1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 630 kernel_siginfo_t *info, enum pid_type *type) 631 { 632 bool resched_timer = false; 633 int signr; 634 635 /* We only dequeue private signals from ourselves, we don't let 636 * signalfd steal them 637 */ 638 *type = PIDTYPE_PID; 639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 640 if (!signr) { 641 *type = PIDTYPE_TGID; 642 signr = __dequeue_signal(&tsk->signal->shared_pending, 643 mask, info, &resched_timer); 644 #ifdef CONFIG_POSIX_TIMERS 645 /* 646 * itimer signal ? 647 * 648 * itimers are process shared and we restart periodic 649 * itimers in the signal delivery path to prevent DoS 650 * attacks in the high resolution timer case. This is 651 * compliant with the old way of self-restarting 652 * itimers, as the SIGALRM is a legacy signal and only 653 * queued once. Changing the restart behaviour to 654 * restart the timer in the signal dequeue path is 655 * reducing the timer noise on heavy loaded !highres 656 * systems too. 657 */ 658 if (unlikely(signr == SIGALRM)) { 659 struct hrtimer *tmr = &tsk->signal->real_timer; 660 661 if (!hrtimer_is_queued(tmr) && 662 tsk->signal->it_real_incr != 0) { 663 hrtimer_forward(tmr, tmr->base->get_time(), 664 tsk->signal->it_real_incr); 665 hrtimer_restart(tmr); 666 } 667 } 668 #endif 669 } 670 671 recalc_sigpending(); 672 if (!signr) 673 return 0; 674 675 if (unlikely(sig_kernel_stop(signr))) { 676 /* 677 * Set a marker that we have dequeued a stop signal. Our 678 * caller might release the siglock and then the pending 679 * stop signal it is about to process is no longer in the 680 * pending bitmasks, but must still be cleared by a SIGCONT 681 * (and overruled by a SIGKILL). So those cases clear this 682 * shared flag after we've set it. Note that this flag may 683 * remain set after the signal we return is ignored or 684 * handled. That doesn't matter because its only purpose 685 * is to alert stop-signal processing code when another 686 * processor has come along and cleared the flag. 687 */ 688 current->jobctl |= JOBCTL_STOP_DEQUEUED; 689 } 690 #ifdef CONFIG_POSIX_TIMERS 691 if (resched_timer) { 692 /* 693 * Release the siglock to ensure proper locking order 694 * of timer locks outside of siglocks. Note, we leave 695 * irqs disabled here, since the posix-timers code is 696 * about to disable them again anyway. 697 */ 698 spin_unlock(&tsk->sighand->siglock); 699 posixtimer_rearm(info); 700 spin_lock(&tsk->sighand->siglock); 701 702 /* Don't expose the si_sys_private value to userspace */ 703 info->si_sys_private = 0; 704 } 705 #endif 706 return signr; 707 } 708 EXPORT_SYMBOL_GPL(dequeue_signal); 709 710 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 711 { 712 struct task_struct *tsk = current; 713 struct sigpending *pending = &tsk->pending; 714 struct sigqueue *q, *sync = NULL; 715 716 /* 717 * Might a synchronous signal be in the queue? 718 */ 719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 720 return 0; 721 722 /* 723 * Return the first synchronous signal in the queue. 724 */ 725 list_for_each_entry(q, &pending->list, list) { 726 /* Synchronous signals have a positive si_code */ 727 if ((q->info.si_code > SI_USER) && 728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 729 sync = q; 730 goto next; 731 } 732 } 733 return 0; 734 next: 735 /* 736 * Check if there is another siginfo for the same signal. 737 */ 738 list_for_each_entry_continue(q, &pending->list, list) { 739 if (q->info.si_signo == sync->info.si_signo) 740 goto still_pending; 741 } 742 743 sigdelset(&pending->signal, sync->info.si_signo); 744 recalc_sigpending(); 745 still_pending: 746 list_del_init(&sync->list); 747 copy_siginfo(info, &sync->info); 748 __sigqueue_free(sync); 749 return info->si_signo; 750 } 751 752 /* 753 * Tell a process that it has a new active signal.. 754 * 755 * NOTE! we rely on the previous spin_lock to 756 * lock interrupts for us! We can only be called with 757 * "siglock" held, and the local interrupt must 758 * have been disabled when that got acquired! 759 * 760 * No need to set need_resched since signal event passing 761 * goes through ->blocked 762 */ 763 void signal_wake_up_state(struct task_struct *t, unsigned int state) 764 { 765 set_tsk_thread_flag(t, TIF_SIGPENDING); 766 /* 767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 768 * case. We don't check t->state here because there is a race with it 769 * executing another processor and just now entering stopped state. 770 * By using wake_up_state, we ensure the process will wake up and 771 * handle its death signal. 772 */ 773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 774 kick_process(t); 775 } 776 777 /* 778 * Remove signals in mask from the pending set and queue. 779 * Returns 1 if any signals were found. 780 * 781 * All callers must be holding the siglock. 782 */ 783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 784 { 785 struct sigqueue *q, *n; 786 sigset_t m; 787 788 sigandsets(&m, mask, &s->signal); 789 if (sigisemptyset(&m)) 790 return; 791 792 sigandnsets(&s->signal, &s->signal, mask); 793 list_for_each_entry_safe(q, n, &s->list, list) { 794 if (sigismember(mask, q->info.si_signo)) { 795 list_del_init(&q->list); 796 __sigqueue_free(q); 797 } 798 } 799 } 800 801 static inline int is_si_special(const struct kernel_siginfo *info) 802 { 803 return info <= SEND_SIG_PRIV; 804 } 805 806 static inline bool si_fromuser(const struct kernel_siginfo *info) 807 { 808 return info == SEND_SIG_NOINFO || 809 (!is_si_special(info) && SI_FROMUSER(info)); 810 } 811 812 /* 813 * called with RCU read lock from check_kill_permission() 814 */ 815 static bool kill_ok_by_cred(struct task_struct *t) 816 { 817 const struct cred *cred = current_cred(); 818 const struct cred *tcred = __task_cred(t); 819 820 return uid_eq(cred->euid, tcred->suid) || 821 uid_eq(cred->euid, tcred->uid) || 822 uid_eq(cred->uid, tcred->suid) || 823 uid_eq(cred->uid, tcred->uid) || 824 ns_capable(tcred->user_ns, CAP_KILL); 825 } 826 827 /* 828 * Bad permissions for sending the signal 829 * - the caller must hold the RCU read lock 830 */ 831 static int check_kill_permission(int sig, struct kernel_siginfo *info, 832 struct task_struct *t) 833 { 834 struct pid *sid; 835 int error; 836 837 if (!valid_signal(sig)) 838 return -EINVAL; 839 840 if (!si_fromuser(info)) 841 return 0; 842 843 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 844 if (error) 845 return error; 846 847 if (!same_thread_group(current, t) && 848 !kill_ok_by_cred(t)) { 849 switch (sig) { 850 case SIGCONT: 851 sid = task_session(t); 852 /* 853 * We don't return the error if sid == NULL. The 854 * task was unhashed, the caller must notice this. 855 */ 856 if (!sid || sid == task_session(current)) 857 break; 858 fallthrough; 859 default: 860 return -EPERM; 861 } 862 } 863 864 return security_task_kill(t, info, sig, NULL); 865 } 866 867 /** 868 * ptrace_trap_notify - schedule trap to notify ptracer 869 * @t: tracee wanting to notify tracer 870 * 871 * This function schedules sticky ptrace trap which is cleared on the next 872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 873 * ptracer. 874 * 875 * If @t is running, STOP trap will be taken. If trapped for STOP and 876 * ptracer is listening for events, tracee is woken up so that it can 877 * re-trap for the new event. If trapped otherwise, STOP trap will be 878 * eventually taken without returning to userland after the existing traps 879 * are finished by PTRACE_CONT. 880 * 881 * CONTEXT: 882 * Must be called with @task->sighand->siglock held. 883 */ 884 static void ptrace_trap_notify(struct task_struct *t) 885 { 886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 887 assert_spin_locked(&t->sighand->siglock); 888 889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 891 } 892 893 /* 894 * Handle magic process-wide effects of stop/continue signals. Unlike 895 * the signal actions, these happen immediately at signal-generation 896 * time regardless of blocking, ignoring, or handling. This does the 897 * actual continuing for SIGCONT, but not the actual stopping for stop 898 * signals. The process stop is done as a signal action for SIG_DFL. 899 * 900 * Returns true if the signal should be actually delivered, otherwise 901 * it should be dropped. 902 */ 903 static bool prepare_signal(int sig, struct task_struct *p, bool force) 904 { 905 struct signal_struct *signal = p->signal; 906 struct task_struct *t; 907 sigset_t flush; 908 909 if (signal->flags & SIGNAL_GROUP_EXIT) { 910 if (signal->core_state) 911 return sig == SIGKILL; 912 /* 913 * The process is in the middle of dying, nothing to do. 914 */ 915 } else if (sig_kernel_stop(sig)) { 916 /* 917 * This is a stop signal. Remove SIGCONT from all queues. 918 */ 919 siginitset(&flush, sigmask(SIGCONT)); 920 flush_sigqueue_mask(&flush, &signal->shared_pending); 921 for_each_thread(p, t) 922 flush_sigqueue_mask(&flush, &t->pending); 923 } else if (sig == SIGCONT) { 924 unsigned int why; 925 /* 926 * Remove all stop signals from all queues, wake all threads. 927 */ 928 siginitset(&flush, SIG_KERNEL_STOP_MASK); 929 flush_sigqueue_mask(&flush, &signal->shared_pending); 930 for_each_thread(p, t) { 931 flush_sigqueue_mask(&flush, &t->pending); 932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 933 if (likely(!(t->ptrace & PT_SEIZED))) 934 wake_up_state(t, __TASK_STOPPED); 935 else 936 ptrace_trap_notify(t); 937 } 938 939 /* 940 * Notify the parent with CLD_CONTINUED if we were stopped. 941 * 942 * If we were in the middle of a group stop, we pretend it 943 * was already finished, and then continued. Since SIGCHLD 944 * doesn't queue we report only CLD_STOPPED, as if the next 945 * CLD_CONTINUED was dropped. 946 */ 947 why = 0; 948 if (signal->flags & SIGNAL_STOP_STOPPED) 949 why |= SIGNAL_CLD_CONTINUED; 950 else if (signal->group_stop_count) 951 why |= SIGNAL_CLD_STOPPED; 952 953 if (why) { 954 /* 955 * The first thread which returns from do_signal_stop() 956 * will take ->siglock, notice SIGNAL_CLD_MASK, and 957 * notify its parent. See get_signal(). 958 */ 959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 960 signal->group_stop_count = 0; 961 signal->group_exit_code = 0; 962 } 963 } 964 965 return !sig_ignored(p, sig, force); 966 } 967 968 /* 969 * Test if P wants to take SIG. After we've checked all threads with this, 970 * it's equivalent to finding no threads not blocking SIG. Any threads not 971 * blocking SIG were ruled out because they are not running and already 972 * have pending signals. Such threads will dequeue from the shared queue 973 * as soon as they're available, so putting the signal on the shared queue 974 * will be equivalent to sending it to one such thread. 975 */ 976 static inline bool wants_signal(int sig, struct task_struct *p) 977 { 978 if (sigismember(&p->blocked, sig)) 979 return false; 980 981 if (p->flags & PF_EXITING) 982 return false; 983 984 if (sig == SIGKILL) 985 return true; 986 987 if (task_is_stopped_or_traced(p)) 988 return false; 989 990 return task_curr(p) || !task_sigpending(p); 991 } 992 993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 994 { 995 struct signal_struct *signal = p->signal; 996 struct task_struct *t; 997 998 /* 999 * Now find a thread we can wake up to take the signal off the queue. 1000 * 1001 * If the main thread wants the signal, it gets first crack. 1002 * Probably the least surprising to the average bear. 1003 */ 1004 if (wants_signal(sig, p)) 1005 t = p; 1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1007 /* 1008 * There is just one thread and it does not need to be woken. 1009 * It will dequeue unblocked signals before it runs again. 1010 */ 1011 return; 1012 else { 1013 /* 1014 * Otherwise try to find a suitable thread. 1015 */ 1016 t = signal->curr_target; 1017 while (!wants_signal(sig, t)) { 1018 t = next_thread(t); 1019 if (t == signal->curr_target) 1020 /* 1021 * No thread needs to be woken. 1022 * Any eligible threads will see 1023 * the signal in the queue soon. 1024 */ 1025 return; 1026 } 1027 signal->curr_target = t; 1028 } 1029 1030 /* 1031 * Found a killable thread. If the signal will be fatal, 1032 * then start taking the whole group down immediately. 1033 */ 1034 if (sig_fatal(p, sig) && 1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1036 !sigismember(&t->real_blocked, sig) && 1037 (sig == SIGKILL || !p->ptrace)) { 1038 /* 1039 * This signal will be fatal to the whole group. 1040 */ 1041 if (!sig_kernel_coredump(sig)) { 1042 /* 1043 * Start a group exit and wake everybody up. 1044 * This way we don't have other threads 1045 * running and doing things after a slower 1046 * thread has the fatal signal pending. 1047 */ 1048 signal->flags = SIGNAL_GROUP_EXIT; 1049 signal->group_exit_code = sig; 1050 signal->group_stop_count = 0; 1051 t = p; 1052 do { 1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1054 sigaddset(&t->pending.signal, SIGKILL); 1055 signal_wake_up(t, 1); 1056 } while_each_thread(p, t); 1057 return; 1058 } 1059 } 1060 1061 /* 1062 * The signal is already in the shared-pending queue. 1063 * Tell the chosen thread to wake up and dequeue it. 1064 */ 1065 signal_wake_up(t, sig == SIGKILL); 1066 return; 1067 } 1068 1069 static inline bool legacy_queue(struct sigpending *signals, int sig) 1070 { 1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1072 } 1073 1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1075 enum pid_type type, bool force) 1076 { 1077 struct sigpending *pending; 1078 struct sigqueue *q; 1079 int override_rlimit; 1080 int ret = 0, result; 1081 1082 assert_spin_locked(&t->sighand->siglock); 1083 1084 result = TRACE_SIGNAL_IGNORED; 1085 if (!prepare_signal(sig, t, force)) 1086 goto ret; 1087 1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1089 /* 1090 * Short-circuit ignored signals and support queuing 1091 * exactly one non-rt signal, so that we can get more 1092 * detailed information about the cause of the signal. 1093 */ 1094 result = TRACE_SIGNAL_ALREADY_PENDING; 1095 if (legacy_queue(pending, sig)) 1096 goto ret; 1097 1098 result = TRACE_SIGNAL_DELIVERED; 1099 /* 1100 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1101 */ 1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1103 goto out_set; 1104 1105 /* 1106 * Real-time signals must be queued if sent by sigqueue, or 1107 * some other real-time mechanism. It is implementation 1108 * defined whether kill() does so. We attempt to do so, on 1109 * the principle of least surprise, but since kill is not 1110 * allowed to fail with EAGAIN when low on memory we just 1111 * make sure at least one signal gets delivered and don't 1112 * pass on the info struct. 1113 */ 1114 if (sig < SIGRTMIN) 1115 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1116 else 1117 override_rlimit = 0; 1118 1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1120 1121 if (q) { 1122 list_add_tail(&q->list, &pending->list); 1123 switch ((unsigned long) info) { 1124 case (unsigned long) SEND_SIG_NOINFO: 1125 clear_siginfo(&q->info); 1126 q->info.si_signo = sig; 1127 q->info.si_errno = 0; 1128 q->info.si_code = SI_USER; 1129 q->info.si_pid = task_tgid_nr_ns(current, 1130 task_active_pid_ns(t)); 1131 rcu_read_lock(); 1132 q->info.si_uid = 1133 from_kuid_munged(task_cred_xxx(t, user_ns), 1134 current_uid()); 1135 rcu_read_unlock(); 1136 break; 1137 case (unsigned long) SEND_SIG_PRIV: 1138 clear_siginfo(&q->info); 1139 q->info.si_signo = sig; 1140 q->info.si_errno = 0; 1141 q->info.si_code = SI_KERNEL; 1142 q->info.si_pid = 0; 1143 q->info.si_uid = 0; 1144 break; 1145 default: 1146 copy_siginfo(&q->info, info); 1147 break; 1148 } 1149 } else if (!is_si_special(info) && 1150 sig >= SIGRTMIN && info->si_code != SI_USER) { 1151 /* 1152 * Queue overflow, abort. We may abort if the 1153 * signal was rt and sent by user using something 1154 * other than kill(). 1155 */ 1156 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1157 ret = -EAGAIN; 1158 goto ret; 1159 } else { 1160 /* 1161 * This is a silent loss of information. We still 1162 * send the signal, but the *info bits are lost. 1163 */ 1164 result = TRACE_SIGNAL_LOSE_INFO; 1165 } 1166 1167 out_set: 1168 signalfd_notify(t, sig); 1169 sigaddset(&pending->signal, sig); 1170 1171 /* Let multiprocess signals appear after on-going forks */ 1172 if (type > PIDTYPE_TGID) { 1173 struct multiprocess_signals *delayed; 1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1175 sigset_t *signal = &delayed->signal; 1176 /* Can't queue both a stop and a continue signal */ 1177 if (sig == SIGCONT) 1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1179 else if (sig_kernel_stop(sig)) 1180 sigdelset(signal, SIGCONT); 1181 sigaddset(signal, sig); 1182 } 1183 } 1184 1185 complete_signal(sig, t, type); 1186 ret: 1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1188 return ret; 1189 } 1190 1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1192 { 1193 bool ret = false; 1194 switch (siginfo_layout(info->si_signo, info->si_code)) { 1195 case SIL_KILL: 1196 case SIL_CHLD: 1197 case SIL_RT: 1198 ret = true; 1199 break; 1200 case SIL_TIMER: 1201 case SIL_POLL: 1202 case SIL_FAULT: 1203 case SIL_FAULT_TRAPNO: 1204 case SIL_FAULT_MCEERR: 1205 case SIL_FAULT_BNDERR: 1206 case SIL_FAULT_PKUERR: 1207 case SIL_FAULT_PERF_EVENT: 1208 case SIL_SYS: 1209 ret = false; 1210 break; 1211 } 1212 return ret; 1213 } 1214 1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1216 enum pid_type type) 1217 { 1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1219 bool force = false; 1220 1221 if (info == SEND_SIG_NOINFO) { 1222 /* Force if sent from an ancestor pid namespace */ 1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1224 } else if (info == SEND_SIG_PRIV) { 1225 /* Don't ignore kernel generated signals */ 1226 force = true; 1227 } else if (has_si_pid_and_uid(info)) { 1228 /* SIGKILL and SIGSTOP is special or has ids */ 1229 struct user_namespace *t_user_ns; 1230 1231 rcu_read_lock(); 1232 t_user_ns = task_cred_xxx(t, user_ns); 1233 if (current_user_ns() != t_user_ns) { 1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1235 info->si_uid = from_kuid_munged(t_user_ns, uid); 1236 } 1237 rcu_read_unlock(); 1238 1239 /* A kernel generated signal? */ 1240 force = (info->si_code == SI_KERNEL); 1241 1242 /* From an ancestor pid namespace? */ 1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1244 info->si_pid = 0; 1245 force = true; 1246 } 1247 } 1248 return __send_signal(sig, info, t, type, force); 1249 } 1250 1251 static void print_fatal_signal(int signr) 1252 { 1253 struct pt_regs *regs = signal_pt_regs(); 1254 pr_info("potentially unexpected fatal signal %d.\n", signr); 1255 1256 #if defined(__i386__) && !defined(__arch_um__) 1257 pr_info("code at %08lx: ", regs->ip); 1258 { 1259 int i; 1260 for (i = 0; i < 16; i++) { 1261 unsigned char insn; 1262 1263 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1264 break; 1265 pr_cont("%02x ", insn); 1266 } 1267 } 1268 pr_cont("\n"); 1269 #endif 1270 preempt_disable(); 1271 show_regs(regs); 1272 preempt_enable(); 1273 } 1274 1275 static int __init setup_print_fatal_signals(char *str) 1276 { 1277 get_option (&str, &print_fatal_signals); 1278 1279 return 1; 1280 } 1281 1282 __setup("print-fatal-signals=", setup_print_fatal_signals); 1283 1284 int 1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1286 { 1287 return send_signal(sig, info, p, PIDTYPE_TGID); 1288 } 1289 1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1291 enum pid_type type) 1292 { 1293 unsigned long flags; 1294 int ret = -ESRCH; 1295 1296 if (lock_task_sighand(p, &flags)) { 1297 ret = send_signal(sig, info, p, type); 1298 unlock_task_sighand(p, &flags); 1299 } 1300 1301 return ret; 1302 } 1303 1304 enum sig_handler { 1305 HANDLER_CURRENT, /* If reachable use the current handler */ 1306 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1307 HANDLER_EXIT, /* Only visible as the process exit code */ 1308 }; 1309 1310 /* 1311 * Force a signal that the process can't ignore: if necessary 1312 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1313 * 1314 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1315 * since we do not want to have a signal handler that was blocked 1316 * be invoked when user space had explicitly blocked it. 1317 * 1318 * We don't want to have recursive SIGSEGV's etc, for example, 1319 * that is why we also clear SIGNAL_UNKILLABLE. 1320 */ 1321 static int 1322 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1323 enum sig_handler handler) 1324 { 1325 unsigned long int flags; 1326 int ret, blocked, ignored; 1327 struct k_sigaction *action; 1328 int sig = info->si_signo; 1329 1330 spin_lock_irqsave(&t->sighand->siglock, flags); 1331 action = &t->sighand->action[sig-1]; 1332 ignored = action->sa.sa_handler == SIG_IGN; 1333 blocked = sigismember(&t->blocked, sig); 1334 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1335 action->sa.sa_handler = SIG_DFL; 1336 if (handler == HANDLER_EXIT) 1337 action->sa.sa_flags |= SA_IMMUTABLE; 1338 if (blocked) { 1339 sigdelset(&t->blocked, sig); 1340 recalc_sigpending_and_wake(t); 1341 } 1342 } 1343 /* 1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1345 * debugging to leave init killable. 1346 */ 1347 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1348 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1349 ret = send_signal(sig, info, t, PIDTYPE_PID); 1350 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1351 1352 return ret; 1353 } 1354 1355 int force_sig_info(struct kernel_siginfo *info) 1356 { 1357 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1358 } 1359 1360 /* 1361 * Nuke all other threads in the group. 1362 */ 1363 int zap_other_threads(struct task_struct *p) 1364 { 1365 struct task_struct *t = p; 1366 int count = 0; 1367 1368 p->signal->group_stop_count = 0; 1369 1370 while_each_thread(p, t) { 1371 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1372 count++; 1373 1374 /* Don't bother with already dead threads */ 1375 if (t->exit_state) 1376 continue; 1377 sigaddset(&t->pending.signal, SIGKILL); 1378 signal_wake_up(t, 1); 1379 } 1380 1381 return count; 1382 } 1383 1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1385 unsigned long *flags) 1386 { 1387 struct sighand_struct *sighand; 1388 1389 rcu_read_lock(); 1390 for (;;) { 1391 sighand = rcu_dereference(tsk->sighand); 1392 if (unlikely(sighand == NULL)) 1393 break; 1394 1395 /* 1396 * This sighand can be already freed and even reused, but 1397 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1398 * initializes ->siglock: this slab can't go away, it has 1399 * the same object type, ->siglock can't be reinitialized. 1400 * 1401 * We need to ensure that tsk->sighand is still the same 1402 * after we take the lock, we can race with de_thread() or 1403 * __exit_signal(). In the latter case the next iteration 1404 * must see ->sighand == NULL. 1405 */ 1406 spin_lock_irqsave(&sighand->siglock, *flags); 1407 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1408 break; 1409 spin_unlock_irqrestore(&sighand->siglock, *flags); 1410 } 1411 rcu_read_unlock(); 1412 1413 return sighand; 1414 } 1415 1416 #ifdef CONFIG_LOCKDEP 1417 void lockdep_assert_task_sighand_held(struct task_struct *task) 1418 { 1419 struct sighand_struct *sighand; 1420 1421 rcu_read_lock(); 1422 sighand = rcu_dereference(task->sighand); 1423 if (sighand) 1424 lockdep_assert_held(&sighand->siglock); 1425 else 1426 WARN_ON_ONCE(1); 1427 rcu_read_unlock(); 1428 } 1429 #endif 1430 1431 /* 1432 * send signal info to all the members of a group 1433 */ 1434 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1435 struct task_struct *p, enum pid_type type) 1436 { 1437 int ret; 1438 1439 rcu_read_lock(); 1440 ret = check_kill_permission(sig, info, p); 1441 rcu_read_unlock(); 1442 1443 if (!ret && sig) 1444 ret = do_send_sig_info(sig, info, p, type); 1445 1446 return ret; 1447 } 1448 1449 /* 1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1451 * control characters do (^C, ^Z etc) 1452 * - the caller must hold at least a readlock on tasklist_lock 1453 */ 1454 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1455 { 1456 struct task_struct *p = NULL; 1457 int retval, success; 1458 1459 success = 0; 1460 retval = -ESRCH; 1461 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1462 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1463 success |= !err; 1464 retval = err; 1465 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1466 return success ? 0 : retval; 1467 } 1468 1469 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1470 { 1471 int error = -ESRCH; 1472 struct task_struct *p; 1473 1474 for (;;) { 1475 rcu_read_lock(); 1476 p = pid_task(pid, PIDTYPE_PID); 1477 if (p) 1478 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1479 rcu_read_unlock(); 1480 if (likely(!p || error != -ESRCH)) 1481 return error; 1482 1483 /* 1484 * The task was unhashed in between, try again. If it 1485 * is dead, pid_task() will return NULL, if we race with 1486 * de_thread() it will find the new leader. 1487 */ 1488 } 1489 } 1490 1491 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1492 { 1493 int error; 1494 rcu_read_lock(); 1495 error = kill_pid_info(sig, info, find_vpid(pid)); 1496 rcu_read_unlock(); 1497 return error; 1498 } 1499 1500 static inline bool kill_as_cred_perm(const struct cred *cred, 1501 struct task_struct *target) 1502 { 1503 const struct cred *pcred = __task_cred(target); 1504 1505 return uid_eq(cred->euid, pcred->suid) || 1506 uid_eq(cred->euid, pcred->uid) || 1507 uid_eq(cred->uid, pcred->suid) || 1508 uid_eq(cred->uid, pcred->uid); 1509 } 1510 1511 /* 1512 * The usb asyncio usage of siginfo is wrong. The glibc support 1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1514 * AKA after the generic fields: 1515 * kernel_pid_t si_pid; 1516 * kernel_uid32_t si_uid; 1517 * sigval_t si_value; 1518 * 1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1520 * after the generic fields is: 1521 * void __user *si_addr; 1522 * 1523 * This is a practical problem when there is a 64bit big endian kernel 1524 * and a 32bit userspace. As the 32bit address will encoded in the low 1525 * 32bits of the pointer. Those low 32bits will be stored at higher 1526 * address than appear in a 32 bit pointer. So userspace will not 1527 * see the address it was expecting for it's completions. 1528 * 1529 * There is nothing in the encoding that can allow 1530 * copy_siginfo_to_user32 to detect this confusion of formats, so 1531 * handle this by requiring the caller of kill_pid_usb_asyncio to 1532 * notice when this situration takes place and to store the 32bit 1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1534 * parameter. 1535 */ 1536 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1537 struct pid *pid, const struct cred *cred) 1538 { 1539 struct kernel_siginfo info; 1540 struct task_struct *p; 1541 unsigned long flags; 1542 int ret = -EINVAL; 1543 1544 if (!valid_signal(sig)) 1545 return ret; 1546 1547 clear_siginfo(&info); 1548 info.si_signo = sig; 1549 info.si_errno = errno; 1550 info.si_code = SI_ASYNCIO; 1551 *((sigval_t *)&info.si_pid) = addr; 1552 1553 rcu_read_lock(); 1554 p = pid_task(pid, PIDTYPE_PID); 1555 if (!p) { 1556 ret = -ESRCH; 1557 goto out_unlock; 1558 } 1559 if (!kill_as_cred_perm(cred, p)) { 1560 ret = -EPERM; 1561 goto out_unlock; 1562 } 1563 ret = security_task_kill(p, &info, sig, cred); 1564 if (ret) 1565 goto out_unlock; 1566 1567 if (sig) { 1568 if (lock_task_sighand(p, &flags)) { 1569 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1570 unlock_task_sighand(p, &flags); 1571 } else 1572 ret = -ESRCH; 1573 } 1574 out_unlock: 1575 rcu_read_unlock(); 1576 return ret; 1577 } 1578 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1579 1580 /* 1581 * kill_something_info() interprets pid in interesting ways just like kill(2). 1582 * 1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1584 * is probably wrong. Should make it like BSD or SYSV. 1585 */ 1586 1587 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1588 { 1589 int ret; 1590 1591 if (pid > 0) 1592 return kill_proc_info(sig, info, pid); 1593 1594 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1595 if (pid == INT_MIN) 1596 return -ESRCH; 1597 1598 read_lock(&tasklist_lock); 1599 if (pid != -1) { 1600 ret = __kill_pgrp_info(sig, info, 1601 pid ? find_vpid(-pid) : task_pgrp(current)); 1602 } else { 1603 int retval = 0, count = 0; 1604 struct task_struct * p; 1605 1606 for_each_process(p) { 1607 if (task_pid_vnr(p) > 1 && 1608 !same_thread_group(p, current)) { 1609 int err = group_send_sig_info(sig, info, p, 1610 PIDTYPE_MAX); 1611 ++count; 1612 if (err != -EPERM) 1613 retval = err; 1614 } 1615 } 1616 ret = count ? retval : -ESRCH; 1617 } 1618 read_unlock(&tasklist_lock); 1619 1620 return ret; 1621 } 1622 1623 /* 1624 * These are for backward compatibility with the rest of the kernel source. 1625 */ 1626 1627 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1628 { 1629 /* 1630 * Make sure legacy kernel users don't send in bad values 1631 * (normal paths check this in check_kill_permission). 1632 */ 1633 if (!valid_signal(sig)) 1634 return -EINVAL; 1635 1636 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1637 } 1638 EXPORT_SYMBOL(send_sig_info); 1639 1640 #define __si_special(priv) \ 1641 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1642 1643 int 1644 send_sig(int sig, struct task_struct *p, int priv) 1645 { 1646 return send_sig_info(sig, __si_special(priv), p); 1647 } 1648 EXPORT_SYMBOL(send_sig); 1649 1650 void force_sig(int sig) 1651 { 1652 struct kernel_siginfo info; 1653 1654 clear_siginfo(&info); 1655 info.si_signo = sig; 1656 info.si_errno = 0; 1657 info.si_code = SI_KERNEL; 1658 info.si_pid = 0; 1659 info.si_uid = 0; 1660 force_sig_info(&info); 1661 } 1662 EXPORT_SYMBOL(force_sig); 1663 1664 void force_fatal_sig(int sig) 1665 { 1666 struct kernel_siginfo info; 1667 1668 clear_siginfo(&info); 1669 info.si_signo = sig; 1670 info.si_errno = 0; 1671 info.si_code = SI_KERNEL; 1672 info.si_pid = 0; 1673 info.si_uid = 0; 1674 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1675 } 1676 1677 void force_exit_sig(int sig) 1678 { 1679 struct kernel_siginfo info; 1680 1681 clear_siginfo(&info); 1682 info.si_signo = sig; 1683 info.si_errno = 0; 1684 info.si_code = SI_KERNEL; 1685 info.si_pid = 0; 1686 info.si_uid = 0; 1687 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1688 } 1689 1690 /* 1691 * When things go south during signal handling, we 1692 * will force a SIGSEGV. And if the signal that caused 1693 * the problem was already a SIGSEGV, we'll want to 1694 * make sure we don't even try to deliver the signal.. 1695 */ 1696 void force_sigsegv(int sig) 1697 { 1698 if (sig == SIGSEGV) 1699 force_fatal_sig(SIGSEGV); 1700 else 1701 force_sig(SIGSEGV); 1702 } 1703 1704 int force_sig_fault_to_task(int sig, int code, void __user *addr 1705 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1706 , struct task_struct *t) 1707 { 1708 struct kernel_siginfo info; 1709 1710 clear_siginfo(&info); 1711 info.si_signo = sig; 1712 info.si_errno = 0; 1713 info.si_code = code; 1714 info.si_addr = addr; 1715 #ifdef __ia64__ 1716 info.si_imm = imm; 1717 info.si_flags = flags; 1718 info.si_isr = isr; 1719 #endif 1720 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1721 } 1722 1723 int force_sig_fault(int sig, int code, void __user *addr 1724 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1725 { 1726 return force_sig_fault_to_task(sig, code, addr 1727 ___ARCH_SI_IA64(imm, flags, isr), current); 1728 } 1729 1730 int send_sig_fault(int sig, int code, void __user *addr 1731 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1732 , struct task_struct *t) 1733 { 1734 struct kernel_siginfo info; 1735 1736 clear_siginfo(&info); 1737 info.si_signo = sig; 1738 info.si_errno = 0; 1739 info.si_code = code; 1740 info.si_addr = addr; 1741 #ifdef __ia64__ 1742 info.si_imm = imm; 1743 info.si_flags = flags; 1744 info.si_isr = isr; 1745 #endif 1746 return send_sig_info(info.si_signo, &info, t); 1747 } 1748 1749 int force_sig_mceerr(int code, void __user *addr, short lsb) 1750 { 1751 struct kernel_siginfo info; 1752 1753 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1754 clear_siginfo(&info); 1755 info.si_signo = SIGBUS; 1756 info.si_errno = 0; 1757 info.si_code = code; 1758 info.si_addr = addr; 1759 info.si_addr_lsb = lsb; 1760 return force_sig_info(&info); 1761 } 1762 1763 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1764 { 1765 struct kernel_siginfo info; 1766 1767 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1768 clear_siginfo(&info); 1769 info.si_signo = SIGBUS; 1770 info.si_errno = 0; 1771 info.si_code = code; 1772 info.si_addr = addr; 1773 info.si_addr_lsb = lsb; 1774 return send_sig_info(info.si_signo, &info, t); 1775 } 1776 EXPORT_SYMBOL(send_sig_mceerr); 1777 1778 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1779 { 1780 struct kernel_siginfo info; 1781 1782 clear_siginfo(&info); 1783 info.si_signo = SIGSEGV; 1784 info.si_errno = 0; 1785 info.si_code = SEGV_BNDERR; 1786 info.si_addr = addr; 1787 info.si_lower = lower; 1788 info.si_upper = upper; 1789 return force_sig_info(&info); 1790 } 1791 1792 #ifdef SEGV_PKUERR 1793 int force_sig_pkuerr(void __user *addr, u32 pkey) 1794 { 1795 struct kernel_siginfo info; 1796 1797 clear_siginfo(&info); 1798 info.si_signo = SIGSEGV; 1799 info.si_errno = 0; 1800 info.si_code = SEGV_PKUERR; 1801 info.si_addr = addr; 1802 info.si_pkey = pkey; 1803 return force_sig_info(&info); 1804 } 1805 #endif 1806 1807 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1808 { 1809 struct kernel_siginfo info; 1810 1811 clear_siginfo(&info); 1812 info.si_signo = SIGTRAP; 1813 info.si_errno = 0; 1814 info.si_code = TRAP_PERF; 1815 info.si_addr = addr; 1816 info.si_perf_data = sig_data; 1817 info.si_perf_type = type; 1818 1819 return force_sig_info(&info); 1820 } 1821 1822 /** 1823 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1824 * @syscall: syscall number to send to userland 1825 * @reason: filter-supplied reason code to send to userland (via si_errno) 1826 * @force_coredump: true to trigger a coredump 1827 * 1828 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1829 */ 1830 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1831 { 1832 struct kernel_siginfo info; 1833 1834 clear_siginfo(&info); 1835 info.si_signo = SIGSYS; 1836 info.si_code = SYS_SECCOMP; 1837 info.si_call_addr = (void __user *)KSTK_EIP(current); 1838 info.si_errno = reason; 1839 info.si_arch = syscall_get_arch(current); 1840 info.si_syscall = syscall; 1841 return force_sig_info_to_task(&info, current, 1842 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1843 } 1844 1845 /* For the crazy architectures that include trap information in 1846 * the errno field, instead of an actual errno value. 1847 */ 1848 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1849 { 1850 struct kernel_siginfo info; 1851 1852 clear_siginfo(&info); 1853 info.si_signo = SIGTRAP; 1854 info.si_errno = errno; 1855 info.si_code = TRAP_HWBKPT; 1856 info.si_addr = addr; 1857 return force_sig_info(&info); 1858 } 1859 1860 /* For the rare architectures that include trap information using 1861 * si_trapno. 1862 */ 1863 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1864 { 1865 struct kernel_siginfo info; 1866 1867 clear_siginfo(&info); 1868 info.si_signo = sig; 1869 info.si_errno = 0; 1870 info.si_code = code; 1871 info.si_addr = addr; 1872 info.si_trapno = trapno; 1873 return force_sig_info(&info); 1874 } 1875 1876 /* For the rare architectures that include trap information using 1877 * si_trapno. 1878 */ 1879 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1880 struct task_struct *t) 1881 { 1882 struct kernel_siginfo info; 1883 1884 clear_siginfo(&info); 1885 info.si_signo = sig; 1886 info.si_errno = 0; 1887 info.si_code = code; 1888 info.si_addr = addr; 1889 info.si_trapno = trapno; 1890 return send_sig_info(info.si_signo, &info, t); 1891 } 1892 1893 int kill_pgrp(struct pid *pid, int sig, int priv) 1894 { 1895 int ret; 1896 1897 read_lock(&tasklist_lock); 1898 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1899 read_unlock(&tasklist_lock); 1900 1901 return ret; 1902 } 1903 EXPORT_SYMBOL(kill_pgrp); 1904 1905 int kill_pid(struct pid *pid, int sig, int priv) 1906 { 1907 return kill_pid_info(sig, __si_special(priv), pid); 1908 } 1909 EXPORT_SYMBOL(kill_pid); 1910 1911 /* 1912 * These functions support sending signals using preallocated sigqueue 1913 * structures. This is needed "because realtime applications cannot 1914 * afford to lose notifications of asynchronous events, like timer 1915 * expirations or I/O completions". In the case of POSIX Timers 1916 * we allocate the sigqueue structure from the timer_create. If this 1917 * allocation fails we are able to report the failure to the application 1918 * with an EAGAIN error. 1919 */ 1920 struct sigqueue *sigqueue_alloc(void) 1921 { 1922 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1923 } 1924 1925 void sigqueue_free(struct sigqueue *q) 1926 { 1927 unsigned long flags; 1928 spinlock_t *lock = ¤t->sighand->siglock; 1929 1930 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1931 /* 1932 * We must hold ->siglock while testing q->list 1933 * to serialize with collect_signal() or with 1934 * __exit_signal()->flush_sigqueue(). 1935 */ 1936 spin_lock_irqsave(lock, flags); 1937 q->flags &= ~SIGQUEUE_PREALLOC; 1938 /* 1939 * If it is queued it will be freed when dequeued, 1940 * like the "regular" sigqueue. 1941 */ 1942 if (!list_empty(&q->list)) 1943 q = NULL; 1944 spin_unlock_irqrestore(lock, flags); 1945 1946 if (q) 1947 __sigqueue_free(q); 1948 } 1949 1950 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1951 { 1952 int sig = q->info.si_signo; 1953 struct sigpending *pending; 1954 struct task_struct *t; 1955 unsigned long flags; 1956 int ret, result; 1957 1958 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1959 1960 ret = -1; 1961 rcu_read_lock(); 1962 t = pid_task(pid, type); 1963 if (!t || !likely(lock_task_sighand(t, &flags))) 1964 goto ret; 1965 1966 ret = 1; /* the signal is ignored */ 1967 result = TRACE_SIGNAL_IGNORED; 1968 if (!prepare_signal(sig, t, false)) 1969 goto out; 1970 1971 ret = 0; 1972 if (unlikely(!list_empty(&q->list))) { 1973 /* 1974 * If an SI_TIMER entry is already queue just increment 1975 * the overrun count. 1976 */ 1977 BUG_ON(q->info.si_code != SI_TIMER); 1978 q->info.si_overrun++; 1979 result = TRACE_SIGNAL_ALREADY_PENDING; 1980 goto out; 1981 } 1982 q->info.si_overrun = 0; 1983 1984 signalfd_notify(t, sig); 1985 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1986 list_add_tail(&q->list, &pending->list); 1987 sigaddset(&pending->signal, sig); 1988 complete_signal(sig, t, type); 1989 result = TRACE_SIGNAL_DELIVERED; 1990 out: 1991 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1992 unlock_task_sighand(t, &flags); 1993 ret: 1994 rcu_read_unlock(); 1995 return ret; 1996 } 1997 1998 static void do_notify_pidfd(struct task_struct *task) 1999 { 2000 struct pid *pid; 2001 2002 WARN_ON(task->exit_state == 0); 2003 pid = task_pid(task); 2004 wake_up_all(&pid->wait_pidfd); 2005 } 2006 2007 /* 2008 * Let a parent know about the death of a child. 2009 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2010 * 2011 * Returns true if our parent ignored us and so we've switched to 2012 * self-reaping. 2013 */ 2014 bool do_notify_parent(struct task_struct *tsk, int sig) 2015 { 2016 struct kernel_siginfo info; 2017 unsigned long flags; 2018 struct sighand_struct *psig; 2019 bool autoreap = false; 2020 u64 utime, stime; 2021 2022 BUG_ON(sig == -1); 2023 2024 /* do_notify_parent_cldstop should have been called instead. */ 2025 BUG_ON(task_is_stopped_or_traced(tsk)); 2026 2027 BUG_ON(!tsk->ptrace && 2028 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2029 2030 /* Wake up all pidfd waiters */ 2031 do_notify_pidfd(tsk); 2032 2033 if (sig != SIGCHLD) { 2034 /* 2035 * This is only possible if parent == real_parent. 2036 * Check if it has changed security domain. 2037 */ 2038 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2039 sig = SIGCHLD; 2040 } 2041 2042 clear_siginfo(&info); 2043 info.si_signo = sig; 2044 info.si_errno = 0; 2045 /* 2046 * We are under tasklist_lock here so our parent is tied to 2047 * us and cannot change. 2048 * 2049 * task_active_pid_ns will always return the same pid namespace 2050 * until a task passes through release_task. 2051 * 2052 * write_lock() currently calls preempt_disable() which is the 2053 * same as rcu_read_lock(), but according to Oleg, this is not 2054 * correct to rely on this 2055 */ 2056 rcu_read_lock(); 2057 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2058 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2059 task_uid(tsk)); 2060 rcu_read_unlock(); 2061 2062 task_cputime(tsk, &utime, &stime); 2063 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2064 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2065 2066 info.si_status = tsk->exit_code & 0x7f; 2067 if (tsk->exit_code & 0x80) 2068 info.si_code = CLD_DUMPED; 2069 else if (tsk->exit_code & 0x7f) 2070 info.si_code = CLD_KILLED; 2071 else { 2072 info.si_code = CLD_EXITED; 2073 info.si_status = tsk->exit_code >> 8; 2074 } 2075 2076 psig = tsk->parent->sighand; 2077 spin_lock_irqsave(&psig->siglock, flags); 2078 if (!tsk->ptrace && sig == SIGCHLD && 2079 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2080 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2081 /* 2082 * We are exiting and our parent doesn't care. POSIX.1 2083 * defines special semantics for setting SIGCHLD to SIG_IGN 2084 * or setting the SA_NOCLDWAIT flag: we should be reaped 2085 * automatically and not left for our parent's wait4 call. 2086 * Rather than having the parent do it as a magic kind of 2087 * signal handler, we just set this to tell do_exit that we 2088 * can be cleaned up without becoming a zombie. Note that 2089 * we still call __wake_up_parent in this case, because a 2090 * blocked sys_wait4 might now return -ECHILD. 2091 * 2092 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2093 * is implementation-defined: we do (if you don't want 2094 * it, just use SIG_IGN instead). 2095 */ 2096 autoreap = true; 2097 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2098 sig = 0; 2099 } 2100 /* 2101 * Send with __send_signal as si_pid and si_uid are in the 2102 * parent's namespaces. 2103 */ 2104 if (valid_signal(sig) && sig) 2105 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2106 __wake_up_parent(tsk, tsk->parent); 2107 spin_unlock_irqrestore(&psig->siglock, flags); 2108 2109 return autoreap; 2110 } 2111 2112 /** 2113 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2114 * @tsk: task reporting the state change 2115 * @for_ptracer: the notification is for ptracer 2116 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2117 * 2118 * Notify @tsk's parent that the stopped/continued state has changed. If 2119 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2120 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2121 * 2122 * CONTEXT: 2123 * Must be called with tasklist_lock at least read locked. 2124 */ 2125 static void do_notify_parent_cldstop(struct task_struct *tsk, 2126 bool for_ptracer, int why) 2127 { 2128 struct kernel_siginfo info; 2129 unsigned long flags; 2130 struct task_struct *parent; 2131 struct sighand_struct *sighand; 2132 u64 utime, stime; 2133 2134 if (for_ptracer) { 2135 parent = tsk->parent; 2136 } else { 2137 tsk = tsk->group_leader; 2138 parent = tsk->real_parent; 2139 } 2140 2141 clear_siginfo(&info); 2142 info.si_signo = SIGCHLD; 2143 info.si_errno = 0; 2144 /* 2145 * see comment in do_notify_parent() about the following 4 lines 2146 */ 2147 rcu_read_lock(); 2148 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2149 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2150 rcu_read_unlock(); 2151 2152 task_cputime(tsk, &utime, &stime); 2153 info.si_utime = nsec_to_clock_t(utime); 2154 info.si_stime = nsec_to_clock_t(stime); 2155 2156 info.si_code = why; 2157 switch (why) { 2158 case CLD_CONTINUED: 2159 info.si_status = SIGCONT; 2160 break; 2161 case CLD_STOPPED: 2162 info.si_status = tsk->signal->group_exit_code & 0x7f; 2163 break; 2164 case CLD_TRAPPED: 2165 info.si_status = tsk->exit_code & 0x7f; 2166 break; 2167 default: 2168 BUG(); 2169 } 2170 2171 sighand = parent->sighand; 2172 spin_lock_irqsave(&sighand->siglock, flags); 2173 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2174 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2175 __group_send_sig_info(SIGCHLD, &info, parent); 2176 /* 2177 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2178 */ 2179 __wake_up_parent(tsk, parent); 2180 spin_unlock_irqrestore(&sighand->siglock, flags); 2181 } 2182 2183 /* 2184 * This must be called with current->sighand->siglock held. 2185 * 2186 * This should be the path for all ptrace stops. 2187 * We always set current->last_siginfo while stopped here. 2188 * That makes it a way to test a stopped process for 2189 * being ptrace-stopped vs being job-control-stopped. 2190 * 2191 * If we actually decide not to stop at all because the tracer 2192 * is gone, we keep current->exit_code unless clear_code. 2193 */ 2194 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2195 __releases(¤t->sighand->siglock) 2196 __acquires(¤t->sighand->siglock) 2197 { 2198 bool gstop_done = false; 2199 2200 if (arch_ptrace_stop_needed()) { 2201 /* 2202 * The arch code has something special to do before a 2203 * ptrace stop. This is allowed to block, e.g. for faults 2204 * on user stack pages. We can't keep the siglock while 2205 * calling arch_ptrace_stop, so we must release it now. 2206 * To preserve proper semantics, we must do this before 2207 * any signal bookkeeping like checking group_stop_count. 2208 */ 2209 spin_unlock_irq(¤t->sighand->siglock); 2210 arch_ptrace_stop(); 2211 spin_lock_irq(¤t->sighand->siglock); 2212 } 2213 2214 /* 2215 * schedule() will not sleep if there is a pending signal that 2216 * can awaken the task. 2217 */ 2218 set_special_state(TASK_TRACED); 2219 2220 /* 2221 * We're committing to trapping. TRACED should be visible before 2222 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2223 * Also, transition to TRACED and updates to ->jobctl should be 2224 * atomic with respect to siglock and should be done after the arch 2225 * hook as siglock is released and regrabbed across it. 2226 * 2227 * TRACER TRACEE 2228 * 2229 * ptrace_attach() 2230 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2231 * do_wait() 2232 * set_current_state() smp_wmb(); 2233 * ptrace_do_wait() 2234 * wait_task_stopped() 2235 * task_stopped_code() 2236 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2237 */ 2238 smp_wmb(); 2239 2240 current->last_siginfo = info; 2241 current->exit_code = exit_code; 2242 2243 /* 2244 * If @why is CLD_STOPPED, we're trapping to participate in a group 2245 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2246 * across siglock relocks since INTERRUPT was scheduled, PENDING 2247 * could be clear now. We act as if SIGCONT is received after 2248 * TASK_TRACED is entered - ignore it. 2249 */ 2250 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2251 gstop_done = task_participate_group_stop(current); 2252 2253 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2254 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2255 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2256 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2257 2258 /* entering a trap, clear TRAPPING */ 2259 task_clear_jobctl_trapping(current); 2260 2261 spin_unlock_irq(¤t->sighand->siglock); 2262 read_lock(&tasklist_lock); 2263 if (likely(current->ptrace)) { 2264 /* 2265 * Notify parents of the stop. 2266 * 2267 * While ptraced, there are two parents - the ptracer and 2268 * the real_parent of the group_leader. The ptracer should 2269 * know about every stop while the real parent is only 2270 * interested in the completion of group stop. The states 2271 * for the two don't interact with each other. Notify 2272 * separately unless they're gonna be duplicates. 2273 */ 2274 do_notify_parent_cldstop(current, true, why); 2275 if (gstop_done && ptrace_reparented(current)) 2276 do_notify_parent_cldstop(current, false, why); 2277 2278 /* 2279 * Don't want to allow preemption here, because 2280 * sys_ptrace() needs this task to be inactive. 2281 * 2282 * XXX: implement read_unlock_no_resched(). 2283 */ 2284 preempt_disable(); 2285 read_unlock(&tasklist_lock); 2286 cgroup_enter_frozen(); 2287 preempt_enable_no_resched(); 2288 freezable_schedule(); 2289 cgroup_leave_frozen(true); 2290 } else { 2291 /* 2292 * By the time we got the lock, our tracer went away. 2293 * Don't drop the lock yet, another tracer may come. 2294 * 2295 * If @gstop_done, the ptracer went away between group stop 2296 * completion and here. During detach, it would have set 2297 * JOBCTL_STOP_PENDING on us and we'll re-enter 2298 * TASK_STOPPED in do_signal_stop() on return, so notifying 2299 * the real parent of the group stop completion is enough. 2300 */ 2301 if (gstop_done) 2302 do_notify_parent_cldstop(current, false, why); 2303 2304 /* tasklist protects us from ptrace_freeze_traced() */ 2305 __set_current_state(TASK_RUNNING); 2306 if (clear_code) 2307 current->exit_code = 0; 2308 read_unlock(&tasklist_lock); 2309 } 2310 2311 /* 2312 * We are back. Now reacquire the siglock before touching 2313 * last_siginfo, so that we are sure to have synchronized with 2314 * any signal-sending on another CPU that wants to examine it. 2315 */ 2316 spin_lock_irq(¤t->sighand->siglock); 2317 current->last_siginfo = NULL; 2318 2319 /* LISTENING can be set only during STOP traps, clear it */ 2320 current->jobctl &= ~JOBCTL_LISTENING; 2321 2322 /* 2323 * Queued signals ignored us while we were stopped for tracing. 2324 * So check for any that we should take before resuming user mode. 2325 * This sets TIF_SIGPENDING, but never clears it. 2326 */ 2327 recalc_sigpending_tsk(current); 2328 } 2329 2330 static void ptrace_do_notify(int signr, int exit_code, int why) 2331 { 2332 kernel_siginfo_t info; 2333 2334 clear_siginfo(&info); 2335 info.si_signo = signr; 2336 info.si_code = exit_code; 2337 info.si_pid = task_pid_vnr(current); 2338 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2339 2340 /* Let the debugger run. */ 2341 ptrace_stop(exit_code, why, 1, &info); 2342 } 2343 2344 void ptrace_notify(int exit_code) 2345 { 2346 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2347 if (unlikely(current->task_works)) 2348 task_work_run(); 2349 2350 spin_lock_irq(¤t->sighand->siglock); 2351 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2352 spin_unlock_irq(¤t->sighand->siglock); 2353 } 2354 2355 /** 2356 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2357 * @signr: signr causing group stop if initiating 2358 * 2359 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2360 * and participate in it. If already set, participate in the existing 2361 * group stop. If participated in a group stop (and thus slept), %true is 2362 * returned with siglock released. 2363 * 2364 * If ptraced, this function doesn't handle stop itself. Instead, 2365 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2366 * untouched. The caller must ensure that INTERRUPT trap handling takes 2367 * places afterwards. 2368 * 2369 * CONTEXT: 2370 * Must be called with @current->sighand->siglock held, which is released 2371 * on %true return. 2372 * 2373 * RETURNS: 2374 * %false if group stop is already cancelled or ptrace trap is scheduled. 2375 * %true if participated in group stop. 2376 */ 2377 static bool do_signal_stop(int signr) 2378 __releases(¤t->sighand->siglock) 2379 { 2380 struct signal_struct *sig = current->signal; 2381 2382 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2383 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2384 struct task_struct *t; 2385 2386 /* signr will be recorded in task->jobctl for retries */ 2387 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2388 2389 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2390 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2391 unlikely(sig->group_exec_task)) 2392 return false; 2393 /* 2394 * There is no group stop already in progress. We must 2395 * initiate one now. 2396 * 2397 * While ptraced, a task may be resumed while group stop is 2398 * still in effect and then receive a stop signal and 2399 * initiate another group stop. This deviates from the 2400 * usual behavior as two consecutive stop signals can't 2401 * cause two group stops when !ptraced. That is why we 2402 * also check !task_is_stopped(t) below. 2403 * 2404 * The condition can be distinguished by testing whether 2405 * SIGNAL_STOP_STOPPED is already set. Don't generate 2406 * group_exit_code in such case. 2407 * 2408 * This is not necessary for SIGNAL_STOP_CONTINUED because 2409 * an intervening stop signal is required to cause two 2410 * continued events regardless of ptrace. 2411 */ 2412 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2413 sig->group_exit_code = signr; 2414 2415 sig->group_stop_count = 0; 2416 2417 if (task_set_jobctl_pending(current, signr | gstop)) 2418 sig->group_stop_count++; 2419 2420 t = current; 2421 while_each_thread(current, t) { 2422 /* 2423 * Setting state to TASK_STOPPED for a group 2424 * stop is always done with the siglock held, 2425 * so this check has no races. 2426 */ 2427 if (!task_is_stopped(t) && 2428 task_set_jobctl_pending(t, signr | gstop)) { 2429 sig->group_stop_count++; 2430 if (likely(!(t->ptrace & PT_SEIZED))) 2431 signal_wake_up(t, 0); 2432 else 2433 ptrace_trap_notify(t); 2434 } 2435 } 2436 } 2437 2438 if (likely(!current->ptrace)) { 2439 int notify = 0; 2440 2441 /* 2442 * If there are no other threads in the group, or if there 2443 * is a group stop in progress and we are the last to stop, 2444 * report to the parent. 2445 */ 2446 if (task_participate_group_stop(current)) 2447 notify = CLD_STOPPED; 2448 2449 set_special_state(TASK_STOPPED); 2450 spin_unlock_irq(¤t->sighand->siglock); 2451 2452 /* 2453 * Notify the parent of the group stop completion. Because 2454 * we're not holding either the siglock or tasklist_lock 2455 * here, ptracer may attach inbetween; however, this is for 2456 * group stop and should always be delivered to the real 2457 * parent of the group leader. The new ptracer will get 2458 * its notification when this task transitions into 2459 * TASK_TRACED. 2460 */ 2461 if (notify) { 2462 read_lock(&tasklist_lock); 2463 do_notify_parent_cldstop(current, false, notify); 2464 read_unlock(&tasklist_lock); 2465 } 2466 2467 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2468 cgroup_enter_frozen(); 2469 freezable_schedule(); 2470 return true; 2471 } else { 2472 /* 2473 * While ptraced, group stop is handled by STOP trap. 2474 * Schedule it and let the caller deal with it. 2475 */ 2476 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2477 return false; 2478 } 2479 } 2480 2481 /** 2482 * do_jobctl_trap - take care of ptrace jobctl traps 2483 * 2484 * When PT_SEIZED, it's used for both group stop and explicit 2485 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2486 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2487 * the stop signal; otherwise, %SIGTRAP. 2488 * 2489 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2490 * number as exit_code and no siginfo. 2491 * 2492 * CONTEXT: 2493 * Must be called with @current->sighand->siglock held, which may be 2494 * released and re-acquired before returning with intervening sleep. 2495 */ 2496 static void do_jobctl_trap(void) 2497 { 2498 struct signal_struct *signal = current->signal; 2499 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2500 2501 if (current->ptrace & PT_SEIZED) { 2502 if (!signal->group_stop_count && 2503 !(signal->flags & SIGNAL_STOP_STOPPED)) 2504 signr = SIGTRAP; 2505 WARN_ON_ONCE(!signr); 2506 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2507 CLD_STOPPED); 2508 } else { 2509 WARN_ON_ONCE(!signr); 2510 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2511 current->exit_code = 0; 2512 } 2513 } 2514 2515 /** 2516 * do_freezer_trap - handle the freezer jobctl trap 2517 * 2518 * Puts the task into frozen state, if only the task is not about to quit. 2519 * In this case it drops JOBCTL_TRAP_FREEZE. 2520 * 2521 * CONTEXT: 2522 * Must be called with @current->sighand->siglock held, 2523 * which is always released before returning. 2524 */ 2525 static void do_freezer_trap(void) 2526 __releases(¤t->sighand->siglock) 2527 { 2528 /* 2529 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2530 * let's make another loop to give it a chance to be handled. 2531 * In any case, we'll return back. 2532 */ 2533 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2534 JOBCTL_TRAP_FREEZE) { 2535 spin_unlock_irq(¤t->sighand->siglock); 2536 return; 2537 } 2538 2539 /* 2540 * Now we're sure that there is no pending fatal signal and no 2541 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2542 * immediately (if there is a non-fatal signal pending), and 2543 * put the task into sleep. 2544 */ 2545 __set_current_state(TASK_INTERRUPTIBLE); 2546 clear_thread_flag(TIF_SIGPENDING); 2547 spin_unlock_irq(¤t->sighand->siglock); 2548 cgroup_enter_frozen(); 2549 freezable_schedule(); 2550 } 2551 2552 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2553 { 2554 /* 2555 * We do not check sig_kernel_stop(signr) but set this marker 2556 * unconditionally because we do not know whether debugger will 2557 * change signr. This flag has no meaning unless we are going 2558 * to stop after return from ptrace_stop(). In this case it will 2559 * be checked in do_signal_stop(), we should only stop if it was 2560 * not cleared by SIGCONT while we were sleeping. See also the 2561 * comment in dequeue_signal(). 2562 */ 2563 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2564 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2565 2566 /* We're back. Did the debugger cancel the sig? */ 2567 signr = current->exit_code; 2568 if (signr == 0) 2569 return signr; 2570 2571 current->exit_code = 0; 2572 2573 /* 2574 * Update the siginfo structure if the signal has 2575 * changed. If the debugger wanted something 2576 * specific in the siginfo structure then it should 2577 * have updated *info via PTRACE_SETSIGINFO. 2578 */ 2579 if (signr != info->si_signo) { 2580 clear_siginfo(info); 2581 info->si_signo = signr; 2582 info->si_errno = 0; 2583 info->si_code = SI_USER; 2584 rcu_read_lock(); 2585 info->si_pid = task_pid_vnr(current->parent); 2586 info->si_uid = from_kuid_munged(current_user_ns(), 2587 task_uid(current->parent)); 2588 rcu_read_unlock(); 2589 } 2590 2591 /* If the (new) signal is now blocked, requeue it. */ 2592 if (sigismember(¤t->blocked, signr) || 2593 fatal_signal_pending(current)) { 2594 send_signal(signr, info, current, type); 2595 signr = 0; 2596 } 2597 2598 return signr; 2599 } 2600 2601 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2602 { 2603 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2604 case SIL_FAULT: 2605 case SIL_FAULT_TRAPNO: 2606 case SIL_FAULT_MCEERR: 2607 case SIL_FAULT_BNDERR: 2608 case SIL_FAULT_PKUERR: 2609 case SIL_FAULT_PERF_EVENT: 2610 ksig->info.si_addr = arch_untagged_si_addr( 2611 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2612 break; 2613 case SIL_KILL: 2614 case SIL_TIMER: 2615 case SIL_POLL: 2616 case SIL_CHLD: 2617 case SIL_RT: 2618 case SIL_SYS: 2619 break; 2620 } 2621 } 2622 2623 bool get_signal(struct ksignal *ksig) 2624 { 2625 struct sighand_struct *sighand = current->sighand; 2626 struct signal_struct *signal = current->signal; 2627 int signr; 2628 2629 if (unlikely(current->task_works)) 2630 task_work_run(); 2631 2632 /* 2633 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2634 * that the arch handlers don't all have to do it. If we get here 2635 * without TIF_SIGPENDING, just exit after running signal work. 2636 */ 2637 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2638 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2639 tracehook_notify_signal(); 2640 if (!task_sigpending(current)) 2641 return false; 2642 } 2643 2644 if (unlikely(uprobe_deny_signal())) 2645 return false; 2646 2647 /* 2648 * Do this once, we can't return to user-mode if freezing() == T. 2649 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2650 * thus do not need another check after return. 2651 */ 2652 try_to_freeze(); 2653 2654 relock: 2655 spin_lock_irq(&sighand->siglock); 2656 2657 /* 2658 * Every stopped thread goes here after wakeup. Check to see if 2659 * we should notify the parent, prepare_signal(SIGCONT) encodes 2660 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2661 */ 2662 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2663 int why; 2664 2665 if (signal->flags & SIGNAL_CLD_CONTINUED) 2666 why = CLD_CONTINUED; 2667 else 2668 why = CLD_STOPPED; 2669 2670 signal->flags &= ~SIGNAL_CLD_MASK; 2671 2672 spin_unlock_irq(&sighand->siglock); 2673 2674 /* 2675 * Notify the parent that we're continuing. This event is 2676 * always per-process and doesn't make whole lot of sense 2677 * for ptracers, who shouldn't consume the state via 2678 * wait(2) either, but, for backward compatibility, notify 2679 * the ptracer of the group leader too unless it's gonna be 2680 * a duplicate. 2681 */ 2682 read_lock(&tasklist_lock); 2683 do_notify_parent_cldstop(current, false, why); 2684 2685 if (ptrace_reparented(current->group_leader)) 2686 do_notify_parent_cldstop(current->group_leader, 2687 true, why); 2688 read_unlock(&tasklist_lock); 2689 2690 goto relock; 2691 } 2692 2693 for (;;) { 2694 struct k_sigaction *ka; 2695 enum pid_type type; 2696 2697 /* Has this task already been marked for death? */ 2698 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2699 signal->group_exec_task) { 2700 ksig->info.si_signo = signr = SIGKILL; 2701 sigdelset(¤t->pending.signal, SIGKILL); 2702 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2703 &sighand->action[SIGKILL - 1]); 2704 recalc_sigpending(); 2705 goto fatal; 2706 } 2707 2708 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2709 do_signal_stop(0)) 2710 goto relock; 2711 2712 if (unlikely(current->jobctl & 2713 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2714 if (current->jobctl & JOBCTL_TRAP_MASK) { 2715 do_jobctl_trap(); 2716 spin_unlock_irq(&sighand->siglock); 2717 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2718 do_freezer_trap(); 2719 2720 goto relock; 2721 } 2722 2723 /* 2724 * If the task is leaving the frozen state, let's update 2725 * cgroup counters and reset the frozen bit. 2726 */ 2727 if (unlikely(cgroup_task_frozen(current))) { 2728 spin_unlock_irq(&sighand->siglock); 2729 cgroup_leave_frozen(false); 2730 goto relock; 2731 } 2732 2733 /* 2734 * Signals generated by the execution of an instruction 2735 * need to be delivered before any other pending signals 2736 * so that the instruction pointer in the signal stack 2737 * frame points to the faulting instruction. 2738 */ 2739 type = PIDTYPE_PID; 2740 signr = dequeue_synchronous_signal(&ksig->info); 2741 if (!signr) 2742 signr = dequeue_signal(current, ¤t->blocked, 2743 &ksig->info, &type); 2744 2745 if (!signr) 2746 break; /* will return 0 */ 2747 2748 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2749 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2750 signr = ptrace_signal(signr, &ksig->info, type); 2751 if (!signr) 2752 continue; 2753 } 2754 2755 ka = &sighand->action[signr-1]; 2756 2757 /* Trace actually delivered signals. */ 2758 trace_signal_deliver(signr, &ksig->info, ka); 2759 2760 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2761 continue; 2762 if (ka->sa.sa_handler != SIG_DFL) { 2763 /* Run the handler. */ 2764 ksig->ka = *ka; 2765 2766 if (ka->sa.sa_flags & SA_ONESHOT) 2767 ka->sa.sa_handler = SIG_DFL; 2768 2769 break; /* will return non-zero "signr" value */ 2770 } 2771 2772 /* 2773 * Now we are doing the default action for this signal. 2774 */ 2775 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2776 continue; 2777 2778 /* 2779 * Global init gets no signals it doesn't want. 2780 * Container-init gets no signals it doesn't want from same 2781 * container. 2782 * 2783 * Note that if global/container-init sees a sig_kernel_only() 2784 * signal here, the signal must have been generated internally 2785 * or must have come from an ancestor namespace. In either 2786 * case, the signal cannot be dropped. 2787 */ 2788 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2789 !sig_kernel_only(signr)) 2790 continue; 2791 2792 if (sig_kernel_stop(signr)) { 2793 /* 2794 * The default action is to stop all threads in 2795 * the thread group. The job control signals 2796 * do nothing in an orphaned pgrp, but SIGSTOP 2797 * always works. Note that siglock needs to be 2798 * dropped during the call to is_orphaned_pgrp() 2799 * because of lock ordering with tasklist_lock. 2800 * This allows an intervening SIGCONT to be posted. 2801 * We need to check for that and bail out if necessary. 2802 */ 2803 if (signr != SIGSTOP) { 2804 spin_unlock_irq(&sighand->siglock); 2805 2806 /* signals can be posted during this window */ 2807 2808 if (is_current_pgrp_orphaned()) 2809 goto relock; 2810 2811 spin_lock_irq(&sighand->siglock); 2812 } 2813 2814 if (likely(do_signal_stop(ksig->info.si_signo))) { 2815 /* It released the siglock. */ 2816 goto relock; 2817 } 2818 2819 /* 2820 * We didn't actually stop, due to a race 2821 * with SIGCONT or something like that. 2822 */ 2823 continue; 2824 } 2825 2826 fatal: 2827 spin_unlock_irq(&sighand->siglock); 2828 if (unlikely(cgroup_task_frozen(current))) 2829 cgroup_leave_frozen(true); 2830 2831 /* 2832 * Anything else is fatal, maybe with a core dump. 2833 */ 2834 current->flags |= PF_SIGNALED; 2835 2836 if (sig_kernel_coredump(signr)) { 2837 if (print_fatal_signals) 2838 print_fatal_signal(ksig->info.si_signo); 2839 proc_coredump_connector(current); 2840 /* 2841 * If it was able to dump core, this kills all 2842 * other threads in the group and synchronizes with 2843 * their demise. If we lost the race with another 2844 * thread getting here, it set group_exit_code 2845 * first and our do_group_exit call below will use 2846 * that value and ignore the one we pass it. 2847 */ 2848 do_coredump(&ksig->info); 2849 } 2850 2851 /* 2852 * PF_IO_WORKER threads will catch and exit on fatal signals 2853 * themselves. They have cleanup that must be performed, so 2854 * we cannot call do_exit() on their behalf. 2855 */ 2856 if (current->flags & PF_IO_WORKER) 2857 goto out; 2858 2859 /* 2860 * Death signals, no core dump. 2861 */ 2862 do_group_exit(ksig->info.si_signo); 2863 /* NOTREACHED */ 2864 } 2865 spin_unlock_irq(&sighand->siglock); 2866 out: 2867 ksig->sig = signr; 2868 2869 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2870 hide_si_addr_tag_bits(ksig); 2871 2872 return ksig->sig > 0; 2873 } 2874 2875 /** 2876 * signal_delivered - called after signal delivery to update blocked signals 2877 * @ksig: kernel signal struct 2878 * @stepping: nonzero if debugger single-step or block-step in use 2879 * 2880 * This function should be called when a signal has successfully been 2881 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2882 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2883 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2884 */ 2885 static void signal_delivered(struct ksignal *ksig, int stepping) 2886 { 2887 sigset_t blocked; 2888 2889 /* A signal was successfully delivered, and the 2890 saved sigmask was stored on the signal frame, 2891 and will be restored by sigreturn. So we can 2892 simply clear the restore sigmask flag. */ 2893 clear_restore_sigmask(); 2894 2895 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2896 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2897 sigaddset(&blocked, ksig->sig); 2898 set_current_blocked(&blocked); 2899 if (current->sas_ss_flags & SS_AUTODISARM) 2900 sas_ss_reset(current); 2901 tracehook_signal_handler(stepping); 2902 } 2903 2904 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2905 { 2906 if (failed) 2907 force_sigsegv(ksig->sig); 2908 else 2909 signal_delivered(ksig, stepping); 2910 } 2911 2912 /* 2913 * It could be that complete_signal() picked us to notify about the 2914 * group-wide signal. Other threads should be notified now to take 2915 * the shared signals in @which since we will not. 2916 */ 2917 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2918 { 2919 sigset_t retarget; 2920 struct task_struct *t; 2921 2922 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2923 if (sigisemptyset(&retarget)) 2924 return; 2925 2926 t = tsk; 2927 while_each_thread(tsk, t) { 2928 if (t->flags & PF_EXITING) 2929 continue; 2930 2931 if (!has_pending_signals(&retarget, &t->blocked)) 2932 continue; 2933 /* Remove the signals this thread can handle. */ 2934 sigandsets(&retarget, &retarget, &t->blocked); 2935 2936 if (!task_sigpending(t)) 2937 signal_wake_up(t, 0); 2938 2939 if (sigisemptyset(&retarget)) 2940 break; 2941 } 2942 } 2943 2944 void exit_signals(struct task_struct *tsk) 2945 { 2946 int group_stop = 0; 2947 sigset_t unblocked; 2948 2949 /* 2950 * @tsk is about to have PF_EXITING set - lock out users which 2951 * expect stable threadgroup. 2952 */ 2953 cgroup_threadgroup_change_begin(tsk); 2954 2955 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2956 tsk->flags |= PF_EXITING; 2957 cgroup_threadgroup_change_end(tsk); 2958 return; 2959 } 2960 2961 spin_lock_irq(&tsk->sighand->siglock); 2962 /* 2963 * From now this task is not visible for group-wide signals, 2964 * see wants_signal(), do_signal_stop(). 2965 */ 2966 tsk->flags |= PF_EXITING; 2967 2968 cgroup_threadgroup_change_end(tsk); 2969 2970 if (!task_sigpending(tsk)) 2971 goto out; 2972 2973 unblocked = tsk->blocked; 2974 signotset(&unblocked); 2975 retarget_shared_pending(tsk, &unblocked); 2976 2977 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2978 task_participate_group_stop(tsk)) 2979 group_stop = CLD_STOPPED; 2980 out: 2981 spin_unlock_irq(&tsk->sighand->siglock); 2982 2983 /* 2984 * If group stop has completed, deliver the notification. This 2985 * should always go to the real parent of the group leader. 2986 */ 2987 if (unlikely(group_stop)) { 2988 read_lock(&tasklist_lock); 2989 do_notify_parent_cldstop(tsk, false, group_stop); 2990 read_unlock(&tasklist_lock); 2991 } 2992 } 2993 2994 /* 2995 * System call entry points. 2996 */ 2997 2998 /** 2999 * sys_restart_syscall - restart a system call 3000 */ 3001 SYSCALL_DEFINE0(restart_syscall) 3002 { 3003 struct restart_block *restart = ¤t->restart_block; 3004 return restart->fn(restart); 3005 } 3006 3007 long do_no_restart_syscall(struct restart_block *param) 3008 { 3009 return -EINTR; 3010 } 3011 3012 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3013 { 3014 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3015 sigset_t newblocked; 3016 /* A set of now blocked but previously unblocked signals. */ 3017 sigandnsets(&newblocked, newset, ¤t->blocked); 3018 retarget_shared_pending(tsk, &newblocked); 3019 } 3020 tsk->blocked = *newset; 3021 recalc_sigpending(); 3022 } 3023 3024 /** 3025 * set_current_blocked - change current->blocked mask 3026 * @newset: new mask 3027 * 3028 * It is wrong to change ->blocked directly, this helper should be used 3029 * to ensure the process can't miss a shared signal we are going to block. 3030 */ 3031 void set_current_blocked(sigset_t *newset) 3032 { 3033 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3034 __set_current_blocked(newset); 3035 } 3036 3037 void __set_current_blocked(const sigset_t *newset) 3038 { 3039 struct task_struct *tsk = current; 3040 3041 /* 3042 * In case the signal mask hasn't changed, there is nothing we need 3043 * to do. The current->blocked shouldn't be modified by other task. 3044 */ 3045 if (sigequalsets(&tsk->blocked, newset)) 3046 return; 3047 3048 spin_lock_irq(&tsk->sighand->siglock); 3049 __set_task_blocked(tsk, newset); 3050 spin_unlock_irq(&tsk->sighand->siglock); 3051 } 3052 3053 /* 3054 * This is also useful for kernel threads that want to temporarily 3055 * (or permanently) block certain signals. 3056 * 3057 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3058 * interface happily blocks "unblockable" signals like SIGKILL 3059 * and friends. 3060 */ 3061 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3062 { 3063 struct task_struct *tsk = current; 3064 sigset_t newset; 3065 3066 /* Lockless, only current can change ->blocked, never from irq */ 3067 if (oldset) 3068 *oldset = tsk->blocked; 3069 3070 switch (how) { 3071 case SIG_BLOCK: 3072 sigorsets(&newset, &tsk->blocked, set); 3073 break; 3074 case SIG_UNBLOCK: 3075 sigandnsets(&newset, &tsk->blocked, set); 3076 break; 3077 case SIG_SETMASK: 3078 newset = *set; 3079 break; 3080 default: 3081 return -EINVAL; 3082 } 3083 3084 __set_current_blocked(&newset); 3085 return 0; 3086 } 3087 EXPORT_SYMBOL(sigprocmask); 3088 3089 /* 3090 * The api helps set app-provided sigmasks. 3091 * 3092 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3093 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3094 * 3095 * Note that it does set_restore_sigmask() in advance, so it must be always 3096 * paired with restore_saved_sigmask_unless() before return from syscall. 3097 */ 3098 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3099 { 3100 sigset_t kmask; 3101 3102 if (!umask) 3103 return 0; 3104 if (sigsetsize != sizeof(sigset_t)) 3105 return -EINVAL; 3106 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3107 return -EFAULT; 3108 3109 set_restore_sigmask(); 3110 current->saved_sigmask = current->blocked; 3111 set_current_blocked(&kmask); 3112 3113 return 0; 3114 } 3115 3116 #ifdef CONFIG_COMPAT 3117 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3118 size_t sigsetsize) 3119 { 3120 sigset_t kmask; 3121 3122 if (!umask) 3123 return 0; 3124 if (sigsetsize != sizeof(compat_sigset_t)) 3125 return -EINVAL; 3126 if (get_compat_sigset(&kmask, umask)) 3127 return -EFAULT; 3128 3129 set_restore_sigmask(); 3130 current->saved_sigmask = current->blocked; 3131 set_current_blocked(&kmask); 3132 3133 return 0; 3134 } 3135 #endif 3136 3137 /** 3138 * sys_rt_sigprocmask - change the list of currently blocked signals 3139 * @how: whether to add, remove, or set signals 3140 * @nset: stores pending signals 3141 * @oset: previous value of signal mask if non-null 3142 * @sigsetsize: size of sigset_t type 3143 */ 3144 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3145 sigset_t __user *, oset, size_t, sigsetsize) 3146 { 3147 sigset_t old_set, new_set; 3148 int error; 3149 3150 /* XXX: Don't preclude handling different sized sigset_t's. */ 3151 if (sigsetsize != sizeof(sigset_t)) 3152 return -EINVAL; 3153 3154 old_set = current->blocked; 3155 3156 if (nset) { 3157 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3158 return -EFAULT; 3159 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3160 3161 error = sigprocmask(how, &new_set, NULL); 3162 if (error) 3163 return error; 3164 } 3165 3166 if (oset) { 3167 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3168 return -EFAULT; 3169 } 3170 3171 return 0; 3172 } 3173 3174 #ifdef CONFIG_COMPAT 3175 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3176 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3177 { 3178 sigset_t old_set = current->blocked; 3179 3180 /* XXX: Don't preclude handling different sized sigset_t's. */ 3181 if (sigsetsize != sizeof(sigset_t)) 3182 return -EINVAL; 3183 3184 if (nset) { 3185 sigset_t new_set; 3186 int error; 3187 if (get_compat_sigset(&new_set, nset)) 3188 return -EFAULT; 3189 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3190 3191 error = sigprocmask(how, &new_set, NULL); 3192 if (error) 3193 return error; 3194 } 3195 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3196 } 3197 #endif 3198 3199 static void do_sigpending(sigset_t *set) 3200 { 3201 spin_lock_irq(¤t->sighand->siglock); 3202 sigorsets(set, ¤t->pending.signal, 3203 ¤t->signal->shared_pending.signal); 3204 spin_unlock_irq(¤t->sighand->siglock); 3205 3206 /* Outside the lock because only this thread touches it. */ 3207 sigandsets(set, ¤t->blocked, set); 3208 } 3209 3210 /** 3211 * sys_rt_sigpending - examine a pending signal that has been raised 3212 * while blocked 3213 * @uset: stores pending signals 3214 * @sigsetsize: size of sigset_t type or larger 3215 */ 3216 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3217 { 3218 sigset_t set; 3219 3220 if (sigsetsize > sizeof(*uset)) 3221 return -EINVAL; 3222 3223 do_sigpending(&set); 3224 3225 if (copy_to_user(uset, &set, sigsetsize)) 3226 return -EFAULT; 3227 3228 return 0; 3229 } 3230 3231 #ifdef CONFIG_COMPAT 3232 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3233 compat_size_t, sigsetsize) 3234 { 3235 sigset_t set; 3236 3237 if (sigsetsize > sizeof(*uset)) 3238 return -EINVAL; 3239 3240 do_sigpending(&set); 3241 3242 return put_compat_sigset(uset, &set, sigsetsize); 3243 } 3244 #endif 3245 3246 static const struct { 3247 unsigned char limit, layout; 3248 } sig_sicodes[] = { 3249 [SIGILL] = { NSIGILL, SIL_FAULT }, 3250 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3251 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3252 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3253 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3254 #if defined(SIGEMT) 3255 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3256 #endif 3257 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3258 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3259 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3260 }; 3261 3262 static bool known_siginfo_layout(unsigned sig, int si_code) 3263 { 3264 if (si_code == SI_KERNEL) 3265 return true; 3266 else if ((si_code > SI_USER)) { 3267 if (sig_specific_sicodes(sig)) { 3268 if (si_code <= sig_sicodes[sig].limit) 3269 return true; 3270 } 3271 else if (si_code <= NSIGPOLL) 3272 return true; 3273 } 3274 else if (si_code >= SI_DETHREAD) 3275 return true; 3276 else if (si_code == SI_ASYNCNL) 3277 return true; 3278 return false; 3279 } 3280 3281 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3282 { 3283 enum siginfo_layout layout = SIL_KILL; 3284 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3285 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3286 (si_code <= sig_sicodes[sig].limit)) { 3287 layout = sig_sicodes[sig].layout; 3288 /* Handle the exceptions */ 3289 if ((sig == SIGBUS) && 3290 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3291 layout = SIL_FAULT_MCEERR; 3292 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3293 layout = SIL_FAULT_BNDERR; 3294 #ifdef SEGV_PKUERR 3295 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3296 layout = SIL_FAULT_PKUERR; 3297 #endif 3298 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3299 layout = SIL_FAULT_PERF_EVENT; 3300 else if (IS_ENABLED(CONFIG_SPARC) && 3301 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3302 layout = SIL_FAULT_TRAPNO; 3303 else if (IS_ENABLED(CONFIG_ALPHA) && 3304 ((sig == SIGFPE) || 3305 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3306 layout = SIL_FAULT_TRAPNO; 3307 } 3308 else if (si_code <= NSIGPOLL) 3309 layout = SIL_POLL; 3310 } else { 3311 if (si_code == SI_TIMER) 3312 layout = SIL_TIMER; 3313 else if (si_code == SI_SIGIO) 3314 layout = SIL_POLL; 3315 else if (si_code < 0) 3316 layout = SIL_RT; 3317 } 3318 return layout; 3319 } 3320 3321 static inline char __user *si_expansion(const siginfo_t __user *info) 3322 { 3323 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3324 } 3325 3326 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3327 { 3328 char __user *expansion = si_expansion(to); 3329 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3330 return -EFAULT; 3331 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3332 return -EFAULT; 3333 return 0; 3334 } 3335 3336 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3337 const siginfo_t __user *from) 3338 { 3339 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3340 char __user *expansion = si_expansion(from); 3341 char buf[SI_EXPANSION_SIZE]; 3342 int i; 3343 /* 3344 * An unknown si_code might need more than 3345 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3346 * extra bytes are 0. This guarantees copy_siginfo_to_user 3347 * will return this data to userspace exactly. 3348 */ 3349 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3350 return -EFAULT; 3351 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3352 if (buf[i] != 0) 3353 return -E2BIG; 3354 } 3355 } 3356 return 0; 3357 } 3358 3359 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3360 const siginfo_t __user *from) 3361 { 3362 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3363 return -EFAULT; 3364 to->si_signo = signo; 3365 return post_copy_siginfo_from_user(to, from); 3366 } 3367 3368 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3369 { 3370 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3371 return -EFAULT; 3372 return post_copy_siginfo_from_user(to, from); 3373 } 3374 3375 #ifdef CONFIG_COMPAT 3376 /** 3377 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3378 * @to: compat siginfo destination 3379 * @from: kernel siginfo source 3380 * 3381 * Note: This function does not work properly for the SIGCHLD on x32, but 3382 * fortunately it doesn't have to. The only valid callers for this function are 3383 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3384 * The latter does not care because SIGCHLD will never cause a coredump. 3385 */ 3386 void copy_siginfo_to_external32(struct compat_siginfo *to, 3387 const struct kernel_siginfo *from) 3388 { 3389 memset(to, 0, sizeof(*to)); 3390 3391 to->si_signo = from->si_signo; 3392 to->si_errno = from->si_errno; 3393 to->si_code = from->si_code; 3394 switch(siginfo_layout(from->si_signo, from->si_code)) { 3395 case SIL_KILL: 3396 to->si_pid = from->si_pid; 3397 to->si_uid = from->si_uid; 3398 break; 3399 case SIL_TIMER: 3400 to->si_tid = from->si_tid; 3401 to->si_overrun = from->si_overrun; 3402 to->si_int = from->si_int; 3403 break; 3404 case SIL_POLL: 3405 to->si_band = from->si_band; 3406 to->si_fd = from->si_fd; 3407 break; 3408 case SIL_FAULT: 3409 to->si_addr = ptr_to_compat(from->si_addr); 3410 break; 3411 case SIL_FAULT_TRAPNO: 3412 to->si_addr = ptr_to_compat(from->si_addr); 3413 to->si_trapno = from->si_trapno; 3414 break; 3415 case SIL_FAULT_MCEERR: 3416 to->si_addr = ptr_to_compat(from->si_addr); 3417 to->si_addr_lsb = from->si_addr_lsb; 3418 break; 3419 case SIL_FAULT_BNDERR: 3420 to->si_addr = ptr_to_compat(from->si_addr); 3421 to->si_lower = ptr_to_compat(from->si_lower); 3422 to->si_upper = ptr_to_compat(from->si_upper); 3423 break; 3424 case SIL_FAULT_PKUERR: 3425 to->si_addr = ptr_to_compat(from->si_addr); 3426 to->si_pkey = from->si_pkey; 3427 break; 3428 case SIL_FAULT_PERF_EVENT: 3429 to->si_addr = ptr_to_compat(from->si_addr); 3430 to->si_perf_data = from->si_perf_data; 3431 to->si_perf_type = from->si_perf_type; 3432 break; 3433 case SIL_CHLD: 3434 to->si_pid = from->si_pid; 3435 to->si_uid = from->si_uid; 3436 to->si_status = from->si_status; 3437 to->si_utime = from->si_utime; 3438 to->si_stime = from->si_stime; 3439 break; 3440 case SIL_RT: 3441 to->si_pid = from->si_pid; 3442 to->si_uid = from->si_uid; 3443 to->si_int = from->si_int; 3444 break; 3445 case SIL_SYS: 3446 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3447 to->si_syscall = from->si_syscall; 3448 to->si_arch = from->si_arch; 3449 break; 3450 } 3451 } 3452 3453 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3454 const struct kernel_siginfo *from) 3455 { 3456 struct compat_siginfo new; 3457 3458 copy_siginfo_to_external32(&new, from); 3459 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3460 return -EFAULT; 3461 return 0; 3462 } 3463 3464 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3465 const struct compat_siginfo *from) 3466 { 3467 clear_siginfo(to); 3468 to->si_signo = from->si_signo; 3469 to->si_errno = from->si_errno; 3470 to->si_code = from->si_code; 3471 switch(siginfo_layout(from->si_signo, from->si_code)) { 3472 case SIL_KILL: 3473 to->si_pid = from->si_pid; 3474 to->si_uid = from->si_uid; 3475 break; 3476 case SIL_TIMER: 3477 to->si_tid = from->si_tid; 3478 to->si_overrun = from->si_overrun; 3479 to->si_int = from->si_int; 3480 break; 3481 case SIL_POLL: 3482 to->si_band = from->si_band; 3483 to->si_fd = from->si_fd; 3484 break; 3485 case SIL_FAULT: 3486 to->si_addr = compat_ptr(from->si_addr); 3487 break; 3488 case SIL_FAULT_TRAPNO: 3489 to->si_addr = compat_ptr(from->si_addr); 3490 to->si_trapno = from->si_trapno; 3491 break; 3492 case SIL_FAULT_MCEERR: 3493 to->si_addr = compat_ptr(from->si_addr); 3494 to->si_addr_lsb = from->si_addr_lsb; 3495 break; 3496 case SIL_FAULT_BNDERR: 3497 to->si_addr = compat_ptr(from->si_addr); 3498 to->si_lower = compat_ptr(from->si_lower); 3499 to->si_upper = compat_ptr(from->si_upper); 3500 break; 3501 case SIL_FAULT_PKUERR: 3502 to->si_addr = compat_ptr(from->si_addr); 3503 to->si_pkey = from->si_pkey; 3504 break; 3505 case SIL_FAULT_PERF_EVENT: 3506 to->si_addr = compat_ptr(from->si_addr); 3507 to->si_perf_data = from->si_perf_data; 3508 to->si_perf_type = from->si_perf_type; 3509 break; 3510 case SIL_CHLD: 3511 to->si_pid = from->si_pid; 3512 to->si_uid = from->si_uid; 3513 to->si_status = from->si_status; 3514 #ifdef CONFIG_X86_X32_ABI 3515 if (in_x32_syscall()) { 3516 to->si_utime = from->_sifields._sigchld_x32._utime; 3517 to->si_stime = from->_sifields._sigchld_x32._stime; 3518 } else 3519 #endif 3520 { 3521 to->si_utime = from->si_utime; 3522 to->si_stime = from->si_stime; 3523 } 3524 break; 3525 case SIL_RT: 3526 to->si_pid = from->si_pid; 3527 to->si_uid = from->si_uid; 3528 to->si_int = from->si_int; 3529 break; 3530 case SIL_SYS: 3531 to->si_call_addr = compat_ptr(from->si_call_addr); 3532 to->si_syscall = from->si_syscall; 3533 to->si_arch = from->si_arch; 3534 break; 3535 } 3536 return 0; 3537 } 3538 3539 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3540 const struct compat_siginfo __user *ufrom) 3541 { 3542 struct compat_siginfo from; 3543 3544 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3545 return -EFAULT; 3546 3547 from.si_signo = signo; 3548 return post_copy_siginfo_from_user32(to, &from); 3549 } 3550 3551 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3552 const struct compat_siginfo __user *ufrom) 3553 { 3554 struct compat_siginfo from; 3555 3556 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3557 return -EFAULT; 3558 3559 return post_copy_siginfo_from_user32(to, &from); 3560 } 3561 #endif /* CONFIG_COMPAT */ 3562 3563 /** 3564 * do_sigtimedwait - wait for queued signals specified in @which 3565 * @which: queued signals to wait for 3566 * @info: if non-null, the signal's siginfo is returned here 3567 * @ts: upper bound on process time suspension 3568 */ 3569 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3570 const struct timespec64 *ts) 3571 { 3572 ktime_t *to = NULL, timeout = KTIME_MAX; 3573 struct task_struct *tsk = current; 3574 sigset_t mask = *which; 3575 enum pid_type type; 3576 int sig, ret = 0; 3577 3578 if (ts) { 3579 if (!timespec64_valid(ts)) 3580 return -EINVAL; 3581 timeout = timespec64_to_ktime(*ts); 3582 to = &timeout; 3583 } 3584 3585 /* 3586 * Invert the set of allowed signals to get those we want to block. 3587 */ 3588 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3589 signotset(&mask); 3590 3591 spin_lock_irq(&tsk->sighand->siglock); 3592 sig = dequeue_signal(tsk, &mask, info, &type); 3593 if (!sig && timeout) { 3594 /* 3595 * None ready, temporarily unblock those we're interested 3596 * while we are sleeping in so that we'll be awakened when 3597 * they arrive. Unblocking is always fine, we can avoid 3598 * set_current_blocked(). 3599 */ 3600 tsk->real_blocked = tsk->blocked; 3601 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3602 recalc_sigpending(); 3603 spin_unlock_irq(&tsk->sighand->siglock); 3604 3605 __set_current_state(TASK_INTERRUPTIBLE); 3606 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3607 HRTIMER_MODE_REL); 3608 spin_lock_irq(&tsk->sighand->siglock); 3609 __set_task_blocked(tsk, &tsk->real_blocked); 3610 sigemptyset(&tsk->real_blocked); 3611 sig = dequeue_signal(tsk, &mask, info, &type); 3612 } 3613 spin_unlock_irq(&tsk->sighand->siglock); 3614 3615 if (sig) 3616 return sig; 3617 return ret ? -EINTR : -EAGAIN; 3618 } 3619 3620 /** 3621 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3622 * in @uthese 3623 * @uthese: queued signals to wait for 3624 * @uinfo: if non-null, the signal's siginfo is returned here 3625 * @uts: upper bound on process time suspension 3626 * @sigsetsize: size of sigset_t type 3627 */ 3628 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3629 siginfo_t __user *, uinfo, 3630 const struct __kernel_timespec __user *, uts, 3631 size_t, sigsetsize) 3632 { 3633 sigset_t these; 3634 struct timespec64 ts; 3635 kernel_siginfo_t info; 3636 int ret; 3637 3638 /* XXX: Don't preclude handling different sized sigset_t's. */ 3639 if (sigsetsize != sizeof(sigset_t)) 3640 return -EINVAL; 3641 3642 if (copy_from_user(&these, uthese, sizeof(these))) 3643 return -EFAULT; 3644 3645 if (uts) { 3646 if (get_timespec64(&ts, uts)) 3647 return -EFAULT; 3648 } 3649 3650 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3651 3652 if (ret > 0 && uinfo) { 3653 if (copy_siginfo_to_user(uinfo, &info)) 3654 ret = -EFAULT; 3655 } 3656 3657 return ret; 3658 } 3659 3660 #ifdef CONFIG_COMPAT_32BIT_TIME 3661 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3662 siginfo_t __user *, uinfo, 3663 const struct old_timespec32 __user *, uts, 3664 size_t, sigsetsize) 3665 { 3666 sigset_t these; 3667 struct timespec64 ts; 3668 kernel_siginfo_t info; 3669 int ret; 3670 3671 if (sigsetsize != sizeof(sigset_t)) 3672 return -EINVAL; 3673 3674 if (copy_from_user(&these, uthese, sizeof(these))) 3675 return -EFAULT; 3676 3677 if (uts) { 3678 if (get_old_timespec32(&ts, uts)) 3679 return -EFAULT; 3680 } 3681 3682 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3683 3684 if (ret > 0 && uinfo) { 3685 if (copy_siginfo_to_user(uinfo, &info)) 3686 ret = -EFAULT; 3687 } 3688 3689 return ret; 3690 } 3691 #endif 3692 3693 #ifdef CONFIG_COMPAT 3694 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3695 struct compat_siginfo __user *, uinfo, 3696 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3697 { 3698 sigset_t s; 3699 struct timespec64 t; 3700 kernel_siginfo_t info; 3701 long ret; 3702 3703 if (sigsetsize != sizeof(sigset_t)) 3704 return -EINVAL; 3705 3706 if (get_compat_sigset(&s, uthese)) 3707 return -EFAULT; 3708 3709 if (uts) { 3710 if (get_timespec64(&t, uts)) 3711 return -EFAULT; 3712 } 3713 3714 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3715 3716 if (ret > 0 && uinfo) { 3717 if (copy_siginfo_to_user32(uinfo, &info)) 3718 ret = -EFAULT; 3719 } 3720 3721 return ret; 3722 } 3723 3724 #ifdef CONFIG_COMPAT_32BIT_TIME 3725 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3726 struct compat_siginfo __user *, uinfo, 3727 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3728 { 3729 sigset_t s; 3730 struct timespec64 t; 3731 kernel_siginfo_t info; 3732 long ret; 3733 3734 if (sigsetsize != sizeof(sigset_t)) 3735 return -EINVAL; 3736 3737 if (get_compat_sigset(&s, uthese)) 3738 return -EFAULT; 3739 3740 if (uts) { 3741 if (get_old_timespec32(&t, uts)) 3742 return -EFAULT; 3743 } 3744 3745 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3746 3747 if (ret > 0 && uinfo) { 3748 if (copy_siginfo_to_user32(uinfo, &info)) 3749 ret = -EFAULT; 3750 } 3751 3752 return ret; 3753 } 3754 #endif 3755 #endif 3756 3757 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3758 { 3759 clear_siginfo(info); 3760 info->si_signo = sig; 3761 info->si_errno = 0; 3762 info->si_code = SI_USER; 3763 info->si_pid = task_tgid_vnr(current); 3764 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3765 } 3766 3767 /** 3768 * sys_kill - send a signal to a process 3769 * @pid: the PID of the process 3770 * @sig: signal to be sent 3771 */ 3772 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3773 { 3774 struct kernel_siginfo info; 3775 3776 prepare_kill_siginfo(sig, &info); 3777 3778 return kill_something_info(sig, &info, pid); 3779 } 3780 3781 /* 3782 * Verify that the signaler and signalee either are in the same pid namespace 3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3784 * namespace. 3785 */ 3786 static bool access_pidfd_pidns(struct pid *pid) 3787 { 3788 struct pid_namespace *active = task_active_pid_ns(current); 3789 struct pid_namespace *p = ns_of_pid(pid); 3790 3791 for (;;) { 3792 if (!p) 3793 return false; 3794 if (p == active) 3795 break; 3796 p = p->parent; 3797 } 3798 3799 return true; 3800 } 3801 3802 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3803 siginfo_t __user *info) 3804 { 3805 #ifdef CONFIG_COMPAT 3806 /* 3807 * Avoid hooking up compat syscalls and instead handle necessary 3808 * conversions here. Note, this is a stop-gap measure and should not be 3809 * considered a generic solution. 3810 */ 3811 if (in_compat_syscall()) 3812 return copy_siginfo_from_user32( 3813 kinfo, (struct compat_siginfo __user *)info); 3814 #endif 3815 return copy_siginfo_from_user(kinfo, info); 3816 } 3817 3818 static struct pid *pidfd_to_pid(const struct file *file) 3819 { 3820 struct pid *pid; 3821 3822 pid = pidfd_pid(file); 3823 if (!IS_ERR(pid)) 3824 return pid; 3825 3826 return tgid_pidfd_to_pid(file); 3827 } 3828 3829 /** 3830 * sys_pidfd_send_signal - Signal a process through a pidfd 3831 * @pidfd: file descriptor of the process 3832 * @sig: signal to send 3833 * @info: signal info 3834 * @flags: future flags 3835 * 3836 * The syscall currently only signals via PIDTYPE_PID which covers 3837 * kill(<positive-pid>, <signal>. It does not signal threads or process 3838 * groups. 3839 * In order to extend the syscall to threads and process groups the @flags 3840 * argument should be used. In essence, the @flags argument will determine 3841 * what is signaled and not the file descriptor itself. Put in other words, 3842 * grouping is a property of the flags argument not a property of the file 3843 * descriptor. 3844 * 3845 * Return: 0 on success, negative errno on failure 3846 */ 3847 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3848 siginfo_t __user *, info, unsigned int, flags) 3849 { 3850 int ret; 3851 struct fd f; 3852 struct pid *pid; 3853 kernel_siginfo_t kinfo; 3854 3855 /* Enforce flags be set to 0 until we add an extension. */ 3856 if (flags) 3857 return -EINVAL; 3858 3859 f = fdget(pidfd); 3860 if (!f.file) 3861 return -EBADF; 3862 3863 /* Is this a pidfd? */ 3864 pid = pidfd_to_pid(f.file); 3865 if (IS_ERR(pid)) { 3866 ret = PTR_ERR(pid); 3867 goto err; 3868 } 3869 3870 ret = -EINVAL; 3871 if (!access_pidfd_pidns(pid)) 3872 goto err; 3873 3874 if (info) { 3875 ret = copy_siginfo_from_user_any(&kinfo, info); 3876 if (unlikely(ret)) 3877 goto err; 3878 3879 ret = -EINVAL; 3880 if (unlikely(sig != kinfo.si_signo)) 3881 goto err; 3882 3883 /* Only allow sending arbitrary signals to yourself. */ 3884 ret = -EPERM; 3885 if ((task_pid(current) != pid) && 3886 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3887 goto err; 3888 } else { 3889 prepare_kill_siginfo(sig, &kinfo); 3890 } 3891 3892 ret = kill_pid_info(sig, &kinfo, pid); 3893 3894 err: 3895 fdput(f); 3896 return ret; 3897 } 3898 3899 static int 3900 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3901 { 3902 struct task_struct *p; 3903 int error = -ESRCH; 3904 3905 rcu_read_lock(); 3906 p = find_task_by_vpid(pid); 3907 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3908 error = check_kill_permission(sig, info, p); 3909 /* 3910 * The null signal is a permissions and process existence 3911 * probe. No signal is actually delivered. 3912 */ 3913 if (!error && sig) { 3914 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3915 /* 3916 * If lock_task_sighand() failed we pretend the task 3917 * dies after receiving the signal. The window is tiny, 3918 * and the signal is private anyway. 3919 */ 3920 if (unlikely(error == -ESRCH)) 3921 error = 0; 3922 } 3923 } 3924 rcu_read_unlock(); 3925 3926 return error; 3927 } 3928 3929 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3930 { 3931 struct kernel_siginfo info; 3932 3933 clear_siginfo(&info); 3934 info.si_signo = sig; 3935 info.si_errno = 0; 3936 info.si_code = SI_TKILL; 3937 info.si_pid = task_tgid_vnr(current); 3938 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3939 3940 return do_send_specific(tgid, pid, sig, &info); 3941 } 3942 3943 /** 3944 * sys_tgkill - send signal to one specific thread 3945 * @tgid: the thread group ID of the thread 3946 * @pid: the PID of the thread 3947 * @sig: signal to be sent 3948 * 3949 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3950 * exists but it's not belonging to the target process anymore. This 3951 * method solves the problem of threads exiting and PIDs getting reused. 3952 */ 3953 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3954 { 3955 /* This is only valid for single tasks */ 3956 if (pid <= 0 || tgid <= 0) 3957 return -EINVAL; 3958 3959 return do_tkill(tgid, pid, sig); 3960 } 3961 3962 /** 3963 * sys_tkill - send signal to one specific task 3964 * @pid: the PID of the task 3965 * @sig: signal to be sent 3966 * 3967 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3968 */ 3969 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3970 { 3971 /* This is only valid for single tasks */ 3972 if (pid <= 0) 3973 return -EINVAL; 3974 3975 return do_tkill(0, pid, sig); 3976 } 3977 3978 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3979 { 3980 /* Not even root can pretend to send signals from the kernel. 3981 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3982 */ 3983 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3984 (task_pid_vnr(current) != pid)) 3985 return -EPERM; 3986 3987 /* POSIX.1b doesn't mention process groups. */ 3988 return kill_proc_info(sig, info, pid); 3989 } 3990 3991 /** 3992 * sys_rt_sigqueueinfo - send signal information to a signal 3993 * @pid: the PID of the thread 3994 * @sig: signal to be sent 3995 * @uinfo: signal info to be sent 3996 */ 3997 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3998 siginfo_t __user *, uinfo) 3999 { 4000 kernel_siginfo_t info; 4001 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4002 if (unlikely(ret)) 4003 return ret; 4004 return do_rt_sigqueueinfo(pid, sig, &info); 4005 } 4006 4007 #ifdef CONFIG_COMPAT 4008 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4009 compat_pid_t, pid, 4010 int, sig, 4011 struct compat_siginfo __user *, uinfo) 4012 { 4013 kernel_siginfo_t info; 4014 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4015 if (unlikely(ret)) 4016 return ret; 4017 return do_rt_sigqueueinfo(pid, sig, &info); 4018 } 4019 #endif 4020 4021 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4022 { 4023 /* This is only valid for single tasks */ 4024 if (pid <= 0 || tgid <= 0) 4025 return -EINVAL; 4026 4027 /* Not even root can pretend to send signals from the kernel. 4028 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4029 */ 4030 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4031 (task_pid_vnr(current) != pid)) 4032 return -EPERM; 4033 4034 return do_send_specific(tgid, pid, sig, info); 4035 } 4036 4037 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4038 siginfo_t __user *, uinfo) 4039 { 4040 kernel_siginfo_t info; 4041 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4042 if (unlikely(ret)) 4043 return ret; 4044 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4045 } 4046 4047 #ifdef CONFIG_COMPAT 4048 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4049 compat_pid_t, tgid, 4050 compat_pid_t, pid, 4051 int, sig, 4052 struct compat_siginfo __user *, uinfo) 4053 { 4054 kernel_siginfo_t info; 4055 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4056 if (unlikely(ret)) 4057 return ret; 4058 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4059 } 4060 #endif 4061 4062 /* 4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4064 */ 4065 void kernel_sigaction(int sig, __sighandler_t action) 4066 { 4067 spin_lock_irq(¤t->sighand->siglock); 4068 current->sighand->action[sig - 1].sa.sa_handler = action; 4069 if (action == SIG_IGN) { 4070 sigset_t mask; 4071 4072 sigemptyset(&mask); 4073 sigaddset(&mask, sig); 4074 4075 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4076 flush_sigqueue_mask(&mask, ¤t->pending); 4077 recalc_sigpending(); 4078 } 4079 spin_unlock_irq(¤t->sighand->siglock); 4080 } 4081 EXPORT_SYMBOL(kernel_sigaction); 4082 4083 void __weak sigaction_compat_abi(struct k_sigaction *act, 4084 struct k_sigaction *oact) 4085 { 4086 } 4087 4088 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4089 { 4090 struct task_struct *p = current, *t; 4091 struct k_sigaction *k; 4092 sigset_t mask; 4093 4094 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4095 return -EINVAL; 4096 4097 k = &p->sighand->action[sig-1]; 4098 4099 spin_lock_irq(&p->sighand->siglock); 4100 if (k->sa.sa_flags & SA_IMMUTABLE) { 4101 spin_unlock_irq(&p->sighand->siglock); 4102 return -EINVAL; 4103 } 4104 if (oact) 4105 *oact = *k; 4106 4107 /* 4108 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4109 * e.g. by having an architecture use the bit in their uapi. 4110 */ 4111 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4112 4113 /* 4114 * Clear unknown flag bits in order to allow userspace to detect missing 4115 * support for flag bits and to allow the kernel to use non-uapi bits 4116 * internally. 4117 */ 4118 if (act) 4119 act->sa.sa_flags &= UAPI_SA_FLAGS; 4120 if (oact) 4121 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4122 4123 sigaction_compat_abi(act, oact); 4124 4125 if (act) { 4126 sigdelsetmask(&act->sa.sa_mask, 4127 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4128 *k = *act; 4129 /* 4130 * POSIX 3.3.1.3: 4131 * "Setting a signal action to SIG_IGN for a signal that is 4132 * pending shall cause the pending signal to be discarded, 4133 * whether or not it is blocked." 4134 * 4135 * "Setting a signal action to SIG_DFL for a signal that is 4136 * pending and whose default action is to ignore the signal 4137 * (for example, SIGCHLD), shall cause the pending signal to 4138 * be discarded, whether or not it is blocked" 4139 */ 4140 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4141 sigemptyset(&mask); 4142 sigaddset(&mask, sig); 4143 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4144 for_each_thread(p, t) 4145 flush_sigqueue_mask(&mask, &t->pending); 4146 } 4147 } 4148 4149 spin_unlock_irq(&p->sighand->siglock); 4150 return 0; 4151 } 4152 4153 #ifdef CONFIG_DYNAMIC_SIGFRAME 4154 static inline void sigaltstack_lock(void) 4155 __acquires(¤t->sighand->siglock) 4156 { 4157 spin_lock_irq(¤t->sighand->siglock); 4158 } 4159 4160 static inline void sigaltstack_unlock(void) 4161 __releases(¤t->sighand->siglock) 4162 { 4163 spin_unlock_irq(¤t->sighand->siglock); 4164 } 4165 #else 4166 static inline void sigaltstack_lock(void) { } 4167 static inline void sigaltstack_unlock(void) { } 4168 #endif 4169 4170 static int 4171 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4172 size_t min_ss_size) 4173 { 4174 struct task_struct *t = current; 4175 int ret = 0; 4176 4177 if (oss) { 4178 memset(oss, 0, sizeof(stack_t)); 4179 oss->ss_sp = (void __user *) t->sas_ss_sp; 4180 oss->ss_size = t->sas_ss_size; 4181 oss->ss_flags = sas_ss_flags(sp) | 4182 (current->sas_ss_flags & SS_FLAG_BITS); 4183 } 4184 4185 if (ss) { 4186 void __user *ss_sp = ss->ss_sp; 4187 size_t ss_size = ss->ss_size; 4188 unsigned ss_flags = ss->ss_flags; 4189 int ss_mode; 4190 4191 if (unlikely(on_sig_stack(sp))) 4192 return -EPERM; 4193 4194 ss_mode = ss_flags & ~SS_FLAG_BITS; 4195 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4196 ss_mode != 0)) 4197 return -EINVAL; 4198 4199 /* 4200 * Return before taking any locks if no actual 4201 * sigaltstack changes were requested. 4202 */ 4203 if (t->sas_ss_sp == (unsigned long)ss_sp && 4204 t->sas_ss_size == ss_size && 4205 t->sas_ss_flags == ss_flags) 4206 return 0; 4207 4208 sigaltstack_lock(); 4209 if (ss_mode == SS_DISABLE) { 4210 ss_size = 0; 4211 ss_sp = NULL; 4212 } else { 4213 if (unlikely(ss_size < min_ss_size)) 4214 ret = -ENOMEM; 4215 if (!sigaltstack_size_valid(ss_size)) 4216 ret = -ENOMEM; 4217 } 4218 if (!ret) { 4219 t->sas_ss_sp = (unsigned long) ss_sp; 4220 t->sas_ss_size = ss_size; 4221 t->sas_ss_flags = ss_flags; 4222 } 4223 sigaltstack_unlock(); 4224 } 4225 return ret; 4226 } 4227 4228 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4229 { 4230 stack_t new, old; 4231 int err; 4232 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4233 return -EFAULT; 4234 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4235 current_user_stack_pointer(), 4236 MINSIGSTKSZ); 4237 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4238 err = -EFAULT; 4239 return err; 4240 } 4241 4242 int restore_altstack(const stack_t __user *uss) 4243 { 4244 stack_t new; 4245 if (copy_from_user(&new, uss, sizeof(stack_t))) 4246 return -EFAULT; 4247 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4248 MINSIGSTKSZ); 4249 /* squash all but EFAULT for now */ 4250 return 0; 4251 } 4252 4253 int __save_altstack(stack_t __user *uss, unsigned long sp) 4254 { 4255 struct task_struct *t = current; 4256 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4257 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4258 __put_user(t->sas_ss_size, &uss->ss_size); 4259 return err; 4260 } 4261 4262 #ifdef CONFIG_COMPAT 4263 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4264 compat_stack_t __user *uoss_ptr) 4265 { 4266 stack_t uss, uoss; 4267 int ret; 4268 4269 if (uss_ptr) { 4270 compat_stack_t uss32; 4271 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4272 return -EFAULT; 4273 uss.ss_sp = compat_ptr(uss32.ss_sp); 4274 uss.ss_flags = uss32.ss_flags; 4275 uss.ss_size = uss32.ss_size; 4276 } 4277 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4278 compat_user_stack_pointer(), 4279 COMPAT_MINSIGSTKSZ); 4280 if (ret >= 0 && uoss_ptr) { 4281 compat_stack_t old; 4282 memset(&old, 0, sizeof(old)); 4283 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4284 old.ss_flags = uoss.ss_flags; 4285 old.ss_size = uoss.ss_size; 4286 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4287 ret = -EFAULT; 4288 } 4289 return ret; 4290 } 4291 4292 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4293 const compat_stack_t __user *, uss_ptr, 4294 compat_stack_t __user *, uoss_ptr) 4295 { 4296 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4297 } 4298 4299 int compat_restore_altstack(const compat_stack_t __user *uss) 4300 { 4301 int err = do_compat_sigaltstack(uss, NULL); 4302 /* squash all but -EFAULT for now */ 4303 return err == -EFAULT ? err : 0; 4304 } 4305 4306 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4307 { 4308 int err; 4309 struct task_struct *t = current; 4310 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4311 &uss->ss_sp) | 4312 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4313 __put_user(t->sas_ss_size, &uss->ss_size); 4314 return err; 4315 } 4316 #endif 4317 4318 #ifdef __ARCH_WANT_SYS_SIGPENDING 4319 4320 /** 4321 * sys_sigpending - examine pending signals 4322 * @uset: where mask of pending signal is returned 4323 */ 4324 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4325 { 4326 sigset_t set; 4327 4328 if (sizeof(old_sigset_t) > sizeof(*uset)) 4329 return -EINVAL; 4330 4331 do_sigpending(&set); 4332 4333 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4334 return -EFAULT; 4335 4336 return 0; 4337 } 4338 4339 #ifdef CONFIG_COMPAT 4340 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4341 { 4342 sigset_t set; 4343 4344 do_sigpending(&set); 4345 4346 return put_user(set.sig[0], set32); 4347 } 4348 #endif 4349 4350 #endif 4351 4352 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4353 /** 4354 * sys_sigprocmask - examine and change blocked signals 4355 * @how: whether to add, remove, or set signals 4356 * @nset: signals to add or remove (if non-null) 4357 * @oset: previous value of signal mask if non-null 4358 * 4359 * Some platforms have their own version with special arguments; 4360 * others support only sys_rt_sigprocmask. 4361 */ 4362 4363 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4364 old_sigset_t __user *, oset) 4365 { 4366 old_sigset_t old_set, new_set; 4367 sigset_t new_blocked; 4368 4369 old_set = current->blocked.sig[0]; 4370 4371 if (nset) { 4372 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4373 return -EFAULT; 4374 4375 new_blocked = current->blocked; 4376 4377 switch (how) { 4378 case SIG_BLOCK: 4379 sigaddsetmask(&new_blocked, new_set); 4380 break; 4381 case SIG_UNBLOCK: 4382 sigdelsetmask(&new_blocked, new_set); 4383 break; 4384 case SIG_SETMASK: 4385 new_blocked.sig[0] = new_set; 4386 break; 4387 default: 4388 return -EINVAL; 4389 } 4390 4391 set_current_blocked(&new_blocked); 4392 } 4393 4394 if (oset) { 4395 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4396 return -EFAULT; 4397 } 4398 4399 return 0; 4400 } 4401 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4402 4403 #ifndef CONFIG_ODD_RT_SIGACTION 4404 /** 4405 * sys_rt_sigaction - alter an action taken by a process 4406 * @sig: signal to be sent 4407 * @act: new sigaction 4408 * @oact: used to save the previous sigaction 4409 * @sigsetsize: size of sigset_t type 4410 */ 4411 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4412 const struct sigaction __user *, act, 4413 struct sigaction __user *, oact, 4414 size_t, sigsetsize) 4415 { 4416 struct k_sigaction new_sa, old_sa; 4417 int ret; 4418 4419 /* XXX: Don't preclude handling different sized sigset_t's. */ 4420 if (sigsetsize != sizeof(sigset_t)) 4421 return -EINVAL; 4422 4423 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4424 return -EFAULT; 4425 4426 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4427 if (ret) 4428 return ret; 4429 4430 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4431 return -EFAULT; 4432 4433 return 0; 4434 } 4435 #ifdef CONFIG_COMPAT 4436 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4437 const struct compat_sigaction __user *, act, 4438 struct compat_sigaction __user *, oact, 4439 compat_size_t, sigsetsize) 4440 { 4441 struct k_sigaction new_ka, old_ka; 4442 #ifdef __ARCH_HAS_SA_RESTORER 4443 compat_uptr_t restorer; 4444 #endif 4445 int ret; 4446 4447 /* XXX: Don't preclude handling different sized sigset_t's. */ 4448 if (sigsetsize != sizeof(compat_sigset_t)) 4449 return -EINVAL; 4450 4451 if (act) { 4452 compat_uptr_t handler; 4453 ret = get_user(handler, &act->sa_handler); 4454 new_ka.sa.sa_handler = compat_ptr(handler); 4455 #ifdef __ARCH_HAS_SA_RESTORER 4456 ret |= get_user(restorer, &act->sa_restorer); 4457 new_ka.sa.sa_restorer = compat_ptr(restorer); 4458 #endif 4459 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4460 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4461 if (ret) 4462 return -EFAULT; 4463 } 4464 4465 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4466 if (!ret && oact) { 4467 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4468 &oact->sa_handler); 4469 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4470 sizeof(oact->sa_mask)); 4471 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4472 #ifdef __ARCH_HAS_SA_RESTORER 4473 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4474 &oact->sa_restorer); 4475 #endif 4476 } 4477 return ret; 4478 } 4479 #endif 4480 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4481 4482 #ifdef CONFIG_OLD_SIGACTION 4483 SYSCALL_DEFINE3(sigaction, int, sig, 4484 const struct old_sigaction __user *, act, 4485 struct old_sigaction __user *, oact) 4486 { 4487 struct k_sigaction new_ka, old_ka; 4488 int ret; 4489 4490 if (act) { 4491 old_sigset_t mask; 4492 if (!access_ok(act, sizeof(*act)) || 4493 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4494 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4495 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4496 __get_user(mask, &act->sa_mask)) 4497 return -EFAULT; 4498 #ifdef __ARCH_HAS_KA_RESTORER 4499 new_ka.ka_restorer = NULL; 4500 #endif 4501 siginitset(&new_ka.sa.sa_mask, mask); 4502 } 4503 4504 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4505 4506 if (!ret && oact) { 4507 if (!access_ok(oact, sizeof(*oact)) || 4508 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4509 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4510 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4511 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4512 return -EFAULT; 4513 } 4514 4515 return ret; 4516 } 4517 #endif 4518 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4519 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4520 const struct compat_old_sigaction __user *, act, 4521 struct compat_old_sigaction __user *, oact) 4522 { 4523 struct k_sigaction new_ka, old_ka; 4524 int ret; 4525 compat_old_sigset_t mask; 4526 compat_uptr_t handler, restorer; 4527 4528 if (act) { 4529 if (!access_ok(act, sizeof(*act)) || 4530 __get_user(handler, &act->sa_handler) || 4531 __get_user(restorer, &act->sa_restorer) || 4532 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4533 __get_user(mask, &act->sa_mask)) 4534 return -EFAULT; 4535 4536 #ifdef __ARCH_HAS_KA_RESTORER 4537 new_ka.ka_restorer = NULL; 4538 #endif 4539 new_ka.sa.sa_handler = compat_ptr(handler); 4540 new_ka.sa.sa_restorer = compat_ptr(restorer); 4541 siginitset(&new_ka.sa.sa_mask, mask); 4542 } 4543 4544 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4545 4546 if (!ret && oact) { 4547 if (!access_ok(oact, sizeof(*oact)) || 4548 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4549 &oact->sa_handler) || 4550 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4551 &oact->sa_restorer) || 4552 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4553 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4554 return -EFAULT; 4555 } 4556 return ret; 4557 } 4558 #endif 4559 4560 #ifdef CONFIG_SGETMASK_SYSCALL 4561 4562 /* 4563 * For backwards compatibility. Functionality superseded by sigprocmask. 4564 */ 4565 SYSCALL_DEFINE0(sgetmask) 4566 { 4567 /* SMP safe */ 4568 return current->blocked.sig[0]; 4569 } 4570 4571 SYSCALL_DEFINE1(ssetmask, int, newmask) 4572 { 4573 int old = current->blocked.sig[0]; 4574 sigset_t newset; 4575 4576 siginitset(&newset, newmask); 4577 set_current_blocked(&newset); 4578 4579 return old; 4580 } 4581 #endif /* CONFIG_SGETMASK_SYSCALL */ 4582 4583 #ifdef __ARCH_WANT_SYS_SIGNAL 4584 /* 4585 * For backwards compatibility. Functionality superseded by sigaction. 4586 */ 4587 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4588 { 4589 struct k_sigaction new_sa, old_sa; 4590 int ret; 4591 4592 new_sa.sa.sa_handler = handler; 4593 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4594 sigemptyset(&new_sa.sa.sa_mask); 4595 4596 ret = do_sigaction(sig, &new_sa, &old_sa); 4597 4598 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4599 } 4600 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4601 4602 #ifdef __ARCH_WANT_SYS_PAUSE 4603 4604 SYSCALL_DEFINE0(pause) 4605 { 4606 while (!signal_pending(current)) { 4607 __set_current_state(TASK_INTERRUPTIBLE); 4608 schedule(); 4609 } 4610 return -ERESTARTNOHAND; 4611 } 4612 4613 #endif 4614 4615 static int sigsuspend(sigset_t *set) 4616 { 4617 current->saved_sigmask = current->blocked; 4618 set_current_blocked(set); 4619 4620 while (!signal_pending(current)) { 4621 __set_current_state(TASK_INTERRUPTIBLE); 4622 schedule(); 4623 } 4624 set_restore_sigmask(); 4625 return -ERESTARTNOHAND; 4626 } 4627 4628 /** 4629 * sys_rt_sigsuspend - replace the signal mask for a value with the 4630 * @unewset value until a signal is received 4631 * @unewset: new signal mask value 4632 * @sigsetsize: size of sigset_t type 4633 */ 4634 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4635 { 4636 sigset_t newset; 4637 4638 /* XXX: Don't preclude handling different sized sigset_t's. */ 4639 if (sigsetsize != sizeof(sigset_t)) 4640 return -EINVAL; 4641 4642 if (copy_from_user(&newset, unewset, sizeof(newset))) 4643 return -EFAULT; 4644 return sigsuspend(&newset); 4645 } 4646 4647 #ifdef CONFIG_COMPAT 4648 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4649 { 4650 sigset_t newset; 4651 4652 /* XXX: Don't preclude handling different sized sigset_t's. */ 4653 if (sigsetsize != sizeof(sigset_t)) 4654 return -EINVAL; 4655 4656 if (get_compat_sigset(&newset, unewset)) 4657 return -EFAULT; 4658 return sigsuspend(&newset); 4659 } 4660 #endif 4661 4662 #ifdef CONFIG_OLD_SIGSUSPEND 4663 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4664 { 4665 sigset_t blocked; 4666 siginitset(&blocked, mask); 4667 return sigsuspend(&blocked); 4668 } 4669 #endif 4670 #ifdef CONFIG_OLD_SIGSUSPEND3 4671 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4672 { 4673 sigset_t blocked; 4674 siginitset(&blocked, mask); 4675 return sigsuspend(&blocked); 4676 } 4677 #endif 4678 4679 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4680 { 4681 return NULL; 4682 } 4683 4684 static inline void siginfo_buildtime_checks(void) 4685 { 4686 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4687 4688 /* Verify the offsets in the two siginfos match */ 4689 #define CHECK_OFFSET(field) \ 4690 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4691 4692 /* kill */ 4693 CHECK_OFFSET(si_pid); 4694 CHECK_OFFSET(si_uid); 4695 4696 /* timer */ 4697 CHECK_OFFSET(si_tid); 4698 CHECK_OFFSET(si_overrun); 4699 CHECK_OFFSET(si_value); 4700 4701 /* rt */ 4702 CHECK_OFFSET(si_pid); 4703 CHECK_OFFSET(si_uid); 4704 CHECK_OFFSET(si_value); 4705 4706 /* sigchld */ 4707 CHECK_OFFSET(si_pid); 4708 CHECK_OFFSET(si_uid); 4709 CHECK_OFFSET(si_status); 4710 CHECK_OFFSET(si_utime); 4711 CHECK_OFFSET(si_stime); 4712 4713 /* sigfault */ 4714 CHECK_OFFSET(si_addr); 4715 CHECK_OFFSET(si_trapno); 4716 CHECK_OFFSET(si_addr_lsb); 4717 CHECK_OFFSET(si_lower); 4718 CHECK_OFFSET(si_upper); 4719 CHECK_OFFSET(si_pkey); 4720 CHECK_OFFSET(si_perf_data); 4721 CHECK_OFFSET(si_perf_type); 4722 4723 /* sigpoll */ 4724 CHECK_OFFSET(si_band); 4725 CHECK_OFFSET(si_fd); 4726 4727 /* sigsys */ 4728 CHECK_OFFSET(si_call_addr); 4729 CHECK_OFFSET(si_syscall); 4730 CHECK_OFFSET(si_arch); 4731 #undef CHECK_OFFSET 4732 4733 /* usb asyncio */ 4734 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4735 offsetof(struct siginfo, si_addr)); 4736 if (sizeof(int) == sizeof(void __user *)) { 4737 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4738 sizeof(void __user *)); 4739 } else { 4740 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4741 sizeof_field(struct siginfo, si_uid)) != 4742 sizeof(void __user *)); 4743 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4744 offsetof(struct siginfo, si_uid)); 4745 } 4746 #ifdef CONFIG_COMPAT 4747 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4748 offsetof(struct compat_siginfo, si_addr)); 4749 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4750 sizeof(compat_uptr_t)); 4751 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4752 sizeof_field(struct siginfo, si_pid)); 4753 #endif 4754 } 4755 4756 void __init signals_init(void) 4757 { 4758 siginfo_buildtime_checks(); 4759 4760 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4761 } 4762 4763 #ifdef CONFIG_KGDB_KDB 4764 #include <linux/kdb.h> 4765 /* 4766 * kdb_send_sig - Allows kdb to send signals without exposing 4767 * signal internals. This function checks if the required locks are 4768 * available before calling the main signal code, to avoid kdb 4769 * deadlocks. 4770 */ 4771 void kdb_send_sig(struct task_struct *t, int sig) 4772 { 4773 static struct task_struct *kdb_prev_t; 4774 int new_t, ret; 4775 if (!spin_trylock(&t->sighand->siglock)) { 4776 kdb_printf("Can't do kill command now.\n" 4777 "The sigmask lock is held somewhere else in " 4778 "kernel, try again later\n"); 4779 return; 4780 } 4781 new_t = kdb_prev_t != t; 4782 kdb_prev_t = t; 4783 if (!task_is_running(t) && new_t) { 4784 spin_unlock(&t->sighand->siglock); 4785 kdb_printf("Process is not RUNNING, sending a signal from " 4786 "kdb risks deadlock\n" 4787 "on the run queue locks. " 4788 "The signal has _not_ been sent.\n" 4789 "Reissue the kill command if you want to risk " 4790 "the deadlock.\n"); 4791 return; 4792 } 4793 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4794 spin_unlock(&t->sighand->siglock); 4795 if (ret) 4796 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4797 sig, t->pid); 4798 else 4799 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4800 } 4801 #endif /* CONFIG_KGDB_KDB */ 4802