xref: /openbmc/linux/kernel/signal.c (revision 2fa5ebe3bc4e31e07a99196455498472417842f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h>	/* for syscall_get_* */
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current))
185 		clear_thread_flag(TIF_SIGPENDING);
186 
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189 
190 void calculate_sigpending(void)
191 {
192 	/* Have any signals or users of TIF_SIGPENDING been delayed
193 	 * until after fork?
194 	 */
195 	spin_lock_irq(&current->sighand->siglock);
196 	set_tsk_thread_flag(current, TIF_SIGPENDING);
197 	recalc_sigpending();
198 	spin_unlock_irq(&current->sighand->siglock);
199 }
200 
201 /* Given the mask, find the first available signal that should be serviced. */
202 
203 #define SYNCHRONOUS_MASK \
204 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 	unsigned long i, *s, *m, x;
210 	int sig = 0;
211 
212 	s = pending->signal.sig;
213 	m = mask->sig;
214 
215 	/*
216 	 * Handle the first word specially: it contains the
217 	 * synchronous signals that need to be dequeued first.
218 	 */
219 	x = *s &~ *m;
220 	if (x) {
221 		if (x & SYNCHRONOUS_MASK)
222 			x &= SYNCHRONOUS_MASK;
223 		sig = ffz(~x) + 1;
224 		return sig;
225 	}
226 
227 	switch (_NSIG_WORDS) {
228 	default:
229 		for (i = 1; i < _NSIG_WORDS; ++i) {
230 			x = *++s &~ *++m;
231 			if (!x)
232 				continue;
233 			sig = ffz(~x) + i*_NSIG_BPW + 1;
234 			break;
235 		}
236 		break;
237 
238 	case 2:
239 		x = s[1] &~ m[1];
240 		if (!x)
241 			break;
242 		sig = ffz(~x) + _NSIG_BPW + 1;
243 		break;
244 
245 	case 1:
246 		/* Nothing to do */
247 		break;
248 	}
249 
250 	return sig;
251 }
252 
253 static inline void print_dropped_signal(int sig)
254 {
255 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 
257 	if (!print_fatal_signals)
258 		return;
259 
260 	if (!__ratelimit(&ratelimit_state))
261 		return;
262 
263 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 				current->comm, current->pid, sig);
265 }
266 
267 /**
268  * task_set_jobctl_pending - set jobctl pending bits
269  * @task: target task
270  * @mask: pending bits to set
271  *
272  * Clear @mask from @task->jobctl.  @mask must be subset of
273  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
275  * cleared.  If @task is already being killed or exiting, this function
276  * becomes noop.
277  *
278  * CONTEXT:
279  * Must be called with @task->sighand->siglock held.
280  *
281  * RETURNS:
282  * %true if @mask is set, %false if made noop because @task was dying.
283  */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 
290 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 		return false;
292 
293 	if (mask & JOBCTL_STOP_SIGMASK)
294 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 
296 	task->jobctl |= mask;
297 	return true;
298 }
299 
300 /**
301  * task_clear_jobctl_trapping - clear jobctl trapping bit
302  * @task: target task
303  *
304  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305  * Clear it and wake up the ptracer.  Note that we don't need any further
306  * locking.  @task->siglock guarantees that @task->parent points to the
307  * ptracer.
308  *
309  * CONTEXT:
310  * Must be called with @task->sighand->siglock held.
311  */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 		task->jobctl &= ~JOBCTL_TRAPPING;
316 		smp_mb();	/* advised by wake_up_bit() */
317 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 	}
319 }
320 
321 /**
322  * task_clear_jobctl_pending - clear jobctl pending bits
323  * @task: target task
324  * @mask: pending bits to clear
325  *
326  * Clear @mask from @task->jobctl.  @mask must be subset of
327  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
328  * STOP bits are cleared together.
329  *
330  * If clearing of @mask leaves no stop or trap pending, this function calls
331  * task_clear_jobctl_trapping().
332  *
333  * CONTEXT:
334  * Must be called with @task->sighand->siglock held.
335  */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 
340 	if (mask & JOBCTL_STOP_PENDING)
341 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 
343 	task->jobctl &= ~mask;
344 
345 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 		task_clear_jobctl_trapping(task);
347 }
348 
349 /**
350  * task_participate_group_stop - participate in a group stop
351  * @task: task participating in a group stop
352  *
353  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354  * Group stop states are cleared and the group stop count is consumed if
355  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
356  * stop, the appropriate `SIGNAL_*` flags are set.
357  *
358  * CONTEXT:
359  * Must be called with @task->sighand->siglock held.
360  *
361  * RETURNS:
362  * %true if group stop completion should be notified to the parent, %false
363  * otherwise.
364  */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 	struct signal_struct *sig = task->signal;
368 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 
370 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 
372 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373 
374 	if (!consume)
375 		return false;
376 
377 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 		sig->group_stop_count--;
379 
380 	/*
381 	 * Tell the caller to notify completion iff we are entering into a
382 	 * fresh group stop.  Read comment in do_signal_stop() for details.
383 	 */
384 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 		return true;
387 	}
388 	return false;
389 }
390 
391 void task_join_group_stop(struct task_struct *task)
392 {
393 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 	struct signal_struct *sig = current->signal;
395 
396 	if (sig->group_stop_count) {
397 		sig->group_stop_count++;
398 		mask |= JOBCTL_STOP_CONSUME;
399 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 		return;
401 
402 	/* Have the new thread join an on-going signal group stop */
403 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 		 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 	struct sigqueue *q = NULL;
416 	struct ucounts *ucounts = NULL;
417 	long sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	ucounts = task_ucounts(t);
429 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 	rcu_read_unlock();
431 	if (!sigpending)
432 		return NULL;
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = sigqueue_flags;
445 		q->ucounts = ucounts;
446 	}
447 	return q;
448 }
449 
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 	if (q->flags & SIGQUEUE_PREALLOC)
453 		return;
454 	if (q->ucounts) {
455 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 		q->ucounts = NULL;
457 	}
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 		   kernel_siginfo_t *info, enum pid_type *type)
631 {
632 	bool resched_timer = false;
633 	int signr;
634 
635 	/* We only dequeue private signals from ourselves, we don't let
636 	 * signalfd steal them
637 	 */
638 	*type = PIDTYPE_PID;
639 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
640 	if (!signr) {
641 		*type = PIDTYPE_TGID;
642 		signr = __dequeue_signal(&tsk->signal->shared_pending,
643 					 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
645 		/*
646 		 * itimer signal ?
647 		 *
648 		 * itimers are process shared and we restart periodic
649 		 * itimers in the signal delivery path to prevent DoS
650 		 * attacks in the high resolution timer case. This is
651 		 * compliant with the old way of self-restarting
652 		 * itimers, as the SIGALRM is a legacy signal and only
653 		 * queued once. Changing the restart behaviour to
654 		 * restart the timer in the signal dequeue path is
655 		 * reducing the timer noise on heavy loaded !highres
656 		 * systems too.
657 		 */
658 		if (unlikely(signr == SIGALRM)) {
659 			struct hrtimer *tmr = &tsk->signal->real_timer;
660 
661 			if (!hrtimer_is_queued(tmr) &&
662 			    tsk->signal->it_real_incr != 0) {
663 				hrtimer_forward(tmr, tmr->base->get_time(),
664 						tsk->signal->it_real_incr);
665 				hrtimer_restart(tmr);
666 			}
667 		}
668 #endif
669 	}
670 
671 	recalc_sigpending();
672 	if (!signr)
673 		return 0;
674 
675 	if (unlikely(sig_kernel_stop(signr))) {
676 		/*
677 		 * Set a marker that we have dequeued a stop signal.  Our
678 		 * caller might release the siglock and then the pending
679 		 * stop signal it is about to process is no longer in the
680 		 * pending bitmasks, but must still be cleared by a SIGCONT
681 		 * (and overruled by a SIGKILL).  So those cases clear this
682 		 * shared flag after we've set it.  Note that this flag may
683 		 * remain set after the signal we return is ignored or
684 		 * handled.  That doesn't matter because its only purpose
685 		 * is to alert stop-signal processing code when another
686 		 * processor has come along and cleared the flag.
687 		 */
688 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
689 	}
690 #ifdef CONFIG_POSIX_TIMERS
691 	if (resched_timer) {
692 		/*
693 		 * Release the siglock to ensure proper locking order
694 		 * of timer locks outside of siglocks.  Note, we leave
695 		 * irqs disabled here, since the posix-timers code is
696 		 * about to disable them again anyway.
697 		 */
698 		spin_unlock(&tsk->sighand->siglock);
699 		posixtimer_rearm(info);
700 		spin_lock(&tsk->sighand->siglock);
701 
702 		/* Don't expose the si_sys_private value to userspace */
703 		info->si_sys_private = 0;
704 	}
705 #endif
706 	return signr;
707 }
708 EXPORT_SYMBOL_GPL(dequeue_signal);
709 
710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
711 {
712 	struct task_struct *tsk = current;
713 	struct sigpending *pending = &tsk->pending;
714 	struct sigqueue *q, *sync = NULL;
715 
716 	/*
717 	 * Might a synchronous signal be in the queue?
718 	 */
719 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 		return 0;
721 
722 	/*
723 	 * Return the first synchronous signal in the queue.
724 	 */
725 	list_for_each_entry(q, &pending->list, list) {
726 		/* Synchronous signals have a positive si_code */
727 		if ((q->info.si_code > SI_USER) &&
728 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
729 			sync = q;
730 			goto next;
731 		}
732 	}
733 	return 0;
734 next:
735 	/*
736 	 * Check if there is another siginfo for the same signal.
737 	 */
738 	list_for_each_entry_continue(q, &pending->list, list) {
739 		if (q->info.si_signo == sync->info.si_signo)
740 			goto still_pending;
741 	}
742 
743 	sigdelset(&pending->signal, sync->info.si_signo);
744 	recalc_sigpending();
745 still_pending:
746 	list_del_init(&sync->list);
747 	copy_siginfo(info, &sync->info);
748 	__sigqueue_free(sync);
749 	return info->si_signo;
750 }
751 
752 /*
753  * Tell a process that it has a new active signal..
754  *
755  * NOTE! we rely on the previous spin_lock to
756  * lock interrupts for us! We can only be called with
757  * "siglock" held, and the local interrupt must
758  * have been disabled when that got acquired!
759  *
760  * No need to set need_resched since signal event passing
761  * goes through ->blocked
762  */
763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
764 {
765 	lockdep_assert_held(&t->sighand->siglock);
766 
767 	set_tsk_thread_flag(t, TIF_SIGPENDING);
768 
769 	/*
770 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
771 	 * case. We don't check t->state here because there is a race with it
772 	 * executing another processor and just now entering stopped state.
773 	 * By using wake_up_state, we ensure the process will wake up and
774 	 * handle its death signal.
775 	 */
776 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
777 		kick_process(t);
778 }
779 
780 /*
781  * Remove signals in mask from the pending set and queue.
782  * Returns 1 if any signals were found.
783  *
784  * All callers must be holding the siglock.
785  */
786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
787 {
788 	struct sigqueue *q, *n;
789 	sigset_t m;
790 
791 	sigandsets(&m, mask, &s->signal);
792 	if (sigisemptyset(&m))
793 		return;
794 
795 	sigandnsets(&s->signal, &s->signal, mask);
796 	list_for_each_entry_safe(q, n, &s->list, list) {
797 		if (sigismember(mask, q->info.si_signo)) {
798 			list_del_init(&q->list);
799 			__sigqueue_free(q);
800 		}
801 	}
802 }
803 
804 static inline int is_si_special(const struct kernel_siginfo *info)
805 {
806 	return info <= SEND_SIG_PRIV;
807 }
808 
809 static inline bool si_fromuser(const struct kernel_siginfo *info)
810 {
811 	return info == SEND_SIG_NOINFO ||
812 		(!is_si_special(info) && SI_FROMUSER(info));
813 }
814 
815 /*
816  * called with RCU read lock from check_kill_permission()
817  */
818 static bool kill_ok_by_cred(struct task_struct *t)
819 {
820 	const struct cred *cred = current_cred();
821 	const struct cred *tcred = __task_cred(t);
822 
823 	return uid_eq(cred->euid, tcred->suid) ||
824 	       uid_eq(cred->euid, tcred->uid) ||
825 	       uid_eq(cred->uid, tcred->suid) ||
826 	       uid_eq(cred->uid, tcred->uid) ||
827 	       ns_capable(tcred->user_ns, CAP_KILL);
828 }
829 
830 /*
831  * Bad permissions for sending the signal
832  * - the caller must hold the RCU read lock
833  */
834 static int check_kill_permission(int sig, struct kernel_siginfo *info,
835 				 struct task_struct *t)
836 {
837 	struct pid *sid;
838 	int error;
839 
840 	if (!valid_signal(sig))
841 		return -EINVAL;
842 
843 	if (!si_fromuser(info))
844 		return 0;
845 
846 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 	if (error)
848 		return error;
849 
850 	if (!same_thread_group(current, t) &&
851 	    !kill_ok_by_cred(t)) {
852 		switch (sig) {
853 		case SIGCONT:
854 			sid = task_session(t);
855 			/*
856 			 * We don't return the error if sid == NULL. The
857 			 * task was unhashed, the caller must notice this.
858 			 */
859 			if (!sid || sid == task_session(current))
860 				break;
861 			fallthrough;
862 		default:
863 			return -EPERM;
864 		}
865 	}
866 
867 	return security_task_kill(t, info, sig, NULL);
868 }
869 
870 /**
871  * ptrace_trap_notify - schedule trap to notify ptracer
872  * @t: tracee wanting to notify tracer
873  *
874  * This function schedules sticky ptrace trap which is cleared on the next
875  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
876  * ptracer.
877  *
878  * If @t is running, STOP trap will be taken.  If trapped for STOP and
879  * ptracer is listening for events, tracee is woken up so that it can
880  * re-trap for the new event.  If trapped otherwise, STOP trap will be
881  * eventually taken without returning to userland after the existing traps
882  * are finished by PTRACE_CONT.
883  *
884  * CONTEXT:
885  * Must be called with @task->sighand->siglock held.
886  */
887 static void ptrace_trap_notify(struct task_struct *t)
888 {
889 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
890 	lockdep_assert_held(&t->sighand->siglock);
891 
892 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
893 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894 }
895 
896 /*
897  * Handle magic process-wide effects of stop/continue signals. Unlike
898  * the signal actions, these happen immediately at signal-generation
899  * time regardless of blocking, ignoring, or handling.  This does the
900  * actual continuing for SIGCONT, but not the actual stopping for stop
901  * signals. The process stop is done as a signal action for SIG_DFL.
902  *
903  * Returns true if the signal should be actually delivered, otherwise
904  * it should be dropped.
905  */
906 static bool prepare_signal(int sig, struct task_struct *p, bool force)
907 {
908 	struct signal_struct *signal = p->signal;
909 	struct task_struct *t;
910 	sigset_t flush;
911 
912 	if (signal->flags & SIGNAL_GROUP_EXIT) {
913 		if (signal->core_state)
914 			return sig == SIGKILL;
915 		/*
916 		 * The process is in the middle of dying, drop the signal.
917 		 */
918 		return false;
919 	} else if (sig_kernel_stop(sig)) {
920 		/*
921 		 * This is a stop signal.  Remove SIGCONT from all queues.
922 		 */
923 		siginitset(&flush, sigmask(SIGCONT));
924 		flush_sigqueue_mask(&flush, &signal->shared_pending);
925 		for_each_thread(p, t)
926 			flush_sigqueue_mask(&flush, &t->pending);
927 	} else if (sig == SIGCONT) {
928 		unsigned int why;
929 		/*
930 		 * Remove all stop signals from all queues, wake all threads.
931 		 */
932 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
933 		flush_sigqueue_mask(&flush, &signal->shared_pending);
934 		for_each_thread(p, t) {
935 			flush_sigqueue_mask(&flush, &t->pending);
936 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
937 			if (likely(!(t->ptrace & PT_SEIZED))) {
938 				t->jobctl &= ~JOBCTL_STOPPED;
939 				wake_up_state(t, __TASK_STOPPED);
940 			} else
941 				ptrace_trap_notify(t);
942 		}
943 
944 		/*
945 		 * Notify the parent with CLD_CONTINUED if we were stopped.
946 		 *
947 		 * If we were in the middle of a group stop, we pretend it
948 		 * was already finished, and then continued. Since SIGCHLD
949 		 * doesn't queue we report only CLD_STOPPED, as if the next
950 		 * CLD_CONTINUED was dropped.
951 		 */
952 		why = 0;
953 		if (signal->flags & SIGNAL_STOP_STOPPED)
954 			why |= SIGNAL_CLD_CONTINUED;
955 		else if (signal->group_stop_count)
956 			why |= SIGNAL_CLD_STOPPED;
957 
958 		if (why) {
959 			/*
960 			 * The first thread which returns from do_signal_stop()
961 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
962 			 * notify its parent. See get_signal().
963 			 */
964 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
965 			signal->group_stop_count = 0;
966 			signal->group_exit_code = 0;
967 		}
968 	}
969 
970 	return !sig_ignored(p, sig, force);
971 }
972 
973 /*
974  * Test if P wants to take SIG.  After we've checked all threads with this,
975  * it's equivalent to finding no threads not blocking SIG.  Any threads not
976  * blocking SIG were ruled out because they are not running and already
977  * have pending signals.  Such threads will dequeue from the shared queue
978  * as soon as they're available, so putting the signal on the shared queue
979  * will be equivalent to sending it to one such thread.
980  */
981 static inline bool wants_signal(int sig, struct task_struct *p)
982 {
983 	if (sigismember(&p->blocked, sig))
984 		return false;
985 
986 	if (p->flags & PF_EXITING)
987 		return false;
988 
989 	if (sig == SIGKILL)
990 		return true;
991 
992 	if (task_is_stopped_or_traced(p))
993 		return false;
994 
995 	return task_curr(p) || !task_sigpending(p);
996 }
997 
998 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
999 {
1000 	struct signal_struct *signal = p->signal;
1001 	struct task_struct *t;
1002 
1003 	/*
1004 	 * Now find a thread we can wake up to take the signal off the queue.
1005 	 *
1006 	 * If the main thread wants the signal, it gets first crack.
1007 	 * Probably the least surprising to the average bear.
1008 	 */
1009 	if (wants_signal(sig, p))
1010 		t = p;
1011 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012 		/*
1013 		 * There is just one thread and it does not need to be woken.
1014 		 * It will dequeue unblocked signals before it runs again.
1015 		 */
1016 		return;
1017 	else {
1018 		/*
1019 		 * Otherwise try to find a suitable thread.
1020 		 */
1021 		t = signal->curr_target;
1022 		while (!wants_signal(sig, t)) {
1023 			t = next_thread(t);
1024 			if (t == signal->curr_target)
1025 				/*
1026 				 * No thread needs to be woken.
1027 				 * Any eligible threads will see
1028 				 * the signal in the queue soon.
1029 				 */
1030 				return;
1031 		}
1032 		signal->curr_target = t;
1033 	}
1034 
1035 	/*
1036 	 * Found a killable thread.  If the signal will be fatal,
1037 	 * then start taking the whole group down immediately.
1038 	 */
1039 	if (sig_fatal(p, sig) &&
1040 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041 	    !sigismember(&t->real_blocked, sig) &&
1042 	    (sig == SIGKILL || !p->ptrace)) {
1043 		/*
1044 		 * This signal will be fatal to the whole group.
1045 		 */
1046 		if (!sig_kernel_coredump(sig)) {
1047 			/*
1048 			 * Start a group exit and wake everybody up.
1049 			 * This way we don't have other threads
1050 			 * running and doing things after a slower
1051 			 * thread has the fatal signal pending.
1052 			 */
1053 			signal->flags = SIGNAL_GROUP_EXIT;
1054 			signal->group_exit_code = sig;
1055 			signal->group_stop_count = 0;
1056 			t = p;
1057 			do {
1058 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059 				sigaddset(&t->pending.signal, SIGKILL);
1060 				signal_wake_up(t, 1);
1061 			} while_each_thread(p, t);
1062 			return;
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * The signal is already in the shared-pending queue.
1068 	 * Tell the chosen thread to wake up and dequeue it.
1069 	 */
1070 	signal_wake_up(t, sig == SIGKILL);
1071 	return;
1072 }
1073 
1074 static inline bool legacy_queue(struct sigpending *signals, int sig)
1075 {
1076 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077 }
1078 
1079 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080 				struct task_struct *t, enum pid_type type, bool force)
1081 {
1082 	struct sigpending *pending;
1083 	struct sigqueue *q;
1084 	int override_rlimit;
1085 	int ret = 0, result;
1086 
1087 	lockdep_assert_held(&t->sighand->siglock);
1088 
1089 	result = TRACE_SIGNAL_IGNORED;
1090 	if (!prepare_signal(sig, t, force))
1091 		goto ret;
1092 
1093 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094 	/*
1095 	 * Short-circuit ignored signals and support queuing
1096 	 * exactly one non-rt signal, so that we can get more
1097 	 * detailed information about the cause of the signal.
1098 	 */
1099 	result = TRACE_SIGNAL_ALREADY_PENDING;
1100 	if (legacy_queue(pending, sig))
1101 		goto ret;
1102 
1103 	result = TRACE_SIGNAL_DELIVERED;
1104 	/*
1105 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106 	 */
1107 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108 		goto out_set;
1109 
1110 	/*
1111 	 * Real-time signals must be queued if sent by sigqueue, or
1112 	 * some other real-time mechanism.  It is implementation
1113 	 * defined whether kill() does so.  We attempt to do so, on
1114 	 * the principle of least surprise, but since kill is not
1115 	 * allowed to fail with EAGAIN when low on memory we just
1116 	 * make sure at least one signal gets delivered and don't
1117 	 * pass on the info struct.
1118 	 */
1119 	if (sig < SIGRTMIN)
1120 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121 	else
1122 		override_rlimit = 0;
1123 
1124 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125 
1126 	if (q) {
1127 		list_add_tail(&q->list, &pending->list);
1128 		switch ((unsigned long) info) {
1129 		case (unsigned long) SEND_SIG_NOINFO:
1130 			clear_siginfo(&q->info);
1131 			q->info.si_signo = sig;
1132 			q->info.si_errno = 0;
1133 			q->info.si_code = SI_USER;
1134 			q->info.si_pid = task_tgid_nr_ns(current,
1135 							task_active_pid_ns(t));
1136 			rcu_read_lock();
1137 			q->info.si_uid =
1138 				from_kuid_munged(task_cred_xxx(t, user_ns),
1139 						 current_uid());
1140 			rcu_read_unlock();
1141 			break;
1142 		case (unsigned long) SEND_SIG_PRIV:
1143 			clear_siginfo(&q->info);
1144 			q->info.si_signo = sig;
1145 			q->info.si_errno = 0;
1146 			q->info.si_code = SI_KERNEL;
1147 			q->info.si_pid = 0;
1148 			q->info.si_uid = 0;
1149 			break;
1150 		default:
1151 			copy_siginfo(&q->info, info);
1152 			break;
1153 		}
1154 	} else if (!is_si_special(info) &&
1155 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156 		/*
1157 		 * Queue overflow, abort.  We may abort if the
1158 		 * signal was rt and sent by user using something
1159 		 * other than kill().
1160 		 */
1161 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162 		ret = -EAGAIN;
1163 		goto ret;
1164 	} else {
1165 		/*
1166 		 * This is a silent loss of information.  We still
1167 		 * send the signal, but the *info bits are lost.
1168 		 */
1169 		result = TRACE_SIGNAL_LOSE_INFO;
1170 	}
1171 
1172 out_set:
1173 	signalfd_notify(t, sig);
1174 	sigaddset(&pending->signal, sig);
1175 
1176 	/* Let multiprocess signals appear after on-going forks */
1177 	if (type > PIDTYPE_TGID) {
1178 		struct multiprocess_signals *delayed;
1179 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180 			sigset_t *signal = &delayed->signal;
1181 			/* Can't queue both a stop and a continue signal */
1182 			if (sig == SIGCONT)
1183 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184 			else if (sig_kernel_stop(sig))
1185 				sigdelset(signal, SIGCONT);
1186 			sigaddset(signal, sig);
1187 		}
1188 	}
1189 
1190 	complete_signal(sig, t, type);
1191 ret:
1192 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193 	return ret;
1194 }
1195 
1196 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197 {
1198 	bool ret = false;
1199 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200 	case SIL_KILL:
1201 	case SIL_CHLD:
1202 	case SIL_RT:
1203 		ret = true;
1204 		break;
1205 	case SIL_TIMER:
1206 	case SIL_POLL:
1207 	case SIL_FAULT:
1208 	case SIL_FAULT_TRAPNO:
1209 	case SIL_FAULT_MCEERR:
1210 	case SIL_FAULT_BNDERR:
1211 	case SIL_FAULT_PKUERR:
1212 	case SIL_FAULT_PERF_EVENT:
1213 	case SIL_SYS:
1214 		ret = false;
1215 		break;
1216 	}
1217 	return ret;
1218 }
1219 
1220 int send_signal_locked(int sig, struct kernel_siginfo *info,
1221 		       struct task_struct *t, enum pid_type type)
1222 {
1223 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224 	bool force = false;
1225 
1226 	if (info == SEND_SIG_NOINFO) {
1227 		/* Force if sent from an ancestor pid namespace */
1228 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229 	} else if (info == SEND_SIG_PRIV) {
1230 		/* Don't ignore kernel generated signals */
1231 		force = true;
1232 	} else if (has_si_pid_and_uid(info)) {
1233 		/* SIGKILL and SIGSTOP is special or has ids */
1234 		struct user_namespace *t_user_ns;
1235 
1236 		rcu_read_lock();
1237 		t_user_ns = task_cred_xxx(t, user_ns);
1238 		if (current_user_ns() != t_user_ns) {
1239 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241 		}
1242 		rcu_read_unlock();
1243 
1244 		/* A kernel generated signal? */
1245 		force = (info->si_code == SI_KERNEL);
1246 
1247 		/* From an ancestor pid namespace? */
1248 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249 			info->si_pid = 0;
1250 			force = true;
1251 		}
1252 	}
1253 	return __send_signal_locked(sig, info, t, type, force);
1254 }
1255 
1256 static void print_fatal_signal(int signr)
1257 {
1258 	struct pt_regs *regs = task_pt_regs(current);
1259 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1260 
1261 #if defined(__i386__) && !defined(__arch_um__)
1262 	pr_info("code at %08lx: ", regs->ip);
1263 	{
1264 		int i;
1265 		for (i = 0; i < 16; i++) {
1266 			unsigned char insn;
1267 
1268 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269 				break;
1270 			pr_cont("%02x ", insn);
1271 		}
1272 	}
1273 	pr_cont("\n");
1274 #endif
1275 	preempt_disable();
1276 	show_regs(regs);
1277 	preempt_enable();
1278 }
1279 
1280 static int __init setup_print_fatal_signals(char *str)
1281 {
1282 	get_option (&str, &print_fatal_signals);
1283 
1284 	return 1;
1285 }
1286 
1287 __setup("print-fatal-signals=", setup_print_fatal_signals);
1288 
1289 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290 			enum pid_type type)
1291 {
1292 	unsigned long flags;
1293 	int ret = -ESRCH;
1294 
1295 	if (lock_task_sighand(p, &flags)) {
1296 		ret = send_signal_locked(sig, info, p, type);
1297 		unlock_task_sighand(p, &flags);
1298 	}
1299 
1300 	return ret;
1301 }
1302 
1303 enum sig_handler {
1304 	HANDLER_CURRENT, /* If reachable use the current handler */
1305 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1307 };
1308 
1309 /*
1310  * Force a signal that the process can't ignore: if necessary
1311  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312  *
1313  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314  * since we do not want to have a signal handler that was blocked
1315  * be invoked when user space had explicitly blocked it.
1316  *
1317  * We don't want to have recursive SIGSEGV's etc, for example,
1318  * that is why we also clear SIGNAL_UNKILLABLE.
1319  */
1320 static int
1321 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322 	enum sig_handler handler)
1323 {
1324 	unsigned long int flags;
1325 	int ret, blocked, ignored;
1326 	struct k_sigaction *action;
1327 	int sig = info->si_signo;
1328 
1329 	spin_lock_irqsave(&t->sighand->siglock, flags);
1330 	action = &t->sighand->action[sig-1];
1331 	ignored = action->sa.sa_handler == SIG_IGN;
1332 	blocked = sigismember(&t->blocked, sig);
1333 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334 		action->sa.sa_handler = SIG_DFL;
1335 		if (handler == HANDLER_EXIT)
1336 			action->sa.sa_flags |= SA_IMMUTABLE;
1337 		if (blocked) {
1338 			sigdelset(&t->blocked, sig);
1339 			recalc_sigpending_and_wake(t);
1340 		}
1341 	}
1342 	/*
1343 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345 	 */
1346 	if (action->sa.sa_handler == SIG_DFL &&
1347 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1348 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351 
1352 	return ret;
1353 }
1354 
1355 int force_sig_info(struct kernel_siginfo *info)
1356 {
1357 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358 }
1359 
1360 /*
1361  * Nuke all other threads in the group.
1362  */
1363 int zap_other_threads(struct task_struct *p)
1364 {
1365 	struct task_struct *t = p;
1366 	int count = 0;
1367 
1368 	p->signal->group_stop_count = 0;
1369 
1370 	while_each_thread(p, t) {
1371 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372 		count++;
1373 
1374 		/* Don't bother with already dead threads */
1375 		if (t->exit_state)
1376 			continue;
1377 		sigaddset(&t->pending.signal, SIGKILL);
1378 		signal_wake_up(t, 1);
1379 	}
1380 
1381 	return count;
1382 }
1383 
1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385 					   unsigned long *flags)
1386 {
1387 	struct sighand_struct *sighand;
1388 
1389 	rcu_read_lock();
1390 	for (;;) {
1391 		sighand = rcu_dereference(tsk->sighand);
1392 		if (unlikely(sighand == NULL))
1393 			break;
1394 
1395 		/*
1396 		 * This sighand can be already freed and even reused, but
1397 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398 		 * initializes ->siglock: this slab can't go away, it has
1399 		 * the same object type, ->siglock can't be reinitialized.
1400 		 *
1401 		 * We need to ensure that tsk->sighand is still the same
1402 		 * after we take the lock, we can race with de_thread() or
1403 		 * __exit_signal(). In the latter case the next iteration
1404 		 * must see ->sighand == NULL.
1405 		 */
1406 		spin_lock_irqsave(&sighand->siglock, *flags);
1407 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408 			break;
1409 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1410 	}
1411 	rcu_read_unlock();
1412 
1413 	return sighand;
1414 }
1415 
1416 #ifdef CONFIG_LOCKDEP
1417 void lockdep_assert_task_sighand_held(struct task_struct *task)
1418 {
1419 	struct sighand_struct *sighand;
1420 
1421 	rcu_read_lock();
1422 	sighand = rcu_dereference(task->sighand);
1423 	if (sighand)
1424 		lockdep_assert_held(&sighand->siglock);
1425 	else
1426 		WARN_ON_ONCE(1);
1427 	rcu_read_unlock();
1428 }
1429 #endif
1430 
1431 /*
1432  * send signal info to all the members of a group
1433  */
1434 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435 			struct task_struct *p, enum pid_type type)
1436 {
1437 	int ret;
1438 
1439 	rcu_read_lock();
1440 	ret = check_kill_permission(sig, info, p);
1441 	rcu_read_unlock();
1442 
1443 	if (!ret && sig)
1444 		ret = do_send_sig_info(sig, info, p, type);
1445 
1446 	return ret;
1447 }
1448 
1449 /*
1450  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451  * control characters do (^C, ^Z etc)
1452  * - the caller must hold at least a readlock on tasklist_lock
1453  */
1454 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455 {
1456 	struct task_struct *p = NULL;
1457 	int retval, success;
1458 
1459 	success = 0;
1460 	retval = -ESRCH;
1461 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463 		success |= !err;
1464 		retval = err;
1465 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466 	return success ? 0 : retval;
1467 }
1468 
1469 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470 {
1471 	int error = -ESRCH;
1472 	struct task_struct *p;
1473 
1474 	for (;;) {
1475 		rcu_read_lock();
1476 		p = pid_task(pid, PIDTYPE_PID);
1477 		if (p)
1478 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479 		rcu_read_unlock();
1480 		if (likely(!p || error != -ESRCH))
1481 			return error;
1482 
1483 		/*
1484 		 * The task was unhashed in between, try again.  If it
1485 		 * is dead, pid_task() will return NULL, if we race with
1486 		 * de_thread() it will find the new leader.
1487 		 */
1488 	}
1489 }
1490 
1491 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492 {
1493 	int error;
1494 	rcu_read_lock();
1495 	error = kill_pid_info(sig, info, find_vpid(pid));
1496 	rcu_read_unlock();
1497 	return error;
1498 }
1499 
1500 static inline bool kill_as_cred_perm(const struct cred *cred,
1501 				     struct task_struct *target)
1502 {
1503 	const struct cred *pcred = __task_cred(target);
1504 
1505 	return uid_eq(cred->euid, pcred->suid) ||
1506 	       uid_eq(cred->euid, pcred->uid) ||
1507 	       uid_eq(cred->uid, pcred->suid) ||
1508 	       uid_eq(cred->uid, pcred->uid);
1509 }
1510 
1511 /*
1512  * The usb asyncio usage of siginfo is wrong.  The glibc support
1513  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514  * AKA after the generic fields:
1515  *	kernel_pid_t	si_pid;
1516  *	kernel_uid32_t	si_uid;
1517  *	sigval_t	si_value;
1518  *
1519  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520  * after the generic fields is:
1521  *	void __user 	*si_addr;
1522  *
1523  * This is a practical problem when there is a 64bit big endian kernel
1524  * and a 32bit userspace.  As the 32bit address will encoded in the low
1525  * 32bits of the pointer.  Those low 32bits will be stored at higher
1526  * address than appear in a 32 bit pointer.  So userspace will not
1527  * see the address it was expecting for it's completions.
1528  *
1529  * There is nothing in the encoding that can allow
1530  * copy_siginfo_to_user32 to detect this confusion of formats, so
1531  * handle this by requiring the caller of kill_pid_usb_asyncio to
1532  * notice when this situration takes place and to store the 32bit
1533  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534  * parameter.
1535  */
1536 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537 			 struct pid *pid, const struct cred *cred)
1538 {
1539 	struct kernel_siginfo info;
1540 	struct task_struct *p;
1541 	unsigned long flags;
1542 	int ret = -EINVAL;
1543 
1544 	if (!valid_signal(sig))
1545 		return ret;
1546 
1547 	clear_siginfo(&info);
1548 	info.si_signo = sig;
1549 	info.si_errno = errno;
1550 	info.si_code = SI_ASYNCIO;
1551 	*((sigval_t *)&info.si_pid) = addr;
1552 
1553 	rcu_read_lock();
1554 	p = pid_task(pid, PIDTYPE_PID);
1555 	if (!p) {
1556 		ret = -ESRCH;
1557 		goto out_unlock;
1558 	}
1559 	if (!kill_as_cred_perm(cred, p)) {
1560 		ret = -EPERM;
1561 		goto out_unlock;
1562 	}
1563 	ret = security_task_kill(p, &info, sig, cred);
1564 	if (ret)
1565 		goto out_unlock;
1566 
1567 	if (sig) {
1568 		if (lock_task_sighand(p, &flags)) {
1569 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570 			unlock_task_sighand(p, &flags);
1571 		} else
1572 			ret = -ESRCH;
1573 	}
1574 out_unlock:
1575 	rcu_read_unlock();
1576 	return ret;
1577 }
1578 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579 
1580 /*
1581  * kill_something_info() interprets pid in interesting ways just like kill(2).
1582  *
1583  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584  * is probably wrong.  Should make it like BSD or SYSV.
1585  */
1586 
1587 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588 {
1589 	int ret;
1590 
1591 	if (pid > 0)
1592 		return kill_proc_info(sig, info, pid);
1593 
1594 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1595 	if (pid == INT_MIN)
1596 		return -ESRCH;
1597 
1598 	read_lock(&tasklist_lock);
1599 	if (pid != -1) {
1600 		ret = __kill_pgrp_info(sig, info,
1601 				pid ? find_vpid(-pid) : task_pgrp(current));
1602 	} else {
1603 		int retval = 0, count = 0;
1604 		struct task_struct * p;
1605 
1606 		for_each_process(p) {
1607 			if (task_pid_vnr(p) > 1 &&
1608 					!same_thread_group(p, current)) {
1609 				int err = group_send_sig_info(sig, info, p,
1610 							      PIDTYPE_MAX);
1611 				++count;
1612 				if (err != -EPERM)
1613 					retval = err;
1614 			}
1615 		}
1616 		ret = count ? retval : -ESRCH;
1617 	}
1618 	read_unlock(&tasklist_lock);
1619 
1620 	return ret;
1621 }
1622 
1623 /*
1624  * These are for backward compatibility with the rest of the kernel source.
1625  */
1626 
1627 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628 {
1629 	/*
1630 	 * Make sure legacy kernel users don't send in bad values
1631 	 * (normal paths check this in check_kill_permission).
1632 	 */
1633 	if (!valid_signal(sig))
1634 		return -EINVAL;
1635 
1636 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637 }
1638 EXPORT_SYMBOL(send_sig_info);
1639 
1640 #define __si_special(priv) \
1641 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642 
1643 int
1644 send_sig(int sig, struct task_struct *p, int priv)
1645 {
1646 	return send_sig_info(sig, __si_special(priv), p);
1647 }
1648 EXPORT_SYMBOL(send_sig);
1649 
1650 void force_sig(int sig)
1651 {
1652 	struct kernel_siginfo info;
1653 
1654 	clear_siginfo(&info);
1655 	info.si_signo = sig;
1656 	info.si_errno = 0;
1657 	info.si_code = SI_KERNEL;
1658 	info.si_pid = 0;
1659 	info.si_uid = 0;
1660 	force_sig_info(&info);
1661 }
1662 EXPORT_SYMBOL(force_sig);
1663 
1664 void force_fatal_sig(int sig)
1665 {
1666 	struct kernel_siginfo info;
1667 
1668 	clear_siginfo(&info);
1669 	info.si_signo = sig;
1670 	info.si_errno = 0;
1671 	info.si_code = SI_KERNEL;
1672 	info.si_pid = 0;
1673 	info.si_uid = 0;
1674 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675 }
1676 
1677 void force_exit_sig(int sig)
1678 {
1679 	struct kernel_siginfo info;
1680 
1681 	clear_siginfo(&info);
1682 	info.si_signo = sig;
1683 	info.si_errno = 0;
1684 	info.si_code = SI_KERNEL;
1685 	info.si_pid = 0;
1686 	info.si_uid = 0;
1687 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688 }
1689 
1690 /*
1691  * When things go south during signal handling, we
1692  * will force a SIGSEGV. And if the signal that caused
1693  * the problem was already a SIGSEGV, we'll want to
1694  * make sure we don't even try to deliver the signal..
1695  */
1696 void force_sigsegv(int sig)
1697 {
1698 	if (sig == SIGSEGV)
1699 		force_fatal_sig(SIGSEGV);
1700 	else
1701 		force_sig(SIGSEGV);
1702 }
1703 
1704 int force_sig_fault_to_task(int sig, int code, void __user *addr
1705 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706 	, struct task_struct *t)
1707 {
1708 	struct kernel_siginfo info;
1709 
1710 	clear_siginfo(&info);
1711 	info.si_signo = sig;
1712 	info.si_errno = 0;
1713 	info.si_code  = code;
1714 	info.si_addr  = addr;
1715 #ifdef __ia64__
1716 	info.si_imm = imm;
1717 	info.si_flags = flags;
1718 	info.si_isr = isr;
1719 #endif
1720 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721 }
1722 
1723 int force_sig_fault(int sig, int code, void __user *addr
1724 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725 {
1726 	return force_sig_fault_to_task(sig, code, addr
1727 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1728 }
1729 
1730 int send_sig_fault(int sig, int code, void __user *addr
1731 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732 	, struct task_struct *t)
1733 {
1734 	struct kernel_siginfo info;
1735 
1736 	clear_siginfo(&info);
1737 	info.si_signo = sig;
1738 	info.si_errno = 0;
1739 	info.si_code  = code;
1740 	info.si_addr  = addr;
1741 #ifdef __ia64__
1742 	info.si_imm = imm;
1743 	info.si_flags = flags;
1744 	info.si_isr = isr;
1745 #endif
1746 	return send_sig_info(info.si_signo, &info, t);
1747 }
1748 
1749 int force_sig_mceerr(int code, void __user *addr, short lsb)
1750 {
1751 	struct kernel_siginfo info;
1752 
1753 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754 	clear_siginfo(&info);
1755 	info.si_signo = SIGBUS;
1756 	info.si_errno = 0;
1757 	info.si_code = code;
1758 	info.si_addr = addr;
1759 	info.si_addr_lsb = lsb;
1760 	return force_sig_info(&info);
1761 }
1762 
1763 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764 {
1765 	struct kernel_siginfo info;
1766 
1767 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768 	clear_siginfo(&info);
1769 	info.si_signo = SIGBUS;
1770 	info.si_errno = 0;
1771 	info.si_code = code;
1772 	info.si_addr = addr;
1773 	info.si_addr_lsb = lsb;
1774 	return send_sig_info(info.si_signo, &info, t);
1775 }
1776 EXPORT_SYMBOL(send_sig_mceerr);
1777 
1778 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779 {
1780 	struct kernel_siginfo info;
1781 
1782 	clear_siginfo(&info);
1783 	info.si_signo = SIGSEGV;
1784 	info.si_errno = 0;
1785 	info.si_code  = SEGV_BNDERR;
1786 	info.si_addr  = addr;
1787 	info.si_lower = lower;
1788 	info.si_upper = upper;
1789 	return force_sig_info(&info);
1790 }
1791 
1792 #ifdef SEGV_PKUERR
1793 int force_sig_pkuerr(void __user *addr, u32 pkey)
1794 {
1795 	struct kernel_siginfo info;
1796 
1797 	clear_siginfo(&info);
1798 	info.si_signo = SIGSEGV;
1799 	info.si_errno = 0;
1800 	info.si_code  = SEGV_PKUERR;
1801 	info.si_addr  = addr;
1802 	info.si_pkey  = pkey;
1803 	return force_sig_info(&info);
1804 }
1805 #endif
1806 
1807 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808 {
1809 	struct kernel_siginfo info;
1810 
1811 	clear_siginfo(&info);
1812 	info.si_signo     = SIGTRAP;
1813 	info.si_errno     = 0;
1814 	info.si_code      = TRAP_PERF;
1815 	info.si_addr      = addr;
1816 	info.si_perf_data = sig_data;
1817 	info.si_perf_type = type;
1818 
1819 	/*
1820 	 * Signals generated by perf events should not terminate the whole
1821 	 * process if SIGTRAP is blocked, however, delivering the signal
1822 	 * asynchronously is better than not delivering at all. But tell user
1823 	 * space if the signal was asynchronous, so it can clearly be
1824 	 * distinguished from normal synchronous ones.
1825 	 */
1826 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1827 				     TRAP_PERF_FLAG_ASYNC :
1828 				     0;
1829 
1830 	return send_sig_info(info.si_signo, &info, current);
1831 }
1832 
1833 /**
1834  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835  * @syscall: syscall number to send to userland
1836  * @reason: filter-supplied reason code to send to userland (via si_errno)
1837  * @force_coredump: true to trigger a coredump
1838  *
1839  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840  */
1841 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842 {
1843 	struct kernel_siginfo info;
1844 
1845 	clear_siginfo(&info);
1846 	info.si_signo = SIGSYS;
1847 	info.si_code = SYS_SECCOMP;
1848 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1849 	info.si_errno = reason;
1850 	info.si_arch = syscall_get_arch(current);
1851 	info.si_syscall = syscall;
1852 	return force_sig_info_to_task(&info, current,
1853 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854 }
1855 
1856 /* For the crazy architectures that include trap information in
1857  * the errno field, instead of an actual errno value.
1858  */
1859 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860 {
1861 	struct kernel_siginfo info;
1862 
1863 	clear_siginfo(&info);
1864 	info.si_signo = SIGTRAP;
1865 	info.si_errno = errno;
1866 	info.si_code  = TRAP_HWBKPT;
1867 	info.si_addr  = addr;
1868 	return force_sig_info(&info);
1869 }
1870 
1871 /* For the rare architectures that include trap information using
1872  * si_trapno.
1873  */
1874 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875 {
1876 	struct kernel_siginfo info;
1877 
1878 	clear_siginfo(&info);
1879 	info.si_signo = sig;
1880 	info.si_errno = 0;
1881 	info.si_code  = code;
1882 	info.si_addr  = addr;
1883 	info.si_trapno = trapno;
1884 	return force_sig_info(&info);
1885 }
1886 
1887 /* For the rare architectures that include trap information using
1888  * si_trapno.
1889  */
1890 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891 			  struct task_struct *t)
1892 {
1893 	struct kernel_siginfo info;
1894 
1895 	clear_siginfo(&info);
1896 	info.si_signo = sig;
1897 	info.si_errno = 0;
1898 	info.si_code  = code;
1899 	info.si_addr  = addr;
1900 	info.si_trapno = trapno;
1901 	return send_sig_info(info.si_signo, &info, t);
1902 }
1903 
1904 int kill_pgrp(struct pid *pid, int sig, int priv)
1905 {
1906 	int ret;
1907 
1908 	read_lock(&tasklist_lock);
1909 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910 	read_unlock(&tasklist_lock);
1911 
1912 	return ret;
1913 }
1914 EXPORT_SYMBOL(kill_pgrp);
1915 
1916 int kill_pid(struct pid *pid, int sig, int priv)
1917 {
1918 	return kill_pid_info(sig, __si_special(priv), pid);
1919 }
1920 EXPORT_SYMBOL(kill_pid);
1921 
1922 /*
1923  * These functions support sending signals using preallocated sigqueue
1924  * structures.  This is needed "because realtime applications cannot
1925  * afford to lose notifications of asynchronous events, like timer
1926  * expirations or I/O completions".  In the case of POSIX Timers
1927  * we allocate the sigqueue structure from the timer_create.  If this
1928  * allocation fails we are able to report the failure to the application
1929  * with an EAGAIN error.
1930  */
1931 struct sigqueue *sigqueue_alloc(void)
1932 {
1933 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1934 }
1935 
1936 void sigqueue_free(struct sigqueue *q)
1937 {
1938 	unsigned long flags;
1939 	spinlock_t *lock = &current->sighand->siglock;
1940 
1941 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942 	/*
1943 	 * We must hold ->siglock while testing q->list
1944 	 * to serialize with collect_signal() or with
1945 	 * __exit_signal()->flush_sigqueue().
1946 	 */
1947 	spin_lock_irqsave(lock, flags);
1948 	q->flags &= ~SIGQUEUE_PREALLOC;
1949 	/*
1950 	 * If it is queued it will be freed when dequeued,
1951 	 * like the "regular" sigqueue.
1952 	 */
1953 	if (!list_empty(&q->list))
1954 		q = NULL;
1955 	spin_unlock_irqrestore(lock, flags);
1956 
1957 	if (q)
1958 		__sigqueue_free(q);
1959 }
1960 
1961 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962 {
1963 	int sig = q->info.si_signo;
1964 	struct sigpending *pending;
1965 	struct task_struct *t;
1966 	unsigned long flags;
1967 	int ret, result;
1968 
1969 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970 
1971 	ret = -1;
1972 	rcu_read_lock();
1973 	t = pid_task(pid, type);
1974 	if (!t || !likely(lock_task_sighand(t, &flags)))
1975 		goto ret;
1976 
1977 	ret = 1; /* the signal is ignored */
1978 	result = TRACE_SIGNAL_IGNORED;
1979 	if (!prepare_signal(sig, t, false))
1980 		goto out;
1981 
1982 	ret = 0;
1983 	if (unlikely(!list_empty(&q->list))) {
1984 		/*
1985 		 * If an SI_TIMER entry is already queue just increment
1986 		 * the overrun count.
1987 		 */
1988 		BUG_ON(q->info.si_code != SI_TIMER);
1989 		q->info.si_overrun++;
1990 		result = TRACE_SIGNAL_ALREADY_PENDING;
1991 		goto out;
1992 	}
1993 	q->info.si_overrun = 0;
1994 
1995 	signalfd_notify(t, sig);
1996 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997 	list_add_tail(&q->list, &pending->list);
1998 	sigaddset(&pending->signal, sig);
1999 	complete_signal(sig, t, type);
2000 	result = TRACE_SIGNAL_DELIVERED;
2001 out:
2002 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003 	unlock_task_sighand(t, &flags);
2004 ret:
2005 	rcu_read_unlock();
2006 	return ret;
2007 }
2008 
2009 static void do_notify_pidfd(struct task_struct *task)
2010 {
2011 	struct pid *pid;
2012 
2013 	WARN_ON(task->exit_state == 0);
2014 	pid = task_pid(task);
2015 	wake_up_all(&pid->wait_pidfd);
2016 }
2017 
2018 /*
2019  * Let a parent know about the death of a child.
2020  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021  *
2022  * Returns true if our parent ignored us and so we've switched to
2023  * self-reaping.
2024  */
2025 bool do_notify_parent(struct task_struct *tsk, int sig)
2026 {
2027 	struct kernel_siginfo info;
2028 	unsigned long flags;
2029 	struct sighand_struct *psig;
2030 	bool autoreap = false;
2031 	u64 utime, stime;
2032 
2033 	WARN_ON_ONCE(sig == -1);
2034 
2035 	/* do_notify_parent_cldstop should have been called instead.  */
2036 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037 
2038 	WARN_ON_ONCE(!tsk->ptrace &&
2039 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040 
2041 	/* Wake up all pidfd waiters */
2042 	do_notify_pidfd(tsk);
2043 
2044 	if (sig != SIGCHLD) {
2045 		/*
2046 		 * This is only possible if parent == real_parent.
2047 		 * Check if it has changed security domain.
2048 		 */
2049 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050 			sig = SIGCHLD;
2051 	}
2052 
2053 	clear_siginfo(&info);
2054 	info.si_signo = sig;
2055 	info.si_errno = 0;
2056 	/*
2057 	 * We are under tasklist_lock here so our parent is tied to
2058 	 * us and cannot change.
2059 	 *
2060 	 * task_active_pid_ns will always return the same pid namespace
2061 	 * until a task passes through release_task.
2062 	 *
2063 	 * write_lock() currently calls preempt_disable() which is the
2064 	 * same as rcu_read_lock(), but according to Oleg, this is not
2065 	 * correct to rely on this
2066 	 */
2067 	rcu_read_lock();
2068 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070 				       task_uid(tsk));
2071 	rcu_read_unlock();
2072 
2073 	task_cputime(tsk, &utime, &stime);
2074 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076 
2077 	info.si_status = tsk->exit_code & 0x7f;
2078 	if (tsk->exit_code & 0x80)
2079 		info.si_code = CLD_DUMPED;
2080 	else if (tsk->exit_code & 0x7f)
2081 		info.si_code = CLD_KILLED;
2082 	else {
2083 		info.si_code = CLD_EXITED;
2084 		info.si_status = tsk->exit_code >> 8;
2085 	}
2086 
2087 	psig = tsk->parent->sighand;
2088 	spin_lock_irqsave(&psig->siglock, flags);
2089 	if (!tsk->ptrace && sig == SIGCHLD &&
2090 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092 		/*
2093 		 * We are exiting and our parent doesn't care.  POSIX.1
2094 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2095 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096 		 * automatically and not left for our parent's wait4 call.
2097 		 * Rather than having the parent do it as a magic kind of
2098 		 * signal handler, we just set this to tell do_exit that we
2099 		 * can be cleaned up without becoming a zombie.  Note that
2100 		 * we still call __wake_up_parent in this case, because a
2101 		 * blocked sys_wait4 might now return -ECHILD.
2102 		 *
2103 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104 		 * is implementation-defined: we do (if you don't want
2105 		 * it, just use SIG_IGN instead).
2106 		 */
2107 		autoreap = true;
2108 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109 			sig = 0;
2110 	}
2111 	/*
2112 	 * Send with __send_signal as si_pid and si_uid are in the
2113 	 * parent's namespaces.
2114 	 */
2115 	if (valid_signal(sig) && sig)
2116 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117 	__wake_up_parent(tsk, tsk->parent);
2118 	spin_unlock_irqrestore(&psig->siglock, flags);
2119 
2120 	return autoreap;
2121 }
2122 
2123 /**
2124  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125  * @tsk: task reporting the state change
2126  * @for_ptracer: the notification is for ptracer
2127  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128  *
2129  * Notify @tsk's parent that the stopped/continued state has changed.  If
2130  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132  *
2133  * CONTEXT:
2134  * Must be called with tasklist_lock at least read locked.
2135  */
2136 static void do_notify_parent_cldstop(struct task_struct *tsk,
2137 				     bool for_ptracer, int why)
2138 {
2139 	struct kernel_siginfo info;
2140 	unsigned long flags;
2141 	struct task_struct *parent;
2142 	struct sighand_struct *sighand;
2143 	u64 utime, stime;
2144 
2145 	if (for_ptracer) {
2146 		parent = tsk->parent;
2147 	} else {
2148 		tsk = tsk->group_leader;
2149 		parent = tsk->real_parent;
2150 	}
2151 
2152 	clear_siginfo(&info);
2153 	info.si_signo = SIGCHLD;
2154 	info.si_errno = 0;
2155 	/*
2156 	 * see comment in do_notify_parent() about the following 4 lines
2157 	 */
2158 	rcu_read_lock();
2159 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161 	rcu_read_unlock();
2162 
2163 	task_cputime(tsk, &utime, &stime);
2164 	info.si_utime = nsec_to_clock_t(utime);
2165 	info.si_stime = nsec_to_clock_t(stime);
2166 
2167  	info.si_code = why;
2168  	switch (why) {
2169  	case CLD_CONTINUED:
2170  		info.si_status = SIGCONT;
2171  		break;
2172  	case CLD_STOPPED:
2173  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2174  		break;
2175  	case CLD_TRAPPED:
2176  		info.si_status = tsk->exit_code & 0x7f;
2177  		break;
2178  	default:
2179  		BUG();
2180  	}
2181 
2182 	sighand = parent->sighand;
2183 	spin_lock_irqsave(&sighand->siglock, flags);
2184 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187 	/*
2188 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189 	 */
2190 	__wake_up_parent(tsk, parent);
2191 	spin_unlock_irqrestore(&sighand->siglock, flags);
2192 }
2193 
2194 /*
2195  * This must be called with current->sighand->siglock held.
2196  *
2197  * This should be the path for all ptrace stops.
2198  * We always set current->last_siginfo while stopped here.
2199  * That makes it a way to test a stopped process for
2200  * being ptrace-stopped vs being job-control-stopped.
2201  *
2202  * Returns the signal the ptracer requested the code resume
2203  * with.  If the code did not stop because the tracer is gone,
2204  * the stop signal remains unchanged unless clear_code.
2205  */
2206 static int ptrace_stop(int exit_code, int why, unsigned long message,
2207 		       kernel_siginfo_t *info)
2208 	__releases(&current->sighand->siglock)
2209 	__acquires(&current->sighand->siglock)
2210 {
2211 	bool gstop_done = false;
2212 
2213 	if (arch_ptrace_stop_needed()) {
2214 		/*
2215 		 * The arch code has something special to do before a
2216 		 * ptrace stop.  This is allowed to block, e.g. for faults
2217 		 * on user stack pages.  We can't keep the siglock while
2218 		 * calling arch_ptrace_stop, so we must release it now.
2219 		 * To preserve proper semantics, we must do this before
2220 		 * any signal bookkeeping like checking group_stop_count.
2221 		 */
2222 		spin_unlock_irq(&current->sighand->siglock);
2223 		arch_ptrace_stop();
2224 		spin_lock_irq(&current->sighand->siglock);
2225 	}
2226 
2227 	/*
2228 	 * After this point ptrace_signal_wake_up or signal_wake_up
2229 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2231 	 * signals here to prevent ptrace_stop sleeping in schedule.
2232 	 */
2233 	if (!current->ptrace || __fatal_signal_pending(current))
2234 		return exit_code;
2235 
2236 	set_special_state(TASK_TRACED);
2237 	current->jobctl |= JOBCTL_TRACED;
2238 
2239 	/*
2240 	 * We're committing to trapping.  TRACED should be visible before
2241 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242 	 * Also, transition to TRACED and updates to ->jobctl should be
2243 	 * atomic with respect to siglock and should be done after the arch
2244 	 * hook as siglock is released and regrabbed across it.
2245 	 *
2246 	 *     TRACER				    TRACEE
2247 	 *
2248 	 *     ptrace_attach()
2249 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2250 	 *     do_wait()
2251 	 *       set_current_state()                smp_wmb();
2252 	 *       ptrace_do_wait()
2253 	 *         wait_task_stopped()
2254 	 *           task_stopped_code()
2255 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2256 	 */
2257 	smp_wmb();
2258 
2259 	current->ptrace_message = message;
2260 	current->last_siginfo = info;
2261 	current->exit_code = exit_code;
2262 
2263 	/*
2264 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2266 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267 	 * could be clear now.  We act as if SIGCONT is received after
2268 	 * TASK_TRACED is entered - ignore it.
2269 	 */
2270 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271 		gstop_done = task_participate_group_stop(current);
2272 
2273 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277 
2278 	/* entering a trap, clear TRAPPING */
2279 	task_clear_jobctl_trapping(current);
2280 
2281 	spin_unlock_irq(&current->sighand->siglock);
2282 	read_lock(&tasklist_lock);
2283 	/*
2284 	 * Notify parents of the stop.
2285 	 *
2286 	 * While ptraced, there are two parents - the ptracer and
2287 	 * the real_parent of the group_leader.  The ptracer should
2288 	 * know about every stop while the real parent is only
2289 	 * interested in the completion of group stop.  The states
2290 	 * for the two don't interact with each other.  Notify
2291 	 * separately unless they're gonna be duplicates.
2292 	 */
2293 	if (current->ptrace)
2294 		do_notify_parent_cldstop(current, true, why);
2295 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296 		do_notify_parent_cldstop(current, false, why);
2297 
2298 	/*
2299 	 * Don't want to allow preemption here, because
2300 	 * sys_ptrace() needs this task to be inactive.
2301 	 *
2302 	 * XXX: implement read_unlock_no_resched().
2303 	 */
2304 	preempt_disable();
2305 	read_unlock(&tasklist_lock);
2306 	cgroup_enter_frozen();
2307 	preempt_enable_no_resched();
2308 	schedule();
2309 	cgroup_leave_frozen(true);
2310 
2311 	/*
2312 	 * We are back.  Now reacquire the siglock before touching
2313 	 * last_siginfo, so that we are sure to have synchronized with
2314 	 * any signal-sending on another CPU that wants to examine it.
2315 	 */
2316 	spin_lock_irq(&current->sighand->siglock);
2317 	exit_code = current->exit_code;
2318 	current->last_siginfo = NULL;
2319 	current->ptrace_message = 0;
2320 	current->exit_code = 0;
2321 
2322 	/* LISTENING can be set only during STOP traps, clear it */
2323 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324 
2325 	/*
2326 	 * Queued signals ignored us while we were stopped for tracing.
2327 	 * So check for any that we should take before resuming user mode.
2328 	 * This sets TIF_SIGPENDING, but never clears it.
2329 	 */
2330 	recalc_sigpending_tsk(current);
2331 	return exit_code;
2332 }
2333 
2334 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335 {
2336 	kernel_siginfo_t info;
2337 
2338 	clear_siginfo(&info);
2339 	info.si_signo = signr;
2340 	info.si_code = exit_code;
2341 	info.si_pid = task_pid_vnr(current);
2342 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343 
2344 	/* Let the debugger run.  */
2345 	return ptrace_stop(exit_code, why, message, &info);
2346 }
2347 
2348 int ptrace_notify(int exit_code, unsigned long message)
2349 {
2350 	int signr;
2351 
2352 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353 	if (unlikely(task_work_pending(current)))
2354 		task_work_run();
2355 
2356 	spin_lock_irq(&current->sighand->siglock);
2357 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358 	spin_unlock_irq(&current->sighand->siglock);
2359 	return signr;
2360 }
2361 
2362 /**
2363  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364  * @signr: signr causing group stop if initiating
2365  *
2366  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367  * and participate in it.  If already set, participate in the existing
2368  * group stop.  If participated in a group stop (and thus slept), %true is
2369  * returned with siglock released.
2370  *
2371  * If ptraced, this function doesn't handle stop itself.  Instead,
2372  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2374  * places afterwards.
2375  *
2376  * CONTEXT:
2377  * Must be called with @current->sighand->siglock held, which is released
2378  * on %true return.
2379  *
2380  * RETURNS:
2381  * %false if group stop is already cancelled or ptrace trap is scheduled.
2382  * %true if participated in group stop.
2383  */
2384 static bool do_signal_stop(int signr)
2385 	__releases(&current->sighand->siglock)
2386 {
2387 	struct signal_struct *sig = current->signal;
2388 
2389 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391 		struct task_struct *t;
2392 
2393 		/* signr will be recorded in task->jobctl for retries */
2394 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395 
2396 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398 		    unlikely(sig->group_exec_task))
2399 			return false;
2400 		/*
2401 		 * There is no group stop already in progress.  We must
2402 		 * initiate one now.
2403 		 *
2404 		 * While ptraced, a task may be resumed while group stop is
2405 		 * still in effect and then receive a stop signal and
2406 		 * initiate another group stop.  This deviates from the
2407 		 * usual behavior as two consecutive stop signals can't
2408 		 * cause two group stops when !ptraced.  That is why we
2409 		 * also check !task_is_stopped(t) below.
2410 		 *
2411 		 * The condition can be distinguished by testing whether
2412 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2413 		 * group_exit_code in such case.
2414 		 *
2415 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416 		 * an intervening stop signal is required to cause two
2417 		 * continued events regardless of ptrace.
2418 		 */
2419 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420 			sig->group_exit_code = signr;
2421 
2422 		sig->group_stop_count = 0;
2423 
2424 		if (task_set_jobctl_pending(current, signr | gstop))
2425 			sig->group_stop_count++;
2426 
2427 		t = current;
2428 		while_each_thread(current, t) {
2429 			/*
2430 			 * Setting state to TASK_STOPPED for a group
2431 			 * stop is always done with the siglock held,
2432 			 * so this check has no races.
2433 			 */
2434 			if (!task_is_stopped(t) &&
2435 			    task_set_jobctl_pending(t, signr | gstop)) {
2436 				sig->group_stop_count++;
2437 				if (likely(!(t->ptrace & PT_SEIZED)))
2438 					signal_wake_up(t, 0);
2439 				else
2440 					ptrace_trap_notify(t);
2441 			}
2442 		}
2443 	}
2444 
2445 	if (likely(!current->ptrace)) {
2446 		int notify = 0;
2447 
2448 		/*
2449 		 * If there are no other threads in the group, or if there
2450 		 * is a group stop in progress and we are the last to stop,
2451 		 * report to the parent.
2452 		 */
2453 		if (task_participate_group_stop(current))
2454 			notify = CLD_STOPPED;
2455 
2456 		current->jobctl |= JOBCTL_STOPPED;
2457 		set_special_state(TASK_STOPPED);
2458 		spin_unlock_irq(&current->sighand->siglock);
2459 
2460 		/*
2461 		 * Notify the parent of the group stop completion.  Because
2462 		 * we're not holding either the siglock or tasklist_lock
2463 		 * here, ptracer may attach inbetween; however, this is for
2464 		 * group stop and should always be delivered to the real
2465 		 * parent of the group leader.  The new ptracer will get
2466 		 * its notification when this task transitions into
2467 		 * TASK_TRACED.
2468 		 */
2469 		if (notify) {
2470 			read_lock(&tasklist_lock);
2471 			do_notify_parent_cldstop(current, false, notify);
2472 			read_unlock(&tasklist_lock);
2473 		}
2474 
2475 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2476 		cgroup_enter_frozen();
2477 		schedule();
2478 		return true;
2479 	} else {
2480 		/*
2481 		 * While ptraced, group stop is handled by STOP trap.
2482 		 * Schedule it and let the caller deal with it.
2483 		 */
2484 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485 		return false;
2486 	}
2487 }
2488 
2489 /**
2490  * do_jobctl_trap - take care of ptrace jobctl traps
2491  *
2492  * When PT_SEIZED, it's used for both group stop and explicit
2493  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2494  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2495  * the stop signal; otherwise, %SIGTRAP.
2496  *
2497  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498  * number as exit_code and no siginfo.
2499  *
2500  * CONTEXT:
2501  * Must be called with @current->sighand->siglock held, which may be
2502  * released and re-acquired before returning with intervening sleep.
2503  */
2504 static void do_jobctl_trap(void)
2505 {
2506 	struct signal_struct *signal = current->signal;
2507 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508 
2509 	if (current->ptrace & PT_SEIZED) {
2510 		if (!signal->group_stop_count &&
2511 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2512 			signr = SIGTRAP;
2513 		WARN_ON_ONCE(!signr);
2514 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515 				 CLD_STOPPED, 0);
2516 	} else {
2517 		WARN_ON_ONCE(!signr);
2518 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2519 	}
2520 }
2521 
2522 /**
2523  * do_freezer_trap - handle the freezer jobctl trap
2524  *
2525  * Puts the task into frozen state, if only the task is not about to quit.
2526  * In this case it drops JOBCTL_TRAP_FREEZE.
2527  *
2528  * CONTEXT:
2529  * Must be called with @current->sighand->siglock held,
2530  * which is always released before returning.
2531  */
2532 static void do_freezer_trap(void)
2533 	__releases(&current->sighand->siglock)
2534 {
2535 	/*
2536 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537 	 * let's make another loop to give it a chance to be handled.
2538 	 * In any case, we'll return back.
2539 	 */
2540 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541 	     JOBCTL_TRAP_FREEZE) {
2542 		spin_unlock_irq(&current->sighand->siglock);
2543 		return;
2544 	}
2545 
2546 	/*
2547 	 * Now we're sure that there is no pending fatal signal and no
2548 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549 	 * immediately (if there is a non-fatal signal pending), and
2550 	 * put the task into sleep.
2551 	 */
2552 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553 	clear_thread_flag(TIF_SIGPENDING);
2554 	spin_unlock_irq(&current->sighand->siglock);
2555 	cgroup_enter_frozen();
2556 	schedule();
2557 }
2558 
2559 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560 {
2561 	/*
2562 	 * We do not check sig_kernel_stop(signr) but set this marker
2563 	 * unconditionally because we do not know whether debugger will
2564 	 * change signr. This flag has no meaning unless we are going
2565 	 * to stop after return from ptrace_stop(). In this case it will
2566 	 * be checked in do_signal_stop(), we should only stop if it was
2567 	 * not cleared by SIGCONT while we were sleeping. See also the
2568 	 * comment in dequeue_signal().
2569 	 */
2570 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572 
2573 	/* We're back.  Did the debugger cancel the sig?  */
2574 	if (signr == 0)
2575 		return signr;
2576 
2577 	/*
2578 	 * Update the siginfo structure if the signal has
2579 	 * changed.  If the debugger wanted something
2580 	 * specific in the siginfo structure then it should
2581 	 * have updated *info via PTRACE_SETSIGINFO.
2582 	 */
2583 	if (signr != info->si_signo) {
2584 		clear_siginfo(info);
2585 		info->si_signo = signr;
2586 		info->si_errno = 0;
2587 		info->si_code = SI_USER;
2588 		rcu_read_lock();
2589 		info->si_pid = task_pid_vnr(current->parent);
2590 		info->si_uid = from_kuid_munged(current_user_ns(),
2591 						task_uid(current->parent));
2592 		rcu_read_unlock();
2593 	}
2594 
2595 	/* If the (new) signal is now blocked, requeue it.  */
2596 	if (sigismember(&current->blocked, signr) ||
2597 	    fatal_signal_pending(current)) {
2598 		send_signal_locked(signr, info, current, type);
2599 		signr = 0;
2600 	}
2601 
2602 	return signr;
2603 }
2604 
2605 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606 {
2607 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608 	case SIL_FAULT:
2609 	case SIL_FAULT_TRAPNO:
2610 	case SIL_FAULT_MCEERR:
2611 	case SIL_FAULT_BNDERR:
2612 	case SIL_FAULT_PKUERR:
2613 	case SIL_FAULT_PERF_EVENT:
2614 		ksig->info.si_addr = arch_untagged_si_addr(
2615 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616 		break;
2617 	case SIL_KILL:
2618 	case SIL_TIMER:
2619 	case SIL_POLL:
2620 	case SIL_CHLD:
2621 	case SIL_RT:
2622 	case SIL_SYS:
2623 		break;
2624 	}
2625 }
2626 
2627 bool get_signal(struct ksignal *ksig)
2628 {
2629 	struct sighand_struct *sighand = current->sighand;
2630 	struct signal_struct *signal = current->signal;
2631 	int signr;
2632 
2633 	clear_notify_signal();
2634 	if (unlikely(task_work_pending(current)))
2635 		task_work_run();
2636 
2637 	if (!task_sigpending(current))
2638 		return false;
2639 
2640 	if (unlikely(uprobe_deny_signal()))
2641 		return false;
2642 
2643 	/*
2644 	 * Do this once, we can't return to user-mode if freezing() == T.
2645 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646 	 * thus do not need another check after return.
2647 	 */
2648 	try_to_freeze();
2649 
2650 relock:
2651 	spin_lock_irq(&sighand->siglock);
2652 
2653 	/*
2654 	 * Every stopped thread goes here after wakeup. Check to see if
2655 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657 	 */
2658 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659 		int why;
2660 
2661 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2662 			why = CLD_CONTINUED;
2663 		else
2664 			why = CLD_STOPPED;
2665 
2666 		signal->flags &= ~SIGNAL_CLD_MASK;
2667 
2668 		spin_unlock_irq(&sighand->siglock);
2669 
2670 		/*
2671 		 * Notify the parent that we're continuing.  This event is
2672 		 * always per-process and doesn't make whole lot of sense
2673 		 * for ptracers, who shouldn't consume the state via
2674 		 * wait(2) either, but, for backward compatibility, notify
2675 		 * the ptracer of the group leader too unless it's gonna be
2676 		 * a duplicate.
2677 		 */
2678 		read_lock(&tasklist_lock);
2679 		do_notify_parent_cldstop(current, false, why);
2680 
2681 		if (ptrace_reparented(current->group_leader))
2682 			do_notify_parent_cldstop(current->group_leader,
2683 						true, why);
2684 		read_unlock(&tasklist_lock);
2685 
2686 		goto relock;
2687 	}
2688 
2689 	for (;;) {
2690 		struct k_sigaction *ka;
2691 		enum pid_type type;
2692 
2693 		/* Has this task already been marked for death? */
2694 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695 		     signal->group_exec_task) {
2696 			clear_siginfo(&ksig->info);
2697 			ksig->info.si_signo = signr = SIGKILL;
2698 			sigdelset(&current->pending.signal, SIGKILL);
2699 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2700 				&sighand->action[SIGKILL - 1]);
2701 			recalc_sigpending();
2702 			goto fatal;
2703 		}
2704 
2705 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2706 		    do_signal_stop(0))
2707 			goto relock;
2708 
2709 		if (unlikely(current->jobctl &
2710 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2711 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2712 				do_jobctl_trap();
2713 				spin_unlock_irq(&sighand->siglock);
2714 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2715 				do_freezer_trap();
2716 
2717 			goto relock;
2718 		}
2719 
2720 		/*
2721 		 * If the task is leaving the frozen state, let's update
2722 		 * cgroup counters and reset the frozen bit.
2723 		 */
2724 		if (unlikely(cgroup_task_frozen(current))) {
2725 			spin_unlock_irq(&sighand->siglock);
2726 			cgroup_leave_frozen(false);
2727 			goto relock;
2728 		}
2729 
2730 		/*
2731 		 * Signals generated by the execution of an instruction
2732 		 * need to be delivered before any other pending signals
2733 		 * so that the instruction pointer in the signal stack
2734 		 * frame points to the faulting instruction.
2735 		 */
2736 		type = PIDTYPE_PID;
2737 		signr = dequeue_synchronous_signal(&ksig->info);
2738 		if (!signr)
2739 			signr = dequeue_signal(current, &current->blocked,
2740 					       &ksig->info, &type);
2741 
2742 		if (!signr)
2743 			break; /* will return 0 */
2744 
2745 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2746 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2747 			signr = ptrace_signal(signr, &ksig->info, type);
2748 			if (!signr)
2749 				continue;
2750 		}
2751 
2752 		ka = &sighand->action[signr-1];
2753 
2754 		/* Trace actually delivered signals. */
2755 		trace_signal_deliver(signr, &ksig->info, ka);
2756 
2757 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2758 			continue;
2759 		if (ka->sa.sa_handler != SIG_DFL) {
2760 			/* Run the handler.  */
2761 			ksig->ka = *ka;
2762 
2763 			if (ka->sa.sa_flags & SA_ONESHOT)
2764 				ka->sa.sa_handler = SIG_DFL;
2765 
2766 			break; /* will return non-zero "signr" value */
2767 		}
2768 
2769 		/*
2770 		 * Now we are doing the default action for this signal.
2771 		 */
2772 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2773 			continue;
2774 
2775 		/*
2776 		 * Global init gets no signals it doesn't want.
2777 		 * Container-init gets no signals it doesn't want from same
2778 		 * container.
2779 		 *
2780 		 * Note that if global/container-init sees a sig_kernel_only()
2781 		 * signal here, the signal must have been generated internally
2782 		 * or must have come from an ancestor namespace. In either
2783 		 * case, the signal cannot be dropped.
2784 		 */
2785 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2786 				!sig_kernel_only(signr))
2787 			continue;
2788 
2789 		if (sig_kernel_stop(signr)) {
2790 			/*
2791 			 * The default action is to stop all threads in
2792 			 * the thread group.  The job control signals
2793 			 * do nothing in an orphaned pgrp, but SIGSTOP
2794 			 * always works.  Note that siglock needs to be
2795 			 * dropped during the call to is_orphaned_pgrp()
2796 			 * because of lock ordering with tasklist_lock.
2797 			 * This allows an intervening SIGCONT to be posted.
2798 			 * We need to check for that and bail out if necessary.
2799 			 */
2800 			if (signr != SIGSTOP) {
2801 				spin_unlock_irq(&sighand->siglock);
2802 
2803 				/* signals can be posted during this window */
2804 
2805 				if (is_current_pgrp_orphaned())
2806 					goto relock;
2807 
2808 				spin_lock_irq(&sighand->siglock);
2809 			}
2810 
2811 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2812 				/* It released the siglock.  */
2813 				goto relock;
2814 			}
2815 
2816 			/*
2817 			 * We didn't actually stop, due to a race
2818 			 * with SIGCONT or something like that.
2819 			 */
2820 			continue;
2821 		}
2822 
2823 	fatal:
2824 		spin_unlock_irq(&sighand->siglock);
2825 		if (unlikely(cgroup_task_frozen(current)))
2826 			cgroup_leave_frozen(true);
2827 
2828 		/*
2829 		 * Anything else is fatal, maybe with a core dump.
2830 		 */
2831 		current->flags |= PF_SIGNALED;
2832 
2833 		if (sig_kernel_coredump(signr)) {
2834 			if (print_fatal_signals)
2835 				print_fatal_signal(ksig->info.si_signo);
2836 			proc_coredump_connector(current);
2837 			/*
2838 			 * If it was able to dump core, this kills all
2839 			 * other threads in the group and synchronizes with
2840 			 * their demise.  If we lost the race with another
2841 			 * thread getting here, it set group_exit_code
2842 			 * first and our do_group_exit call below will use
2843 			 * that value and ignore the one we pass it.
2844 			 */
2845 			do_coredump(&ksig->info);
2846 		}
2847 
2848 		/*
2849 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2850 		 * themselves. They have cleanup that must be performed, so
2851 		 * we cannot call do_exit() on their behalf.
2852 		 */
2853 		if (current->flags & PF_IO_WORKER)
2854 			goto out;
2855 
2856 		/*
2857 		 * Death signals, no core dump.
2858 		 */
2859 		do_group_exit(ksig->info.si_signo);
2860 		/* NOTREACHED */
2861 	}
2862 	spin_unlock_irq(&sighand->siglock);
2863 out:
2864 	ksig->sig = signr;
2865 
2866 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2867 		hide_si_addr_tag_bits(ksig);
2868 
2869 	return ksig->sig > 0;
2870 }
2871 
2872 /**
2873  * signal_delivered - called after signal delivery to update blocked signals
2874  * @ksig:		kernel signal struct
2875  * @stepping:		nonzero if debugger single-step or block-step in use
2876  *
2877  * This function should be called when a signal has successfully been
2878  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2879  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2880  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2881  */
2882 static void signal_delivered(struct ksignal *ksig, int stepping)
2883 {
2884 	sigset_t blocked;
2885 
2886 	/* A signal was successfully delivered, and the
2887 	   saved sigmask was stored on the signal frame,
2888 	   and will be restored by sigreturn.  So we can
2889 	   simply clear the restore sigmask flag.  */
2890 	clear_restore_sigmask();
2891 
2892 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2893 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2894 		sigaddset(&blocked, ksig->sig);
2895 	set_current_blocked(&blocked);
2896 	if (current->sas_ss_flags & SS_AUTODISARM)
2897 		sas_ss_reset(current);
2898 	if (stepping)
2899 		ptrace_notify(SIGTRAP, 0);
2900 }
2901 
2902 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903 {
2904 	if (failed)
2905 		force_sigsegv(ksig->sig);
2906 	else
2907 		signal_delivered(ksig, stepping);
2908 }
2909 
2910 /*
2911  * It could be that complete_signal() picked us to notify about the
2912  * group-wide signal. Other threads should be notified now to take
2913  * the shared signals in @which since we will not.
2914  */
2915 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916 {
2917 	sigset_t retarget;
2918 	struct task_struct *t;
2919 
2920 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2921 	if (sigisemptyset(&retarget))
2922 		return;
2923 
2924 	t = tsk;
2925 	while_each_thread(tsk, t) {
2926 		if (t->flags & PF_EXITING)
2927 			continue;
2928 
2929 		if (!has_pending_signals(&retarget, &t->blocked))
2930 			continue;
2931 		/* Remove the signals this thread can handle. */
2932 		sigandsets(&retarget, &retarget, &t->blocked);
2933 
2934 		if (!task_sigpending(t))
2935 			signal_wake_up(t, 0);
2936 
2937 		if (sigisemptyset(&retarget))
2938 			break;
2939 	}
2940 }
2941 
2942 void exit_signals(struct task_struct *tsk)
2943 {
2944 	int group_stop = 0;
2945 	sigset_t unblocked;
2946 
2947 	/*
2948 	 * @tsk is about to have PF_EXITING set - lock out users which
2949 	 * expect stable threadgroup.
2950 	 */
2951 	cgroup_threadgroup_change_begin(tsk);
2952 
2953 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2954 		sched_mm_cid_exit_signals(tsk);
2955 		tsk->flags |= PF_EXITING;
2956 		cgroup_threadgroup_change_end(tsk);
2957 		return;
2958 	}
2959 
2960 	spin_lock_irq(&tsk->sighand->siglock);
2961 	/*
2962 	 * From now this task is not visible for group-wide signals,
2963 	 * see wants_signal(), do_signal_stop().
2964 	 */
2965 	sched_mm_cid_exit_signals(tsk);
2966 	tsk->flags |= PF_EXITING;
2967 
2968 	cgroup_threadgroup_change_end(tsk);
2969 
2970 	if (!task_sigpending(tsk))
2971 		goto out;
2972 
2973 	unblocked = tsk->blocked;
2974 	signotset(&unblocked);
2975 	retarget_shared_pending(tsk, &unblocked);
2976 
2977 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2978 	    task_participate_group_stop(tsk))
2979 		group_stop = CLD_STOPPED;
2980 out:
2981 	spin_unlock_irq(&tsk->sighand->siglock);
2982 
2983 	/*
2984 	 * If group stop has completed, deliver the notification.  This
2985 	 * should always go to the real parent of the group leader.
2986 	 */
2987 	if (unlikely(group_stop)) {
2988 		read_lock(&tasklist_lock);
2989 		do_notify_parent_cldstop(tsk, false, group_stop);
2990 		read_unlock(&tasklist_lock);
2991 	}
2992 }
2993 
2994 /*
2995  * System call entry points.
2996  */
2997 
2998 /**
2999  *  sys_restart_syscall - restart a system call
3000  */
3001 SYSCALL_DEFINE0(restart_syscall)
3002 {
3003 	struct restart_block *restart = &current->restart_block;
3004 	return restart->fn(restart);
3005 }
3006 
3007 long do_no_restart_syscall(struct restart_block *param)
3008 {
3009 	return -EINTR;
3010 }
3011 
3012 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3013 {
3014 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3015 		sigset_t newblocked;
3016 		/* A set of now blocked but previously unblocked signals. */
3017 		sigandnsets(&newblocked, newset, &current->blocked);
3018 		retarget_shared_pending(tsk, &newblocked);
3019 	}
3020 	tsk->blocked = *newset;
3021 	recalc_sigpending();
3022 }
3023 
3024 /**
3025  * set_current_blocked - change current->blocked mask
3026  * @newset: new mask
3027  *
3028  * It is wrong to change ->blocked directly, this helper should be used
3029  * to ensure the process can't miss a shared signal we are going to block.
3030  */
3031 void set_current_blocked(sigset_t *newset)
3032 {
3033 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3034 	__set_current_blocked(newset);
3035 }
3036 
3037 void __set_current_blocked(const sigset_t *newset)
3038 {
3039 	struct task_struct *tsk = current;
3040 
3041 	/*
3042 	 * In case the signal mask hasn't changed, there is nothing we need
3043 	 * to do. The current->blocked shouldn't be modified by other task.
3044 	 */
3045 	if (sigequalsets(&tsk->blocked, newset))
3046 		return;
3047 
3048 	spin_lock_irq(&tsk->sighand->siglock);
3049 	__set_task_blocked(tsk, newset);
3050 	spin_unlock_irq(&tsk->sighand->siglock);
3051 }
3052 
3053 /*
3054  * This is also useful for kernel threads that want to temporarily
3055  * (or permanently) block certain signals.
3056  *
3057  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3058  * interface happily blocks "unblockable" signals like SIGKILL
3059  * and friends.
3060  */
3061 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3062 {
3063 	struct task_struct *tsk = current;
3064 	sigset_t newset;
3065 
3066 	/* Lockless, only current can change ->blocked, never from irq */
3067 	if (oldset)
3068 		*oldset = tsk->blocked;
3069 
3070 	switch (how) {
3071 	case SIG_BLOCK:
3072 		sigorsets(&newset, &tsk->blocked, set);
3073 		break;
3074 	case SIG_UNBLOCK:
3075 		sigandnsets(&newset, &tsk->blocked, set);
3076 		break;
3077 	case SIG_SETMASK:
3078 		newset = *set;
3079 		break;
3080 	default:
3081 		return -EINVAL;
3082 	}
3083 
3084 	__set_current_blocked(&newset);
3085 	return 0;
3086 }
3087 EXPORT_SYMBOL(sigprocmask);
3088 
3089 /*
3090  * The api helps set app-provided sigmasks.
3091  *
3092  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3093  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3094  *
3095  * Note that it does set_restore_sigmask() in advance, so it must be always
3096  * paired with restore_saved_sigmask_unless() before return from syscall.
3097  */
3098 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3099 {
3100 	sigset_t kmask;
3101 
3102 	if (!umask)
3103 		return 0;
3104 	if (sigsetsize != sizeof(sigset_t))
3105 		return -EINVAL;
3106 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3107 		return -EFAULT;
3108 
3109 	set_restore_sigmask();
3110 	current->saved_sigmask = current->blocked;
3111 	set_current_blocked(&kmask);
3112 
3113 	return 0;
3114 }
3115 
3116 #ifdef CONFIG_COMPAT
3117 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3118 			    size_t sigsetsize)
3119 {
3120 	sigset_t kmask;
3121 
3122 	if (!umask)
3123 		return 0;
3124 	if (sigsetsize != sizeof(compat_sigset_t))
3125 		return -EINVAL;
3126 	if (get_compat_sigset(&kmask, umask))
3127 		return -EFAULT;
3128 
3129 	set_restore_sigmask();
3130 	current->saved_sigmask = current->blocked;
3131 	set_current_blocked(&kmask);
3132 
3133 	return 0;
3134 }
3135 #endif
3136 
3137 /**
3138  *  sys_rt_sigprocmask - change the list of currently blocked signals
3139  *  @how: whether to add, remove, or set signals
3140  *  @nset: stores pending signals
3141  *  @oset: previous value of signal mask if non-null
3142  *  @sigsetsize: size of sigset_t type
3143  */
3144 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3145 		sigset_t __user *, oset, size_t, sigsetsize)
3146 {
3147 	sigset_t old_set, new_set;
3148 	int error;
3149 
3150 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3151 	if (sigsetsize != sizeof(sigset_t))
3152 		return -EINVAL;
3153 
3154 	old_set = current->blocked;
3155 
3156 	if (nset) {
3157 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3158 			return -EFAULT;
3159 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3160 
3161 		error = sigprocmask(how, &new_set, NULL);
3162 		if (error)
3163 			return error;
3164 	}
3165 
3166 	if (oset) {
3167 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3168 			return -EFAULT;
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 #ifdef CONFIG_COMPAT
3175 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3176 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3177 {
3178 	sigset_t old_set = current->blocked;
3179 
3180 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3181 	if (sigsetsize != sizeof(sigset_t))
3182 		return -EINVAL;
3183 
3184 	if (nset) {
3185 		sigset_t new_set;
3186 		int error;
3187 		if (get_compat_sigset(&new_set, nset))
3188 			return -EFAULT;
3189 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3190 
3191 		error = sigprocmask(how, &new_set, NULL);
3192 		if (error)
3193 			return error;
3194 	}
3195 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3196 }
3197 #endif
3198 
3199 static void do_sigpending(sigset_t *set)
3200 {
3201 	spin_lock_irq(&current->sighand->siglock);
3202 	sigorsets(set, &current->pending.signal,
3203 		  &current->signal->shared_pending.signal);
3204 	spin_unlock_irq(&current->sighand->siglock);
3205 
3206 	/* Outside the lock because only this thread touches it.  */
3207 	sigandsets(set, &current->blocked, set);
3208 }
3209 
3210 /**
3211  *  sys_rt_sigpending - examine a pending signal that has been raised
3212  *			while blocked
3213  *  @uset: stores pending signals
3214  *  @sigsetsize: size of sigset_t type or larger
3215  */
3216 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3217 {
3218 	sigset_t set;
3219 
3220 	if (sigsetsize > sizeof(*uset))
3221 		return -EINVAL;
3222 
3223 	do_sigpending(&set);
3224 
3225 	if (copy_to_user(uset, &set, sigsetsize))
3226 		return -EFAULT;
3227 
3228 	return 0;
3229 }
3230 
3231 #ifdef CONFIG_COMPAT
3232 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3233 		compat_size_t, sigsetsize)
3234 {
3235 	sigset_t set;
3236 
3237 	if (sigsetsize > sizeof(*uset))
3238 		return -EINVAL;
3239 
3240 	do_sigpending(&set);
3241 
3242 	return put_compat_sigset(uset, &set, sigsetsize);
3243 }
3244 #endif
3245 
3246 static const struct {
3247 	unsigned char limit, layout;
3248 } sig_sicodes[] = {
3249 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3250 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3251 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3252 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3253 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3254 #if defined(SIGEMT)
3255 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3256 #endif
3257 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3258 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3259 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3260 };
3261 
3262 static bool known_siginfo_layout(unsigned sig, int si_code)
3263 {
3264 	if (si_code == SI_KERNEL)
3265 		return true;
3266 	else if ((si_code > SI_USER)) {
3267 		if (sig_specific_sicodes(sig)) {
3268 			if (si_code <= sig_sicodes[sig].limit)
3269 				return true;
3270 		}
3271 		else if (si_code <= NSIGPOLL)
3272 			return true;
3273 	}
3274 	else if (si_code >= SI_DETHREAD)
3275 		return true;
3276 	else if (si_code == SI_ASYNCNL)
3277 		return true;
3278 	return false;
3279 }
3280 
3281 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3282 {
3283 	enum siginfo_layout layout = SIL_KILL;
3284 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3285 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3286 		    (si_code <= sig_sicodes[sig].limit)) {
3287 			layout = sig_sicodes[sig].layout;
3288 			/* Handle the exceptions */
3289 			if ((sig == SIGBUS) &&
3290 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3291 				layout = SIL_FAULT_MCEERR;
3292 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3293 				layout = SIL_FAULT_BNDERR;
3294 #ifdef SEGV_PKUERR
3295 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3296 				layout = SIL_FAULT_PKUERR;
3297 #endif
3298 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3299 				layout = SIL_FAULT_PERF_EVENT;
3300 			else if (IS_ENABLED(CONFIG_SPARC) &&
3301 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3302 				layout = SIL_FAULT_TRAPNO;
3303 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3304 				 ((sig == SIGFPE) ||
3305 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3306 				layout = SIL_FAULT_TRAPNO;
3307 		}
3308 		else if (si_code <= NSIGPOLL)
3309 			layout = SIL_POLL;
3310 	} else {
3311 		if (si_code == SI_TIMER)
3312 			layout = SIL_TIMER;
3313 		else if (si_code == SI_SIGIO)
3314 			layout = SIL_POLL;
3315 		else if (si_code < 0)
3316 			layout = SIL_RT;
3317 	}
3318 	return layout;
3319 }
3320 
3321 static inline char __user *si_expansion(const siginfo_t __user *info)
3322 {
3323 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3324 }
3325 
3326 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3327 {
3328 	char __user *expansion = si_expansion(to);
3329 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3330 		return -EFAULT;
3331 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3332 		return -EFAULT;
3333 	return 0;
3334 }
3335 
3336 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3337 				       const siginfo_t __user *from)
3338 {
3339 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3340 		char __user *expansion = si_expansion(from);
3341 		char buf[SI_EXPANSION_SIZE];
3342 		int i;
3343 		/*
3344 		 * An unknown si_code might need more than
3345 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3346 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3347 		 * will return this data to userspace exactly.
3348 		 */
3349 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3350 			return -EFAULT;
3351 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3352 			if (buf[i] != 0)
3353 				return -E2BIG;
3354 		}
3355 	}
3356 	return 0;
3357 }
3358 
3359 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3360 				    const siginfo_t __user *from)
3361 {
3362 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3363 		return -EFAULT;
3364 	to->si_signo = signo;
3365 	return post_copy_siginfo_from_user(to, from);
3366 }
3367 
3368 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3369 {
3370 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3371 		return -EFAULT;
3372 	return post_copy_siginfo_from_user(to, from);
3373 }
3374 
3375 #ifdef CONFIG_COMPAT
3376 /**
3377  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3378  * @to: compat siginfo destination
3379  * @from: kernel siginfo source
3380  *
3381  * Note: This function does not work properly for the SIGCHLD on x32, but
3382  * fortunately it doesn't have to.  The only valid callers for this function are
3383  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3384  * The latter does not care because SIGCHLD will never cause a coredump.
3385  */
3386 void copy_siginfo_to_external32(struct compat_siginfo *to,
3387 		const struct kernel_siginfo *from)
3388 {
3389 	memset(to, 0, sizeof(*to));
3390 
3391 	to->si_signo = from->si_signo;
3392 	to->si_errno = from->si_errno;
3393 	to->si_code  = from->si_code;
3394 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3395 	case SIL_KILL:
3396 		to->si_pid = from->si_pid;
3397 		to->si_uid = from->si_uid;
3398 		break;
3399 	case SIL_TIMER:
3400 		to->si_tid     = from->si_tid;
3401 		to->si_overrun = from->si_overrun;
3402 		to->si_int     = from->si_int;
3403 		break;
3404 	case SIL_POLL:
3405 		to->si_band = from->si_band;
3406 		to->si_fd   = from->si_fd;
3407 		break;
3408 	case SIL_FAULT:
3409 		to->si_addr = ptr_to_compat(from->si_addr);
3410 		break;
3411 	case SIL_FAULT_TRAPNO:
3412 		to->si_addr = ptr_to_compat(from->si_addr);
3413 		to->si_trapno = from->si_trapno;
3414 		break;
3415 	case SIL_FAULT_MCEERR:
3416 		to->si_addr = ptr_to_compat(from->si_addr);
3417 		to->si_addr_lsb = from->si_addr_lsb;
3418 		break;
3419 	case SIL_FAULT_BNDERR:
3420 		to->si_addr = ptr_to_compat(from->si_addr);
3421 		to->si_lower = ptr_to_compat(from->si_lower);
3422 		to->si_upper = ptr_to_compat(from->si_upper);
3423 		break;
3424 	case SIL_FAULT_PKUERR:
3425 		to->si_addr = ptr_to_compat(from->si_addr);
3426 		to->si_pkey = from->si_pkey;
3427 		break;
3428 	case SIL_FAULT_PERF_EVENT:
3429 		to->si_addr = ptr_to_compat(from->si_addr);
3430 		to->si_perf_data = from->si_perf_data;
3431 		to->si_perf_type = from->si_perf_type;
3432 		to->si_perf_flags = from->si_perf_flags;
3433 		break;
3434 	case SIL_CHLD:
3435 		to->si_pid = from->si_pid;
3436 		to->si_uid = from->si_uid;
3437 		to->si_status = from->si_status;
3438 		to->si_utime = from->si_utime;
3439 		to->si_stime = from->si_stime;
3440 		break;
3441 	case SIL_RT:
3442 		to->si_pid = from->si_pid;
3443 		to->si_uid = from->si_uid;
3444 		to->si_int = from->si_int;
3445 		break;
3446 	case SIL_SYS:
3447 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3448 		to->si_syscall   = from->si_syscall;
3449 		to->si_arch      = from->si_arch;
3450 		break;
3451 	}
3452 }
3453 
3454 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3455 			   const struct kernel_siginfo *from)
3456 {
3457 	struct compat_siginfo new;
3458 
3459 	copy_siginfo_to_external32(&new, from);
3460 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3461 		return -EFAULT;
3462 	return 0;
3463 }
3464 
3465 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3466 					 const struct compat_siginfo *from)
3467 {
3468 	clear_siginfo(to);
3469 	to->si_signo = from->si_signo;
3470 	to->si_errno = from->si_errno;
3471 	to->si_code  = from->si_code;
3472 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3473 	case SIL_KILL:
3474 		to->si_pid = from->si_pid;
3475 		to->si_uid = from->si_uid;
3476 		break;
3477 	case SIL_TIMER:
3478 		to->si_tid     = from->si_tid;
3479 		to->si_overrun = from->si_overrun;
3480 		to->si_int     = from->si_int;
3481 		break;
3482 	case SIL_POLL:
3483 		to->si_band = from->si_band;
3484 		to->si_fd   = from->si_fd;
3485 		break;
3486 	case SIL_FAULT:
3487 		to->si_addr = compat_ptr(from->si_addr);
3488 		break;
3489 	case SIL_FAULT_TRAPNO:
3490 		to->si_addr = compat_ptr(from->si_addr);
3491 		to->si_trapno = from->si_trapno;
3492 		break;
3493 	case SIL_FAULT_MCEERR:
3494 		to->si_addr = compat_ptr(from->si_addr);
3495 		to->si_addr_lsb = from->si_addr_lsb;
3496 		break;
3497 	case SIL_FAULT_BNDERR:
3498 		to->si_addr = compat_ptr(from->si_addr);
3499 		to->si_lower = compat_ptr(from->si_lower);
3500 		to->si_upper = compat_ptr(from->si_upper);
3501 		break;
3502 	case SIL_FAULT_PKUERR:
3503 		to->si_addr = compat_ptr(from->si_addr);
3504 		to->si_pkey = from->si_pkey;
3505 		break;
3506 	case SIL_FAULT_PERF_EVENT:
3507 		to->si_addr = compat_ptr(from->si_addr);
3508 		to->si_perf_data = from->si_perf_data;
3509 		to->si_perf_type = from->si_perf_type;
3510 		to->si_perf_flags = from->si_perf_flags;
3511 		break;
3512 	case SIL_CHLD:
3513 		to->si_pid    = from->si_pid;
3514 		to->si_uid    = from->si_uid;
3515 		to->si_status = from->si_status;
3516 #ifdef CONFIG_X86_X32_ABI
3517 		if (in_x32_syscall()) {
3518 			to->si_utime = from->_sifields._sigchld_x32._utime;
3519 			to->si_stime = from->_sifields._sigchld_x32._stime;
3520 		} else
3521 #endif
3522 		{
3523 			to->si_utime = from->si_utime;
3524 			to->si_stime = from->si_stime;
3525 		}
3526 		break;
3527 	case SIL_RT:
3528 		to->si_pid = from->si_pid;
3529 		to->si_uid = from->si_uid;
3530 		to->si_int = from->si_int;
3531 		break;
3532 	case SIL_SYS:
3533 		to->si_call_addr = compat_ptr(from->si_call_addr);
3534 		to->si_syscall   = from->si_syscall;
3535 		to->si_arch      = from->si_arch;
3536 		break;
3537 	}
3538 	return 0;
3539 }
3540 
3541 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3542 				      const struct compat_siginfo __user *ufrom)
3543 {
3544 	struct compat_siginfo from;
3545 
3546 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3547 		return -EFAULT;
3548 
3549 	from.si_signo = signo;
3550 	return post_copy_siginfo_from_user32(to, &from);
3551 }
3552 
3553 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3554 			     const struct compat_siginfo __user *ufrom)
3555 {
3556 	struct compat_siginfo from;
3557 
3558 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3559 		return -EFAULT;
3560 
3561 	return post_copy_siginfo_from_user32(to, &from);
3562 }
3563 #endif /* CONFIG_COMPAT */
3564 
3565 /**
3566  *  do_sigtimedwait - wait for queued signals specified in @which
3567  *  @which: queued signals to wait for
3568  *  @info: if non-null, the signal's siginfo is returned here
3569  *  @ts: upper bound on process time suspension
3570  */
3571 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3572 		    const struct timespec64 *ts)
3573 {
3574 	ktime_t *to = NULL, timeout = KTIME_MAX;
3575 	struct task_struct *tsk = current;
3576 	sigset_t mask = *which;
3577 	enum pid_type type;
3578 	int sig, ret = 0;
3579 
3580 	if (ts) {
3581 		if (!timespec64_valid(ts))
3582 			return -EINVAL;
3583 		timeout = timespec64_to_ktime(*ts);
3584 		to = &timeout;
3585 	}
3586 
3587 	/*
3588 	 * Invert the set of allowed signals to get those we want to block.
3589 	 */
3590 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3591 	signotset(&mask);
3592 
3593 	spin_lock_irq(&tsk->sighand->siglock);
3594 	sig = dequeue_signal(tsk, &mask, info, &type);
3595 	if (!sig && timeout) {
3596 		/*
3597 		 * None ready, temporarily unblock those we're interested
3598 		 * while we are sleeping in so that we'll be awakened when
3599 		 * they arrive. Unblocking is always fine, we can avoid
3600 		 * set_current_blocked().
3601 		 */
3602 		tsk->real_blocked = tsk->blocked;
3603 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3604 		recalc_sigpending();
3605 		spin_unlock_irq(&tsk->sighand->siglock);
3606 
3607 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3608 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3609 					       HRTIMER_MODE_REL);
3610 		spin_lock_irq(&tsk->sighand->siglock);
3611 		__set_task_blocked(tsk, &tsk->real_blocked);
3612 		sigemptyset(&tsk->real_blocked);
3613 		sig = dequeue_signal(tsk, &mask, info, &type);
3614 	}
3615 	spin_unlock_irq(&tsk->sighand->siglock);
3616 
3617 	if (sig)
3618 		return sig;
3619 	return ret ? -EINTR : -EAGAIN;
3620 }
3621 
3622 /**
3623  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3624  *			in @uthese
3625  *  @uthese: queued signals to wait for
3626  *  @uinfo: if non-null, the signal's siginfo is returned here
3627  *  @uts: upper bound on process time suspension
3628  *  @sigsetsize: size of sigset_t type
3629  */
3630 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3631 		siginfo_t __user *, uinfo,
3632 		const struct __kernel_timespec __user *, uts,
3633 		size_t, sigsetsize)
3634 {
3635 	sigset_t these;
3636 	struct timespec64 ts;
3637 	kernel_siginfo_t info;
3638 	int ret;
3639 
3640 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3641 	if (sigsetsize != sizeof(sigset_t))
3642 		return -EINVAL;
3643 
3644 	if (copy_from_user(&these, uthese, sizeof(these)))
3645 		return -EFAULT;
3646 
3647 	if (uts) {
3648 		if (get_timespec64(&ts, uts))
3649 			return -EFAULT;
3650 	}
3651 
3652 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3653 
3654 	if (ret > 0 && uinfo) {
3655 		if (copy_siginfo_to_user(uinfo, &info))
3656 			ret = -EFAULT;
3657 	}
3658 
3659 	return ret;
3660 }
3661 
3662 #ifdef CONFIG_COMPAT_32BIT_TIME
3663 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3664 		siginfo_t __user *, uinfo,
3665 		const struct old_timespec32 __user *, uts,
3666 		size_t, sigsetsize)
3667 {
3668 	sigset_t these;
3669 	struct timespec64 ts;
3670 	kernel_siginfo_t info;
3671 	int ret;
3672 
3673 	if (sigsetsize != sizeof(sigset_t))
3674 		return -EINVAL;
3675 
3676 	if (copy_from_user(&these, uthese, sizeof(these)))
3677 		return -EFAULT;
3678 
3679 	if (uts) {
3680 		if (get_old_timespec32(&ts, uts))
3681 			return -EFAULT;
3682 	}
3683 
3684 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3685 
3686 	if (ret > 0 && uinfo) {
3687 		if (copy_siginfo_to_user(uinfo, &info))
3688 			ret = -EFAULT;
3689 	}
3690 
3691 	return ret;
3692 }
3693 #endif
3694 
3695 #ifdef CONFIG_COMPAT
3696 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3697 		struct compat_siginfo __user *, uinfo,
3698 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3699 {
3700 	sigset_t s;
3701 	struct timespec64 t;
3702 	kernel_siginfo_t info;
3703 	long ret;
3704 
3705 	if (sigsetsize != sizeof(sigset_t))
3706 		return -EINVAL;
3707 
3708 	if (get_compat_sigset(&s, uthese))
3709 		return -EFAULT;
3710 
3711 	if (uts) {
3712 		if (get_timespec64(&t, uts))
3713 			return -EFAULT;
3714 	}
3715 
3716 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3717 
3718 	if (ret > 0 && uinfo) {
3719 		if (copy_siginfo_to_user32(uinfo, &info))
3720 			ret = -EFAULT;
3721 	}
3722 
3723 	return ret;
3724 }
3725 
3726 #ifdef CONFIG_COMPAT_32BIT_TIME
3727 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3728 		struct compat_siginfo __user *, uinfo,
3729 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3730 {
3731 	sigset_t s;
3732 	struct timespec64 t;
3733 	kernel_siginfo_t info;
3734 	long ret;
3735 
3736 	if (sigsetsize != sizeof(sigset_t))
3737 		return -EINVAL;
3738 
3739 	if (get_compat_sigset(&s, uthese))
3740 		return -EFAULT;
3741 
3742 	if (uts) {
3743 		if (get_old_timespec32(&t, uts))
3744 			return -EFAULT;
3745 	}
3746 
3747 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3748 
3749 	if (ret > 0 && uinfo) {
3750 		if (copy_siginfo_to_user32(uinfo, &info))
3751 			ret = -EFAULT;
3752 	}
3753 
3754 	return ret;
3755 }
3756 #endif
3757 #endif
3758 
3759 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3760 {
3761 	clear_siginfo(info);
3762 	info->si_signo = sig;
3763 	info->si_errno = 0;
3764 	info->si_code = SI_USER;
3765 	info->si_pid = task_tgid_vnr(current);
3766 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3767 }
3768 
3769 /**
3770  *  sys_kill - send a signal to a process
3771  *  @pid: the PID of the process
3772  *  @sig: signal to be sent
3773  */
3774 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3775 {
3776 	struct kernel_siginfo info;
3777 
3778 	prepare_kill_siginfo(sig, &info);
3779 
3780 	return kill_something_info(sig, &info, pid);
3781 }
3782 
3783 /*
3784  * Verify that the signaler and signalee either are in the same pid namespace
3785  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3786  * namespace.
3787  */
3788 static bool access_pidfd_pidns(struct pid *pid)
3789 {
3790 	struct pid_namespace *active = task_active_pid_ns(current);
3791 	struct pid_namespace *p = ns_of_pid(pid);
3792 
3793 	for (;;) {
3794 		if (!p)
3795 			return false;
3796 		if (p == active)
3797 			break;
3798 		p = p->parent;
3799 	}
3800 
3801 	return true;
3802 }
3803 
3804 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3805 		siginfo_t __user *info)
3806 {
3807 #ifdef CONFIG_COMPAT
3808 	/*
3809 	 * Avoid hooking up compat syscalls and instead handle necessary
3810 	 * conversions here. Note, this is a stop-gap measure and should not be
3811 	 * considered a generic solution.
3812 	 */
3813 	if (in_compat_syscall())
3814 		return copy_siginfo_from_user32(
3815 			kinfo, (struct compat_siginfo __user *)info);
3816 #endif
3817 	return copy_siginfo_from_user(kinfo, info);
3818 }
3819 
3820 static struct pid *pidfd_to_pid(const struct file *file)
3821 {
3822 	struct pid *pid;
3823 
3824 	pid = pidfd_pid(file);
3825 	if (!IS_ERR(pid))
3826 		return pid;
3827 
3828 	return tgid_pidfd_to_pid(file);
3829 }
3830 
3831 /**
3832  * sys_pidfd_send_signal - Signal a process through a pidfd
3833  * @pidfd:  file descriptor of the process
3834  * @sig:    signal to send
3835  * @info:   signal info
3836  * @flags:  future flags
3837  *
3838  * The syscall currently only signals via PIDTYPE_PID which covers
3839  * kill(<positive-pid>, <signal>. It does not signal threads or process
3840  * groups.
3841  * In order to extend the syscall to threads and process groups the @flags
3842  * argument should be used. In essence, the @flags argument will determine
3843  * what is signaled and not the file descriptor itself. Put in other words,
3844  * grouping is a property of the flags argument not a property of the file
3845  * descriptor.
3846  *
3847  * Return: 0 on success, negative errno on failure
3848  */
3849 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3850 		siginfo_t __user *, info, unsigned int, flags)
3851 {
3852 	int ret;
3853 	struct fd f;
3854 	struct pid *pid;
3855 	kernel_siginfo_t kinfo;
3856 
3857 	/* Enforce flags be set to 0 until we add an extension. */
3858 	if (flags)
3859 		return -EINVAL;
3860 
3861 	f = fdget(pidfd);
3862 	if (!f.file)
3863 		return -EBADF;
3864 
3865 	/* Is this a pidfd? */
3866 	pid = pidfd_to_pid(f.file);
3867 	if (IS_ERR(pid)) {
3868 		ret = PTR_ERR(pid);
3869 		goto err;
3870 	}
3871 
3872 	ret = -EINVAL;
3873 	if (!access_pidfd_pidns(pid))
3874 		goto err;
3875 
3876 	if (info) {
3877 		ret = copy_siginfo_from_user_any(&kinfo, info);
3878 		if (unlikely(ret))
3879 			goto err;
3880 
3881 		ret = -EINVAL;
3882 		if (unlikely(sig != kinfo.si_signo))
3883 			goto err;
3884 
3885 		/* Only allow sending arbitrary signals to yourself. */
3886 		ret = -EPERM;
3887 		if ((task_pid(current) != pid) &&
3888 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3889 			goto err;
3890 	} else {
3891 		prepare_kill_siginfo(sig, &kinfo);
3892 	}
3893 
3894 	ret = kill_pid_info(sig, &kinfo, pid);
3895 
3896 err:
3897 	fdput(f);
3898 	return ret;
3899 }
3900 
3901 static int
3902 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3903 {
3904 	struct task_struct *p;
3905 	int error = -ESRCH;
3906 
3907 	rcu_read_lock();
3908 	p = find_task_by_vpid(pid);
3909 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3910 		error = check_kill_permission(sig, info, p);
3911 		/*
3912 		 * The null signal is a permissions and process existence
3913 		 * probe.  No signal is actually delivered.
3914 		 */
3915 		if (!error && sig) {
3916 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3917 			/*
3918 			 * If lock_task_sighand() failed we pretend the task
3919 			 * dies after receiving the signal. The window is tiny,
3920 			 * and the signal is private anyway.
3921 			 */
3922 			if (unlikely(error == -ESRCH))
3923 				error = 0;
3924 		}
3925 	}
3926 	rcu_read_unlock();
3927 
3928 	return error;
3929 }
3930 
3931 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3932 {
3933 	struct kernel_siginfo info;
3934 
3935 	clear_siginfo(&info);
3936 	info.si_signo = sig;
3937 	info.si_errno = 0;
3938 	info.si_code = SI_TKILL;
3939 	info.si_pid = task_tgid_vnr(current);
3940 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3941 
3942 	return do_send_specific(tgid, pid, sig, &info);
3943 }
3944 
3945 /**
3946  *  sys_tgkill - send signal to one specific thread
3947  *  @tgid: the thread group ID of the thread
3948  *  @pid: the PID of the thread
3949  *  @sig: signal to be sent
3950  *
3951  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3952  *  exists but it's not belonging to the target process anymore. This
3953  *  method solves the problem of threads exiting and PIDs getting reused.
3954  */
3955 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3956 {
3957 	/* This is only valid for single tasks */
3958 	if (pid <= 0 || tgid <= 0)
3959 		return -EINVAL;
3960 
3961 	return do_tkill(tgid, pid, sig);
3962 }
3963 
3964 /**
3965  *  sys_tkill - send signal to one specific task
3966  *  @pid: the PID of the task
3967  *  @sig: signal to be sent
3968  *
3969  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3970  */
3971 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3972 {
3973 	/* This is only valid for single tasks */
3974 	if (pid <= 0)
3975 		return -EINVAL;
3976 
3977 	return do_tkill(0, pid, sig);
3978 }
3979 
3980 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3981 {
3982 	/* Not even root can pretend to send signals from the kernel.
3983 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3984 	 */
3985 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3986 	    (task_pid_vnr(current) != pid))
3987 		return -EPERM;
3988 
3989 	/* POSIX.1b doesn't mention process groups.  */
3990 	return kill_proc_info(sig, info, pid);
3991 }
3992 
3993 /**
3994  *  sys_rt_sigqueueinfo - send signal information to a signal
3995  *  @pid: the PID of the thread
3996  *  @sig: signal to be sent
3997  *  @uinfo: signal info to be sent
3998  */
3999 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4000 		siginfo_t __user *, uinfo)
4001 {
4002 	kernel_siginfo_t info;
4003 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4004 	if (unlikely(ret))
4005 		return ret;
4006 	return do_rt_sigqueueinfo(pid, sig, &info);
4007 }
4008 
4009 #ifdef CONFIG_COMPAT
4010 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4011 			compat_pid_t, pid,
4012 			int, sig,
4013 			struct compat_siginfo __user *, uinfo)
4014 {
4015 	kernel_siginfo_t info;
4016 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4017 	if (unlikely(ret))
4018 		return ret;
4019 	return do_rt_sigqueueinfo(pid, sig, &info);
4020 }
4021 #endif
4022 
4023 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4024 {
4025 	/* This is only valid for single tasks */
4026 	if (pid <= 0 || tgid <= 0)
4027 		return -EINVAL;
4028 
4029 	/* Not even root can pretend to send signals from the kernel.
4030 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4031 	 */
4032 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4033 	    (task_pid_vnr(current) != pid))
4034 		return -EPERM;
4035 
4036 	return do_send_specific(tgid, pid, sig, info);
4037 }
4038 
4039 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4040 		siginfo_t __user *, uinfo)
4041 {
4042 	kernel_siginfo_t info;
4043 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4044 	if (unlikely(ret))
4045 		return ret;
4046 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4047 }
4048 
4049 #ifdef CONFIG_COMPAT
4050 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4051 			compat_pid_t, tgid,
4052 			compat_pid_t, pid,
4053 			int, sig,
4054 			struct compat_siginfo __user *, uinfo)
4055 {
4056 	kernel_siginfo_t info;
4057 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4058 	if (unlikely(ret))
4059 		return ret;
4060 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4061 }
4062 #endif
4063 
4064 /*
4065  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4066  */
4067 void kernel_sigaction(int sig, __sighandler_t action)
4068 {
4069 	spin_lock_irq(&current->sighand->siglock);
4070 	current->sighand->action[sig - 1].sa.sa_handler = action;
4071 	if (action == SIG_IGN) {
4072 		sigset_t mask;
4073 
4074 		sigemptyset(&mask);
4075 		sigaddset(&mask, sig);
4076 
4077 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4078 		flush_sigqueue_mask(&mask, &current->pending);
4079 		recalc_sigpending();
4080 	}
4081 	spin_unlock_irq(&current->sighand->siglock);
4082 }
4083 EXPORT_SYMBOL(kernel_sigaction);
4084 
4085 void __weak sigaction_compat_abi(struct k_sigaction *act,
4086 		struct k_sigaction *oact)
4087 {
4088 }
4089 
4090 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4091 {
4092 	struct task_struct *p = current, *t;
4093 	struct k_sigaction *k;
4094 	sigset_t mask;
4095 
4096 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4097 		return -EINVAL;
4098 
4099 	k = &p->sighand->action[sig-1];
4100 
4101 	spin_lock_irq(&p->sighand->siglock);
4102 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4103 		spin_unlock_irq(&p->sighand->siglock);
4104 		return -EINVAL;
4105 	}
4106 	if (oact)
4107 		*oact = *k;
4108 
4109 	/*
4110 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4111 	 * e.g. by having an architecture use the bit in their uapi.
4112 	 */
4113 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4114 
4115 	/*
4116 	 * Clear unknown flag bits in order to allow userspace to detect missing
4117 	 * support for flag bits and to allow the kernel to use non-uapi bits
4118 	 * internally.
4119 	 */
4120 	if (act)
4121 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4122 	if (oact)
4123 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4124 
4125 	sigaction_compat_abi(act, oact);
4126 
4127 	if (act) {
4128 		sigdelsetmask(&act->sa.sa_mask,
4129 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4130 		*k = *act;
4131 		/*
4132 		 * POSIX 3.3.1.3:
4133 		 *  "Setting a signal action to SIG_IGN for a signal that is
4134 		 *   pending shall cause the pending signal to be discarded,
4135 		 *   whether or not it is blocked."
4136 		 *
4137 		 *  "Setting a signal action to SIG_DFL for a signal that is
4138 		 *   pending and whose default action is to ignore the signal
4139 		 *   (for example, SIGCHLD), shall cause the pending signal to
4140 		 *   be discarded, whether or not it is blocked"
4141 		 */
4142 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4143 			sigemptyset(&mask);
4144 			sigaddset(&mask, sig);
4145 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4146 			for_each_thread(p, t)
4147 				flush_sigqueue_mask(&mask, &t->pending);
4148 		}
4149 	}
4150 
4151 	spin_unlock_irq(&p->sighand->siglock);
4152 	return 0;
4153 }
4154 
4155 #ifdef CONFIG_DYNAMIC_SIGFRAME
4156 static inline void sigaltstack_lock(void)
4157 	__acquires(&current->sighand->siglock)
4158 {
4159 	spin_lock_irq(&current->sighand->siglock);
4160 }
4161 
4162 static inline void sigaltstack_unlock(void)
4163 	__releases(&current->sighand->siglock)
4164 {
4165 	spin_unlock_irq(&current->sighand->siglock);
4166 }
4167 #else
4168 static inline void sigaltstack_lock(void) { }
4169 static inline void sigaltstack_unlock(void) { }
4170 #endif
4171 
4172 static int
4173 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4174 		size_t min_ss_size)
4175 {
4176 	struct task_struct *t = current;
4177 	int ret = 0;
4178 
4179 	if (oss) {
4180 		memset(oss, 0, sizeof(stack_t));
4181 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4182 		oss->ss_size = t->sas_ss_size;
4183 		oss->ss_flags = sas_ss_flags(sp) |
4184 			(current->sas_ss_flags & SS_FLAG_BITS);
4185 	}
4186 
4187 	if (ss) {
4188 		void __user *ss_sp = ss->ss_sp;
4189 		size_t ss_size = ss->ss_size;
4190 		unsigned ss_flags = ss->ss_flags;
4191 		int ss_mode;
4192 
4193 		if (unlikely(on_sig_stack(sp)))
4194 			return -EPERM;
4195 
4196 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4197 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4198 				ss_mode != 0))
4199 			return -EINVAL;
4200 
4201 		/*
4202 		 * Return before taking any locks if no actual
4203 		 * sigaltstack changes were requested.
4204 		 */
4205 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4206 		    t->sas_ss_size == ss_size &&
4207 		    t->sas_ss_flags == ss_flags)
4208 			return 0;
4209 
4210 		sigaltstack_lock();
4211 		if (ss_mode == SS_DISABLE) {
4212 			ss_size = 0;
4213 			ss_sp = NULL;
4214 		} else {
4215 			if (unlikely(ss_size < min_ss_size))
4216 				ret = -ENOMEM;
4217 			if (!sigaltstack_size_valid(ss_size))
4218 				ret = -ENOMEM;
4219 		}
4220 		if (!ret) {
4221 			t->sas_ss_sp = (unsigned long) ss_sp;
4222 			t->sas_ss_size = ss_size;
4223 			t->sas_ss_flags = ss_flags;
4224 		}
4225 		sigaltstack_unlock();
4226 	}
4227 	return ret;
4228 }
4229 
4230 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4231 {
4232 	stack_t new, old;
4233 	int err;
4234 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4235 		return -EFAULT;
4236 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4237 			      current_user_stack_pointer(),
4238 			      MINSIGSTKSZ);
4239 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4240 		err = -EFAULT;
4241 	return err;
4242 }
4243 
4244 int restore_altstack(const stack_t __user *uss)
4245 {
4246 	stack_t new;
4247 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4248 		return -EFAULT;
4249 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4250 			     MINSIGSTKSZ);
4251 	/* squash all but EFAULT for now */
4252 	return 0;
4253 }
4254 
4255 int __save_altstack(stack_t __user *uss, unsigned long sp)
4256 {
4257 	struct task_struct *t = current;
4258 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4259 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4260 		__put_user(t->sas_ss_size, &uss->ss_size);
4261 	return err;
4262 }
4263 
4264 #ifdef CONFIG_COMPAT
4265 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4266 				 compat_stack_t __user *uoss_ptr)
4267 {
4268 	stack_t uss, uoss;
4269 	int ret;
4270 
4271 	if (uss_ptr) {
4272 		compat_stack_t uss32;
4273 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4274 			return -EFAULT;
4275 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4276 		uss.ss_flags = uss32.ss_flags;
4277 		uss.ss_size = uss32.ss_size;
4278 	}
4279 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4280 			     compat_user_stack_pointer(),
4281 			     COMPAT_MINSIGSTKSZ);
4282 	if (ret >= 0 && uoss_ptr)  {
4283 		compat_stack_t old;
4284 		memset(&old, 0, sizeof(old));
4285 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4286 		old.ss_flags = uoss.ss_flags;
4287 		old.ss_size = uoss.ss_size;
4288 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4289 			ret = -EFAULT;
4290 	}
4291 	return ret;
4292 }
4293 
4294 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4295 			const compat_stack_t __user *, uss_ptr,
4296 			compat_stack_t __user *, uoss_ptr)
4297 {
4298 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4299 }
4300 
4301 int compat_restore_altstack(const compat_stack_t __user *uss)
4302 {
4303 	int err = do_compat_sigaltstack(uss, NULL);
4304 	/* squash all but -EFAULT for now */
4305 	return err == -EFAULT ? err : 0;
4306 }
4307 
4308 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4309 {
4310 	int err;
4311 	struct task_struct *t = current;
4312 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4313 			 &uss->ss_sp) |
4314 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4315 		__put_user(t->sas_ss_size, &uss->ss_size);
4316 	return err;
4317 }
4318 #endif
4319 
4320 #ifdef __ARCH_WANT_SYS_SIGPENDING
4321 
4322 /**
4323  *  sys_sigpending - examine pending signals
4324  *  @uset: where mask of pending signal is returned
4325  */
4326 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4327 {
4328 	sigset_t set;
4329 
4330 	if (sizeof(old_sigset_t) > sizeof(*uset))
4331 		return -EINVAL;
4332 
4333 	do_sigpending(&set);
4334 
4335 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4336 		return -EFAULT;
4337 
4338 	return 0;
4339 }
4340 
4341 #ifdef CONFIG_COMPAT
4342 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4343 {
4344 	sigset_t set;
4345 
4346 	do_sigpending(&set);
4347 
4348 	return put_user(set.sig[0], set32);
4349 }
4350 #endif
4351 
4352 #endif
4353 
4354 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4355 /**
4356  *  sys_sigprocmask - examine and change blocked signals
4357  *  @how: whether to add, remove, or set signals
4358  *  @nset: signals to add or remove (if non-null)
4359  *  @oset: previous value of signal mask if non-null
4360  *
4361  * Some platforms have their own version with special arguments;
4362  * others support only sys_rt_sigprocmask.
4363  */
4364 
4365 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4366 		old_sigset_t __user *, oset)
4367 {
4368 	old_sigset_t old_set, new_set;
4369 	sigset_t new_blocked;
4370 
4371 	old_set = current->blocked.sig[0];
4372 
4373 	if (nset) {
4374 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4375 			return -EFAULT;
4376 
4377 		new_blocked = current->blocked;
4378 
4379 		switch (how) {
4380 		case SIG_BLOCK:
4381 			sigaddsetmask(&new_blocked, new_set);
4382 			break;
4383 		case SIG_UNBLOCK:
4384 			sigdelsetmask(&new_blocked, new_set);
4385 			break;
4386 		case SIG_SETMASK:
4387 			new_blocked.sig[0] = new_set;
4388 			break;
4389 		default:
4390 			return -EINVAL;
4391 		}
4392 
4393 		set_current_blocked(&new_blocked);
4394 	}
4395 
4396 	if (oset) {
4397 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4398 			return -EFAULT;
4399 	}
4400 
4401 	return 0;
4402 }
4403 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4404 
4405 #ifndef CONFIG_ODD_RT_SIGACTION
4406 /**
4407  *  sys_rt_sigaction - alter an action taken by a process
4408  *  @sig: signal to be sent
4409  *  @act: new sigaction
4410  *  @oact: used to save the previous sigaction
4411  *  @sigsetsize: size of sigset_t type
4412  */
4413 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4414 		const struct sigaction __user *, act,
4415 		struct sigaction __user *, oact,
4416 		size_t, sigsetsize)
4417 {
4418 	struct k_sigaction new_sa, old_sa;
4419 	int ret;
4420 
4421 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4422 	if (sigsetsize != sizeof(sigset_t))
4423 		return -EINVAL;
4424 
4425 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4426 		return -EFAULT;
4427 
4428 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4429 	if (ret)
4430 		return ret;
4431 
4432 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4433 		return -EFAULT;
4434 
4435 	return 0;
4436 }
4437 #ifdef CONFIG_COMPAT
4438 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4439 		const struct compat_sigaction __user *, act,
4440 		struct compat_sigaction __user *, oact,
4441 		compat_size_t, sigsetsize)
4442 {
4443 	struct k_sigaction new_ka, old_ka;
4444 #ifdef __ARCH_HAS_SA_RESTORER
4445 	compat_uptr_t restorer;
4446 #endif
4447 	int ret;
4448 
4449 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4450 	if (sigsetsize != sizeof(compat_sigset_t))
4451 		return -EINVAL;
4452 
4453 	if (act) {
4454 		compat_uptr_t handler;
4455 		ret = get_user(handler, &act->sa_handler);
4456 		new_ka.sa.sa_handler = compat_ptr(handler);
4457 #ifdef __ARCH_HAS_SA_RESTORER
4458 		ret |= get_user(restorer, &act->sa_restorer);
4459 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4460 #endif
4461 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4462 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4463 		if (ret)
4464 			return -EFAULT;
4465 	}
4466 
4467 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4468 	if (!ret && oact) {
4469 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4470 			       &oact->sa_handler);
4471 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4472 					 sizeof(oact->sa_mask));
4473 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4474 #ifdef __ARCH_HAS_SA_RESTORER
4475 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4476 				&oact->sa_restorer);
4477 #endif
4478 	}
4479 	return ret;
4480 }
4481 #endif
4482 #endif /* !CONFIG_ODD_RT_SIGACTION */
4483 
4484 #ifdef CONFIG_OLD_SIGACTION
4485 SYSCALL_DEFINE3(sigaction, int, sig,
4486 		const struct old_sigaction __user *, act,
4487 	        struct old_sigaction __user *, oact)
4488 {
4489 	struct k_sigaction new_ka, old_ka;
4490 	int ret;
4491 
4492 	if (act) {
4493 		old_sigset_t mask;
4494 		if (!access_ok(act, sizeof(*act)) ||
4495 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4496 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4497 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4498 		    __get_user(mask, &act->sa_mask))
4499 			return -EFAULT;
4500 #ifdef __ARCH_HAS_KA_RESTORER
4501 		new_ka.ka_restorer = NULL;
4502 #endif
4503 		siginitset(&new_ka.sa.sa_mask, mask);
4504 	}
4505 
4506 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4507 
4508 	if (!ret && oact) {
4509 		if (!access_ok(oact, sizeof(*oact)) ||
4510 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4511 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4512 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4513 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4514 			return -EFAULT;
4515 	}
4516 
4517 	return ret;
4518 }
4519 #endif
4520 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4521 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4522 		const struct compat_old_sigaction __user *, act,
4523 	        struct compat_old_sigaction __user *, oact)
4524 {
4525 	struct k_sigaction new_ka, old_ka;
4526 	int ret;
4527 	compat_old_sigset_t mask;
4528 	compat_uptr_t handler, restorer;
4529 
4530 	if (act) {
4531 		if (!access_ok(act, sizeof(*act)) ||
4532 		    __get_user(handler, &act->sa_handler) ||
4533 		    __get_user(restorer, &act->sa_restorer) ||
4534 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4535 		    __get_user(mask, &act->sa_mask))
4536 			return -EFAULT;
4537 
4538 #ifdef __ARCH_HAS_KA_RESTORER
4539 		new_ka.ka_restorer = NULL;
4540 #endif
4541 		new_ka.sa.sa_handler = compat_ptr(handler);
4542 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4543 		siginitset(&new_ka.sa.sa_mask, mask);
4544 	}
4545 
4546 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4547 
4548 	if (!ret && oact) {
4549 		if (!access_ok(oact, sizeof(*oact)) ||
4550 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4551 			       &oact->sa_handler) ||
4552 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4553 			       &oact->sa_restorer) ||
4554 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4555 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4556 			return -EFAULT;
4557 	}
4558 	return ret;
4559 }
4560 #endif
4561 
4562 #ifdef CONFIG_SGETMASK_SYSCALL
4563 
4564 /*
4565  * For backwards compatibility.  Functionality superseded by sigprocmask.
4566  */
4567 SYSCALL_DEFINE0(sgetmask)
4568 {
4569 	/* SMP safe */
4570 	return current->blocked.sig[0];
4571 }
4572 
4573 SYSCALL_DEFINE1(ssetmask, int, newmask)
4574 {
4575 	int old = current->blocked.sig[0];
4576 	sigset_t newset;
4577 
4578 	siginitset(&newset, newmask);
4579 	set_current_blocked(&newset);
4580 
4581 	return old;
4582 }
4583 #endif /* CONFIG_SGETMASK_SYSCALL */
4584 
4585 #ifdef __ARCH_WANT_SYS_SIGNAL
4586 /*
4587  * For backwards compatibility.  Functionality superseded by sigaction.
4588  */
4589 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4590 {
4591 	struct k_sigaction new_sa, old_sa;
4592 	int ret;
4593 
4594 	new_sa.sa.sa_handler = handler;
4595 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4596 	sigemptyset(&new_sa.sa.sa_mask);
4597 
4598 	ret = do_sigaction(sig, &new_sa, &old_sa);
4599 
4600 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4601 }
4602 #endif /* __ARCH_WANT_SYS_SIGNAL */
4603 
4604 #ifdef __ARCH_WANT_SYS_PAUSE
4605 
4606 SYSCALL_DEFINE0(pause)
4607 {
4608 	while (!signal_pending(current)) {
4609 		__set_current_state(TASK_INTERRUPTIBLE);
4610 		schedule();
4611 	}
4612 	return -ERESTARTNOHAND;
4613 }
4614 
4615 #endif
4616 
4617 static int sigsuspend(sigset_t *set)
4618 {
4619 	current->saved_sigmask = current->blocked;
4620 	set_current_blocked(set);
4621 
4622 	while (!signal_pending(current)) {
4623 		__set_current_state(TASK_INTERRUPTIBLE);
4624 		schedule();
4625 	}
4626 	set_restore_sigmask();
4627 	return -ERESTARTNOHAND;
4628 }
4629 
4630 /**
4631  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4632  *	@unewset value until a signal is received
4633  *  @unewset: new signal mask value
4634  *  @sigsetsize: size of sigset_t type
4635  */
4636 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4637 {
4638 	sigset_t newset;
4639 
4640 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4641 	if (sigsetsize != sizeof(sigset_t))
4642 		return -EINVAL;
4643 
4644 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4645 		return -EFAULT;
4646 	return sigsuspend(&newset);
4647 }
4648 
4649 #ifdef CONFIG_COMPAT
4650 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4651 {
4652 	sigset_t newset;
4653 
4654 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4655 	if (sigsetsize != sizeof(sigset_t))
4656 		return -EINVAL;
4657 
4658 	if (get_compat_sigset(&newset, unewset))
4659 		return -EFAULT;
4660 	return sigsuspend(&newset);
4661 }
4662 #endif
4663 
4664 #ifdef CONFIG_OLD_SIGSUSPEND
4665 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4666 {
4667 	sigset_t blocked;
4668 	siginitset(&blocked, mask);
4669 	return sigsuspend(&blocked);
4670 }
4671 #endif
4672 #ifdef CONFIG_OLD_SIGSUSPEND3
4673 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4674 {
4675 	sigset_t blocked;
4676 	siginitset(&blocked, mask);
4677 	return sigsuspend(&blocked);
4678 }
4679 #endif
4680 
4681 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4682 {
4683 	return NULL;
4684 }
4685 
4686 static inline void siginfo_buildtime_checks(void)
4687 {
4688 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4689 
4690 	/* Verify the offsets in the two siginfos match */
4691 #define CHECK_OFFSET(field) \
4692 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4693 
4694 	/* kill */
4695 	CHECK_OFFSET(si_pid);
4696 	CHECK_OFFSET(si_uid);
4697 
4698 	/* timer */
4699 	CHECK_OFFSET(si_tid);
4700 	CHECK_OFFSET(si_overrun);
4701 	CHECK_OFFSET(si_value);
4702 
4703 	/* rt */
4704 	CHECK_OFFSET(si_pid);
4705 	CHECK_OFFSET(si_uid);
4706 	CHECK_OFFSET(si_value);
4707 
4708 	/* sigchld */
4709 	CHECK_OFFSET(si_pid);
4710 	CHECK_OFFSET(si_uid);
4711 	CHECK_OFFSET(si_status);
4712 	CHECK_OFFSET(si_utime);
4713 	CHECK_OFFSET(si_stime);
4714 
4715 	/* sigfault */
4716 	CHECK_OFFSET(si_addr);
4717 	CHECK_OFFSET(si_trapno);
4718 	CHECK_OFFSET(si_addr_lsb);
4719 	CHECK_OFFSET(si_lower);
4720 	CHECK_OFFSET(si_upper);
4721 	CHECK_OFFSET(si_pkey);
4722 	CHECK_OFFSET(si_perf_data);
4723 	CHECK_OFFSET(si_perf_type);
4724 	CHECK_OFFSET(si_perf_flags);
4725 
4726 	/* sigpoll */
4727 	CHECK_OFFSET(si_band);
4728 	CHECK_OFFSET(si_fd);
4729 
4730 	/* sigsys */
4731 	CHECK_OFFSET(si_call_addr);
4732 	CHECK_OFFSET(si_syscall);
4733 	CHECK_OFFSET(si_arch);
4734 #undef CHECK_OFFSET
4735 
4736 	/* usb asyncio */
4737 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4738 		     offsetof(struct siginfo, si_addr));
4739 	if (sizeof(int) == sizeof(void __user *)) {
4740 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4741 			     sizeof(void __user *));
4742 	} else {
4743 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4744 			      sizeof_field(struct siginfo, si_uid)) !=
4745 			     sizeof(void __user *));
4746 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4747 			     offsetof(struct siginfo, si_uid));
4748 	}
4749 #ifdef CONFIG_COMPAT
4750 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4751 		     offsetof(struct compat_siginfo, si_addr));
4752 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753 		     sizeof(compat_uptr_t));
4754 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4755 		     sizeof_field(struct siginfo, si_pid));
4756 #endif
4757 }
4758 
4759 void __init signals_init(void)
4760 {
4761 	siginfo_buildtime_checks();
4762 
4763 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4764 }
4765 
4766 #ifdef CONFIG_KGDB_KDB
4767 #include <linux/kdb.h>
4768 /*
4769  * kdb_send_sig - Allows kdb to send signals without exposing
4770  * signal internals.  This function checks if the required locks are
4771  * available before calling the main signal code, to avoid kdb
4772  * deadlocks.
4773  */
4774 void kdb_send_sig(struct task_struct *t, int sig)
4775 {
4776 	static struct task_struct *kdb_prev_t;
4777 	int new_t, ret;
4778 	if (!spin_trylock(&t->sighand->siglock)) {
4779 		kdb_printf("Can't do kill command now.\n"
4780 			   "The sigmask lock is held somewhere else in "
4781 			   "kernel, try again later\n");
4782 		return;
4783 	}
4784 	new_t = kdb_prev_t != t;
4785 	kdb_prev_t = t;
4786 	if (!task_is_running(t) && new_t) {
4787 		spin_unlock(&t->sighand->siglock);
4788 		kdb_printf("Process is not RUNNING, sending a signal from "
4789 			   "kdb risks deadlock\n"
4790 			   "on the run queue locks. "
4791 			   "The signal has _not_ been sent.\n"
4792 			   "Reissue the kill command if you want to risk "
4793 			   "the deadlock.\n");
4794 		return;
4795 	}
4796 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4797 	spin_unlock(&t->sighand->siglock);
4798 	if (ret)
4799 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4800 			   sig, t->pid);
4801 	else
4802 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4803 }
4804 #endif	/* CONFIG_KGDB_KDB */
4805