exit_code unless clear_code. 1805 */ 1806 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1807 __releases(¤t->sighand->siglock) 1808 __acquires(¤t->sighand->siglock) 1809 { 1810 bool gstop_done = false; 1811 1812 if (arch_ptrace_stop_needed(exit_code, info)) { 1813 /* 1814 * The arch code has something special to do before a 1815 * ptrace stop. This is allowed to block, e.g. for faults 1816 * on user stack pages. We can't keep the siglock while 1817 * calling arch_ptrace_stop, so we must release it now. 1818 * To preserve proper semantics, we must do this before 1819 * any signal bookkeeping like checking group_stop_count. 1820 * Meanwhile, a SIGKILL could come in before we retake the 1821 * siglock. That must prevent us from sleeping in TASK_TRACED. 1822 * So after regaining the lock, we must check for SIGKILL. 1823 */ 1824 spin_unlock_irq(¤t->sighand->siglock); 1825 arch_ptrace_stop(exit_code, info); 1826 spin_lock_irq(¤t->sighand->siglock); 1827 if (sigkill_pending(current)) 1828 return; 1829 } 1830 1831 /* 1832 * We're committing to trapping. TRACED should be visible before 1833 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1834 * Also, transition to TRACED and updates to ->jobctl should be 1835 * atomic with respect to siglock and should be done after the arch 1836 * hook as siglock is released and regrabbed across it. 1837 */ 1838 set_current_state(TASK_TRACED); 1839 1840 current->last_siginfo = info; 1841 current->exit_code = exit_code; 1842 1843 /* 1844 * If @why is CLD_STOPPED, we're trapping to participate in a group 1845 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1846 * across siglock relocks since INTERRUPT was scheduled, PENDING 1847 * could be clear now. We act as if SIGCONT is received after 1848 * TASK_TRACED is entered - ignore it. 1849 */ 1850 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1851 gstop_done = task_participate_group_stop(current); 1852 1853 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1854 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1855 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1856 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1857 1858 /* entering a trap, clear TRAPPING */ 1859 task_clear_jobctl_trapping(current); 1860 1861 spin_unlock_irq(¤t->sighand->siglock); 1862 read_lock(&tasklist_lock); 1863 if (may_ptrace_stop()) { 1864 /* 1865 * Notify parents of the stop. 1866 * 1867 * While ptraced, there are two parents - the ptracer and 1868 * the real_parent of the group_leader. The ptracer should 1869 * know about every stop while the real parent is only 1870 * interested in the completion of group stop. The states 1871 * for the two don't interact with each other. Notify 1872 * separately unless they're gonna be duplicates. 1873 */ 1874 do_notify_parent_cldstop(current, true, why); 1875 if (gstop_done && ptrace_reparented(current)) 1876 do_notify_parent_cldstop(current, false, why); 1877 1878 /* 1879 * Don't want to allow preemption here, because 1880 * sys_ptrace() needs this task to be inactive. 1881 * 1882 * XXX: implement read_unlock_no_resched(). 1883 */ 1884 preempt_disable(); 1885 read_unlock(&tasklist_lock); 1886 preempt_enable_no_resched(); 1887 freezable_schedule(); 1888 } else { 1889 /* 1890 * By the time we got the lock, our tracer went away. 1891 * Don't drop the lock yet, another tracer may come. 1892 * 1893 * If @gstop_done, the ptracer went away between group stop 1894 * completion and here. During detach, it would have set 1895 * JOBCTL_STOP_PENDING on us and we'll re-enter 1896 * TASK_STOPPED in do_signal_stop() on return, so notifying 1897 * the real parent of the group stop completion is enough. 1898 */ 1899 if (gstop_done) 1900 do_notify_parent_cldstop(current, false, why); 1901 1902 /* tasklist protects us from ptrace_freeze_traced() */ 1903 __set_current_state(TASK_RUNNING); 1904 if (clear_code) 1905 current->exit_code = 0; 1906 read_unlock(&tasklist_lock); 1907 } 1908 1909 /* 1910 * We are back. Now reacquire the siglock before touching 1911 * last_siginfo, so that we are sure to have synchronized with 1912 * any signal-sending on another CPU that wants to examine it. 1913 */ 1914 spin_lock_irq(¤t->sighand->siglock); 1915 current->last_siginfo = NULL; 1916 1917 /* LISTENING can be set only during STOP traps, clear it */ 1918 current->jobctl &= ~JOBCTL_LISTENING; 1919 1920 /* 1921 * Queued signals ignored us while we were stopped for tracing. 1922 * So check for any that we should take before resuming user mode. 1923 * This sets TIF_SIGPENDING, but never clears it. 1924 */ 1925 recalc_sigpending_tsk(current); 1926 } 1927 1928 static void ptrace_do_notify(int signr, int exit_code, int why) 1929 { 1930 siginfo_t info; 1931 1932 memset(&info, 0, sizeof info); 1933 info.si_signo = signr; 1934 info.si_code = exit_code; 1935 info.si_pid = task_pid_vnr(current); 1936 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1937 1938 /* Let the debugger run. */ 1939 ptrace_stop(exit_code, why, 1, &info); 1940 } 1941 1942 void ptrace_notify(int exit_code) 1943 { 1944 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1945 if (unlikely(current->task_works)) 1946 task_work_run(); 1947 1948 spin_lock_irq(¤t->sighand->siglock); 1949 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1950 spin_unlock_irq(¤t->sighand->siglock); 1951 } 1952 1953 /** 1954 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1955 * @signr: signr causing group stop if initiating 1956 * 1957 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1958 * and participate in it. If already set, participate in the existing 1959 * group stop. If participated in a group stop (and thus slept), %true is 1960 * returned with siglock released. 1961 * 1962 * If ptraced, this function doesn't handle stop itself. Instead, 1963 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1964 * untouched. The caller must ensure that INTERRUPT trap handling takes 1965 * places afterwards. 1966 * 1967 * CONTEXT: 1968 * Must be called with @current->sighand->siglock held, which is released 1969 * on %true return. 1970 * 1971 * RETURNS: 1972 * %false if group stop is already cancelled or ptrace trap is scheduled. 1973 * %true if participated in group stop. 1974 */ 1975 static bool do_signal_stop(int signr) 1976 __releases(¤t->sighand->siglock) 1977 { 1978 struct signal_struct *sig = current->signal; 1979 1980 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1981 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 1982 struct task_struct *t; 1983 1984 /* signr will be recorded in task->jobctl for retries */ 1985 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 1986 1987 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 1988 unlikely(signal_group_exit(sig))) 1989 return false; 1990 /* 1991 * There is no group stop already in progress. We must 1992 * initiate one now. 1993 * 1994 * While ptraced, a task may be resumed while group stop is 1995 * still in effect and then receive a stop signal and 1996 * initiate another group stop. This deviates from the 1997 * usual behavior as two consecutive stop signals can't 1998 * cause two group stops when !ptraced. That is why we 1999 * also check !task_is_stopped(t) below. 2000 * 2001 * The condition can be distinguished by testing whether 2002 * SIGNAL_STOP_STOPPED is already set. Don't generate 2003 * group_exit_code in such case. 2004 * 2005 * This is not necessary for SIGNAL_STOP_CONTINUED because 2006 * an intervening stop signal is required to cause two 2007 * continued events regardless of ptrace. 2008 */ 2009 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2010 sig->group_exit_code = signr; 2011 2012 sig->group_stop_count = 0; 2013 2014 if (task_set_jobctl_pending(current, signr | gstop)) 2015 sig->group_stop_count++; 2016 2017 t = current; 2018 while_each_thread(current, t) { 2019 /* 2020 * Setting state to TASK_STOPPED for a group 2021 * stop is always done with the siglock held, 2022 * so this check has no races. 2023 */ 2024 if (!task_is_stopped(t) && 2025 task_set_jobctl_pending(t, signr | gstop)) { 2026 sig->group_stop_count++; 2027 if (likely(!(t->ptrace & PT_SEIZED))) 2028 signal_wake_up(t, 0); 2029 else 2030 ptrace_trap_notify(t); 2031 } 2032 } 2033 } 2034 2035 if (likely(!current->ptrace)) { 2036 int notify = 0; 2037 2038 /* 2039 * If there are no other threads in the group, or if there 2040 * is a group stop in progress and we are the last to stop, 2041 * report to the parent. 2042 */ 2043 if (task_participate_group_stop(current)) 2044 notify = CLD_STOPPED; 2045 2046 __set_current_state(TASK_STOPPED); 2047 spin_unlock_irq(¤t->sighand->siglock); 2048 2049 /* 2050 * Notify the parent of the group stop completion. Because 2051 * we're not holding either the siglock or tasklist_lock 2052 * here, ptracer may attach inbetween; however, this is for 2053 * group stop and should always be delivered to the real 2054 * parent of the group leader. The new ptracer will get 2055 * its notification when this task transitions into 2056 * TASK_TRACED. 2057 */ 2058 if (notify) { 2059 read_lock(&tasklist_lock); 2060 do_notify_parent_cldstop(current, false, notify); 2061 read_unlock(&tasklist_lock); 2062 } 2063 2064 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2065 freezable_schedule(); 2066 return true; 2067 } else { 2068 /* 2069 * While ptraced, group stop is handled by STOP trap. 2070 * Schedule it and let the caller deal with it. 2071 */ 2072 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2073 return false; 2074 } 2075 } 2076 2077 /** 2078 * do_jobctl_trap - take care of ptrace jobctl traps 2079 * 2080 * When PT_SEIZED, it's used for both group stop and explicit 2081 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2082 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2083 * the stop signal; otherwise, %SIGTRAP. 2084 * 2085 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2086 * number as exit_code and no siginfo. 2087 * 2088 * CONTEXT: 2089 * Must be called with @current->sighand->siglock held, which may be 2090 * released and re-acquired before returning with intervening sleep. 2091 */ 2092 static void do_jobctl_trap(void) 2093 { 2094 struct signal_struct *signal = current->signal; 2095 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2096 2097 if (current->ptrace & PT_SEIZED) { 2098 if (!signal->group_stop_count && 2099 !(signal->flags & SIGNAL_STOP_STOPPED)) 2100 signr = SIGTRAP; 2101 WARN_ON_ONCE(!signr); 2102 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2103 CLD_STOPPED); 2104 } else { 2105 WARN_ON_ONCE(!signr); 2106 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2107 current->exit_code = 0; 2108 } 2109 } 2110 2111 static int ptrace_signal(int signr, siginfo_t *info) 2112 { 2113 /* 2114 * We do not check sig_kernel_stop(signr) but set this marker 2115 * unconditionally because we do not know whether debugger will 2116 * change signr. This flag has no meaning unless we are going 2117 * to stop after return from ptrace_stop(). In this case it will 2118 * be checked in do_signal_stop(), we should only stop if it was 2119 * not cleared by SIGCONT while we were sleeping. See also the 2120 * comment in dequeue_signal(). 2121 */ 2122 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2123 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2124 2125 /* We're back. Did the debugger cancel the sig? */ 2126 signr = current->exit_code; 2127 if (signr == 0) 2128 return signr; 2129 2130 current->exit_code = 0; 2131 2132 /* 2133 * Update the siginfo structure if the signal has 2134 * changed. If the debugger wanted something 2135 * specific in the siginfo structure then it should 2136 * have updated *info via PTRACE_SETSIGINFO. 2137 */ 2138 if (signr != info->si_signo) { 2139 info->si_signo = signr; 2140 info->si_errno = 0; 2141 info->si_code = SI_USER; 2142 rcu_read_lock(); 2143 info->si_pid = task_pid_vnr(current->parent); 2144 info->si_uid = from_kuid_munged(current_user_ns(), 2145 task_uid(current->parent)); 2146 rcu_read_unlock(); 2147 } 2148 2149 /* If the (new) signal is now blocked, requeue it. */ 2150 if (sigismember(¤t->blocked, signr)) { 2151 specific_send_sig_info(signr, info, current); 2152 signr = 0; 2153 } 2154 2155 return signr; 2156 } 2157 2158 int get_signal(struct ksignal *ksig) 2159 { 2160 struct sighand_struct *sighand = current->sighand; 2161 struct signal_struct *signal = current->signal; 2162 int signr; 2163 2164 if (unlikely(current->task_works)) 2165 task_work_run(); 2166 2167 if (unlikely(uprobe_deny_signal())) 2168 return 0; 2169 2170 /* 2171 * Do this once, we can't return to user-mode if freezing() == T. 2172 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2173 * thus do not need another check after return. 2174 */ 2175 try_to_freeze(); 2176 2177 relock: 2178 spin_lock_irq(&sighand->siglock); 2179 /* 2180 * Every stopped thread goes here after wakeup. Check to see if 2181 * we should notify the parent, prepare_signal(SIGCONT) encodes 2182 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2183 */ 2184 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2185 int why; 2186 2187 if (signal->flags & SIGNAL_CLD_CONTINUED) 2188 why = CLD_CONTINUED; 2189 else 2190 why = CLD_STOPPED; 2191 2192 signal->flags &= ~SIGNAL_CLD_MASK; 2193 2194 spin_unlock_irq(&sighand->siglock); 2195 2196 /* 2197 * Notify the parent that we're continuing. This event is 2198 * always per-process and doesn't make whole lot of sense 2199 * for ptracers, who shouldn't consume the state via 2200 * wait(2) either, but, for backward compatibility, notify 2201 * the ptracer of the group leader too unless it's gonna be 2202 * a duplicate. 2203 */ 2204 read_lock(&tasklist_lock); 2205 do_notify_parent_cldstop(current, false, why); 2206 2207 if (ptrace_reparented(current->group_leader)) 2208 do_notify_parent_cldstop(current->group_leader, 2209 true, why); 2210 read_unlock(&tasklist_lock); 2211 2212 goto relock; 2213 } 2214 2215 for (;;) { 2216 struct k_sigaction *ka; 2217 2218 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2219 do_signal_stop(0)) 2220 goto relock; 2221 2222 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2223 do_jobctl_trap(); 2224 spin_unlock_irq(&sighand->siglock); 2225 goto relock; 2226 } 2227 2228 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2229 2230 if (!signr) 2231 break; /* will return 0 */ 2232 2233 if (unlikely(current->ptrace) && signr != SIGKILL) { 2234 signr = ptrace_signal(signr, &ksig->info); 2235 if (!signr) 2236 continue; 2237 } 2238 2239 ka = &sighand->action[signr-1]; 2240 2241 /* Trace actually delivered signals. */ 2242 trace_signal_deliver(signr, &ksig->info, ka); 2243 2244 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2245 continue; 2246 if (ka->sa.sa_handler != SIG_DFL) { 2247 /* Run the handler. */ 2248 ksig->ka = *ka; 2249 2250 if (ka->sa.sa_flags & SA_ONESHOT) 2251 ka->sa.sa_handler = SIG_DFL; 2252 2253 break; /* will return non-zero "signr" value */ 2254 } 2255 2256 /* 2257 * Now we are doing the default action for this signal. 2258 */ 2259 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2260 continue; 2261 2262 /* 2263 * Global init gets no signals it doesn't want. 2264 * Container-init gets no signals it doesn't want from same 2265 * container. 2266 * 2267 * Note that if global/container-init sees a sig_kernel_only() 2268 * signal here, the signal must have been generated internally 2269 * or must have come from an ancestor namespace. In either 2270 * case, the signal cannot be dropped. 2271 */ 2272 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2273 !sig_kernel_only(signr)) 2274 continue; 2275 2276 if (sig_kernel_stop(signr)) { 2277 /* 2278 * The default action is to stop all threads in 2279 * the thread group. The job control signals 2280 * do nothing in an orphaned pgrp, but SIGSTOP 2281 * always works. Note that siglock needs to be 2282 * dropped during the call to is_orphaned_pgrp() 2283 * because of lock ordering with tasklist_lock. 2284 * This allows an intervening SIGCONT to be posted. 2285 * We need to check for that and bail out if necessary. 2286 */ 2287 if (signr != SIGSTOP) { 2288 spin_unlock_irq(&sighand->siglock); 2289 2290 /* signals can be posted during this window */ 2291 2292 if (is_current_pgrp_orphaned()) 2293 goto relock; 2294 2295 spin_lock_irq(&sighand->siglock); 2296 } 2297 2298 if (likely(do_signal_stop(ksig->info.si_signo))) { 2299 /* It released the siglock. */ 2300 goto relock; 2301 } 2302 2303 /* 2304 * We didn't actually stop, due to a race 2305 * with SIGCONT or something like that. 2306 */ 2307 continue; 2308 } 2309 2310 spin_unlock_irq(&sighand->siglock); 2311 2312 /* 2313 * Anything else is fatal, maybe with a core dump. 2314 */ 2315 current->flags |= PF_SIGNALED; 2316 2317 if (sig_kernel_coredump(signr)) { 2318 if (print_fatal_signals) 2319 print_fatal_signal(ksig->info.si_signo); 2320 proc_coredump_connector(current); 2321 /* 2322 * If it was able to dump core, this kills all 2323 * other threads in the group and synchronizes with 2324 * their demise. If we lost the race with another 2325 * thread getting here, it set group_exit_code 2326 * first and our do_group_exit call below will use 2327 * that value and ignore the one we pass it. 2328 */ 2329 do_coredump(&ksig->info); 2330 } 2331 2332 /* 2333 * Death signals, no core dump. 2334 */ 2335 do_group_exit(ksig->info.si_signo); 2336 /* NOTREACHED */ 2337 } 2338 spin_unlock_irq(&sighand->siglock); 2339 2340 ksig->sig = signr; 2341 return ksig->sig > 0; 2342 } 2343 2344 /** 2345 * signal_delivered - 2346 * @ksig: kernel signal struct 2347 * @stepping: nonzero if debugger single-step or block-step in use 2348 * 2349 * This function should be called when a signal has successfully been 2350 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2351 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2352 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2353 */ 2354 static void signal_delivered(struct ksignal *ksig, int stepping) 2355 { 2356 sigset_t blocked; 2357 2358 /* A signal was successfully delivered, and the 2359 saved sigmask was stored on the signal frame, 2360 and will be restored by sigreturn. So we can 2361 simply clear the restore sigmask flag. */ 2362 clear_restore_sigmask(); 2363 2364 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2365 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2366 sigaddset(&blocked, ksig->sig); 2367 set_current_blocked(&blocked); 2368 tracehook_signal_handler(stepping); 2369 } 2370 2371 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2372 { 2373 if (failed) 2374 force_sigsegv(ksig->sig, current); 2375 else 2376 signal_delivered(ksig, stepping); 2377 } 2378 2379 /* 2380 * It could be that complete_signal() picked us to notify about the 2381 * group-wide signal. Other threads should be notified now to take 2382 * the shared signals in @which since we will not. 2383 */ 2384 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2385 { 2386 sigset_t retarget; 2387 struct task_struct *t; 2388 2389 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2390 if (sigisemptyset(&retarget)) 2391 return; 2392 2393 t = tsk; 2394 while_each_thread(tsk, t) { 2395 if (t->flags & PF_EXITING) 2396 continue; 2397 2398 if (!has_pending_signals(&retarget, &t->blocked)) 2399 continue; 2400 /* Remove the signals this thread can handle. */ 2401 sigandsets(&retarget, &retarget, &t->blocked); 2402 2403 if (!signal_pending(t)) 2404 signal_wake_up(t, 0); 2405 2406 if (sigisemptyset(&retarget)) 2407 break; 2408 } 2409 } 2410 2411 void exit_signals(struct task_struct *tsk) 2412 { 2413 int group_stop = 0; 2414 sigset_t unblocked; 2415 2416 /* 2417 * @tsk is about to have PF_EXITING set - lock out users which 2418 * expect stable threadgroup. 2419 */ 2420 cgroup_threadgroup_change_begin(tsk); 2421 2422 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2423 tsk->flags |= PF_EXITING; 2424 cgroup_threadgroup_change_end(tsk); 2425 return; 2426 } 2427 2428 spin_lock_irq(&tsk->sighand->siglock); 2429 /* 2430 * From now this task is not visible for group-wide signals, 2431 * see wants_signal(), do_signal_stop(). 2432 */ 2433 tsk->flags |= PF_EXITING; 2434 2435 cgroup_threadgroup_change_end(tsk); 2436 2437 if (!signal_pending(tsk)) 2438 goto out; 2439 2440 unblocked = tsk->blocked; 2441 signotset(&unblocked); 2442 retarget_shared_pending(tsk, &unblocked); 2443 2444 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2445 task_participate_group_stop(tsk)) 2446 group_stop = CLD_STOPPED; 2447 out: 2448 spin_unlock_irq(&tsk->sighand->siglock); 2449 2450 /* 2451 * If group stop has completed, deliver the notification. This 2452 * should always go to the real parent of the group leader. 2453 */ 2454 if (unlikely(group_stop)) { 2455 read_lock(&tasklist_lock); 2456 do_notify_parent_cldstop(tsk, false, group_stop); 2457 read_unlock(&tasklist_lock); 2458 } 2459 } 2460 2461 EXPORT_SYMBOL(recalc_sigpending); 2462 EXPORT_SYMBOL_GPL(dequeue_signal); 2463 EXPORT_SYMBOL(flush_signals); 2464 EXPORT_SYMBOL(force_sig); 2465 EXPORT_SYMBOL(send_sig); 2466 EXPORT_SYMBOL(send_sig_info); 2467 EXPORT_SYMBOL(sigprocmask); 2468 2469 /* 2470 * System call entry points. 2471 */ 2472 2473 /** 2474 * sys_restart_syscall - restart a system call 2475 */ 2476 SYSCALL_DEFINE0(restart_syscall) 2477 { 2478 struct restart_block *restart = ¤t->restart_block; 2479 return restart->fn(restart); 2480 } 2481 2482 long do_no_restart_syscall(struct restart_block *param) 2483 { 2484 return -EINTR; 2485 } 2486 2487 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2488 { 2489 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2490 sigset_t newblocked; 2491 /* A set of now blocked but previously unblocked signals. */ 2492 sigandnsets(&newblocked, newset, ¤t->blocked); 2493 retarget_shared_pending(tsk, &newblocked); 2494 } 2495 tsk->blocked = *newset; 2496 recalc_sigpending(); 2497 } 2498 2499 /** 2500 * set_current_blocked - change current->blocked mask 2501 * @newset: new mask 2502 * 2503 * It is wrong to change ->blocked directly, this helper should be used 2504 * to ensure the process can't miss a shared signal we are going to block. 2505 */ 2506 void set_current_blocked(sigset_t *newset) 2507 { 2508 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2509 __set_current_blocked(newset); 2510 } 2511 2512 void __set_current_blocked(const sigset_t *newset) 2513 { 2514 struct task_struct *tsk = current; 2515 2516 /* 2517 * In case the signal mask hasn't changed, there is nothing we need 2518 * to do. The current->blocked shouldn't be modified by other task. 2519 */ 2520 if (sigequalsets(&tsk->blocked, newset)) 2521 return; 2522 2523 spin_lock_irq(&tsk->sighand->siglock); 2524 __set_task_blocked(tsk, newset); 2525 spin_unlock_irq(&tsk->sighand->siglock); 2526 } 2527 2528 /* 2529 * This is also useful for kernel threads that want to temporarily 2530 * (or permanently) block certain signals. 2531 * 2532 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2533 * interface happily blocks "unblockable" signals like SIGKILL 2534 * and friends. 2535 */ 2536 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2537 { 2538 struct task_struct *tsk = current; 2539 sigset_t newset; 2540 2541 /* Lockless, only current can change ->blocked, never from irq */ 2542 if (oldset) 2543 *oldset = tsk->blocked; 2544 2545 switch (how) { 2546 case SIG_BLOCK: 2547 sigorsets(&newset, &tsk->blocked, set); 2548 break; 2549 case SIG_UNBLOCK: 2550 sigandnsets(&newset, &tsk->blocked, set); 2551 break; 2552 case SIG_SETMASK: 2553 newset = *set; 2554 break; 2555 default: 2556 return -EINVAL; 2557 } 2558 2559 __set_current_blocked(&newset); 2560 return 0; 2561 } 2562 2563 /** 2564 * sys_rt_sigprocmask - change the list of currently blocked signals 2565 * @how: whether to add, remove, or set signals 2566 * @nset: stores pending signals 2567 * @oset: previous value of signal mask if non-null 2568 * @sigsetsize: size of sigset_t type 2569 */ 2570 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2571 sigset_t __user *, oset, size_t, sigsetsize) 2572 { 2573 sigset_t old_set, new_set; 2574 int error; 2575 2576 /* XXX: Don't preclude handling different sized sigset_t's. */ 2577 if (sigsetsize != sizeof(sigset_t)) 2578 return -EINVAL; 2579 2580 old_set = current->blocked; 2581 2582 if (nset) { 2583 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2584 return -EFAULT; 2585 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2586 2587 error = sigprocmask(how, &new_set, NULL); 2588 if (error) 2589 return error; 2590 } 2591 2592 if (oset) { 2593 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2594 return -EFAULT; 2595 } 2596 2597 return 0; 2598 } 2599 2600 #ifdef CONFIG_COMPAT 2601 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2602 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2603 { 2604 sigset_t old_set = current->blocked; 2605 2606 /* XXX: Don't preclude handling different sized sigset_t's. */ 2607 if (sigsetsize != sizeof(sigset_t)) 2608 return -EINVAL; 2609 2610 if (nset) { 2611 sigset_t new_set; 2612 int error; 2613 if (get_compat_sigset(&new_set, nset)) 2614 return -EFAULT; 2615 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2616 2617 error = sigprocmask(how, &new_set, NULL); 2618 if (error) 2619 return error; 2620 } 2621 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 2622 } 2623 #endif 2624 2625 static int do_sigpending(sigset_t *set) 2626 { 2627 spin_lock_irq(¤t->sighand->siglock); 2628 sigorsets(set, ¤t->pending.signal, 2629 ¤t->signal->shared_pending.signal); 2630 spin_unlock_irq(¤t->sighand->siglock); 2631 2632 /* Outside the lock because only this thread touches it. */ 2633 sigandsets(set, ¤t->blocked, set); 2634 return 0; 2635 } 2636 2637 /** 2638 * sys_rt_sigpending - examine a pending signal that has been raised 2639 * while blocked 2640 * @uset: stores pending signals 2641 * @sigsetsize: size of sigset_t type or larger 2642 */ 2643 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2644 { 2645 sigset_t set; 2646 int err; 2647 2648 if (sigsetsize > sizeof(*uset)) 2649 return -EINVAL; 2650 2651 err = do_sigpending(&set); 2652 if (!err && copy_to_user(uset, &set, sigsetsize)) 2653 err = -EFAULT; 2654 return err; 2655 } 2656 2657 #ifdef CONFIG_COMPAT 2658 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2659 compat_size_t, sigsetsize) 2660 { 2661 sigset_t set; 2662 int err; 2663 2664 if (sigsetsize > sizeof(*uset)) 2665 return -EINVAL; 2666 2667 err = do_sigpending(&set); 2668 if (!err) 2669 err = put_compat_sigset(uset, &set, sigsetsize); 2670 return err; 2671 } 2672 #endif 2673 2674 enum siginfo_layout siginfo_layout(int sig, int si_code) 2675 { 2676 enum siginfo_layout layout = SIL_KILL; 2677 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 2678 static const struct { 2679 unsigned char limit, layout; 2680 } filter[] = { 2681 [SIGILL] = { NSIGILL, SIL_FAULT }, 2682 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 2683 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 2684 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 2685 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 2686 #if defined(SIGEMT) && defined(NSIGEMT) 2687 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 2688 #endif 2689 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 2690 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 2691 #ifdef __ARCH_SIGSYS 2692 [SIGSYS] = { NSIGSYS, SIL_SYS }, 2693 #endif 2694 }; 2695 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) 2696 layout = filter[sig].layout; 2697 else if (si_code <= NSIGPOLL) 2698 layout = SIL_POLL; 2699 } else { 2700 if (si_code == SI_TIMER) 2701 layout = SIL_TIMER; 2702 else if (si_code == SI_SIGIO) 2703 layout = SIL_POLL; 2704 else if (si_code < 0) 2705 layout = SIL_RT; 2706 /* Tests to support buggy kernel ABIs */ 2707 #ifdef TRAP_FIXME 2708 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME)) 2709 layout = SIL_FAULT; 2710 #endif 2711 #ifdef FPE_FIXME 2712 if ((sig == SIGFPE) && (si_code == FPE_FIXME)) 2713 layout = SIL_FAULT; 2714 #endif 2715 } 2716 return layout; 2717 } 2718 2719 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2720 2721 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2722 { 2723 int err; 2724 2725 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2726 return -EFAULT; 2727 if (from->si_code < 0) 2728 return __copy_to_user(to, from, sizeof(siginfo_t)) 2729 ? -EFAULT : 0; 2730 /* 2731 * If you change siginfo_t structure, please be sure 2732 * this code is fixed accordingly. 2733 * Please remember to update the signalfd_copyinfo() function 2734 * inside fs/signalfd.c too, in case siginfo_t changes. 2735 * It should never copy any pad contained in the structure 2736 * to avoid security leaks, but must copy the generic 2737 * 3 ints plus the relevant union member. 2738 */ 2739 err = __put_user(from->si_signo, &to->si_signo); 2740 err |= __put_user(from->si_errno, &to->si_errno); 2741 err |= __put_user(from->si_code, &to->si_code); 2742 switch (siginfo_layout(from->si_signo, from->si_code)) { 2743 case SIL_KILL: 2744 err |= __put_user(from->si_pid, &to->si_pid); 2745 err |= __put_user(from->si_uid, &to->si_uid); 2746 break; 2747 case SIL_TIMER: 2748 /* Unreached SI_TIMER is negative */ 2749 break; 2750 case SIL_POLL: 2751 err |= __put_user(from->si_band, &to->si_band); 2752 err |= __put_user(from->si_fd, &to->si_fd); 2753 break; 2754 case SIL_FAULT: 2755 err |= __put_user(from->si_addr, &to->si_addr); 2756 #ifdef __ARCH_SI_TRAPNO 2757 err |= __put_user(from->si_trapno, &to->si_trapno); 2758 #endif 2759 #ifdef BUS_MCEERR_AO 2760 /* 2761 * Other callers might not initialize the si_lsb field, 2762 * so check explicitly for the right codes here. 2763 */ 2764 if (from->si_signo == SIGBUS && 2765 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)) 2766 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2767 #endif 2768 #ifdef SEGV_BNDERR 2769 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2770 err |= __put_user(from->si_lower, &to->si_lower); 2771 err |= __put_user(from->si_upper, &to->si_upper); 2772 } 2773 #endif 2774 #ifdef SEGV_PKUERR 2775 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR) 2776 err |= __put_user(from->si_pkey, &to->si_pkey); 2777 #endif 2778 break; 2779 case SIL_CHLD: 2780 err |= __put_user(from->si_pid, &to->si_pid); 2781 err |= __put_user(from->si_uid, &to->si_uid); 2782 err |= __put_user(from->si_status, &to->si_status); 2783 err |= __put_user(from->si_utime, &to->si_utime); 2784 err |= __put_user(from->si_stime, &to->si_stime); 2785 break; 2786 case SIL_RT: 2787 err |= __put_user(from->si_pid, &to->si_pid); 2788 err |= __put_user(from->si_uid, &to->si_uid); 2789 err |= __put_user(from->si_ptr, &to->si_ptr); 2790 break; 2791 #ifdef __ARCH_SIGSYS 2792 case SIL_SYS: 2793 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2794 err |= __put_user(from->si_syscall, &to->si_syscall); 2795 err |= __put_user(from->si_arch, &to->si_arch); 2796 break; 2797 #endif 2798 } 2799 return err; 2800 } 2801 2802 #endif 2803 2804 /** 2805 * do_sigtimedwait - wait for queued signals specified in @which 2806 * @which: queued signals to wait for 2807 * @info: if non-null, the signal's siginfo is returned here 2808 * @ts: upper bound on process time suspension 2809 */ 2810 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2811 const struct timespec *ts) 2812 { 2813 ktime_t *to = NULL, timeout = KTIME_MAX; 2814 struct task_struct *tsk = current; 2815 sigset_t mask = *which; 2816 int sig, ret = 0; 2817 2818 if (ts) { 2819 if (!timespec_valid(ts)) 2820 return -EINVAL; 2821 timeout = timespec_to_ktime(*ts); 2822 to = &timeout; 2823 } 2824 2825 /* 2826 * Invert the set of allowed signals to get those we want to block. 2827 */ 2828 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2829 signotset(&mask); 2830 2831 spin_lock_irq(&tsk->sighand->siglock); 2832 sig = dequeue_signal(tsk, &mask, info); 2833 if (!sig && timeout) { 2834 /* 2835 * None ready, temporarily unblock those we're interested 2836 * while we are sleeping in so that we'll be awakened when 2837 * they arrive. Unblocking is always fine, we can avoid 2838 * set_current_blocked(). 2839 */ 2840 tsk->real_blocked = tsk->blocked; 2841 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2842 recalc_sigpending(); 2843 spin_unlock_irq(&tsk->sighand->siglock); 2844 2845 __set_current_state(TASK_INTERRUPTIBLE); 2846 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 2847 HRTIMER_MODE_REL); 2848 spin_lock_irq(&tsk->sighand->siglock); 2849 __set_task_blocked(tsk, &tsk->real_blocked); 2850 sigemptyset(&tsk->real_blocked); 2851 sig = dequeue_signal(tsk, &mask, info); 2852 } 2853 spin_unlock_irq(&tsk->sighand->siglock); 2854 2855 if (sig) 2856 return sig; 2857 return ret ? -EINTR : -EAGAIN; 2858 } 2859 2860 /** 2861 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2862 * in @uthese 2863 * @uthese: queued signals to wait for 2864 * @uinfo: if non-null, the signal's siginfo is returned here 2865 * @uts: upper bound on process time suspension 2866 * @sigsetsize: size of sigset_t type 2867 */ 2868 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2869 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2870 size_t, sigsetsize) 2871 { 2872 sigset_t these; 2873 struct timespec ts; 2874 siginfo_t info; 2875 int ret; 2876 2877 /* XXX: Don't preclude handling different sized sigset_t's. */ 2878 if (sigsetsize != sizeof(sigset_t)) 2879 return -EINVAL; 2880 2881 if (copy_from_user(&these, uthese, sizeof(these))) 2882 return -EFAULT; 2883 2884 if (uts) { 2885 if (copy_from_user(&ts, uts, sizeof(ts))) 2886 return -EFAULT; 2887 } 2888 2889 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2890 2891 if (ret > 0 && uinfo) { 2892 if (copy_siginfo_to_user(uinfo, &info)) 2893 ret = -EFAULT; 2894 } 2895 2896 return ret; 2897 } 2898 2899 #ifdef CONFIG_COMPAT 2900 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese, 2901 struct compat_siginfo __user *, uinfo, 2902 struct compat_timespec __user *, uts, compat_size_t, sigsetsize) 2903 { 2904 sigset_t s; 2905 struct timespec t; 2906 siginfo_t info; 2907 long ret; 2908 2909 if (sigsetsize != sizeof(sigset_t)) 2910 return -EINVAL; 2911 2912 if (get_compat_sigset(&s, uthese)) 2913 return -EFAULT; 2914 2915 if (uts) { 2916 if (compat_get_timespec(&t, uts)) 2917 return -EFAULT; 2918 } 2919 2920 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 2921 2922 if (ret > 0 && uinfo) { 2923 if (copy_siginfo_to_user32(uinfo, &info)) 2924 ret = -EFAULT; 2925 } 2926 2927 return ret; 2928 } 2929 #endif 2930 2931 /** 2932 * sys_kill - send a signal to a process 2933 * @pid: the PID of the process 2934 * @sig: signal to be sent 2935 */ 2936 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2937 { 2938 struct siginfo info; 2939 2940 info.si_signo = sig; 2941 info.si_errno = 0; 2942 info.si_code = SI_USER; 2943 info.si_pid = task_tgid_vnr(current); 2944 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2945 2946 return kill_something_info(sig, &info, pid); 2947 } 2948 2949 static int 2950 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2951 { 2952 struct task_struct *p; 2953 int error = -ESRCH; 2954 2955 rcu_read_lock(); 2956 p = find_task_by_vpid(pid); 2957 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2958 error = check_kill_permission(sig, info, p); 2959 /* 2960 * The null signal is a permissions and process existence 2961 * probe. No signal is actually delivered. 2962 */ 2963 if (!error && sig) { 2964 error = do_send_sig_info(sig, info, p, false); 2965 /* 2966 * If lock_task_sighand() failed we pretend the task 2967 * dies after receiving the signal. The window is tiny, 2968 * and the signal is private anyway. 2969 */ 2970 if (unlikely(error == -ESRCH)) 2971 error = 0; 2972 } 2973 } 2974 rcu_read_unlock(); 2975 2976 return error; 2977 } 2978 2979 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2980 { 2981 struct siginfo info = {}; 2982 2983 info.si_signo = sig; 2984 info.si_errno = 0; 2985 info.si_code = SI_TKILL; 2986 info.si_pid = task_tgid_vnr(current); 2987 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2988 2989 return do_send_specific(tgid, pid, sig, &info); 2990 } 2991 2992 /** 2993 * sys_tgkill - send signal to one specific thread 2994 * @tgid: the thread group ID of the thread 2995 * @pid: the PID of the thread 2996 * @sig: signal to be sent 2997 * 2998 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2999 * exists but it's not belonging to the target process anymore. This 3000 * method solves the problem of threads exiting and PIDs getting reused. 3001 */ 3002 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3003 { 3004 /* This is only valid for single tasks */ 3005 if (pid <= 0 || tgid <= 0) 3006 return -EINVAL; 3007 3008 return do_tkill(tgid, pid, sig); 3009 } 3010 3011 /** 3012 * sys_tkill - send signal to one specific task 3013 * @pid: the PID of the task 3014 * @sig: signal to be sent 3015 * 3016 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3017 */ 3018 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3019 { 3020 /* This is only valid for single tasks */ 3021 if (pid <= 0) 3022 return -EINVAL; 3023 3024 return do_tkill(0, pid, sig); 3025 } 3026 3027 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 3028 { 3029 /* Not even root can pretend to send signals from the kernel. 3030 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3031 */ 3032 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3033 (task_pid_vnr(current) != pid)) 3034 return -EPERM; 3035 3036 info->si_signo = sig; 3037 3038 /* POSIX.1b doesn't mention process groups. */ 3039 return kill_proc_info(sig, info, pid); 3040 } 3041 3042 /** 3043 * sys_rt_sigqueueinfo - send signal information to a signal 3044 * @pid: the PID of the thread 3045 * @sig: signal to be sent 3046 * @uinfo: signal info to be sent 3047 */ 3048 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3049 siginfo_t __user *, uinfo) 3050 { 3051 siginfo_t info; 3052 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3053 return -EFAULT; 3054 return do_rt_sigqueueinfo(pid, sig, &info); 3055 } 3056 3057 #ifdef CONFIG_COMPAT 3058 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3059 compat_pid_t, pid, 3060 int, sig, 3061 struct compat_siginfo __user *, uinfo) 3062 { 3063 siginfo_t info = {}; 3064 int ret = copy_siginfo_from_user32(&info, uinfo); 3065 if (unlikely(ret)) 3066 return ret; 3067 return do_rt_sigqueueinfo(pid, sig, &info); 3068 } 3069 #endif 3070 3071 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3072 { 3073 /* This is only valid for single tasks */ 3074 if (pid <= 0 || tgid <= 0) 3075 return -EINVAL; 3076 3077 /* Not even root can pretend to send signals from the kernel. 3078 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3079 */ 3080 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3081 (task_pid_vnr(current) != pid)) 3082 return -EPERM; 3083 3084 info->si_signo = sig; 3085 3086 return do_send_specific(tgid, pid, sig, info); 3087 } 3088 3089 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3090 siginfo_t __user *, uinfo) 3091 { 3092 siginfo_t info; 3093 3094 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3095 return -EFAULT; 3096 3097 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3098 } 3099 3100 #ifdef CONFIG_COMPAT 3101 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3102 compat_pid_t, tgid, 3103 compat_pid_t, pid, 3104 int, sig, 3105 struct compat_siginfo __user *, uinfo) 3106 { 3107 siginfo_t info = {}; 3108 3109 if (copy_siginfo_from_user32(&info, uinfo)) 3110 return -EFAULT; 3111 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3112 } 3113 #endif 3114 3115 /* 3116 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3117 */ 3118 void kernel_sigaction(int sig, __sighandler_t action) 3119 { 3120 spin_lock_irq(¤t->sighand->siglock); 3121 current->sighand->action[sig - 1].sa.sa_handler = action; 3122 if (action == SIG_IGN) { 3123 sigset_t mask; 3124 3125 sigemptyset(&mask); 3126 sigaddset(&mask, sig); 3127 3128 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3129 flush_sigqueue_mask(&mask, ¤t->pending); 3130 recalc_sigpending(); 3131 } 3132 spin_unlock_irq(¤t->sighand->siglock); 3133 } 3134 EXPORT_SYMBOL(kernel_sigaction); 3135 3136 void __weak sigaction_compat_abi(struct k_sigaction *act, 3137 struct k_sigaction *oact) 3138 { 3139 } 3140 3141 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3142 { 3143 struct task_struct *p = current, *t; 3144 struct k_sigaction *k; 3145 sigset_t mask; 3146 3147 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3148 return -EINVAL; 3149 3150 k = &p->sighand->action[sig-1]; 3151 3152 spin_lock_irq(&p->sighand->siglock); 3153 if (oact) 3154 *oact = *k; 3155 3156 sigaction_compat_abi(act, oact); 3157 3158 if (act) { 3159 sigdelsetmask(&act->sa.sa_mask, 3160 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3161 *k = *act; 3162 /* 3163 * POSIX 3.3.1.3: 3164 * "Setting a signal action to SIG_IGN for a signal that is 3165 * pending shall cause the pending signal to be discarded, 3166 * whether or not it is blocked." 3167 * 3168 * "Setting a signal action to SIG_DFL for a signal that is 3169 * pending and whose default action is to ignore the signal 3170 * (for example, SIGCHLD), shall cause the pending signal to 3171 * be discarded, whether or not it is blocked" 3172 */ 3173 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3174 sigemptyset(&mask); 3175 sigaddset(&mask, sig); 3176 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3177 for_each_thread(p, t) 3178 flush_sigqueue_mask(&mask, &t->pending); 3179 } 3180 } 3181 3182 spin_unlock_irq(&p->sighand->siglock); 3183 return 0; 3184 } 3185 3186 static int 3187 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp) 3188 { 3189 struct task_struct *t = current; 3190 3191 if (oss) { 3192 memset(oss, 0, sizeof(stack_t)); 3193 oss->ss_sp = (void __user *) t->sas_ss_sp; 3194 oss->ss_size = t->sas_ss_size; 3195 oss->ss_flags = sas_ss_flags(sp) | 3196 (current->sas_ss_flags & SS_FLAG_BITS); 3197 } 3198 3199 if (ss) { 3200 void __user *ss_sp = ss->ss_sp; 3201 size_t ss_size = ss->ss_size; 3202 unsigned ss_flags = ss->ss_flags; 3203 int ss_mode; 3204 3205 if (unlikely(on_sig_stack(sp))) 3206 return -EPERM; 3207 3208 ss_mode = ss_flags & ~SS_FLAG_BITS; 3209 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3210 ss_mode != 0)) 3211 return -EINVAL; 3212 3213 if (ss_mode == SS_DISABLE) { 3214 ss_size = 0; 3215 ss_sp = NULL; 3216 } else { 3217 if (unlikely(ss_size < MINSIGSTKSZ)) 3218 return -ENOMEM; 3219 } 3220 3221 t->sas_ss_sp = (unsigned long) ss_sp; 3222 t->sas_ss_size = ss_size; 3223 t->sas_ss_flags = ss_flags; 3224 } 3225 return 0; 3226 } 3227 3228 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3229 { 3230 stack_t new, old; 3231 int err; 3232 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 3233 return -EFAULT; 3234 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 3235 current_user_stack_pointer()); 3236 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 3237 err = -EFAULT; 3238 return err; 3239 } 3240 3241 int restore_altstack(const stack_t __user *uss) 3242 { 3243 stack_t new; 3244 if (copy_from_user(&new, uss, sizeof(stack_t))) 3245 return -EFAULT; 3246 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer()); 3247 /* squash all but EFAULT for now */ 3248 return 0; 3249 } 3250 3251 int __save_altstack(stack_t __user *uss, unsigned long sp) 3252 { 3253 struct task_struct *t = current; 3254 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3255 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3256 __put_user(t->sas_ss_size, &uss->ss_size); 3257 if (err) 3258 return err; 3259 if (t->sas_ss_flags & SS_AUTODISARM) 3260 sas_ss_reset(t); 3261 return 0; 3262 } 3263 3264 #ifdef CONFIG_COMPAT 3265 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3266 const compat_stack_t __user *, uss_ptr, 3267 compat_stack_t __user *, uoss_ptr) 3268 { 3269 stack_t uss, uoss; 3270 int ret; 3271 3272 if (uss_ptr) { 3273 compat_stack_t uss32; 3274 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3275 return -EFAULT; 3276 uss.ss_sp = compat_ptr(uss32.ss_sp); 3277 uss.ss_flags = uss32.ss_flags; 3278 uss.ss_size = uss32.ss_size; 3279 } 3280 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 3281 compat_user_stack_pointer()); 3282 if (ret >= 0 && uoss_ptr) { 3283 compat_stack_t old; 3284 memset(&old, 0, sizeof(old)); 3285 old.ss_sp = ptr_to_compat(uoss.ss_sp); 3286 old.ss_flags = uoss.ss_flags; 3287 old.ss_size = uoss.ss_size; 3288 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 3289 ret = -EFAULT; 3290 } 3291 return ret; 3292 } 3293 3294 int compat_restore_altstack(const compat_stack_t __user *uss) 3295 { 3296 int err = compat_sys_sigaltstack(uss, NULL); 3297 /* squash all but -EFAULT for now */ 3298 return err == -EFAULT ? err : 0; 3299 } 3300 3301 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3302 { 3303 int err; 3304 struct task_struct *t = current; 3305 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3306 &uss->ss_sp) | 3307 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3308 __put_user(t->sas_ss_size, &uss->ss_size); 3309 if (err) 3310 return err; 3311 if (t->sas_ss_flags & SS_AUTODISARM) 3312 sas_ss_reset(t); 3313 return 0; 3314 } 3315 #endif 3316 3317 #ifdef __ARCH_WANT_SYS_SIGPENDING 3318 3319 /** 3320 * sys_sigpending - examine pending signals 3321 * @set: where mask of pending signal is returned 3322 */ 3323 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3324 { 3325 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3326 } 3327 3328 #ifdef CONFIG_COMPAT 3329 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 3330 { 3331 sigset_t set; 3332 int err = do_sigpending(&set); 3333 if (!err) 3334 err = put_user(set.sig[0], set32); 3335 return err; 3336 } 3337 #endif 3338 3339 #endif 3340 3341 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3342 /** 3343 * sys_sigprocmask - examine and change blocked signals 3344 * @how: whether to add, remove, or set signals 3345 * @nset: signals to add or remove (if non-null) 3346 * @oset: previous value of signal mask if non-null 3347 * 3348 * Some platforms have their own version with special arguments; 3349 * others support only sys_rt_sigprocmask. 3350 */ 3351 3352 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3353 old_sigset_t __user *, oset) 3354 { 3355 old_sigset_t old_set, new_set; 3356 sigset_t new_blocked; 3357 3358 old_set = current->blocked.sig[0]; 3359 3360 if (nset) { 3361 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3362 return -EFAULT; 3363 3364 new_blocked = current->blocked; 3365 3366 switch (how) { 3367 case SIG_BLOCK: 3368 sigaddsetmask(&new_blocked, new_set); 3369 break; 3370 case SIG_UNBLOCK: 3371 sigdelsetmask(&new_blocked, new_set); 3372 break; 3373 case SIG_SETMASK: 3374 new_blocked.sig[0] = new_set; 3375 break; 3376 default: 3377 return -EINVAL; 3378 } 3379 3380 set_current_blocked(&new_blocked); 3381 } 3382 3383 if (oset) { 3384 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3385 return -EFAULT; 3386 } 3387 3388 return 0; 3389 } 3390 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3391 3392 #ifndef CONFIG_ODD_RT_SIGACTION 3393 /** 3394 * sys_rt_sigaction - alter an action taken by a process 3395 * @sig: signal to be sent 3396 * @act: new sigaction 3397 * @oact: used to save the previous sigaction 3398 * @sigsetsize: size of sigset_t type 3399 */ 3400 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3401 const struct sigaction __user *, act, 3402 struct sigaction __user *, oact, 3403 size_t, sigsetsize) 3404 { 3405 struct k_sigaction new_sa, old_sa; 3406 int ret = -EINVAL; 3407 3408 /* XXX: Don't preclude handling different sized sigset_t's. */ 3409 if (sigsetsize != sizeof(sigset_t)) 3410 goto out; 3411 3412 if (act) { 3413 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3414 return -EFAULT; 3415 } 3416 3417 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3418 3419 if (!ret && oact) { 3420 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3421 return -EFAULT; 3422 } 3423 out: 3424 return ret; 3425 } 3426 #ifdef CONFIG_COMPAT 3427 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3428 const struct compat_sigaction __user *, act, 3429 struct compat_sigaction __user *, oact, 3430 compat_size_t, sigsetsize) 3431 { 3432 struct k_sigaction new_ka, old_ka; 3433 #ifdef __ARCH_HAS_SA_RESTORER 3434 compat_uptr_t restorer; 3435 #endif 3436 int ret; 3437 3438 /* XXX: Don't preclude handling different sized sigset_t's. */ 3439 if (sigsetsize != sizeof(compat_sigset_t)) 3440 return -EINVAL; 3441 3442 if (act) { 3443 compat_uptr_t handler; 3444 ret = get_user(handler, &act->sa_handler); 3445 new_ka.sa.sa_handler = compat_ptr(handler); 3446 #ifdef __ARCH_HAS_SA_RESTORER 3447 ret |= get_user(restorer, &act->sa_restorer); 3448 new_ka.sa.sa_restorer = compat_ptr(restorer); 3449 #endif 3450 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 3451 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3452 if (ret) 3453 return -EFAULT; 3454 } 3455 3456 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3457 if (!ret && oact) { 3458 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3459 &oact->sa_handler); 3460 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 3461 sizeof(oact->sa_mask)); 3462 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3463 #ifdef __ARCH_HAS_SA_RESTORER 3464 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3465 &oact->sa_restorer); 3466 #endif 3467 } 3468 return ret; 3469 } 3470 #endif 3471 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3472 3473 #ifdef CONFIG_OLD_SIGACTION 3474 SYSCALL_DEFINE3(sigaction, int, sig, 3475 const struct old_sigaction __user *, act, 3476 struct old_sigaction __user *, oact) 3477 { 3478 struct k_sigaction new_ka, old_ka; 3479 int ret; 3480 3481 if (act) { 3482 old_sigset_t mask; 3483 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3484 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3485 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3486 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3487 __get_user(mask, &act->sa_mask)) 3488 return -EFAULT; 3489 #ifdef __ARCH_HAS_KA_RESTORER 3490 new_ka.ka_restorer = NULL; 3491 #endif 3492 siginitset(&new_ka.sa.sa_mask, mask); 3493 } 3494 3495 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3496 3497 if (!ret && oact) { 3498 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3499 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3500 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3501 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3502 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3503 return -EFAULT; 3504 } 3505 3506 return ret; 3507 } 3508 #endif 3509 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3510 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3511 const struct compat_old_sigaction __user *, act, 3512 struct compat_old_sigaction __user *, oact) 3513 { 3514 struct k_sigaction new_ka, old_ka; 3515 int ret; 3516 compat_old_sigset_t mask; 3517 compat_uptr_t handler, restorer; 3518 3519 if (act) { 3520 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3521 __get_user(handler, &act->sa_handler) || 3522 __get_user(restorer, &act->sa_restorer) || 3523 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3524 __get_user(mask, &act->sa_mask)) 3525 return -EFAULT; 3526 3527 #ifdef __ARCH_HAS_KA_RESTORER 3528 new_ka.ka_restorer = NULL; 3529 #endif 3530 new_ka.sa.sa_handler = compat_ptr(handler); 3531 new_ka.sa.sa_restorer = compat_ptr(restorer); 3532 siginitset(&new_ka.sa.sa_mask, mask); 3533 } 3534 3535 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3536 3537 if (!ret && oact) { 3538 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3539 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3540 &oact->sa_handler) || 3541 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3542 &oact->sa_restorer) || 3543 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3544 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3545 return -EFAULT; 3546 } 3547 return ret; 3548 } 3549 #endif 3550 3551 #ifdef CONFIG_SGETMASK_SYSCALL 3552 3553 /* 3554 * For backwards compatibility. Functionality superseded by sigprocmask. 3555 */ 3556 SYSCALL_DEFINE0(sgetmask) 3557 { 3558 /* SMP safe */ 3559 return current->blocked.sig[0]; 3560 } 3561 3562 SYSCALL_DEFINE1(ssetmask, int, newmask) 3563 { 3564 int old = current->blocked.sig[0]; 3565 sigset_t newset; 3566 3567 siginitset(&newset, newmask); 3568 set_current_blocked(&newset); 3569 3570 return old; 3571 } 3572 #endif /* CONFIG_SGETMASK_SYSCALL */ 3573 3574 #ifdef __ARCH_WANT_SYS_SIGNAL 3575 /* 3576 * For backwards compatibility. Functionality superseded by sigaction. 3577 */ 3578 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3579 { 3580 struct k_sigaction new_sa, old_sa; 3581 int ret; 3582 3583 new_sa.sa.sa_handler = handler; 3584 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3585 sigemptyset(&new_sa.sa.sa_mask); 3586 3587 ret = do_sigaction(sig, &new_sa, &old_sa); 3588 3589 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3590 } 3591 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3592 3593 #ifdef __ARCH_WANT_SYS_PAUSE 3594 3595 SYSCALL_DEFINE0(pause) 3596 { 3597 while (!signal_pending(current)) { 3598 __set_current_state(TASK_INTERRUPTIBLE); 3599 schedule(); 3600 } 3601 return -ERESTARTNOHAND; 3602 } 3603 3604 #endif 3605 3606 static int sigsuspend(sigset_t *set) 3607 { 3608 current->saved_sigmask = current->blocked; 3609 set_current_blocked(set); 3610 3611 while (!signal_pending(current)) { 3612 __set_current_state(TASK_INTERRUPTIBLE); 3613 schedule(); 3614 } 3615 set_restore_sigmask(); 3616 return -ERESTARTNOHAND; 3617 } 3618 3619 /** 3620 * sys_rt_sigsuspend - replace the signal mask for a value with the 3621 * @unewset value until a signal is received 3622 * @unewset: new signal mask value 3623 * @sigsetsize: size of sigset_t type 3624 */ 3625 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3626 { 3627 sigset_t newset; 3628 3629 /* XXX: Don't preclude handling different sized sigset_t's. */ 3630 if (sigsetsize != sizeof(sigset_t)) 3631 return -EINVAL; 3632 3633 if (copy_from_user(&newset, unewset, sizeof(newset))) 3634 return -EFAULT; 3635 return sigsuspend(&newset); 3636 } 3637 3638 #ifdef CONFIG_COMPAT 3639 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3640 { 3641 sigset_t newset; 3642 3643 /* XXX: Don't preclude handling different sized sigset_t's. */ 3644 if (sigsetsize != sizeof(sigset_t)) 3645 return -EINVAL; 3646 3647 if (get_compat_sigset(&newset, unewset)) 3648 return -EFAULT; 3649 return sigsuspend(&newset); 3650 } 3651 #endif 3652 3653 #ifdef CONFIG_OLD_SIGSUSPEND 3654 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3655 { 3656 sigset_t blocked; 3657 siginitset(&blocked, mask); 3658 return sigsuspend(&blocked); 3659 } 3660 #endif 3661 #ifdef CONFIG_OLD_SIGSUSPEND3 3662 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3663 { 3664 sigset_t blocked; 3665 siginitset(&blocked, mask); 3666 return sigsuspend(&blocked); 3667 } 3668 #endif 3669 3670 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3671 { 3672 return NULL; 3673 } 3674 3675 void __init signals_init(void) 3676 { 3677 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 3678 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 3679 != offsetof(struct siginfo, _sifields._pad)); 3680 3681 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3682 } 3683 3684 #ifdef CONFIG_KGDB_KDB 3685 #include <linux/kdb.h> 3686 /* 3687 * kdb_send_sig_info - Allows kdb to send signals without exposing 3688 * signal internals. This function checks if the required locks are 3689 * available before calling the main signal code, to avoid kdb 3690 * deadlocks. 3691 */ 3692 void 3693 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3694 { 3695 static struct task_struct *kdb_prev_t; 3696 int sig, new_t; 3697 if (!spin_trylock(&t->sighand->siglock)) { 3698 kdb_printf("Can't do kill command now.\n" 3699 "The sigmask lock is held somewhere else in " 3700 "kernel, try again later\n"); 3701 return; 3702 } 3703 spin_unlock(&t->sighand->siglock); 3704 new_t = kdb_prev_t != t; 3705 kdb_prev_t = t; 3706 if (t->state != TASK_RUNNING && new_t) { 3707 kdb_printf("Process is not RUNNING, sending a signal from " 3708 "kdb risks deadlock\n" 3709 "on the run queue locks. " 3710 "The signal has _not_ been sent.\n" 3711 "Reissue the kill command if you want to risk " 3712 "the deadlock.\n"); 3713 return; 3714 } 3715 sig = info->si_signo; 3716 if (send_sig_info(sig, info, t)) 3717 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3718 sig, t->pid); 3719 else 3720 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3721 } 3722 #endif /* CONFIG_KGDB_KDB */ 3723