1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 #include <linux/posix-timers.h> 43 #include <linux/livepatch.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/signal.h> 47 48 #include <asm/param.h> 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/siginfo.h> 52 #include <asm/cacheflush.h> 53 #include "audit.h" /* audit_signal_info() */ 54 55 /* 56 * SLAB caches for signal bits. 57 */ 58 59 static struct kmem_cache *sigqueue_cachep; 60 61 int print_fatal_signals __read_mostly; 62 63 static void __user *sig_handler(struct task_struct *t, int sig) 64 { 65 return t->sighand->action[sig - 1].sa.sa_handler; 66 } 67 68 static int sig_handler_ignored(void __user *handler, int sig) 69 { 70 /* Is it explicitly or implicitly ignored? */ 71 return handler == SIG_IGN || 72 (handler == SIG_DFL && sig_kernel_ignore(sig)); 73 } 74 75 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 76 { 77 void __user *handler; 78 79 handler = sig_handler(t, sig); 80 81 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 82 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 83 return 1; 84 85 return sig_handler_ignored(handler, sig); 86 } 87 88 static int sig_ignored(struct task_struct *t, int sig, bool force) 89 { 90 /* 91 * Blocked signals are never ignored, since the 92 * signal handler may change by the time it is 93 * unblocked. 94 */ 95 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 96 return 0; 97 98 /* 99 * Tracers may want to know about even ignored signal unless it 100 * is SIGKILL which can't be reported anyway but can be ignored 101 * by SIGNAL_UNKILLABLE task. 102 */ 103 if (t->ptrace && sig != SIGKILL) 104 return 0; 105 106 return sig_task_ignored(t, sig, force); 107 } 108 109 /* 110 * Re-calculate pending state from the set of locally pending 111 * signals, globally pending signals, and blocked signals. 112 */ 113 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 114 { 115 unsigned long ready; 116 long i; 117 118 switch (_NSIG_WORDS) { 119 default: 120 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 121 ready |= signal->sig[i] &~ blocked->sig[i]; 122 break; 123 124 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 125 ready |= signal->sig[2] &~ blocked->sig[2]; 126 ready |= signal->sig[1] &~ blocked->sig[1]; 127 ready |= signal->sig[0] &~ blocked->sig[0]; 128 break; 129 130 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 131 ready |= signal->sig[0] &~ blocked->sig[0]; 132 break; 133 134 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 135 } 136 return ready != 0; 137 } 138 139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 140 141 static int recalc_sigpending_tsk(struct task_struct *t) 142 { 143 if ((t->jobctl & JOBCTL_PENDING_MASK) || 144 PENDING(&t->pending, &t->blocked) || 145 PENDING(&t->signal->shared_pending, &t->blocked)) { 146 set_tsk_thread_flag(t, TIF_SIGPENDING); 147 return 1; 148 } 149 /* 150 * We must never clear the flag in another thread, or in current 151 * when it's possible the current syscall is returning -ERESTART*. 152 * So we don't clear it here, and only callers who know they should do. 153 */ 154 return 0; 155 } 156 157 /* 158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 159 * This is superfluous when called on current, the wakeup is a harmless no-op. 160 */ 161 void recalc_sigpending_and_wake(struct task_struct *t) 162 { 163 if (recalc_sigpending_tsk(t)) 164 signal_wake_up(t, 0); 165 } 166 167 void recalc_sigpending(void) 168 { 169 if (!recalc_sigpending_tsk(current) && !freezing(current) && 170 !klp_patch_pending(current)) 171 clear_thread_flag(TIF_SIGPENDING); 172 173 } 174 175 /* Given the mask, find the first available signal that should be serviced. */ 176 177 #define SYNCHRONOUS_MASK \ 178 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 179 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 180 181 int next_signal(struct sigpending *pending, sigset_t *mask) 182 { 183 unsigned long i, *s, *m, x; 184 int sig = 0; 185 186 s = pending->signal.sig; 187 m = mask->sig; 188 189 /* 190 * Handle the first word specially: it contains the 191 * synchronous signals that need to be dequeued first. 192 */ 193 x = *s &~ *m; 194 if (x) { 195 if (x & SYNCHRONOUS_MASK) 196 x &= SYNCHRONOUS_MASK; 197 sig = ffz(~x) + 1; 198 return sig; 199 } 200 201 switch (_NSIG_WORDS) { 202 default: 203 for (i = 1; i < _NSIG_WORDS; ++i) { 204 x = *++s &~ *++m; 205 if (!x) 206 continue; 207 sig = ffz(~x) + i*_NSIG_BPW + 1; 208 break; 209 } 210 break; 211 212 case 2: 213 x = s[1] &~ m[1]; 214 if (!x) 215 break; 216 sig = ffz(~x) + _NSIG_BPW + 1; 217 break; 218 219 case 1: 220 /* Nothing to do */ 221 break; 222 } 223 224 return sig; 225 } 226 227 static inline void print_dropped_signal(int sig) 228 { 229 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 230 231 if (!print_fatal_signals) 232 return; 233 234 if (!__ratelimit(&ratelimit_state)) 235 return; 236 237 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 238 current->comm, current->pid, sig); 239 } 240 241 /** 242 * task_set_jobctl_pending - set jobctl pending bits 243 * @task: target task 244 * @mask: pending bits to set 245 * 246 * Clear @mask from @task->jobctl. @mask must be subset of 247 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 248 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 249 * cleared. If @task is already being killed or exiting, this function 250 * becomes noop. 251 * 252 * CONTEXT: 253 * Must be called with @task->sighand->siglock held. 254 * 255 * RETURNS: 256 * %true if @mask is set, %false if made noop because @task was dying. 257 */ 258 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 259 { 260 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 261 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 262 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 263 264 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 265 return false; 266 267 if (mask & JOBCTL_STOP_SIGMASK) 268 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 269 270 task->jobctl |= mask; 271 return true; 272 } 273 274 /** 275 * task_clear_jobctl_trapping - clear jobctl trapping bit 276 * @task: target task 277 * 278 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 279 * Clear it and wake up the ptracer. Note that we don't need any further 280 * locking. @task->siglock guarantees that @task->parent points to the 281 * ptracer. 282 * 283 * CONTEXT: 284 * Must be called with @task->sighand->siglock held. 285 */ 286 void task_clear_jobctl_trapping(struct task_struct *task) 287 { 288 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 289 task->jobctl &= ~JOBCTL_TRAPPING; 290 smp_mb(); /* advised by wake_up_bit() */ 291 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 292 } 293 } 294 295 /** 296 * task_clear_jobctl_pending - clear jobctl pending bits 297 * @task: target task 298 * @mask: pending bits to clear 299 * 300 * Clear @mask from @task->jobctl. @mask must be subset of 301 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 302 * STOP bits are cleared together. 303 * 304 * If clearing of @mask leaves no stop or trap pending, this function calls 305 * task_clear_jobctl_trapping(). 306 * 307 * CONTEXT: 308 * Must be called with @task->sighand->siglock held. 309 */ 310 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 311 { 312 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 313 314 if (mask & JOBCTL_STOP_PENDING) 315 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 316 317 task->jobctl &= ~mask; 318 319 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 320 task_clear_jobctl_trapping(task); 321 } 322 323 /** 324 * task_participate_group_stop - participate in a group stop 325 * @task: task participating in a group stop 326 * 327 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 328 * Group stop states are cleared and the group stop count is consumed if 329 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 330 * stop, the appropriate %SIGNAL_* flags are set. 331 * 332 * CONTEXT: 333 * Must be called with @task->sighand->siglock held. 334 * 335 * RETURNS: 336 * %true if group stop completion should be notified to the parent, %false 337 * otherwise. 338 */ 339 static bool task_participate_group_stop(struct task_struct *task) 340 { 341 struct signal_struct *sig = task->signal; 342 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 343 344 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 345 346 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 347 348 if (!consume) 349 return false; 350 351 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 352 sig->group_stop_count--; 353 354 /* 355 * Tell the caller to notify completion iff we are entering into a 356 * fresh group stop. Read comment in do_signal_stop() for details. 357 */ 358 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 359 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 360 return true; 361 } 362 return false; 363 } 364 365 /* 366 * allocate a new signal queue record 367 * - this may be called without locks if and only if t == current, otherwise an 368 * appropriate lock must be held to stop the target task from exiting 369 */ 370 static struct sigqueue * 371 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 372 { 373 struct sigqueue *q = NULL; 374 struct user_struct *user; 375 376 /* 377 * Protect access to @t credentials. This can go away when all 378 * callers hold rcu read lock. 379 */ 380 rcu_read_lock(); 381 user = get_uid(__task_cred(t)->user); 382 atomic_inc(&user->sigpending); 383 rcu_read_unlock(); 384 385 if (override_rlimit || 386 atomic_read(&user->sigpending) <= 387 task_rlimit(t, RLIMIT_SIGPENDING)) { 388 q = kmem_cache_alloc(sigqueue_cachep, flags); 389 } else { 390 print_dropped_signal(sig); 391 } 392 393 if (unlikely(q == NULL)) { 394 atomic_dec(&user->sigpending); 395 free_uid(user); 396 } else { 397 INIT_LIST_HEAD(&q->list); 398 q->flags = 0; 399 q->user = user; 400 } 401 402 return q; 403 } 404 405 static void __sigqueue_free(struct sigqueue *q) 406 { 407 if (q->flags & SIGQUEUE_PREALLOC) 408 return; 409 atomic_dec(&q->user->sigpending); 410 free_uid(q->user); 411 kmem_cache_free(sigqueue_cachep, q); 412 } 413 414 void flush_sigqueue(struct sigpending *queue) 415 { 416 struct sigqueue *q; 417 418 sigemptyset(&queue->signal); 419 while (!list_empty(&queue->list)) { 420 q = list_entry(queue->list.next, struct sigqueue , list); 421 list_del_init(&q->list); 422 __sigqueue_free(q); 423 } 424 } 425 426 /* 427 * Flush all pending signals for this kthread. 428 */ 429 void flush_signals(struct task_struct *t) 430 { 431 unsigned long flags; 432 433 spin_lock_irqsave(&t->sighand->siglock, flags); 434 clear_tsk_thread_flag(t, TIF_SIGPENDING); 435 flush_sigqueue(&t->pending); 436 flush_sigqueue(&t->signal->shared_pending); 437 spin_unlock_irqrestore(&t->sighand->siglock, flags); 438 } 439 440 #ifdef CONFIG_POSIX_TIMERS 441 static void __flush_itimer_signals(struct sigpending *pending) 442 { 443 sigset_t signal, retain; 444 struct sigqueue *q, *n; 445 446 signal = pending->signal; 447 sigemptyset(&retain); 448 449 list_for_each_entry_safe(q, n, &pending->list, list) { 450 int sig = q->info.si_signo; 451 452 if (likely(q->info.si_code != SI_TIMER)) { 453 sigaddset(&retain, sig); 454 } else { 455 sigdelset(&signal, sig); 456 list_del_init(&q->list); 457 __sigqueue_free(q); 458 } 459 } 460 461 sigorsets(&pending->signal, &signal, &retain); 462 } 463 464 void flush_itimer_signals(void) 465 { 466 struct task_struct *tsk = current; 467 unsigned long flags; 468 469 spin_lock_irqsave(&tsk->sighand->siglock, flags); 470 __flush_itimer_signals(&tsk->pending); 471 __flush_itimer_signals(&tsk->signal->shared_pending); 472 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 473 } 474 #endif 475 476 void ignore_signals(struct task_struct *t) 477 { 478 int i; 479 480 for (i = 0; i < _NSIG; ++i) 481 t->sighand->action[i].sa.sa_handler = SIG_IGN; 482 483 flush_signals(t); 484 } 485 486 /* 487 * Flush all handlers for a task. 488 */ 489 490 void 491 flush_signal_handlers(struct task_struct *t, int force_default) 492 { 493 int i; 494 struct k_sigaction *ka = &t->sighand->action[0]; 495 for (i = _NSIG ; i != 0 ; i--) { 496 if (force_default || ka->sa.sa_handler != SIG_IGN) 497 ka->sa.sa_handler = SIG_DFL; 498 ka->sa.sa_flags = 0; 499 #ifdef __ARCH_HAS_SA_RESTORER 500 ka->sa.sa_restorer = NULL; 501 #endif 502 sigemptyset(&ka->sa.sa_mask); 503 ka++; 504 } 505 } 506 507 int unhandled_signal(struct task_struct *tsk, int sig) 508 { 509 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 510 if (is_global_init(tsk)) 511 return 1; 512 if (handler != SIG_IGN && handler != SIG_DFL) 513 return 0; 514 /* if ptraced, let the tracer determine */ 515 return !tsk->ptrace; 516 } 517 518 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info, 519 bool *resched_timer) 520 { 521 struct sigqueue *q, *first = NULL; 522 523 /* 524 * Collect the siginfo appropriate to this signal. Check if 525 * there is another siginfo for the same signal. 526 */ 527 list_for_each_entry(q, &list->list, list) { 528 if (q->info.si_signo == sig) { 529 if (first) 530 goto still_pending; 531 first = q; 532 } 533 } 534 535 sigdelset(&list->signal, sig); 536 537 if (first) { 538 still_pending: 539 list_del_init(&first->list); 540 copy_siginfo(info, &first->info); 541 542 *resched_timer = 543 (first->flags & SIGQUEUE_PREALLOC) && 544 (info->si_code == SI_TIMER) && 545 (info->si_sys_private); 546 547 __sigqueue_free(first); 548 } else { 549 /* 550 * Ok, it wasn't in the queue. This must be 551 * a fast-pathed signal or we must have been 552 * out of queue space. So zero out the info. 553 */ 554 clear_siginfo(info); 555 info->si_signo = sig; 556 info->si_errno = 0; 557 info->si_code = SI_USER; 558 info->si_pid = 0; 559 info->si_uid = 0; 560 } 561 } 562 563 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 564 siginfo_t *info, bool *resched_timer) 565 { 566 int sig = next_signal(pending, mask); 567 568 if (sig) 569 collect_signal(sig, pending, info, resched_timer); 570 return sig; 571 } 572 573 /* 574 * Dequeue a signal and return the element to the caller, which is 575 * expected to free it. 576 * 577 * All callers have to hold the siglock. 578 */ 579 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 580 { 581 bool resched_timer = false; 582 int signr; 583 584 /* We only dequeue private signals from ourselves, we don't let 585 * signalfd steal them 586 */ 587 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 588 if (!signr) { 589 signr = __dequeue_signal(&tsk->signal->shared_pending, 590 mask, info, &resched_timer); 591 #ifdef CONFIG_POSIX_TIMERS 592 /* 593 * itimer signal ? 594 * 595 * itimers are process shared and we restart periodic 596 * itimers in the signal delivery path to prevent DoS 597 * attacks in the high resolution timer case. This is 598 * compliant with the old way of self-restarting 599 * itimers, as the SIGALRM is a legacy signal and only 600 * queued once. Changing the restart behaviour to 601 * restart the timer in the signal dequeue path is 602 * reducing the timer noise on heavy loaded !highres 603 * systems too. 604 */ 605 if (unlikely(signr == SIGALRM)) { 606 struct hrtimer *tmr = &tsk->signal->real_timer; 607 608 if (!hrtimer_is_queued(tmr) && 609 tsk->signal->it_real_incr != 0) { 610 hrtimer_forward(tmr, tmr->base->get_time(), 611 tsk->signal->it_real_incr); 612 hrtimer_restart(tmr); 613 } 614 } 615 #endif 616 } 617 618 recalc_sigpending(); 619 if (!signr) 620 return 0; 621 622 if (unlikely(sig_kernel_stop(signr))) { 623 /* 624 * Set a marker that we have dequeued a stop signal. Our 625 * caller might release the siglock and then the pending 626 * stop signal it is about to process is no longer in the 627 * pending bitmasks, but must still be cleared by a SIGCONT 628 * (and overruled by a SIGKILL). So those cases clear this 629 * shared flag after we've set it. Note that this flag may 630 * remain set after the signal we return is ignored or 631 * handled. That doesn't matter because its only purpose 632 * is to alert stop-signal processing code when another 633 * processor has come along and cleared the flag. 634 */ 635 current->jobctl |= JOBCTL_STOP_DEQUEUED; 636 } 637 #ifdef CONFIG_POSIX_TIMERS 638 if (resched_timer) { 639 /* 640 * Release the siglock to ensure proper locking order 641 * of timer locks outside of siglocks. Note, we leave 642 * irqs disabled here, since the posix-timers code is 643 * about to disable them again anyway. 644 */ 645 spin_unlock(&tsk->sighand->siglock); 646 posixtimer_rearm(info); 647 spin_lock(&tsk->sighand->siglock); 648 649 /* Don't expose the si_sys_private value to userspace */ 650 info->si_sys_private = 0; 651 } 652 #endif 653 return signr; 654 } 655 656 /* 657 * Tell a process that it has a new active signal.. 658 * 659 * NOTE! we rely on the previous spin_lock to 660 * lock interrupts for us! We can only be called with 661 * "siglock" held, and the local interrupt must 662 * have been disabled when that got acquired! 663 * 664 * No need to set need_resched since signal event passing 665 * goes through ->blocked 666 */ 667 void signal_wake_up_state(struct task_struct *t, unsigned int state) 668 { 669 set_tsk_thread_flag(t, TIF_SIGPENDING); 670 /* 671 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 672 * case. We don't check t->state here because there is a race with it 673 * executing another processor and just now entering stopped state. 674 * By using wake_up_state, we ensure the process will wake up and 675 * handle its death signal. 676 */ 677 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 678 kick_process(t); 679 } 680 681 /* 682 * Remove signals in mask from the pending set and queue. 683 * Returns 1 if any signals were found. 684 * 685 * All callers must be holding the siglock. 686 */ 687 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 688 { 689 struct sigqueue *q, *n; 690 sigset_t m; 691 692 sigandsets(&m, mask, &s->signal); 693 if (sigisemptyset(&m)) 694 return 0; 695 696 sigandnsets(&s->signal, &s->signal, mask); 697 list_for_each_entry_safe(q, n, &s->list, list) { 698 if (sigismember(mask, q->info.si_signo)) { 699 list_del_init(&q->list); 700 __sigqueue_free(q); 701 } 702 } 703 return 1; 704 } 705 706 static inline int is_si_special(const struct siginfo *info) 707 { 708 return info <= SEND_SIG_FORCED; 709 } 710 711 static inline bool si_fromuser(const struct siginfo *info) 712 { 713 return info == SEND_SIG_NOINFO || 714 (!is_si_special(info) && SI_FROMUSER(info)); 715 } 716 717 /* 718 * called with RCU read lock from check_kill_permission() 719 */ 720 static int kill_ok_by_cred(struct task_struct *t) 721 { 722 const struct cred *cred = current_cred(); 723 const struct cred *tcred = __task_cred(t); 724 725 if (uid_eq(cred->euid, tcred->suid) || 726 uid_eq(cred->euid, tcred->uid) || 727 uid_eq(cred->uid, tcred->suid) || 728 uid_eq(cred->uid, tcred->uid)) 729 return 1; 730 731 if (ns_capable(tcred->user_ns, CAP_KILL)) 732 return 1; 733 734 return 0; 735 } 736 737 /* 738 * Bad permissions for sending the signal 739 * - the caller must hold the RCU read lock 740 */ 741 static int check_kill_permission(int sig, struct siginfo *info, 742 struct task_struct *t) 743 { 744 struct pid *sid; 745 int error; 746 747 if (!valid_signal(sig)) 748 return -EINVAL; 749 750 if (!si_fromuser(info)) 751 return 0; 752 753 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 754 if (error) 755 return error; 756 757 if (!same_thread_group(current, t) && 758 !kill_ok_by_cred(t)) { 759 switch (sig) { 760 case SIGCONT: 761 sid = task_session(t); 762 /* 763 * We don't return the error if sid == NULL. The 764 * task was unhashed, the caller must notice this. 765 */ 766 if (!sid || sid == task_session(current)) 767 break; 768 default: 769 return -EPERM; 770 } 771 } 772 773 return security_task_kill(t, info, sig, NULL); 774 } 775 776 /** 777 * ptrace_trap_notify - schedule trap to notify ptracer 778 * @t: tracee wanting to notify tracer 779 * 780 * This function schedules sticky ptrace trap which is cleared on the next 781 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 782 * ptracer. 783 * 784 * If @t is running, STOP trap will be taken. If trapped for STOP and 785 * ptracer is listening for events, tracee is woken up so that it can 786 * re-trap for the new event. If trapped otherwise, STOP trap will be 787 * eventually taken without returning to userland after the existing traps 788 * are finished by PTRACE_CONT. 789 * 790 * CONTEXT: 791 * Must be called with @task->sighand->siglock held. 792 */ 793 static void ptrace_trap_notify(struct task_struct *t) 794 { 795 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 796 assert_spin_locked(&t->sighand->siglock); 797 798 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 799 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 800 } 801 802 /* 803 * Handle magic process-wide effects of stop/continue signals. Unlike 804 * the signal actions, these happen immediately at signal-generation 805 * time regardless of blocking, ignoring, or handling. This does the 806 * actual continuing for SIGCONT, but not the actual stopping for stop 807 * signals. The process stop is done as a signal action for SIG_DFL. 808 * 809 * Returns true if the signal should be actually delivered, otherwise 810 * it should be dropped. 811 */ 812 static bool prepare_signal(int sig, struct task_struct *p, bool force) 813 { 814 struct signal_struct *signal = p->signal; 815 struct task_struct *t; 816 sigset_t flush; 817 818 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 819 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 820 return sig == SIGKILL; 821 /* 822 * The process is in the middle of dying, nothing to do. 823 */ 824 } else if (sig_kernel_stop(sig)) { 825 /* 826 * This is a stop signal. Remove SIGCONT from all queues. 827 */ 828 siginitset(&flush, sigmask(SIGCONT)); 829 flush_sigqueue_mask(&flush, &signal->shared_pending); 830 for_each_thread(p, t) 831 flush_sigqueue_mask(&flush, &t->pending); 832 } else if (sig == SIGCONT) { 833 unsigned int why; 834 /* 835 * Remove all stop signals from all queues, wake all threads. 836 */ 837 siginitset(&flush, SIG_KERNEL_STOP_MASK); 838 flush_sigqueue_mask(&flush, &signal->shared_pending); 839 for_each_thread(p, t) { 840 flush_sigqueue_mask(&flush, &t->pending); 841 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 842 if (likely(!(t->ptrace & PT_SEIZED))) 843 wake_up_state(t, __TASK_STOPPED); 844 else 845 ptrace_trap_notify(t); 846 } 847 848 /* 849 * Notify the parent with CLD_CONTINUED if we were stopped. 850 * 851 * If we were in the middle of a group stop, we pretend it 852 * was already finished, and then continued. Since SIGCHLD 853 * doesn't queue we report only CLD_STOPPED, as if the next 854 * CLD_CONTINUED was dropped. 855 */ 856 why = 0; 857 if (signal->flags & SIGNAL_STOP_STOPPED) 858 why |= SIGNAL_CLD_CONTINUED; 859 else if (signal->group_stop_count) 860 why |= SIGNAL_CLD_STOPPED; 861 862 if (why) { 863 /* 864 * The first thread which returns from do_signal_stop() 865 * will take ->siglock, notice SIGNAL_CLD_MASK, and 866 * notify its parent. See get_signal_to_deliver(). 867 */ 868 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 869 signal->group_stop_count = 0; 870 signal->group_exit_code = 0; 871 } 872 } 873 874 return !sig_ignored(p, sig, force); 875 } 876 877 /* 878 * Test if P wants to take SIG. After we've checked all threads with this, 879 * it's equivalent to finding no threads not blocking SIG. Any threads not 880 * blocking SIG were ruled out because they are not running and already 881 * have pending signals. Such threads will dequeue from the shared queue 882 * as soon as they're available, so putting the signal on the shared queue 883 * will be equivalent to sending it to one such thread. 884 */ 885 static inline int wants_signal(int sig, struct task_struct *p) 886 { 887 if (sigismember(&p->blocked, sig)) 888 return 0; 889 if (p->flags & PF_EXITING) 890 return 0; 891 if (sig == SIGKILL) 892 return 1; 893 if (task_is_stopped_or_traced(p)) 894 return 0; 895 return task_curr(p) || !signal_pending(p); 896 } 897 898 static void complete_signal(int sig, struct task_struct *p, int group) 899 { 900 struct signal_struct *signal = p->signal; 901 struct task_struct *t; 902 903 /* 904 * Now find a thread we can wake up to take the signal off the queue. 905 * 906 * If the main thread wants the signal, it gets first crack. 907 * Probably the least surprising to the average bear. 908 */ 909 if (wants_signal(sig, p)) 910 t = p; 911 else if (!group || thread_group_empty(p)) 912 /* 913 * There is just one thread and it does not need to be woken. 914 * It will dequeue unblocked signals before it runs again. 915 */ 916 return; 917 else { 918 /* 919 * Otherwise try to find a suitable thread. 920 */ 921 t = signal->curr_target; 922 while (!wants_signal(sig, t)) { 923 t = next_thread(t); 924 if (t == signal->curr_target) 925 /* 926 * No thread needs to be woken. 927 * Any eligible threads will see 928 * the signal in the queue soon. 929 */ 930 return; 931 } 932 signal->curr_target = t; 933 } 934 935 /* 936 * Found a killable thread. If the signal will be fatal, 937 * then start taking the whole group down immediately. 938 */ 939 if (sig_fatal(p, sig) && 940 !(signal->flags & SIGNAL_GROUP_EXIT) && 941 !sigismember(&t->real_blocked, sig) && 942 (sig == SIGKILL || !p->ptrace)) { 943 /* 944 * This signal will be fatal to the whole group. 945 */ 946 if (!sig_kernel_coredump(sig)) { 947 /* 948 * Start a group exit and wake everybody up. 949 * This way we don't have other threads 950 * running and doing things after a slower 951 * thread has the fatal signal pending. 952 */ 953 signal->flags = SIGNAL_GROUP_EXIT; 954 signal->group_exit_code = sig; 955 signal->group_stop_count = 0; 956 t = p; 957 do { 958 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 959 sigaddset(&t->pending.signal, SIGKILL); 960 signal_wake_up(t, 1); 961 } while_each_thread(p, t); 962 return; 963 } 964 } 965 966 /* 967 * The signal is already in the shared-pending queue. 968 * Tell the chosen thread to wake up and dequeue it. 969 */ 970 signal_wake_up(t, sig == SIGKILL); 971 return; 972 } 973 974 static inline int legacy_queue(struct sigpending *signals, int sig) 975 { 976 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 977 } 978 979 #ifdef CONFIG_USER_NS 980 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 981 { 982 if (current_user_ns() == task_cred_xxx(t, user_ns)) 983 return; 984 985 if (SI_FROMKERNEL(info)) 986 return; 987 988 rcu_read_lock(); 989 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 990 make_kuid(current_user_ns(), info->si_uid)); 991 rcu_read_unlock(); 992 } 993 #else 994 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 995 { 996 return; 997 } 998 #endif 999 1000 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1001 int group, int from_ancestor_ns) 1002 { 1003 struct sigpending *pending; 1004 struct sigqueue *q; 1005 int override_rlimit; 1006 int ret = 0, result; 1007 1008 assert_spin_locked(&t->sighand->siglock); 1009 1010 result = TRACE_SIGNAL_IGNORED; 1011 if (!prepare_signal(sig, t, 1012 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1013 goto ret; 1014 1015 pending = group ? &t->signal->shared_pending : &t->pending; 1016 /* 1017 * Short-circuit ignored signals and support queuing 1018 * exactly one non-rt signal, so that we can get more 1019 * detailed information about the cause of the signal. 1020 */ 1021 result = TRACE_SIGNAL_ALREADY_PENDING; 1022 if (legacy_queue(pending, sig)) 1023 goto ret; 1024 1025 result = TRACE_SIGNAL_DELIVERED; 1026 /* 1027 * fast-pathed signals for kernel-internal things like SIGSTOP 1028 * or SIGKILL. 1029 */ 1030 if (info == SEND_SIG_FORCED) 1031 goto out_set; 1032 1033 /* 1034 * Real-time signals must be queued if sent by sigqueue, or 1035 * some other real-time mechanism. It is implementation 1036 * defined whether kill() does so. We attempt to do so, on 1037 * the principle of least surprise, but since kill is not 1038 * allowed to fail with EAGAIN when low on memory we just 1039 * make sure at least one signal gets delivered and don't 1040 * pass on the info struct. 1041 */ 1042 if (sig < SIGRTMIN) 1043 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1044 else 1045 override_rlimit = 0; 1046 1047 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1048 if (q) { 1049 list_add_tail(&q->list, &pending->list); 1050 switch ((unsigned long) info) { 1051 case (unsigned long) SEND_SIG_NOINFO: 1052 clear_siginfo(&q->info); 1053 q->info.si_signo = sig; 1054 q->info.si_errno = 0; 1055 q->info.si_code = SI_USER; 1056 q->info.si_pid = task_tgid_nr_ns(current, 1057 task_active_pid_ns(t)); 1058 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1059 break; 1060 case (unsigned long) SEND_SIG_PRIV: 1061 clear_siginfo(&q->info); 1062 q->info.si_signo = sig; 1063 q->info.si_errno = 0; 1064 q->info.si_code = SI_KERNEL; 1065 q->info.si_pid = 0; 1066 q->info.si_uid = 0; 1067 break; 1068 default: 1069 copy_siginfo(&q->info, info); 1070 if (from_ancestor_ns) 1071 q->info.si_pid = 0; 1072 break; 1073 } 1074 1075 userns_fixup_signal_uid(&q->info, t); 1076 1077 } else if (!is_si_special(info)) { 1078 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1079 /* 1080 * Queue overflow, abort. We may abort if the 1081 * signal was rt and sent by user using something 1082 * other than kill(). 1083 */ 1084 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1085 ret = -EAGAIN; 1086 goto ret; 1087 } else { 1088 /* 1089 * This is a silent loss of information. We still 1090 * send the signal, but the *info bits are lost. 1091 */ 1092 result = TRACE_SIGNAL_LOSE_INFO; 1093 } 1094 } 1095 1096 out_set: 1097 signalfd_notify(t, sig); 1098 sigaddset(&pending->signal, sig); 1099 complete_signal(sig, t, group); 1100 ret: 1101 trace_signal_generate(sig, info, t, group, result); 1102 return ret; 1103 } 1104 1105 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1106 int group) 1107 { 1108 int from_ancestor_ns = 0; 1109 1110 #ifdef CONFIG_PID_NS 1111 from_ancestor_ns = si_fromuser(info) && 1112 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1113 #endif 1114 1115 return __send_signal(sig, info, t, group, from_ancestor_ns); 1116 } 1117 1118 static void print_fatal_signal(int signr) 1119 { 1120 struct pt_regs *regs = signal_pt_regs(); 1121 pr_info("potentially unexpected fatal signal %d.\n", signr); 1122 1123 #if defined(__i386__) && !defined(__arch_um__) 1124 pr_info("code at %08lx: ", regs->ip); 1125 { 1126 int i; 1127 for (i = 0; i < 16; i++) { 1128 unsigned char insn; 1129 1130 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1131 break; 1132 pr_cont("%02x ", insn); 1133 } 1134 } 1135 pr_cont("\n"); 1136 #endif 1137 preempt_disable(); 1138 show_regs(regs); 1139 preempt_enable(); 1140 } 1141 1142 static int __init setup_print_fatal_signals(char *str) 1143 { 1144 get_option (&str, &print_fatal_signals); 1145 1146 return 1; 1147 } 1148 1149 __setup("print-fatal-signals=", setup_print_fatal_signals); 1150 1151 int 1152 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1153 { 1154 return send_signal(sig, info, p, 1); 1155 } 1156 1157 static int 1158 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1159 { 1160 return send_signal(sig, info, t, 0); 1161 } 1162 1163 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1164 bool group) 1165 { 1166 unsigned long flags; 1167 int ret = -ESRCH; 1168 1169 if (lock_task_sighand(p, &flags)) { 1170 ret = send_signal(sig, info, p, group); 1171 unlock_task_sighand(p, &flags); 1172 } 1173 1174 return ret; 1175 } 1176 1177 /* 1178 * Force a signal that the process can't ignore: if necessary 1179 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1180 * 1181 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1182 * since we do not want to have a signal handler that was blocked 1183 * be invoked when user space had explicitly blocked it. 1184 * 1185 * We don't want to have recursive SIGSEGV's etc, for example, 1186 * that is why we also clear SIGNAL_UNKILLABLE. 1187 */ 1188 int 1189 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1190 { 1191 unsigned long int flags; 1192 int ret, blocked, ignored; 1193 struct k_sigaction *action; 1194 1195 spin_lock_irqsave(&t->sighand->siglock, flags); 1196 action = &t->sighand->action[sig-1]; 1197 ignored = action->sa.sa_handler == SIG_IGN; 1198 blocked = sigismember(&t->blocked, sig); 1199 if (blocked || ignored) { 1200 action->sa.sa_handler = SIG_DFL; 1201 if (blocked) { 1202 sigdelset(&t->blocked, sig); 1203 recalc_sigpending_and_wake(t); 1204 } 1205 } 1206 /* 1207 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1208 * debugging to leave init killable. 1209 */ 1210 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1211 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1212 ret = specific_send_sig_info(sig, info, t); 1213 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1214 1215 return ret; 1216 } 1217 1218 /* 1219 * Nuke all other threads in the group. 1220 */ 1221 int zap_other_threads(struct task_struct *p) 1222 { 1223 struct task_struct *t = p; 1224 int count = 0; 1225 1226 p->signal->group_stop_count = 0; 1227 1228 while_each_thread(p, t) { 1229 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1230 count++; 1231 1232 /* Don't bother with already dead threads */ 1233 if (t->exit_state) 1234 continue; 1235 sigaddset(&t->pending.signal, SIGKILL); 1236 signal_wake_up(t, 1); 1237 } 1238 1239 return count; 1240 } 1241 1242 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1243 unsigned long *flags) 1244 { 1245 struct sighand_struct *sighand; 1246 1247 rcu_read_lock(); 1248 for (;;) { 1249 sighand = rcu_dereference(tsk->sighand); 1250 if (unlikely(sighand == NULL)) 1251 break; 1252 1253 /* 1254 * This sighand can be already freed and even reused, but 1255 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1256 * initializes ->siglock: this slab can't go away, it has 1257 * the same object type, ->siglock can't be reinitialized. 1258 * 1259 * We need to ensure that tsk->sighand is still the same 1260 * after we take the lock, we can race with de_thread() or 1261 * __exit_signal(). In the latter case the next iteration 1262 * must see ->sighand == NULL. 1263 */ 1264 spin_lock_irqsave(&sighand->siglock, *flags); 1265 if (likely(sighand == tsk->sighand)) 1266 break; 1267 spin_unlock_irqrestore(&sighand->siglock, *flags); 1268 } 1269 rcu_read_unlock(); 1270 1271 return sighand; 1272 } 1273 1274 /* 1275 * send signal info to all the members of a group 1276 */ 1277 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1278 { 1279 int ret; 1280 1281 rcu_read_lock(); 1282 ret = check_kill_permission(sig, info, p); 1283 rcu_read_unlock(); 1284 1285 if (!ret && sig) 1286 ret = do_send_sig_info(sig, info, p, true); 1287 1288 return ret; 1289 } 1290 1291 /* 1292 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1293 * control characters do (^C, ^Z etc) 1294 * - the caller must hold at least a readlock on tasklist_lock 1295 */ 1296 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1297 { 1298 struct task_struct *p = NULL; 1299 int retval, success; 1300 1301 success = 0; 1302 retval = -ESRCH; 1303 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1304 int err = group_send_sig_info(sig, info, p); 1305 success |= !err; 1306 retval = err; 1307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1308 return success ? 0 : retval; 1309 } 1310 1311 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1312 { 1313 int error = -ESRCH; 1314 struct task_struct *p; 1315 1316 for (;;) { 1317 rcu_read_lock(); 1318 p = pid_task(pid, PIDTYPE_PID); 1319 if (p) 1320 error = group_send_sig_info(sig, info, p); 1321 rcu_read_unlock(); 1322 if (likely(!p || error != -ESRCH)) 1323 return error; 1324 1325 /* 1326 * The task was unhashed in between, try again. If it 1327 * is dead, pid_task() will return NULL, if we race with 1328 * de_thread() it will find the new leader. 1329 */ 1330 } 1331 } 1332 1333 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1334 { 1335 int error; 1336 rcu_read_lock(); 1337 error = kill_pid_info(sig, info, find_vpid(pid)); 1338 rcu_read_unlock(); 1339 return error; 1340 } 1341 1342 static int kill_as_cred_perm(const struct cred *cred, 1343 struct task_struct *target) 1344 { 1345 const struct cred *pcred = __task_cred(target); 1346 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1347 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1348 return 0; 1349 return 1; 1350 } 1351 1352 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1353 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1354 const struct cred *cred) 1355 { 1356 int ret = -EINVAL; 1357 struct task_struct *p; 1358 unsigned long flags; 1359 1360 if (!valid_signal(sig)) 1361 return ret; 1362 1363 rcu_read_lock(); 1364 p = pid_task(pid, PIDTYPE_PID); 1365 if (!p) { 1366 ret = -ESRCH; 1367 goto out_unlock; 1368 } 1369 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1370 ret = -EPERM; 1371 goto out_unlock; 1372 } 1373 ret = security_task_kill(p, info, sig, cred); 1374 if (ret) 1375 goto out_unlock; 1376 1377 if (sig) { 1378 if (lock_task_sighand(p, &flags)) { 1379 ret = __send_signal(sig, info, p, 1, 0); 1380 unlock_task_sighand(p, &flags); 1381 } else 1382 ret = -ESRCH; 1383 } 1384 out_unlock: 1385 rcu_read_unlock(); 1386 return ret; 1387 } 1388 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1389 1390 /* 1391 * kill_something_info() interprets pid in interesting ways just like kill(2). 1392 * 1393 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1394 * is probably wrong. Should make it like BSD or SYSV. 1395 */ 1396 1397 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1398 { 1399 int ret; 1400 1401 if (pid > 0) { 1402 rcu_read_lock(); 1403 ret = kill_pid_info(sig, info, find_vpid(pid)); 1404 rcu_read_unlock(); 1405 return ret; 1406 } 1407 1408 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1409 if (pid == INT_MIN) 1410 return -ESRCH; 1411 1412 read_lock(&tasklist_lock); 1413 if (pid != -1) { 1414 ret = __kill_pgrp_info(sig, info, 1415 pid ? find_vpid(-pid) : task_pgrp(current)); 1416 } else { 1417 int retval = 0, count = 0; 1418 struct task_struct * p; 1419 1420 for_each_process(p) { 1421 if (task_pid_vnr(p) > 1 && 1422 !same_thread_group(p, current)) { 1423 int err = group_send_sig_info(sig, info, p); 1424 ++count; 1425 if (err != -EPERM) 1426 retval = err; 1427 } 1428 } 1429 ret = count ? retval : -ESRCH; 1430 } 1431 read_unlock(&tasklist_lock); 1432 1433 return ret; 1434 } 1435 1436 /* 1437 * These are for backward compatibility with the rest of the kernel source. 1438 */ 1439 1440 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1441 { 1442 /* 1443 * Make sure legacy kernel users don't send in bad values 1444 * (normal paths check this in check_kill_permission). 1445 */ 1446 if (!valid_signal(sig)) 1447 return -EINVAL; 1448 1449 return do_send_sig_info(sig, info, p, false); 1450 } 1451 1452 #define __si_special(priv) \ 1453 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1454 1455 int 1456 send_sig(int sig, struct task_struct *p, int priv) 1457 { 1458 return send_sig_info(sig, __si_special(priv), p); 1459 } 1460 1461 void 1462 force_sig(int sig, struct task_struct *p) 1463 { 1464 force_sig_info(sig, SEND_SIG_PRIV, p); 1465 } 1466 1467 /* 1468 * When things go south during signal handling, we 1469 * will force a SIGSEGV. And if the signal that caused 1470 * the problem was already a SIGSEGV, we'll want to 1471 * make sure we don't even try to deliver the signal.. 1472 */ 1473 int 1474 force_sigsegv(int sig, struct task_struct *p) 1475 { 1476 if (sig == SIGSEGV) { 1477 unsigned long flags; 1478 spin_lock_irqsave(&p->sighand->siglock, flags); 1479 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1480 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1481 } 1482 force_sig(SIGSEGV, p); 1483 return 0; 1484 } 1485 1486 int force_sig_fault(int sig, int code, void __user *addr 1487 ___ARCH_SI_TRAPNO(int trapno) 1488 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1489 , struct task_struct *t) 1490 { 1491 struct siginfo info; 1492 1493 clear_siginfo(&info); 1494 info.si_signo = sig; 1495 info.si_errno = 0; 1496 info.si_code = code; 1497 info.si_addr = addr; 1498 #ifdef __ARCH_SI_TRAPNO 1499 info.si_trapno = trapno; 1500 #endif 1501 #ifdef __ia64__ 1502 info.si_imm = imm; 1503 info.si_flags = flags; 1504 info.si_isr = isr; 1505 #endif 1506 return force_sig_info(info.si_signo, &info, t); 1507 } 1508 1509 int send_sig_fault(int sig, int code, void __user *addr 1510 ___ARCH_SI_TRAPNO(int trapno) 1511 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1512 , struct task_struct *t) 1513 { 1514 struct siginfo info; 1515 1516 clear_siginfo(&info); 1517 info.si_signo = sig; 1518 info.si_errno = 0; 1519 info.si_code = code; 1520 info.si_addr = addr; 1521 #ifdef __ARCH_SI_TRAPNO 1522 info.si_trapno = trapno; 1523 #endif 1524 #ifdef __ia64__ 1525 info.si_imm = imm; 1526 info.si_flags = flags; 1527 info.si_isr = isr; 1528 #endif 1529 return send_sig_info(info.si_signo, &info, t); 1530 } 1531 1532 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1533 { 1534 struct siginfo info; 1535 1536 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1537 clear_siginfo(&info); 1538 info.si_signo = SIGBUS; 1539 info.si_errno = 0; 1540 info.si_code = code; 1541 info.si_addr = addr; 1542 info.si_addr_lsb = lsb; 1543 return force_sig_info(info.si_signo, &info, t); 1544 } 1545 1546 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1547 { 1548 struct siginfo info; 1549 1550 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1551 clear_siginfo(&info); 1552 info.si_signo = SIGBUS; 1553 info.si_errno = 0; 1554 info.si_code = code; 1555 info.si_addr = addr; 1556 info.si_addr_lsb = lsb; 1557 return send_sig_info(info.si_signo, &info, t); 1558 } 1559 EXPORT_SYMBOL(send_sig_mceerr); 1560 1561 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1562 { 1563 struct siginfo info; 1564 1565 clear_siginfo(&info); 1566 info.si_signo = SIGSEGV; 1567 info.si_errno = 0; 1568 info.si_code = SEGV_BNDERR; 1569 info.si_addr = addr; 1570 info.si_lower = lower; 1571 info.si_upper = upper; 1572 return force_sig_info(info.si_signo, &info, current); 1573 } 1574 1575 #ifdef SEGV_PKUERR 1576 int force_sig_pkuerr(void __user *addr, u32 pkey) 1577 { 1578 struct siginfo info; 1579 1580 clear_siginfo(&info); 1581 info.si_signo = SIGSEGV; 1582 info.si_errno = 0; 1583 info.si_code = SEGV_PKUERR; 1584 info.si_addr = addr; 1585 info.si_pkey = pkey; 1586 return force_sig_info(info.si_signo, &info, current); 1587 } 1588 #endif 1589 1590 /* For the crazy architectures that include trap information in 1591 * the errno field, instead of an actual errno value. 1592 */ 1593 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1594 { 1595 struct siginfo info; 1596 1597 clear_siginfo(&info); 1598 info.si_signo = SIGTRAP; 1599 info.si_errno = errno; 1600 info.si_code = TRAP_HWBKPT; 1601 info.si_addr = addr; 1602 return force_sig_info(info.si_signo, &info, current); 1603 } 1604 1605 int kill_pgrp(struct pid *pid, int sig, int priv) 1606 { 1607 int ret; 1608 1609 read_lock(&tasklist_lock); 1610 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1611 read_unlock(&tasklist_lock); 1612 1613 return ret; 1614 } 1615 EXPORT_SYMBOL(kill_pgrp); 1616 1617 int kill_pid(struct pid *pid, int sig, int priv) 1618 { 1619 return kill_pid_info(sig, __si_special(priv), pid); 1620 } 1621 EXPORT_SYMBOL(kill_pid); 1622 1623 /* 1624 * These functions support sending signals using preallocated sigqueue 1625 * structures. This is needed "because realtime applications cannot 1626 * afford to lose notifications of asynchronous events, like timer 1627 * expirations or I/O completions". In the case of POSIX Timers 1628 * we allocate the sigqueue structure from the timer_create. If this 1629 * allocation fails we are able to report the failure to the application 1630 * with an EAGAIN error. 1631 */ 1632 struct sigqueue *sigqueue_alloc(void) 1633 { 1634 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1635 1636 if (q) 1637 q->flags |= SIGQUEUE_PREALLOC; 1638 1639 return q; 1640 } 1641 1642 void sigqueue_free(struct sigqueue *q) 1643 { 1644 unsigned long flags; 1645 spinlock_t *lock = ¤t->sighand->siglock; 1646 1647 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1648 /* 1649 * We must hold ->siglock while testing q->list 1650 * to serialize with collect_signal() or with 1651 * __exit_signal()->flush_sigqueue(). 1652 */ 1653 spin_lock_irqsave(lock, flags); 1654 q->flags &= ~SIGQUEUE_PREALLOC; 1655 /* 1656 * If it is queued it will be freed when dequeued, 1657 * like the "regular" sigqueue. 1658 */ 1659 if (!list_empty(&q->list)) 1660 q = NULL; 1661 spin_unlock_irqrestore(lock, flags); 1662 1663 if (q) 1664 __sigqueue_free(q); 1665 } 1666 1667 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1668 { 1669 int sig = q->info.si_signo; 1670 struct sigpending *pending; 1671 unsigned long flags; 1672 int ret, result; 1673 1674 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1675 1676 ret = -1; 1677 if (!likely(lock_task_sighand(t, &flags))) 1678 goto ret; 1679 1680 ret = 1; /* the signal is ignored */ 1681 result = TRACE_SIGNAL_IGNORED; 1682 if (!prepare_signal(sig, t, false)) 1683 goto out; 1684 1685 ret = 0; 1686 if (unlikely(!list_empty(&q->list))) { 1687 /* 1688 * If an SI_TIMER entry is already queue just increment 1689 * the overrun count. 1690 */ 1691 BUG_ON(q->info.si_code != SI_TIMER); 1692 q->info.si_overrun++; 1693 result = TRACE_SIGNAL_ALREADY_PENDING; 1694 goto out; 1695 } 1696 q->info.si_overrun = 0; 1697 1698 signalfd_notify(t, sig); 1699 pending = group ? &t->signal->shared_pending : &t->pending; 1700 list_add_tail(&q->list, &pending->list); 1701 sigaddset(&pending->signal, sig); 1702 complete_signal(sig, t, group); 1703 result = TRACE_SIGNAL_DELIVERED; 1704 out: 1705 trace_signal_generate(sig, &q->info, t, group, result); 1706 unlock_task_sighand(t, &flags); 1707 ret: 1708 return ret; 1709 } 1710 1711 /* 1712 * Let a parent know about the death of a child. 1713 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1714 * 1715 * Returns true if our parent ignored us and so we've switched to 1716 * self-reaping. 1717 */ 1718 bool do_notify_parent(struct task_struct *tsk, int sig) 1719 { 1720 struct siginfo info; 1721 unsigned long flags; 1722 struct sighand_struct *psig; 1723 bool autoreap = false; 1724 u64 utime, stime; 1725 1726 BUG_ON(sig == -1); 1727 1728 /* do_notify_parent_cldstop should have been called instead. */ 1729 BUG_ON(task_is_stopped_or_traced(tsk)); 1730 1731 BUG_ON(!tsk->ptrace && 1732 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1733 1734 if (sig != SIGCHLD) { 1735 /* 1736 * This is only possible if parent == real_parent. 1737 * Check if it has changed security domain. 1738 */ 1739 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1740 sig = SIGCHLD; 1741 } 1742 1743 clear_siginfo(&info); 1744 info.si_signo = sig; 1745 info.si_errno = 0; 1746 /* 1747 * We are under tasklist_lock here so our parent is tied to 1748 * us and cannot change. 1749 * 1750 * task_active_pid_ns will always return the same pid namespace 1751 * until a task passes through release_task. 1752 * 1753 * write_lock() currently calls preempt_disable() which is the 1754 * same as rcu_read_lock(), but according to Oleg, this is not 1755 * correct to rely on this 1756 */ 1757 rcu_read_lock(); 1758 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1759 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1760 task_uid(tsk)); 1761 rcu_read_unlock(); 1762 1763 task_cputime(tsk, &utime, &stime); 1764 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1765 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1766 1767 info.si_status = tsk->exit_code & 0x7f; 1768 if (tsk->exit_code & 0x80) 1769 info.si_code = CLD_DUMPED; 1770 else if (tsk->exit_code & 0x7f) 1771 info.si_code = CLD_KILLED; 1772 else { 1773 info.si_code = CLD_EXITED; 1774 info.si_status = tsk->exit_code >> 8; 1775 } 1776 1777 psig = tsk->parent->sighand; 1778 spin_lock_irqsave(&psig->siglock, flags); 1779 if (!tsk->ptrace && sig == SIGCHLD && 1780 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1781 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1782 /* 1783 * We are exiting and our parent doesn't care. POSIX.1 1784 * defines special semantics for setting SIGCHLD to SIG_IGN 1785 * or setting the SA_NOCLDWAIT flag: we should be reaped 1786 * automatically and not left for our parent's wait4 call. 1787 * Rather than having the parent do it as a magic kind of 1788 * signal handler, we just set this to tell do_exit that we 1789 * can be cleaned up without becoming a zombie. Note that 1790 * we still call __wake_up_parent in this case, because a 1791 * blocked sys_wait4 might now return -ECHILD. 1792 * 1793 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1794 * is implementation-defined: we do (if you don't want 1795 * it, just use SIG_IGN instead). 1796 */ 1797 autoreap = true; 1798 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1799 sig = 0; 1800 } 1801 if (valid_signal(sig) && sig) 1802 __group_send_sig_info(sig, &info, tsk->parent); 1803 __wake_up_parent(tsk, tsk->parent); 1804 spin_unlock_irqrestore(&psig->siglock, flags); 1805 1806 return autoreap; 1807 } 1808 1809 /** 1810 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1811 * @tsk: task reporting the state change 1812 * @for_ptracer: the notification is for ptracer 1813 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1814 * 1815 * Notify @tsk's parent that the stopped/continued state has changed. If 1816 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1817 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1818 * 1819 * CONTEXT: 1820 * Must be called with tasklist_lock at least read locked. 1821 */ 1822 static void do_notify_parent_cldstop(struct task_struct *tsk, 1823 bool for_ptracer, int why) 1824 { 1825 struct siginfo info; 1826 unsigned long flags; 1827 struct task_struct *parent; 1828 struct sighand_struct *sighand; 1829 u64 utime, stime; 1830 1831 if (for_ptracer) { 1832 parent = tsk->parent; 1833 } else { 1834 tsk = tsk->group_leader; 1835 parent = tsk->real_parent; 1836 } 1837 1838 clear_siginfo(&info); 1839 info.si_signo = SIGCHLD; 1840 info.si_errno = 0; 1841 /* 1842 * see comment in do_notify_parent() about the following 4 lines 1843 */ 1844 rcu_read_lock(); 1845 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1846 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1847 rcu_read_unlock(); 1848 1849 task_cputime(tsk, &utime, &stime); 1850 info.si_utime = nsec_to_clock_t(utime); 1851 info.si_stime = nsec_to_clock_t(stime); 1852 1853 info.si_code = why; 1854 switch (why) { 1855 case CLD_CONTINUED: 1856 info.si_status = SIGCONT; 1857 break; 1858 case CLD_STOPPED: 1859 info.si_status = tsk->signal->group_exit_code & 0x7f; 1860 break; 1861 case CLD_TRAPPED: 1862 info.si_status = tsk->exit_code & 0x7f; 1863 break; 1864 default: 1865 BUG(); 1866 } 1867 1868 sighand = parent->sighand; 1869 spin_lock_irqsave(&sighand->siglock, flags); 1870 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1871 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1872 __group_send_sig_info(SIGCHLD, &info, parent); 1873 /* 1874 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1875 */ 1876 __wake_up_parent(tsk, parent); 1877 spin_unlock_irqrestore(&sighand->siglock, flags); 1878 } 1879 1880 static inline int may_ptrace_stop(void) 1881 { 1882 if (!likely(current->ptrace)) 1883 return 0; 1884 /* 1885 * Are we in the middle of do_coredump? 1886 * If so and our tracer is also part of the coredump stopping 1887 * is a deadlock situation, and pointless because our tracer 1888 * is dead so don't allow us to stop. 1889 * If SIGKILL was already sent before the caller unlocked 1890 * ->siglock we must see ->core_state != NULL. Otherwise it 1891 * is safe to enter schedule(). 1892 * 1893 * This is almost outdated, a task with the pending SIGKILL can't 1894 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1895 * after SIGKILL was already dequeued. 1896 */ 1897 if (unlikely(current->mm->core_state) && 1898 unlikely(current->mm == current->parent->mm)) 1899 return 0; 1900 1901 return 1; 1902 } 1903 1904 /* 1905 * Return non-zero if there is a SIGKILL that should be waking us up. 1906 * Called with the siglock held. 1907 */ 1908 static int sigkill_pending(struct task_struct *tsk) 1909 { 1910 return sigismember(&tsk->pending.signal, SIGKILL) || 1911 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1912 } 1913 1914 /* 1915 * This must be called with current->sighand->siglock held. 1916 * 1917 * This should be the path for all ptrace stops. 1918 * We always set current->last_siginfo while stopped here. 1919 * That makes it a way to test a stopped process for 1920 * being ptrace-stopped vs being job-control-stopped. 1921 * 1922 * If we actually decide not to stop at all because the tracer 1923 * is gone, we keep current->exit_code unless clear_code. 1924 */ 1925 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1926 __releases(¤t->sighand->siglock) 1927 __acquires(¤t->sighand->siglock) 1928 { 1929 bool gstop_done = false; 1930 1931 if (arch_ptrace_stop_needed(exit_code, info)) { 1932 /* 1933 * The arch code has something special to do before a 1934 * ptrace stop. This is allowed to block, e.g. for faults 1935 * on user stack pages. We can't keep the siglock while 1936 * calling arch_ptrace_stop, so we must release it now. 1937 * To preserve proper semantics, we must do this before 1938 * any signal bookkeeping like checking group_stop_count. 1939 * Meanwhile, a SIGKILL could come in before we retake the 1940 * siglock. That must prevent us from sleeping in TASK_TRACED. 1941 * So after regaining the lock, we must check for SIGKILL. 1942 */ 1943 spin_unlock_irq(¤t->sighand->siglock); 1944 arch_ptrace_stop(exit_code, info); 1945 spin_lock_irq(¤t->sighand->siglock); 1946 if (sigkill_pending(current)) 1947 return; 1948 } 1949 1950 set_special_state(TASK_TRACED); 1951 1952 /* 1953 * We're committing to trapping. TRACED should be visible before 1954 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1955 * Also, transition to TRACED and updates to ->jobctl should be 1956 * atomic with respect to siglock and should be done after the arch 1957 * hook as siglock is released and regrabbed across it. 1958 * 1959 * TRACER TRACEE 1960 * 1961 * ptrace_attach() 1962 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 1963 * do_wait() 1964 * set_current_state() smp_wmb(); 1965 * ptrace_do_wait() 1966 * wait_task_stopped() 1967 * task_stopped_code() 1968 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 1969 */ 1970 smp_wmb(); 1971 1972 current->last_siginfo = info; 1973 current->exit_code = exit_code; 1974 1975 /* 1976 * If @why is CLD_STOPPED, we're trapping to participate in a group 1977 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1978 * across siglock relocks since INTERRUPT was scheduled, PENDING 1979 * could be clear now. We act as if SIGCONT is received after 1980 * TASK_TRACED is entered - ignore it. 1981 */ 1982 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1983 gstop_done = task_participate_group_stop(current); 1984 1985 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1986 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1987 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1988 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1989 1990 /* entering a trap, clear TRAPPING */ 1991 task_clear_jobctl_trapping(current); 1992 1993 spin_unlock_irq(¤t->sighand->siglock); 1994 read_lock(&tasklist_lock); 1995 if (may_ptrace_stop()) { 1996 /* 1997 * Notify parents of the stop. 1998 * 1999 * While ptraced, there are two parents - the ptracer and 2000 * the real_parent of the group_leader. The ptracer should 2001 * know about every stop while the real parent is only 2002 * interested in the completion of group stop. The states 2003 * for the two don't interact with each other. Notify 2004 * separately unless they're gonna be duplicates. 2005 */ 2006 do_notify_parent_cldstop(current, true, why); 2007 if (gstop_done && ptrace_reparented(current)) 2008 do_notify_parent_cldstop(current, false, why); 2009 2010 /* 2011 * Don't want to allow preemption here, because 2012 * sys_ptrace() needs this task to be inactive. 2013 * 2014 * XXX: implement read_unlock_no_resched(). 2015 */ 2016 preempt_disable(); 2017 read_unlock(&tasklist_lock); 2018 preempt_enable_no_resched(); 2019 freezable_schedule(); 2020 } else { 2021 /* 2022 * By the time we got the lock, our tracer went away. 2023 * Don't drop the lock yet, another tracer may come. 2024 * 2025 * If @gstop_done, the ptracer went away between group stop 2026 * completion and here. During detach, it would have set 2027 * JOBCTL_STOP_PENDING on us and we'll re-enter 2028 * TASK_STOPPED in do_signal_stop() on return, so notifying 2029 * the real parent of the group stop completion is enough. 2030 */ 2031 if (gstop_done) 2032 do_notify_parent_cldstop(current, false, why); 2033 2034 /* tasklist protects us from ptrace_freeze_traced() */ 2035 __set_current_state(TASK_RUNNING); 2036 if (clear_code) 2037 current->exit_code = 0; 2038 read_unlock(&tasklist_lock); 2039 } 2040 2041 /* 2042 * We are back. Now reacquire the siglock before touching 2043 * last_siginfo, so that we are sure to have synchronized with 2044 * any signal-sending on another CPU that wants to examine it. 2045 */ 2046 spin_lock_irq(¤t->sighand->siglock); 2047 current->last_siginfo = NULL; 2048 2049 /* LISTENING can be set only during STOP traps, clear it */ 2050 current->jobctl &= ~JOBCTL_LISTENING; 2051 2052 /* 2053 * Queued signals ignored us while we were stopped for tracing. 2054 * So check for any that we should take before resuming user mode. 2055 * This sets TIF_SIGPENDING, but never clears it. 2056 */ 2057 recalc_sigpending_tsk(current); 2058 } 2059 2060 static void ptrace_do_notify(int signr, int exit_code, int why) 2061 { 2062 siginfo_t info; 2063 2064 clear_siginfo(&info); 2065 info.si_signo = signr; 2066 info.si_code = exit_code; 2067 info.si_pid = task_pid_vnr(current); 2068 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2069 2070 /* Let the debugger run. */ 2071 ptrace_stop(exit_code, why, 1, &info); 2072 } 2073 2074 void ptrace_notify(int exit_code) 2075 { 2076 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2077 if (unlikely(current->task_works)) 2078 task_work_run(); 2079 2080 spin_lock_irq(¤t->sighand->siglock); 2081 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2082 spin_unlock_irq(¤t->sighand->siglock); 2083 } 2084 2085 /** 2086 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2087 * @signr: signr causing group stop if initiating 2088 * 2089 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2090 * and participate in it. If already set, participate in the existing 2091 * group stop. If participated in a group stop (and thus slept), %true is 2092 * returned with siglock released. 2093 * 2094 * If ptraced, this function doesn't handle stop itself. Instead, 2095 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2096 * untouched. The caller must ensure that INTERRUPT trap handling takes 2097 * places afterwards. 2098 * 2099 * CONTEXT: 2100 * Must be called with @current->sighand->siglock held, which is released 2101 * on %true return. 2102 * 2103 * RETURNS: 2104 * %false if group stop is already cancelled or ptrace trap is scheduled. 2105 * %true if participated in group stop. 2106 */ 2107 static bool do_signal_stop(int signr) 2108 __releases(¤t->sighand->siglock) 2109 { 2110 struct signal_struct *sig = current->signal; 2111 2112 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2113 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2114 struct task_struct *t; 2115 2116 /* signr will be recorded in task->jobctl for retries */ 2117 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2118 2119 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2120 unlikely(signal_group_exit(sig))) 2121 return false; 2122 /* 2123 * There is no group stop already in progress. We must 2124 * initiate one now. 2125 * 2126 * While ptraced, a task may be resumed while group stop is 2127 * still in effect and then receive a stop signal and 2128 * initiate another group stop. This deviates from the 2129 * usual behavior as two consecutive stop signals can't 2130 * cause two group stops when !ptraced. That is why we 2131 * also check !task_is_stopped(t) below. 2132 * 2133 * The condition can be distinguished by testing whether 2134 * SIGNAL_STOP_STOPPED is already set. Don't generate 2135 * group_exit_code in such case. 2136 * 2137 * This is not necessary for SIGNAL_STOP_CONTINUED because 2138 * an intervening stop signal is required to cause two 2139 * continued events regardless of ptrace. 2140 */ 2141 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2142 sig->group_exit_code = signr; 2143 2144 sig->group_stop_count = 0; 2145 2146 if (task_set_jobctl_pending(current, signr | gstop)) 2147 sig->group_stop_count++; 2148 2149 t = current; 2150 while_each_thread(current, t) { 2151 /* 2152 * Setting state to TASK_STOPPED for a group 2153 * stop is always done with the siglock held, 2154 * so this check has no races. 2155 */ 2156 if (!task_is_stopped(t) && 2157 task_set_jobctl_pending(t, signr | gstop)) { 2158 sig->group_stop_count++; 2159 if (likely(!(t->ptrace & PT_SEIZED))) 2160 signal_wake_up(t, 0); 2161 else 2162 ptrace_trap_notify(t); 2163 } 2164 } 2165 } 2166 2167 if (likely(!current->ptrace)) { 2168 int notify = 0; 2169 2170 /* 2171 * If there are no other threads in the group, or if there 2172 * is a group stop in progress and we are the last to stop, 2173 * report to the parent. 2174 */ 2175 if (task_participate_group_stop(current)) 2176 notify = CLD_STOPPED; 2177 2178 set_special_state(TASK_STOPPED); 2179 spin_unlock_irq(¤t->sighand->siglock); 2180 2181 /* 2182 * Notify the parent of the group stop completion. Because 2183 * we're not holding either the siglock or tasklist_lock 2184 * here, ptracer may attach inbetween; however, this is for 2185 * group stop and should always be delivered to the real 2186 * parent of the group leader. The new ptracer will get 2187 * its notification when this task transitions into 2188 * TASK_TRACED. 2189 */ 2190 if (notify) { 2191 read_lock(&tasklist_lock); 2192 do_notify_parent_cldstop(current, false, notify); 2193 read_unlock(&tasklist_lock); 2194 } 2195 2196 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2197 freezable_schedule(); 2198 return true; 2199 } else { 2200 /* 2201 * While ptraced, group stop is handled by STOP trap. 2202 * Schedule it and let the caller deal with it. 2203 */ 2204 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2205 return false; 2206 } 2207 } 2208 2209 /** 2210 * do_jobctl_trap - take care of ptrace jobctl traps 2211 * 2212 * When PT_SEIZED, it's used for both group stop and explicit 2213 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2214 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2215 * the stop signal; otherwise, %SIGTRAP. 2216 * 2217 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2218 * number as exit_code and no siginfo. 2219 * 2220 * CONTEXT: 2221 * Must be called with @current->sighand->siglock held, which may be 2222 * released and re-acquired before returning with intervening sleep. 2223 */ 2224 static void do_jobctl_trap(void) 2225 { 2226 struct signal_struct *signal = current->signal; 2227 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2228 2229 if (current->ptrace & PT_SEIZED) { 2230 if (!signal->group_stop_count && 2231 !(signal->flags & SIGNAL_STOP_STOPPED)) 2232 signr = SIGTRAP; 2233 WARN_ON_ONCE(!signr); 2234 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2235 CLD_STOPPED); 2236 } else { 2237 WARN_ON_ONCE(!signr); 2238 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2239 current->exit_code = 0; 2240 } 2241 } 2242 2243 static int ptrace_signal(int signr, siginfo_t *info) 2244 { 2245 /* 2246 * We do not check sig_kernel_stop(signr) but set this marker 2247 * unconditionally because we do not know whether debugger will 2248 * change signr. This flag has no meaning unless we are going 2249 * to stop after return from ptrace_stop(). In this case it will 2250 * be checked in do_signal_stop(), we should only stop if it was 2251 * not cleared by SIGCONT while we were sleeping. See also the 2252 * comment in dequeue_signal(). 2253 */ 2254 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2255 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2256 2257 /* We're back. Did the debugger cancel the sig? */ 2258 signr = current->exit_code; 2259 if (signr == 0) 2260 return signr; 2261 2262 current->exit_code = 0; 2263 2264 /* 2265 * Update the siginfo structure if the signal has 2266 * changed. If the debugger wanted something 2267 * specific in the siginfo structure then it should 2268 * have updated *info via PTRACE_SETSIGINFO. 2269 */ 2270 if (signr != info->si_signo) { 2271 clear_siginfo(info); 2272 info->si_signo = signr; 2273 info->si_errno = 0; 2274 info->si_code = SI_USER; 2275 rcu_read_lock(); 2276 info->si_pid = task_pid_vnr(current->parent); 2277 info->si_uid = from_kuid_munged(current_user_ns(), 2278 task_uid(current->parent)); 2279 rcu_read_unlock(); 2280 } 2281 2282 /* If the (new) signal is now blocked, requeue it. */ 2283 if (sigismember(¤t->blocked, signr)) { 2284 specific_send_sig_info(signr, info, current); 2285 signr = 0; 2286 } 2287 2288 return signr; 2289 } 2290 2291 int get_signal(struct ksignal *ksig) 2292 { 2293 struct sighand_struct *sighand = current->sighand; 2294 struct signal_struct *signal = current->signal; 2295 int signr; 2296 2297 if (unlikely(current->task_works)) 2298 task_work_run(); 2299 2300 if (unlikely(uprobe_deny_signal())) 2301 return 0; 2302 2303 /* 2304 * Do this once, we can't return to user-mode if freezing() == T. 2305 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2306 * thus do not need another check after return. 2307 */ 2308 try_to_freeze(); 2309 2310 relock: 2311 spin_lock_irq(&sighand->siglock); 2312 /* 2313 * Every stopped thread goes here after wakeup. Check to see if 2314 * we should notify the parent, prepare_signal(SIGCONT) encodes 2315 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2316 */ 2317 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2318 int why; 2319 2320 if (signal->flags & SIGNAL_CLD_CONTINUED) 2321 why = CLD_CONTINUED; 2322 else 2323 why = CLD_STOPPED; 2324 2325 signal->flags &= ~SIGNAL_CLD_MASK; 2326 2327 spin_unlock_irq(&sighand->siglock); 2328 2329 /* 2330 * Notify the parent that we're continuing. This event is 2331 * always per-process and doesn't make whole lot of sense 2332 * for ptracers, who shouldn't consume the state via 2333 * wait(2) either, but, for backward compatibility, notify 2334 * the ptracer of the group leader too unless it's gonna be 2335 * a duplicate. 2336 */ 2337 read_lock(&tasklist_lock); 2338 do_notify_parent_cldstop(current, false, why); 2339 2340 if (ptrace_reparented(current->group_leader)) 2341 do_notify_parent_cldstop(current->group_leader, 2342 true, why); 2343 read_unlock(&tasklist_lock); 2344 2345 goto relock; 2346 } 2347 2348 for (;;) { 2349 struct k_sigaction *ka; 2350 2351 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2352 do_signal_stop(0)) 2353 goto relock; 2354 2355 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2356 do_jobctl_trap(); 2357 spin_unlock_irq(&sighand->siglock); 2358 goto relock; 2359 } 2360 2361 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2362 2363 if (!signr) 2364 break; /* will return 0 */ 2365 2366 if (unlikely(current->ptrace) && signr != SIGKILL) { 2367 signr = ptrace_signal(signr, &ksig->info); 2368 if (!signr) 2369 continue; 2370 } 2371 2372 ka = &sighand->action[signr-1]; 2373 2374 /* Trace actually delivered signals. */ 2375 trace_signal_deliver(signr, &ksig->info, ka); 2376 2377 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2378 continue; 2379 if (ka->sa.sa_handler != SIG_DFL) { 2380 /* Run the handler. */ 2381 ksig->ka = *ka; 2382 2383 if (ka->sa.sa_flags & SA_ONESHOT) 2384 ka->sa.sa_handler = SIG_DFL; 2385 2386 break; /* will return non-zero "signr" value */ 2387 } 2388 2389 /* 2390 * Now we are doing the default action for this signal. 2391 */ 2392 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2393 continue; 2394 2395 /* 2396 * Global init gets no signals it doesn't want. 2397 * Container-init gets no signals it doesn't want from same 2398 * container. 2399 * 2400 * Note that if global/container-init sees a sig_kernel_only() 2401 * signal here, the signal must have been generated internally 2402 * or must have come from an ancestor namespace. In either 2403 * case, the signal cannot be dropped. 2404 */ 2405 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2406 !sig_kernel_only(signr)) 2407 continue; 2408 2409 if (sig_kernel_stop(signr)) { 2410 /* 2411 * The default action is to stop all threads in 2412 * the thread group. The job control signals 2413 * do nothing in an orphaned pgrp, but SIGSTOP 2414 * always works. Note that siglock needs to be 2415 * dropped during the call to is_orphaned_pgrp() 2416 * because of lock ordering with tasklist_lock. 2417 * This allows an intervening SIGCONT to be posted. 2418 * We need to check for that and bail out if necessary. 2419 */ 2420 if (signr != SIGSTOP) { 2421 spin_unlock_irq(&sighand->siglock); 2422 2423 /* signals can be posted during this window */ 2424 2425 if (is_current_pgrp_orphaned()) 2426 goto relock; 2427 2428 spin_lock_irq(&sighand->siglock); 2429 } 2430 2431 if (likely(do_signal_stop(ksig->info.si_signo))) { 2432 /* It released the siglock. */ 2433 goto relock; 2434 } 2435 2436 /* 2437 * We didn't actually stop, due to a race 2438 * with SIGCONT or something like that. 2439 */ 2440 continue; 2441 } 2442 2443 spin_unlock_irq(&sighand->siglock); 2444 2445 /* 2446 * Anything else is fatal, maybe with a core dump. 2447 */ 2448 current->flags |= PF_SIGNALED; 2449 2450 if (sig_kernel_coredump(signr)) { 2451 if (print_fatal_signals) 2452 print_fatal_signal(ksig->info.si_signo); 2453 proc_coredump_connector(current); 2454 /* 2455 * If it was able to dump core, this kills all 2456 * other threads in the group and synchronizes with 2457 * their demise. If we lost the race with another 2458 * thread getting here, it set group_exit_code 2459 * first and our do_group_exit call below will use 2460 * that value and ignore the one we pass it. 2461 */ 2462 do_coredump(&ksig->info); 2463 } 2464 2465 /* 2466 * Death signals, no core dump. 2467 */ 2468 do_group_exit(ksig->info.si_signo); 2469 /* NOTREACHED */ 2470 } 2471 spin_unlock_irq(&sighand->siglock); 2472 2473 ksig->sig = signr; 2474 return ksig->sig > 0; 2475 } 2476 2477 /** 2478 * signal_delivered - 2479 * @ksig: kernel signal struct 2480 * @stepping: nonzero if debugger single-step or block-step in use 2481 * 2482 * This function should be called when a signal has successfully been 2483 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2484 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2485 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2486 */ 2487 static void signal_delivered(struct ksignal *ksig, int stepping) 2488 { 2489 sigset_t blocked; 2490 2491 /* A signal was successfully delivered, and the 2492 saved sigmask was stored on the signal frame, 2493 and will be restored by sigreturn. So we can 2494 simply clear the restore sigmask flag. */ 2495 clear_restore_sigmask(); 2496 2497 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2498 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2499 sigaddset(&blocked, ksig->sig); 2500 set_current_blocked(&blocked); 2501 tracehook_signal_handler(stepping); 2502 } 2503 2504 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2505 { 2506 if (failed) 2507 force_sigsegv(ksig->sig, current); 2508 else 2509 signal_delivered(ksig, stepping); 2510 } 2511 2512 /* 2513 * It could be that complete_signal() picked us to notify about the 2514 * group-wide signal. Other threads should be notified now to take 2515 * the shared signals in @which since we will not. 2516 */ 2517 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2518 { 2519 sigset_t retarget; 2520 struct task_struct *t; 2521 2522 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2523 if (sigisemptyset(&retarget)) 2524 return; 2525 2526 t = tsk; 2527 while_each_thread(tsk, t) { 2528 if (t->flags & PF_EXITING) 2529 continue; 2530 2531 if (!has_pending_signals(&retarget, &t->blocked)) 2532 continue; 2533 /* Remove the signals this thread can handle. */ 2534 sigandsets(&retarget, &retarget, &t->blocked); 2535 2536 if (!signal_pending(t)) 2537 signal_wake_up(t, 0); 2538 2539 if (sigisemptyset(&retarget)) 2540 break; 2541 } 2542 } 2543 2544 void exit_signals(struct task_struct *tsk) 2545 { 2546 int group_stop = 0; 2547 sigset_t unblocked; 2548 2549 /* 2550 * @tsk is about to have PF_EXITING set - lock out users which 2551 * expect stable threadgroup. 2552 */ 2553 cgroup_threadgroup_change_begin(tsk); 2554 2555 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2556 tsk->flags |= PF_EXITING; 2557 cgroup_threadgroup_change_end(tsk); 2558 return; 2559 } 2560 2561 spin_lock_irq(&tsk->sighand->siglock); 2562 /* 2563 * From now this task is not visible for group-wide signals, 2564 * see wants_signal(), do_signal_stop(). 2565 */ 2566 tsk->flags |= PF_EXITING; 2567 2568 cgroup_threadgroup_change_end(tsk); 2569 2570 if (!signal_pending(tsk)) 2571 goto out; 2572 2573 unblocked = tsk->blocked; 2574 signotset(&unblocked); 2575 retarget_shared_pending(tsk, &unblocked); 2576 2577 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2578 task_participate_group_stop(tsk)) 2579 group_stop = CLD_STOPPED; 2580 out: 2581 spin_unlock_irq(&tsk->sighand->siglock); 2582 2583 /* 2584 * If group stop has completed, deliver the notification. This 2585 * should always go to the real parent of the group leader. 2586 */ 2587 if (unlikely(group_stop)) { 2588 read_lock(&tasklist_lock); 2589 do_notify_parent_cldstop(tsk, false, group_stop); 2590 read_unlock(&tasklist_lock); 2591 } 2592 } 2593 2594 EXPORT_SYMBOL(recalc_sigpending); 2595 EXPORT_SYMBOL_GPL(dequeue_signal); 2596 EXPORT_SYMBOL(flush_signals); 2597 EXPORT_SYMBOL(force_sig); 2598 EXPORT_SYMBOL(send_sig); 2599 EXPORT_SYMBOL(send_sig_info); 2600 EXPORT_SYMBOL(sigprocmask); 2601 2602 /* 2603 * System call entry points. 2604 */ 2605 2606 /** 2607 * sys_restart_syscall - restart a system call 2608 */ 2609 SYSCALL_DEFINE0(restart_syscall) 2610 { 2611 struct restart_block *restart = ¤t->restart_block; 2612 return restart->fn(restart); 2613 } 2614 2615 long do_no_restart_syscall(struct restart_block *param) 2616 { 2617 return -EINTR; 2618 } 2619 2620 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2621 { 2622 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2623 sigset_t newblocked; 2624 /* A set of now blocked but previously unblocked signals. */ 2625 sigandnsets(&newblocked, newset, ¤t->blocked); 2626 retarget_shared_pending(tsk, &newblocked); 2627 } 2628 tsk->blocked = *newset; 2629 recalc_sigpending(); 2630 } 2631 2632 /** 2633 * set_current_blocked - change current->blocked mask 2634 * @newset: new mask 2635 * 2636 * It is wrong to change ->blocked directly, this helper should be used 2637 * to ensure the process can't miss a shared signal we are going to block. 2638 */ 2639 void set_current_blocked(sigset_t *newset) 2640 { 2641 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2642 __set_current_blocked(newset); 2643 } 2644 2645 void __set_current_blocked(const sigset_t *newset) 2646 { 2647 struct task_struct *tsk = current; 2648 2649 /* 2650 * In case the signal mask hasn't changed, there is nothing we need 2651 * to do. The current->blocked shouldn't be modified by other task. 2652 */ 2653 if (sigequalsets(&tsk->blocked, newset)) 2654 return; 2655 2656 spin_lock_irq(&tsk->sighand->siglock); 2657 __set_task_blocked(tsk, newset); 2658 spin_unlock_irq(&tsk->sighand->siglock); 2659 } 2660 2661 /* 2662 * This is also useful for kernel threads that want to temporarily 2663 * (or permanently) block certain signals. 2664 * 2665 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2666 * interface happily blocks "unblockable" signals like SIGKILL 2667 * and friends. 2668 */ 2669 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2670 { 2671 struct task_struct *tsk = current; 2672 sigset_t newset; 2673 2674 /* Lockless, only current can change ->blocked, never from irq */ 2675 if (oldset) 2676 *oldset = tsk->blocked; 2677 2678 switch (how) { 2679 case SIG_BLOCK: 2680 sigorsets(&newset, &tsk->blocked, set); 2681 break; 2682 case SIG_UNBLOCK: 2683 sigandnsets(&newset, &tsk->blocked, set); 2684 break; 2685 case SIG_SETMASK: 2686 newset = *set; 2687 break; 2688 default: 2689 return -EINVAL; 2690 } 2691 2692 __set_current_blocked(&newset); 2693 return 0; 2694 } 2695 2696 /** 2697 * sys_rt_sigprocmask - change the list of currently blocked signals 2698 * @how: whether to add, remove, or set signals 2699 * @nset: stores pending signals 2700 * @oset: previous value of signal mask if non-null 2701 * @sigsetsize: size of sigset_t type 2702 */ 2703 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2704 sigset_t __user *, oset, size_t, sigsetsize) 2705 { 2706 sigset_t old_set, new_set; 2707 int error; 2708 2709 /* XXX: Don't preclude handling different sized sigset_t's. */ 2710 if (sigsetsize != sizeof(sigset_t)) 2711 return -EINVAL; 2712 2713 old_set = current->blocked; 2714 2715 if (nset) { 2716 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2717 return -EFAULT; 2718 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2719 2720 error = sigprocmask(how, &new_set, NULL); 2721 if (error) 2722 return error; 2723 } 2724 2725 if (oset) { 2726 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2727 return -EFAULT; 2728 } 2729 2730 return 0; 2731 } 2732 2733 #ifdef CONFIG_COMPAT 2734 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2735 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2736 { 2737 sigset_t old_set = current->blocked; 2738 2739 /* XXX: Don't preclude handling different sized sigset_t's. */ 2740 if (sigsetsize != sizeof(sigset_t)) 2741 return -EINVAL; 2742 2743 if (nset) { 2744 sigset_t new_set; 2745 int error; 2746 if (get_compat_sigset(&new_set, nset)) 2747 return -EFAULT; 2748 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2749 2750 error = sigprocmask(how, &new_set, NULL); 2751 if (error) 2752 return error; 2753 } 2754 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 2755 } 2756 #endif 2757 2758 static int do_sigpending(sigset_t *set) 2759 { 2760 spin_lock_irq(¤t->sighand->siglock); 2761 sigorsets(set, ¤t->pending.signal, 2762 ¤t->signal->shared_pending.signal); 2763 spin_unlock_irq(¤t->sighand->siglock); 2764 2765 /* Outside the lock because only this thread touches it. */ 2766 sigandsets(set, ¤t->blocked, set); 2767 return 0; 2768 } 2769 2770 /** 2771 * sys_rt_sigpending - examine a pending signal that has been raised 2772 * while blocked 2773 * @uset: stores pending signals 2774 * @sigsetsize: size of sigset_t type or larger 2775 */ 2776 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2777 { 2778 sigset_t set; 2779 int err; 2780 2781 if (sigsetsize > sizeof(*uset)) 2782 return -EINVAL; 2783 2784 err = do_sigpending(&set); 2785 if (!err && copy_to_user(uset, &set, sigsetsize)) 2786 err = -EFAULT; 2787 return err; 2788 } 2789 2790 #ifdef CONFIG_COMPAT 2791 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2792 compat_size_t, sigsetsize) 2793 { 2794 sigset_t set; 2795 int err; 2796 2797 if (sigsetsize > sizeof(*uset)) 2798 return -EINVAL; 2799 2800 err = do_sigpending(&set); 2801 if (!err) 2802 err = put_compat_sigset(uset, &set, sigsetsize); 2803 return err; 2804 } 2805 #endif 2806 2807 enum siginfo_layout siginfo_layout(int sig, int si_code) 2808 { 2809 enum siginfo_layout layout = SIL_KILL; 2810 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 2811 static const struct { 2812 unsigned char limit, layout; 2813 } filter[] = { 2814 [SIGILL] = { NSIGILL, SIL_FAULT }, 2815 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 2816 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 2817 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 2818 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 2819 #if defined(SIGEMT) && defined(NSIGEMT) 2820 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 2821 #endif 2822 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 2823 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 2824 [SIGSYS] = { NSIGSYS, SIL_SYS }, 2825 }; 2826 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) { 2827 layout = filter[sig].layout; 2828 /* Handle the exceptions */ 2829 if ((sig == SIGBUS) && 2830 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 2831 layout = SIL_FAULT_MCEERR; 2832 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 2833 layout = SIL_FAULT_BNDERR; 2834 #ifdef SEGV_PKUERR 2835 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 2836 layout = SIL_FAULT_PKUERR; 2837 #endif 2838 } 2839 else if (si_code <= NSIGPOLL) 2840 layout = SIL_POLL; 2841 } else { 2842 if (si_code == SI_TIMER) 2843 layout = SIL_TIMER; 2844 else if (si_code == SI_SIGIO) 2845 layout = SIL_POLL; 2846 else if (si_code < 0) 2847 layout = SIL_RT; 2848 } 2849 return layout; 2850 } 2851 2852 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2853 { 2854 if (copy_to_user(to, from , sizeof(struct siginfo))) 2855 return -EFAULT; 2856 return 0; 2857 } 2858 2859 #ifdef CONFIG_COMPAT 2860 int copy_siginfo_to_user32(struct compat_siginfo __user *to, 2861 const struct siginfo *from) 2862 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) 2863 { 2864 return __copy_siginfo_to_user32(to, from, in_x32_syscall()); 2865 } 2866 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 2867 const struct siginfo *from, bool x32_ABI) 2868 #endif 2869 { 2870 struct compat_siginfo new; 2871 memset(&new, 0, sizeof(new)); 2872 2873 new.si_signo = from->si_signo; 2874 new.si_errno = from->si_errno; 2875 new.si_code = from->si_code; 2876 switch(siginfo_layout(from->si_signo, from->si_code)) { 2877 case SIL_KILL: 2878 new.si_pid = from->si_pid; 2879 new.si_uid = from->si_uid; 2880 break; 2881 case SIL_TIMER: 2882 new.si_tid = from->si_tid; 2883 new.si_overrun = from->si_overrun; 2884 new.si_int = from->si_int; 2885 break; 2886 case SIL_POLL: 2887 new.si_band = from->si_band; 2888 new.si_fd = from->si_fd; 2889 break; 2890 case SIL_FAULT: 2891 new.si_addr = ptr_to_compat(from->si_addr); 2892 #ifdef __ARCH_SI_TRAPNO 2893 new.si_trapno = from->si_trapno; 2894 #endif 2895 break; 2896 case SIL_FAULT_MCEERR: 2897 new.si_addr = ptr_to_compat(from->si_addr); 2898 #ifdef __ARCH_SI_TRAPNO 2899 new.si_trapno = from->si_trapno; 2900 #endif 2901 new.si_addr_lsb = from->si_addr_lsb; 2902 break; 2903 case SIL_FAULT_BNDERR: 2904 new.si_addr = ptr_to_compat(from->si_addr); 2905 #ifdef __ARCH_SI_TRAPNO 2906 new.si_trapno = from->si_trapno; 2907 #endif 2908 new.si_lower = ptr_to_compat(from->si_lower); 2909 new.si_upper = ptr_to_compat(from->si_upper); 2910 break; 2911 case SIL_FAULT_PKUERR: 2912 new.si_addr = ptr_to_compat(from->si_addr); 2913 #ifdef __ARCH_SI_TRAPNO 2914 new.si_trapno = from->si_trapno; 2915 #endif 2916 new.si_pkey = from->si_pkey; 2917 break; 2918 case SIL_CHLD: 2919 new.si_pid = from->si_pid; 2920 new.si_uid = from->si_uid; 2921 new.si_status = from->si_status; 2922 #ifdef CONFIG_X86_X32_ABI 2923 if (x32_ABI) { 2924 new._sifields._sigchld_x32._utime = from->si_utime; 2925 new._sifields._sigchld_x32._stime = from->si_stime; 2926 } else 2927 #endif 2928 { 2929 new.si_utime = from->si_utime; 2930 new.si_stime = from->si_stime; 2931 } 2932 break; 2933 case SIL_RT: 2934 new.si_pid = from->si_pid; 2935 new.si_uid = from->si_uid; 2936 new.si_int = from->si_int; 2937 break; 2938 case SIL_SYS: 2939 new.si_call_addr = ptr_to_compat(from->si_call_addr); 2940 new.si_syscall = from->si_syscall; 2941 new.si_arch = from->si_arch; 2942 break; 2943 } 2944 2945 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 2946 return -EFAULT; 2947 2948 return 0; 2949 } 2950 2951 int copy_siginfo_from_user32(struct siginfo *to, 2952 const struct compat_siginfo __user *ufrom) 2953 { 2954 struct compat_siginfo from; 2955 2956 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 2957 return -EFAULT; 2958 2959 clear_siginfo(to); 2960 to->si_signo = from.si_signo; 2961 to->si_errno = from.si_errno; 2962 to->si_code = from.si_code; 2963 switch(siginfo_layout(from.si_signo, from.si_code)) { 2964 case SIL_KILL: 2965 to->si_pid = from.si_pid; 2966 to->si_uid = from.si_uid; 2967 break; 2968 case SIL_TIMER: 2969 to->si_tid = from.si_tid; 2970 to->si_overrun = from.si_overrun; 2971 to->si_int = from.si_int; 2972 break; 2973 case SIL_POLL: 2974 to->si_band = from.si_band; 2975 to->si_fd = from.si_fd; 2976 break; 2977 case SIL_FAULT: 2978 to->si_addr = compat_ptr(from.si_addr); 2979 #ifdef __ARCH_SI_TRAPNO 2980 to->si_trapno = from.si_trapno; 2981 #endif 2982 break; 2983 case SIL_FAULT_MCEERR: 2984 to->si_addr = compat_ptr(from.si_addr); 2985 #ifdef __ARCH_SI_TRAPNO 2986 to->si_trapno = from.si_trapno; 2987 #endif 2988 to->si_addr_lsb = from.si_addr_lsb; 2989 break; 2990 case SIL_FAULT_BNDERR: 2991 to->si_addr = compat_ptr(from.si_addr); 2992 #ifdef __ARCH_SI_TRAPNO 2993 to->si_trapno = from.si_trapno; 2994 #endif 2995 to->si_lower = compat_ptr(from.si_lower); 2996 to->si_upper = compat_ptr(from.si_upper); 2997 break; 2998 case SIL_FAULT_PKUERR: 2999 to->si_addr = compat_ptr(from.si_addr); 3000 #ifdef __ARCH_SI_TRAPNO 3001 to->si_trapno = from.si_trapno; 3002 #endif 3003 to->si_pkey = from.si_pkey; 3004 break; 3005 case SIL_CHLD: 3006 to->si_pid = from.si_pid; 3007 to->si_uid = from.si_uid; 3008 to->si_status = from.si_status; 3009 #ifdef CONFIG_X86_X32_ABI 3010 if (in_x32_syscall()) { 3011 to->si_utime = from._sifields._sigchld_x32._utime; 3012 to->si_stime = from._sifields._sigchld_x32._stime; 3013 } else 3014 #endif 3015 { 3016 to->si_utime = from.si_utime; 3017 to->si_stime = from.si_stime; 3018 } 3019 break; 3020 case SIL_RT: 3021 to->si_pid = from.si_pid; 3022 to->si_uid = from.si_uid; 3023 to->si_int = from.si_int; 3024 break; 3025 case SIL_SYS: 3026 to->si_call_addr = compat_ptr(from.si_call_addr); 3027 to->si_syscall = from.si_syscall; 3028 to->si_arch = from.si_arch; 3029 break; 3030 } 3031 return 0; 3032 } 3033 #endif /* CONFIG_COMPAT */ 3034 3035 /** 3036 * do_sigtimedwait - wait for queued signals specified in @which 3037 * @which: queued signals to wait for 3038 * @info: if non-null, the signal's siginfo is returned here 3039 * @ts: upper bound on process time suspension 3040 */ 3041 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 3042 const struct timespec *ts) 3043 { 3044 ktime_t *to = NULL, timeout = KTIME_MAX; 3045 struct task_struct *tsk = current; 3046 sigset_t mask = *which; 3047 int sig, ret = 0; 3048 3049 if (ts) { 3050 if (!timespec_valid(ts)) 3051 return -EINVAL; 3052 timeout = timespec_to_ktime(*ts); 3053 to = &timeout; 3054 } 3055 3056 /* 3057 * Invert the set of allowed signals to get those we want to block. 3058 */ 3059 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3060 signotset(&mask); 3061 3062 spin_lock_irq(&tsk->sighand->siglock); 3063 sig = dequeue_signal(tsk, &mask, info); 3064 if (!sig && timeout) { 3065 /* 3066 * None ready, temporarily unblock those we're interested 3067 * while we are sleeping in so that we'll be awakened when 3068 * they arrive. Unblocking is always fine, we can avoid 3069 * set_current_blocked(). 3070 */ 3071 tsk->real_blocked = tsk->blocked; 3072 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3073 recalc_sigpending(); 3074 spin_unlock_irq(&tsk->sighand->siglock); 3075 3076 __set_current_state(TASK_INTERRUPTIBLE); 3077 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3078 HRTIMER_MODE_REL); 3079 spin_lock_irq(&tsk->sighand->siglock); 3080 __set_task_blocked(tsk, &tsk->real_blocked); 3081 sigemptyset(&tsk->real_blocked); 3082 sig = dequeue_signal(tsk, &mask, info); 3083 } 3084 spin_unlock_irq(&tsk->sighand->siglock); 3085 3086 if (sig) 3087 return sig; 3088 return ret ? -EINTR : -EAGAIN; 3089 } 3090 3091 /** 3092 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3093 * in @uthese 3094 * @uthese: queued signals to wait for 3095 * @uinfo: if non-null, the signal's siginfo is returned here 3096 * @uts: upper bound on process time suspension 3097 * @sigsetsize: size of sigset_t type 3098 */ 3099 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3100 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 3101 size_t, sigsetsize) 3102 { 3103 sigset_t these; 3104 struct timespec ts; 3105 siginfo_t info; 3106 int ret; 3107 3108 /* XXX: Don't preclude handling different sized sigset_t's. */ 3109 if (sigsetsize != sizeof(sigset_t)) 3110 return -EINVAL; 3111 3112 if (copy_from_user(&these, uthese, sizeof(these))) 3113 return -EFAULT; 3114 3115 if (uts) { 3116 if (copy_from_user(&ts, uts, sizeof(ts))) 3117 return -EFAULT; 3118 } 3119 3120 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3121 3122 if (ret > 0 && uinfo) { 3123 if (copy_siginfo_to_user(uinfo, &info)) 3124 ret = -EFAULT; 3125 } 3126 3127 return ret; 3128 } 3129 3130 #ifdef CONFIG_COMPAT 3131 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese, 3132 struct compat_siginfo __user *, uinfo, 3133 struct compat_timespec __user *, uts, compat_size_t, sigsetsize) 3134 { 3135 sigset_t s; 3136 struct timespec t; 3137 siginfo_t info; 3138 long ret; 3139 3140 if (sigsetsize != sizeof(sigset_t)) 3141 return -EINVAL; 3142 3143 if (get_compat_sigset(&s, uthese)) 3144 return -EFAULT; 3145 3146 if (uts) { 3147 if (compat_get_timespec(&t, uts)) 3148 return -EFAULT; 3149 } 3150 3151 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3152 3153 if (ret > 0 && uinfo) { 3154 if (copy_siginfo_to_user32(uinfo, &info)) 3155 ret = -EFAULT; 3156 } 3157 3158 return ret; 3159 } 3160 #endif 3161 3162 /** 3163 * sys_kill - send a signal to a process 3164 * @pid: the PID of the process 3165 * @sig: signal to be sent 3166 */ 3167 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3168 { 3169 struct siginfo info; 3170 3171 clear_siginfo(&info); 3172 info.si_signo = sig; 3173 info.si_errno = 0; 3174 info.si_code = SI_USER; 3175 info.si_pid = task_tgid_vnr(current); 3176 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3177 3178 return kill_something_info(sig, &info, pid); 3179 } 3180 3181 static int 3182 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 3183 { 3184 struct task_struct *p; 3185 int error = -ESRCH; 3186 3187 rcu_read_lock(); 3188 p = find_task_by_vpid(pid); 3189 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3190 error = check_kill_permission(sig, info, p); 3191 /* 3192 * The null signal is a permissions and process existence 3193 * probe. No signal is actually delivered. 3194 */ 3195 if (!error && sig) { 3196 error = do_send_sig_info(sig, info, p, false); 3197 /* 3198 * If lock_task_sighand() failed we pretend the task 3199 * dies after receiving the signal. The window is tiny, 3200 * and the signal is private anyway. 3201 */ 3202 if (unlikely(error == -ESRCH)) 3203 error = 0; 3204 } 3205 } 3206 rcu_read_unlock(); 3207 3208 return error; 3209 } 3210 3211 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3212 { 3213 struct siginfo info; 3214 3215 clear_siginfo(&info); 3216 info.si_signo = sig; 3217 info.si_errno = 0; 3218 info.si_code = SI_TKILL; 3219 info.si_pid = task_tgid_vnr(current); 3220 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3221 3222 return do_send_specific(tgid, pid, sig, &info); 3223 } 3224 3225 /** 3226 * sys_tgkill - send signal to one specific thread 3227 * @tgid: the thread group ID of the thread 3228 * @pid: the PID of the thread 3229 * @sig: signal to be sent 3230 * 3231 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3232 * exists but it's not belonging to the target process anymore. This 3233 * method solves the problem of threads exiting and PIDs getting reused. 3234 */ 3235 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3236 { 3237 /* This is only valid for single tasks */ 3238 if (pid <= 0 || tgid <= 0) 3239 return -EINVAL; 3240 3241 return do_tkill(tgid, pid, sig); 3242 } 3243 3244 /** 3245 * sys_tkill - send signal to one specific task 3246 * @pid: the PID of the task 3247 * @sig: signal to be sent 3248 * 3249 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3250 */ 3251 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3252 { 3253 /* This is only valid for single tasks */ 3254 if (pid <= 0) 3255 return -EINVAL; 3256 3257 return do_tkill(0, pid, sig); 3258 } 3259 3260 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 3261 { 3262 /* Not even root can pretend to send signals from the kernel. 3263 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3264 */ 3265 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3266 (task_pid_vnr(current) != pid)) 3267 return -EPERM; 3268 3269 info->si_signo = sig; 3270 3271 /* POSIX.1b doesn't mention process groups. */ 3272 return kill_proc_info(sig, info, pid); 3273 } 3274 3275 /** 3276 * sys_rt_sigqueueinfo - send signal information to a signal 3277 * @pid: the PID of the thread 3278 * @sig: signal to be sent 3279 * @uinfo: signal info to be sent 3280 */ 3281 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3282 siginfo_t __user *, uinfo) 3283 { 3284 siginfo_t info; 3285 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3286 return -EFAULT; 3287 return do_rt_sigqueueinfo(pid, sig, &info); 3288 } 3289 3290 #ifdef CONFIG_COMPAT 3291 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3292 compat_pid_t, pid, 3293 int, sig, 3294 struct compat_siginfo __user *, uinfo) 3295 { 3296 siginfo_t info; 3297 int ret = copy_siginfo_from_user32(&info, uinfo); 3298 if (unlikely(ret)) 3299 return ret; 3300 return do_rt_sigqueueinfo(pid, sig, &info); 3301 } 3302 #endif 3303 3304 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3305 { 3306 /* This is only valid for single tasks */ 3307 if (pid <= 0 || tgid <= 0) 3308 return -EINVAL; 3309 3310 /* Not even root can pretend to send signals from the kernel. 3311 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3312 */ 3313 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3314 (task_pid_vnr(current) != pid)) 3315 return -EPERM; 3316 3317 info->si_signo = sig; 3318 3319 return do_send_specific(tgid, pid, sig, info); 3320 } 3321 3322 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3323 siginfo_t __user *, uinfo) 3324 { 3325 siginfo_t info; 3326 3327 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3328 return -EFAULT; 3329 3330 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3331 } 3332 3333 #ifdef CONFIG_COMPAT 3334 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3335 compat_pid_t, tgid, 3336 compat_pid_t, pid, 3337 int, sig, 3338 struct compat_siginfo __user *, uinfo) 3339 { 3340 siginfo_t info; 3341 3342 if (copy_siginfo_from_user32(&info, uinfo)) 3343 return -EFAULT; 3344 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3345 } 3346 #endif 3347 3348 /* 3349 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3350 */ 3351 void kernel_sigaction(int sig, __sighandler_t action) 3352 { 3353 spin_lock_irq(¤t->sighand->siglock); 3354 current->sighand->action[sig - 1].sa.sa_handler = action; 3355 if (action == SIG_IGN) { 3356 sigset_t mask; 3357 3358 sigemptyset(&mask); 3359 sigaddset(&mask, sig); 3360 3361 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3362 flush_sigqueue_mask(&mask, ¤t->pending); 3363 recalc_sigpending(); 3364 } 3365 spin_unlock_irq(¤t->sighand->siglock); 3366 } 3367 EXPORT_SYMBOL(kernel_sigaction); 3368 3369 void __weak sigaction_compat_abi(struct k_sigaction *act, 3370 struct k_sigaction *oact) 3371 { 3372 } 3373 3374 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3375 { 3376 struct task_struct *p = current, *t; 3377 struct k_sigaction *k; 3378 sigset_t mask; 3379 3380 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3381 return -EINVAL; 3382 3383 k = &p->sighand->action[sig-1]; 3384 3385 spin_lock_irq(&p->sighand->siglock); 3386 if (oact) 3387 *oact = *k; 3388 3389 sigaction_compat_abi(act, oact); 3390 3391 if (act) { 3392 sigdelsetmask(&act->sa.sa_mask, 3393 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3394 *k = *act; 3395 /* 3396 * POSIX 3.3.1.3: 3397 * "Setting a signal action to SIG_IGN for a signal that is 3398 * pending shall cause the pending signal to be discarded, 3399 * whether or not it is blocked." 3400 * 3401 * "Setting a signal action to SIG_DFL for a signal that is 3402 * pending and whose default action is to ignore the signal 3403 * (for example, SIGCHLD), shall cause the pending signal to 3404 * be discarded, whether or not it is blocked" 3405 */ 3406 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3407 sigemptyset(&mask); 3408 sigaddset(&mask, sig); 3409 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3410 for_each_thread(p, t) 3411 flush_sigqueue_mask(&mask, &t->pending); 3412 } 3413 } 3414 3415 spin_unlock_irq(&p->sighand->siglock); 3416 return 0; 3417 } 3418 3419 static int 3420 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp) 3421 { 3422 struct task_struct *t = current; 3423 3424 if (oss) { 3425 memset(oss, 0, sizeof(stack_t)); 3426 oss->ss_sp = (void __user *) t->sas_ss_sp; 3427 oss->ss_size = t->sas_ss_size; 3428 oss->ss_flags = sas_ss_flags(sp) | 3429 (current->sas_ss_flags & SS_FLAG_BITS); 3430 } 3431 3432 if (ss) { 3433 void __user *ss_sp = ss->ss_sp; 3434 size_t ss_size = ss->ss_size; 3435 unsigned ss_flags = ss->ss_flags; 3436 int ss_mode; 3437 3438 if (unlikely(on_sig_stack(sp))) 3439 return -EPERM; 3440 3441 ss_mode = ss_flags & ~SS_FLAG_BITS; 3442 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3443 ss_mode != 0)) 3444 return -EINVAL; 3445 3446 if (ss_mode == SS_DISABLE) { 3447 ss_size = 0; 3448 ss_sp = NULL; 3449 } else { 3450 if (unlikely(ss_size < MINSIGSTKSZ)) 3451 return -ENOMEM; 3452 } 3453 3454 t->sas_ss_sp = (unsigned long) ss_sp; 3455 t->sas_ss_size = ss_size; 3456 t->sas_ss_flags = ss_flags; 3457 } 3458 return 0; 3459 } 3460 3461 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3462 { 3463 stack_t new, old; 3464 int err; 3465 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 3466 return -EFAULT; 3467 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 3468 current_user_stack_pointer()); 3469 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 3470 err = -EFAULT; 3471 return err; 3472 } 3473 3474 int restore_altstack(const stack_t __user *uss) 3475 { 3476 stack_t new; 3477 if (copy_from_user(&new, uss, sizeof(stack_t))) 3478 return -EFAULT; 3479 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer()); 3480 /* squash all but EFAULT for now */ 3481 return 0; 3482 } 3483 3484 int __save_altstack(stack_t __user *uss, unsigned long sp) 3485 { 3486 struct task_struct *t = current; 3487 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3488 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3489 __put_user(t->sas_ss_size, &uss->ss_size); 3490 if (err) 3491 return err; 3492 if (t->sas_ss_flags & SS_AUTODISARM) 3493 sas_ss_reset(t); 3494 return 0; 3495 } 3496 3497 #ifdef CONFIG_COMPAT 3498 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 3499 compat_stack_t __user *uoss_ptr) 3500 { 3501 stack_t uss, uoss; 3502 int ret; 3503 3504 if (uss_ptr) { 3505 compat_stack_t uss32; 3506 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3507 return -EFAULT; 3508 uss.ss_sp = compat_ptr(uss32.ss_sp); 3509 uss.ss_flags = uss32.ss_flags; 3510 uss.ss_size = uss32.ss_size; 3511 } 3512 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 3513 compat_user_stack_pointer()); 3514 if (ret >= 0 && uoss_ptr) { 3515 compat_stack_t old; 3516 memset(&old, 0, sizeof(old)); 3517 old.ss_sp = ptr_to_compat(uoss.ss_sp); 3518 old.ss_flags = uoss.ss_flags; 3519 old.ss_size = uoss.ss_size; 3520 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 3521 ret = -EFAULT; 3522 } 3523 return ret; 3524 } 3525 3526 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3527 const compat_stack_t __user *, uss_ptr, 3528 compat_stack_t __user *, uoss_ptr) 3529 { 3530 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 3531 } 3532 3533 int compat_restore_altstack(const compat_stack_t __user *uss) 3534 { 3535 int err = do_compat_sigaltstack(uss, NULL); 3536 /* squash all but -EFAULT for now */ 3537 return err == -EFAULT ? err : 0; 3538 } 3539 3540 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3541 { 3542 int err; 3543 struct task_struct *t = current; 3544 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3545 &uss->ss_sp) | 3546 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3547 __put_user(t->sas_ss_size, &uss->ss_size); 3548 if (err) 3549 return err; 3550 if (t->sas_ss_flags & SS_AUTODISARM) 3551 sas_ss_reset(t); 3552 return 0; 3553 } 3554 #endif 3555 3556 #ifdef __ARCH_WANT_SYS_SIGPENDING 3557 3558 /** 3559 * sys_sigpending - examine pending signals 3560 * @uset: where mask of pending signal is returned 3561 */ 3562 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 3563 { 3564 sigset_t set; 3565 int err; 3566 3567 if (sizeof(old_sigset_t) > sizeof(*uset)) 3568 return -EINVAL; 3569 3570 err = do_sigpending(&set); 3571 if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t))) 3572 err = -EFAULT; 3573 return err; 3574 } 3575 3576 #ifdef CONFIG_COMPAT 3577 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 3578 { 3579 sigset_t set; 3580 int err = do_sigpending(&set); 3581 if (!err) 3582 err = put_user(set.sig[0], set32); 3583 return err; 3584 } 3585 #endif 3586 3587 #endif 3588 3589 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3590 /** 3591 * sys_sigprocmask - examine and change blocked signals 3592 * @how: whether to add, remove, or set signals 3593 * @nset: signals to add or remove (if non-null) 3594 * @oset: previous value of signal mask if non-null 3595 * 3596 * Some platforms have their own version with special arguments; 3597 * others support only sys_rt_sigprocmask. 3598 */ 3599 3600 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3601 old_sigset_t __user *, oset) 3602 { 3603 old_sigset_t old_set, new_set; 3604 sigset_t new_blocked; 3605 3606 old_set = current->blocked.sig[0]; 3607 3608 if (nset) { 3609 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3610 return -EFAULT; 3611 3612 new_blocked = current->blocked; 3613 3614 switch (how) { 3615 case SIG_BLOCK: 3616 sigaddsetmask(&new_blocked, new_set); 3617 break; 3618 case SIG_UNBLOCK: 3619 sigdelsetmask(&new_blocked, new_set); 3620 break; 3621 case SIG_SETMASK: 3622 new_blocked.sig[0] = new_set; 3623 break; 3624 default: 3625 return -EINVAL; 3626 } 3627 3628 set_current_blocked(&new_blocked); 3629 } 3630 3631 if (oset) { 3632 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3633 return -EFAULT; 3634 } 3635 3636 return 0; 3637 } 3638 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3639 3640 #ifndef CONFIG_ODD_RT_SIGACTION 3641 /** 3642 * sys_rt_sigaction - alter an action taken by a process 3643 * @sig: signal to be sent 3644 * @act: new sigaction 3645 * @oact: used to save the previous sigaction 3646 * @sigsetsize: size of sigset_t type 3647 */ 3648 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3649 const struct sigaction __user *, act, 3650 struct sigaction __user *, oact, 3651 size_t, sigsetsize) 3652 { 3653 struct k_sigaction new_sa, old_sa; 3654 int ret = -EINVAL; 3655 3656 /* XXX: Don't preclude handling different sized sigset_t's. */ 3657 if (sigsetsize != sizeof(sigset_t)) 3658 goto out; 3659 3660 if (act) { 3661 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3662 return -EFAULT; 3663 } 3664 3665 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3666 3667 if (!ret && oact) { 3668 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3669 return -EFAULT; 3670 } 3671 out: 3672 return ret; 3673 } 3674 #ifdef CONFIG_COMPAT 3675 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3676 const struct compat_sigaction __user *, act, 3677 struct compat_sigaction __user *, oact, 3678 compat_size_t, sigsetsize) 3679 { 3680 struct k_sigaction new_ka, old_ka; 3681 #ifdef __ARCH_HAS_SA_RESTORER 3682 compat_uptr_t restorer; 3683 #endif 3684 int ret; 3685 3686 /* XXX: Don't preclude handling different sized sigset_t's. */ 3687 if (sigsetsize != sizeof(compat_sigset_t)) 3688 return -EINVAL; 3689 3690 if (act) { 3691 compat_uptr_t handler; 3692 ret = get_user(handler, &act->sa_handler); 3693 new_ka.sa.sa_handler = compat_ptr(handler); 3694 #ifdef __ARCH_HAS_SA_RESTORER 3695 ret |= get_user(restorer, &act->sa_restorer); 3696 new_ka.sa.sa_restorer = compat_ptr(restorer); 3697 #endif 3698 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 3699 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3700 if (ret) 3701 return -EFAULT; 3702 } 3703 3704 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3705 if (!ret && oact) { 3706 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3707 &oact->sa_handler); 3708 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 3709 sizeof(oact->sa_mask)); 3710 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3711 #ifdef __ARCH_HAS_SA_RESTORER 3712 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3713 &oact->sa_restorer); 3714 #endif 3715 } 3716 return ret; 3717 } 3718 #endif 3719 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3720 3721 #ifdef CONFIG_OLD_SIGACTION 3722 SYSCALL_DEFINE3(sigaction, int, sig, 3723 const struct old_sigaction __user *, act, 3724 struct old_sigaction __user *, oact) 3725 { 3726 struct k_sigaction new_ka, old_ka; 3727 int ret; 3728 3729 if (act) { 3730 old_sigset_t mask; 3731 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3732 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3733 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3734 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3735 __get_user(mask, &act->sa_mask)) 3736 return -EFAULT; 3737 #ifdef __ARCH_HAS_KA_RESTORER 3738 new_ka.ka_restorer = NULL; 3739 #endif 3740 siginitset(&new_ka.sa.sa_mask, mask); 3741 } 3742 3743 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3744 3745 if (!ret && oact) { 3746 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3747 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3748 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3749 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3750 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3751 return -EFAULT; 3752 } 3753 3754 return ret; 3755 } 3756 #endif 3757 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3758 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3759 const struct compat_old_sigaction __user *, act, 3760 struct compat_old_sigaction __user *, oact) 3761 { 3762 struct k_sigaction new_ka, old_ka; 3763 int ret; 3764 compat_old_sigset_t mask; 3765 compat_uptr_t handler, restorer; 3766 3767 if (act) { 3768 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3769 __get_user(handler, &act->sa_handler) || 3770 __get_user(restorer, &act->sa_restorer) || 3771 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3772 __get_user(mask, &act->sa_mask)) 3773 return -EFAULT; 3774 3775 #ifdef __ARCH_HAS_KA_RESTORER 3776 new_ka.ka_restorer = NULL; 3777 #endif 3778 new_ka.sa.sa_handler = compat_ptr(handler); 3779 new_ka.sa.sa_restorer = compat_ptr(restorer); 3780 siginitset(&new_ka.sa.sa_mask, mask); 3781 } 3782 3783 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3784 3785 if (!ret && oact) { 3786 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3787 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3788 &oact->sa_handler) || 3789 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3790 &oact->sa_restorer) || 3791 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3792 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3793 return -EFAULT; 3794 } 3795 return ret; 3796 } 3797 #endif 3798 3799 #ifdef CONFIG_SGETMASK_SYSCALL 3800 3801 /* 3802 * For backwards compatibility. Functionality superseded by sigprocmask. 3803 */ 3804 SYSCALL_DEFINE0(sgetmask) 3805 { 3806 /* SMP safe */ 3807 return current->blocked.sig[0]; 3808 } 3809 3810 SYSCALL_DEFINE1(ssetmask, int, newmask) 3811 { 3812 int old = current->blocked.sig[0]; 3813 sigset_t newset; 3814 3815 siginitset(&newset, newmask); 3816 set_current_blocked(&newset); 3817 3818 return old; 3819 } 3820 #endif /* CONFIG_SGETMASK_SYSCALL */ 3821 3822 #ifdef __ARCH_WANT_SYS_SIGNAL 3823 /* 3824 * For backwards compatibility. Functionality superseded by sigaction. 3825 */ 3826 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3827 { 3828 struct k_sigaction new_sa, old_sa; 3829 int ret; 3830 3831 new_sa.sa.sa_handler = handler; 3832 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3833 sigemptyset(&new_sa.sa.sa_mask); 3834 3835 ret = do_sigaction(sig, &new_sa, &old_sa); 3836 3837 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3838 } 3839 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3840 3841 #ifdef __ARCH_WANT_SYS_PAUSE 3842 3843 SYSCALL_DEFINE0(pause) 3844 { 3845 while (!signal_pending(current)) { 3846 __set_current_state(TASK_INTERRUPTIBLE); 3847 schedule(); 3848 } 3849 return -ERESTARTNOHAND; 3850 } 3851 3852 #endif 3853 3854 static int sigsuspend(sigset_t *set) 3855 { 3856 current->saved_sigmask = current->blocked; 3857 set_current_blocked(set); 3858 3859 while (!signal_pending(current)) { 3860 __set_current_state(TASK_INTERRUPTIBLE); 3861 schedule(); 3862 } 3863 set_restore_sigmask(); 3864 return -ERESTARTNOHAND; 3865 } 3866 3867 /** 3868 * sys_rt_sigsuspend - replace the signal mask for a value with the 3869 * @unewset value until a signal is received 3870 * @unewset: new signal mask value 3871 * @sigsetsize: size of sigset_t type 3872 */ 3873 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3874 { 3875 sigset_t newset; 3876 3877 /* XXX: Don't preclude handling different sized sigset_t's. */ 3878 if (sigsetsize != sizeof(sigset_t)) 3879 return -EINVAL; 3880 3881 if (copy_from_user(&newset, unewset, sizeof(newset))) 3882 return -EFAULT; 3883 return sigsuspend(&newset); 3884 } 3885 3886 #ifdef CONFIG_COMPAT 3887 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3888 { 3889 sigset_t newset; 3890 3891 /* XXX: Don't preclude handling different sized sigset_t's. */ 3892 if (sigsetsize != sizeof(sigset_t)) 3893 return -EINVAL; 3894 3895 if (get_compat_sigset(&newset, unewset)) 3896 return -EFAULT; 3897 return sigsuspend(&newset); 3898 } 3899 #endif 3900 3901 #ifdef CONFIG_OLD_SIGSUSPEND 3902 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3903 { 3904 sigset_t blocked; 3905 siginitset(&blocked, mask); 3906 return sigsuspend(&blocked); 3907 } 3908 #endif 3909 #ifdef CONFIG_OLD_SIGSUSPEND3 3910 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3911 { 3912 sigset_t blocked; 3913 siginitset(&blocked, mask); 3914 return sigsuspend(&blocked); 3915 } 3916 #endif 3917 3918 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3919 { 3920 return NULL; 3921 } 3922 3923 void __init signals_init(void) 3924 { 3925 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 3926 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 3927 != offsetof(struct siginfo, _sifields._pad)); 3928 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 3929 3930 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3931 } 3932 3933 #ifdef CONFIG_KGDB_KDB 3934 #include <linux/kdb.h> 3935 /* 3936 * kdb_send_sig - Allows kdb to send signals without exposing 3937 * signal internals. This function checks if the required locks are 3938 * available before calling the main signal code, to avoid kdb 3939 * deadlocks. 3940 */ 3941 void kdb_send_sig(struct task_struct *t, int sig) 3942 { 3943 static struct task_struct *kdb_prev_t; 3944 int new_t, ret; 3945 if (!spin_trylock(&t->sighand->siglock)) { 3946 kdb_printf("Can't do kill command now.\n" 3947 "The sigmask lock is held somewhere else in " 3948 "kernel, try again later\n"); 3949 return; 3950 } 3951 new_t = kdb_prev_t != t; 3952 kdb_prev_t = t; 3953 if (t->state != TASK_RUNNING && new_t) { 3954 spin_unlock(&t->sighand->siglock); 3955 kdb_printf("Process is not RUNNING, sending a signal from " 3956 "kdb risks deadlock\n" 3957 "on the run queue locks. " 3958 "The signal has _not_ been sent.\n" 3959 "Reissue the kill command if you want to risk " 3960 "the deadlock.\n"); 3961 return; 3962 } 3963 ret = send_signal(sig, SEND_SIG_PRIV, t, false); 3964 spin_unlock(&t->sighand->siglock); 3965 if (ret) 3966 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3967 sig, t->pid); 3968 else 3969 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3970 } 3971 #endif /* CONFIG_KGDB_KDB */ 3972