xref: /openbmc/linux/kernel/signal.c (revision 36de991e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h>	/* for syscall_get_* */
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current))
185 		clear_thread_flag(TIF_SIGPENDING);
186 
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189 
190 void calculate_sigpending(void)
191 {
192 	/* Have any signals or users of TIF_SIGPENDING been delayed
193 	 * until after fork?
194 	 */
195 	spin_lock_irq(&current->sighand->siglock);
196 	set_tsk_thread_flag(current, TIF_SIGPENDING);
197 	recalc_sigpending();
198 	spin_unlock_irq(&current->sighand->siglock);
199 }
200 
201 /* Given the mask, find the first available signal that should be serviced. */
202 
203 #define SYNCHRONOUS_MASK \
204 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 	unsigned long i, *s, *m, x;
210 	int sig = 0;
211 
212 	s = pending->signal.sig;
213 	m = mask->sig;
214 
215 	/*
216 	 * Handle the first word specially: it contains the
217 	 * synchronous signals that need to be dequeued first.
218 	 */
219 	x = *s &~ *m;
220 	if (x) {
221 		if (x & SYNCHRONOUS_MASK)
222 			x &= SYNCHRONOUS_MASK;
223 		sig = ffz(~x) + 1;
224 		return sig;
225 	}
226 
227 	switch (_NSIG_WORDS) {
228 	default:
229 		for (i = 1; i < _NSIG_WORDS; ++i) {
230 			x = *++s &~ *++m;
231 			if (!x)
232 				continue;
233 			sig = ffz(~x) + i*_NSIG_BPW + 1;
234 			break;
235 		}
236 		break;
237 
238 	case 2:
239 		x = s[1] &~ m[1];
240 		if (!x)
241 			break;
242 		sig = ffz(~x) + _NSIG_BPW + 1;
243 		break;
244 
245 	case 1:
246 		/* Nothing to do */
247 		break;
248 	}
249 
250 	return sig;
251 }
252 
253 static inline void print_dropped_signal(int sig)
254 {
255 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 
257 	if (!print_fatal_signals)
258 		return;
259 
260 	if (!__ratelimit(&ratelimit_state))
261 		return;
262 
263 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 				current->comm, current->pid, sig);
265 }
266 
267 /**
268  * task_set_jobctl_pending - set jobctl pending bits
269  * @task: target task
270  * @mask: pending bits to set
271  *
272  * Clear @mask from @task->jobctl.  @mask must be subset of
273  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
275  * cleared.  If @task is already being killed or exiting, this function
276  * becomes noop.
277  *
278  * CONTEXT:
279  * Must be called with @task->sighand->siglock held.
280  *
281  * RETURNS:
282  * %true if @mask is set, %false if made noop because @task was dying.
283  */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 
290 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 		return false;
292 
293 	if (mask & JOBCTL_STOP_SIGMASK)
294 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 
296 	task->jobctl |= mask;
297 	return true;
298 }
299 
300 /**
301  * task_clear_jobctl_trapping - clear jobctl trapping bit
302  * @task: target task
303  *
304  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305  * Clear it and wake up the ptracer.  Note that we don't need any further
306  * locking.  @task->siglock guarantees that @task->parent points to the
307  * ptracer.
308  *
309  * CONTEXT:
310  * Must be called with @task->sighand->siglock held.
311  */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 		task->jobctl &= ~JOBCTL_TRAPPING;
316 		smp_mb();	/* advised by wake_up_bit() */
317 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 	}
319 }
320 
321 /**
322  * task_clear_jobctl_pending - clear jobctl pending bits
323  * @task: target task
324  * @mask: pending bits to clear
325  *
326  * Clear @mask from @task->jobctl.  @mask must be subset of
327  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
328  * STOP bits are cleared together.
329  *
330  * If clearing of @mask leaves no stop or trap pending, this function calls
331  * task_clear_jobctl_trapping().
332  *
333  * CONTEXT:
334  * Must be called with @task->sighand->siglock held.
335  */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 
340 	if (mask & JOBCTL_STOP_PENDING)
341 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 
343 	task->jobctl &= ~mask;
344 
345 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 		task_clear_jobctl_trapping(task);
347 }
348 
349 /**
350  * task_participate_group_stop - participate in a group stop
351  * @task: task participating in a group stop
352  *
353  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354  * Group stop states are cleared and the group stop count is consumed if
355  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
356  * stop, the appropriate `SIGNAL_*` flags are set.
357  *
358  * CONTEXT:
359  * Must be called with @task->sighand->siglock held.
360  *
361  * RETURNS:
362  * %true if group stop completion should be notified to the parent, %false
363  * otherwise.
364  */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 	struct signal_struct *sig = task->signal;
368 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 
370 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 
372 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373 
374 	if (!consume)
375 		return false;
376 
377 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 		sig->group_stop_count--;
379 
380 	/*
381 	 * Tell the caller to notify completion iff we are entering into a
382 	 * fresh group stop.  Read comment in do_signal_stop() for details.
383 	 */
384 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 		return true;
387 	}
388 	return false;
389 }
390 
391 void task_join_group_stop(struct task_struct *task)
392 {
393 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 	struct signal_struct *sig = current->signal;
395 
396 	if (sig->group_stop_count) {
397 		sig->group_stop_count++;
398 		mask |= JOBCTL_STOP_CONSUME;
399 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 		return;
401 
402 	/* Have the new thread join an on-going signal group stop */
403 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 		 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 	struct sigqueue *q = NULL;
416 	struct ucounts *ucounts = NULL;
417 	long sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	ucounts = task_ucounts(t);
429 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 	rcu_read_unlock();
431 	if (!sigpending)
432 		return NULL;
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = sigqueue_flags;
445 		q->ucounts = ucounts;
446 	}
447 	return q;
448 }
449 
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 	if (q->flags & SIGQUEUE_PREALLOC)
453 		return;
454 	if (q->ucounts) {
455 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 		q->ucounts = NULL;
457 	}
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 	bool resched_timer = false;
632 	int signr;
633 
634 	/* We only dequeue private signals from ourselves, we don't let
635 	 * signalfd steal them
636 	 */
637 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 	if (!signr) {
639 		signr = __dequeue_signal(&tsk->signal->shared_pending,
640 					 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 		/*
643 		 * itimer signal ?
644 		 *
645 		 * itimers are process shared and we restart periodic
646 		 * itimers in the signal delivery path to prevent DoS
647 		 * attacks in the high resolution timer case. This is
648 		 * compliant with the old way of self-restarting
649 		 * itimers, as the SIGALRM is a legacy signal and only
650 		 * queued once. Changing the restart behaviour to
651 		 * restart the timer in the signal dequeue path is
652 		 * reducing the timer noise on heavy loaded !highres
653 		 * systems too.
654 		 */
655 		if (unlikely(signr == SIGALRM)) {
656 			struct hrtimer *tmr = &tsk->signal->real_timer;
657 
658 			if (!hrtimer_is_queued(tmr) &&
659 			    tsk->signal->it_real_incr != 0) {
660 				hrtimer_forward(tmr, tmr->base->get_time(),
661 						tsk->signal->it_real_incr);
662 				hrtimer_restart(tmr);
663 			}
664 		}
665 #endif
666 	}
667 
668 	recalc_sigpending();
669 	if (!signr)
670 		return 0;
671 
672 	if (unlikely(sig_kernel_stop(signr))) {
673 		/*
674 		 * Set a marker that we have dequeued a stop signal.  Our
675 		 * caller might release the siglock and then the pending
676 		 * stop signal it is about to process is no longer in the
677 		 * pending bitmasks, but must still be cleared by a SIGCONT
678 		 * (and overruled by a SIGKILL).  So those cases clear this
679 		 * shared flag after we've set it.  Note that this flag may
680 		 * remain set after the signal we return is ignored or
681 		 * handled.  That doesn't matter because its only purpose
682 		 * is to alert stop-signal processing code when another
683 		 * processor has come along and cleared the flag.
684 		 */
685 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 	}
687 #ifdef CONFIG_POSIX_TIMERS
688 	if (resched_timer) {
689 		/*
690 		 * Release the siglock to ensure proper locking order
691 		 * of timer locks outside of siglocks.  Note, we leave
692 		 * irqs disabled here, since the posix-timers code is
693 		 * about to disable them again anyway.
694 		 */
695 		spin_unlock(&tsk->sighand->siglock);
696 		posixtimer_rearm(info);
697 		spin_lock(&tsk->sighand->siglock);
698 
699 		/* Don't expose the si_sys_private value to userspace */
700 		info->si_sys_private = 0;
701 	}
702 #endif
703 	return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706 
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 	struct task_struct *tsk = current;
710 	struct sigpending *pending = &tsk->pending;
711 	struct sigqueue *q, *sync = NULL;
712 
713 	/*
714 	 * Might a synchronous signal be in the queue?
715 	 */
716 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 		return 0;
718 
719 	/*
720 	 * Return the first synchronous signal in the queue.
721 	 */
722 	list_for_each_entry(q, &pending->list, list) {
723 		/* Synchronous signals have a positive si_code */
724 		if ((q->info.si_code > SI_USER) &&
725 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 			sync = q;
727 			goto next;
728 		}
729 	}
730 	return 0;
731 next:
732 	/*
733 	 * Check if there is another siginfo for the same signal.
734 	 */
735 	list_for_each_entry_continue(q, &pending->list, list) {
736 		if (q->info.si_signo == sync->info.si_signo)
737 			goto still_pending;
738 	}
739 
740 	sigdelset(&pending->signal, sync->info.si_signo);
741 	recalc_sigpending();
742 still_pending:
743 	list_del_init(&sync->list);
744 	copy_siginfo(info, &sync->info);
745 	__sigqueue_free(sync);
746 	return info->si_signo;
747 }
748 
749 /*
750  * Tell a process that it has a new active signal..
751  *
752  * NOTE! we rely on the previous spin_lock to
753  * lock interrupts for us! We can only be called with
754  * "siglock" held, and the local interrupt must
755  * have been disabled when that got acquired!
756  *
757  * No need to set need_resched since signal event passing
758  * goes through ->blocked
759  */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 	set_tsk_thread_flag(t, TIF_SIGPENDING);
763 	/*
764 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 	 * case. We don't check t->state here because there is a race with it
766 	 * executing another processor and just now entering stopped state.
767 	 * By using wake_up_state, we ensure the process will wake up and
768 	 * handle its death signal.
769 	 */
770 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 		kick_process(t);
772 }
773 
774 /*
775  * Remove signals in mask from the pending set and queue.
776  * Returns 1 if any signals were found.
777  *
778  * All callers must be holding the siglock.
779  */
780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 	struct sigqueue *q, *n;
783 	sigset_t m;
784 
785 	sigandsets(&m, mask, &s->signal);
786 	if (sigisemptyset(&m))
787 		return;
788 
789 	sigandnsets(&s->signal, &s->signal, mask);
790 	list_for_each_entry_safe(q, n, &s->list, list) {
791 		if (sigismember(mask, q->info.si_signo)) {
792 			list_del_init(&q->list);
793 			__sigqueue_free(q);
794 		}
795 	}
796 }
797 
798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 	return info <= SEND_SIG_PRIV;
801 }
802 
803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 	return info == SEND_SIG_NOINFO ||
806 		(!is_si_special(info) && SI_FROMUSER(info));
807 }
808 
809 /*
810  * called with RCU read lock from check_kill_permission()
811  */
812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 	const struct cred *cred = current_cred();
815 	const struct cred *tcred = __task_cred(t);
816 
817 	return uid_eq(cred->euid, tcred->suid) ||
818 	       uid_eq(cred->euid, tcred->uid) ||
819 	       uid_eq(cred->uid, tcred->suid) ||
820 	       uid_eq(cred->uid, tcred->uid) ||
821 	       ns_capable(tcred->user_ns, CAP_KILL);
822 }
823 
824 /*
825  * Bad permissions for sending the signal
826  * - the caller must hold the RCU read lock
827  */
828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 				 struct task_struct *t)
830 {
831 	struct pid *sid;
832 	int error;
833 
834 	if (!valid_signal(sig))
835 		return -EINVAL;
836 
837 	if (!si_fromuser(info))
838 		return 0;
839 
840 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 	if (error)
842 		return error;
843 
844 	if (!same_thread_group(current, t) &&
845 	    !kill_ok_by_cred(t)) {
846 		switch (sig) {
847 		case SIGCONT:
848 			sid = task_session(t);
849 			/*
850 			 * We don't return the error if sid == NULL. The
851 			 * task was unhashed, the caller must notice this.
852 			 */
853 			if (!sid || sid == task_session(current))
854 				break;
855 			fallthrough;
856 		default:
857 			return -EPERM;
858 		}
859 	}
860 
861 	return security_task_kill(t, info, sig, NULL);
862 }
863 
864 /**
865  * ptrace_trap_notify - schedule trap to notify ptracer
866  * @t: tracee wanting to notify tracer
867  *
868  * This function schedules sticky ptrace trap which is cleared on the next
869  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
870  * ptracer.
871  *
872  * If @t is running, STOP trap will be taken.  If trapped for STOP and
873  * ptracer is listening for events, tracee is woken up so that it can
874  * re-trap for the new event.  If trapped otherwise, STOP trap will be
875  * eventually taken without returning to userland after the existing traps
876  * are finished by PTRACE_CONT.
877  *
878  * CONTEXT:
879  * Must be called with @task->sighand->siglock held.
880  */
881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 	assert_spin_locked(&t->sighand->siglock);
885 
886 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889 
890 /*
891  * Handle magic process-wide effects of stop/continue signals. Unlike
892  * the signal actions, these happen immediately at signal-generation
893  * time regardless of blocking, ignoring, or handling.  This does the
894  * actual continuing for SIGCONT, but not the actual stopping for stop
895  * signals. The process stop is done as a signal action for SIG_DFL.
896  *
897  * Returns true if the signal should be actually delivered, otherwise
898  * it should be dropped.
899  */
900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 	struct signal_struct *signal = p->signal;
903 	struct task_struct *t;
904 	sigset_t flush;
905 
906 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 			return sig == SIGKILL;
909 		/*
910 		 * The process is in the middle of dying, nothing to do.
911 		 */
912 	} else if (sig_kernel_stop(sig)) {
913 		/*
914 		 * This is a stop signal.  Remove SIGCONT from all queues.
915 		 */
916 		siginitset(&flush, sigmask(SIGCONT));
917 		flush_sigqueue_mask(&flush, &signal->shared_pending);
918 		for_each_thread(p, t)
919 			flush_sigqueue_mask(&flush, &t->pending);
920 	} else if (sig == SIGCONT) {
921 		unsigned int why;
922 		/*
923 		 * Remove all stop signals from all queues, wake all threads.
924 		 */
925 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 		flush_sigqueue_mask(&flush, &signal->shared_pending);
927 		for_each_thread(p, t) {
928 			flush_sigqueue_mask(&flush, &t->pending);
929 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 			if (likely(!(t->ptrace & PT_SEIZED)))
931 				wake_up_state(t, __TASK_STOPPED);
932 			else
933 				ptrace_trap_notify(t);
934 		}
935 
936 		/*
937 		 * Notify the parent with CLD_CONTINUED if we were stopped.
938 		 *
939 		 * If we were in the middle of a group stop, we pretend it
940 		 * was already finished, and then continued. Since SIGCHLD
941 		 * doesn't queue we report only CLD_STOPPED, as if the next
942 		 * CLD_CONTINUED was dropped.
943 		 */
944 		why = 0;
945 		if (signal->flags & SIGNAL_STOP_STOPPED)
946 			why |= SIGNAL_CLD_CONTINUED;
947 		else if (signal->group_stop_count)
948 			why |= SIGNAL_CLD_STOPPED;
949 
950 		if (why) {
951 			/*
952 			 * The first thread which returns from do_signal_stop()
953 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 			 * notify its parent. See get_signal().
955 			 */
956 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 			signal->group_stop_count = 0;
958 			signal->group_exit_code = 0;
959 		}
960 	}
961 
962 	return !sig_ignored(p, sig, force);
963 }
964 
965 /*
966  * Test if P wants to take SIG.  After we've checked all threads with this,
967  * it's equivalent to finding no threads not blocking SIG.  Any threads not
968  * blocking SIG were ruled out because they are not running and already
969  * have pending signals.  Such threads will dequeue from the shared queue
970  * as soon as they're available, so putting the signal on the shared queue
971  * will be equivalent to sending it to one such thread.
972  */
973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 	if (sigismember(&p->blocked, sig))
976 		return false;
977 
978 	if (p->flags & PF_EXITING)
979 		return false;
980 
981 	if (sig == SIGKILL)
982 		return true;
983 
984 	if (task_is_stopped_or_traced(p))
985 		return false;
986 
987 	return task_curr(p) || !task_sigpending(p);
988 }
989 
990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 	struct signal_struct *signal = p->signal;
993 	struct task_struct *t;
994 
995 	/*
996 	 * Now find a thread we can wake up to take the signal off the queue.
997 	 *
998 	 * If the main thread wants the signal, it gets first crack.
999 	 * Probably the least surprising to the average bear.
1000 	 */
1001 	if (wants_signal(sig, p))
1002 		t = p;
1003 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 		/*
1005 		 * There is just one thread and it does not need to be woken.
1006 		 * It will dequeue unblocked signals before it runs again.
1007 		 */
1008 		return;
1009 	else {
1010 		/*
1011 		 * Otherwise try to find a suitable thread.
1012 		 */
1013 		t = signal->curr_target;
1014 		while (!wants_signal(sig, t)) {
1015 			t = next_thread(t);
1016 			if (t == signal->curr_target)
1017 				/*
1018 				 * No thread needs to be woken.
1019 				 * Any eligible threads will see
1020 				 * the signal in the queue soon.
1021 				 */
1022 				return;
1023 		}
1024 		signal->curr_target = t;
1025 	}
1026 
1027 	/*
1028 	 * Found a killable thread.  If the signal will be fatal,
1029 	 * then start taking the whole group down immediately.
1030 	 */
1031 	if (sig_fatal(p, sig) &&
1032 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 	    !sigismember(&t->real_blocked, sig) &&
1034 	    (sig == SIGKILL || !p->ptrace)) {
1035 		/*
1036 		 * This signal will be fatal to the whole group.
1037 		 */
1038 		if (!sig_kernel_coredump(sig)) {
1039 			/*
1040 			 * Start a group exit and wake everybody up.
1041 			 * This way we don't have other threads
1042 			 * running and doing things after a slower
1043 			 * thread has the fatal signal pending.
1044 			 */
1045 			signal->flags = SIGNAL_GROUP_EXIT;
1046 			signal->group_exit_code = sig;
1047 			signal->group_stop_count = 0;
1048 			t = p;
1049 			do {
1050 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 				sigaddset(&t->pending.signal, SIGKILL);
1052 				signal_wake_up(t, 1);
1053 			} while_each_thread(p, t);
1054 			return;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * The signal is already in the shared-pending queue.
1060 	 * Tell the chosen thread to wake up and dequeue it.
1061 	 */
1062 	signal_wake_up(t, sig == SIGKILL);
1063 	return;
1064 }
1065 
1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070 
1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 			enum pid_type type, bool force)
1073 {
1074 	struct sigpending *pending;
1075 	struct sigqueue *q;
1076 	int override_rlimit;
1077 	int ret = 0, result;
1078 
1079 	assert_spin_locked(&t->sighand->siglock);
1080 
1081 	result = TRACE_SIGNAL_IGNORED;
1082 	if (!prepare_signal(sig, t, force))
1083 		goto ret;
1084 
1085 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 	/*
1087 	 * Short-circuit ignored signals and support queuing
1088 	 * exactly one non-rt signal, so that we can get more
1089 	 * detailed information about the cause of the signal.
1090 	 */
1091 	result = TRACE_SIGNAL_ALREADY_PENDING;
1092 	if (legacy_queue(pending, sig))
1093 		goto ret;
1094 
1095 	result = TRACE_SIGNAL_DELIVERED;
1096 	/*
1097 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 	 */
1099 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 		goto out_set;
1101 
1102 	/*
1103 	 * Real-time signals must be queued if sent by sigqueue, or
1104 	 * some other real-time mechanism.  It is implementation
1105 	 * defined whether kill() does so.  We attempt to do so, on
1106 	 * the principle of least surprise, but since kill is not
1107 	 * allowed to fail with EAGAIN when low on memory we just
1108 	 * make sure at least one signal gets delivered and don't
1109 	 * pass on the info struct.
1110 	 */
1111 	if (sig < SIGRTMIN)
1112 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 	else
1114 		override_rlimit = 0;
1115 
1116 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1117 
1118 	if (q) {
1119 		list_add_tail(&q->list, &pending->list);
1120 		switch ((unsigned long) info) {
1121 		case (unsigned long) SEND_SIG_NOINFO:
1122 			clear_siginfo(&q->info);
1123 			q->info.si_signo = sig;
1124 			q->info.si_errno = 0;
1125 			q->info.si_code = SI_USER;
1126 			q->info.si_pid = task_tgid_nr_ns(current,
1127 							task_active_pid_ns(t));
1128 			rcu_read_lock();
1129 			q->info.si_uid =
1130 				from_kuid_munged(task_cred_xxx(t, user_ns),
1131 						 current_uid());
1132 			rcu_read_unlock();
1133 			break;
1134 		case (unsigned long) SEND_SIG_PRIV:
1135 			clear_siginfo(&q->info);
1136 			q->info.si_signo = sig;
1137 			q->info.si_errno = 0;
1138 			q->info.si_code = SI_KERNEL;
1139 			q->info.si_pid = 0;
1140 			q->info.si_uid = 0;
1141 			break;
1142 		default:
1143 			copy_siginfo(&q->info, info);
1144 			break;
1145 		}
1146 	} else if (!is_si_special(info) &&
1147 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1148 		/*
1149 		 * Queue overflow, abort.  We may abort if the
1150 		 * signal was rt and sent by user using something
1151 		 * other than kill().
1152 		 */
1153 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1154 		ret = -EAGAIN;
1155 		goto ret;
1156 	} else {
1157 		/*
1158 		 * This is a silent loss of information.  We still
1159 		 * send the signal, but the *info bits are lost.
1160 		 */
1161 		result = TRACE_SIGNAL_LOSE_INFO;
1162 	}
1163 
1164 out_set:
1165 	signalfd_notify(t, sig);
1166 	sigaddset(&pending->signal, sig);
1167 
1168 	/* Let multiprocess signals appear after on-going forks */
1169 	if (type > PIDTYPE_TGID) {
1170 		struct multiprocess_signals *delayed;
1171 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1172 			sigset_t *signal = &delayed->signal;
1173 			/* Can't queue both a stop and a continue signal */
1174 			if (sig == SIGCONT)
1175 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1176 			else if (sig_kernel_stop(sig))
1177 				sigdelset(signal, SIGCONT);
1178 			sigaddset(signal, sig);
1179 		}
1180 	}
1181 
1182 	complete_signal(sig, t, type);
1183 ret:
1184 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1185 	return ret;
1186 }
1187 
1188 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1189 {
1190 	bool ret = false;
1191 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1192 	case SIL_KILL:
1193 	case SIL_CHLD:
1194 	case SIL_RT:
1195 		ret = true;
1196 		break;
1197 	case SIL_TIMER:
1198 	case SIL_POLL:
1199 	case SIL_FAULT:
1200 	case SIL_FAULT_TRAPNO:
1201 	case SIL_FAULT_MCEERR:
1202 	case SIL_FAULT_BNDERR:
1203 	case SIL_FAULT_PKUERR:
1204 	case SIL_FAULT_PERF_EVENT:
1205 	case SIL_SYS:
1206 		ret = false;
1207 		break;
1208 	}
1209 	return ret;
1210 }
1211 
1212 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1213 			enum pid_type type)
1214 {
1215 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1216 	bool force = false;
1217 
1218 	if (info == SEND_SIG_NOINFO) {
1219 		/* Force if sent from an ancestor pid namespace */
1220 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1221 	} else if (info == SEND_SIG_PRIV) {
1222 		/* Don't ignore kernel generated signals */
1223 		force = true;
1224 	} else if (has_si_pid_and_uid(info)) {
1225 		/* SIGKILL and SIGSTOP is special or has ids */
1226 		struct user_namespace *t_user_ns;
1227 
1228 		rcu_read_lock();
1229 		t_user_ns = task_cred_xxx(t, user_ns);
1230 		if (current_user_ns() != t_user_ns) {
1231 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1232 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1233 		}
1234 		rcu_read_unlock();
1235 
1236 		/* A kernel generated signal? */
1237 		force = (info->si_code == SI_KERNEL);
1238 
1239 		/* From an ancestor pid namespace? */
1240 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1241 			info->si_pid = 0;
1242 			force = true;
1243 		}
1244 	}
1245 	return __send_signal(sig, info, t, type, force);
1246 }
1247 
1248 static void print_fatal_signal(int signr)
1249 {
1250 	struct pt_regs *regs = signal_pt_regs();
1251 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1252 
1253 #if defined(__i386__) && !defined(__arch_um__)
1254 	pr_info("code at %08lx: ", regs->ip);
1255 	{
1256 		int i;
1257 		for (i = 0; i < 16; i++) {
1258 			unsigned char insn;
1259 
1260 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1261 				break;
1262 			pr_cont("%02x ", insn);
1263 		}
1264 	}
1265 	pr_cont("\n");
1266 #endif
1267 	preempt_disable();
1268 	show_regs(regs);
1269 	preempt_enable();
1270 }
1271 
1272 static int __init setup_print_fatal_signals(char *str)
1273 {
1274 	get_option (&str, &print_fatal_signals);
1275 
1276 	return 1;
1277 }
1278 
1279 __setup("print-fatal-signals=", setup_print_fatal_signals);
1280 
1281 int
1282 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1283 {
1284 	return send_signal(sig, info, p, PIDTYPE_TGID);
1285 }
1286 
1287 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1288 			enum pid_type type)
1289 {
1290 	unsigned long flags;
1291 	int ret = -ESRCH;
1292 
1293 	if (lock_task_sighand(p, &flags)) {
1294 		ret = send_signal(sig, info, p, type);
1295 		unlock_task_sighand(p, &flags);
1296 	}
1297 
1298 	return ret;
1299 }
1300 
1301 enum sig_handler {
1302 	HANDLER_CURRENT, /* If reachable use the current handler */
1303 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1304 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1305 };
1306 
1307 /*
1308  * Force a signal that the process can't ignore: if necessary
1309  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1310  *
1311  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1312  * since we do not want to have a signal handler that was blocked
1313  * be invoked when user space had explicitly blocked it.
1314  *
1315  * We don't want to have recursive SIGSEGV's etc, for example,
1316  * that is why we also clear SIGNAL_UNKILLABLE.
1317  */
1318 static int
1319 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1320 	enum sig_handler handler)
1321 {
1322 	unsigned long int flags;
1323 	int ret, blocked, ignored;
1324 	struct k_sigaction *action;
1325 	int sig = info->si_signo;
1326 
1327 	spin_lock_irqsave(&t->sighand->siglock, flags);
1328 	action = &t->sighand->action[sig-1];
1329 	ignored = action->sa.sa_handler == SIG_IGN;
1330 	blocked = sigismember(&t->blocked, sig);
1331 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1332 		action->sa.sa_handler = SIG_DFL;
1333 		if (handler == HANDLER_EXIT)
1334 			action->sa.sa_flags |= SA_IMMUTABLE;
1335 		if (blocked) {
1336 			sigdelset(&t->blocked, sig);
1337 			recalc_sigpending_and_wake(t);
1338 		}
1339 	}
1340 	/*
1341 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1342 	 * debugging to leave init killable.
1343 	 */
1344 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1345 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1346 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1347 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1348 
1349 	return ret;
1350 }
1351 
1352 int force_sig_info(struct kernel_siginfo *info)
1353 {
1354 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1355 }
1356 
1357 /*
1358  * Nuke all other threads in the group.
1359  */
1360 int zap_other_threads(struct task_struct *p)
1361 {
1362 	struct task_struct *t = p;
1363 	int count = 0;
1364 
1365 	p->signal->group_stop_count = 0;
1366 
1367 	while_each_thread(p, t) {
1368 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1369 		count++;
1370 
1371 		/* Don't bother with already dead threads */
1372 		if (t->exit_state)
1373 			continue;
1374 		sigaddset(&t->pending.signal, SIGKILL);
1375 		signal_wake_up(t, 1);
1376 	}
1377 
1378 	return count;
1379 }
1380 
1381 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1382 					   unsigned long *flags)
1383 {
1384 	struct sighand_struct *sighand;
1385 
1386 	rcu_read_lock();
1387 	for (;;) {
1388 		sighand = rcu_dereference(tsk->sighand);
1389 		if (unlikely(sighand == NULL))
1390 			break;
1391 
1392 		/*
1393 		 * This sighand can be already freed and even reused, but
1394 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1395 		 * initializes ->siglock: this slab can't go away, it has
1396 		 * the same object type, ->siglock can't be reinitialized.
1397 		 *
1398 		 * We need to ensure that tsk->sighand is still the same
1399 		 * after we take the lock, we can race with de_thread() or
1400 		 * __exit_signal(). In the latter case the next iteration
1401 		 * must see ->sighand == NULL.
1402 		 */
1403 		spin_lock_irqsave(&sighand->siglock, *flags);
1404 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1405 			break;
1406 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1407 	}
1408 	rcu_read_unlock();
1409 
1410 	return sighand;
1411 }
1412 
1413 #ifdef CONFIG_LOCKDEP
1414 void lockdep_assert_task_sighand_held(struct task_struct *task)
1415 {
1416 	struct sighand_struct *sighand;
1417 
1418 	rcu_read_lock();
1419 	sighand = rcu_dereference(task->sighand);
1420 	if (sighand)
1421 		lockdep_assert_held(&sighand->siglock);
1422 	else
1423 		WARN_ON_ONCE(1);
1424 	rcu_read_unlock();
1425 }
1426 #endif
1427 
1428 /*
1429  * send signal info to all the members of a group
1430  */
1431 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1432 			struct task_struct *p, enum pid_type type)
1433 {
1434 	int ret;
1435 
1436 	rcu_read_lock();
1437 	ret = check_kill_permission(sig, info, p);
1438 	rcu_read_unlock();
1439 
1440 	if (!ret && sig)
1441 		ret = do_send_sig_info(sig, info, p, type);
1442 
1443 	return ret;
1444 }
1445 
1446 /*
1447  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1448  * control characters do (^C, ^Z etc)
1449  * - the caller must hold at least a readlock on tasklist_lock
1450  */
1451 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1452 {
1453 	struct task_struct *p = NULL;
1454 	int retval, success;
1455 
1456 	success = 0;
1457 	retval = -ESRCH;
1458 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1459 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1460 		success |= !err;
1461 		retval = err;
1462 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1463 	return success ? 0 : retval;
1464 }
1465 
1466 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1467 {
1468 	int error = -ESRCH;
1469 	struct task_struct *p;
1470 
1471 	for (;;) {
1472 		rcu_read_lock();
1473 		p = pid_task(pid, PIDTYPE_PID);
1474 		if (p)
1475 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1476 		rcu_read_unlock();
1477 		if (likely(!p || error != -ESRCH))
1478 			return error;
1479 
1480 		/*
1481 		 * The task was unhashed in between, try again.  If it
1482 		 * is dead, pid_task() will return NULL, if we race with
1483 		 * de_thread() it will find the new leader.
1484 		 */
1485 	}
1486 }
1487 
1488 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1489 {
1490 	int error;
1491 	rcu_read_lock();
1492 	error = kill_pid_info(sig, info, find_vpid(pid));
1493 	rcu_read_unlock();
1494 	return error;
1495 }
1496 
1497 static inline bool kill_as_cred_perm(const struct cred *cred,
1498 				     struct task_struct *target)
1499 {
1500 	const struct cred *pcred = __task_cred(target);
1501 
1502 	return uid_eq(cred->euid, pcred->suid) ||
1503 	       uid_eq(cred->euid, pcred->uid) ||
1504 	       uid_eq(cred->uid, pcred->suid) ||
1505 	       uid_eq(cred->uid, pcred->uid);
1506 }
1507 
1508 /*
1509  * The usb asyncio usage of siginfo is wrong.  The glibc support
1510  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1511  * AKA after the generic fields:
1512  *	kernel_pid_t	si_pid;
1513  *	kernel_uid32_t	si_uid;
1514  *	sigval_t	si_value;
1515  *
1516  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1517  * after the generic fields is:
1518  *	void __user 	*si_addr;
1519  *
1520  * This is a practical problem when there is a 64bit big endian kernel
1521  * and a 32bit userspace.  As the 32bit address will encoded in the low
1522  * 32bits of the pointer.  Those low 32bits will be stored at higher
1523  * address than appear in a 32 bit pointer.  So userspace will not
1524  * see the address it was expecting for it's completions.
1525  *
1526  * There is nothing in the encoding that can allow
1527  * copy_siginfo_to_user32 to detect this confusion of formats, so
1528  * handle this by requiring the caller of kill_pid_usb_asyncio to
1529  * notice when this situration takes place and to store the 32bit
1530  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1531  * parameter.
1532  */
1533 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1534 			 struct pid *pid, const struct cred *cred)
1535 {
1536 	struct kernel_siginfo info;
1537 	struct task_struct *p;
1538 	unsigned long flags;
1539 	int ret = -EINVAL;
1540 
1541 	if (!valid_signal(sig))
1542 		return ret;
1543 
1544 	clear_siginfo(&info);
1545 	info.si_signo = sig;
1546 	info.si_errno = errno;
1547 	info.si_code = SI_ASYNCIO;
1548 	*((sigval_t *)&info.si_pid) = addr;
1549 
1550 	rcu_read_lock();
1551 	p = pid_task(pid, PIDTYPE_PID);
1552 	if (!p) {
1553 		ret = -ESRCH;
1554 		goto out_unlock;
1555 	}
1556 	if (!kill_as_cred_perm(cred, p)) {
1557 		ret = -EPERM;
1558 		goto out_unlock;
1559 	}
1560 	ret = security_task_kill(p, &info, sig, cred);
1561 	if (ret)
1562 		goto out_unlock;
1563 
1564 	if (sig) {
1565 		if (lock_task_sighand(p, &flags)) {
1566 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1567 			unlock_task_sighand(p, &flags);
1568 		} else
1569 			ret = -ESRCH;
1570 	}
1571 out_unlock:
1572 	rcu_read_unlock();
1573 	return ret;
1574 }
1575 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1576 
1577 /*
1578  * kill_something_info() interprets pid in interesting ways just like kill(2).
1579  *
1580  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1581  * is probably wrong.  Should make it like BSD or SYSV.
1582  */
1583 
1584 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1585 {
1586 	int ret;
1587 
1588 	if (pid > 0)
1589 		return kill_proc_info(sig, info, pid);
1590 
1591 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1592 	if (pid == INT_MIN)
1593 		return -ESRCH;
1594 
1595 	read_lock(&tasklist_lock);
1596 	if (pid != -1) {
1597 		ret = __kill_pgrp_info(sig, info,
1598 				pid ? find_vpid(-pid) : task_pgrp(current));
1599 	} else {
1600 		int retval = 0, count = 0;
1601 		struct task_struct * p;
1602 
1603 		for_each_process(p) {
1604 			if (task_pid_vnr(p) > 1 &&
1605 					!same_thread_group(p, current)) {
1606 				int err = group_send_sig_info(sig, info, p,
1607 							      PIDTYPE_MAX);
1608 				++count;
1609 				if (err != -EPERM)
1610 					retval = err;
1611 			}
1612 		}
1613 		ret = count ? retval : -ESRCH;
1614 	}
1615 	read_unlock(&tasklist_lock);
1616 
1617 	return ret;
1618 }
1619 
1620 /*
1621  * These are for backward compatibility with the rest of the kernel source.
1622  */
1623 
1624 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1625 {
1626 	/*
1627 	 * Make sure legacy kernel users don't send in bad values
1628 	 * (normal paths check this in check_kill_permission).
1629 	 */
1630 	if (!valid_signal(sig))
1631 		return -EINVAL;
1632 
1633 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1634 }
1635 EXPORT_SYMBOL(send_sig_info);
1636 
1637 #define __si_special(priv) \
1638 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1639 
1640 int
1641 send_sig(int sig, struct task_struct *p, int priv)
1642 {
1643 	return send_sig_info(sig, __si_special(priv), p);
1644 }
1645 EXPORT_SYMBOL(send_sig);
1646 
1647 void force_sig(int sig)
1648 {
1649 	struct kernel_siginfo info;
1650 
1651 	clear_siginfo(&info);
1652 	info.si_signo = sig;
1653 	info.si_errno = 0;
1654 	info.si_code = SI_KERNEL;
1655 	info.si_pid = 0;
1656 	info.si_uid = 0;
1657 	force_sig_info(&info);
1658 }
1659 EXPORT_SYMBOL(force_sig);
1660 
1661 void force_fatal_sig(int sig)
1662 {
1663 	struct kernel_siginfo info;
1664 
1665 	clear_siginfo(&info);
1666 	info.si_signo = sig;
1667 	info.si_errno = 0;
1668 	info.si_code = SI_KERNEL;
1669 	info.si_pid = 0;
1670 	info.si_uid = 0;
1671 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1672 }
1673 
1674 void force_exit_sig(int sig)
1675 {
1676 	struct kernel_siginfo info;
1677 
1678 	clear_siginfo(&info);
1679 	info.si_signo = sig;
1680 	info.si_errno = 0;
1681 	info.si_code = SI_KERNEL;
1682 	info.si_pid = 0;
1683 	info.si_uid = 0;
1684 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1685 }
1686 
1687 /*
1688  * When things go south during signal handling, we
1689  * will force a SIGSEGV. And if the signal that caused
1690  * the problem was already a SIGSEGV, we'll want to
1691  * make sure we don't even try to deliver the signal..
1692  */
1693 void force_sigsegv(int sig)
1694 {
1695 	if (sig == SIGSEGV)
1696 		force_fatal_sig(SIGSEGV);
1697 	else
1698 		force_sig(SIGSEGV);
1699 }
1700 
1701 int force_sig_fault_to_task(int sig, int code, void __user *addr
1702 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1703 	, struct task_struct *t)
1704 {
1705 	struct kernel_siginfo info;
1706 
1707 	clear_siginfo(&info);
1708 	info.si_signo = sig;
1709 	info.si_errno = 0;
1710 	info.si_code  = code;
1711 	info.si_addr  = addr;
1712 #ifdef __ia64__
1713 	info.si_imm = imm;
1714 	info.si_flags = flags;
1715 	info.si_isr = isr;
1716 #endif
1717 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1718 }
1719 
1720 int force_sig_fault(int sig, int code, void __user *addr
1721 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1722 {
1723 	return force_sig_fault_to_task(sig, code, addr
1724 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1725 }
1726 
1727 int send_sig_fault(int sig, int code, void __user *addr
1728 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1729 	, struct task_struct *t)
1730 {
1731 	struct kernel_siginfo info;
1732 
1733 	clear_siginfo(&info);
1734 	info.si_signo = sig;
1735 	info.si_errno = 0;
1736 	info.si_code  = code;
1737 	info.si_addr  = addr;
1738 #ifdef __ia64__
1739 	info.si_imm = imm;
1740 	info.si_flags = flags;
1741 	info.si_isr = isr;
1742 #endif
1743 	return send_sig_info(info.si_signo, &info, t);
1744 }
1745 
1746 int force_sig_mceerr(int code, void __user *addr, short lsb)
1747 {
1748 	struct kernel_siginfo info;
1749 
1750 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1751 	clear_siginfo(&info);
1752 	info.si_signo = SIGBUS;
1753 	info.si_errno = 0;
1754 	info.si_code = code;
1755 	info.si_addr = addr;
1756 	info.si_addr_lsb = lsb;
1757 	return force_sig_info(&info);
1758 }
1759 
1760 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1761 {
1762 	struct kernel_siginfo info;
1763 
1764 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1765 	clear_siginfo(&info);
1766 	info.si_signo = SIGBUS;
1767 	info.si_errno = 0;
1768 	info.si_code = code;
1769 	info.si_addr = addr;
1770 	info.si_addr_lsb = lsb;
1771 	return send_sig_info(info.si_signo, &info, t);
1772 }
1773 EXPORT_SYMBOL(send_sig_mceerr);
1774 
1775 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1776 {
1777 	struct kernel_siginfo info;
1778 
1779 	clear_siginfo(&info);
1780 	info.si_signo = SIGSEGV;
1781 	info.si_errno = 0;
1782 	info.si_code  = SEGV_BNDERR;
1783 	info.si_addr  = addr;
1784 	info.si_lower = lower;
1785 	info.si_upper = upper;
1786 	return force_sig_info(&info);
1787 }
1788 
1789 #ifdef SEGV_PKUERR
1790 int force_sig_pkuerr(void __user *addr, u32 pkey)
1791 {
1792 	struct kernel_siginfo info;
1793 
1794 	clear_siginfo(&info);
1795 	info.si_signo = SIGSEGV;
1796 	info.si_errno = 0;
1797 	info.si_code  = SEGV_PKUERR;
1798 	info.si_addr  = addr;
1799 	info.si_pkey  = pkey;
1800 	return force_sig_info(&info);
1801 }
1802 #endif
1803 
1804 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1805 {
1806 	struct kernel_siginfo info;
1807 
1808 	clear_siginfo(&info);
1809 	info.si_signo     = SIGTRAP;
1810 	info.si_errno     = 0;
1811 	info.si_code      = TRAP_PERF;
1812 	info.si_addr      = addr;
1813 	info.si_perf_data = sig_data;
1814 	info.si_perf_type = type;
1815 
1816 	return force_sig_info(&info);
1817 }
1818 
1819 /**
1820  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1821  * @syscall: syscall number to send to userland
1822  * @reason: filter-supplied reason code to send to userland (via si_errno)
1823  *
1824  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1825  */
1826 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1827 {
1828 	struct kernel_siginfo info;
1829 
1830 	clear_siginfo(&info);
1831 	info.si_signo = SIGSYS;
1832 	info.si_code = SYS_SECCOMP;
1833 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1834 	info.si_errno = reason;
1835 	info.si_arch = syscall_get_arch(current);
1836 	info.si_syscall = syscall;
1837 	return force_sig_info_to_task(&info, current,
1838 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1839 }
1840 
1841 /* For the crazy architectures that include trap information in
1842  * the errno field, instead of an actual errno value.
1843  */
1844 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1845 {
1846 	struct kernel_siginfo info;
1847 
1848 	clear_siginfo(&info);
1849 	info.si_signo = SIGTRAP;
1850 	info.si_errno = errno;
1851 	info.si_code  = TRAP_HWBKPT;
1852 	info.si_addr  = addr;
1853 	return force_sig_info(&info);
1854 }
1855 
1856 /* For the rare architectures that include trap information using
1857  * si_trapno.
1858  */
1859 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1860 {
1861 	struct kernel_siginfo info;
1862 
1863 	clear_siginfo(&info);
1864 	info.si_signo = sig;
1865 	info.si_errno = 0;
1866 	info.si_code  = code;
1867 	info.si_addr  = addr;
1868 	info.si_trapno = trapno;
1869 	return force_sig_info(&info);
1870 }
1871 
1872 /* For the rare architectures that include trap information using
1873  * si_trapno.
1874  */
1875 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1876 			  struct task_struct *t)
1877 {
1878 	struct kernel_siginfo info;
1879 
1880 	clear_siginfo(&info);
1881 	info.si_signo = sig;
1882 	info.si_errno = 0;
1883 	info.si_code  = code;
1884 	info.si_addr  = addr;
1885 	info.si_trapno = trapno;
1886 	return send_sig_info(info.si_signo, &info, t);
1887 }
1888 
1889 int kill_pgrp(struct pid *pid, int sig, int priv)
1890 {
1891 	int ret;
1892 
1893 	read_lock(&tasklist_lock);
1894 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1895 	read_unlock(&tasklist_lock);
1896 
1897 	return ret;
1898 }
1899 EXPORT_SYMBOL(kill_pgrp);
1900 
1901 int kill_pid(struct pid *pid, int sig, int priv)
1902 {
1903 	return kill_pid_info(sig, __si_special(priv), pid);
1904 }
1905 EXPORT_SYMBOL(kill_pid);
1906 
1907 /*
1908  * These functions support sending signals using preallocated sigqueue
1909  * structures.  This is needed "because realtime applications cannot
1910  * afford to lose notifications of asynchronous events, like timer
1911  * expirations or I/O completions".  In the case of POSIX Timers
1912  * we allocate the sigqueue structure from the timer_create.  If this
1913  * allocation fails we are able to report the failure to the application
1914  * with an EAGAIN error.
1915  */
1916 struct sigqueue *sigqueue_alloc(void)
1917 {
1918 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1919 }
1920 
1921 void sigqueue_free(struct sigqueue *q)
1922 {
1923 	unsigned long flags;
1924 	spinlock_t *lock = &current->sighand->siglock;
1925 
1926 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1927 	/*
1928 	 * We must hold ->siglock while testing q->list
1929 	 * to serialize with collect_signal() or with
1930 	 * __exit_signal()->flush_sigqueue().
1931 	 */
1932 	spin_lock_irqsave(lock, flags);
1933 	q->flags &= ~SIGQUEUE_PREALLOC;
1934 	/*
1935 	 * If it is queued it will be freed when dequeued,
1936 	 * like the "regular" sigqueue.
1937 	 */
1938 	if (!list_empty(&q->list))
1939 		q = NULL;
1940 	spin_unlock_irqrestore(lock, flags);
1941 
1942 	if (q)
1943 		__sigqueue_free(q);
1944 }
1945 
1946 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1947 {
1948 	int sig = q->info.si_signo;
1949 	struct sigpending *pending;
1950 	struct task_struct *t;
1951 	unsigned long flags;
1952 	int ret, result;
1953 
1954 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1955 
1956 	ret = -1;
1957 	rcu_read_lock();
1958 	t = pid_task(pid, type);
1959 	if (!t || !likely(lock_task_sighand(t, &flags)))
1960 		goto ret;
1961 
1962 	ret = 1; /* the signal is ignored */
1963 	result = TRACE_SIGNAL_IGNORED;
1964 	if (!prepare_signal(sig, t, false))
1965 		goto out;
1966 
1967 	ret = 0;
1968 	if (unlikely(!list_empty(&q->list))) {
1969 		/*
1970 		 * If an SI_TIMER entry is already queue just increment
1971 		 * the overrun count.
1972 		 */
1973 		BUG_ON(q->info.si_code != SI_TIMER);
1974 		q->info.si_overrun++;
1975 		result = TRACE_SIGNAL_ALREADY_PENDING;
1976 		goto out;
1977 	}
1978 	q->info.si_overrun = 0;
1979 
1980 	signalfd_notify(t, sig);
1981 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1982 	list_add_tail(&q->list, &pending->list);
1983 	sigaddset(&pending->signal, sig);
1984 	complete_signal(sig, t, type);
1985 	result = TRACE_SIGNAL_DELIVERED;
1986 out:
1987 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1988 	unlock_task_sighand(t, &flags);
1989 ret:
1990 	rcu_read_unlock();
1991 	return ret;
1992 }
1993 
1994 static void do_notify_pidfd(struct task_struct *task)
1995 {
1996 	struct pid *pid;
1997 
1998 	WARN_ON(task->exit_state == 0);
1999 	pid = task_pid(task);
2000 	wake_up_all(&pid->wait_pidfd);
2001 }
2002 
2003 /*
2004  * Let a parent know about the death of a child.
2005  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2006  *
2007  * Returns true if our parent ignored us and so we've switched to
2008  * self-reaping.
2009  */
2010 bool do_notify_parent(struct task_struct *tsk, int sig)
2011 {
2012 	struct kernel_siginfo info;
2013 	unsigned long flags;
2014 	struct sighand_struct *psig;
2015 	bool autoreap = false;
2016 	u64 utime, stime;
2017 
2018 	BUG_ON(sig == -1);
2019 
2020  	/* do_notify_parent_cldstop should have been called instead.  */
2021  	BUG_ON(task_is_stopped_or_traced(tsk));
2022 
2023 	BUG_ON(!tsk->ptrace &&
2024 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2025 
2026 	/* Wake up all pidfd waiters */
2027 	do_notify_pidfd(tsk);
2028 
2029 	if (sig != SIGCHLD) {
2030 		/*
2031 		 * This is only possible if parent == real_parent.
2032 		 * Check if it has changed security domain.
2033 		 */
2034 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2035 			sig = SIGCHLD;
2036 	}
2037 
2038 	clear_siginfo(&info);
2039 	info.si_signo = sig;
2040 	info.si_errno = 0;
2041 	/*
2042 	 * We are under tasklist_lock here so our parent is tied to
2043 	 * us and cannot change.
2044 	 *
2045 	 * task_active_pid_ns will always return the same pid namespace
2046 	 * until a task passes through release_task.
2047 	 *
2048 	 * write_lock() currently calls preempt_disable() which is the
2049 	 * same as rcu_read_lock(), but according to Oleg, this is not
2050 	 * correct to rely on this
2051 	 */
2052 	rcu_read_lock();
2053 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2054 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2055 				       task_uid(tsk));
2056 	rcu_read_unlock();
2057 
2058 	task_cputime(tsk, &utime, &stime);
2059 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2060 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2061 
2062 	info.si_status = tsk->exit_code & 0x7f;
2063 	if (tsk->exit_code & 0x80)
2064 		info.si_code = CLD_DUMPED;
2065 	else if (tsk->exit_code & 0x7f)
2066 		info.si_code = CLD_KILLED;
2067 	else {
2068 		info.si_code = CLD_EXITED;
2069 		info.si_status = tsk->exit_code >> 8;
2070 	}
2071 
2072 	psig = tsk->parent->sighand;
2073 	spin_lock_irqsave(&psig->siglock, flags);
2074 	if (!tsk->ptrace && sig == SIGCHLD &&
2075 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2076 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2077 		/*
2078 		 * We are exiting and our parent doesn't care.  POSIX.1
2079 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2080 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2081 		 * automatically and not left for our parent's wait4 call.
2082 		 * Rather than having the parent do it as a magic kind of
2083 		 * signal handler, we just set this to tell do_exit that we
2084 		 * can be cleaned up without becoming a zombie.  Note that
2085 		 * we still call __wake_up_parent in this case, because a
2086 		 * blocked sys_wait4 might now return -ECHILD.
2087 		 *
2088 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2089 		 * is implementation-defined: we do (if you don't want
2090 		 * it, just use SIG_IGN instead).
2091 		 */
2092 		autoreap = true;
2093 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2094 			sig = 0;
2095 	}
2096 	/*
2097 	 * Send with __send_signal as si_pid and si_uid are in the
2098 	 * parent's namespaces.
2099 	 */
2100 	if (valid_signal(sig) && sig)
2101 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2102 	__wake_up_parent(tsk, tsk->parent);
2103 	spin_unlock_irqrestore(&psig->siglock, flags);
2104 
2105 	return autoreap;
2106 }
2107 
2108 /**
2109  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2110  * @tsk: task reporting the state change
2111  * @for_ptracer: the notification is for ptracer
2112  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2113  *
2114  * Notify @tsk's parent that the stopped/continued state has changed.  If
2115  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2116  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2117  *
2118  * CONTEXT:
2119  * Must be called with tasklist_lock at least read locked.
2120  */
2121 static void do_notify_parent_cldstop(struct task_struct *tsk,
2122 				     bool for_ptracer, int why)
2123 {
2124 	struct kernel_siginfo info;
2125 	unsigned long flags;
2126 	struct task_struct *parent;
2127 	struct sighand_struct *sighand;
2128 	u64 utime, stime;
2129 
2130 	if (for_ptracer) {
2131 		parent = tsk->parent;
2132 	} else {
2133 		tsk = tsk->group_leader;
2134 		parent = tsk->real_parent;
2135 	}
2136 
2137 	clear_siginfo(&info);
2138 	info.si_signo = SIGCHLD;
2139 	info.si_errno = 0;
2140 	/*
2141 	 * see comment in do_notify_parent() about the following 4 lines
2142 	 */
2143 	rcu_read_lock();
2144 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2145 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2146 	rcu_read_unlock();
2147 
2148 	task_cputime(tsk, &utime, &stime);
2149 	info.si_utime = nsec_to_clock_t(utime);
2150 	info.si_stime = nsec_to_clock_t(stime);
2151 
2152  	info.si_code = why;
2153  	switch (why) {
2154  	case CLD_CONTINUED:
2155  		info.si_status = SIGCONT;
2156  		break;
2157  	case CLD_STOPPED:
2158  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2159  		break;
2160  	case CLD_TRAPPED:
2161  		info.si_status = tsk->exit_code & 0x7f;
2162  		break;
2163  	default:
2164  		BUG();
2165  	}
2166 
2167 	sighand = parent->sighand;
2168 	spin_lock_irqsave(&sighand->siglock, flags);
2169 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2170 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2171 		__group_send_sig_info(SIGCHLD, &info, parent);
2172 	/*
2173 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2174 	 */
2175 	__wake_up_parent(tsk, parent);
2176 	spin_unlock_irqrestore(&sighand->siglock, flags);
2177 }
2178 
2179 /*
2180  * This must be called with current->sighand->siglock held.
2181  *
2182  * This should be the path for all ptrace stops.
2183  * We always set current->last_siginfo while stopped here.
2184  * That makes it a way to test a stopped process for
2185  * being ptrace-stopped vs being job-control-stopped.
2186  *
2187  * If we actually decide not to stop at all because the tracer
2188  * is gone, we keep current->exit_code unless clear_code.
2189  */
2190 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2191 	__releases(&current->sighand->siglock)
2192 	__acquires(&current->sighand->siglock)
2193 {
2194 	bool gstop_done = false;
2195 
2196 	if (arch_ptrace_stop_needed()) {
2197 		/*
2198 		 * The arch code has something special to do before a
2199 		 * ptrace stop.  This is allowed to block, e.g. for faults
2200 		 * on user stack pages.  We can't keep the siglock while
2201 		 * calling arch_ptrace_stop, so we must release it now.
2202 		 * To preserve proper semantics, we must do this before
2203 		 * any signal bookkeeping like checking group_stop_count.
2204 		 */
2205 		spin_unlock_irq(&current->sighand->siglock);
2206 		arch_ptrace_stop();
2207 		spin_lock_irq(&current->sighand->siglock);
2208 	}
2209 
2210 	/*
2211 	 * schedule() will not sleep if there is a pending signal that
2212 	 * can awaken the task.
2213 	 */
2214 	set_special_state(TASK_TRACED);
2215 
2216 	/*
2217 	 * We're committing to trapping.  TRACED should be visible before
2218 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2219 	 * Also, transition to TRACED and updates to ->jobctl should be
2220 	 * atomic with respect to siglock and should be done after the arch
2221 	 * hook as siglock is released and regrabbed across it.
2222 	 *
2223 	 *     TRACER				    TRACEE
2224 	 *
2225 	 *     ptrace_attach()
2226 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2227 	 *     do_wait()
2228 	 *       set_current_state()                smp_wmb();
2229 	 *       ptrace_do_wait()
2230 	 *         wait_task_stopped()
2231 	 *           task_stopped_code()
2232 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2233 	 */
2234 	smp_wmb();
2235 
2236 	current->last_siginfo = info;
2237 	current->exit_code = exit_code;
2238 
2239 	/*
2240 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2241 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2242 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2243 	 * could be clear now.  We act as if SIGCONT is received after
2244 	 * TASK_TRACED is entered - ignore it.
2245 	 */
2246 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2247 		gstop_done = task_participate_group_stop(current);
2248 
2249 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2250 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2251 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2252 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2253 
2254 	/* entering a trap, clear TRAPPING */
2255 	task_clear_jobctl_trapping(current);
2256 
2257 	spin_unlock_irq(&current->sighand->siglock);
2258 	read_lock(&tasklist_lock);
2259 	if (likely(current->ptrace)) {
2260 		/*
2261 		 * Notify parents of the stop.
2262 		 *
2263 		 * While ptraced, there are two parents - the ptracer and
2264 		 * the real_parent of the group_leader.  The ptracer should
2265 		 * know about every stop while the real parent is only
2266 		 * interested in the completion of group stop.  The states
2267 		 * for the two don't interact with each other.  Notify
2268 		 * separately unless they're gonna be duplicates.
2269 		 */
2270 		do_notify_parent_cldstop(current, true, why);
2271 		if (gstop_done && ptrace_reparented(current))
2272 			do_notify_parent_cldstop(current, false, why);
2273 
2274 		/*
2275 		 * Don't want to allow preemption here, because
2276 		 * sys_ptrace() needs this task to be inactive.
2277 		 *
2278 		 * XXX: implement read_unlock_no_resched().
2279 		 */
2280 		preempt_disable();
2281 		read_unlock(&tasklist_lock);
2282 		cgroup_enter_frozen();
2283 		preempt_enable_no_resched();
2284 		freezable_schedule();
2285 		cgroup_leave_frozen(true);
2286 	} else {
2287 		/*
2288 		 * By the time we got the lock, our tracer went away.
2289 		 * Don't drop the lock yet, another tracer may come.
2290 		 *
2291 		 * If @gstop_done, the ptracer went away between group stop
2292 		 * completion and here.  During detach, it would have set
2293 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2294 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2295 		 * the real parent of the group stop completion is enough.
2296 		 */
2297 		if (gstop_done)
2298 			do_notify_parent_cldstop(current, false, why);
2299 
2300 		/* tasklist protects us from ptrace_freeze_traced() */
2301 		__set_current_state(TASK_RUNNING);
2302 		if (clear_code)
2303 			current->exit_code = 0;
2304 		read_unlock(&tasklist_lock);
2305 	}
2306 
2307 	/*
2308 	 * We are back.  Now reacquire the siglock before touching
2309 	 * last_siginfo, so that we are sure to have synchronized with
2310 	 * any signal-sending on another CPU that wants to examine it.
2311 	 */
2312 	spin_lock_irq(&current->sighand->siglock);
2313 	current->last_siginfo = NULL;
2314 
2315 	/* LISTENING can be set only during STOP traps, clear it */
2316 	current->jobctl &= ~JOBCTL_LISTENING;
2317 
2318 	/*
2319 	 * Queued signals ignored us while we were stopped for tracing.
2320 	 * So check for any that we should take before resuming user mode.
2321 	 * This sets TIF_SIGPENDING, but never clears it.
2322 	 */
2323 	recalc_sigpending_tsk(current);
2324 }
2325 
2326 static void ptrace_do_notify(int signr, int exit_code, int why)
2327 {
2328 	kernel_siginfo_t info;
2329 
2330 	clear_siginfo(&info);
2331 	info.si_signo = signr;
2332 	info.si_code = exit_code;
2333 	info.si_pid = task_pid_vnr(current);
2334 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2335 
2336 	/* Let the debugger run.  */
2337 	ptrace_stop(exit_code, why, 1, &info);
2338 }
2339 
2340 void ptrace_notify(int exit_code)
2341 {
2342 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2343 	if (unlikely(current->task_works))
2344 		task_work_run();
2345 
2346 	spin_lock_irq(&current->sighand->siglock);
2347 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2348 	spin_unlock_irq(&current->sighand->siglock);
2349 }
2350 
2351 /**
2352  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2353  * @signr: signr causing group stop if initiating
2354  *
2355  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2356  * and participate in it.  If already set, participate in the existing
2357  * group stop.  If participated in a group stop (and thus slept), %true is
2358  * returned with siglock released.
2359  *
2360  * If ptraced, this function doesn't handle stop itself.  Instead,
2361  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2362  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2363  * places afterwards.
2364  *
2365  * CONTEXT:
2366  * Must be called with @current->sighand->siglock held, which is released
2367  * on %true return.
2368  *
2369  * RETURNS:
2370  * %false if group stop is already cancelled or ptrace trap is scheduled.
2371  * %true if participated in group stop.
2372  */
2373 static bool do_signal_stop(int signr)
2374 	__releases(&current->sighand->siglock)
2375 {
2376 	struct signal_struct *sig = current->signal;
2377 
2378 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2379 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2380 		struct task_struct *t;
2381 
2382 		/* signr will be recorded in task->jobctl for retries */
2383 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2384 
2385 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2386 		    unlikely(signal_group_exit(sig)))
2387 			return false;
2388 		/*
2389 		 * There is no group stop already in progress.  We must
2390 		 * initiate one now.
2391 		 *
2392 		 * While ptraced, a task may be resumed while group stop is
2393 		 * still in effect and then receive a stop signal and
2394 		 * initiate another group stop.  This deviates from the
2395 		 * usual behavior as two consecutive stop signals can't
2396 		 * cause two group stops when !ptraced.  That is why we
2397 		 * also check !task_is_stopped(t) below.
2398 		 *
2399 		 * The condition can be distinguished by testing whether
2400 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2401 		 * group_exit_code in such case.
2402 		 *
2403 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2404 		 * an intervening stop signal is required to cause two
2405 		 * continued events regardless of ptrace.
2406 		 */
2407 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2408 			sig->group_exit_code = signr;
2409 
2410 		sig->group_stop_count = 0;
2411 
2412 		if (task_set_jobctl_pending(current, signr | gstop))
2413 			sig->group_stop_count++;
2414 
2415 		t = current;
2416 		while_each_thread(current, t) {
2417 			/*
2418 			 * Setting state to TASK_STOPPED for a group
2419 			 * stop is always done with the siglock held,
2420 			 * so this check has no races.
2421 			 */
2422 			if (!task_is_stopped(t) &&
2423 			    task_set_jobctl_pending(t, signr | gstop)) {
2424 				sig->group_stop_count++;
2425 				if (likely(!(t->ptrace & PT_SEIZED)))
2426 					signal_wake_up(t, 0);
2427 				else
2428 					ptrace_trap_notify(t);
2429 			}
2430 		}
2431 	}
2432 
2433 	if (likely(!current->ptrace)) {
2434 		int notify = 0;
2435 
2436 		/*
2437 		 * If there are no other threads in the group, or if there
2438 		 * is a group stop in progress and we are the last to stop,
2439 		 * report to the parent.
2440 		 */
2441 		if (task_participate_group_stop(current))
2442 			notify = CLD_STOPPED;
2443 
2444 		set_special_state(TASK_STOPPED);
2445 		spin_unlock_irq(&current->sighand->siglock);
2446 
2447 		/*
2448 		 * Notify the parent of the group stop completion.  Because
2449 		 * we're not holding either the siglock or tasklist_lock
2450 		 * here, ptracer may attach inbetween; however, this is for
2451 		 * group stop and should always be delivered to the real
2452 		 * parent of the group leader.  The new ptracer will get
2453 		 * its notification when this task transitions into
2454 		 * TASK_TRACED.
2455 		 */
2456 		if (notify) {
2457 			read_lock(&tasklist_lock);
2458 			do_notify_parent_cldstop(current, false, notify);
2459 			read_unlock(&tasklist_lock);
2460 		}
2461 
2462 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2463 		cgroup_enter_frozen();
2464 		freezable_schedule();
2465 		return true;
2466 	} else {
2467 		/*
2468 		 * While ptraced, group stop is handled by STOP trap.
2469 		 * Schedule it and let the caller deal with it.
2470 		 */
2471 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2472 		return false;
2473 	}
2474 }
2475 
2476 /**
2477  * do_jobctl_trap - take care of ptrace jobctl traps
2478  *
2479  * When PT_SEIZED, it's used for both group stop and explicit
2480  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2481  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2482  * the stop signal; otherwise, %SIGTRAP.
2483  *
2484  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2485  * number as exit_code and no siginfo.
2486  *
2487  * CONTEXT:
2488  * Must be called with @current->sighand->siglock held, which may be
2489  * released and re-acquired before returning with intervening sleep.
2490  */
2491 static void do_jobctl_trap(void)
2492 {
2493 	struct signal_struct *signal = current->signal;
2494 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2495 
2496 	if (current->ptrace & PT_SEIZED) {
2497 		if (!signal->group_stop_count &&
2498 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2499 			signr = SIGTRAP;
2500 		WARN_ON_ONCE(!signr);
2501 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2502 				 CLD_STOPPED);
2503 	} else {
2504 		WARN_ON_ONCE(!signr);
2505 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2506 		current->exit_code = 0;
2507 	}
2508 }
2509 
2510 /**
2511  * do_freezer_trap - handle the freezer jobctl trap
2512  *
2513  * Puts the task into frozen state, if only the task is not about to quit.
2514  * In this case it drops JOBCTL_TRAP_FREEZE.
2515  *
2516  * CONTEXT:
2517  * Must be called with @current->sighand->siglock held,
2518  * which is always released before returning.
2519  */
2520 static void do_freezer_trap(void)
2521 	__releases(&current->sighand->siglock)
2522 {
2523 	/*
2524 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2525 	 * let's make another loop to give it a chance to be handled.
2526 	 * In any case, we'll return back.
2527 	 */
2528 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2529 	     JOBCTL_TRAP_FREEZE) {
2530 		spin_unlock_irq(&current->sighand->siglock);
2531 		return;
2532 	}
2533 
2534 	/*
2535 	 * Now we're sure that there is no pending fatal signal and no
2536 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2537 	 * immediately (if there is a non-fatal signal pending), and
2538 	 * put the task into sleep.
2539 	 */
2540 	__set_current_state(TASK_INTERRUPTIBLE);
2541 	clear_thread_flag(TIF_SIGPENDING);
2542 	spin_unlock_irq(&current->sighand->siglock);
2543 	cgroup_enter_frozen();
2544 	freezable_schedule();
2545 }
2546 
2547 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2548 {
2549 	/*
2550 	 * We do not check sig_kernel_stop(signr) but set this marker
2551 	 * unconditionally because we do not know whether debugger will
2552 	 * change signr. This flag has no meaning unless we are going
2553 	 * to stop after return from ptrace_stop(). In this case it will
2554 	 * be checked in do_signal_stop(), we should only stop if it was
2555 	 * not cleared by SIGCONT while we were sleeping. See also the
2556 	 * comment in dequeue_signal().
2557 	 */
2558 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2559 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2560 
2561 	/* We're back.  Did the debugger cancel the sig?  */
2562 	signr = current->exit_code;
2563 	if (signr == 0)
2564 		return signr;
2565 
2566 	current->exit_code = 0;
2567 
2568 	/*
2569 	 * Update the siginfo structure if the signal has
2570 	 * changed.  If the debugger wanted something
2571 	 * specific in the siginfo structure then it should
2572 	 * have updated *info via PTRACE_SETSIGINFO.
2573 	 */
2574 	if (signr != info->si_signo) {
2575 		clear_siginfo(info);
2576 		info->si_signo = signr;
2577 		info->si_errno = 0;
2578 		info->si_code = SI_USER;
2579 		rcu_read_lock();
2580 		info->si_pid = task_pid_vnr(current->parent);
2581 		info->si_uid = from_kuid_munged(current_user_ns(),
2582 						task_uid(current->parent));
2583 		rcu_read_unlock();
2584 	}
2585 
2586 	/* If the (new) signal is now blocked, requeue it.  */
2587 	if (sigismember(&current->blocked, signr)) {
2588 		send_signal(signr, info, current, PIDTYPE_PID);
2589 		signr = 0;
2590 	}
2591 
2592 	return signr;
2593 }
2594 
2595 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2596 {
2597 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2598 	case SIL_FAULT:
2599 	case SIL_FAULT_TRAPNO:
2600 	case SIL_FAULT_MCEERR:
2601 	case SIL_FAULT_BNDERR:
2602 	case SIL_FAULT_PKUERR:
2603 	case SIL_FAULT_PERF_EVENT:
2604 		ksig->info.si_addr = arch_untagged_si_addr(
2605 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2606 		break;
2607 	case SIL_KILL:
2608 	case SIL_TIMER:
2609 	case SIL_POLL:
2610 	case SIL_CHLD:
2611 	case SIL_RT:
2612 	case SIL_SYS:
2613 		break;
2614 	}
2615 }
2616 
2617 bool get_signal(struct ksignal *ksig)
2618 {
2619 	struct sighand_struct *sighand = current->sighand;
2620 	struct signal_struct *signal = current->signal;
2621 	int signr;
2622 
2623 	if (unlikely(current->task_works))
2624 		task_work_run();
2625 
2626 	/*
2627 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2628 	 * that the arch handlers don't all have to do it. If we get here
2629 	 * without TIF_SIGPENDING, just exit after running signal work.
2630 	 */
2631 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2632 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2633 			tracehook_notify_signal();
2634 		if (!task_sigpending(current))
2635 			return false;
2636 	}
2637 
2638 	if (unlikely(uprobe_deny_signal()))
2639 		return false;
2640 
2641 	/*
2642 	 * Do this once, we can't return to user-mode if freezing() == T.
2643 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2644 	 * thus do not need another check after return.
2645 	 */
2646 	try_to_freeze();
2647 
2648 relock:
2649 	spin_lock_irq(&sighand->siglock);
2650 
2651 	/*
2652 	 * Every stopped thread goes here after wakeup. Check to see if
2653 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2654 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2655 	 */
2656 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2657 		int why;
2658 
2659 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2660 			why = CLD_CONTINUED;
2661 		else
2662 			why = CLD_STOPPED;
2663 
2664 		signal->flags &= ~SIGNAL_CLD_MASK;
2665 
2666 		spin_unlock_irq(&sighand->siglock);
2667 
2668 		/*
2669 		 * Notify the parent that we're continuing.  This event is
2670 		 * always per-process and doesn't make whole lot of sense
2671 		 * for ptracers, who shouldn't consume the state via
2672 		 * wait(2) either, but, for backward compatibility, notify
2673 		 * the ptracer of the group leader too unless it's gonna be
2674 		 * a duplicate.
2675 		 */
2676 		read_lock(&tasklist_lock);
2677 		do_notify_parent_cldstop(current, false, why);
2678 
2679 		if (ptrace_reparented(current->group_leader))
2680 			do_notify_parent_cldstop(current->group_leader,
2681 						true, why);
2682 		read_unlock(&tasklist_lock);
2683 
2684 		goto relock;
2685 	}
2686 
2687 	/* Has this task already been marked for death? */
2688 	if (signal_group_exit(signal)) {
2689 		ksig->info.si_signo = signr = SIGKILL;
2690 		sigdelset(&current->pending.signal, SIGKILL);
2691 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2692 				&sighand->action[SIGKILL - 1]);
2693 		recalc_sigpending();
2694 		goto fatal;
2695 	}
2696 
2697 	for (;;) {
2698 		struct k_sigaction *ka;
2699 
2700 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2701 		    do_signal_stop(0))
2702 			goto relock;
2703 
2704 		if (unlikely(current->jobctl &
2705 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2706 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2707 				do_jobctl_trap();
2708 				spin_unlock_irq(&sighand->siglock);
2709 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2710 				do_freezer_trap();
2711 
2712 			goto relock;
2713 		}
2714 
2715 		/*
2716 		 * If the task is leaving the frozen state, let's update
2717 		 * cgroup counters and reset the frozen bit.
2718 		 */
2719 		if (unlikely(cgroup_task_frozen(current))) {
2720 			spin_unlock_irq(&sighand->siglock);
2721 			cgroup_leave_frozen(false);
2722 			goto relock;
2723 		}
2724 
2725 		/*
2726 		 * Signals generated by the execution of an instruction
2727 		 * need to be delivered before any other pending signals
2728 		 * so that the instruction pointer in the signal stack
2729 		 * frame points to the faulting instruction.
2730 		 */
2731 		signr = dequeue_synchronous_signal(&ksig->info);
2732 		if (!signr)
2733 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2734 
2735 		if (!signr)
2736 			break; /* will return 0 */
2737 
2738 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2739 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2740 			signr = ptrace_signal(signr, &ksig->info);
2741 			if (!signr)
2742 				continue;
2743 		}
2744 
2745 		ka = &sighand->action[signr-1];
2746 
2747 		/* Trace actually delivered signals. */
2748 		trace_signal_deliver(signr, &ksig->info, ka);
2749 
2750 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2751 			continue;
2752 		if (ka->sa.sa_handler != SIG_DFL) {
2753 			/* Run the handler.  */
2754 			ksig->ka = *ka;
2755 
2756 			if (ka->sa.sa_flags & SA_ONESHOT)
2757 				ka->sa.sa_handler = SIG_DFL;
2758 
2759 			break; /* will return non-zero "signr" value */
2760 		}
2761 
2762 		/*
2763 		 * Now we are doing the default action for this signal.
2764 		 */
2765 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2766 			continue;
2767 
2768 		/*
2769 		 * Global init gets no signals it doesn't want.
2770 		 * Container-init gets no signals it doesn't want from same
2771 		 * container.
2772 		 *
2773 		 * Note that if global/container-init sees a sig_kernel_only()
2774 		 * signal here, the signal must have been generated internally
2775 		 * or must have come from an ancestor namespace. In either
2776 		 * case, the signal cannot be dropped.
2777 		 */
2778 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2779 				!sig_kernel_only(signr))
2780 			continue;
2781 
2782 		if (sig_kernel_stop(signr)) {
2783 			/*
2784 			 * The default action is to stop all threads in
2785 			 * the thread group.  The job control signals
2786 			 * do nothing in an orphaned pgrp, but SIGSTOP
2787 			 * always works.  Note that siglock needs to be
2788 			 * dropped during the call to is_orphaned_pgrp()
2789 			 * because of lock ordering with tasklist_lock.
2790 			 * This allows an intervening SIGCONT to be posted.
2791 			 * We need to check for that and bail out if necessary.
2792 			 */
2793 			if (signr != SIGSTOP) {
2794 				spin_unlock_irq(&sighand->siglock);
2795 
2796 				/* signals can be posted during this window */
2797 
2798 				if (is_current_pgrp_orphaned())
2799 					goto relock;
2800 
2801 				spin_lock_irq(&sighand->siglock);
2802 			}
2803 
2804 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2805 				/* It released the siglock.  */
2806 				goto relock;
2807 			}
2808 
2809 			/*
2810 			 * We didn't actually stop, due to a race
2811 			 * with SIGCONT or something like that.
2812 			 */
2813 			continue;
2814 		}
2815 
2816 	fatal:
2817 		spin_unlock_irq(&sighand->siglock);
2818 		if (unlikely(cgroup_task_frozen(current)))
2819 			cgroup_leave_frozen(true);
2820 
2821 		/*
2822 		 * Anything else is fatal, maybe with a core dump.
2823 		 */
2824 		current->flags |= PF_SIGNALED;
2825 
2826 		if (sig_kernel_coredump(signr)) {
2827 			if (print_fatal_signals)
2828 				print_fatal_signal(ksig->info.si_signo);
2829 			proc_coredump_connector(current);
2830 			/*
2831 			 * If it was able to dump core, this kills all
2832 			 * other threads in the group and synchronizes with
2833 			 * their demise.  If we lost the race with another
2834 			 * thread getting here, it set group_exit_code
2835 			 * first and our do_group_exit call below will use
2836 			 * that value and ignore the one we pass it.
2837 			 */
2838 			do_coredump(&ksig->info);
2839 		}
2840 
2841 		/*
2842 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2843 		 * themselves. They have cleanup that must be performed, so
2844 		 * we cannot call do_exit() on their behalf.
2845 		 */
2846 		if (current->flags & PF_IO_WORKER)
2847 			goto out;
2848 
2849 		/*
2850 		 * Death signals, no core dump.
2851 		 */
2852 		do_group_exit(ksig->info.si_signo);
2853 		/* NOTREACHED */
2854 	}
2855 	spin_unlock_irq(&sighand->siglock);
2856 out:
2857 	ksig->sig = signr;
2858 
2859 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2860 		hide_si_addr_tag_bits(ksig);
2861 
2862 	return ksig->sig > 0;
2863 }
2864 
2865 /**
2866  * signal_delivered -
2867  * @ksig:		kernel signal struct
2868  * @stepping:		nonzero if debugger single-step or block-step in use
2869  *
2870  * This function should be called when a signal has successfully been
2871  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2872  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2873  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2874  */
2875 static void signal_delivered(struct ksignal *ksig, int stepping)
2876 {
2877 	sigset_t blocked;
2878 
2879 	/* A signal was successfully delivered, and the
2880 	   saved sigmask was stored on the signal frame,
2881 	   and will be restored by sigreturn.  So we can
2882 	   simply clear the restore sigmask flag.  */
2883 	clear_restore_sigmask();
2884 
2885 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2886 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2887 		sigaddset(&blocked, ksig->sig);
2888 	set_current_blocked(&blocked);
2889 	if (current->sas_ss_flags & SS_AUTODISARM)
2890 		sas_ss_reset(current);
2891 	tracehook_signal_handler(stepping);
2892 }
2893 
2894 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2895 {
2896 	if (failed)
2897 		force_sigsegv(ksig->sig);
2898 	else
2899 		signal_delivered(ksig, stepping);
2900 }
2901 
2902 /*
2903  * It could be that complete_signal() picked us to notify about the
2904  * group-wide signal. Other threads should be notified now to take
2905  * the shared signals in @which since we will not.
2906  */
2907 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2908 {
2909 	sigset_t retarget;
2910 	struct task_struct *t;
2911 
2912 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2913 	if (sigisemptyset(&retarget))
2914 		return;
2915 
2916 	t = tsk;
2917 	while_each_thread(tsk, t) {
2918 		if (t->flags & PF_EXITING)
2919 			continue;
2920 
2921 		if (!has_pending_signals(&retarget, &t->blocked))
2922 			continue;
2923 		/* Remove the signals this thread can handle. */
2924 		sigandsets(&retarget, &retarget, &t->blocked);
2925 
2926 		if (!task_sigpending(t))
2927 			signal_wake_up(t, 0);
2928 
2929 		if (sigisemptyset(&retarget))
2930 			break;
2931 	}
2932 }
2933 
2934 void exit_signals(struct task_struct *tsk)
2935 {
2936 	int group_stop = 0;
2937 	sigset_t unblocked;
2938 
2939 	/*
2940 	 * @tsk is about to have PF_EXITING set - lock out users which
2941 	 * expect stable threadgroup.
2942 	 */
2943 	cgroup_threadgroup_change_begin(tsk);
2944 
2945 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2946 		tsk->flags |= PF_EXITING;
2947 		cgroup_threadgroup_change_end(tsk);
2948 		return;
2949 	}
2950 
2951 	spin_lock_irq(&tsk->sighand->siglock);
2952 	/*
2953 	 * From now this task is not visible for group-wide signals,
2954 	 * see wants_signal(), do_signal_stop().
2955 	 */
2956 	tsk->flags |= PF_EXITING;
2957 
2958 	cgroup_threadgroup_change_end(tsk);
2959 
2960 	if (!task_sigpending(tsk))
2961 		goto out;
2962 
2963 	unblocked = tsk->blocked;
2964 	signotset(&unblocked);
2965 	retarget_shared_pending(tsk, &unblocked);
2966 
2967 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2968 	    task_participate_group_stop(tsk))
2969 		group_stop = CLD_STOPPED;
2970 out:
2971 	spin_unlock_irq(&tsk->sighand->siglock);
2972 
2973 	/*
2974 	 * If group stop has completed, deliver the notification.  This
2975 	 * should always go to the real parent of the group leader.
2976 	 */
2977 	if (unlikely(group_stop)) {
2978 		read_lock(&tasklist_lock);
2979 		do_notify_parent_cldstop(tsk, false, group_stop);
2980 		read_unlock(&tasklist_lock);
2981 	}
2982 }
2983 
2984 /*
2985  * System call entry points.
2986  */
2987 
2988 /**
2989  *  sys_restart_syscall - restart a system call
2990  */
2991 SYSCALL_DEFINE0(restart_syscall)
2992 {
2993 	struct restart_block *restart = &current->restart_block;
2994 	return restart->fn(restart);
2995 }
2996 
2997 long do_no_restart_syscall(struct restart_block *param)
2998 {
2999 	return -EINTR;
3000 }
3001 
3002 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3003 {
3004 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3005 		sigset_t newblocked;
3006 		/* A set of now blocked but previously unblocked signals. */
3007 		sigandnsets(&newblocked, newset, &current->blocked);
3008 		retarget_shared_pending(tsk, &newblocked);
3009 	}
3010 	tsk->blocked = *newset;
3011 	recalc_sigpending();
3012 }
3013 
3014 /**
3015  * set_current_blocked - change current->blocked mask
3016  * @newset: new mask
3017  *
3018  * It is wrong to change ->blocked directly, this helper should be used
3019  * to ensure the process can't miss a shared signal we are going to block.
3020  */
3021 void set_current_blocked(sigset_t *newset)
3022 {
3023 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3024 	__set_current_blocked(newset);
3025 }
3026 
3027 void __set_current_blocked(const sigset_t *newset)
3028 {
3029 	struct task_struct *tsk = current;
3030 
3031 	/*
3032 	 * In case the signal mask hasn't changed, there is nothing we need
3033 	 * to do. The current->blocked shouldn't be modified by other task.
3034 	 */
3035 	if (sigequalsets(&tsk->blocked, newset))
3036 		return;
3037 
3038 	spin_lock_irq(&tsk->sighand->siglock);
3039 	__set_task_blocked(tsk, newset);
3040 	spin_unlock_irq(&tsk->sighand->siglock);
3041 }
3042 
3043 /*
3044  * This is also useful for kernel threads that want to temporarily
3045  * (or permanently) block certain signals.
3046  *
3047  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3048  * interface happily blocks "unblockable" signals like SIGKILL
3049  * and friends.
3050  */
3051 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3052 {
3053 	struct task_struct *tsk = current;
3054 	sigset_t newset;
3055 
3056 	/* Lockless, only current can change ->blocked, never from irq */
3057 	if (oldset)
3058 		*oldset = tsk->blocked;
3059 
3060 	switch (how) {
3061 	case SIG_BLOCK:
3062 		sigorsets(&newset, &tsk->blocked, set);
3063 		break;
3064 	case SIG_UNBLOCK:
3065 		sigandnsets(&newset, &tsk->blocked, set);
3066 		break;
3067 	case SIG_SETMASK:
3068 		newset = *set;
3069 		break;
3070 	default:
3071 		return -EINVAL;
3072 	}
3073 
3074 	__set_current_blocked(&newset);
3075 	return 0;
3076 }
3077 EXPORT_SYMBOL(sigprocmask);
3078 
3079 /*
3080  * The api helps set app-provided sigmasks.
3081  *
3082  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3083  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3084  *
3085  * Note that it does set_restore_sigmask() in advance, so it must be always
3086  * paired with restore_saved_sigmask_unless() before return from syscall.
3087  */
3088 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3089 {
3090 	sigset_t kmask;
3091 
3092 	if (!umask)
3093 		return 0;
3094 	if (sigsetsize != sizeof(sigset_t))
3095 		return -EINVAL;
3096 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3097 		return -EFAULT;
3098 
3099 	set_restore_sigmask();
3100 	current->saved_sigmask = current->blocked;
3101 	set_current_blocked(&kmask);
3102 
3103 	return 0;
3104 }
3105 
3106 #ifdef CONFIG_COMPAT
3107 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3108 			    size_t sigsetsize)
3109 {
3110 	sigset_t kmask;
3111 
3112 	if (!umask)
3113 		return 0;
3114 	if (sigsetsize != sizeof(compat_sigset_t))
3115 		return -EINVAL;
3116 	if (get_compat_sigset(&kmask, umask))
3117 		return -EFAULT;
3118 
3119 	set_restore_sigmask();
3120 	current->saved_sigmask = current->blocked;
3121 	set_current_blocked(&kmask);
3122 
3123 	return 0;
3124 }
3125 #endif
3126 
3127 /**
3128  *  sys_rt_sigprocmask - change the list of currently blocked signals
3129  *  @how: whether to add, remove, or set signals
3130  *  @nset: stores pending signals
3131  *  @oset: previous value of signal mask if non-null
3132  *  @sigsetsize: size of sigset_t type
3133  */
3134 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3135 		sigset_t __user *, oset, size_t, sigsetsize)
3136 {
3137 	sigset_t old_set, new_set;
3138 	int error;
3139 
3140 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3141 	if (sigsetsize != sizeof(sigset_t))
3142 		return -EINVAL;
3143 
3144 	old_set = current->blocked;
3145 
3146 	if (nset) {
3147 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3148 			return -EFAULT;
3149 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3150 
3151 		error = sigprocmask(how, &new_set, NULL);
3152 		if (error)
3153 			return error;
3154 	}
3155 
3156 	if (oset) {
3157 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3158 			return -EFAULT;
3159 	}
3160 
3161 	return 0;
3162 }
3163 
3164 #ifdef CONFIG_COMPAT
3165 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3166 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3167 {
3168 	sigset_t old_set = current->blocked;
3169 
3170 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3171 	if (sigsetsize != sizeof(sigset_t))
3172 		return -EINVAL;
3173 
3174 	if (nset) {
3175 		sigset_t new_set;
3176 		int error;
3177 		if (get_compat_sigset(&new_set, nset))
3178 			return -EFAULT;
3179 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3180 
3181 		error = sigprocmask(how, &new_set, NULL);
3182 		if (error)
3183 			return error;
3184 	}
3185 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3186 }
3187 #endif
3188 
3189 static void do_sigpending(sigset_t *set)
3190 {
3191 	spin_lock_irq(&current->sighand->siglock);
3192 	sigorsets(set, &current->pending.signal,
3193 		  &current->signal->shared_pending.signal);
3194 	spin_unlock_irq(&current->sighand->siglock);
3195 
3196 	/* Outside the lock because only this thread touches it.  */
3197 	sigandsets(set, &current->blocked, set);
3198 }
3199 
3200 /**
3201  *  sys_rt_sigpending - examine a pending signal that has been raised
3202  *			while blocked
3203  *  @uset: stores pending signals
3204  *  @sigsetsize: size of sigset_t type or larger
3205  */
3206 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3207 {
3208 	sigset_t set;
3209 
3210 	if (sigsetsize > sizeof(*uset))
3211 		return -EINVAL;
3212 
3213 	do_sigpending(&set);
3214 
3215 	if (copy_to_user(uset, &set, sigsetsize))
3216 		return -EFAULT;
3217 
3218 	return 0;
3219 }
3220 
3221 #ifdef CONFIG_COMPAT
3222 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3223 		compat_size_t, sigsetsize)
3224 {
3225 	sigset_t set;
3226 
3227 	if (sigsetsize > sizeof(*uset))
3228 		return -EINVAL;
3229 
3230 	do_sigpending(&set);
3231 
3232 	return put_compat_sigset(uset, &set, sigsetsize);
3233 }
3234 #endif
3235 
3236 static const struct {
3237 	unsigned char limit, layout;
3238 } sig_sicodes[] = {
3239 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3240 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3241 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3242 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3243 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3244 #if defined(SIGEMT)
3245 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3246 #endif
3247 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3248 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3249 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3250 };
3251 
3252 static bool known_siginfo_layout(unsigned sig, int si_code)
3253 {
3254 	if (si_code == SI_KERNEL)
3255 		return true;
3256 	else if ((si_code > SI_USER)) {
3257 		if (sig_specific_sicodes(sig)) {
3258 			if (si_code <= sig_sicodes[sig].limit)
3259 				return true;
3260 		}
3261 		else if (si_code <= NSIGPOLL)
3262 			return true;
3263 	}
3264 	else if (si_code >= SI_DETHREAD)
3265 		return true;
3266 	else if (si_code == SI_ASYNCNL)
3267 		return true;
3268 	return false;
3269 }
3270 
3271 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3272 {
3273 	enum siginfo_layout layout = SIL_KILL;
3274 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3275 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3276 		    (si_code <= sig_sicodes[sig].limit)) {
3277 			layout = sig_sicodes[sig].layout;
3278 			/* Handle the exceptions */
3279 			if ((sig == SIGBUS) &&
3280 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3281 				layout = SIL_FAULT_MCEERR;
3282 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3283 				layout = SIL_FAULT_BNDERR;
3284 #ifdef SEGV_PKUERR
3285 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3286 				layout = SIL_FAULT_PKUERR;
3287 #endif
3288 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3289 				layout = SIL_FAULT_PERF_EVENT;
3290 			else if (IS_ENABLED(CONFIG_SPARC) &&
3291 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3292 				layout = SIL_FAULT_TRAPNO;
3293 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3294 				 ((sig == SIGFPE) ||
3295 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3296 				layout = SIL_FAULT_TRAPNO;
3297 		}
3298 		else if (si_code <= NSIGPOLL)
3299 			layout = SIL_POLL;
3300 	} else {
3301 		if (si_code == SI_TIMER)
3302 			layout = SIL_TIMER;
3303 		else if (si_code == SI_SIGIO)
3304 			layout = SIL_POLL;
3305 		else if (si_code < 0)
3306 			layout = SIL_RT;
3307 	}
3308 	return layout;
3309 }
3310 
3311 static inline char __user *si_expansion(const siginfo_t __user *info)
3312 {
3313 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3314 }
3315 
3316 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3317 {
3318 	char __user *expansion = si_expansion(to);
3319 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3320 		return -EFAULT;
3321 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3322 		return -EFAULT;
3323 	return 0;
3324 }
3325 
3326 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3327 				       const siginfo_t __user *from)
3328 {
3329 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3330 		char __user *expansion = si_expansion(from);
3331 		char buf[SI_EXPANSION_SIZE];
3332 		int i;
3333 		/*
3334 		 * An unknown si_code might need more than
3335 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3336 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3337 		 * will return this data to userspace exactly.
3338 		 */
3339 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3340 			return -EFAULT;
3341 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3342 			if (buf[i] != 0)
3343 				return -E2BIG;
3344 		}
3345 	}
3346 	return 0;
3347 }
3348 
3349 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3350 				    const siginfo_t __user *from)
3351 {
3352 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3353 		return -EFAULT;
3354 	to->si_signo = signo;
3355 	return post_copy_siginfo_from_user(to, from);
3356 }
3357 
3358 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3359 {
3360 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361 		return -EFAULT;
3362 	return post_copy_siginfo_from_user(to, from);
3363 }
3364 
3365 #ifdef CONFIG_COMPAT
3366 /**
3367  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3368  * @to: compat siginfo destination
3369  * @from: kernel siginfo source
3370  *
3371  * Note: This function does not work properly for the SIGCHLD on x32, but
3372  * fortunately it doesn't have to.  The only valid callers for this function are
3373  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3374  * The latter does not care because SIGCHLD will never cause a coredump.
3375  */
3376 void copy_siginfo_to_external32(struct compat_siginfo *to,
3377 		const struct kernel_siginfo *from)
3378 {
3379 	memset(to, 0, sizeof(*to));
3380 
3381 	to->si_signo = from->si_signo;
3382 	to->si_errno = from->si_errno;
3383 	to->si_code  = from->si_code;
3384 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3385 	case SIL_KILL:
3386 		to->si_pid = from->si_pid;
3387 		to->si_uid = from->si_uid;
3388 		break;
3389 	case SIL_TIMER:
3390 		to->si_tid     = from->si_tid;
3391 		to->si_overrun = from->si_overrun;
3392 		to->si_int     = from->si_int;
3393 		break;
3394 	case SIL_POLL:
3395 		to->si_band = from->si_band;
3396 		to->si_fd   = from->si_fd;
3397 		break;
3398 	case SIL_FAULT:
3399 		to->si_addr = ptr_to_compat(from->si_addr);
3400 		break;
3401 	case SIL_FAULT_TRAPNO:
3402 		to->si_addr = ptr_to_compat(from->si_addr);
3403 		to->si_trapno = from->si_trapno;
3404 		break;
3405 	case SIL_FAULT_MCEERR:
3406 		to->si_addr = ptr_to_compat(from->si_addr);
3407 		to->si_addr_lsb = from->si_addr_lsb;
3408 		break;
3409 	case SIL_FAULT_BNDERR:
3410 		to->si_addr = ptr_to_compat(from->si_addr);
3411 		to->si_lower = ptr_to_compat(from->si_lower);
3412 		to->si_upper = ptr_to_compat(from->si_upper);
3413 		break;
3414 	case SIL_FAULT_PKUERR:
3415 		to->si_addr = ptr_to_compat(from->si_addr);
3416 		to->si_pkey = from->si_pkey;
3417 		break;
3418 	case SIL_FAULT_PERF_EVENT:
3419 		to->si_addr = ptr_to_compat(from->si_addr);
3420 		to->si_perf_data = from->si_perf_data;
3421 		to->si_perf_type = from->si_perf_type;
3422 		break;
3423 	case SIL_CHLD:
3424 		to->si_pid = from->si_pid;
3425 		to->si_uid = from->si_uid;
3426 		to->si_status = from->si_status;
3427 		to->si_utime = from->si_utime;
3428 		to->si_stime = from->si_stime;
3429 		break;
3430 	case SIL_RT:
3431 		to->si_pid = from->si_pid;
3432 		to->si_uid = from->si_uid;
3433 		to->si_int = from->si_int;
3434 		break;
3435 	case SIL_SYS:
3436 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3437 		to->si_syscall   = from->si_syscall;
3438 		to->si_arch      = from->si_arch;
3439 		break;
3440 	}
3441 }
3442 
3443 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3444 			   const struct kernel_siginfo *from)
3445 {
3446 	struct compat_siginfo new;
3447 
3448 	copy_siginfo_to_external32(&new, from);
3449 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3450 		return -EFAULT;
3451 	return 0;
3452 }
3453 
3454 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3455 					 const struct compat_siginfo *from)
3456 {
3457 	clear_siginfo(to);
3458 	to->si_signo = from->si_signo;
3459 	to->si_errno = from->si_errno;
3460 	to->si_code  = from->si_code;
3461 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3462 	case SIL_KILL:
3463 		to->si_pid = from->si_pid;
3464 		to->si_uid = from->si_uid;
3465 		break;
3466 	case SIL_TIMER:
3467 		to->si_tid     = from->si_tid;
3468 		to->si_overrun = from->si_overrun;
3469 		to->si_int     = from->si_int;
3470 		break;
3471 	case SIL_POLL:
3472 		to->si_band = from->si_band;
3473 		to->si_fd   = from->si_fd;
3474 		break;
3475 	case SIL_FAULT:
3476 		to->si_addr = compat_ptr(from->si_addr);
3477 		break;
3478 	case SIL_FAULT_TRAPNO:
3479 		to->si_addr = compat_ptr(from->si_addr);
3480 		to->si_trapno = from->si_trapno;
3481 		break;
3482 	case SIL_FAULT_MCEERR:
3483 		to->si_addr = compat_ptr(from->si_addr);
3484 		to->si_addr_lsb = from->si_addr_lsb;
3485 		break;
3486 	case SIL_FAULT_BNDERR:
3487 		to->si_addr = compat_ptr(from->si_addr);
3488 		to->si_lower = compat_ptr(from->si_lower);
3489 		to->si_upper = compat_ptr(from->si_upper);
3490 		break;
3491 	case SIL_FAULT_PKUERR:
3492 		to->si_addr = compat_ptr(from->si_addr);
3493 		to->si_pkey = from->si_pkey;
3494 		break;
3495 	case SIL_FAULT_PERF_EVENT:
3496 		to->si_addr = compat_ptr(from->si_addr);
3497 		to->si_perf_data = from->si_perf_data;
3498 		to->si_perf_type = from->si_perf_type;
3499 		break;
3500 	case SIL_CHLD:
3501 		to->si_pid    = from->si_pid;
3502 		to->si_uid    = from->si_uid;
3503 		to->si_status = from->si_status;
3504 #ifdef CONFIG_X86_X32_ABI
3505 		if (in_x32_syscall()) {
3506 			to->si_utime = from->_sifields._sigchld_x32._utime;
3507 			to->si_stime = from->_sifields._sigchld_x32._stime;
3508 		} else
3509 #endif
3510 		{
3511 			to->si_utime = from->si_utime;
3512 			to->si_stime = from->si_stime;
3513 		}
3514 		break;
3515 	case SIL_RT:
3516 		to->si_pid = from->si_pid;
3517 		to->si_uid = from->si_uid;
3518 		to->si_int = from->si_int;
3519 		break;
3520 	case SIL_SYS:
3521 		to->si_call_addr = compat_ptr(from->si_call_addr);
3522 		to->si_syscall   = from->si_syscall;
3523 		to->si_arch      = from->si_arch;
3524 		break;
3525 	}
3526 	return 0;
3527 }
3528 
3529 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3530 				      const struct compat_siginfo __user *ufrom)
3531 {
3532 	struct compat_siginfo from;
3533 
3534 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3535 		return -EFAULT;
3536 
3537 	from.si_signo = signo;
3538 	return post_copy_siginfo_from_user32(to, &from);
3539 }
3540 
3541 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3542 			     const struct compat_siginfo __user *ufrom)
3543 {
3544 	struct compat_siginfo from;
3545 
3546 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3547 		return -EFAULT;
3548 
3549 	return post_copy_siginfo_from_user32(to, &from);
3550 }
3551 #endif /* CONFIG_COMPAT */
3552 
3553 /**
3554  *  do_sigtimedwait - wait for queued signals specified in @which
3555  *  @which: queued signals to wait for
3556  *  @info: if non-null, the signal's siginfo is returned here
3557  *  @ts: upper bound on process time suspension
3558  */
3559 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3560 		    const struct timespec64 *ts)
3561 {
3562 	ktime_t *to = NULL, timeout = KTIME_MAX;
3563 	struct task_struct *tsk = current;
3564 	sigset_t mask = *which;
3565 	int sig, ret = 0;
3566 
3567 	if (ts) {
3568 		if (!timespec64_valid(ts))
3569 			return -EINVAL;
3570 		timeout = timespec64_to_ktime(*ts);
3571 		to = &timeout;
3572 	}
3573 
3574 	/*
3575 	 * Invert the set of allowed signals to get those we want to block.
3576 	 */
3577 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3578 	signotset(&mask);
3579 
3580 	spin_lock_irq(&tsk->sighand->siglock);
3581 	sig = dequeue_signal(tsk, &mask, info);
3582 	if (!sig && timeout) {
3583 		/*
3584 		 * None ready, temporarily unblock those we're interested
3585 		 * while we are sleeping in so that we'll be awakened when
3586 		 * they arrive. Unblocking is always fine, we can avoid
3587 		 * set_current_blocked().
3588 		 */
3589 		tsk->real_blocked = tsk->blocked;
3590 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3591 		recalc_sigpending();
3592 		spin_unlock_irq(&tsk->sighand->siglock);
3593 
3594 		__set_current_state(TASK_INTERRUPTIBLE);
3595 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3596 							 HRTIMER_MODE_REL);
3597 		spin_lock_irq(&tsk->sighand->siglock);
3598 		__set_task_blocked(tsk, &tsk->real_blocked);
3599 		sigemptyset(&tsk->real_blocked);
3600 		sig = dequeue_signal(tsk, &mask, info);
3601 	}
3602 	spin_unlock_irq(&tsk->sighand->siglock);
3603 
3604 	if (sig)
3605 		return sig;
3606 	return ret ? -EINTR : -EAGAIN;
3607 }
3608 
3609 /**
3610  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3611  *			in @uthese
3612  *  @uthese: queued signals to wait for
3613  *  @uinfo: if non-null, the signal's siginfo is returned here
3614  *  @uts: upper bound on process time suspension
3615  *  @sigsetsize: size of sigset_t type
3616  */
3617 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3618 		siginfo_t __user *, uinfo,
3619 		const struct __kernel_timespec __user *, uts,
3620 		size_t, sigsetsize)
3621 {
3622 	sigset_t these;
3623 	struct timespec64 ts;
3624 	kernel_siginfo_t info;
3625 	int ret;
3626 
3627 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3628 	if (sigsetsize != sizeof(sigset_t))
3629 		return -EINVAL;
3630 
3631 	if (copy_from_user(&these, uthese, sizeof(these)))
3632 		return -EFAULT;
3633 
3634 	if (uts) {
3635 		if (get_timespec64(&ts, uts))
3636 			return -EFAULT;
3637 	}
3638 
3639 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3640 
3641 	if (ret > 0 && uinfo) {
3642 		if (copy_siginfo_to_user(uinfo, &info))
3643 			ret = -EFAULT;
3644 	}
3645 
3646 	return ret;
3647 }
3648 
3649 #ifdef CONFIG_COMPAT_32BIT_TIME
3650 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3651 		siginfo_t __user *, uinfo,
3652 		const struct old_timespec32 __user *, uts,
3653 		size_t, sigsetsize)
3654 {
3655 	sigset_t these;
3656 	struct timespec64 ts;
3657 	kernel_siginfo_t info;
3658 	int ret;
3659 
3660 	if (sigsetsize != sizeof(sigset_t))
3661 		return -EINVAL;
3662 
3663 	if (copy_from_user(&these, uthese, sizeof(these)))
3664 		return -EFAULT;
3665 
3666 	if (uts) {
3667 		if (get_old_timespec32(&ts, uts))
3668 			return -EFAULT;
3669 	}
3670 
3671 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3672 
3673 	if (ret > 0 && uinfo) {
3674 		if (copy_siginfo_to_user(uinfo, &info))
3675 			ret = -EFAULT;
3676 	}
3677 
3678 	return ret;
3679 }
3680 #endif
3681 
3682 #ifdef CONFIG_COMPAT
3683 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3684 		struct compat_siginfo __user *, uinfo,
3685 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3686 {
3687 	sigset_t s;
3688 	struct timespec64 t;
3689 	kernel_siginfo_t info;
3690 	long ret;
3691 
3692 	if (sigsetsize != sizeof(sigset_t))
3693 		return -EINVAL;
3694 
3695 	if (get_compat_sigset(&s, uthese))
3696 		return -EFAULT;
3697 
3698 	if (uts) {
3699 		if (get_timespec64(&t, uts))
3700 			return -EFAULT;
3701 	}
3702 
3703 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3704 
3705 	if (ret > 0 && uinfo) {
3706 		if (copy_siginfo_to_user32(uinfo, &info))
3707 			ret = -EFAULT;
3708 	}
3709 
3710 	return ret;
3711 }
3712 
3713 #ifdef CONFIG_COMPAT_32BIT_TIME
3714 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3715 		struct compat_siginfo __user *, uinfo,
3716 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3717 {
3718 	sigset_t s;
3719 	struct timespec64 t;
3720 	kernel_siginfo_t info;
3721 	long ret;
3722 
3723 	if (sigsetsize != sizeof(sigset_t))
3724 		return -EINVAL;
3725 
3726 	if (get_compat_sigset(&s, uthese))
3727 		return -EFAULT;
3728 
3729 	if (uts) {
3730 		if (get_old_timespec32(&t, uts))
3731 			return -EFAULT;
3732 	}
3733 
3734 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3735 
3736 	if (ret > 0 && uinfo) {
3737 		if (copy_siginfo_to_user32(uinfo, &info))
3738 			ret = -EFAULT;
3739 	}
3740 
3741 	return ret;
3742 }
3743 #endif
3744 #endif
3745 
3746 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3747 {
3748 	clear_siginfo(info);
3749 	info->si_signo = sig;
3750 	info->si_errno = 0;
3751 	info->si_code = SI_USER;
3752 	info->si_pid = task_tgid_vnr(current);
3753 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3754 }
3755 
3756 /**
3757  *  sys_kill - send a signal to a process
3758  *  @pid: the PID of the process
3759  *  @sig: signal to be sent
3760  */
3761 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3762 {
3763 	struct kernel_siginfo info;
3764 
3765 	prepare_kill_siginfo(sig, &info);
3766 
3767 	return kill_something_info(sig, &info, pid);
3768 }
3769 
3770 /*
3771  * Verify that the signaler and signalee either are in the same pid namespace
3772  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3773  * namespace.
3774  */
3775 static bool access_pidfd_pidns(struct pid *pid)
3776 {
3777 	struct pid_namespace *active = task_active_pid_ns(current);
3778 	struct pid_namespace *p = ns_of_pid(pid);
3779 
3780 	for (;;) {
3781 		if (!p)
3782 			return false;
3783 		if (p == active)
3784 			break;
3785 		p = p->parent;
3786 	}
3787 
3788 	return true;
3789 }
3790 
3791 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3792 		siginfo_t __user *info)
3793 {
3794 #ifdef CONFIG_COMPAT
3795 	/*
3796 	 * Avoid hooking up compat syscalls and instead handle necessary
3797 	 * conversions here. Note, this is a stop-gap measure and should not be
3798 	 * considered a generic solution.
3799 	 */
3800 	if (in_compat_syscall())
3801 		return copy_siginfo_from_user32(
3802 			kinfo, (struct compat_siginfo __user *)info);
3803 #endif
3804 	return copy_siginfo_from_user(kinfo, info);
3805 }
3806 
3807 static struct pid *pidfd_to_pid(const struct file *file)
3808 {
3809 	struct pid *pid;
3810 
3811 	pid = pidfd_pid(file);
3812 	if (!IS_ERR(pid))
3813 		return pid;
3814 
3815 	return tgid_pidfd_to_pid(file);
3816 }
3817 
3818 /**
3819  * sys_pidfd_send_signal - Signal a process through a pidfd
3820  * @pidfd:  file descriptor of the process
3821  * @sig:    signal to send
3822  * @info:   signal info
3823  * @flags:  future flags
3824  *
3825  * The syscall currently only signals via PIDTYPE_PID which covers
3826  * kill(<positive-pid>, <signal>. It does not signal threads or process
3827  * groups.
3828  * In order to extend the syscall to threads and process groups the @flags
3829  * argument should be used. In essence, the @flags argument will determine
3830  * what is signaled and not the file descriptor itself. Put in other words,
3831  * grouping is a property of the flags argument not a property of the file
3832  * descriptor.
3833  *
3834  * Return: 0 on success, negative errno on failure
3835  */
3836 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3837 		siginfo_t __user *, info, unsigned int, flags)
3838 {
3839 	int ret;
3840 	struct fd f;
3841 	struct pid *pid;
3842 	kernel_siginfo_t kinfo;
3843 
3844 	/* Enforce flags be set to 0 until we add an extension. */
3845 	if (flags)
3846 		return -EINVAL;
3847 
3848 	f = fdget(pidfd);
3849 	if (!f.file)
3850 		return -EBADF;
3851 
3852 	/* Is this a pidfd? */
3853 	pid = pidfd_to_pid(f.file);
3854 	if (IS_ERR(pid)) {
3855 		ret = PTR_ERR(pid);
3856 		goto err;
3857 	}
3858 
3859 	ret = -EINVAL;
3860 	if (!access_pidfd_pidns(pid))
3861 		goto err;
3862 
3863 	if (info) {
3864 		ret = copy_siginfo_from_user_any(&kinfo, info);
3865 		if (unlikely(ret))
3866 			goto err;
3867 
3868 		ret = -EINVAL;
3869 		if (unlikely(sig != kinfo.si_signo))
3870 			goto err;
3871 
3872 		/* Only allow sending arbitrary signals to yourself. */
3873 		ret = -EPERM;
3874 		if ((task_pid(current) != pid) &&
3875 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3876 			goto err;
3877 	} else {
3878 		prepare_kill_siginfo(sig, &kinfo);
3879 	}
3880 
3881 	ret = kill_pid_info(sig, &kinfo, pid);
3882 
3883 err:
3884 	fdput(f);
3885 	return ret;
3886 }
3887 
3888 static int
3889 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3890 {
3891 	struct task_struct *p;
3892 	int error = -ESRCH;
3893 
3894 	rcu_read_lock();
3895 	p = find_task_by_vpid(pid);
3896 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3897 		error = check_kill_permission(sig, info, p);
3898 		/*
3899 		 * The null signal is a permissions and process existence
3900 		 * probe.  No signal is actually delivered.
3901 		 */
3902 		if (!error && sig) {
3903 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3904 			/*
3905 			 * If lock_task_sighand() failed we pretend the task
3906 			 * dies after receiving the signal. The window is tiny,
3907 			 * and the signal is private anyway.
3908 			 */
3909 			if (unlikely(error == -ESRCH))
3910 				error = 0;
3911 		}
3912 	}
3913 	rcu_read_unlock();
3914 
3915 	return error;
3916 }
3917 
3918 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3919 {
3920 	struct kernel_siginfo info;
3921 
3922 	clear_siginfo(&info);
3923 	info.si_signo = sig;
3924 	info.si_errno = 0;
3925 	info.si_code = SI_TKILL;
3926 	info.si_pid = task_tgid_vnr(current);
3927 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3928 
3929 	return do_send_specific(tgid, pid, sig, &info);
3930 }
3931 
3932 /**
3933  *  sys_tgkill - send signal to one specific thread
3934  *  @tgid: the thread group ID of the thread
3935  *  @pid: the PID of the thread
3936  *  @sig: signal to be sent
3937  *
3938  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3939  *  exists but it's not belonging to the target process anymore. This
3940  *  method solves the problem of threads exiting and PIDs getting reused.
3941  */
3942 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3943 {
3944 	/* This is only valid for single tasks */
3945 	if (pid <= 0 || tgid <= 0)
3946 		return -EINVAL;
3947 
3948 	return do_tkill(tgid, pid, sig);
3949 }
3950 
3951 /**
3952  *  sys_tkill - send signal to one specific task
3953  *  @pid: the PID of the task
3954  *  @sig: signal to be sent
3955  *
3956  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3957  */
3958 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3959 {
3960 	/* This is only valid for single tasks */
3961 	if (pid <= 0)
3962 		return -EINVAL;
3963 
3964 	return do_tkill(0, pid, sig);
3965 }
3966 
3967 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3968 {
3969 	/* Not even root can pretend to send signals from the kernel.
3970 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3971 	 */
3972 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3973 	    (task_pid_vnr(current) != pid))
3974 		return -EPERM;
3975 
3976 	/* POSIX.1b doesn't mention process groups.  */
3977 	return kill_proc_info(sig, info, pid);
3978 }
3979 
3980 /**
3981  *  sys_rt_sigqueueinfo - send signal information to a signal
3982  *  @pid: the PID of the thread
3983  *  @sig: signal to be sent
3984  *  @uinfo: signal info to be sent
3985  */
3986 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3987 		siginfo_t __user *, uinfo)
3988 {
3989 	kernel_siginfo_t info;
3990 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3991 	if (unlikely(ret))
3992 		return ret;
3993 	return do_rt_sigqueueinfo(pid, sig, &info);
3994 }
3995 
3996 #ifdef CONFIG_COMPAT
3997 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3998 			compat_pid_t, pid,
3999 			int, sig,
4000 			struct compat_siginfo __user *, uinfo)
4001 {
4002 	kernel_siginfo_t info;
4003 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4004 	if (unlikely(ret))
4005 		return ret;
4006 	return do_rt_sigqueueinfo(pid, sig, &info);
4007 }
4008 #endif
4009 
4010 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4011 {
4012 	/* This is only valid for single tasks */
4013 	if (pid <= 0 || tgid <= 0)
4014 		return -EINVAL;
4015 
4016 	/* Not even root can pretend to send signals from the kernel.
4017 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4018 	 */
4019 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4020 	    (task_pid_vnr(current) != pid))
4021 		return -EPERM;
4022 
4023 	return do_send_specific(tgid, pid, sig, info);
4024 }
4025 
4026 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4027 		siginfo_t __user *, uinfo)
4028 {
4029 	kernel_siginfo_t info;
4030 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4031 	if (unlikely(ret))
4032 		return ret;
4033 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4034 }
4035 
4036 #ifdef CONFIG_COMPAT
4037 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4038 			compat_pid_t, tgid,
4039 			compat_pid_t, pid,
4040 			int, sig,
4041 			struct compat_siginfo __user *, uinfo)
4042 {
4043 	kernel_siginfo_t info;
4044 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4045 	if (unlikely(ret))
4046 		return ret;
4047 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4048 }
4049 #endif
4050 
4051 /*
4052  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4053  */
4054 void kernel_sigaction(int sig, __sighandler_t action)
4055 {
4056 	spin_lock_irq(&current->sighand->siglock);
4057 	current->sighand->action[sig - 1].sa.sa_handler = action;
4058 	if (action == SIG_IGN) {
4059 		sigset_t mask;
4060 
4061 		sigemptyset(&mask);
4062 		sigaddset(&mask, sig);
4063 
4064 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4065 		flush_sigqueue_mask(&mask, &current->pending);
4066 		recalc_sigpending();
4067 	}
4068 	spin_unlock_irq(&current->sighand->siglock);
4069 }
4070 EXPORT_SYMBOL(kernel_sigaction);
4071 
4072 void __weak sigaction_compat_abi(struct k_sigaction *act,
4073 		struct k_sigaction *oact)
4074 {
4075 }
4076 
4077 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4078 {
4079 	struct task_struct *p = current, *t;
4080 	struct k_sigaction *k;
4081 	sigset_t mask;
4082 
4083 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4084 		return -EINVAL;
4085 
4086 	k = &p->sighand->action[sig-1];
4087 
4088 	spin_lock_irq(&p->sighand->siglock);
4089 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4090 		spin_unlock_irq(&p->sighand->siglock);
4091 		return -EINVAL;
4092 	}
4093 	if (oact)
4094 		*oact = *k;
4095 
4096 	/*
4097 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4098 	 * e.g. by having an architecture use the bit in their uapi.
4099 	 */
4100 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4101 
4102 	/*
4103 	 * Clear unknown flag bits in order to allow userspace to detect missing
4104 	 * support for flag bits and to allow the kernel to use non-uapi bits
4105 	 * internally.
4106 	 */
4107 	if (act)
4108 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4109 	if (oact)
4110 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4111 
4112 	sigaction_compat_abi(act, oact);
4113 
4114 	if (act) {
4115 		sigdelsetmask(&act->sa.sa_mask,
4116 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4117 		*k = *act;
4118 		/*
4119 		 * POSIX 3.3.1.3:
4120 		 *  "Setting a signal action to SIG_IGN for a signal that is
4121 		 *   pending shall cause the pending signal to be discarded,
4122 		 *   whether or not it is blocked."
4123 		 *
4124 		 *  "Setting a signal action to SIG_DFL for a signal that is
4125 		 *   pending and whose default action is to ignore the signal
4126 		 *   (for example, SIGCHLD), shall cause the pending signal to
4127 		 *   be discarded, whether or not it is blocked"
4128 		 */
4129 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4130 			sigemptyset(&mask);
4131 			sigaddset(&mask, sig);
4132 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4133 			for_each_thread(p, t)
4134 				flush_sigqueue_mask(&mask, &t->pending);
4135 		}
4136 	}
4137 
4138 	spin_unlock_irq(&p->sighand->siglock);
4139 	return 0;
4140 }
4141 
4142 #ifdef CONFIG_DYNAMIC_SIGFRAME
4143 static inline void sigaltstack_lock(void)
4144 	__acquires(&current->sighand->siglock)
4145 {
4146 	spin_lock_irq(&current->sighand->siglock);
4147 }
4148 
4149 static inline void sigaltstack_unlock(void)
4150 	__releases(&current->sighand->siglock)
4151 {
4152 	spin_unlock_irq(&current->sighand->siglock);
4153 }
4154 #else
4155 static inline void sigaltstack_lock(void) { }
4156 static inline void sigaltstack_unlock(void) { }
4157 #endif
4158 
4159 static int
4160 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4161 		size_t min_ss_size)
4162 {
4163 	struct task_struct *t = current;
4164 	int ret = 0;
4165 
4166 	if (oss) {
4167 		memset(oss, 0, sizeof(stack_t));
4168 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4169 		oss->ss_size = t->sas_ss_size;
4170 		oss->ss_flags = sas_ss_flags(sp) |
4171 			(current->sas_ss_flags & SS_FLAG_BITS);
4172 	}
4173 
4174 	if (ss) {
4175 		void __user *ss_sp = ss->ss_sp;
4176 		size_t ss_size = ss->ss_size;
4177 		unsigned ss_flags = ss->ss_flags;
4178 		int ss_mode;
4179 
4180 		if (unlikely(on_sig_stack(sp)))
4181 			return -EPERM;
4182 
4183 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4184 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4185 				ss_mode != 0))
4186 			return -EINVAL;
4187 
4188 		/*
4189 		 * Return before taking any locks if no actual
4190 		 * sigaltstack changes were requested.
4191 		 */
4192 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4193 		    t->sas_ss_size == ss_size &&
4194 		    t->sas_ss_flags == ss_flags)
4195 			return 0;
4196 
4197 		sigaltstack_lock();
4198 		if (ss_mode == SS_DISABLE) {
4199 			ss_size = 0;
4200 			ss_sp = NULL;
4201 		} else {
4202 			if (unlikely(ss_size < min_ss_size))
4203 				ret = -ENOMEM;
4204 			if (!sigaltstack_size_valid(ss_size))
4205 				ret = -ENOMEM;
4206 		}
4207 		if (!ret) {
4208 			t->sas_ss_sp = (unsigned long) ss_sp;
4209 			t->sas_ss_size = ss_size;
4210 			t->sas_ss_flags = ss_flags;
4211 		}
4212 		sigaltstack_unlock();
4213 	}
4214 	return ret;
4215 }
4216 
4217 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4218 {
4219 	stack_t new, old;
4220 	int err;
4221 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4222 		return -EFAULT;
4223 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4224 			      current_user_stack_pointer(),
4225 			      MINSIGSTKSZ);
4226 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4227 		err = -EFAULT;
4228 	return err;
4229 }
4230 
4231 int restore_altstack(const stack_t __user *uss)
4232 {
4233 	stack_t new;
4234 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4235 		return -EFAULT;
4236 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4237 			     MINSIGSTKSZ);
4238 	/* squash all but EFAULT for now */
4239 	return 0;
4240 }
4241 
4242 int __save_altstack(stack_t __user *uss, unsigned long sp)
4243 {
4244 	struct task_struct *t = current;
4245 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4246 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4247 		__put_user(t->sas_ss_size, &uss->ss_size);
4248 	return err;
4249 }
4250 
4251 #ifdef CONFIG_COMPAT
4252 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4253 				 compat_stack_t __user *uoss_ptr)
4254 {
4255 	stack_t uss, uoss;
4256 	int ret;
4257 
4258 	if (uss_ptr) {
4259 		compat_stack_t uss32;
4260 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4261 			return -EFAULT;
4262 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4263 		uss.ss_flags = uss32.ss_flags;
4264 		uss.ss_size = uss32.ss_size;
4265 	}
4266 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4267 			     compat_user_stack_pointer(),
4268 			     COMPAT_MINSIGSTKSZ);
4269 	if (ret >= 0 && uoss_ptr)  {
4270 		compat_stack_t old;
4271 		memset(&old, 0, sizeof(old));
4272 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4273 		old.ss_flags = uoss.ss_flags;
4274 		old.ss_size = uoss.ss_size;
4275 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4276 			ret = -EFAULT;
4277 	}
4278 	return ret;
4279 }
4280 
4281 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4282 			const compat_stack_t __user *, uss_ptr,
4283 			compat_stack_t __user *, uoss_ptr)
4284 {
4285 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4286 }
4287 
4288 int compat_restore_altstack(const compat_stack_t __user *uss)
4289 {
4290 	int err = do_compat_sigaltstack(uss, NULL);
4291 	/* squash all but -EFAULT for now */
4292 	return err == -EFAULT ? err : 0;
4293 }
4294 
4295 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4296 {
4297 	int err;
4298 	struct task_struct *t = current;
4299 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4300 			 &uss->ss_sp) |
4301 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4302 		__put_user(t->sas_ss_size, &uss->ss_size);
4303 	return err;
4304 }
4305 #endif
4306 
4307 #ifdef __ARCH_WANT_SYS_SIGPENDING
4308 
4309 /**
4310  *  sys_sigpending - examine pending signals
4311  *  @uset: where mask of pending signal is returned
4312  */
4313 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4314 {
4315 	sigset_t set;
4316 
4317 	if (sizeof(old_sigset_t) > sizeof(*uset))
4318 		return -EINVAL;
4319 
4320 	do_sigpending(&set);
4321 
4322 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4323 		return -EFAULT;
4324 
4325 	return 0;
4326 }
4327 
4328 #ifdef CONFIG_COMPAT
4329 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4330 {
4331 	sigset_t set;
4332 
4333 	do_sigpending(&set);
4334 
4335 	return put_user(set.sig[0], set32);
4336 }
4337 #endif
4338 
4339 #endif
4340 
4341 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4342 /**
4343  *  sys_sigprocmask - examine and change blocked signals
4344  *  @how: whether to add, remove, or set signals
4345  *  @nset: signals to add or remove (if non-null)
4346  *  @oset: previous value of signal mask if non-null
4347  *
4348  * Some platforms have their own version with special arguments;
4349  * others support only sys_rt_sigprocmask.
4350  */
4351 
4352 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4353 		old_sigset_t __user *, oset)
4354 {
4355 	old_sigset_t old_set, new_set;
4356 	sigset_t new_blocked;
4357 
4358 	old_set = current->blocked.sig[0];
4359 
4360 	if (nset) {
4361 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4362 			return -EFAULT;
4363 
4364 		new_blocked = current->blocked;
4365 
4366 		switch (how) {
4367 		case SIG_BLOCK:
4368 			sigaddsetmask(&new_blocked, new_set);
4369 			break;
4370 		case SIG_UNBLOCK:
4371 			sigdelsetmask(&new_blocked, new_set);
4372 			break;
4373 		case SIG_SETMASK:
4374 			new_blocked.sig[0] = new_set;
4375 			break;
4376 		default:
4377 			return -EINVAL;
4378 		}
4379 
4380 		set_current_blocked(&new_blocked);
4381 	}
4382 
4383 	if (oset) {
4384 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4385 			return -EFAULT;
4386 	}
4387 
4388 	return 0;
4389 }
4390 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4391 
4392 #ifndef CONFIG_ODD_RT_SIGACTION
4393 /**
4394  *  sys_rt_sigaction - alter an action taken by a process
4395  *  @sig: signal to be sent
4396  *  @act: new sigaction
4397  *  @oact: used to save the previous sigaction
4398  *  @sigsetsize: size of sigset_t type
4399  */
4400 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4401 		const struct sigaction __user *, act,
4402 		struct sigaction __user *, oact,
4403 		size_t, sigsetsize)
4404 {
4405 	struct k_sigaction new_sa, old_sa;
4406 	int ret;
4407 
4408 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4409 	if (sigsetsize != sizeof(sigset_t))
4410 		return -EINVAL;
4411 
4412 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4413 		return -EFAULT;
4414 
4415 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4416 	if (ret)
4417 		return ret;
4418 
4419 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4420 		return -EFAULT;
4421 
4422 	return 0;
4423 }
4424 #ifdef CONFIG_COMPAT
4425 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4426 		const struct compat_sigaction __user *, act,
4427 		struct compat_sigaction __user *, oact,
4428 		compat_size_t, sigsetsize)
4429 {
4430 	struct k_sigaction new_ka, old_ka;
4431 #ifdef __ARCH_HAS_SA_RESTORER
4432 	compat_uptr_t restorer;
4433 #endif
4434 	int ret;
4435 
4436 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4437 	if (sigsetsize != sizeof(compat_sigset_t))
4438 		return -EINVAL;
4439 
4440 	if (act) {
4441 		compat_uptr_t handler;
4442 		ret = get_user(handler, &act->sa_handler);
4443 		new_ka.sa.sa_handler = compat_ptr(handler);
4444 #ifdef __ARCH_HAS_SA_RESTORER
4445 		ret |= get_user(restorer, &act->sa_restorer);
4446 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4447 #endif
4448 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4449 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4450 		if (ret)
4451 			return -EFAULT;
4452 	}
4453 
4454 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4455 	if (!ret && oact) {
4456 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4457 			       &oact->sa_handler);
4458 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4459 					 sizeof(oact->sa_mask));
4460 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4461 #ifdef __ARCH_HAS_SA_RESTORER
4462 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4463 				&oact->sa_restorer);
4464 #endif
4465 	}
4466 	return ret;
4467 }
4468 #endif
4469 #endif /* !CONFIG_ODD_RT_SIGACTION */
4470 
4471 #ifdef CONFIG_OLD_SIGACTION
4472 SYSCALL_DEFINE3(sigaction, int, sig,
4473 		const struct old_sigaction __user *, act,
4474 	        struct old_sigaction __user *, oact)
4475 {
4476 	struct k_sigaction new_ka, old_ka;
4477 	int ret;
4478 
4479 	if (act) {
4480 		old_sigset_t mask;
4481 		if (!access_ok(act, sizeof(*act)) ||
4482 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4483 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4484 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4485 		    __get_user(mask, &act->sa_mask))
4486 			return -EFAULT;
4487 #ifdef __ARCH_HAS_KA_RESTORER
4488 		new_ka.ka_restorer = NULL;
4489 #endif
4490 		siginitset(&new_ka.sa.sa_mask, mask);
4491 	}
4492 
4493 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4494 
4495 	if (!ret && oact) {
4496 		if (!access_ok(oact, sizeof(*oact)) ||
4497 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4498 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4499 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4500 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4501 			return -EFAULT;
4502 	}
4503 
4504 	return ret;
4505 }
4506 #endif
4507 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4508 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4509 		const struct compat_old_sigaction __user *, act,
4510 	        struct compat_old_sigaction __user *, oact)
4511 {
4512 	struct k_sigaction new_ka, old_ka;
4513 	int ret;
4514 	compat_old_sigset_t mask;
4515 	compat_uptr_t handler, restorer;
4516 
4517 	if (act) {
4518 		if (!access_ok(act, sizeof(*act)) ||
4519 		    __get_user(handler, &act->sa_handler) ||
4520 		    __get_user(restorer, &act->sa_restorer) ||
4521 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4522 		    __get_user(mask, &act->sa_mask))
4523 			return -EFAULT;
4524 
4525 #ifdef __ARCH_HAS_KA_RESTORER
4526 		new_ka.ka_restorer = NULL;
4527 #endif
4528 		new_ka.sa.sa_handler = compat_ptr(handler);
4529 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4530 		siginitset(&new_ka.sa.sa_mask, mask);
4531 	}
4532 
4533 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4534 
4535 	if (!ret && oact) {
4536 		if (!access_ok(oact, sizeof(*oact)) ||
4537 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4538 			       &oact->sa_handler) ||
4539 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4540 			       &oact->sa_restorer) ||
4541 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4542 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4543 			return -EFAULT;
4544 	}
4545 	return ret;
4546 }
4547 #endif
4548 
4549 #ifdef CONFIG_SGETMASK_SYSCALL
4550 
4551 /*
4552  * For backwards compatibility.  Functionality superseded by sigprocmask.
4553  */
4554 SYSCALL_DEFINE0(sgetmask)
4555 {
4556 	/* SMP safe */
4557 	return current->blocked.sig[0];
4558 }
4559 
4560 SYSCALL_DEFINE1(ssetmask, int, newmask)
4561 {
4562 	int old = current->blocked.sig[0];
4563 	sigset_t newset;
4564 
4565 	siginitset(&newset, newmask);
4566 	set_current_blocked(&newset);
4567 
4568 	return old;
4569 }
4570 #endif /* CONFIG_SGETMASK_SYSCALL */
4571 
4572 #ifdef __ARCH_WANT_SYS_SIGNAL
4573 /*
4574  * For backwards compatibility.  Functionality superseded by sigaction.
4575  */
4576 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4577 {
4578 	struct k_sigaction new_sa, old_sa;
4579 	int ret;
4580 
4581 	new_sa.sa.sa_handler = handler;
4582 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4583 	sigemptyset(&new_sa.sa.sa_mask);
4584 
4585 	ret = do_sigaction(sig, &new_sa, &old_sa);
4586 
4587 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4588 }
4589 #endif /* __ARCH_WANT_SYS_SIGNAL */
4590 
4591 #ifdef __ARCH_WANT_SYS_PAUSE
4592 
4593 SYSCALL_DEFINE0(pause)
4594 {
4595 	while (!signal_pending(current)) {
4596 		__set_current_state(TASK_INTERRUPTIBLE);
4597 		schedule();
4598 	}
4599 	return -ERESTARTNOHAND;
4600 }
4601 
4602 #endif
4603 
4604 static int sigsuspend(sigset_t *set)
4605 {
4606 	current->saved_sigmask = current->blocked;
4607 	set_current_blocked(set);
4608 
4609 	while (!signal_pending(current)) {
4610 		__set_current_state(TASK_INTERRUPTIBLE);
4611 		schedule();
4612 	}
4613 	set_restore_sigmask();
4614 	return -ERESTARTNOHAND;
4615 }
4616 
4617 /**
4618  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4619  *	@unewset value until a signal is received
4620  *  @unewset: new signal mask value
4621  *  @sigsetsize: size of sigset_t type
4622  */
4623 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4624 {
4625 	sigset_t newset;
4626 
4627 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4628 	if (sigsetsize != sizeof(sigset_t))
4629 		return -EINVAL;
4630 
4631 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4632 		return -EFAULT;
4633 	return sigsuspend(&newset);
4634 }
4635 
4636 #ifdef CONFIG_COMPAT
4637 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4638 {
4639 	sigset_t newset;
4640 
4641 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4642 	if (sigsetsize != sizeof(sigset_t))
4643 		return -EINVAL;
4644 
4645 	if (get_compat_sigset(&newset, unewset))
4646 		return -EFAULT;
4647 	return sigsuspend(&newset);
4648 }
4649 #endif
4650 
4651 #ifdef CONFIG_OLD_SIGSUSPEND
4652 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4653 {
4654 	sigset_t blocked;
4655 	siginitset(&blocked, mask);
4656 	return sigsuspend(&blocked);
4657 }
4658 #endif
4659 #ifdef CONFIG_OLD_SIGSUSPEND3
4660 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4661 {
4662 	sigset_t blocked;
4663 	siginitset(&blocked, mask);
4664 	return sigsuspend(&blocked);
4665 }
4666 #endif
4667 
4668 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4669 {
4670 	return NULL;
4671 }
4672 
4673 static inline void siginfo_buildtime_checks(void)
4674 {
4675 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4676 
4677 	/* Verify the offsets in the two siginfos match */
4678 #define CHECK_OFFSET(field) \
4679 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4680 
4681 	/* kill */
4682 	CHECK_OFFSET(si_pid);
4683 	CHECK_OFFSET(si_uid);
4684 
4685 	/* timer */
4686 	CHECK_OFFSET(si_tid);
4687 	CHECK_OFFSET(si_overrun);
4688 	CHECK_OFFSET(si_value);
4689 
4690 	/* rt */
4691 	CHECK_OFFSET(si_pid);
4692 	CHECK_OFFSET(si_uid);
4693 	CHECK_OFFSET(si_value);
4694 
4695 	/* sigchld */
4696 	CHECK_OFFSET(si_pid);
4697 	CHECK_OFFSET(si_uid);
4698 	CHECK_OFFSET(si_status);
4699 	CHECK_OFFSET(si_utime);
4700 	CHECK_OFFSET(si_stime);
4701 
4702 	/* sigfault */
4703 	CHECK_OFFSET(si_addr);
4704 	CHECK_OFFSET(si_trapno);
4705 	CHECK_OFFSET(si_addr_lsb);
4706 	CHECK_OFFSET(si_lower);
4707 	CHECK_OFFSET(si_upper);
4708 	CHECK_OFFSET(si_pkey);
4709 	CHECK_OFFSET(si_perf_data);
4710 	CHECK_OFFSET(si_perf_type);
4711 
4712 	/* sigpoll */
4713 	CHECK_OFFSET(si_band);
4714 	CHECK_OFFSET(si_fd);
4715 
4716 	/* sigsys */
4717 	CHECK_OFFSET(si_call_addr);
4718 	CHECK_OFFSET(si_syscall);
4719 	CHECK_OFFSET(si_arch);
4720 #undef CHECK_OFFSET
4721 
4722 	/* usb asyncio */
4723 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4724 		     offsetof(struct siginfo, si_addr));
4725 	if (sizeof(int) == sizeof(void __user *)) {
4726 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4727 			     sizeof(void __user *));
4728 	} else {
4729 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4730 			      sizeof_field(struct siginfo, si_uid)) !=
4731 			     sizeof(void __user *));
4732 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4733 			     offsetof(struct siginfo, si_uid));
4734 	}
4735 #ifdef CONFIG_COMPAT
4736 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4737 		     offsetof(struct compat_siginfo, si_addr));
4738 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4739 		     sizeof(compat_uptr_t));
4740 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4741 		     sizeof_field(struct siginfo, si_pid));
4742 #endif
4743 }
4744 
4745 void __init signals_init(void)
4746 {
4747 	siginfo_buildtime_checks();
4748 
4749 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4750 }
4751 
4752 #ifdef CONFIG_KGDB_KDB
4753 #include <linux/kdb.h>
4754 /*
4755  * kdb_send_sig - Allows kdb to send signals without exposing
4756  * signal internals.  This function checks if the required locks are
4757  * available before calling the main signal code, to avoid kdb
4758  * deadlocks.
4759  */
4760 void kdb_send_sig(struct task_struct *t, int sig)
4761 {
4762 	static struct task_struct *kdb_prev_t;
4763 	int new_t, ret;
4764 	if (!spin_trylock(&t->sighand->siglock)) {
4765 		kdb_printf("Can't do kill command now.\n"
4766 			   "The sigmask lock is held somewhere else in "
4767 			   "kernel, try again later\n");
4768 		return;
4769 	}
4770 	new_t = kdb_prev_t != t;
4771 	kdb_prev_t = t;
4772 	if (!task_is_running(t) && new_t) {
4773 		spin_unlock(&t->sighand->siglock);
4774 		kdb_printf("Process is not RUNNING, sending a signal from "
4775 			   "kdb risks deadlock\n"
4776 			   "on the run queue locks. "
4777 			   "The signal has _not_ been sent.\n"
4778 			   "Reissue the kill command if you want to risk "
4779 			   "the deadlock.\n");
4780 		return;
4781 	}
4782 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4783 	spin_unlock(&t->sighand->siglock);
4784 	if (ret)
4785 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4786 			   sig, t->pid);
4787 	else
4788 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4789 }
4790 #endif	/* CONFIG_KGDB_KDB */
4791