xref: /openbmc/linux/kernel/signal.c (revision 483eb062)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/signal.h>
38 
39 #include <asm/param.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/siginfo.h>
43 #include <asm/cacheflush.h>
44 #include "audit.h"	/* audit_signal_info() */
45 
46 /*
47  * SLAB caches for signal bits.
48  */
49 
50 static struct kmem_cache *sigqueue_cachep;
51 
52 int print_fatal_signals __read_mostly;
53 
54 static void __user *sig_handler(struct task_struct *t, int sig)
55 {
56 	return t->sighand->action[sig - 1].sa.sa_handler;
57 }
58 
59 static int sig_handler_ignored(void __user *handler, int sig)
60 {
61 	/* Is it explicitly or implicitly ignored? */
62 	return handler == SIG_IGN ||
63 		(handler == SIG_DFL && sig_kernel_ignore(sig));
64 }
65 
66 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
67 {
68 	void __user *handler;
69 
70 	handler = sig_handler(t, sig);
71 
72 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
73 			handler == SIG_DFL && !force)
74 		return 1;
75 
76 	return sig_handler_ignored(handler, sig);
77 }
78 
79 static int sig_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	/*
82 	 * Blocked signals are never ignored, since the
83 	 * signal handler may change by the time it is
84 	 * unblocked.
85 	 */
86 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
87 		return 0;
88 
89 	if (!sig_task_ignored(t, sig, force))
90 		return 0;
91 
92 	/*
93 	 * Tracers may want to know about even ignored signals.
94 	 */
95 	return !t->ptrace;
96 }
97 
98 /*
99  * Re-calculate pending state from the set of locally pending
100  * signals, globally pending signals, and blocked signals.
101  */
102 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
103 {
104 	unsigned long ready;
105 	long i;
106 
107 	switch (_NSIG_WORDS) {
108 	default:
109 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
110 			ready |= signal->sig[i] &~ blocked->sig[i];
111 		break;
112 
113 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
114 		ready |= signal->sig[2] &~ blocked->sig[2];
115 		ready |= signal->sig[1] &~ blocked->sig[1];
116 		ready |= signal->sig[0] &~ blocked->sig[0];
117 		break;
118 
119 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
120 		ready |= signal->sig[0] &~ blocked->sig[0];
121 		break;
122 
123 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
124 	}
125 	return ready !=	0;
126 }
127 
128 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
129 
130 static int recalc_sigpending_tsk(struct task_struct *t)
131 {
132 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
133 	    PENDING(&t->pending, &t->blocked) ||
134 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
135 		set_tsk_thread_flag(t, TIF_SIGPENDING);
136 		return 1;
137 	}
138 	/*
139 	 * We must never clear the flag in another thread, or in current
140 	 * when it's possible the current syscall is returning -ERESTART*.
141 	 * So we don't clear it here, and only callers who know they should do.
142 	 */
143 	return 0;
144 }
145 
146 /*
147  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
148  * This is superfluous when called on current, the wakeup is a harmless no-op.
149  */
150 void recalc_sigpending_and_wake(struct task_struct *t)
151 {
152 	if (recalc_sigpending_tsk(t))
153 		signal_wake_up(t, 0);
154 }
155 
156 void recalc_sigpending(void)
157 {
158 	if (!recalc_sigpending_tsk(current) && !freezing(current))
159 		clear_thread_flag(TIF_SIGPENDING);
160 
161 }
162 
163 /* Given the mask, find the first available signal that should be serviced. */
164 
165 #define SYNCHRONOUS_MASK \
166 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
167 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
168 
169 int next_signal(struct sigpending *pending, sigset_t *mask)
170 {
171 	unsigned long i, *s, *m, x;
172 	int sig = 0;
173 
174 	s = pending->signal.sig;
175 	m = mask->sig;
176 
177 	/*
178 	 * Handle the first word specially: it contains the
179 	 * synchronous signals that need to be dequeued first.
180 	 */
181 	x = *s &~ *m;
182 	if (x) {
183 		if (x & SYNCHRONOUS_MASK)
184 			x &= SYNCHRONOUS_MASK;
185 		sig = ffz(~x) + 1;
186 		return sig;
187 	}
188 
189 	switch (_NSIG_WORDS) {
190 	default:
191 		for (i = 1; i < _NSIG_WORDS; ++i) {
192 			x = *++s &~ *++m;
193 			if (!x)
194 				continue;
195 			sig = ffz(~x) + i*_NSIG_BPW + 1;
196 			break;
197 		}
198 		break;
199 
200 	case 2:
201 		x = s[1] &~ m[1];
202 		if (!x)
203 			break;
204 		sig = ffz(~x) + _NSIG_BPW + 1;
205 		break;
206 
207 	case 1:
208 		/* Nothing to do */
209 		break;
210 	}
211 
212 	return sig;
213 }
214 
215 static inline void print_dropped_signal(int sig)
216 {
217 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
218 
219 	if (!print_fatal_signals)
220 		return;
221 
222 	if (!__ratelimit(&ratelimit_state))
223 		return;
224 
225 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
226 				current->comm, current->pid, sig);
227 }
228 
229 /**
230  * task_set_jobctl_pending - set jobctl pending bits
231  * @task: target task
232  * @mask: pending bits to set
233  *
234  * Clear @mask from @task->jobctl.  @mask must be subset of
235  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
236  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
237  * cleared.  If @task is already being killed or exiting, this function
238  * becomes noop.
239  *
240  * CONTEXT:
241  * Must be called with @task->sighand->siglock held.
242  *
243  * RETURNS:
244  * %true if @mask is set, %false if made noop because @task was dying.
245  */
246 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
247 {
248 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
249 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
250 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
251 
252 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
253 		return false;
254 
255 	if (mask & JOBCTL_STOP_SIGMASK)
256 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
257 
258 	task->jobctl |= mask;
259 	return true;
260 }
261 
262 /**
263  * task_clear_jobctl_trapping - clear jobctl trapping bit
264  * @task: target task
265  *
266  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
267  * Clear it and wake up the ptracer.  Note that we don't need any further
268  * locking.  @task->siglock guarantees that @task->parent points to the
269  * ptracer.
270  *
271  * CONTEXT:
272  * Must be called with @task->sighand->siglock held.
273  */
274 void task_clear_jobctl_trapping(struct task_struct *task)
275 {
276 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
277 		task->jobctl &= ~JOBCTL_TRAPPING;
278 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
279 	}
280 }
281 
282 /**
283  * task_clear_jobctl_pending - clear jobctl pending bits
284  * @task: target task
285  * @mask: pending bits to clear
286  *
287  * Clear @mask from @task->jobctl.  @mask must be subset of
288  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
289  * STOP bits are cleared together.
290  *
291  * If clearing of @mask leaves no stop or trap pending, this function calls
292  * task_clear_jobctl_trapping().
293  *
294  * CONTEXT:
295  * Must be called with @task->sighand->siglock held.
296  */
297 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
298 {
299 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
300 
301 	if (mask & JOBCTL_STOP_PENDING)
302 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
303 
304 	task->jobctl &= ~mask;
305 
306 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
307 		task_clear_jobctl_trapping(task);
308 }
309 
310 /**
311  * task_participate_group_stop - participate in a group stop
312  * @task: task participating in a group stop
313  *
314  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
315  * Group stop states are cleared and the group stop count is consumed if
316  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
317  * stop, the appropriate %SIGNAL_* flags are set.
318  *
319  * CONTEXT:
320  * Must be called with @task->sighand->siglock held.
321  *
322  * RETURNS:
323  * %true if group stop completion should be notified to the parent, %false
324  * otherwise.
325  */
326 static bool task_participate_group_stop(struct task_struct *task)
327 {
328 	struct signal_struct *sig = task->signal;
329 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
330 
331 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
332 
333 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
334 
335 	if (!consume)
336 		return false;
337 
338 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
339 		sig->group_stop_count--;
340 
341 	/*
342 	 * Tell the caller to notify completion iff we are entering into a
343 	 * fresh group stop.  Read comment in do_signal_stop() for details.
344 	 */
345 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
346 		sig->flags = SIGNAL_STOP_STOPPED;
347 		return true;
348 	}
349 	return false;
350 }
351 
352 /*
353  * allocate a new signal queue record
354  * - this may be called without locks if and only if t == current, otherwise an
355  *   appropriate lock must be held to stop the target task from exiting
356  */
357 static struct sigqueue *
358 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
359 {
360 	struct sigqueue *q = NULL;
361 	struct user_struct *user;
362 
363 	/*
364 	 * Protect access to @t credentials. This can go away when all
365 	 * callers hold rcu read lock.
366 	 */
367 	rcu_read_lock();
368 	user = get_uid(__task_cred(t)->user);
369 	atomic_inc(&user->sigpending);
370 	rcu_read_unlock();
371 
372 	if (override_rlimit ||
373 	    atomic_read(&user->sigpending) <=
374 			task_rlimit(t, RLIMIT_SIGPENDING)) {
375 		q = kmem_cache_alloc(sigqueue_cachep, flags);
376 	} else {
377 		print_dropped_signal(sig);
378 	}
379 
380 	if (unlikely(q == NULL)) {
381 		atomic_dec(&user->sigpending);
382 		free_uid(user);
383 	} else {
384 		INIT_LIST_HEAD(&q->list);
385 		q->flags = 0;
386 		q->user = user;
387 	}
388 
389 	return q;
390 }
391 
392 static void __sigqueue_free(struct sigqueue *q)
393 {
394 	if (q->flags & SIGQUEUE_PREALLOC)
395 		return;
396 	atomic_dec(&q->user->sigpending);
397 	free_uid(q->user);
398 	kmem_cache_free(sigqueue_cachep, q);
399 }
400 
401 void flush_sigqueue(struct sigpending *queue)
402 {
403 	struct sigqueue *q;
404 
405 	sigemptyset(&queue->signal);
406 	while (!list_empty(&queue->list)) {
407 		q = list_entry(queue->list.next, struct sigqueue , list);
408 		list_del_init(&q->list);
409 		__sigqueue_free(q);
410 	}
411 }
412 
413 /*
414  * Flush all pending signals for a task.
415  */
416 void __flush_signals(struct task_struct *t)
417 {
418 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
419 	flush_sigqueue(&t->pending);
420 	flush_sigqueue(&t->signal->shared_pending);
421 }
422 
423 void flush_signals(struct task_struct *t)
424 {
425 	unsigned long flags;
426 
427 	spin_lock_irqsave(&t->sighand->siglock, flags);
428 	__flush_signals(t);
429 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
430 }
431 
432 static void __flush_itimer_signals(struct sigpending *pending)
433 {
434 	sigset_t signal, retain;
435 	struct sigqueue *q, *n;
436 
437 	signal = pending->signal;
438 	sigemptyset(&retain);
439 
440 	list_for_each_entry_safe(q, n, &pending->list, list) {
441 		int sig = q->info.si_signo;
442 
443 		if (likely(q->info.si_code != SI_TIMER)) {
444 			sigaddset(&retain, sig);
445 		} else {
446 			sigdelset(&signal, sig);
447 			list_del_init(&q->list);
448 			__sigqueue_free(q);
449 		}
450 	}
451 
452 	sigorsets(&pending->signal, &signal, &retain);
453 }
454 
455 void flush_itimer_signals(void)
456 {
457 	struct task_struct *tsk = current;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
461 	__flush_itimer_signals(&tsk->pending);
462 	__flush_itimer_signals(&tsk->signal->shared_pending);
463 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
464 }
465 
466 void ignore_signals(struct task_struct *t)
467 {
468 	int i;
469 
470 	for (i = 0; i < _NSIG; ++i)
471 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
472 
473 	flush_signals(t);
474 }
475 
476 /*
477  * Flush all handlers for a task.
478  */
479 
480 void
481 flush_signal_handlers(struct task_struct *t, int force_default)
482 {
483 	int i;
484 	struct k_sigaction *ka = &t->sighand->action[0];
485 	for (i = _NSIG ; i != 0 ; i--) {
486 		if (force_default || ka->sa.sa_handler != SIG_IGN)
487 			ka->sa.sa_handler = SIG_DFL;
488 		ka->sa.sa_flags = 0;
489 #ifdef __ARCH_HAS_SA_RESTORER
490 		ka->sa.sa_restorer = NULL;
491 #endif
492 		sigemptyset(&ka->sa.sa_mask);
493 		ka++;
494 	}
495 }
496 
497 int unhandled_signal(struct task_struct *tsk, int sig)
498 {
499 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 	if (is_global_init(tsk))
501 		return 1;
502 	if (handler != SIG_IGN && handler != SIG_DFL)
503 		return 0;
504 	/* if ptraced, let the tracer determine */
505 	return !tsk->ptrace;
506 }
507 
508 /*
509  * Notify the system that a driver wants to block all signals for this
510  * process, and wants to be notified if any signals at all were to be
511  * sent/acted upon.  If the notifier routine returns non-zero, then the
512  * signal will be acted upon after all.  If the notifier routine returns 0,
513  * then then signal will be blocked.  Only one block per process is
514  * allowed.  priv is a pointer to private data that the notifier routine
515  * can use to determine if the signal should be blocked or not.
516  */
517 void
518 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
519 {
520 	unsigned long flags;
521 
522 	spin_lock_irqsave(&current->sighand->siglock, flags);
523 	current->notifier_mask = mask;
524 	current->notifier_data = priv;
525 	current->notifier = notifier;
526 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
527 }
528 
529 /* Notify the system that blocking has ended. */
530 
531 void
532 unblock_all_signals(void)
533 {
534 	unsigned long flags;
535 
536 	spin_lock_irqsave(&current->sighand->siglock, flags);
537 	current->notifier = NULL;
538 	current->notifier_data = NULL;
539 	recalc_sigpending();
540 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
541 }
542 
543 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
544 {
545 	struct sigqueue *q, *first = NULL;
546 
547 	/*
548 	 * Collect the siginfo appropriate to this signal.  Check if
549 	 * there is another siginfo for the same signal.
550 	*/
551 	list_for_each_entry(q, &list->list, list) {
552 		if (q->info.si_signo == sig) {
553 			if (first)
554 				goto still_pending;
555 			first = q;
556 		}
557 	}
558 
559 	sigdelset(&list->signal, sig);
560 
561 	if (first) {
562 still_pending:
563 		list_del_init(&first->list);
564 		copy_siginfo(info, &first->info);
565 		__sigqueue_free(first);
566 	} else {
567 		/*
568 		 * Ok, it wasn't in the queue.  This must be
569 		 * a fast-pathed signal or we must have been
570 		 * out of queue space.  So zero out the info.
571 		 */
572 		info->si_signo = sig;
573 		info->si_errno = 0;
574 		info->si_code = SI_USER;
575 		info->si_pid = 0;
576 		info->si_uid = 0;
577 	}
578 }
579 
580 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
581 			siginfo_t *info)
582 {
583 	int sig = next_signal(pending, mask);
584 
585 	if (sig) {
586 		if (current->notifier) {
587 			if (sigismember(current->notifier_mask, sig)) {
588 				if (!(current->notifier)(current->notifier_data)) {
589 					clear_thread_flag(TIF_SIGPENDING);
590 					return 0;
591 				}
592 			}
593 		}
594 
595 		collect_signal(sig, pending, info);
596 	}
597 
598 	return sig;
599 }
600 
601 /*
602  * Dequeue a signal and return the element to the caller, which is
603  * expected to free it.
604  *
605  * All callers have to hold the siglock.
606  */
607 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
608 {
609 	int signr;
610 
611 	/* We only dequeue private signals from ourselves, we don't let
612 	 * signalfd steal them
613 	 */
614 	signr = __dequeue_signal(&tsk->pending, mask, info);
615 	if (!signr) {
616 		signr = __dequeue_signal(&tsk->signal->shared_pending,
617 					 mask, info);
618 		/*
619 		 * itimer signal ?
620 		 *
621 		 * itimers are process shared and we restart periodic
622 		 * itimers in the signal delivery path to prevent DoS
623 		 * attacks in the high resolution timer case. This is
624 		 * compliant with the old way of self-restarting
625 		 * itimers, as the SIGALRM is a legacy signal and only
626 		 * queued once. Changing the restart behaviour to
627 		 * restart the timer in the signal dequeue path is
628 		 * reducing the timer noise on heavy loaded !highres
629 		 * systems too.
630 		 */
631 		if (unlikely(signr == SIGALRM)) {
632 			struct hrtimer *tmr = &tsk->signal->real_timer;
633 
634 			if (!hrtimer_is_queued(tmr) &&
635 			    tsk->signal->it_real_incr.tv64 != 0) {
636 				hrtimer_forward(tmr, tmr->base->get_time(),
637 						tsk->signal->it_real_incr);
638 				hrtimer_restart(tmr);
639 			}
640 		}
641 	}
642 
643 	recalc_sigpending();
644 	if (!signr)
645 		return 0;
646 
647 	if (unlikely(sig_kernel_stop(signr))) {
648 		/*
649 		 * Set a marker that we have dequeued a stop signal.  Our
650 		 * caller might release the siglock and then the pending
651 		 * stop signal it is about to process is no longer in the
652 		 * pending bitmasks, but must still be cleared by a SIGCONT
653 		 * (and overruled by a SIGKILL).  So those cases clear this
654 		 * shared flag after we've set it.  Note that this flag may
655 		 * remain set after the signal we return is ignored or
656 		 * handled.  That doesn't matter because its only purpose
657 		 * is to alert stop-signal processing code when another
658 		 * processor has come along and cleared the flag.
659 		 */
660 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
661 	}
662 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
663 		/*
664 		 * Release the siglock to ensure proper locking order
665 		 * of timer locks outside of siglocks.  Note, we leave
666 		 * irqs disabled here, since the posix-timers code is
667 		 * about to disable them again anyway.
668 		 */
669 		spin_unlock(&tsk->sighand->siglock);
670 		do_schedule_next_timer(info);
671 		spin_lock(&tsk->sighand->siglock);
672 	}
673 	return signr;
674 }
675 
676 /*
677  * Tell a process that it has a new active signal..
678  *
679  * NOTE! we rely on the previous spin_lock to
680  * lock interrupts for us! We can only be called with
681  * "siglock" held, and the local interrupt must
682  * have been disabled when that got acquired!
683  *
684  * No need to set need_resched since signal event passing
685  * goes through ->blocked
686  */
687 void signal_wake_up_state(struct task_struct *t, unsigned int state)
688 {
689 	set_tsk_thread_flag(t, TIF_SIGPENDING);
690 	/*
691 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
692 	 * case. We don't check t->state here because there is a race with it
693 	 * executing another processor and just now entering stopped state.
694 	 * By using wake_up_state, we ensure the process will wake up and
695 	 * handle its death signal.
696 	 */
697 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
698 		kick_process(t);
699 }
700 
701 /*
702  * Remove signals in mask from the pending set and queue.
703  * Returns 1 if any signals were found.
704  *
705  * All callers must be holding the siglock.
706  *
707  * This version takes a sigset mask and looks at all signals,
708  * not just those in the first mask word.
709  */
710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
711 {
712 	struct sigqueue *q, *n;
713 	sigset_t m;
714 
715 	sigandsets(&m, mask, &s->signal);
716 	if (sigisemptyset(&m))
717 		return 0;
718 
719 	sigandnsets(&s->signal, &s->signal, mask);
720 	list_for_each_entry_safe(q, n, &s->list, list) {
721 		if (sigismember(mask, q->info.si_signo)) {
722 			list_del_init(&q->list);
723 			__sigqueue_free(q);
724 		}
725 	}
726 	return 1;
727 }
728 /*
729  * Remove signals in mask from the pending set and queue.
730  * Returns 1 if any signals were found.
731  *
732  * All callers must be holding the siglock.
733  */
734 static int rm_from_queue(unsigned long mask, struct sigpending *s)
735 {
736 	struct sigqueue *q, *n;
737 
738 	if (!sigtestsetmask(&s->signal, mask))
739 		return 0;
740 
741 	sigdelsetmask(&s->signal, mask);
742 	list_for_each_entry_safe(q, n, &s->list, list) {
743 		if (q->info.si_signo < SIGRTMIN &&
744 		    (mask & sigmask(q->info.si_signo))) {
745 			list_del_init(&q->list);
746 			__sigqueue_free(q);
747 		}
748 	}
749 	return 1;
750 }
751 
752 static inline int is_si_special(const struct siginfo *info)
753 {
754 	return info <= SEND_SIG_FORCED;
755 }
756 
757 static inline bool si_fromuser(const struct siginfo *info)
758 {
759 	return info == SEND_SIG_NOINFO ||
760 		(!is_si_special(info) && SI_FROMUSER(info));
761 }
762 
763 /*
764  * called with RCU read lock from check_kill_permission()
765  */
766 static int kill_ok_by_cred(struct task_struct *t)
767 {
768 	const struct cred *cred = current_cred();
769 	const struct cred *tcred = __task_cred(t);
770 
771 	if (uid_eq(cred->euid, tcred->suid) ||
772 	    uid_eq(cred->euid, tcred->uid)  ||
773 	    uid_eq(cred->uid,  tcred->suid) ||
774 	    uid_eq(cred->uid,  tcred->uid))
775 		return 1;
776 
777 	if (ns_capable(tcred->user_ns, CAP_KILL))
778 		return 1;
779 
780 	return 0;
781 }
782 
783 /*
784  * Bad permissions for sending the signal
785  * - the caller must hold the RCU read lock
786  */
787 static int check_kill_permission(int sig, struct siginfo *info,
788 				 struct task_struct *t)
789 {
790 	struct pid *sid;
791 	int error;
792 
793 	if (!valid_signal(sig))
794 		return -EINVAL;
795 
796 	if (!si_fromuser(info))
797 		return 0;
798 
799 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 	if (error)
801 		return error;
802 
803 	if (!same_thread_group(current, t) &&
804 	    !kill_ok_by_cred(t)) {
805 		switch (sig) {
806 		case SIGCONT:
807 			sid = task_session(t);
808 			/*
809 			 * We don't return the error if sid == NULL. The
810 			 * task was unhashed, the caller must notice this.
811 			 */
812 			if (!sid || sid == task_session(current))
813 				break;
814 		default:
815 			return -EPERM;
816 		}
817 	}
818 
819 	return security_task_kill(t, info, sig, 0);
820 }
821 
822 /**
823  * ptrace_trap_notify - schedule trap to notify ptracer
824  * @t: tracee wanting to notify tracer
825  *
826  * This function schedules sticky ptrace trap which is cleared on the next
827  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
828  * ptracer.
829  *
830  * If @t is running, STOP trap will be taken.  If trapped for STOP and
831  * ptracer is listening for events, tracee is woken up so that it can
832  * re-trap for the new event.  If trapped otherwise, STOP trap will be
833  * eventually taken without returning to userland after the existing traps
834  * are finished by PTRACE_CONT.
835  *
836  * CONTEXT:
837  * Must be called with @task->sighand->siglock held.
838  */
839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 	assert_spin_locked(&t->sighand->siglock);
843 
844 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847 
848 /*
849  * Handle magic process-wide effects of stop/continue signals. Unlike
850  * the signal actions, these happen immediately at signal-generation
851  * time regardless of blocking, ignoring, or handling.  This does the
852  * actual continuing for SIGCONT, but not the actual stopping for stop
853  * signals. The process stop is done as a signal action for SIG_DFL.
854  *
855  * Returns true if the signal should be actually delivered, otherwise
856  * it should be dropped.
857  */
858 static bool prepare_signal(int sig, struct task_struct *p, bool force)
859 {
860 	struct signal_struct *signal = p->signal;
861 	struct task_struct *t;
862 
863 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
864 		if (signal->flags & SIGNAL_GROUP_COREDUMP)
865 			return sig == SIGKILL;
866 		/*
867 		 * The process is in the middle of dying, nothing to do.
868 		 */
869 	} else if (sig_kernel_stop(sig)) {
870 		/*
871 		 * This is a stop signal.  Remove SIGCONT from all queues.
872 		 */
873 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
874 		t = p;
875 		do {
876 			rm_from_queue(sigmask(SIGCONT), &t->pending);
877 		} while_each_thread(p, t);
878 	} else if (sig == SIGCONT) {
879 		unsigned int why;
880 		/*
881 		 * Remove all stop signals from all queues, wake all threads.
882 		 */
883 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
884 		t = p;
885 		do {
886 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
887 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
888 			if (likely(!(t->ptrace & PT_SEIZED)))
889 				wake_up_state(t, __TASK_STOPPED);
890 			else
891 				ptrace_trap_notify(t);
892 		} while_each_thread(p, t);
893 
894 		/*
895 		 * Notify the parent with CLD_CONTINUED if we were stopped.
896 		 *
897 		 * If we were in the middle of a group stop, we pretend it
898 		 * was already finished, and then continued. Since SIGCHLD
899 		 * doesn't queue we report only CLD_STOPPED, as if the next
900 		 * CLD_CONTINUED was dropped.
901 		 */
902 		why = 0;
903 		if (signal->flags & SIGNAL_STOP_STOPPED)
904 			why |= SIGNAL_CLD_CONTINUED;
905 		else if (signal->group_stop_count)
906 			why |= SIGNAL_CLD_STOPPED;
907 
908 		if (why) {
909 			/*
910 			 * The first thread which returns from do_signal_stop()
911 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
912 			 * notify its parent. See get_signal_to_deliver().
913 			 */
914 			signal->flags = why | SIGNAL_STOP_CONTINUED;
915 			signal->group_stop_count = 0;
916 			signal->group_exit_code = 0;
917 		}
918 	}
919 
920 	return !sig_ignored(p, sig, force);
921 }
922 
923 /*
924  * Test if P wants to take SIG.  After we've checked all threads with this,
925  * it's equivalent to finding no threads not blocking SIG.  Any threads not
926  * blocking SIG were ruled out because they are not running and already
927  * have pending signals.  Such threads will dequeue from the shared queue
928  * as soon as they're available, so putting the signal on the shared queue
929  * will be equivalent to sending it to one such thread.
930  */
931 static inline int wants_signal(int sig, struct task_struct *p)
932 {
933 	if (sigismember(&p->blocked, sig))
934 		return 0;
935 	if (p->flags & PF_EXITING)
936 		return 0;
937 	if (sig == SIGKILL)
938 		return 1;
939 	if (task_is_stopped_or_traced(p))
940 		return 0;
941 	return task_curr(p) || !signal_pending(p);
942 }
943 
944 static void complete_signal(int sig, struct task_struct *p, int group)
945 {
946 	struct signal_struct *signal = p->signal;
947 	struct task_struct *t;
948 
949 	/*
950 	 * Now find a thread we can wake up to take the signal off the queue.
951 	 *
952 	 * If the main thread wants the signal, it gets first crack.
953 	 * Probably the least surprising to the average bear.
954 	 */
955 	if (wants_signal(sig, p))
956 		t = p;
957 	else if (!group || thread_group_empty(p))
958 		/*
959 		 * There is just one thread and it does not need to be woken.
960 		 * It will dequeue unblocked signals before it runs again.
961 		 */
962 		return;
963 	else {
964 		/*
965 		 * Otherwise try to find a suitable thread.
966 		 */
967 		t = signal->curr_target;
968 		while (!wants_signal(sig, t)) {
969 			t = next_thread(t);
970 			if (t == signal->curr_target)
971 				/*
972 				 * No thread needs to be woken.
973 				 * Any eligible threads will see
974 				 * the signal in the queue soon.
975 				 */
976 				return;
977 		}
978 		signal->curr_target = t;
979 	}
980 
981 	/*
982 	 * Found a killable thread.  If the signal will be fatal,
983 	 * then start taking the whole group down immediately.
984 	 */
985 	if (sig_fatal(p, sig) &&
986 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
987 	    !sigismember(&t->real_blocked, sig) &&
988 	    (sig == SIGKILL || !t->ptrace)) {
989 		/*
990 		 * This signal will be fatal to the whole group.
991 		 */
992 		if (!sig_kernel_coredump(sig)) {
993 			/*
994 			 * Start a group exit and wake everybody up.
995 			 * This way we don't have other threads
996 			 * running and doing things after a slower
997 			 * thread has the fatal signal pending.
998 			 */
999 			signal->flags = SIGNAL_GROUP_EXIT;
1000 			signal->group_exit_code = sig;
1001 			signal->group_stop_count = 0;
1002 			t = p;
1003 			do {
1004 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1005 				sigaddset(&t->pending.signal, SIGKILL);
1006 				signal_wake_up(t, 1);
1007 			} while_each_thread(p, t);
1008 			return;
1009 		}
1010 	}
1011 
1012 	/*
1013 	 * The signal is already in the shared-pending queue.
1014 	 * Tell the chosen thread to wake up and dequeue it.
1015 	 */
1016 	signal_wake_up(t, sig == SIGKILL);
1017 	return;
1018 }
1019 
1020 static inline int legacy_queue(struct sigpending *signals, int sig)
1021 {
1022 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1023 }
1024 
1025 #ifdef CONFIG_USER_NS
1026 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1027 {
1028 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1029 		return;
1030 
1031 	if (SI_FROMKERNEL(info))
1032 		return;
1033 
1034 	rcu_read_lock();
1035 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1036 					make_kuid(current_user_ns(), info->si_uid));
1037 	rcu_read_unlock();
1038 }
1039 #else
1040 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1041 {
1042 	return;
1043 }
1044 #endif
1045 
1046 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1047 			int group, int from_ancestor_ns)
1048 {
1049 	struct sigpending *pending;
1050 	struct sigqueue *q;
1051 	int override_rlimit;
1052 	int ret = 0, result;
1053 
1054 	assert_spin_locked(&t->sighand->siglock);
1055 
1056 	result = TRACE_SIGNAL_IGNORED;
1057 	if (!prepare_signal(sig, t,
1058 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1059 		goto ret;
1060 
1061 	pending = group ? &t->signal->shared_pending : &t->pending;
1062 	/*
1063 	 * Short-circuit ignored signals and support queuing
1064 	 * exactly one non-rt signal, so that we can get more
1065 	 * detailed information about the cause of the signal.
1066 	 */
1067 	result = TRACE_SIGNAL_ALREADY_PENDING;
1068 	if (legacy_queue(pending, sig))
1069 		goto ret;
1070 
1071 	result = TRACE_SIGNAL_DELIVERED;
1072 	/*
1073 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1074 	 * or SIGKILL.
1075 	 */
1076 	if (info == SEND_SIG_FORCED)
1077 		goto out_set;
1078 
1079 	/*
1080 	 * Real-time signals must be queued if sent by sigqueue, or
1081 	 * some other real-time mechanism.  It is implementation
1082 	 * defined whether kill() does so.  We attempt to do so, on
1083 	 * the principle of least surprise, but since kill is not
1084 	 * allowed to fail with EAGAIN when low on memory we just
1085 	 * make sure at least one signal gets delivered and don't
1086 	 * pass on the info struct.
1087 	 */
1088 	if (sig < SIGRTMIN)
1089 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1090 	else
1091 		override_rlimit = 0;
1092 
1093 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1094 		override_rlimit);
1095 	if (q) {
1096 		list_add_tail(&q->list, &pending->list);
1097 		switch ((unsigned long) info) {
1098 		case (unsigned long) SEND_SIG_NOINFO:
1099 			q->info.si_signo = sig;
1100 			q->info.si_errno = 0;
1101 			q->info.si_code = SI_USER;
1102 			q->info.si_pid = task_tgid_nr_ns(current,
1103 							task_active_pid_ns(t));
1104 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1105 			break;
1106 		case (unsigned long) SEND_SIG_PRIV:
1107 			q->info.si_signo = sig;
1108 			q->info.si_errno = 0;
1109 			q->info.si_code = SI_KERNEL;
1110 			q->info.si_pid = 0;
1111 			q->info.si_uid = 0;
1112 			break;
1113 		default:
1114 			copy_siginfo(&q->info, info);
1115 			if (from_ancestor_ns)
1116 				q->info.si_pid = 0;
1117 			break;
1118 		}
1119 
1120 		userns_fixup_signal_uid(&q->info, t);
1121 
1122 	} else if (!is_si_special(info)) {
1123 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1124 			/*
1125 			 * Queue overflow, abort.  We may abort if the
1126 			 * signal was rt and sent by user using something
1127 			 * other than kill().
1128 			 */
1129 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1130 			ret = -EAGAIN;
1131 			goto ret;
1132 		} else {
1133 			/*
1134 			 * This is a silent loss of information.  We still
1135 			 * send the signal, but the *info bits are lost.
1136 			 */
1137 			result = TRACE_SIGNAL_LOSE_INFO;
1138 		}
1139 	}
1140 
1141 out_set:
1142 	signalfd_notify(t, sig);
1143 	sigaddset(&pending->signal, sig);
1144 	complete_signal(sig, t, group);
1145 ret:
1146 	trace_signal_generate(sig, info, t, group, result);
1147 	return ret;
1148 }
1149 
1150 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1151 			int group)
1152 {
1153 	int from_ancestor_ns = 0;
1154 
1155 #ifdef CONFIG_PID_NS
1156 	from_ancestor_ns = si_fromuser(info) &&
1157 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1158 #endif
1159 
1160 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1161 }
1162 
1163 static void print_fatal_signal(int signr)
1164 {
1165 	struct pt_regs *regs = signal_pt_regs();
1166 	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1167 
1168 #if defined(__i386__) && !defined(__arch_um__)
1169 	printk(KERN_INFO "code at %08lx: ", regs->ip);
1170 	{
1171 		int i;
1172 		for (i = 0; i < 16; i++) {
1173 			unsigned char insn;
1174 
1175 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1176 				break;
1177 			printk(KERN_CONT "%02x ", insn);
1178 		}
1179 	}
1180 	printk(KERN_CONT "\n");
1181 #endif
1182 	preempt_disable();
1183 	show_regs(regs);
1184 	preempt_enable();
1185 }
1186 
1187 static int __init setup_print_fatal_signals(char *str)
1188 {
1189 	get_option (&str, &print_fatal_signals);
1190 
1191 	return 1;
1192 }
1193 
1194 __setup("print-fatal-signals=", setup_print_fatal_signals);
1195 
1196 int
1197 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1198 {
1199 	return send_signal(sig, info, p, 1);
1200 }
1201 
1202 static int
1203 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1204 {
1205 	return send_signal(sig, info, t, 0);
1206 }
1207 
1208 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1209 			bool group)
1210 {
1211 	unsigned long flags;
1212 	int ret = -ESRCH;
1213 
1214 	if (lock_task_sighand(p, &flags)) {
1215 		ret = send_signal(sig, info, p, group);
1216 		unlock_task_sighand(p, &flags);
1217 	}
1218 
1219 	return ret;
1220 }
1221 
1222 /*
1223  * Force a signal that the process can't ignore: if necessary
1224  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1225  *
1226  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1227  * since we do not want to have a signal handler that was blocked
1228  * be invoked when user space had explicitly blocked it.
1229  *
1230  * We don't want to have recursive SIGSEGV's etc, for example,
1231  * that is why we also clear SIGNAL_UNKILLABLE.
1232  */
1233 int
1234 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1235 {
1236 	unsigned long int flags;
1237 	int ret, blocked, ignored;
1238 	struct k_sigaction *action;
1239 
1240 	spin_lock_irqsave(&t->sighand->siglock, flags);
1241 	action = &t->sighand->action[sig-1];
1242 	ignored = action->sa.sa_handler == SIG_IGN;
1243 	blocked = sigismember(&t->blocked, sig);
1244 	if (blocked || ignored) {
1245 		action->sa.sa_handler = SIG_DFL;
1246 		if (blocked) {
1247 			sigdelset(&t->blocked, sig);
1248 			recalc_sigpending_and_wake(t);
1249 		}
1250 	}
1251 	if (action->sa.sa_handler == SIG_DFL)
1252 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1253 	ret = specific_send_sig_info(sig, info, t);
1254 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1255 
1256 	return ret;
1257 }
1258 
1259 /*
1260  * Nuke all other threads in the group.
1261  */
1262 int zap_other_threads(struct task_struct *p)
1263 {
1264 	struct task_struct *t = p;
1265 	int count = 0;
1266 
1267 	p->signal->group_stop_count = 0;
1268 
1269 	while_each_thread(p, t) {
1270 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1271 		count++;
1272 
1273 		/* Don't bother with already dead threads */
1274 		if (t->exit_state)
1275 			continue;
1276 		sigaddset(&t->pending.signal, SIGKILL);
1277 		signal_wake_up(t, 1);
1278 	}
1279 
1280 	return count;
1281 }
1282 
1283 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1284 					   unsigned long *flags)
1285 {
1286 	struct sighand_struct *sighand;
1287 
1288 	for (;;) {
1289 		local_irq_save(*flags);
1290 		rcu_read_lock();
1291 		sighand = rcu_dereference(tsk->sighand);
1292 		if (unlikely(sighand == NULL)) {
1293 			rcu_read_unlock();
1294 			local_irq_restore(*flags);
1295 			break;
1296 		}
1297 
1298 		spin_lock(&sighand->siglock);
1299 		if (likely(sighand == tsk->sighand)) {
1300 			rcu_read_unlock();
1301 			break;
1302 		}
1303 		spin_unlock(&sighand->siglock);
1304 		rcu_read_unlock();
1305 		local_irq_restore(*flags);
1306 	}
1307 
1308 	return sighand;
1309 }
1310 
1311 /*
1312  * send signal info to all the members of a group
1313  */
1314 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1315 {
1316 	int ret;
1317 
1318 	rcu_read_lock();
1319 	ret = check_kill_permission(sig, info, p);
1320 	rcu_read_unlock();
1321 
1322 	if (!ret && sig)
1323 		ret = do_send_sig_info(sig, info, p, true);
1324 
1325 	return ret;
1326 }
1327 
1328 /*
1329  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1330  * control characters do (^C, ^Z etc)
1331  * - the caller must hold at least a readlock on tasklist_lock
1332  */
1333 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1334 {
1335 	struct task_struct *p = NULL;
1336 	int retval, success;
1337 
1338 	success = 0;
1339 	retval = -ESRCH;
1340 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1341 		int err = group_send_sig_info(sig, info, p);
1342 		success |= !err;
1343 		retval = err;
1344 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1345 	return success ? 0 : retval;
1346 }
1347 
1348 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1349 {
1350 	int error = -ESRCH;
1351 	struct task_struct *p;
1352 
1353 	rcu_read_lock();
1354 retry:
1355 	p = pid_task(pid, PIDTYPE_PID);
1356 	if (p) {
1357 		error = group_send_sig_info(sig, info, p);
1358 		if (unlikely(error == -ESRCH))
1359 			/*
1360 			 * The task was unhashed in between, try again.
1361 			 * If it is dead, pid_task() will return NULL,
1362 			 * if we race with de_thread() it will find the
1363 			 * new leader.
1364 			 */
1365 			goto retry;
1366 	}
1367 	rcu_read_unlock();
1368 
1369 	return error;
1370 }
1371 
1372 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1373 {
1374 	int error;
1375 	rcu_read_lock();
1376 	error = kill_pid_info(sig, info, find_vpid(pid));
1377 	rcu_read_unlock();
1378 	return error;
1379 }
1380 
1381 static int kill_as_cred_perm(const struct cred *cred,
1382 			     struct task_struct *target)
1383 {
1384 	const struct cred *pcred = __task_cred(target);
1385 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1386 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1387 		return 0;
1388 	return 1;
1389 }
1390 
1391 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1392 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1393 			 const struct cred *cred, u32 secid)
1394 {
1395 	int ret = -EINVAL;
1396 	struct task_struct *p;
1397 	unsigned long flags;
1398 
1399 	if (!valid_signal(sig))
1400 		return ret;
1401 
1402 	rcu_read_lock();
1403 	p = pid_task(pid, PIDTYPE_PID);
1404 	if (!p) {
1405 		ret = -ESRCH;
1406 		goto out_unlock;
1407 	}
1408 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1409 		ret = -EPERM;
1410 		goto out_unlock;
1411 	}
1412 	ret = security_task_kill(p, info, sig, secid);
1413 	if (ret)
1414 		goto out_unlock;
1415 
1416 	if (sig) {
1417 		if (lock_task_sighand(p, &flags)) {
1418 			ret = __send_signal(sig, info, p, 1, 0);
1419 			unlock_task_sighand(p, &flags);
1420 		} else
1421 			ret = -ESRCH;
1422 	}
1423 out_unlock:
1424 	rcu_read_unlock();
1425 	return ret;
1426 }
1427 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1428 
1429 /*
1430  * kill_something_info() interprets pid in interesting ways just like kill(2).
1431  *
1432  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1433  * is probably wrong.  Should make it like BSD or SYSV.
1434  */
1435 
1436 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1437 {
1438 	int ret;
1439 
1440 	if (pid > 0) {
1441 		rcu_read_lock();
1442 		ret = kill_pid_info(sig, info, find_vpid(pid));
1443 		rcu_read_unlock();
1444 		return ret;
1445 	}
1446 
1447 	read_lock(&tasklist_lock);
1448 	if (pid != -1) {
1449 		ret = __kill_pgrp_info(sig, info,
1450 				pid ? find_vpid(-pid) : task_pgrp(current));
1451 	} else {
1452 		int retval = 0, count = 0;
1453 		struct task_struct * p;
1454 
1455 		for_each_process(p) {
1456 			if (task_pid_vnr(p) > 1 &&
1457 					!same_thread_group(p, current)) {
1458 				int err = group_send_sig_info(sig, info, p);
1459 				++count;
1460 				if (err != -EPERM)
1461 					retval = err;
1462 			}
1463 		}
1464 		ret = count ? retval : -ESRCH;
1465 	}
1466 	read_unlock(&tasklist_lock);
1467 
1468 	return ret;
1469 }
1470 
1471 /*
1472  * These are for backward compatibility with the rest of the kernel source.
1473  */
1474 
1475 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1476 {
1477 	/*
1478 	 * Make sure legacy kernel users don't send in bad values
1479 	 * (normal paths check this in check_kill_permission).
1480 	 */
1481 	if (!valid_signal(sig))
1482 		return -EINVAL;
1483 
1484 	return do_send_sig_info(sig, info, p, false);
1485 }
1486 
1487 #define __si_special(priv) \
1488 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1489 
1490 int
1491 send_sig(int sig, struct task_struct *p, int priv)
1492 {
1493 	return send_sig_info(sig, __si_special(priv), p);
1494 }
1495 
1496 void
1497 force_sig(int sig, struct task_struct *p)
1498 {
1499 	force_sig_info(sig, SEND_SIG_PRIV, p);
1500 }
1501 
1502 /*
1503  * When things go south during signal handling, we
1504  * will force a SIGSEGV. And if the signal that caused
1505  * the problem was already a SIGSEGV, we'll want to
1506  * make sure we don't even try to deliver the signal..
1507  */
1508 int
1509 force_sigsegv(int sig, struct task_struct *p)
1510 {
1511 	if (sig == SIGSEGV) {
1512 		unsigned long flags;
1513 		spin_lock_irqsave(&p->sighand->siglock, flags);
1514 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1515 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1516 	}
1517 	force_sig(SIGSEGV, p);
1518 	return 0;
1519 }
1520 
1521 int kill_pgrp(struct pid *pid, int sig, int priv)
1522 {
1523 	int ret;
1524 
1525 	read_lock(&tasklist_lock);
1526 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1527 	read_unlock(&tasklist_lock);
1528 
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL(kill_pgrp);
1532 
1533 int kill_pid(struct pid *pid, int sig, int priv)
1534 {
1535 	return kill_pid_info(sig, __si_special(priv), pid);
1536 }
1537 EXPORT_SYMBOL(kill_pid);
1538 
1539 /*
1540  * These functions support sending signals using preallocated sigqueue
1541  * structures.  This is needed "because realtime applications cannot
1542  * afford to lose notifications of asynchronous events, like timer
1543  * expirations or I/O completions".  In the case of POSIX Timers
1544  * we allocate the sigqueue structure from the timer_create.  If this
1545  * allocation fails we are able to report the failure to the application
1546  * with an EAGAIN error.
1547  */
1548 struct sigqueue *sigqueue_alloc(void)
1549 {
1550 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1551 
1552 	if (q)
1553 		q->flags |= SIGQUEUE_PREALLOC;
1554 
1555 	return q;
1556 }
1557 
1558 void sigqueue_free(struct sigqueue *q)
1559 {
1560 	unsigned long flags;
1561 	spinlock_t *lock = &current->sighand->siglock;
1562 
1563 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1564 	/*
1565 	 * We must hold ->siglock while testing q->list
1566 	 * to serialize with collect_signal() or with
1567 	 * __exit_signal()->flush_sigqueue().
1568 	 */
1569 	spin_lock_irqsave(lock, flags);
1570 	q->flags &= ~SIGQUEUE_PREALLOC;
1571 	/*
1572 	 * If it is queued it will be freed when dequeued,
1573 	 * like the "regular" sigqueue.
1574 	 */
1575 	if (!list_empty(&q->list))
1576 		q = NULL;
1577 	spin_unlock_irqrestore(lock, flags);
1578 
1579 	if (q)
1580 		__sigqueue_free(q);
1581 }
1582 
1583 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1584 {
1585 	int sig = q->info.si_signo;
1586 	struct sigpending *pending;
1587 	unsigned long flags;
1588 	int ret, result;
1589 
1590 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1591 
1592 	ret = -1;
1593 	if (!likely(lock_task_sighand(t, &flags)))
1594 		goto ret;
1595 
1596 	ret = 1; /* the signal is ignored */
1597 	result = TRACE_SIGNAL_IGNORED;
1598 	if (!prepare_signal(sig, t, false))
1599 		goto out;
1600 
1601 	ret = 0;
1602 	if (unlikely(!list_empty(&q->list))) {
1603 		/*
1604 		 * If an SI_TIMER entry is already queue just increment
1605 		 * the overrun count.
1606 		 */
1607 		BUG_ON(q->info.si_code != SI_TIMER);
1608 		q->info.si_overrun++;
1609 		result = TRACE_SIGNAL_ALREADY_PENDING;
1610 		goto out;
1611 	}
1612 	q->info.si_overrun = 0;
1613 
1614 	signalfd_notify(t, sig);
1615 	pending = group ? &t->signal->shared_pending : &t->pending;
1616 	list_add_tail(&q->list, &pending->list);
1617 	sigaddset(&pending->signal, sig);
1618 	complete_signal(sig, t, group);
1619 	result = TRACE_SIGNAL_DELIVERED;
1620 out:
1621 	trace_signal_generate(sig, &q->info, t, group, result);
1622 	unlock_task_sighand(t, &flags);
1623 ret:
1624 	return ret;
1625 }
1626 
1627 /*
1628  * Let a parent know about the death of a child.
1629  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1630  *
1631  * Returns true if our parent ignored us and so we've switched to
1632  * self-reaping.
1633  */
1634 bool do_notify_parent(struct task_struct *tsk, int sig)
1635 {
1636 	struct siginfo info;
1637 	unsigned long flags;
1638 	struct sighand_struct *psig;
1639 	bool autoreap = false;
1640 	cputime_t utime, stime;
1641 
1642 	BUG_ON(sig == -1);
1643 
1644  	/* do_notify_parent_cldstop should have been called instead.  */
1645  	BUG_ON(task_is_stopped_or_traced(tsk));
1646 
1647 	BUG_ON(!tsk->ptrace &&
1648 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1649 
1650 	if (sig != SIGCHLD) {
1651 		/*
1652 		 * This is only possible if parent == real_parent.
1653 		 * Check if it has changed security domain.
1654 		 */
1655 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1656 			sig = SIGCHLD;
1657 	}
1658 
1659 	info.si_signo = sig;
1660 	info.si_errno = 0;
1661 	/*
1662 	 * We are under tasklist_lock here so our parent is tied to
1663 	 * us and cannot change.
1664 	 *
1665 	 * task_active_pid_ns will always return the same pid namespace
1666 	 * until a task passes through release_task.
1667 	 *
1668 	 * write_lock() currently calls preempt_disable() which is the
1669 	 * same as rcu_read_lock(), but according to Oleg, this is not
1670 	 * correct to rely on this
1671 	 */
1672 	rcu_read_lock();
1673 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1674 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1675 				       task_uid(tsk));
1676 	rcu_read_unlock();
1677 
1678 	task_cputime(tsk, &utime, &stime);
1679 	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1680 	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1681 
1682 	info.si_status = tsk->exit_code & 0x7f;
1683 	if (tsk->exit_code & 0x80)
1684 		info.si_code = CLD_DUMPED;
1685 	else if (tsk->exit_code & 0x7f)
1686 		info.si_code = CLD_KILLED;
1687 	else {
1688 		info.si_code = CLD_EXITED;
1689 		info.si_status = tsk->exit_code >> 8;
1690 	}
1691 
1692 	psig = tsk->parent->sighand;
1693 	spin_lock_irqsave(&psig->siglock, flags);
1694 	if (!tsk->ptrace && sig == SIGCHLD &&
1695 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1696 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1697 		/*
1698 		 * We are exiting and our parent doesn't care.  POSIX.1
1699 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1700 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1701 		 * automatically and not left for our parent's wait4 call.
1702 		 * Rather than having the parent do it as a magic kind of
1703 		 * signal handler, we just set this to tell do_exit that we
1704 		 * can be cleaned up without becoming a zombie.  Note that
1705 		 * we still call __wake_up_parent in this case, because a
1706 		 * blocked sys_wait4 might now return -ECHILD.
1707 		 *
1708 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1709 		 * is implementation-defined: we do (if you don't want
1710 		 * it, just use SIG_IGN instead).
1711 		 */
1712 		autoreap = true;
1713 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1714 			sig = 0;
1715 	}
1716 	if (valid_signal(sig) && sig)
1717 		__group_send_sig_info(sig, &info, tsk->parent);
1718 	__wake_up_parent(tsk, tsk->parent);
1719 	spin_unlock_irqrestore(&psig->siglock, flags);
1720 
1721 	return autoreap;
1722 }
1723 
1724 /**
1725  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1726  * @tsk: task reporting the state change
1727  * @for_ptracer: the notification is for ptracer
1728  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1729  *
1730  * Notify @tsk's parent that the stopped/continued state has changed.  If
1731  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1732  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1733  *
1734  * CONTEXT:
1735  * Must be called with tasklist_lock at least read locked.
1736  */
1737 static void do_notify_parent_cldstop(struct task_struct *tsk,
1738 				     bool for_ptracer, int why)
1739 {
1740 	struct siginfo info;
1741 	unsigned long flags;
1742 	struct task_struct *parent;
1743 	struct sighand_struct *sighand;
1744 	cputime_t utime, stime;
1745 
1746 	if (for_ptracer) {
1747 		parent = tsk->parent;
1748 	} else {
1749 		tsk = tsk->group_leader;
1750 		parent = tsk->real_parent;
1751 	}
1752 
1753 	info.si_signo = SIGCHLD;
1754 	info.si_errno = 0;
1755 	/*
1756 	 * see comment in do_notify_parent() about the following 4 lines
1757 	 */
1758 	rcu_read_lock();
1759 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1760 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1761 	rcu_read_unlock();
1762 
1763 	task_cputime(tsk, &utime, &stime);
1764 	info.si_utime = cputime_to_clock_t(utime);
1765 	info.si_stime = cputime_to_clock_t(stime);
1766 
1767  	info.si_code = why;
1768  	switch (why) {
1769  	case CLD_CONTINUED:
1770  		info.si_status = SIGCONT;
1771  		break;
1772  	case CLD_STOPPED:
1773  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1774  		break;
1775  	case CLD_TRAPPED:
1776  		info.si_status = tsk->exit_code & 0x7f;
1777  		break;
1778  	default:
1779  		BUG();
1780  	}
1781 
1782 	sighand = parent->sighand;
1783 	spin_lock_irqsave(&sighand->siglock, flags);
1784 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1785 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1786 		__group_send_sig_info(SIGCHLD, &info, parent);
1787 	/*
1788 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1789 	 */
1790 	__wake_up_parent(tsk, parent);
1791 	spin_unlock_irqrestore(&sighand->siglock, flags);
1792 }
1793 
1794 static inline int may_ptrace_stop(void)
1795 {
1796 	if (!likely(current->ptrace))
1797 		return 0;
1798 	/*
1799 	 * Are we in the middle of do_coredump?
1800 	 * If so and our tracer is also part of the coredump stopping
1801 	 * is a deadlock situation, and pointless because our tracer
1802 	 * is dead so don't allow us to stop.
1803 	 * If SIGKILL was already sent before the caller unlocked
1804 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1805 	 * is safe to enter schedule().
1806 	 *
1807 	 * This is almost outdated, a task with the pending SIGKILL can't
1808 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1809 	 * after SIGKILL was already dequeued.
1810 	 */
1811 	if (unlikely(current->mm->core_state) &&
1812 	    unlikely(current->mm == current->parent->mm))
1813 		return 0;
1814 
1815 	return 1;
1816 }
1817 
1818 /*
1819  * Return non-zero if there is a SIGKILL that should be waking us up.
1820  * Called with the siglock held.
1821  */
1822 static int sigkill_pending(struct task_struct *tsk)
1823 {
1824 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1825 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1826 }
1827 
1828 /*
1829  * This must be called with current->sighand->siglock held.
1830  *
1831  * This should be the path for all ptrace stops.
1832  * We always set current->last_siginfo while stopped here.
1833  * That makes it a way to test a stopped process for
1834  * being ptrace-stopped vs being job-control-stopped.
1835  *
1836  * If we actually decide not to stop at all because the tracer
1837  * is gone, we keep current->exit_code unless clear_code.
1838  */
1839 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1840 	__releases(&current->sighand->siglock)
1841 	__acquires(&current->sighand->siglock)
1842 {
1843 	bool gstop_done = false;
1844 
1845 	if (arch_ptrace_stop_needed(exit_code, info)) {
1846 		/*
1847 		 * The arch code has something special to do before a
1848 		 * ptrace stop.  This is allowed to block, e.g. for faults
1849 		 * on user stack pages.  We can't keep the siglock while
1850 		 * calling arch_ptrace_stop, so we must release it now.
1851 		 * To preserve proper semantics, we must do this before
1852 		 * any signal bookkeeping like checking group_stop_count.
1853 		 * Meanwhile, a SIGKILL could come in before we retake the
1854 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1855 		 * So after regaining the lock, we must check for SIGKILL.
1856 		 */
1857 		spin_unlock_irq(&current->sighand->siglock);
1858 		arch_ptrace_stop(exit_code, info);
1859 		spin_lock_irq(&current->sighand->siglock);
1860 		if (sigkill_pending(current))
1861 			return;
1862 	}
1863 
1864 	/*
1865 	 * We're committing to trapping.  TRACED should be visible before
1866 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1867 	 * Also, transition to TRACED and updates to ->jobctl should be
1868 	 * atomic with respect to siglock and should be done after the arch
1869 	 * hook as siglock is released and regrabbed across it.
1870 	 */
1871 	set_current_state(TASK_TRACED);
1872 
1873 	current->last_siginfo = info;
1874 	current->exit_code = exit_code;
1875 
1876 	/*
1877 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1878 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1879 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1880 	 * could be clear now.  We act as if SIGCONT is received after
1881 	 * TASK_TRACED is entered - ignore it.
1882 	 */
1883 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1884 		gstop_done = task_participate_group_stop(current);
1885 
1886 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1887 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1888 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1889 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1890 
1891 	/* entering a trap, clear TRAPPING */
1892 	task_clear_jobctl_trapping(current);
1893 
1894 	spin_unlock_irq(&current->sighand->siglock);
1895 	read_lock(&tasklist_lock);
1896 	if (may_ptrace_stop()) {
1897 		/*
1898 		 * Notify parents of the stop.
1899 		 *
1900 		 * While ptraced, there are two parents - the ptracer and
1901 		 * the real_parent of the group_leader.  The ptracer should
1902 		 * know about every stop while the real parent is only
1903 		 * interested in the completion of group stop.  The states
1904 		 * for the two don't interact with each other.  Notify
1905 		 * separately unless they're gonna be duplicates.
1906 		 */
1907 		do_notify_parent_cldstop(current, true, why);
1908 		if (gstop_done && ptrace_reparented(current))
1909 			do_notify_parent_cldstop(current, false, why);
1910 
1911 		/*
1912 		 * Don't want to allow preemption here, because
1913 		 * sys_ptrace() needs this task to be inactive.
1914 		 *
1915 		 * XXX: implement read_unlock_no_resched().
1916 		 */
1917 		preempt_disable();
1918 		read_unlock(&tasklist_lock);
1919 		preempt_enable_no_resched();
1920 		freezable_schedule();
1921 	} else {
1922 		/*
1923 		 * By the time we got the lock, our tracer went away.
1924 		 * Don't drop the lock yet, another tracer may come.
1925 		 *
1926 		 * If @gstop_done, the ptracer went away between group stop
1927 		 * completion and here.  During detach, it would have set
1928 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1929 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1930 		 * the real parent of the group stop completion is enough.
1931 		 */
1932 		if (gstop_done)
1933 			do_notify_parent_cldstop(current, false, why);
1934 
1935 		/* tasklist protects us from ptrace_freeze_traced() */
1936 		__set_current_state(TASK_RUNNING);
1937 		if (clear_code)
1938 			current->exit_code = 0;
1939 		read_unlock(&tasklist_lock);
1940 	}
1941 
1942 	/*
1943 	 * We are back.  Now reacquire the siglock before touching
1944 	 * last_siginfo, so that we are sure to have synchronized with
1945 	 * any signal-sending on another CPU that wants to examine it.
1946 	 */
1947 	spin_lock_irq(&current->sighand->siglock);
1948 	current->last_siginfo = NULL;
1949 
1950 	/* LISTENING can be set only during STOP traps, clear it */
1951 	current->jobctl &= ~JOBCTL_LISTENING;
1952 
1953 	/*
1954 	 * Queued signals ignored us while we were stopped for tracing.
1955 	 * So check for any that we should take before resuming user mode.
1956 	 * This sets TIF_SIGPENDING, but never clears it.
1957 	 */
1958 	recalc_sigpending_tsk(current);
1959 }
1960 
1961 static void ptrace_do_notify(int signr, int exit_code, int why)
1962 {
1963 	siginfo_t info;
1964 
1965 	memset(&info, 0, sizeof info);
1966 	info.si_signo = signr;
1967 	info.si_code = exit_code;
1968 	info.si_pid = task_pid_vnr(current);
1969 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1970 
1971 	/* Let the debugger run.  */
1972 	ptrace_stop(exit_code, why, 1, &info);
1973 }
1974 
1975 void ptrace_notify(int exit_code)
1976 {
1977 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1978 	if (unlikely(current->task_works))
1979 		task_work_run();
1980 
1981 	spin_lock_irq(&current->sighand->siglock);
1982 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1983 	spin_unlock_irq(&current->sighand->siglock);
1984 }
1985 
1986 /**
1987  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1988  * @signr: signr causing group stop if initiating
1989  *
1990  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1991  * and participate in it.  If already set, participate in the existing
1992  * group stop.  If participated in a group stop (and thus slept), %true is
1993  * returned with siglock released.
1994  *
1995  * If ptraced, this function doesn't handle stop itself.  Instead,
1996  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1997  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1998  * places afterwards.
1999  *
2000  * CONTEXT:
2001  * Must be called with @current->sighand->siglock held, which is released
2002  * on %true return.
2003  *
2004  * RETURNS:
2005  * %false if group stop is already cancelled or ptrace trap is scheduled.
2006  * %true if participated in group stop.
2007  */
2008 static bool do_signal_stop(int signr)
2009 	__releases(&current->sighand->siglock)
2010 {
2011 	struct signal_struct *sig = current->signal;
2012 
2013 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2014 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2015 		struct task_struct *t;
2016 
2017 		/* signr will be recorded in task->jobctl for retries */
2018 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2019 
2020 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2021 		    unlikely(signal_group_exit(sig)))
2022 			return false;
2023 		/*
2024 		 * There is no group stop already in progress.  We must
2025 		 * initiate one now.
2026 		 *
2027 		 * While ptraced, a task may be resumed while group stop is
2028 		 * still in effect and then receive a stop signal and
2029 		 * initiate another group stop.  This deviates from the
2030 		 * usual behavior as two consecutive stop signals can't
2031 		 * cause two group stops when !ptraced.  That is why we
2032 		 * also check !task_is_stopped(t) below.
2033 		 *
2034 		 * The condition can be distinguished by testing whether
2035 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2036 		 * group_exit_code in such case.
2037 		 *
2038 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2039 		 * an intervening stop signal is required to cause two
2040 		 * continued events regardless of ptrace.
2041 		 */
2042 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2043 			sig->group_exit_code = signr;
2044 
2045 		sig->group_stop_count = 0;
2046 
2047 		if (task_set_jobctl_pending(current, signr | gstop))
2048 			sig->group_stop_count++;
2049 
2050 		t = current;
2051 		while_each_thread(current, t) {
2052 			/*
2053 			 * Setting state to TASK_STOPPED for a group
2054 			 * stop is always done with the siglock held,
2055 			 * so this check has no races.
2056 			 */
2057 			if (!task_is_stopped(t) &&
2058 			    task_set_jobctl_pending(t, signr | gstop)) {
2059 				sig->group_stop_count++;
2060 				if (likely(!(t->ptrace & PT_SEIZED)))
2061 					signal_wake_up(t, 0);
2062 				else
2063 					ptrace_trap_notify(t);
2064 			}
2065 		}
2066 	}
2067 
2068 	if (likely(!current->ptrace)) {
2069 		int notify = 0;
2070 
2071 		/*
2072 		 * If there are no other threads in the group, or if there
2073 		 * is a group stop in progress and we are the last to stop,
2074 		 * report to the parent.
2075 		 */
2076 		if (task_participate_group_stop(current))
2077 			notify = CLD_STOPPED;
2078 
2079 		__set_current_state(TASK_STOPPED);
2080 		spin_unlock_irq(&current->sighand->siglock);
2081 
2082 		/*
2083 		 * Notify the parent of the group stop completion.  Because
2084 		 * we're not holding either the siglock or tasklist_lock
2085 		 * here, ptracer may attach inbetween; however, this is for
2086 		 * group stop and should always be delivered to the real
2087 		 * parent of the group leader.  The new ptracer will get
2088 		 * its notification when this task transitions into
2089 		 * TASK_TRACED.
2090 		 */
2091 		if (notify) {
2092 			read_lock(&tasklist_lock);
2093 			do_notify_parent_cldstop(current, false, notify);
2094 			read_unlock(&tasklist_lock);
2095 		}
2096 
2097 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2098 		freezable_schedule();
2099 		return true;
2100 	} else {
2101 		/*
2102 		 * While ptraced, group stop is handled by STOP trap.
2103 		 * Schedule it and let the caller deal with it.
2104 		 */
2105 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2106 		return false;
2107 	}
2108 }
2109 
2110 /**
2111  * do_jobctl_trap - take care of ptrace jobctl traps
2112  *
2113  * When PT_SEIZED, it's used for both group stop and explicit
2114  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2115  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2116  * the stop signal; otherwise, %SIGTRAP.
2117  *
2118  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2119  * number as exit_code and no siginfo.
2120  *
2121  * CONTEXT:
2122  * Must be called with @current->sighand->siglock held, which may be
2123  * released and re-acquired before returning with intervening sleep.
2124  */
2125 static void do_jobctl_trap(void)
2126 {
2127 	struct signal_struct *signal = current->signal;
2128 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2129 
2130 	if (current->ptrace & PT_SEIZED) {
2131 		if (!signal->group_stop_count &&
2132 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2133 			signr = SIGTRAP;
2134 		WARN_ON_ONCE(!signr);
2135 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2136 				 CLD_STOPPED);
2137 	} else {
2138 		WARN_ON_ONCE(!signr);
2139 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2140 		current->exit_code = 0;
2141 	}
2142 }
2143 
2144 static int ptrace_signal(int signr, siginfo_t *info)
2145 {
2146 	ptrace_signal_deliver();
2147 	/*
2148 	 * We do not check sig_kernel_stop(signr) but set this marker
2149 	 * unconditionally because we do not know whether debugger will
2150 	 * change signr. This flag has no meaning unless we are going
2151 	 * to stop after return from ptrace_stop(). In this case it will
2152 	 * be checked in do_signal_stop(), we should only stop if it was
2153 	 * not cleared by SIGCONT while we were sleeping. See also the
2154 	 * comment in dequeue_signal().
2155 	 */
2156 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2157 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2158 
2159 	/* We're back.  Did the debugger cancel the sig?  */
2160 	signr = current->exit_code;
2161 	if (signr == 0)
2162 		return signr;
2163 
2164 	current->exit_code = 0;
2165 
2166 	/*
2167 	 * Update the siginfo structure if the signal has
2168 	 * changed.  If the debugger wanted something
2169 	 * specific in the siginfo structure then it should
2170 	 * have updated *info via PTRACE_SETSIGINFO.
2171 	 */
2172 	if (signr != info->si_signo) {
2173 		info->si_signo = signr;
2174 		info->si_errno = 0;
2175 		info->si_code = SI_USER;
2176 		rcu_read_lock();
2177 		info->si_pid = task_pid_vnr(current->parent);
2178 		info->si_uid = from_kuid_munged(current_user_ns(),
2179 						task_uid(current->parent));
2180 		rcu_read_unlock();
2181 	}
2182 
2183 	/* If the (new) signal is now blocked, requeue it.  */
2184 	if (sigismember(&current->blocked, signr)) {
2185 		specific_send_sig_info(signr, info, current);
2186 		signr = 0;
2187 	}
2188 
2189 	return signr;
2190 }
2191 
2192 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2193 			  struct pt_regs *regs, void *cookie)
2194 {
2195 	struct sighand_struct *sighand = current->sighand;
2196 	struct signal_struct *signal = current->signal;
2197 	int signr;
2198 
2199 	if (unlikely(current->task_works))
2200 		task_work_run();
2201 
2202 	if (unlikely(uprobe_deny_signal()))
2203 		return 0;
2204 
2205 	/*
2206 	 * Do this once, we can't return to user-mode if freezing() == T.
2207 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2208 	 * thus do not need another check after return.
2209 	 */
2210 	try_to_freeze();
2211 
2212 relock:
2213 	spin_lock_irq(&sighand->siglock);
2214 	/*
2215 	 * Every stopped thread goes here after wakeup. Check to see if
2216 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2217 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2218 	 */
2219 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2220 		int why;
2221 
2222 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2223 			why = CLD_CONTINUED;
2224 		else
2225 			why = CLD_STOPPED;
2226 
2227 		signal->flags &= ~SIGNAL_CLD_MASK;
2228 
2229 		spin_unlock_irq(&sighand->siglock);
2230 
2231 		/*
2232 		 * Notify the parent that we're continuing.  This event is
2233 		 * always per-process and doesn't make whole lot of sense
2234 		 * for ptracers, who shouldn't consume the state via
2235 		 * wait(2) either, but, for backward compatibility, notify
2236 		 * the ptracer of the group leader too unless it's gonna be
2237 		 * a duplicate.
2238 		 */
2239 		read_lock(&tasklist_lock);
2240 		do_notify_parent_cldstop(current, false, why);
2241 
2242 		if (ptrace_reparented(current->group_leader))
2243 			do_notify_parent_cldstop(current->group_leader,
2244 						true, why);
2245 		read_unlock(&tasklist_lock);
2246 
2247 		goto relock;
2248 	}
2249 
2250 	for (;;) {
2251 		struct k_sigaction *ka;
2252 
2253 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2254 		    do_signal_stop(0))
2255 			goto relock;
2256 
2257 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2258 			do_jobctl_trap();
2259 			spin_unlock_irq(&sighand->siglock);
2260 			goto relock;
2261 		}
2262 
2263 		signr = dequeue_signal(current, &current->blocked, info);
2264 
2265 		if (!signr)
2266 			break; /* will return 0 */
2267 
2268 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2269 			signr = ptrace_signal(signr, info);
2270 			if (!signr)
2271 				continue;
2272 		}
2273 
2274 		ka = &sighand->action[signr-1];
2275 
2276 		/* Trace actually delivered signals. */
2277 		trace_signal_deliver(signr, info, ka);
2278 
2279 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2280 			continue;
2281 		if (ka->sa.sa_handler != SIG_DFL) {
2282 			/* Run the handler.  */
2283 			*return_ka = *ka;
2284 
2285 			if (ka->sa.sa_flags & SA_ONESHOT)
2286 				ka->sa.sa_handler = SIG_DFL;
2287 
2288 			break; /* will return non-zero "signr" value */
2289 		}
2290 
2291 		/*
2292 		 * Now we are doing the default action for this signal.
2293 		 */
2294 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2295 			continue;
2296 
2297 		/*
2298 		 * Global init gets no signals it doesn't want.
2299 		 * Container-init gets no signals it doesn't want from same
2300 		 * container.
2301 		 *
2302 		 * Note that if global/container-init sees a sig_kernel_only()
2303 		 * signal here, the signal must have been generated internally
2304 		 * or must have come from an ancestor namespace. In either
2305 		 * case, the signal cannot be dropped.
2306 		 */
2307 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2308 				!sig_kernel_only(signr))
2309 			continue;
2310 
2311 		if (sig_kernel_stop(signr)) {
2312 			/*
2313 			 * The default action is to stop all threads in
2314 			 * the thread group.  The job control signals
2315 			 * do nothing in an orphaned pgrp, but SIGSTOP
2316 			 * always works.  Note that siglock needs to be
2317 			 * dropped during the call to is_orphaned_pgrp()
2318 			 * because of lock ordering with tasklist_lock.
2319 			 * This allows an intervening SIGCONT to be posted.
2320 			 * We need to check for that and bail out if necessary.
2321 			 */
2322 			if (signr != SIGSTOP) {
2323 				spin_unlock_irq(&sighand->siglock);
2324 
2325 				/* signals can be posted during this window */
2326 
2327 				if (is_current_pgrp_orphaned())
2328 					goto relock;
2329 
2330 				spin_lock_irq(&sighand->siglock);
2331 			}
2332 
2333 			if (likely(do_signal_stop(info->si_signo))) {
2334 				/* It released the siglock.  */
2335 				goto relock;
2336 			}
2337 
2338 			/*
2339 			 * We didn't actually stop, due to a race
2340 			 * with SIGCONT or something like that.
2341 			 */
2342 			continue;
2343 		}
2344 
2345 		spin_unlock_irq(&sighand->siglock);
2346 
2347 		/*
2348 		 * Anything else is fatal, maybe with a core dump.
2349 		 */
2350 		current->flags |= PF_SIGNALED;
2351 
2352 		if (sig_kernel_coredump(signr)) {
2353 			if (print_fatal_signals)
2354 				print_fatal_signal(info->si_signo);
2355 			proc_coredump_connector(current);
2356 			/*
2357 			 * If it was able to dump core, this kills all
2358 			 * other threads in the group and synchronizes with
2359 			 * their demise.  If we lost the race with another
2360 			 * thread getting here, it set group_exit_code
2361 			 * first and our do_group_exit call below will use
2362 			 * that value and ignore the one we pass it.
2363 			 */
2364 			do_coredump(info);
2365 		}
2366 
2367 		/*
2368 		 * Death signals, no core dump.
2369 		 */
2370 		do_group_exit(info->si_signo);
2371 		/* NOTREACHED */
2372 	}
2373 	spin_unlock_irq(&sighand->siglock);
2374 	return signr;
2375 }
2376 
2377 /**
2378  * signal_delivered -
2379  * @sig:		number of signal being delivered
2380  * @info:		siginfo_t of signal being delivered
2381  * @ka:			sigaction setting that chose the handler
2382  * @regs:		user register state
2383  * @stepping:		nonzero if debugger single-step or block-step in use
2384  *
2385  * This function should be called when a signal has succesfully been
2386  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2387  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2388  * is set in @ka->sa.sa_flags.  Tracing is notified.
2389  */
2390 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2391 			struct pt_regs *regs, int stepping)
2392 {
2393 	sigset_t blocked;
2394 
2395 	/* A signal was successfully delivered, and the
2396 	   saved sigmask was stored on the signal frame,
2397 	   and will be restored by sigreturn.  So we can
2398 	   simply clear the restore sigmask flag.  */
2399 	clear_restore_sigmask();
2400 
2401 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2402 	if (!(ka->sa.sa_flags & SA_NODEFER))
2403 		sigaddset(&blocked, sig);
2404 	set_current_blocked(&blocked);
2405 	tracehook_signal_handler(sig, info, ka, regs, stepping);
2406 }
2407 
2408 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2409 {
2410 	if (failed)
2411 		force_sigsegv(ksig->sig, current);
2412 	else
2413 		signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2414 			signal_pt_regs(), stepping);
2415 }
2416 
2417 /*
2418  * It could be that complete_signal() picked us to notify about the
2419  * group-wide signal. Other threads should be notified now to take
2420  * the shared signals in @which since we will not.
2421  */
2422 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2423 {
2424 	sigset_t retarget;
2425 	struct task_struct *t;
2426 
2427 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2428 	if (sigisemptyset(&retarget))
2429 		return;
2430 
2431 	t = tsk;
2432 	while_each_thread(tsk, t) {
2433 		if (t->flags & PF_EXITING)
2434 			continue;
2435 
2436 		if (!has_pending_signals(&retarget, &t->blocked))
2437 			continue;
2438 		/* Remove the signals this thread can handle. */
2439 		sigandsets(&retarget, &retarget, &t->blocked);
2440 
2441 		if (!signal_pending(t))
2442 			signal_wake_up(t, 0);
2443 
2444 		if (sigisemptyset(&retarget))
2445 			break;
2446 	}
2447 }
2448 
2449 void exit_signals(struct task_struct *tsk)
2450 {
2451 	int group_stop = 0;
2452 	sigset_t unblocked;
2453 
2454 	/*
2455 	 * @tsk is about to have PF_EXITING set - lock out users which
2456 	 * expect stable threadgroup.
2457 	 */
2458 	threadgroup_change_begin(tsk);
2459 
2460 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2461 		tsk->flags |= PF_EXITING;
2462 		threadgroup_change_end(tsk);
2463 		return;
2464 	}
2465 
2466 	spin_lock_irq(&tsk->sighand->siglock);
2467 	/*
2468 	 * From now this task is not visible for group-wide signals,
2469 	 * see wants_signal(), do_signal_stop().
2470 	 */
2471 	tsk->flags |= PF_EXITING;
2472 
2473 	threadgroup_change_end(tsk);
2474 
2475 	if (!signal_pending(tsk))
2476 		goto out;
2477 
2478 	unblocked = tsk->blocked;
2479 	signotset(&unblocked);
2480 	retarget_shared_pending(tsk, &unblocked);
2481 
2482 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2483 	    task_participate_group_stop(tsk))
2484 		group_stop = CLD_STOPPED;
2485 out:
2486 	spin_unlock_irq(&tsk->sighand->siglock);
2487 
2488 	/*
2489 	 * If group stop has completed, deliver the notification.  This
2490 	 * should always go to the real parent of the group leader.
2491 	 */
2492 	if (unlikely(group_stop)) {
2493 		read_lock(&tasklist_lock);
2494 		do_notify_parent_cldstop(tsk, false, group_stop);
2495 		read_unlock(&tasklist_lock);
2496 	}
2497 }
2498 
2499 EXPORT_SYMBOL(recalc_sigpending);
2500 EXPORT_SYMBOL_GPL(dequeue_signal);
2501 EXPORT_SYMBOL(flush_signals);
2502 EXPORT_SYMBOL(force_sig);
2503 EXPORT_SYMBOL(send_sig);
2504 EXPORT_SYMBOL(send_sig_info);
2505 EXPORT_SYMBOL(sigprocmask);
2506 EXPORT_SYMBOL(block_all_signals);
2507 EXPORT_SYMBOL(unblock_all_signals);
2508 
2509 
2510 /*
2511  * System call entry points.
2512  */
2513 
2514 /**
2515  *  sys_restart_syscall - restart a system call
2516  */
2517 SYSCALL_DEFINE0(restart_syscall)
2518 {
2519 	struct restart_block *restart = &current_thread_info()->restart_block;
2520 	return restart->fn(restart);
2521 }
2522 
2523 long do_no_restart_syscall(struct restart_block *param)
2524 {
2525 	return -EINTR;
2526 }
2527 
2528 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2529 {
2530 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2531 		sigset_t newblocked;
2532 		/* A set of now blocked but previously unblocked signals. */
2533 		sigandnsets(&newblocked, newset, &current->blocked);
2534 		retarget_shared_pending(tsk, &newblocked);
2535 	}
2536 	tsk->blocked = *newset;
2537 	recalc_sigpending();
2538 }
2539 
2540 /**
2541  * set_current_blocked - change current->blocked mask
2542  * @newset: new mask
2543  *
2544  * It is wrong to change ->blocked directly, this helper should be used
2545  * to ensure the process can't miss a shared signal we are going to block.
2546  */
2547 void set_current_blocked(sigset_t *newset)
2548 {
2549 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2550 	__set_current_blocked(newset);
2551 }
2552 
2553 void __set_current_blocked(const sigset_t *newset)
2554 {
2555 	struct task_struct *tsk = current;
2556 
2557 	spin_lock_irq(&tsk->sighand->siglock);
2558 	__set_task_blocked(tsk, newset);
2559 	spin_unlock_irq(&tsk->sighand->siglock);
2560 }
2561 
2562 /*
2563  * This is also useful for kernel threads that want to temporarily
2564  * (or permanently) block certain signals.
2565  *
2566  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2567  * interface happily blocks "unblockable" signals like SIGKILL
2568  * and friends.
2569  */
2570 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2571 {
2572 	struct task_struct *tsk = current;
2573 	sigset_t newset;
2574 
2575 	/* Lockless, only current can change ->blocked, never from irq */
2576 	if (oldset)
2577 		*oldset = tsk->blocked;
2578 
2579 	switch (how) {
2580 	case SIG_BLOCK:
2581 		sigorsets(&newset, &tsk->blocked, set);
2582 		break;
2583 	case SIG_UNBLOCK:
2584 		sigandnsets(&newset, &tsk->blocked, set);
2585 		break;
2586 	case SIG_SETMASK:
2587 		newset = *set;
2588 		break;
2589 	default:
2590 		return -EINVAL;
2591 	}
2592 
2593 	__set_current_blocked(&newset);
2594 	return 0;
2595 }
2596 
2597 /**
2598  *  sys_rt_sigprocmask - change the list of currently blocked signals
2599  *  @how: whether to add, remove, or set signals
2600  *  @nset: stores pending signals
2601  *  @oset: previous value of signal mask if non-null
2602  *  @sigsetsize: size of sigset_t type
2603  */
2604 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2605 		sigset_t __user *, oset, size_t, sigsetsize)
2606 {
2607 	sigset_t old_set, new_set;
2608 	int error;
2609 
2610 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2611 	if (sigsetsize != sizeof(sigset_t))
2612 		return -EINVAL;
2613 
2614 	old_set = current->blocked;
2615 
2616 	if (nset) {
2617 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2618 			return -EFAULT;
2619 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2620 
2621 		error = sigprocmask(how, &new_set, NULL);
2622 		if (error)
2623 			return error;
2624 	}
2625 
2626 	if (oset) {
2627 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2628 			return -EFAULT;
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 #ifdef CONFIG_COMPAT
2635 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2636 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2637 {
2638 #ifdef __BIG_ENDIAN
2639 	sigset_t old_set = current->blocked;
2640 
2641 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2642 	if (sigsetsize != sizeof(sigset_t))
2643 		return -EINVAL;
2644 
2645 	if (nset) {
2646 		compat_sigset_t new32;
2647 		sigset_t new_set;
2648 		int error;
2649 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2650 			return -EFAULT;
2651 
2652 		sigset_from_compat(&new_set, &new32);
2653 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2654 
2655 		error = sigprocmask(how, &new_set, NULL);
2656 		if (error)
2657 			return error;
2658 	}
2659 	if (oset) {
2660 		compat_sigset_t old32;
2661 		sigset_to_compat(&old32, &old_set);
2662 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2663 			return -EFAULT;
2664 	}
2665 	return 0;
2666 #else
2667 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2668 				  (sigset_t __user *)oset, sigsetsize);
2669 #endif
2670 }
2671 #endif
2672 
2673 static int do_sigpending(void *set, unsigned long sigsetsize)
2674 {
2675 	if (sigsetsize > sizeof(sigset_t))
2676 		return -EINVAL;
2677 
2678 	spin_lock_irq(&current->sighand->siglock);
2679 	sigorsets(set, &current->pending.signal,
2680 		  &current->signal->shared_pending.signal);
2681 	spin_unlock_irq(&current->sighand->siglock);
2682 
2683 	/* Outside the lock because only this thread touches it.  */
2684 	sigandsets(set, &current->blocked, set);
2685 	return 0;
2686 }
2687 
2688 /**
2689  *  sys_rt_sigpending - examine a pending signal that has been raised
2690  *			while blocked
2691  *  @uset: stores pending signals
2692  *  @sigsetsize: size of sigset_t type or larger
2693  */
2694 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2695 {
2696 	sigset_t set;
2697 	int err = do_sigpending(&set, sigsetsize);
2698 	if (!err && copy_to_user(uset, &set, sigsetsize))
2699 		err = -EFAULT;
2700 	return err;
2701 }
2702 
2703 #ifdef CONFIG_COMPAT
2704 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2705 		compat_size_t, sigsetsize)
2706 {
2707 #ifdef __BIG_ENDIAN
2708 	sigset_t set;
2709 	int err = do_sigpending(&set, sigsetsize);
2710 	if (!err) {
2711 		compat_sigset_t set32;
2712 		sigset_to_compat(&set32, &set);
2713 		/* we can get here only if sigsetsize <= sizeof(set) */
2714 		if (copy_to_user(uset, &set32, sigsetsize))
2715 			err = -EFAULT;
2716 	}
2717 	return err;
2718 #else
2719 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2720 #endif
2721 }
2722 #endif
2723 
2724 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2725 
2726 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2727 {
2728 	int err;
2729 
2730 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2731 		return -EFAULT;
2732 	if (from->si_code < 0)
2733 		return __copy_to_user(to, from, sizeof(siginfo_t))
2734 			? -EFAULT : 0;
2735 	/*
2736 	 * If you change siginfo_t structure, please be sure
2737 	 * this code is fixed accordingly.
2738 	 * Please remember to update the signalfd_copyinfo() function
2739 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2740 	 * It should never copy any pad contained in the structure
2741 	 * to avoid security leaks, but must copy the generic
2742 	 * 3 ints plus the relevant union member.
2743 	 */
2744 	err = __put_user(from->si_signo, &to->si_signo);
2745 	err |= __put_user(from->si_errno, &to->si_errno);
2746 	err |= __put_user((short)from->si_code, &to->si_code);
2747 	switch (from->si_code & __SI_MASK) {
2748 	case __SI_KILL:
2749 		err |= __put_user(from->si_pid, &to->si_pid);
2750 		err |= __put_user(from->si_uid, &to->si_uid);
2751 		break;
2752 	case __SI_TIMER:
2753 		 err |= __put_user(from->si_tid, &to->si_tid);
2754 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2755 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2756 		break;
2757 	case __SI_POLL:
2758 		err |= __put_user(from->si_band, &to->si_band);
2759 		err |= __put_user(from->si_fd, &to->si_fd);
2760 		break;
2761 	case __SI_FAULT:
2762 		err |= __put_user(from->si_addr, &to->si_addr);
2763 #ifdef __ARCH_SI_TRAPNO
2764 		err |= __put_user(from->si_trapno, &to->si_trapno);
2765 #endif
2766 #ifdef BUS_MCEERR_AO
2767 		/*
2768 		 * Other callers might not initialize the si_lsb field,
2769 		 * so check explicitly for the right codes here.
2770 		 */
2771 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2772 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2773 #endif
2774 		break;
2775 	case __SI_CHLD:
2776 		err |= __put_user(from->si_pid, &to->si_pid);
2777 		err |= __put_user(from->si_uid, &to->si_uid);
2778 		err |= __put_user(from->si_status, &to->si_status);
2779 		err |= __put_user(from->si_utime, &to->si_utime);
2780 		err |= __put_user(from->si_stime, &to->si_stime);
2781 		break;
2782 	case __SI_RT: /* This is not generated by the kernel as of now. */
2783 	case __SI_MESGQ: /* But this is */
2784 		err |= __put_user(from->si_pid, &to->si_pid);
2785 		err |= __put_user(from->si_uid, &to->si_uid);
2786 		err |= __put_user(from->si_ptr, &to->si_ptr);
2787 		break;
2788 #ifdef __ARCH_SIGSYS
2789 	case __SI_SYS:
2790 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2791 		err |= __put_user(from->si_syscall, &to->si_syscall);
2792 		err |= __put_user(from->si_arch, &to->si_arch);
2793 		break;
2794 #endif
2795 	default: /* this is just in case for now ... */
2796 		err |= __put_user(from->si_pid, &to->si_pid);
2797 		err |= __put_user(from->si_uid, &to->si_uid);
2798 		break;
2799 	}
2800 	return err;
2801 }
2802 
2803 #endif
2804 
2805 /**
2806  *  do_sigtimedwait - wait for queued signals specified in @which
2807  *  @which: queued signals to wait for
2808  *  @info: if non-null, the signal's siginfo is returned here
2809  *  @ts: upper bound on process time suspension
2810  */
2811 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2812 			const struct timespec *ts)
2813 {
2814 	struct task_struct *tsk = current;
2815 	long timeout = MAX_SCHEDULE_TIMEOUT;
2816 	sigset_t mask = *which;
2817 	int sig;
2818 
2819 	if (ts) {
2820 		if (!timespec_valid(ts))
2821 			return -EINVAL;
2822 		timeout = timespec_to_jiffies(ts);
2823 		/*
2824 		 * We can be close to the next tick, add another one
2825 		 * to ensure we will wait at least the time asked for.
2826 		 */
2827 		if (ts->tv_sec || ts->tv_nsec)
2828 			timeout++;
2829 	}
2830 
2831 	/*
2832 	 * Invert the set of allowed signals to get those we want to block.
2833 	 */
2834 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2835 	signotset(&mask);
2836 
2837 	spin_lock_irq(&tsk->sighand->siglock);
2838 	sig = dequeue_signal(tsk, &mask, info);
2839 	if (!sig && timeout) {
2840 		/*
2841 		 * None ready, temporarily unblock those we're interested
2842 		 * while we are sleeping in so that we'll be awakened when
2843 		 * they arrive. Unblocking is always fine, we can avoid
2844 		 * set_current_blocked().
2845 		 */
2846 		tsk->real_blocked = tsk->blocked;
2847 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2848 		recalc_sigpending();
2849 		spin_unlock_irq(&tsk->sighand->siglock);
2850 
2851 		timeout = freezable_schedule_timeout_interruptible(timeout);
2852 
2853 		spin_lock_irq(&tsk->sighand->siglock);
2854 		__set_task_blocked(tsk, &tsk->real_blocked);
2855 		siginitset(&tsk->real_blocked, 0);
2856 		sig = dequeue_signal(tsk, &mask, info);
2857 	}
2858 	spin_unlock_irq(&tsk->sighand->siglock);
2859 
2860 	if (sig)
2861 		return sig;
2862 	return timeout ? -EINTR : -EAGAIN;
2863 }
2864 
2865 /**
2866  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2867  *			in @uthese
2868  *  @uthese: queued signals to wait for
2869  *  @uinfo: if non-null, the signal's siginfo is returned here
2870  *  @uts: upper bound on process time suspension
2871  *  @sigsetsize: size of sigset_t type
2872  */
2873 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2874 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2875 		size_t, sigsetsize)
2876 {
2877 	sigset_t these;
2878 	struct timespec ts;
2879 	siginfo_t info;
2880 	int ret;
2881 
2882 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2883 	if (sigsetsize != sizeof(sigset_t))
2884 		return -EINVAL;
2885 
2886 	if (copy_from_user(&these, uthese, sizeof(these)))
2887 		return -EFAULT;
2888 
2889 	if (uts) {
2890 		if (copy_from_user(&ts, uts, sizeof(ts)))
2891 			return -EFAULT;
2892 	}
2893 
2894 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2895 
2896 	if (ret > 0 && uinfo) {
2897 		if (copy_siginfo_to_user(uinfo, &info))
2898 			ret = -EFAULT;
2899 	}
2900 
2901 	return ret;
2902 }
2903 
2904 /**
2905  *  sys_kill - send a signal to a process
2906  *  @pid: the PID of the process
2907  *  @sig: signal to be sent
2908  */
2909 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2910 {
2911 	struct siginfo info;
2912 
2913 	info.si_signo = sig;
2914 	info.si_errno = 0;
2915 	info.si_code = SI_USER;
2916 	info.si_pid = task_tgid_vnr(current);
2917 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2918 
2919 	return kill_something_info(sig, &info, pid);
2920 }
2921 
2922 static int
2923 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2924 {
2925 	struct task_struct *p;
2926 	int error = -ESRCH;
2927 
2928 	rcu_read_lock();
2929 	p = find_task_by_vpid(pid);
2930 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2931 		error = check_kill_permission(sig, info, p);
2932 		/*
2933 		 * The null signal is a permissions and process existence
2934 		 * probe.  No signal is actually delivered.
2935 		 */
2936 		if (!error && sig) {
2937 			error = do_send_sig_info(sig, info, p, false);
2938 			/*
2939 			 * If lock_task_sighand() failed we pretend the task
2940 			 * dies after receiving the signal. The window is tiny,
2941 			 * and the signal is private anyway.
2942 			 */
2943 			if (unlikely(error == -ESRCH))
2944 				error = 0;
2945 		}
2946 	}
2947 	rcu_read_unlock();
2948 
2949 	return error;
2950 }
2951 
2952 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2953 {
2954 	struct siginfo info = {};
2955 
2956 	info.si_signo = sig;
2957 	info.si_errno = 0;
2958 	info.si_code = SI_TKILL;
2959 	info.si_pid = task_tgid_vnr(current);
2960 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2961 
2962 	return do_send_specific(tgid, pid, sig, &info);
2963 }
2964 
2965 /**
2966  *  sys_tgkill - send signal to one specific thread
2967  *  @tgid: the thread group ID of the thread
2968  *  @pid: the PID of the thread
2969  *  @sig: signal to be sent
2970  *
2971  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2972  *  exists but it's not belonging to the target process anymore. This
2973  *  method solves the problem of threads exiting and PIDs getting reused.
2974  */
2975 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2976 {
2977 	/* This is only valid for single tasks */
2978 	if (pid <= 0 || tgid <= 0)
2979 		return -EINVAL;
2980 
2981 	return do_tkill(tgid, pid, sig);
2982 }
2983 
2984 /**
2985  *  sys_tkill - send signal to one specific task
2986  *  @pid: the PID of the task
2987  *  @sig: signal to be sent
2988  *
2989  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2990  */
2991 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2992 {
2993 	/* This is only valid for single tasks */
2994 	if (pid <= 0)
2995 		return -EINVAL;
2996 
2997 	return do_tkill(0, pid, sig);
2998 }
2999 
3000 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3001 {
3002 	/* Not even root can pretend to send signals from the kernel.
3003 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3004 	 */
3005 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3006 	    (task_pid_vnr(current) != pid)) {
3007 		/* We used to allow any < 0 si_code */
3008 		WARN_ON_ONCE(info->si_code < 0);
3009 		return -EPERM;
3010 	}
3011 	info->si_signo = sig;
3012 
3013 	/* POSIX.1b doesn't mention process groups.  */
3014 	return kill_proc_info(sig, info, pid);
3015 }
3016 
3017 /**
3018  *  sys_rt_sigqueueinfo - send signal information to a signal
3019  *  @pid: the PID of the thread
3020  *  @sig: signal to be sent
3021  *  @uinfo: signal info to be sent
3022  */
3023 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3024 		siginfo_t __user *, uinfo)
3025 {
3026 	siginfo_t info;
3027 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3028 		return -EFAULT;
3029 	return do_rt_sigqueueinfo(pid, sig, &info);
3030 }
3031 
3032 #ifdef CONFIG_COMPAT
3033 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3034 			compat_pid_t, pid,
3035 			int, sig,
3036 			struct compat_siginfo __user *, uinfo)
3037 {
3038 	siginfo_t info;
3039 	int ret = copy_siginfo_from_user32(&info, uinfo);
3040 	if (unlikely(ret))
3041 		return ret;
3042 	return do_rt_sigqueueinfo(pid, sig, &info);
3043 }
3044 #endif
3045 
3046 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3047 {
3048 	/* This is only valid for single tasks */
3049 	if (pid <= 0 || tgid <= 0)
3050 		return -EINVAL;
3051 
3052 	/* Not even root can pretend to send signals from the kernel.
3053 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3054 	 */
3055 	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3056 	    (task_pid_vnr(current) != pid)) {
3057 		/* We used to allow any < 0 si_code */
3058 		WARN_ON_ONCE(info->si_code < 0);
3059 		return -EPERM;
3060 	}
3061 	info->si_signo = sig;
3062 
3063 	return do_send_specific(tgid, pid, sig, info);
3064 }
3065 
3066 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3067 		siginfo_t __user *, uinfo)
3068 {
3069 	siginfo_t info;
3070 
3071 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3072 		return -EFAULT;
3073 
3074 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3075 }
3076 
3077 #ifdef CONFIG_COMPAT
3078 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3079 			compat_pid_t, tgid,
3080 			compat_pid_t, pid,
3081 			int, sig,
3082 			struct compat_siginfo __user *, uinfo)
3083 {
3084 	siginfo_t info;
3085 
3086 	if (copy_siginfo_from_user32(&info, uinfo))
3087 		return -EFAULT;
3088 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3089 }
3090 #endif
3091 
3092 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3093 {
3094 	struct task_struct *t = current;
3095 	struct k_sigaction *k;
3096 	sigset_t mask;
3097 
3098 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3099 		return -EINVAL;
3100 
3101 	k = &t->sighand->action[sig-1];
3102 
3103 	spin_lock_irq(&current->sighand->siglock);
3104 	if (oact)
3105 		*oact = *k;
3106 
3107 	if (act) {
3108 		sigdelsetmask(&act->sa.sa_mask,
3109 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3110 		*k = *act;
3111 		/*
3112 		 * POSIX 3.3.1.3:
3113 		 *  "Setting a signal action to SIG_IGN for a signal that is
3114 		 *   pending shall cause the pending signal to be discarded,
3115 		 *   whether or not it is blocked."
3116 		 *
3117 		 *  "Setting a signal action to SIG_DFL for a signal that is
3118 		 *   pending and whose default action is to ignore the signal
3119 		 *   (for example, SIGCHLD), shall cause the pending signal to
3120 		 *   be discarded, whether or not it is blocked"
3121 		 */
3122 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3123 			sigemptyset(&mask);
3124 			sigaddset(&mask, sig);
3125 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3126 			do {
3127 				rm_from_queue_full(&mask, &t->pending);
3128 			} while_each_thread(current, t);
3129 		}
3130 	}
3131 
3132 	spin_unlock_irq(&current->sighand->siglock);
3133 	return 0;
3134 }
3135 
3136 static int
3137 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3138 {
3139 	stack_t oss;
3140 	int error;
3141 
3142 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3143 	oss.ss_size = current->sas_ss_size;
3144 	oss.ss_flags = sas_ss_flags(sp);
3145 
3146 	if (uss) {
3147 		void __user *ss_sp;
3148 		size_t ss_size;
3149 		int ss_flags;
3150 
3151 		error = -EFAULT;
3152 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3153 			goto out;
3154 		error = __get_user(ss_sp, &uss->ss_sp) |
3155 			__get_user(ss_flags, &uss->ss_flags) |
3156 			__get_user(ss_size, &uss->ss_size);
3157 		if (error)
3158 			goto out;
3159 
3160 		error = -EPERM;
3161 		if (on_sig_stack(sp))
3162 			goto out;
3163 
3164 		error = -EINVAL;
3165 		/*
3166 		 * Note - this code used to test ss_flags incorrectly:
3167 		 *  	  old code may have been written using ss_flags==0
3168 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3169 		 *	  way that worked) - this fix preserves that older
3170 		 *	  mechanism.
3171 		 */
3172 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3173 			goto out;
3174 
3175 		if (ss_flags == SS_DISABLE) {
3176 			ss_size = 0;
3177 			ss_sp = NULL;
3178 		} else {
3179 			error = -ENOMEM;
3180 			if (ss_size < MINSIGSTKSZ)
3181 				goto out;
3182 		}
3183 
3184 		current->sas_ss_sp = (unsigned long) ss_sp;
3185 		current->sas_ss_size = ss_size;
3186 	}
3187 
3188 	error = 0;
3189 	if (uoss) {
3190 		error = -EFAULT;
3191 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3192 			goto out;
3193 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3194 			__put_user(oss.ss_size, &uoss->ss_size) |
3195 			__put_user(oss.ss_flags, &uoss->ss_flags);
3196 	}
3197 
3198 out:
3199 	return error;
3200 }
3201 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3202 {
3203 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3204 }
3205 
3206 int restore_altstack(const stack_t __user *uss)
3207 {
3208 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3209 	/* squash all but EFAULT for now */
3210 	return err == -EFAULT ? err : 0;
3211 }
3212 
3213 int __save_altstack(stack_t __user *uss, unsigned long sp)
3214 {
3215 	struct task_struct *t = current;
3216 	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3217 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3218 		__put_user(t->sas_ss_size, &uss->ss_size);
3219 }
3220 
3221 #ifdef CONFIG_COMPAT
3222 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3223 			const compat_stack_t __user *, uss_ptr,
3224 			compat_stack_t __user *, uoss_ptr)
3225 {
3226 	stack_t uss, uoss;
3227 	int ret;
3228 	mm_segment_t seg;
3229 
3230 	if (uss_ptr) {
3231 		compat_stack_t uss32;
3232 
3233 		memset(&uss, 0, sizeof(stack_t));
3234 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3235 			return -EFAULT;
3236 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3237 		uss.ss_flags = uss32.ss_flags;
3238 		uss.ss_size = uss32.ss_size;
3239 	}
3240 	seg = get_fs();
3241 	set_fs(KERNEL_DS);
3242 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3243 			     (stack_t __force __user *) &uoss,
3244 			     compat_user_stack_pointer());
3245 	set_fs(seg);
3246 	if (ret >= 0 && uoss_ptr)  {
3247 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3248 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3249 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3250 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3251 			ret = -EFAULT;
3252 	}
3253 	return ret;
3254 }
3255 
3256 int compat_restore_altstack(const compat_stack_t __user *uss)
3257 {
3258 	int err = compat_sys_sigaltstack(uss, NULL);
3259 	/* squash all but -EFAULT for now */
3260 	return err == -EFAULT ? err : 0;
3261 }
3262 
3263 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3264 {
3265 	struct task_struct *t = current;
3266 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3267 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3268 		__put_user(t->sas_ss_size, &uss->ss_size);
3269 }
3270 #endif
3271 
3272 #ifdef __ARCH_WANT_SYS_SIGPENDING
3273 
3274 /**
3275  *  sys_sigpending - examine pending signals
3276  *  @set: where mask of pending signal is returned
3277  */
3278 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3279 {
3280 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3281 }
3282 
3283 #endif
3284 
3285 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3286 /**
3287  *  sys_sigprocmask - examine and change blocked signals
3288  *  @how: whether to add, remove, or set signals
3289  *  @nset: signals to add or remove (if non-null)
3290  *  @oset: previous value of signal mask if non-null
3291  *
3292  * Some platforms have their own version with special arguments;
3293  * others support only sys_rt_sigprocmask.
3294  */
3295 
3296 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3297 		old_sigset_t __user *, oset)
3298 {
3299 	old_sigset_t old_set, new_set;
3300 	sigset_t new_blocked;
3301 
3302 	old_set = current->blocked.sig[0];
3303 
3304 	if (nset) {
3305 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3306 			return -EFAULT;
3307 
3308 		new_blocked = current->blocked;
3309 
3310 		switch (how) {
3311 		case SIG_BLOCK:
3312 			sigaddsetmask(&new_blocked, new_set);
3313 			break;
3314 		case SIG_UNBLOCK:
3315 			sigdelsetmask(&new_blocked, new_set);
3316 			break;
3317 		case SIG_SETMASK:
3318 			new_blocked.sig[0] = new_set;
3319 			break;
3320 		default:
3321 			return -EINVAL;
3322 		}
3323 
3324 		set_current_blocked(&new_blocked);
3325 	}
3326 
3327 	if (oset) {
3328 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3329 			return -EFAULT;
3330 	}
3331 
3332 	return 0;
3333 }
3334 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3335 
3336 #ifndef CONFIG_ODD_RT_SIGACTION
3337 /**
3338  *  sys_rt_sigaction - alter an action taken by a process
3339  *  @sig: signal to be sent
3340  *  @act: new sigaction
3341  *  @oact: used to save the previous sigaction
3342  *  @sigsetsize: size of sigset_t type
3343  */
3344 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3345 		const struct sigaction __user *, act,
3346 		struct sigaction __user *, oact,
3347 		size_t, sigsetsize)
3348 {
3349 	struct k_sigaction new_sa, old_sa;
3350 	int ret = -EINVAL;
3351 
3352 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3353 	if (sigsetsize != sizeof(sigset_t))
3354 		goto out;
3355 
3356 	if (act) {
3357 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3358 			return -EFAULT;
3359 	}
3360 
3361 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3362 
3363 	if (!ret && oact) {
3364 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3365 			return -EFAULT;
3366 	}
3367 out:
3368 	return ret;
3369 }
3370 #ifdef CONFIG_COMPAT
3371 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3372 		const struct compat_sigaction __user *, act,
3373 		struct compat_sigaction __user *, oact,
3374 		compat_size_t, sigsetsize)
3375 {
3376 	struct k_sigaction new_ka, old_ka;
3377 	compat_sigset_t mask;
3378 #ifdef __ARCH_HAS_SA_RESTORER
3379 	compat_uptr_t restorer;
3380 #endif
3381 	int ret;
3382 
3383 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3384 	if (sigsetsize != sizeof(compat_sigset_t))
3385 		return -EINVAL;
3386 
3387 	if (act) {
3388 		compat_uptr_t handler;
3389 		ret = get_user(handler, &act->sa_handler);
3390 		new_ka.sa.sa_handler = compat_ptr(handler);
3391 #ifdef __ARCH_HAS_SA_RESTORER
3392 		ret |= get_user(restorer, &act->sa_restorer);
3393 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3394 #endif
3395 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3396 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3397 		if (ret)
3398 			return -EFAULT;
3399 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3400 	}
3401 
3402 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3403 	if (!ret && oact) {
3404 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3405 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3406 			       &oact->sa_handler);
3407 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3408 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3409 #ifdef __ARCH_HAS_SA_RESTORER
3410 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3411 				&oact->sa_restorer);
3412 #endif
3413 	}
3414 	return ret;
3415 }
3416 #endif
3417 #endif /* !CONFIG_ODD_RT_SIGACTION */
3418 
3419 #ifdef CONFIG_OLD_SIGACTION
3420 SYSCALL_DEFINE3(sigaction, int, sig,
3421 		const struct old_sigaction __user *, act,
3422 	        struct old_sigaction __user *, oact)
3423 {
3424 	struct k_sigaction new_ka, old_ka;
3425 	int ret;
3426 
3427 	if (act) {
3428 		old_sigset_t mask;
3429 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3430 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3431 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3432 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3433 		    __get_user(mask, &act->sa_mask))
3434 			return -EFAULT;
3435 #ifdef __ARCH_HAS_KA_RESTORER
3436 		new_ka.ka_restorer = NULL;
3437 #endif
3438 		siginitset(&new_ka.sa.sa_mask, mask);
3439 	}
3440 
3441 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3442 
3443 	if (!ret && oact) {
3444 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3445 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3446 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3447 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3448 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3449 			return -EFAULT;
3450 	}
3451 
3452 	return ret;
3453 }
3454 #endif
3455 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3456 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3457 		const struct compat_old_sigaction __user *, act,
3458 	        struct compat_old_sigaction __user *, oact)
3459 {
3460 	struct k_sigaction new_ka, old_ka;
3461 	int ret;
3462 	compat_old_sigset_t mask;
3463 	compat_uptr_t handler, restorer;
3464 
3465 	if (act) {
3466 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3467 		    __get_user(handler, &act->sa_handler) ||
3468 		    __get_user(restorer, &act->sa_restorer) ||
3469 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3470 		    __get_user(mask, &act->sa_mask))
3471 			return -EFAULT;
3472 
3473 #ifdef __ARCH_HAS_KA_RESTORER
3474 		new_ka.ka_restorer = NULL;
3475 #endif
3476 		new_ka.sa.sa_handler = compat_ptr(handler);
3477 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3478 		siginitset(&new_ka.sa.sa_mask, mask);
3479 	}
3480 
3481 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3482 
3483 	if (!ret && oact) {
3484 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3485 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3486 			       &oact->sa_handler) ||
3487 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3488 			       &oact->sa_restorer) ||
3489 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3490 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3491 			return -EFAULT;
3492 	}
3493 	return ret;
3494 }
3495 #endif
3496 
3497 #ifdef __ARCH_WANT_SYS_SGETMASK
3498 
3499 /*
3500  * For backwards compatibility.  Functionality superseded by sigprocmask.
3501  */
3502 SYSCALL_DEFINE0(sgetmask)
3503 {
3504 	/* SMP safe */
3505 	return current->blocked.sig[0];
3506 }
3507 
3508 SYSCALL_DEFINE1(ssetmask, int, newmask)
3509 {
3510 	int old = current->blocked.sig[0];
3511 	sigset_t newset;
3512 
3513 	siginitset(&newset, newmask);
3514 	set_current_blocked(&newset);
3515 
3516 	return old;
3517 }
3518 #endif /* __ARCH_WANT_SGETMASK */
3519 
3520 #ifdef __ARCH_WANT_SYS_SIGNAL
3521 /*
3522  * For backwards compatibility.  Functionality superseded by sigaction.
3523  */
3524 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3525 {
3526 	struct k_sigaction new_sa, old_sa;
3527 	int ret;
3528 
3529 	new_sa.sa.sa_handler = handler;
3530 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3531 	sigemptyset(&new_sa.sa.sa_mask);
3532 
3533 	ret = do_sigaction(sig, &new_sa, &old_sa);
3534 
3535 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3536 }
3537 #endif /* __ARCH_WANT_SYS_SIGNAL */
3538 
3539 #ifdef __ARCH_WANT_SYS_PAUSE
3540 
3541 SYSCALL_DEFINE0(pause)
3542 {
3543 	while (!signal_pending(current)) {
3544 		current->state = TASK_INTERRUPTIBLE;
3545 		schedule();
3546 	}
3547 	return -ERESTARTNOHAND;
3548 }
3549 
3550 #endif
3551 
3552 int sigsuspend(sigset_t *set)
3553 {
3554 	current->saved_sigmask = current->blocked;
3555 	set_current_blocked(set);
3556 
3557 	current->state = TASK_INTERRUPTIBLE;
3558 	schedule();
3559 	set_restore_sigmask();
3560 	return -ERESTARTNOHAND;
3561 }
3562 
3563 /**
3564  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3565  *	@unewset value until a signal is received
3566  *  @unewset: new signal mask value
3567  *  @sigsetsize: size of sigset_t type
3568  */
3569 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3570 {
3571 	sigset_t newset;
3572 
3573 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3574 	if (sigsetsize != sizeof(sigset_t))
3575 		return -EINVAL;
3576 
3577 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3578 		return -EFAULT;
3579 	return sigsuspend(&newset);
3580 }
3581 
3582 #ifdef CONFIG_COMPAT
3583 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3584 {
3585 #ifdef __BIG_ENDIAN
3586 	sigset_t newset;
3587 	compat_sigset_t newset32;
3588 
3589 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3590 	if (sigsetsize != sizeof(sigset_t))
3591 		return -EINVAL;
3592 
3593 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3594 		return -EFAULT;
3595 	sigset_from_compat(&newset, &newset32);
3596 	return sigsuspend(&newset);
3597 #else
3598 	/* on little-endian bitmaps don't care about granularity */
3599 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3600 #endif
3601 }
3602 #endif
3603 
3604 #ifdef CONFIG_OLD_SIGSUSPEND
3605 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3606 {
3607 	sigset_t blocked;
3608 	siginitset(&blocked, mask);
3609 	return sigsuspend(&blocked);
3610 }
3611 #endif
3612 #ifdef CONFIG_OLD_SIGSUSPEND3
3613 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3614 {
3615 	sigset_t blocked;
3616 	siginitset(&blocked, mask);
3617 	return sigsuspend(&blocked);
3618 }
3619 #endif
3620 
3621 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3622 {
3623 	return NULL;
3624 }
3625 
3626 void __init signals_init(void)
3627 {
3628 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3629 }
3630 
3631 #ifdef CONFIG_KGDB_KDB
3632 #include <linux/kdb.h>
3633 /*
3634  * kdb_send_sig_info - Allows kdb to send signals without exposing
3635  * signal internals.  This function checks if the required locks are
3636  * available before calling the main signal code, to avoid kdb
3637  * deadlocks.
3638  */
3639 void
3640 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3641 {
3642 	static struct task_struct *kdb_prev_t;
3643 	int sig, new_t;
3644 	if (!spin_trylock(&t->sighand->siglock)) {
3645 		kdb_printf("Can't do kill command now.\n"
3646 			   "The sigmask lock is held somewhere else in "
3647 			   "kernel, try again later\n");
3648 		return;
3649 	}
3650 	spin_unlock(&t->sighand->siglock);
3651 	new_t = kdb_prev_t != t;
3652 	kdb_prev_t = t;
3653 	if (t->state != TASK_RUNNING && new_t) {
3654 		kdb_printf("Process is not RUNNING, sending a signal from "
3655 			   "kdb risks deadlock\n"
3656 			   "on the run queue locks. "
3657 			   "The signal has _not_ been sent.\n"
3658 			   "Reissue the kill command if you want to risk "
3659 			   "the deadlock.\n");
3660 		return;
3661 	}
3662 	sig = info->si_signo;
3663 	if (send_sig_info(sig, info, t))
3664 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3665 			   sig, t->pid);
3666 	else
3667 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3668 }
3669 #endif	/* CONFIG_KGDB_KDB */
3670