1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/tracehook.h> 26 #include <linux/capability.h> 27 #include <linux/freezer.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/nsproxy.h> 30 31 #include <asm/param.h> 32 #include <asm/uaccess.h> 33 #include <asm/unistd.h> 34 #include <asm/siginfo.h> 35 #include "audit.h" /* audit_signal_info() */ 36 37 /* 38 * SLAB caches for signal bits. 39 */ 40 41 static struct kmem_cache *sigqueue_cachep; 42 43 static void __user *sig_handler(struct task_struct *t, int sig) 44 { 45 return t->sighand->action[sig - 1].sa.sa_handler; 46 } 47 48 static int sig_handler_ignored(void __user *handler, int sig) 49 { 50 /* Is it explicitly or implicitly ignored? */ 51 return handler == SIG_IGN || 52 (handler == SIG_DFL && sig_kernel_ignore(sig)); 53 } 54 55 static int sig_ignored(struct task_struct *t, int sig) 56 { 57 void __user *handler; 58 59 /* 60 * Blocked signals are never ignored, since the 61 * signal handler may change by the time it is 62 * unblocked. 63 */ 64 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 65 return 0; 66 67 handler = sig_handler(t, sig); 68 if (!sig_handler_ignored(handler, sig)) 69 return 0; 70 71 /* 72 * Tracers may want to know about even ignored signals. 73 */ 74 return !tracehook_consider_ignored_signal(t, sig, handler); 75 } 76 77 /* 78 * Re-calculate pending state from the set of locally pending 79 * signals, globally pending signals, and blocked signals. 80 */ 81 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 82 { 83 unsigned long ready; 84 long i; 85 86 switch (_NSIG_WORDS) { 87 default: 88 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 89 ready |= signal->sig[i] &~ blocked->sig[i]; 90 break; 91 92 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 93 ready |= signal->sig[2] &~ blocked->sig[2]; 94 ready |= signal->sig[1] &~ blocked->sig[1]; 95 ready |= signal->sig[0] &~ blocked->sig[0]; 96 break; 97 98 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 99 ready |= signal->sig[0] &~ blocked->sig[0]; 100 break; 101 102 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 103 } 104 return ready != 0; 105 } 106 107 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 108 109 static int recalc_sigpending_tsk(struct task_struct *t) 110 { 111 if (t->signal->group_stop_count > 0 || 112 PENDING(&t->pending, &t->blocked) || 113 PENDING(&t->signal->shared_pending, &t->blocked)) { 114 set_tsk_thread_flag(t, TIF_SIGPENDING); 115 return 1; 116 } 117 /* 118 * We must never clear the flag in another thread, or in current 119 * when it's possible the current syscall is returning -ERESTART*. 120 * So we don't clear it here, and only callers who know they should do. 121 */ 122 return 0; 123 } 124 125 /* 126 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 127 * This is superfluous when called on current, the wakeup is a harmless no-op. 128 */ 129 void recalc_sigpending_and_wake(struct task_struct *t) 130 { 131 if (recalc_sigpending_tsk(t)) 132 signal_wake_up(t, 0); 133 } 134 135 void recalc_sigpending(void) 136 { 137 if (unlikely(tracehook_force_sigpending())) 138 set_thread_flag(TIF_SIGPENDING); 139 else if (!recalc_sigpending_tsk(current) && !freezing(current)) 140 clear_thread_flag(TIF_SIGPENDING); 141 142 } 143 144 /* Given the mask, find the first available signal that should be serviced. */ 145 146 int next_signal(struct sigpending *pending, sigset_t *mask) 147 { 148 unsigned long i, *s, *m, x; 149 int sig = 0; 150 151 s = pending->signal.sig; 152 m = mask->sig; 153 switch (_NSIG_WORDS) { 154 default: 155 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 156 if ((x = *s &~ *m) != 0) { 157 sig = ffz(~x) + i*_NSIG_BPW + 1; 158 break; 159 } 160 break; 161 162 case 2: if ((x = s[0] &~ m[0]) != 0) 163 sig = 1; 164 else if ((x = s[1] &~ m[1]) != 0) 165 sig = _NSIG_BPW + 1; 166 else 167 break; 168 sig += ffz(~x); 169 break; 170 171 case 1: if ((x = *s &~ *m) != 0) 172 sig = ffz(~x) + 1; 173 break; 174 } 175 176 return sig; 177 } 178 179 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 180 int override_rlimit) 181 { 182 struct sigqueue *q = NULL; 183 struct user_struct *user; 184 185 /* 186 * In order to avoid problems with "switch_user()", we want to make 187 * sure that the compiler doesn't re-load "t->user" 188 */ 189 user = t->user; 190 barrier(); 191 atomic_inc(&user->sigpending); 192 if (override_rlimit || 193 atomic_read(&user->sigpending) <= 194 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 195 q = kmem_cache_alloc(sigqueue_cachep, flags); 196 if (unlikely(q == NULL)) { 197 atomic_dec(&user->sigpending); 198 } else { 199 INIT_LIST_HEAD(&q->list); 200 q->flags = 0; 201 q->user = get_uid(user); 202 } 203 return(q); 204 } 205 206 static void __sigqueue_free(struct sigqueue *q) 207 { 208 if (q->flags & SIGQUEUE_PREALLOC) 209 return; 210 atomic_dec(&q->user->sigpending); 211 free_uid(q->user); 212 kmem_cache_free(sigqueue_cachep, q); 213 } 214 215 void flush_sigqueue(struct sigpending *queue) 216 { 217 struct sigqueue *q; 218 219 sigemptyset(&queue->signal); 220 while (!list_empty(&queue->list)) { 221 q = list_entry(queue->list.next, struct sigqueue , list); 222 list_del_init(&q->list); 223 __sigqueue_free(q); 224 } 225 } 226 227 /* 228 * Flush all pending signals for a task. 229 */ 230 void flush_signals(struct task_struct *t) 231 { 232 unsigned long flags; 233 234 spin_lock_irqsave(&t->sighand->siglock, flags); 235 clear_tsk_thread_flag(t, TIF_SIGPENDING); 236 flush_sigqueue(&t->pending); 237 flush_sigqueue(&t->signal->shared_pending); 238 spin_unlock_irqrestore(&t->sighand->siglock, flags); 239 } 240 241 static void __flush_itimer_signals(struct sigpending *pending) 242 { 243 sigset_t signal, retain; 244 struct sigqueue *q, *n; 245 246 signal = pending->signal; 247 sigemptyset(&retain); 248 249 list_for_each_entry_safe(q, n, &pending->list, list) { 250 int sig = q->info.si_signo; 251 252 if (likely(q->info.si_code != SI_TIMER)) { 253 sigaddset(&retain, sig); 254 } else { 255 sigdelset(&signal, sig); 256 list_del_init(&q->list); 257 __sigqueue_free(q); 258 } 259 } 260 261 sigorsets(&pending->signal, &signal, &retain); 262 } 263 264 void flush_itimer_signals(void) 265 { 266 struct task_struct *tsk = current; 267 unsigned long flags; 268 269 spin_lock_irqsave(&tsk->sighand->siglock, flags); 270 __flush_itimer_signals(&tsk->pending); 271 __flush_itimer_signals(&tsk->signal->shared_pending); 272 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 273 } 274 275 void ignore_signals(struct task_struct *t) 276 { 277 int i; 278 279 for (i = 0; i < _NSIG; ++i) 280 t->sighand->action[i].sa.sa_handler = SIG_IGN; 281 282 flush_signals(t); 283 } 284 285 /* 286 * Flush all handlers for a task. 287 */ 288 289 void 290 flush_signal_handlers(struct task_struct *t, int force_default) 291 { 292 int i; 293 struct k_sigaction *ka = &t->sighand->action[0]; 294 for (i = _NSIG ; i != 0 ; i--) { 295 if (force_default || ka->sa.sa_handler != SIG_IGN) 296 ka->sa.sa_handler = SIG_DFL; 297 ka->sa.sa_flags = 0; 298 sigemptyset(&ka->sa.sa_mask); 299 ka++; 300 } 301 } 302 303 int unhandled_signal(struct task_struct *tsk, int sig) 304 { 305 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 306 if (is_global_init(tsk)) 307 return 1; 308 if (handler != SIG_IGN && handler != SIG_DFL) 309 return 0; 310 return !tracehook_consider_fatal_signal(tsk, sig, handler); 311 } 312 313 314 /* Notify the system that a driver wants to block all signals for this 315 * process, and wants to be notified if any signals at all were to be 316 * sent/acted upon. If the notifier routine returns non-zero, then the 317 * signal will be acted upon after all. If the notifier routine returns 0, 318 * then then signal will be blocked. Only one block per process is 319 * allowed. priv is a pointer to private data that the notifier routine 320 * can use to determine if the signal should be blocked or not. */ 321 322 void 323 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 324 { 325 unsigned long flags; 326 327 spin_lock_irqsave(¤t->sighand->siglock, flags); 328 current->notifier_mask = mask; 329 current->notifier_data = priv; 330 current->notifier = notifier; 331 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 332 } 333 334 /* Notify the system that blocking has ended. */ 335 336 void 337 unblock_all_signals(void) 338 { 339 unsigned long flags; 340 341 spin_lock_irqsave(¤t->sighand->siglock, flags); 342 current->notifier = NULL; 343 current->notifier_data = NULL; 344 recalc_sigpending(); 345 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 346 } 347 348 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 349 { 350 struct sigqueue *q, *first = NULL; 351 352 /* 353 * Collect the siginfo appropriate to this signal. Check if 354 * there is another siginfo for the same signal. 355 */ 356 list_for_each_entry(q, &list->list, list) { 357 if (q->info.si_signo == sig) { 358 if (first) 359 goto still_pending; 360 first = q; 361 } 362 } 363 364 sigdelset(&list->signal, sig); 365 366 if (first) { 367 still_pending: 368 list_del_init(&first->list); 369 copy_siginfo(info, &first->info); 370 __sigqueue_free(first); 371 } else { 372 /* Ok, it wasn't in the queue. This must be 373 a fast-pathed signal or we must have been 374 out of queue space. So zero out the info. 375 */ 376 info->si_signo = sig; 377 info->si_errno = 0; 378 info->si_code = 0; 379 info->si_pid = 0; 380 info->si_uid = 0; 381 } 382 } 383 384 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 385 siginfo_t *info) 386 { 387 int sig = next_signal(pending, mask); 388 389 if (sig) { 390 if (current->notifier) { 391 if (sigismember(current->notifier_mask, sig)) { 392 if (!(current->notifier)(current->notifier_data)) { 393 clear_thread_flag(TIF_SIGPENDING); 394 return 0; 395 } 396 } 397 } 398 399 collect_signal(sig, pending, info); 400 } 401 402 return sig; 403 } 404 405 /* 406 * Dequeue a signal and return the element to the caller, which is 407 * expected to free it. 408 * 409 * All callers have to hold the siglock. 410 */ 411 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 412 { 413 int signr; 414 415 /* We only dequeue private signals from ourselves, we don't let 416 * signalfd steal them 417 */ 418 signr = __dequeue_signal(&tsk->pending, mask, info); 419 if (!signr) { 420 signr = __dequeue_signal(&tsk->signal->shared_pending, 421 mask, info); 422 /* 423 * itimer signal ? 424 * 425 * itimers are process shared and we restart periodic 426 * itimers in the signal delivery path to prevent DoS 427 * attacks in the high resolution timer case. This is 428 * compliant with the old way of self restarting 429 * itimers, as the SIGALRM is a legacy signal and only 430 * queued once. Changing the restart behaviour to 431 * restart the timer in the signal dequeue path is 432 * reducing the timer noise on heavy loaded !highres 433 * systems too. 434 */ 435 if (unlikely(signr == SIGALRM)) { 436 struct hrtimer *tmr = &tsk->signal->real_timer; 437 438 if (!hrtimer_is_queued(tmr) && 439 tsk->signal->it_real_incr.tv64 != 0) { 440 hrtimer_forward(tmr, tmr->base->get_time(), 441 tsk->signal->it_real_incr); 442 hrtimer_restart(tmr); 443 } 444 } 445 } 446 447 recalc_sigpending(); 448 if (!signr) 449 return 0; 450 451 if (unlikely(sig_kernel_stop(signr))) { 452 /* 453 * Set a marker that we have dequeued a stop signal. Our 454 * caller might release the siglock and then the pending 455 * stop signal it is about to process is no longer in the 456 * pending bitmasks, but must still be cleared by a SIGCONT 457 * (and overruled by a SIGKILL). So those cases clear this 458 * shared flag after we've set it. Note that this flag may 459 * remain set after the signal we return is ignored or 460 * handled. That doesn't matter because its only purpose 461 * is to alert stop-signal processing code when another 462 * processor has come along and cleared the flag. 463 */ 464 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 465 } 466 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 467 /* 468 * Release the siglock to ensure proper locking order 469 * of timer locks outside of siglocks. Note, we leave 470 * irqs disabled here, since the posix-timers code is 471 * about to disable them again anyway. 472 */ 473 spin_unlock(&tsk->sighand->siglock); 474 do_schedule_next_timer(info); 475 spin_lock(&tsk->sighand->siglock); 476 } 477 return signr; 478 } 479 480 /* 481 * Tell a process that it has a new active signal.. 482 * 483 * NOTE! we rely on the previous spin_lock to 484 * lock interrupts for us! We can only be called with 485 * "siglock" held, and the local interrupt must 486 * have been disabled when that got acquired! 487 * 488 * No need to set need_resched since signal event passing 489 * goes through ->blocked 490 */ 491 void signal_wake_up(struct task_struct *t, int resume) 492 { 493 unsigned int mask; 494 495 set_tsk_thread_flag(t, TIF_SIGPENDING); 496 497 /* 498 * For SIGKILL, we want to wake it up in the stopped/traced/killable 499 * case. We don't check t->state here because there is a race with it 500 * executing another processor and just now entering stopped state. 501 * By using wake_up_state, we ensure the process will wake up and 502 * handle its death signal. 503 */ 504 mask = TASK_INTERRUPTIBLE; 505 if (resume) 506 mask |= TASK_WAKEKILL; 507 if (!wake_up_state(t, mask)) 508 kick_process(t); 509 } 510 511 /* 512 * Remove signals in mask from the pending set and queue. 513 * Returns 1 if any signals were found. 514 * 515 * All callers must be holding the siglock. 516 * 517 * This version takes a sigset mask and looks at all signals, 518 * not just those in the first mask word. 519 */ 520 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 521 { 522 struct sigqueue *q, *n; 523 sigset_t m; 524 525 sigandsets(&m, mask, &s->signal); 526 if (sigisemptyset(&m)) 527 return 0; 528 529 signandsets(&s->signal, &s->signal, mask); 530 list_for_each_entry_safe(q, n, &s->list, list) { 531 if (sigismember(mask, q->info.si_signo)) { 532 list_del_init(&q->list); 533 __sigqueue_free(q); 534 } 535 } 536 return 1; 537 } 538 /* 539 * Remove signals in mask from the pending set and queue. 540 * Returns 1 if any signals were found. 541 * 542 * All callers must be holding the siglock. 543 */ 544 static int rm_from_queue(unsigned long mask, struct sigpending *s) 545 { 546 struct sigqueue *q, *n; 547 548 if (!sigtestsetmask(&s->signal, mask)) 549 return 0; 550 551 sigdelsetmask(&s->signal, mask); 552 list_for_each_entry_safe(q, n, &s->list, list) { 553 if (q->info.si_signo < SIGRTMIN && 554 (mask & sigmask(q->info.si_signo))) { 555 list_del_init(&q->list); 556 __sigqueue_free(q); 557 } 558 } 559 return 1; 560 } 561 562 /* 563 * Bad permissions for sending the signal 564 */ 565 static int check_kill_permission(int sig, struct siginfo *info, 566 struct task_struct *t) 567 { 568 struct pid *sid; 569 int error; 570 571 if (!valid_signal(sig)) 572 return -EINVAL; 573 574 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 575 return 0; 576 577 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 578 if (error) 579 return error; 580 581 if ((current->euid ^ t->suid) && (current->euid ^ t->uid) && 582 (current->uid ^ t->suid) && (current->uid ^ t->uid) && 583 !capable(CAP_KILL)) { 584 switch (sig) { 585 case SIGCONT: 586 sid = task_session(t); 587 /* 588 * We don't return the error if sid == NULL. The 589 * task was unhashed, the caller must notice this. 590 */ 591 if (!sid || sid == task_session(current)) 592 break; 593 default: 594 return -EPERM; 595 } 596 } 597 598 return security_task_kill(t, info, sig, 0); 599 } 600 601 /* 602 * Handle magic process-wide effects of stop/continue signals. Unlike 603 * the signal actions, these happen immediately at signal-generation 604 * time regardless of blocking, ignoring, or handling. This does the 605 * actual continuing for SIGCONT, but not the actual stopping for stop 606 * signals. The process stop is done as a signal action for SIG_DFL. 607 * 608 * Returns true if the signal should be actually delivered, otherwise 609 * it should be dropped. 610 */ 611 static int prepare_signal(int sig, struct task_struct *p) 612 { 613 struct signal_struct *signal = p->signal; 614 struct task_struct *t; 615 616 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 617 /* 618 * The process is in the middle of dying, nothing to do. 619 */ 620 } else if (sig_kernel_stop(sig)) { 621 /* 622 * This is a stop signal. Remove SIGCONT from all queues. 623 */ 624 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 625 t = p; 626 do { 627 rm_from_queue(sigmask(SIGCONT), &t->pending); 628 } while_each_thread(p, t); 629 } else if (sig == SIGCONT) { 630 unsigned int why; 631 /* 632 * Remove all stop signals from all queues, 633 * and wake all threads. 634 */ 635 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 636 t = p; 637 do { 638 unsigned int state; 639 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 640 /* 641 * If there is a handler for SIGCONT, we must make 642 * sure that no thread returns to user mode before 643 * we post the signal, in case it was the only 644 * thread eligible to run the signal handler--then 645 * it must not do anything between resuming and 646 * running the handler. With the TIF_SIGPENDING 647 * flag set, the thread will pause and acquire the 648 * siglock that we hold now and until we've queued 649 * the pending signal. 650 * 651 * Wake up the stopped thread _after_ setting 652 * TIF_SIGPENDING 653 */ 654 state = __TASK_STOPPED; 655 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 656 set_tsk_thread_flag(t, TIF_SIGPENDING); 657 state |= TASK_INTERRUPTIBLE; 658 } 659 wake_up_state(t, state); 660 } while_each_thread(p, t); 661 662 /* 663 * Notify the parent with CLD_CONTINUED if we were stopped. 664 * 665 * If we were in the middle of a group stop, we pretend it 666 * was already finished, and then continued. Since SIGCHLD 667 * doesn't queue we report only CLD_STOPPED, as if the next 668 * CLD_CONTINUED was dropped. 669 */ 670 why = 0; 671 if (signal->flags & SIGNAL_STOP_STOPPED) 672 why |= SIGNAL_CLD_CONTINUED; 673 else if (signal->group_stop_count) 674 why |= SIGNAL_CLD_STOPPED; 675 676 if (why) { 677 /* 678 * The first thread which returns from finish_stop() 679 * will take ->siglock, notice SIGNAL_CLD_MASK, and 680 * notify its parent. See get_signal_to_deliver(). 681 */ 682 signal->flags = why | SIGNAL_STOP_CONTINUED; 683 signal->group_stop_count = 0; 684 signal->group_exit_code = 0; 685 } else { 686 /* 687 * We are not stopped, but there could be a stop 688 * signal in the middle of being processed after 689 * being removed from the queue. Clear that too. 690 */ 691 signal->flags &= ~SIGNAL_STOP_DEQUEUED; 692 } 693 } 694 695 return !sig_ignored(p, sig); 696 } 697 698 /* 699 * Test if P wants to take SIG. After we've checked all threads with this, 700 * it's equivalent to finding no threads not blocking SIG. Any threads not 701 * blocking SIG were ruled out because they are not running and already 702 * have pending signals. Such threads will dequeue from the shared queue 703 * as soon as they're available, so putting the signal on the shared queue 704 * will be equivalent to sending it to one such thread. 705 */ 706 static inline int wants_signal(int sig, struct task_struct *p) 707 { 708 if (sigismember(&p->blocked, sig)) 709 return 0; 710 if (p->flags & PF_EXITING) 711 return 0; 712 if (sig == SIGKILL) 713 return 1; 714 if (task_is_stopped_or_traced(p)) 715 return 0; 716 return task_curr(p) || !signal_pending(p); 717 } 718 719 static void complete_signal(int sig, struct task_struct *p, int group) 720 { 721 struct signal_struct *signal = p->signal; 722 struct task_struct *t; 723 724 /* 725 * Now find a thread we can wake up to take the signal off the queue. 726 * 727 * If the main thread wants the signal, it gets first crack. 728 * Probably the least surprising to the average bear. 729 */ 730 if (wants_signal(sig, p)) 731 t = p; 732 else if (!group || thread_group_empty(p)) 733 /* 734 * There is just one thread and it does not need to be woken. 735 * It will dequeue unblocked signals before it runs again. 736 */ 737 return; 738 else { 739 /* 740 * Otherwise try to find a suitable thread. 741 */ 742 t = signal->curr_target; 743 while (!wants_signal(sig, t)) { 744 t = next_thread(t); 745 if (t == signal->curr_target) 746 /* 747 * No thread needs to be woken. 748 * Any eligible threads will see 749 * the signal in the queue soon. 750 */ 751 return; 752 } 753 signal->curr_target = t; 754 } 755 756 /* 757 * Found a killable thread. If the signal will be fatal, 758 * then start taking the whole group down immediately. 759 */ 760 if (sig_fatal(p, sig) && 761 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 762 !sigismember(&t->real_blocked, sig) && 763 (sig == SIGKILL || 764 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) { 765 /* 766 * This signal will be fatal to the whole group. 767 */ 768 if (!sig_kernel_coredump(sig)) { 769 /* 770 * Start a group exit and wake everybody up. 771 * This way we don't have other threads 772 * running and doing things after a slower 773 * thread has the fatal signal pending. 774 */ 775 signal->flags = SIGNAL_GROUP_EXIT; 776 signal->group_exit_code = sig; 777 signal->group_stop_count = 0; 778 t = p; 779 do { 780 sigaddset(&t->pending.signal, SIGKILL); 781 signal_wake_up(t, 1); 782 } while_each_thread(p, t); 783 return; 784 } 785 } 786 787 /* 788 * The signal is already in the shared-pending queue. 789 * Tell the chosen thread to wake up and dequeue it. 790 */ 791 signal_wake_up(t, sig == SIGKILL); 792 return; 793 } 794 795 static inline int legacy_queue(struct sigpending *signals, int sig) 796 { 797 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 798 } 799 800 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 801 int group) 802 { 803 struct sigpending *pending; 804 struct sigqueue *q; 805 806 assert_spin_locked(&t->sighand->siglock); 807 if (!prepare_signal(sig, t)) 808 return 0; 809 810 pending = group ? &t->signal->shared_pending : &t->pending; 811 /* 812 * Short-circuit ignored signals and support queuing 813 * exactly one non-rt signal, so that we can get more 814 * detailed information about the cause of the signal. 815 */ 816 if (legacy_queue(pending, sig)) 817 return 0; 818 /* 819 * fast-pathed signals for kernel-internal things like SIGSTOP 820 * or SIGKILL. 821 */ 822 if (info == SEND_SIG_FORCED) 823 goto out_set; 824 825 /* Real-time signals must be queued if sent by sigqueue, or 826 some other real-time mechanism. It is implementation 827 defined whether kill() does so. We attempt to do so, on 828 the principle of least surprise, but since kill is not 829 allowed to fail with EAGAIN when low on memory we just 830 make sure at least one signal gets delivered and don't 831 pass on the info struct. */ 832 833 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 834 (is_si_special(info) || 835 info->si_code >= 0))); 836 if (q) { 837 list_add_tail(&q->list, &pending->list); 838 switch ((unsigned long) info) { 839 case (unsigned long) SEND_SIG_NOINFO: 840 q->info.si_signo = sig; 841 q->info.si_errno = 0; 842 q->info.si_code = SI_USER; 843 q->info.si_pid = task_pid_vnr(current); 844 q->info.si_uid = current->uid; 845 break; 846 case (unsigned long) SEND_SIG_PRIV: 847 q->info.si_signo = sig; 848 q->info.si_errno = 0; 849 q->info.si_code = SI_KERNEL; 850 q->info.si_pid = 0; 851 q->info.si_uid = 0; 852 break; 853 default: 854 copy_siginfo(&q->info, info); 855 break; 856 } 857 } else if (!is_si_special(info)) { 858 if (sig >= SIGRTMIN && info->si_code != SI_USER) 859 /* 860 * Queue overflow, abort. We may abort if the signal was rt 861 * and sent by user using something other than kill(). 862 */ 863 return -EAGAIN; 864 } 865 866 out_set: 867 signalfd_notify(t, sig); 868 sigaddset(&pending->signal, sig); 869 complete_signal(sig, t, group); 870 return 0; 871 } 872 873 int print_fatal_signals; 874 875 static void print_fatal_signal(struct pt_regs *regs, int signr) 876 { 877 printk("%s/%d: potentially unexpected fatal signal %d.\n", 878 current->comm, task_pid_nr(current), signr); 879 880 #if defined(__i386__) && !defined(__arch_um__) 881 printk("code at %08lx: ", regs->ip); 882 { 883 int i; 884 for (i = 0; i < 16; i++) { 885 unsigned char insn; 886 887 __get_user(insn, (unsigned char *)(regs->ip + i)); 888 printk("%02x ", insn); 889 } 890 } 891 #endif 892 printk("\n"); 893 show_regs(regs); 894 } 895 896 static int __init setup_print_fatal_signals(char *str) 897 { 898 get_option (&str, &print_fatal_signals); 899 900 return 1; 901 } 902 903 __setup("print-fatal-signals=", setup_print_fatal_signals); 904 905 int 906 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 907 { 908 return send_signal(sig, info, p, 1); 909 } 910 911 static int 912 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 913 { 914 return send_signal(sig, info, t, 0); 915 } 916 917 /* 918 * Force a signal that the process can't ignore: if necessary 919 * we unblock the signal and change any SIG_IGN to SIG_DFL. 920 * 921 * Note: If we unblock the signal, we always reset it to SIG_DFL, 922 * since we do not want to have a signal handler that was blocked 923 * be invoked when user space had explicitly blocked it. 924 * 925 * We don't want to have recursive SIGSEGV's etc, for example, 926 * that is why we also clear SIGNAL_UNKILLABLE. 927 */ 928 int 929 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 930 { 931 unsigned long int flags; 932 int ret, blocked, ignored; 933 struct k_sigaction *action; 934 935 spin_lock_irqsave(&t->sighand->siglock, flags); 936 action = &t->sighand->action[sig-1]; 937 ignored = action->sa.sa_handler == SIG_IGN; 938 blocked = sigismember(&t->blocked, sig); 939 if (blocked || ignored) { 940 action->sa.sa_handler = SIG_DFL; 941 if (blocked) { 942 sigdelset(&t->blocked, sig); 943 recalc_sigpending_and_wake(t); 944 } 945 } 946 if (action->sa.sa_handler == SIG_DFL) 947 t->signal->flags &= ~SIGNAL_UNKILLABLE; 948 ret = specific_send_sig_info(sig, info, t); 949 spin_unlock_irqrestore(&t->sighand->siglock, flags); 950 951 return ret; 952 } 953 954 void 955 force_sig_specific(int sig, struct task_struct *t) 956 { 957 force_sig_info(sig, SEND_SIG_FORCED, t); 958 } 959 960 /* 961 * Nuke all other threads in the group. 962 */ 963 void zap_other_threads(struct task_struct *p) 964 { 965 struct task_struct *t; 966 967 p->signal->group_stop_count = 0; 968 969 for (t = next_thread(p); t != p; t = next_thread(t)) { 970 /* 971 * Don't bother with already dead threads 972 */ 973 if (t->exit_state) 974 continue; 975 976 /* SIGKILL will be handled before any pending SIGSTOP */ 977 sigaddset(&t->pending.signal, SIGKILL); 978 signal_wake_up(t, 1); 979 } 980 } 981 982 int __fatal_signal_pending(struct task_struct *tsk) 983 { 984 return sigismember(&tsk->pending.signal, SIGKILL); 985 } 986 EXPORT_SYMBOL(__fatal_signal_pending); 987 988 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 989 { 990 struct sighand_struct *sighand; 991 992 rcu_read_lock(); 993 for (;;) { 994 sighand = rcu_dereference(tsk->sighand); 995 if (unlikely(sighand == NULL)) 996 break; 997 998 spin_lock_irqsave(&sighand->siglock, *flags); 999 if (likely(sighand == tsk->sighand)) 1000 break; 1001 spin_unlock_irqrestore(&sighand->siglock, *flags); 1002 } 1003 rcu_read_unlock(); 1004 1005 return sighand; 1006 } 1007 1008 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1009 { 1010 unsigned long flags; 1011 int ret; 1012 1013 ret = check_kill_permission(sig, info, p); 1014 1015 if (!ret && sig) { 1016 ret = -ESRCH; 1017 if (lock_task_sighand(p, &flags)) { 1018 ret = __group_send_sig_info(sig, info, p); 1019 unlock_task_sighand(p, &flags); 1020 } 1021 } 1022 1023 return ret; 1024 } 1025 1026 /* 1027 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1028 * control characters do (^C, ^Z etc) 1029 */ 1030 1031 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1032 { 1033 struct task_struct *p = NULL; 1034 int retval, success; 1035 1036 success = 0; 1037 retval = -ESRCH; 1038 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1039 int err = group_send_sig_info(sig, info, p); 1040 success |= !err; 1041 retval = err; 1042 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1043 return success ? 0 : retval; 1044 } 1045 1046 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1047 { 1048 int error = -ESRCH; 1049 struct task_struct *p; 1050 1051 rcu_read_lock(); 1052 retry: 1053 p = pid_task(pid, PIDTYPE_PID); 1054 if (p) { 1055 error = group_send_sig_info(sig, info, p); 1056 if (unlikely(error == -ESRCH)) 1057 /* 1058 * The task was unhashed in between, try again. 1059 * If it is dead, pid_task() will return NULL, 1060 * if we race with de_thread() it will find the 1061 * new leader. 1062 */ 1063 goto retry; 1064 } 1065 rcu_read_unlock(); 1066 1067 return error; 1068 } 1069 1070 int 1071 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1072 { 1073 int error; 1074 rcu_read_lock(); 1075 error = kill_pid_info(sig, info, find_vpid(pid)); 1076 rcu_read_unlock(); 1077 return error; 1078 } 1079 1080 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1081 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1082 uid_t uid, uid_t euid, u32 secid) 1083 { 1084 int ret = -EINVAL; 1085 struct task_struct *p; 1086 1087 if (!valid_signal(sig)) 1088 return ret; 1089 1090 read_lock(&tasklist_lock); 1091 p = pid_task(pid, PIDTYPE_PID); 1092 if (!p) { 1093 ret = -ESRCH; 1094 goto out_unlock; 1095 } 1096 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1097 && (euid != p->suid) && (euid != p->uid) 1098 && (uid != p->suid) && (uid != p->uid)) { 1099 ret = -EPERM; 1100 goto out_unlock; 1101 } 1102 ret = security_task_kill(p, info, sig, secid); 1103 if (ret) 1104 goto out_unlock; 1105 if (sig && p->sighand) { 1106 unsigned long flags; 1107 spin_lock_irqsave(&p->sighand->siglock, flags); 1108 ret = __group_send_sig_info(sig, info, p); 1109 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1110 } 1111 out_unlock: 1112 read_unlock(&tasklist_lock); 1113 return ret; 1114 } 1115 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1116 1117 /* 1118 * kill_something_info() interprets pid in interesting ways just like kill(2). 1119 * 1120 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1121 * is probably wrong. Should make it like BSD or SYSV. 1122 */ 1123 1124 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1125 { 1126 int ret; 1127 1128 if (pid > 0) { 1129 rcu_read_lock(); 1130 ret = kill_pid_info(sig, info, find_vpid(pid)); 1131 rcu_read_unlock(); 1132 return ret; 1133 } 1134 1135 read_lock(&tasklist_lock); 1136 if (pid != -1) { 1137 ret = __kill_pgrp_info(sig, info, 1138 pid ? find_vpid(-pid) : task_pgrp(current)); 1139 } else { 1140 int retval = 0, count = 0; 1141 struct task_struct * p; 1142 1143 for_each_process(p) { 1144 if (p->pid > 1 && !same_thread_group(p, current)) { 1145 int err = group_send_sig_info(sig, info, p); 1146 ++count; 1147 if (err != -EPERM) 1148 retval = err; 1149 } 1150 } 1151 ret = count ? retval : -ESRCH; 1152 } 1153 read_unlock(&tasklist_lock); 1154 1155 return ret; 1156 } 1157 1158 /* 1159 * These are for backward compatibility with the rest of the kernel source. 1160 */ 1161 1162 /* 1163 * The caller must ensure the task can't exit. 1164 */ 1165 int 1166 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1167 { 1168 int ret; 1169 unsigned long flags; 1170 1171 /* 1172 * Make sure legacy kernel users don't send in bad values 1173 * (normal paths check this in check_kill_permission). 1174 */ 1175 if (!valid_signal(sig)) 1176 return -EINVAL; 1177 1178 spin_lock_irqsave(&p->sighand->siglock, flags); 1179 ret = specific_send_sig_info(sig, info, p); 1180 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1181 return ret; 1182 } 1183 1184 #define __si_special(priv) \ 1185 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1186 1187 int 1188 send_sig(int sig, struct task_struct *p, int priv) 1189 { 1190 return send_sig_info(sig, __si_special(priv), p); 1191 } 1192 1193 void 1194 force_sig(int sig, struct task_struct *p) 1195 { 1196 force_sig_info(sig, SEND_SIG_PRIV, p); 1197 } 1198 1199 /* 1200 * When things go south during signal handling, we 1201 * will force a SIGSEGV. And if the signal that caused 1202 * the problem was already a SIGSEGV, we'll want to 1203 * make sure we don't even try to deliver the signal.. 1204 */ 1205 int 1206 force_sigsegv(int sig, struct task_struct *p) 1207 { 1208 if (sig == SIGSEGV) { 1209 unsigned long flags; 1210 spin_lock_irqsave(&p->sighand->siglock, flags); 1211 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1212 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1213 } 1214 force_sig(SIGSEGV, p); 1215 return 0; 1216 } 1217 1218 int kill_pgrp(struct pid *pid, int sig, int priv) 1219 { 1220 int ret; 1221 1222 read_lock(&tasklist_lock); 1223 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1224 read_unlock(&tasklist_lock); 1225 1226 return ret; 1227 } 1228 EXPORT_SYMBOL(kill_pgrp); 1229 1230 int kill_pid(struct pid *pid, int sig, int priv) 1231 { 1232 return kill_pid_info(sig, __si_special(priv), pid); 1233 } 1234 EXPORT_SYMBOL(kill_pid); 1235 1236 /* 1237 * These functions support sending signals using preallocated sigqueue 1238 * structures. This is needed "because realtime applications cannot 1239 * afford to lose notifications of asynchronous events, like timer 1240 * expirations or I/O completions". In the case of Posix Timers 1241 * we allocate the sigqueue structure from the timer_create. If this 1242 * allocation fails we are able to report the failure to the application 1243 * with an EAGAIN error. 1244 */ 1245 1246 struct sigqueue *sigqueue_alloc(void) 1247 { 1248 struct sigqueue *q; 1249 1250 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1251 q->flags |= SIGQUEUE_PREALLOC; 1252 return(q); 1253 } 1254 1255 void sigqueue_free(struct sigqueue *q) 1256 { 1257 unsigned long flags; 1258 spinlock_t *lock = ¤t->sighand->siglock; 1259 1260 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1261 /* 1262 * We must hold ->siglock while testing q->list 1263 * to serialize with collect_signal() or with 1264 * __exit_signal()->flush_sigqueue(). 1265 */ 1266 spin_lock_irqsave(lock, flags); 1267 q->flags &= ~SIGQUEUE_PREALLOC; 1268 /* 1269 * If it is queued it will be freed when dequeued, 1270 * like the "regular" sigqueue. 1271 */ 1272 if (!list_empty(&q->list)) 1273 q = NULL; 1274 spin_unlock_irqrestore(lock, flags); 1275 1276 if (q) 1277 __sigqueue_free(q); 1278 } 1279 1280 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1281 { 1282 int sig = q->info.si_signo; 1283 struct sigpending *pending; 1284 unsigned long flags; 1285 int ret; 1286 1287 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1288 1289 ret = -1; 1290 if (!likely(lock_task_sighand(t, &flags))) 1291 goto ret; 1292 1293 ret = 1; /* the signal is ignored */ 1294 if (!prepare_signal(sig, t)) 1295 goto out; 1296 1297 ret = 0; 1298 if (unlikely(!list_empty(&q->list))) { 1299 /* 1300 * If an SI_TIMER entry is already queue just increment 1301 * the overrun count. 1302 */ 1303 BUG_ON(q->info.si_code != SI_TIMER); 1304 q->info.si_overrun++; 1305 goto out; 1306 } 1307 q->info.si_overrun = 0; 1308 1309 signalfd_notify(t, sig); 1310 pending = group ? &t->signal->shared_pending : &t->pending; 1311 list_add_tail(&q->list, &pending->list); 1312 sigaddset(&pending->signal, sig); 1313 complete_signal(sig, t, group); 1314 out: 1315 unlock_task_sighand(t, &flags); 1316 ret: 1317 return ret; 1318 } 1319 1320 /* 1321 * Wake up any threads in the parent blocked in wait* syscalls. 1322 */ 1323 static inline void __wake_up_parent(struct task_struct *p, 1324 struct task_struct *parent) 1325 { 1326 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1327 } 1328 1329 /* 1330 * Let a parent know about the death of a child. 1331 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1332 * 1333 * Returns -1 if our parent ignored us and so we've switched to 1334 * self-reaping, or else @sig. 1335 */ 1336 int do_notify_parent(struct task_struct *tsk, int sig) 1337 { 1338 struct siginfo info; 1339 unsigned long flags; 1340 struct sighand_struct *psig; 1341 int ret = sig; 1342 1343 BUG_ON(sig == -1); 1344 1345 /* do_notify_parent_cldstop should have been called instead. */ 1346 BUG_ON(task_is_stopped_or_traced(tsk)); 1347 1348 BUG_ON(!tsk->ptrace && 1349 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1350 1351 info.si_signo = sig; 1352 info.si_errno = 0; 1353 /* 1354 * we are under tasklist_lock here so our parent is tied to 1355 * us and cannot exit and release its namespace. 1356 * 1357 * the only it can is to switch its nsproxy with sys_unshare, 1358 * bu uncharing pid namespaces is not allowed, so we'll always 1359 * see relevant namespace 1360 * 1361 * write_lock() currently calls preempt_disable() which is the 1362 * same as rcu_read_lock(), but according to Oleg, this is not 1363 * correct to rely on this 1364 */ 1365 rcu_read_lock(); 1366 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1367 rcu_read_unlock(); 1368 1369 info.si_uid = tsk->uid; 1370 1371 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, 1372 tsk->signal->utime)); 1373 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, 1374 tsk->signal->stime)); 1375 1376 info.si_status = tsk->exit_code & 0x7f; 1377 if (tsk->exit_code & 0x80) 1378 info.si_code = CLD_DUMPED; 1379 else if (tsk->exit_code & 0x7f) 1380 info.si_code = CLD_KILLED; 1381 else { 1382 info.si_code = CLD_EXITED; 1383 info.si_status = tsk->exit_code >> 8; 1384 } 1385 1386 psig = tsk->parent->sighand; 1387 spin_lock_irqsave(&psig->siglock, flags); 1388 if (!tsk->ptrace && sig == SIGCHLD && 1389 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1390 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1391 /* 1392 * We are exiting and our parent doesn't care. POSIX.1 1393 * defines special semantics for setting SIGCHLD to SIG_IGN 1394 * or setting the SA_NOCLDWAIT flag: we should be reaped 1395 * automatically and not left for our parent's wait4 call. 1396 * Rather than having the parent do it as a magic kind of 1397 * signal handler, we just set this to tell do_exit that we 1398 * can be cleaned up without becoming a zombie. Note that 1399 * we still call __wake_up_parent in this case, because a 1400 * blocked sys_wait4 might now return -ECHILD. 1401 * 1402 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1403 * is implementation-defined: we do (if you don't want 1404 * it, just use SIG_IGN instead). 1405 */ 1406 ret = tsk->exit_signal = -1; 1407 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1408 sig = -1; 1409 } 1410 if (valid_signal(sig) && sig > 0) 1411 __group_send_sig_info(sig, &info, tsk->parent); 1412 __wake_up_parent(tsk, tsk->parent); 1413 spin_unlock_irqrestore(&psig->siglock, flags); 1414 1415 return ret; 1416 } 1417 1418 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1419 { 1420 struct siginfo info; 1421 unsigned long flags; 1422 struct task_struct *parent; 1423 struct sighand_struct *sighand; 1424 1425 if (tsk->ptrace & PT_PTRACED) 1426 parent = tsk->parent; 1427 else { 1428 tsk = tsk->group_leader; 1429 parent = tsk->real_parent; 1430 } 1431 1432 info.si_signo = SIGCHLD; 1433 info.si_errno = 0; 1434 /* 1435 * see comment in do_notify_parent() abot the following 3 lines 1436 */ 1437 rcu_read_lock(); 1438 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1439 rcu_read_unlock(); 1440 1441 info.si_uid = tsk->uid; 1442 1443 info.si_utime = cputime_to_clock_t(tsk->utime); 1444 info.si_stime = cputime_to_clock_t(tsk->stime); 1445 1446 info.si_code = why; 1447 switch (why) { 1448 case CLD_CONTINUED: 1449 info.si_status = SIGCONT; 1450 break; 1451 case CLD_STOPPED: 1452 info.si_status = tsk->signal->group_exit_code & 0x7f; 1453 break; 1454 case CLD_TRAPPED: 1455 info.si_status = tsk->exit_code & 0x7f; 1456 break; 1457 default: 1458 BUG(); 1459 } 1460 1461 sighand = parent->sighand; 1462 spin_lock_irqsave(&sighand->siglock, flags); 1463 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1464 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1465 __group_send_sig_info(SIGCHLD, &info, parent); 1466 /* 1467 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1468 */ 1469 __wake_up_parent(tsk, parent); 1470 spin_unlock_irqrestore(&sighand->siglock, flags); 1471 } 1472 1473 static inline int may_ptrace_stop(void) 1474 { 1475 if (!likely(current->ptrace & PT_PTRACED)) 1476 return 0; 1477 /* 1478 * Are we in the middle of do_coredump? 1479 * If so and our tracer is also part of the coredump stopping 1480 * is a deadlock situation, and pointless because our tracer 1481 * is dead so don't allow us to stop. 1482 * If SIGKILL was already sent before the caller unlocked 1483 * ->siglock we must see ->core_state != NULL. Otherwise it 1484 * is safe to enter schedule(). 1485 */ 1486 if (unlikely(current->mm->core_state) && 1487 unlikely(current->mm == current->parent->mm)) 1488 return 0; 1489 1490 return 1; 1491 } 1492 1493 /* 1494 * Return nonzero if there is a SIGKILL that should be waking us up. 1495 * Called with the siglock held. 1496 */ 1497 static int sigkill_pending(struct task_struct *tsk) 1498 { 1499 return sigismember(&tsk->pending.signal, SIGKILL) || 1500 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1501 } 1502 1503 /* 1504 * This must be called with current->sighand->siglock held. 1505 * 1506 * This should be the path for all ptrace stops. 1507 * We always set current->last_siginfo while stopped here. 1508 * That makes it a way to test a stopped process for 1509 * being ptrace-stopped vs being job-control-stopped. 1510 * 1511 * If we actually decide not to stop at all because the tracer 1512 * is gone, we keep current->exit_code unless clear_code. 1513 */ 1514 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) 1515 { 1516 if (arch_ptrace_stop_needed(exit_code, info)) { 1517 /* 1518 * The arch code has something special to do before a 1519 * ptrace stop. This is allowed to block, e.g. for faults 1520 * on user stack pages. We can't keep the siglock while 1521 * calling arch_ptrace_stop, so we must release it now. 1522 * To preserve proper semantics, we must do this before 1523 * any signal bookkeeping like checking group_stop_count. 1524 * Meanwhile, a SIGKILL could come in before we retake the 1525 * siglock. That must prevent us from sleeping in TASK_TRACED. 1526 * So after regaining the lock, we must check for SIGKILL. 1527 */ 1528 spin_unlock_irq(¤t->sighand->siglock); 1529 arch_ptrace_stop(exit_code, info); 1530 spin_lock_irq(¤t->sighand->siglock); 1531 if (sigkill_pending(current)) 1532 return; 1533 } 1534 1535 /* 1536 * If there is a group stop in progress, 1537 * we must participate in the bookkeeping. 1538 */ 1539 if (current->signal->group_stop_count > 0) 1540 --current->signal->group_stop_count; 1541 1542 current->last_siginfo = info; 1543 current->exit_code = exit_code; 1544 1545 /* Let the debugger run. */ 1546 __set_current_state(TASK_TRACED); 1547 spin_unlock_irq(¤t->sighand->siglock); 1548 read_lock(&tasklist_lock); 1549 if (may_ptrace_stop()) { 1550 do_notify_parent_cldstop(current, CLD_TRAPPED); 1551 read_unlock(&tasklist_lock); 1552 schedule(); 1553 } else { 1554 /* 1555 * By the time we got the lock, our tracer went away. 1556 * Don't drop the lock yet, another tracer may come. 1557 */ 1558 __set_current_state(TASK_RUNNING); 1559 if (clear_code) 1560 current->exit_code = 0; 1561 read_unlock(&tasklist_lock); 1562 } 1563 1564 /* 1565 * While in TASK_TRACED, we were considered "frozen enough". 1566 * Now that we woke up, it's crucial if we're supposed to be 1567 * frozen that we freeze now before running anything substantial. 1568 */ 1569 try_to_freeze(); 1570 1571 /* 1572 * We are back. Now reacquire the siglock before touching 1573 * last_siginfo, so that we are sure to have synchronized with 1574 * any signal-sending on another CPU that wants to examine it. 1575 */ 1576 spin_lock_irq(¤t->sighand->siglock); 1577 current->last_siginfo = NULL; 1578 1579 /* 1580 * Queued signals ignored us while we were stopped for tracing. 1581 * So check for any that we should take before resuming user mode. 1582 * This sets TIF_SIGPENDING, but never clears it. 1583 */ 1584 recalc_sigpending_tsk(current); 1585 } 1586 1587 void ptrace_notify(int exit_code) 1588 { 1589 siginfo_t info; 1590 1591 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1592 1593 memset(&info, 0, sizeof info); 1594 info.si_signo = SIGTRAP; 1595 info.si_code = exit_code; 1596 info.si_pid = task_pid_vnr(current); 1597 info.si_uid = current->uid; 1598 1599 /* Let the debugger run. */ 1600 spin_lock_irq(¤t->sighand->siglock); 1601 ptrace_stop(exit_code, 1, &info); 1602 spin_unlock_irq(¤t->sighand->siglock); 1603 } 1604 1605 static void 1606 finish_stop(int stop_count) 1607 { 1608 /* 1609 * If there are no other threads in the group, or if there is 1610 * a group stop in progress and we are the last to stop, 1611 * report to the parent. When ptraced, every thread reports itself. 1612 */ 1613 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { 1614 read_lock(&tasklist_lock); 1615 do_notify_parent_cldstop(current, CLD_STOPPED); 1616 read_unlock(&tasklist_lock); 1617 } 1618 1619 do { 1620 schedule(); 1621 } while (try_to_freeze()); 1622 /* 1623 * Now we don't run again until continued. 1624 */ 1625 current->exit_code = 0; 1626 } 1627 1628 /* 1629 * This performs the stopping for SIGSTOP and other stop signals. 1630 * We have to stop all threads in the thread group. 1631 * Returns nonzero if we've actually stopped and released the siglock. 1632 * Returns zero if we didn't stop and still hold the siglock. 1633 */ 1634 static int do_signal_stop(int signr) 1635 { 1636 struct signal_struct *sig = current->signal; 1637 int stop_count; 1638 1639 if (sig->group_stop_count > 0) { 1640 /* 1641 * There is a group stop in progress. We don't need to 1642 * start another one. 1643 */ 1644 stop_count = --sig->group_stop_count; 1645 } else { 1646 struct task_struct *t; 1647 1648 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || 1649 unlikely(signal_group_exit(sig))) 1650 return 0; 1651 /* 1652 * There is no group stop already in progress. 1653 * We must initiate one now. 1654 */ 1655 sig->group_exit_code = signr; 1656 1657 stop_count = 0; 1658 for (t = next_thread(current); t != current; t = next_thread(t)) 1659 /* 1660 * Setting state to TASK_STOPPED for a group 1661 * stop is always done with the siglock held, 1662 * so this check has no races. 1663 */ 1664 if (!(t->flags & PF_EXITING) && 1665 !task_is_stopped_or_traced(t)) { 1666 stop_count++; 1667 signal_wake_up(t, 0); 1668 } 1669 sig->group_stop_count = stop_count; 1670 } 1671 1672 if (stop_count == 0) 1673 sig->flags = SIGNAL_STOP_STOPPED; 1674 current->exit_code = sig->group_exit_code; 1675 __set_current_state(TASK_STOPPED); 1676 1677 spin_unlock_irq(¤t->sighand->siglock); 1678 finish_stop(stop_count); 1679 return 1; 1680 } 1681 1682 static int ptrace_signal(int signr, siginfo_t *info, 1683 struct pt_regs *regs, void *cookie) 1684 { 1685 if (!(current->ptrace & PT_PTRACED)) 1686 return signr; 1687 1688 ptrace_signal_deliver(regs, cookie); 1689 1690 /* Let the debugger run. */ 1691 ptrace_stop(signr, 0, info); 1692 1693 /* We're back. Did the debugger cancel the sig? */ 1694 signr = current->exit_code; 1695 if (signr == 0) 1696 return signr; 1697 1698 current->exit_code = 0; 1699 1700 /* Update the siginfo structure if the signal has 1701 changed. If the debugger wanted something 1702 specific in the siginfo structure then it should 1703 have updated *info via PTRACE_SETSIGINFO. */ 1704 if (signr != info->si_signo) { 1705 info->si_signo = signr; 1706 info->si_errno = 0; 1707 info->si_code = SI_USER; 1708 info->si_pid = task_pid_vnr(current->parent); 1709 info->si_uid = current->parent->uid; 1710 } 1711 1712 /* If the (new) signal is now blocked, requeue it. */ 1713 if (sigismember(¤t->blocked, signr)) { 1714 specific_send_sig_info(signr, info, current); 1715 signr = 0; 1716 } 1717 1718 return signr; 1719 } 1720 1721 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1722 struct pt_regs *regs, void *cookie) 1723 { 1724 struct sighand_struct *sighand = current->sighand; 1725 struct signal_struct *signal = current->signal; 1726 int signr; 1727 1728 relock: 1729 /* 1730 * We'll jump back here after any time we were stopped in TASK_STOPPED. 1731 * While in TASK_STOPPED, we were considered "frozen enough". 1732 * Now that we woke up, it's crucial if we're supposed to be 1733 * frozen that we freeze now before running anything substantial. 1734 */ 1735 try_to_freeze(); 1736 1737 spin_lock_irq(&sighand->siglock); 1738 /* 1739 * Every stopped thread goes here after wakeup. Check to see if 1740 * we should notify the parent, prepare_signal(SIGCONT) encodes 1741 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 1742 */ 1743 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 1744 int why = (signal->flags & SIGNAL_STOP_CONTINUED) 1745 ? CLD_CONTINUED : CLD_STOPPED; 1746 signal->flags &= ~SIGNAL_CLD_MASK; 1747 spin_unlock_irq(&sighand->siglock); 1748 1749 if (unlikely(!tracehook_notify_jctl(1, why))) 1750 goto relock; 1751 1752 read_lock(&tasklist_lock); 1753 do_notify_parent_cldstop(current->group_leader, why); 1754 read_unlock(&tasklist_lock); 1755 goto relock; 1756 } 1757 1758 for (;;) { 1759 struct k_sigaction *ka; 1760 1761 if (unlikely(signal->group_stop_count > 0) && 1762 do_signal_stop(0)) 1763 goto relock; 1764 1765 /* 1766 * Tracing can induce an artifical signal and choose sigaction. 1767 * The return value in @signr determines the default action, 1768 * but @info->si_signo is the signal number we will report. 1769 */ 1770 signr = tracehook_get_signal(current, regs, info, return_ka); 1771 if (unlikely(signr < 0)) 1772 goto relock; 1773 if (unlikely(signr != 0)) 1774 ka = return_ka; 1775 else { 1776 signr = dequeue_signal(current, ¤t->blocked, 1777 info); 1778 1779 if (!signr) 1780 break; /* will return 0 */ 1781 1782 if (signr != SIGKILL) { 1783 signr = ptrace_signal(signr, info, 1784 regs, cookie); 1785 if (!signr) 1786 continue; 1787 } 1788 1789 ka = &sighand->action[signr-1]; 1790 } 1791 1792 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1793 continue; 1794 if (ka->sa.sa_handler != SIG_DFL) { 1795 /* Run the handler. */ 1796 *return_ka = *ka; 1797 1798 if (ka->sa.sa_flags & SA_ONESHOT) 1799 ka->sa.sa_handler = SIG_DFL; 1800 1801 break; /* will return non-zero "signr" value */ 1802 } 1803 1804 /* 1805 * Now we are doing the default action for this signal. 1806 */ 1807 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1808 continue; 1809 1810 /* 1811 * Global init gets no signals it doesn't want. 1812 */ 1813 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 1814 !signal_group_exit(signal)) 1815 continue; 1816 1817 if (sig_kernel_stop(signr)) { 1818 /* 1819 * The default action is to stop all threads in 1820 * the thread group. The job control signals 1821 * do nothing in an orphaned pgrp, but SIGSTOP 1822 * always works. Note that siglock needs to be 1823 * dropped during the call to is_orphaned_pgrp() 1824 * because of lock ordering with tasklist_lock. 1825 * This allows an intervening SIGCONT to be posted. 1826 * We need to check for that and bail out if necessary. 1827 */ 1828 if (signr != SIGSTOP) { 1829 spin_unlock_irq(&sighand->siglock); 1830 1831 /* signals can be posted during this window */ 1832 1833 if (is_current_pgrp_orphaned()) 1834 goto relock; 1835 1836 spin_lock_irq(&sighand->siglock); 1837 } 1838 1839 if (likely(do_signal_stop(info->si_signo))) { 1840 /* It released the siglock. */ 1841 goto relock; 1842 } 1843 1844 /* 1845 * We didn't actually stop, due to a race 1846 * with SIGCONT or something like that. 1847 */ 1848 continue; 1849 } 1850 1851 spin_unlock_irq(&sighand->siglock); 1852 1853 /* 1854 * Anything else is fatal, maybe with a core dump. 1855 */ 1856 current->flags |= PF_SIGNALED; 1857 1858 if (sig_kernel_coredump(signr)) { 1859 if (print_fatal_signals) 1860 print_fatal_signal(regs, info->si_signo); 1861 /* 1862 * If it was able to dump core, this kills all 1863 * other threads in the group and synchronizes with 1864 * their demise. If we lost the race with another 1865 * thread getting here, it set group_exit_code 1866 * first and our do_group_exit call below will use 1867 * that value and ignore the one we pass it. 1868 */ 1869 do_coredump(info->si_signo, info->si_signo, regs); 1870 } 1871 1872 /* 1873 * Death signals, no core dump. 1874 */ 1875 do_group_exit(info->si_signo); 1876 /* NOTREACHED */ 1877 } 1878 spin_unlock_irq(&sighand->siglock); 1879 return signr; 1880 } 1881 1882 void exit_signals(struct task_struct *tsk) 1883 { 1884 int group_stop = 0; 1885 struct task_struct *t; 1886 1887 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 1888 tsk->flags |= PF_EXITING; 1889 return; 1890 } 1891 1892 spin_lock_irq(&tsk->sighand->siglock); 1893 /* 1894 * From now this task is not visible for group-wide signals, 1895 * see wants_signal(), do_signal_stop(). 1896 */ 1897 tsk->flags |= PF_EXITING; 1898 if (!signal_pending(tsk)) 1899 goto out; 1900 1901 /* It could be that __group_complete_signal() choose us to 1902 * notify about group-wide signal. Another thread should be 1903 * woken now to take the signal since we will not. 1904 */ 1905 for (t = tsk; (t = next_thread(t)) != tsk; ) 1906 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 1907 recalc_sigpending_and_wake(t); 1908 1909 if (unlikely(tsk->signal->group_stop_count) && 1910 !--tsk->signal->group_stop_count) { 1911 tsk->signal->flags = SIGNAL_STOP_STOPPED; 1912 group_stop = 1; 1913 } 1914 out: 1915 spin_unlock_irq(&tsk->sighand->siglock); 1916 1917 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { 1918 read_lock(&tasklist_lock); 1919 do_notify_parent_cldstop(tsk, CLD_STOPPED); 1920 read_unlock(&tasklist_lock); 1921 } 1922 } 1923 1924 EXPORT_SYMBOL(recalc_sigpending); 1925 EXPORT_SYMBOL_GPL(dequeue_signal); 1926 EXPORT_SYMBOL(flush_signals); 1927 EXPORT_SYMBOL(force_sig); 1928 EXPORT_SYMBOL(send_sig); 1929 EXPORT_SYMBOL(send_sig_info); 1930 EXPORT_SYMBOL(sigprocmask); 1931 EXPORT_SYMBOL(block_all_signals); 1932 EXPORT_SYMBOL(unblock_all_signals); 1933 1934 1935 /* 1936 * System call entry points. 1937 */ 1938 1939 asmlinkage long sys_restart_syscall(void) 1940 { 1941 struct restart_block *restart = ¤t_thread_info()->restart_block; 1942 return restart->fn(restart); 1943 } 1944 1945 long do_no_restart_syscall(struct restart_block *param) 1946 { 1947 return -EINTR; 1948 } 1949 1950 /* 1951 * We don't need to get the kernel lock - this is all local to this 1952 * particular thread.. (and that's good, because this is _heavily_ 1953 * used by various programs) 1954 */ 1955 1956 /* 1957 * This is also useful for kernel threads that want to temporarily 1958 * (or permanently) block certain signals. 1959 * 1960 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1961 * interface happily blocks "unblockable" signals like SIGKILL 1962 * and friends. 1963 */ 1964 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1965 { 1966 int error; 1967 1968 spin_lock_irq(¤t->sighand->siglock); 1969 if (oldset) 1970 *oldset = current->blocked; 1971 1972 error = 0; 1973 switch (how) { 1974 case SIG_BLOCK: 1975 sigorsets(¤t->blocked, ¤t->blocked, set); 1976 break; 1977 case SIG_UNBLOCK: 1978 signandsets(¤t->blocked, ¤t->blocked, set); 1979 break; 1980 case SIG_SETMASK: 1981 current->blocked = *set; 1982 break; 1983 default: 1984 error = -EINVAL; 1985 } 1986 recalc_sigpending(); 1987 spin_unlock_irq(¤t->sighand->siglock); 1988 1989 return error; 1990 } 1991 1992 asmlinkage long 1993 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1994 { 1995 int error = -EINVAL; 1996 sigset_t old_set, new_set; 1997 1998 /* XXX: Don't preclude handling different sized sigset_t's. */ 1999 if (sigsetsize != sizeof(sigset_t)) 2000 goto out; 2001 2002 if (set) { 2003 error = -EFAULT; 2004 if (copy_from_user(&new_set, set, sizeof(*set))) 2005 goto out; 2006 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2007 2008 error = sigprocmask(how, &new_set, &old_set); 2009 if (error) 2010 goto out; 2011 if (oset) 2012 goto set_old; 2013 } else if (oset) { 2014 spin_lock_irq(¤t->sighand->siglock); 2015 old_set = current->blocked; 2016 spin_unlock_irq(¤t->sighand->siglock); 2017 2018 set_old: 2019 error = -EFAULT; 2020 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2021 goto out; 2022 } 2023 error = 0; 2024 out: 2025 return error; 2026 } 2027 2028 long do_sigpending(void __user *set, unsigned long sigsetsize) 2029 { 2030 long error = -EINVAL; 2031 sigset_t pending; 2032 2033 if (sigsetsize > sizeof(sigset_t)) 2034 goto out; 2035 2036 spin_lock_irq(¤t->sighand->siglock); 2037 sigorsets(&pending, ¤t->pending.signal, 2038 ¤t->signal->shared_pending.signal); 2039 spin_unlock_irq(¤t->sighand->siglock); 2040 2041 /* Outside the lock because only this thread touches it. */ 2042 sigandsets(&pending, ¤t->blocked, &pending); 2043 2044 error = -EFAULT; 2045 if (!copy_to_user(set, &pending, sigsetsize)) 2046 error = 0; 2047 2048 out: 2049 return error; 2050 } 2051 2052 asmlinkage long 2053 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2054 { 2055 return do_sigpending(set, sigsetsize); 2056 } 2057 2058 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2059 2060 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2061 { 2062 int err; 2063 2064 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2065 return -EFAULT; 2066 if (from->si_code < 0) 2067 return __copy_to_user(to, from, sizeof(siginfo_t)) 2068 ? -EFAULT : 0; 2069 /* 2070 * If you change siginfo_t structure, please be sure 2071 * this code is fixed accordingly. 2072 * Please remember to update the signalfd_copyinfo() function 2073 * inside fs/signalfd.c too, in case siginfo_t changes. 2074 * It should never copy any pad contained in the structure 2075 * to avoid security leaks, but must copy the generic 2076 * 3 ints plus the relevant union member. 2077 */ 2078 err = __put_user(from->si_signo, &to->si_signo); 2079 err |= __put_user(from->si_errno, &to->si_errno); 2080 err |= __put_user((short)from->si_code, &to->si_code); 2081 switch (from->si_code & __SI_MASK) { 2082 case __SI_KILL: 2083 err |= __put_user(from->si_pid, &to->si_pid); 2084 err |= __put_user(from->si_uid, &to->si_uid); 2085 break; 2086 case __SI_TIMER: 2087 err |= __put_user(from->si_tid, &to->si_tid); 2088 err |= __put_user(from->si_overrun, &to->si_overrun); 2089 err |= __put_user(from->si_ptr, &to->si_ptr); 2090 break; 2091 case __SI_POLL: 2092 err |= __put_user(from->si_band, &to->si_band); 2093 err |= __put_user(from->si_fd, &to->si_fd); 2094 break; 2095 case __SI_FAULT: 2096 err |= __put_user(from->si_addr, &to->si_addr); 2097 #ifdef __ARCH_SI_TRAPNO 2098 err |= __put_user(from->si_trapno, &to->si_trapno); 2099 #endif 2100 break; 2101 case __SI_CHLD: 2102 err |= __put_user(from->si_pid, &to->si_pid); 2103 err |= __put_user(from->si_uid, &to->si_uid); 2104 err |= __put_user(from->si_status, &to->si_status); 2105 err |= __put_user(from->si_utime, &to->si_utime); 2106 err |= __put_user(from->si_stime, &to->si_stime); 2107 break; 2108 case __SI_RT: /* This is not generated by the kernel as of now. */ 2109 case __SI_MESGQ: /* But this is */ 2110 err |= __put_user(from->si_pid, &to->si_pid); 2111 err |= __put_user(from->si_uid, &to->si_uid); 2112 err |= __put_user(from->si_ptr, &to->si_ptr); 2113 break; 2114 default: /* this is just in case for now ... */ 2115 err |= __put_user(from->si_pid, &to->si_pid); 2116 err |= __put_user(from->si_uid, &to->si_uid); 2117 break; 2118 } 2119 return err; 2120 } 2121 2122 #endif 2123 2124 asmlinkage long 2125 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2126 siginfo_t __user *uinfo, 2127 const struct timespec __user *uts, 2128 size_t sigsetsize) 2129 { 2130 int ret, sig; 2131 sigset_t these; 2132 struct timespec ts; 2133 siginfo_t info; 2134 long timeout = 0; 2135 2136 /* XXX: Don't preclude handling different sized sigset_t's. */ 2137 if (sigsetsize != sizeof(sigset_t)) 2138 return -EINVAL; 2139 2140 if (copy_from_user(&these, uthese, sizeof(these))) 2141 return -EFAULT; 2142 2143 /* 2144 * Invert the set of allowed signals to get those we 2145 * want to block. 2146 */ 2147 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2148 signotset(&these); 2149 2150 if (uts) { 2151 if (copy_from_user(&ts, uts, sizeof(ts))) 2152 return -EFAULT; 2153 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2154 || ts.tv_sec < 0) 2155 return -EINVAL; 2156 } 2157 2158 spin_lock_irq(¤t->sighand->siglock); 2159 sig = dequeue_signal(current, &these, &info); 2160 if (!sig) { 2161 timeout = MAX_SCHEDULE_TIMEOUT; 2162 if (uts) 2163 timeout = (timespec_to_jiffies(&ts) 2164 + (ts.tv_sec || ts.tv_nsec)); 2165 2166 if (timeout) { 2167 /* None ready -- temporarily unblock those we're 2168 * interested while we are sleeping in so that we'll 2169 * be awakened when they arrive. */ 2170 current->real_blocked = current->blocked; 2171 sigandsets(¤t->blocked, ¤t->blocked, &these); 2172 recalc_sigpending(); 2173 spin_unlock_irq(¤t->sighand->siglock); 2174 2175 timeout = schedule_timeout_interruptible(timeout); 2176 2177 spin_lock_irq(¤t->sighand->siglock); 2178 sig = dequeue_signal(current, &these, &info); 2179 current->blocked = current->real_blocked; 2180 siginitset(¤t->real_blocked, 0); 2181 recalc_sigpending(); 2182 } 2183 } 2184 spin_unlock_irq(¤t->sighand->siglock); 2185 2186 if (sig) { 2187 ret = sig; 2188 if (uinfo) { 2189 if (copy_siginfo_to_user(uinfo, &info)) 2190 ret = -EFAULT; 2191 } 2192 } else { 2193 ret = -EAGAIN; 2194 if (timeout) 2195 ret = -EINTR; 2196 } 2197 2198 return ret; 2199 } 2200 2201 asmlinkage long 2202 sys_kill(pid_t pid, int sig) 2203 { 2204 struct siginfo info; 2205 2206 info.si_signo = sig; 2207 info.si_errno = 0; 2208 info.si_code = SI_USER; 2209 info.si_pid = task_tgid_vnr(current); 2210 info.si_uid = current->uid; 2211 2212 return kill_something_info(sig, &info, pid); 2213 } 2214 2215 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2216 { 2217 int error; 2218 struct siginfo info; 2219 struct task_struct *p; 2220 unsigned long flags; 2221 2222 error = -ESRCH; 2223 info.si_signo = sig; 2224 info.si_errno = 0; 2225 info.si_code = SI_TKILL; 2226 info.si_pid = task_tgid_vnr(current); 2227 info.si_uid = current->uid; 2228 2229 rcu_read_lock(); 2230 p = find_task_by_vpid(pid); 2231 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2232 error = check_kill_permission(sig, &info, p); 2233 /* 2234 * The null signal is a permissions and process existence 2235 * probe. No signal is actually delivered. 2236 * 2237 * If lock_task_sighand() fails we pretend the task dies 2238 * after receiving the signal. The window is tiny, and the 2239 * signal is private anyway. 2240 */ 2241 if (!error && sig && lock_task_sighand(p, &flags)) { 2242 error = specific_send_sig_info(sig, &info, p); 2243 unlock_task_sighand(p, &flags); 2244 } 2245 } 2246 rcu_read_unlock(); 2247 2248 return error; 2249 } 2250 2251 /** 2252 * sys_tgkill - send signal to one specific thread 2253 * @tgid: the thread group ID of the thread 2254 * @pid: the PID of the thread 2255 * @sig: signal to be sent 2256 * 2257 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2258 * exists but it's not belonging to the target process anymore. This 2259 * method solves the problem of threads exiting and PIDs getting reused. 2260 */ 2261 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig) 2262 { 2263 /* This is only valid for single tasks */ 2264 if (pid <= 0 || tgid <= 0) 2265 return -EINVAL; 2266 2267 return do_tkill(tgid, pid, sig); 2268 } 2269 2270 /* 2271 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2272 */ 2273 asmlinkage long 2274 sys_tkill(pid_t pid, int sig) 2275 { 2276 /* This is only valid for single tasks */ 2277 if (pid <= 0) 2278 return -EINVAL; 2279 2280 return do_tkill(0, pid, sig); 2281 } 2282 2283 asmlinkage long 2284 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo) 2285 { 2286 siginfo_t info; 2287 2288 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2289 return -EFAULT; 2290 2291 /* Not even root can pretend to send signals from the kernel. 2292 Nor can they impersonate a kill(), which adds source info. */ 2293 if (info.si_code >= 0) 2294 return -EPERM; 2295 info.si_signo = sig; 2296 2297 /* POSIX.1b doesn't mention process groups. */ 2298 return kill_proc_info(sig, &info, pid); 2299 } 2300 2301 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2302 { 2303 struct task_struct *t = current; 2304 struct k_sigaction *k; 2305 sigset_t mask; 2306 2307 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2308 return -EINVAL; 2309 2310 k = &t->sighand->action[sig-1]; 2311 2312 spin_lock_irq(¤t->sighand->siglock); 2313 if (oact) 2314 *oact = *k; 2315 2316 if (act) { 2317 sigdelsetmask(&act->sa.sa_mask, 2318 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2319 *k = *act; 2320 /* 2321 * POSIX 3.3.1.3: 2322 * "Setting a signal action to SIG_IGN for a signal that is 2323 * pending shall cause the pending signal to be discarded, 2324 * whether or not it is blocked." 2325 * 2326 * "Setting a signal action to SIG_DFL for a signal that is 2327 * pending and whose default action is to ignore the signal 2328 * (for example, SIGCHLD), shall cause the pending signal to 2329 * be discarded, whether or not it is blocked" 2330 */ 2331 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 2332 sigemptyset(&mask); 2333 sigaddset(&mask, sig); 2334 rm_from_queue_full(&mask, &t->signal->shared_pending); 2335 do { 2336 rm_from_queue_full(&mask, &t->pending); 2337 t = next_thread(t); 2338 } while (t != current); 2339 } 2340 } 2341 2342 spin_unlock_irq(¤t->sighand->siglock); 2343 return 0; 2344 } 2345 2346 int 2347 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2348 { 2349 stack_t oss; 2350 int error; 2351 2352 if (uoss) { 2353 oss.ss_sp = (void __user *) current->sas_ss_sp; 2354 oss.ss_size = current->sas_ss_size; 2355 oss.ss_flags = sas_ss_flags(sp); 2356 } 2357 2358 if (uss) { 2359 void __user *ss_sp; 2360 size_t ss_size; 2361 int ss_flags; 2362 2363 error = -EFAULT; 2364 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2365 || __get_user(ss_sp, &uss->ss_sp) 2366 || __get_user(ss_flags, &uss->ss_flags) 2367 || __get_user(ss_size, &uss->ss_size)) 2368 goto out; 2369 2370 error = -EPERM; 2371 if (on_sig_stack(sp)) 2372 goto out; 2373 2374 error = -EINVAL; 2375 /* 2376 * 2377 * Note - this code used to test ss_flags incorrectly 2378 * old code may have been written using ss_flags==0 2379 * to mean ss_flags==SS_ONSTACK (as this was the only 2380 * way that worked) - this fix preserves that older 2381 * mechanism 2382 */ 2383 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2384 goto out; 2385 2386 if (ss_flags == SS_DISABLE) { 2387 ss_size = 0; 2388 ss_sp = NULL; 2389 } else { 2390 error = -ENOMEM; 2391 if (ss_size < MINSIGSTKSZ) 2392 goto out; 2393 } 2394 2395 current->sas_ss_sp = (unsigned long) ss_sp; 2396 current->sas_ss_size = ss_size; 2397 } 2398 2399 if (uoss) { 2400 error = -EFAULT; 2401 if (copy_to_user(uoss, &oss, sizeof(oss))) 2402 goto out; 2403 } 2404 2405 error = 0; 2406 out: 2407 return error; 2408 } 2409 2410 #ifdef __ARCH_WANT_SYS_SIGPENDING 2411 2412 asmlinkage long 2413 sys_sigpending(old_sigset_t __user *set) 2414 { 2415 return do_sigpending(set, sizeof(*set)); 2416 } 2417 2418 #endif 2419 2420 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2421 /* Some platforms have their own version with special arguments others 2422 support only sys_rt_sigprocmask. */ 2423 2424 asmlinkage long 2425 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2426 { 2427 int error; 2428 old_sigset_t old_set, new_set; 2429 2430 if (set) { 2431 error = -EFAULT; 2432 if (copy_from_user(&new_set, set, sizeof(*set))) 2433 goto out; 2434 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2435 2436 spin_lock_irq(¤t->sighand->siglock); 2437 old_set = current->blocked.sig[0]; 2438 2439 error = 0; 2440 switch (how) { 2441 default: 2442 error = -EINVAL; 2443 break; 2444 case SIG_BLOCK: 2445 sigaddsetmask(¤t->blocked, new_set); 2446 break; 2447 case SIG_UNBLOCK: 2448 sigdelsetmask(¤t->blocked, new_set); 2449 break; 2450 case SIG_SETMASK: 2451 current->blocked.sig[0] = new_set; 2452 break; 2453 } 2454 2455 recalc_sigpending(); 2456 spin_unlock_irq(¤t->sighand->siglock); 2457 if (error) 2458 goto out; 2459 if (oset) 2460 goto set_old; 2461 } else if (oset) { 2462 old_set = current->blocked.sig[0]; 2463 set_old: 2464 error = -EFAULT; 2465 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2466 goto out; 2467 } 2468 error = 0; 2469 out: 2470 return error; 2471 } 2472 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2473 2474 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2475 asmlinkage long 2476 sys_rt_sigaction(int sig, 2477 const struct sigaction __user *act, 2478 struct sigaction __user *oact, 2479 size_t sigsetsize) 2480 { 2481 struct k_sigaction new_sa, old_sa; 2482 int ret = -EINVAL; 2483 2484 /* XXX: Don't preclude handling different sized sigset_t's. */ 2485 if (sigsetsize != sizeof(sigset_t)) 2486 goto out; 2487 2488 if (act) { 2489 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2490 return -EFAULT; 2491 } 2492 2493 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2494 2495 if (!ret && oact) { 2496 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2497 return -EFAULT; 2498 } 2499 out: 2500 return ret; 2501 } 2502 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2503 2504 #ifdef __ARCH_WANT_SYS_SGETMASK 2505 2506 /* 2507 * For backwards compatibility. Functionality superseded by sigprocmask. 2508 */ 2509 asmlinkage long 2510 sys_sgetmask(void) 2511 { 2512 /* SMP safe */ 2513 return current->blocked.sig[0]; 2514 } 2515 2516 asmlinkage long 2517 sys_ssetmask(int newmask) 2518 { 2519 int old; 2520 2521 spin_lock_irq(¤t->sighand->siglock); 2522 old = current->blocked.sig[0]; 2523 2524 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2525 sigmask(SIGSTOP))); 2526 recalc_sigpending(); 2527 spin_unlock_irq(¤t->sighand->siglock); 2528 2529 return old; 2530 } 2531 #endif /* __ARCH_WANT_SGETMASK */ 2532 2533 #ifdef __ARCH_WANT_SYS_SIGNAL 2534 /* 2535 * For backwards compatibility. Functionality superseded by sigaction. 2536 */ 2537 asmlinkage unsigned long 2538 sys_signal(int sig, __sighandler_t handler) 2539 { 2540 struct k_sigaction new_sa, old_sa; 2541 int ret; 2542 2543 new_sa.sa.sa_handler = handler; 2544 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2545 sigemptyset(&new_sa.sa.sa_mask); 2546 2547 ret = do_sigaction(sig, &new_sa, &old_sa); 2548 2549 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2550 } 2551 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2552 2553 #ifdef __ARCH_WANT_SYS_PAUSE 2554 2555 asmlinkage long 2556 sys_pause(void) 2557 { 2558 current->state = TASK_INTERRUPTIBLE; 2559 schedule(); 2560 return -ERESTARTNOHAND; 2561 } 2562 2563 #endif 2564 2565 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2566 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2567 { 2568 sigset_t newset; 2569 2570 /* XXX: Don't preclude handling different sized sigset_t's. */ 2571 if (sigsetsize != sizeof(sigset_t)) 2572 return -EINVAL; 2573 2574 if (copy_from_user(&newset, unewset, sizeof(newset))) 2575 return -EFAULT; 2576 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2577 2578 spin_lock_irq(¤t->sighand->siglock); 2579 current->saved_sigmask = current->blocked; 2580 current->blocked = newset; 2581 recalc_sigpending(); 2582 spin_unlock_irq(¤t->sighand->siglock); 2583 2584 current->state = TASK_INTERRUPTIBLE; 2585 schedule(); 2586 set_restore_sigmask(); 2587 return -ERESTARTNOHAND; 2588 } 2589 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2590 2591 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2592 { 2593 return NULL; 2594 } 2595 2596 void __init signals_init(void) 2597 { 2598 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2599 } 2600