xref: /openbmc/linux/kernel/signal.c (revision 2c935bc5)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
40 
41 #include <asm/param.h>
42 #include <linux/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h"	/* audit_signal_info() */
47 
48 /*
49  * SLAB caches for signal bits.
50  */
51 
52 static struct kmem_cache *sigqueue_cachep;
53 
54 int print_fatal_signals __read_mostly;
55 
56 static void __user *sig_handler(struct task_struct *t, int sig)
57 {
58 	return t->sighand->action[sig - 1].sa.sa_handler;
59 }
60 
61 static int sig_handler_ignored(void __user *handler, int sig)
62 {
63 	/* Is it explicitly or implicitly ignored? */
64 	return handler == SIG_IGN ||
65 		(handler == SIG_DFL && sig_kernel_ignore(sig));
66 }
67 
68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69 {
70 	void __user *handler;
71 
72 	handler = sig_handler(t, sig);
73 
74 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 			handler == SIG_DFL && !force)
76 		return 1;
77 
78 	return sig_handler_ignored(handler, sig);
79 }
80 
81 static int sig_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	/*
84 	 * Blocked signals are never ignored, since the
85 	 * signal handler may change by the time it is
86 	 * unblocked.
87 	 */
88 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 		return 0;
90 
91 	if (!sig_task_ignored(t, sig, force))
92 		return 0;
93 
94 	/*
95 	 * Tracers may want to know about even ignored signals.
96 	 */
97 	return !t->ptrace;
98 }
99 
100 /*
101  * Re-calculate pending state from the set of locally pending
102  * signals, globally pending signals, and blocked signals.
103  */
104 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105 {
106 	unsigned long ready;
107 	long i;
108 
109 	switch (_NSIG_WORDS) {
110 	default:
111 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112 			ready |= signal->sig[i] &~ blocked->sig[i];
113 		break;
114 
115 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
116 		ready |= signal->sig[2] &~ blocked->sig[2];
117 		ready |= signal->sig[1] &~ blocked->sig[1];
118 		ready |= signal->sig[0] &~ blocked->sig[0];
119 		break;
120 
121 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
122 		ready |= signal->sig[0] &~ blocked->sig[0];
123 		break;
124 
125 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
126 	}
127 	return ready !=	0;
128 }
129 
130 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131 
132 static int recalc_sigpending_tsk(struct task_struct *t)
133 {
134 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135 	    PENDING(&t->pending, &t->blocked) ||
136 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
137 		set_tsk_thread_flag(t, TIF_SIGPENDING);
138 		return 1;
139 	}
140 	/*
141 	 * We must never clear the flag in another thread, or in current
142 	 * when it's possible the current syscall is returning -ERESTART*.
143 	 * So we don't clear it here, and only callers who know they should do.
144 	 */
145 	return 0;
146 }
147 
148 /*
149  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150  * This is superfluous when called on current, the wakeup is a harmless no-op.
151  */
152 void recalc_sigpending_and_wake(struct task_struct *t)
153 {
154 	if (recalc_sigpending_tsk(t))
155 		signal_wake_up(t, 0);
156 }
157 
158 void recalc_sigpending(void)
159 {
160 	if (!recalc_sigpending_tsk(current) && !freezing(current))
161 		clear_thread_flag(TIF_SIGPENDING);
162 
163 }
164 
165 /* Given the mask, find the first available signal that should be serviced. */
166 
167 #define SYNCHRONOUS_MASK \
168 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170 
171 int next_signal(struct sigpending *pending, sigset_t *mask)
172 {
173 	unsigned long i, *s, *m, x;
174 	int sig = 0;
175 
176 	s = pending->signal.sig;
177 	m = mask->sig;
178 
179 	/*
180 	 * Handle the first word specially: it contains the
181 	 * synchronous signals that need to be dequeued first.
182 	 */
183 	x = *s &~ *m;
184 	if (x) {
185 		if (x & SYNCHRONOUS_MASK)
186 			x &= SYNCHRONOUS_MASK;
187 		sig = ffz(~x) + 1;
188 		return sig;
189 	}
190 
191 	switch (_NSIG_WORDS) {
192 	default:
193 		for (i = 1; i < _NSIG_WORDS; ++i) {
194 			x = *++s &~ *++m;
195 			if (!x)
196 				continue;
197 			sig = ffz(~x) + i*_NSIG_BPW + 1;
198 			break;
199 		}
200 		break;
201 
202 	case 2:
203 		x = s[1] &~ m[1];
204 		if (!x)
205 			break;
206 		sig = ffz(~x) + _NSIG_BPW + 1;
207 		break;
208 
209 	case 1:
210 		/* Nothing to do */
211 		break;
212 	}
213 
214 	return sig;
215 }
216 
217 static inline void print_dropped_signal(int sig)
218 {
219 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220 
221 	if (!print_fatal_signals)
222 		return;
223 
224 	if (!__ratelimit(&ratelimit_state))
225 		return;
226 
227 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228 				current->comm, current->pid, sig);
229 }
230 
231 /**
232  * task_set_jobctl_pending - set jobctl pending bits
233  * @task: target task
234  * @mask: pending bits to set
235  *
236  * Clear @mask from @task->jobctl.  @mask must be subset of
237  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
239  * cleared.  If @task is already being killed or exiting, this function
240  * becomes noop.
241  *
242  * CONTEXT:
243  * Must be called with @task->sighand->siglock held.
244  *
245  * RETURNS:
246  * %true if @mask is set, %false if made noop because @task was dying.
247  */
248 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
249 {
250 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253 
254 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255 		return false;
256 
257 	if (mask & JOBCTL_STOP_SIGMASK)
258 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259 
260 	task->jobctl |= mask;
261 	return true;
262 }
263 
264 /**
265  * task_clear_jobctl_trapping - clear jobctl trapping bit
266  * @task: target task
267  *
268  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269  * Clear it and wake up the ptracer.  Note that we don't need any further
270  * locking.  @task->siglock guarantees that @task->parent points to the
271  * ptracer.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  */
276 void task_clear_jobctl_trapping(struct task_struct *task)
277 {
278 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279 		task->jobctl &= ~JOBCTL_TRAPPING;
280 		smp_mb();	/* advised by wake_up_bit() */
281 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282 	}
283 }
284 
285 /**
286  * task_clear_jobctl_pending - clear jobctl pending bits
287  * @task: target task
288  * @mask: pending bits to clear
289  *
290  * Clear @mask from @task->jobctl.  @mask must be subset of
291  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
292  * STOP bits are cleared together.
293  *
294  * If clearing of @mask leaves no stop or trap pending, this function calls
295  * task_clear_jobctl_trapping().
296  *
297  * CONTEXT:
298  * Must be called with @task->sighand->siglock held.
299  */
300 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
301 {
302 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
303 
304 	if (mask & JOBCTL_STOP_PENDING)
305 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
306 
307 	task->jobctl &= ~mask;
308 
309 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
310 		task_clear_jobctl_trapping(task);
311 }
312 
313 /**
314  * task_participate_group_stop - participate in a group stop
315  * @task: task participating in a group stop
316  *
317  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318  * Group stop states are cleared and the group stop count is consumed if
319  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
320  * stop, the appropriate %SIGNAL_* flags are set.
321  *
322  * CONTEXT:
323  * Must be called with @task->sighand->siglock held.
324  *
325  * RETURNS:
326  * %true if group stop completion should be notified to the parent, %false
327  * otherwise.
328  */
329 static bool task_participate_group_stop(struct task_struct *task)
330 {
331 	struct signal_struct *sig = task->signal;
332 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
333 
334 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
335 
336 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
337 
338 	if (!consume)
339 		return false;
340 
341 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342 		sig->group_stop_count--;
343 
344 	/*
345 	 * Tell the caller to notify completion iff we are entering into a
346 	 * fresh group stop.  Read comment in do_signal_stop() for details.
347 	 */
348 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
350 		return true;
351 	}
352 	return false;
353 }
354 
355 /*
356  * allocate a new signal queue record
357  * - this may be called without locks if and only if t == current, otherwise an
358  *   appropriate lock must be held to stop the target task from exiting
359  */
360 static struct sigqueue *
361 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
362 {
363 	struct sigqueue *q = NULL;
364 	struct user_struct *user;
365 
366 	/*
367 	 * Protect access to @t credentials. This can go away when all
368 	 * callers hold rcu read lock.
369 	 */
370 	rcu_read_lock();
371 	user = get_uid(__task_cred(t)->user);
372 	atomic_inc(&user->sigpending);
373 	rcu_read_unlock();
374 
375 	if (override_rlimit ||
376 	    atomic_read(&user->sigpending) <=
377 			task_rlimit(t, RLIMIT_SIGPENDING)) {
378 		q = kmem_cache_alloc(sigqueue_cachep, flags);
379 	} else {
380 		print_dropped_signal(sig);
381 	}
382 
383 	if (unlikely(q == NULL)) {
384 		atomic_dec(&user->sigpending);
385 		free_uid(user);
386 	} else {
387 		INIT_LIST_HEAD(&q->list);
388 		q->flags = 0;
389 		q->user = user;
390 	}
391 
392 	return q;
393 }
394 
395 static void __sigqueue_free(struct sigqueue *q)
396 {
397 	if (q->flags & SIGQUEUE_PREALLOC)
398 		return;
399 	atomic_dec(&q->user->sigpending);
400 	free_uid(q->user);
401 	kmem_cache_free(sigqueue_cachep, q);
402 }
403 
404 void flush_sigqueue(struct sigpending *queue)
405 {
406 	struct sigqueue *q;
407 
408 	sigemptyset(&queue->signal);
409 	while (!list_empty(&queue->list)) {
410 		q = list_entry(queue->list.next, struct sigqueue , list);
411 		list_del_init(&q->list);
412 		__sigqueue_free(q);
413 	}
414 }
415 
416 /*
417  * Flush all pending signals for this kthread.
418  */
419 void flush_signals(struct task_struct *t)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&t->sighand->siglock, flags);
424 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
425 	flush_sigqueue(&t->pending);
426 	flush_sigqueue(&t->signal->shared_pending);
427 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
428 }
429 
430 #ifdef CONFIG_POSIX_TIMERS
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433 	sigset_t signal, retain;
434 	struct sigqueue *q, *n;
435 
436 	signal = pending->signal;
437 	sigemptyset(&retain);
438 
439 	list_for_each_entry_safe(q, n, &pending->list, list) {
440 		int sig = q->info.si_signo;
441 
442 		if (likely(q->info.si_code != SI_TIMER)) {
443 			sigaddset(&retain, sig);
444 		} else {
445 			sigdelset(&signal, sig);
446 			list_del_init(&q->list);
447 			__sigqueue_free(q);
448 		}
449 	}
450 
451 	sigorsets(&pending->signal, &signal, &retain);
452 }
453 
454 void flush_itimer_signals(void)
455 {
456 	struct task_struct *tsk = current;
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 	__flush_itimer_signals(&tsk->pending);
461 	__flush_itimer_signals(&tsk->signal->shared_pending);
462 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464 #endif
465 
466 void ignore_signals(struct task_struct *t)
467 {
468 	int i;
469 
470 	for (i = 0; i < _NSIG; ++i)
471 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
472 
473 	flush_signals(t);
474 }
475 
476 /*
477  * Flush all handlers for a task.
478  */
479 
480 void
481 flush_signal_handlers(struct task_struct *t, int force_default)
482 {
483 	int i;
484 	struct k_sigaction *ka = &t->sighand->action[0];
485 	for (i = _NSIG ; i != 0 ; i--) {
486 		if (force_default || ka->sa.sa_handler != SIG_IGN)
487 			ka->sa.sa_handler = SIG_DFL;
488 		ka->sa.sa_flags = 0;
489 #ifdef __ARCH_HAS_SA_RESTORER
490 		ka->sa.sa_restorer = NULL;
491 #endif
492 		sigemptyset(&ka->sa.sa_mask);
493 		ka++;
494 	}
495 }
496 
497 int unhandled_signal(struct task_struct *tsk, int sig)
498 {
499 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 	if (is_global_init(tsk))
501 		return 1;
502 	if (handler != SIG_IGN && handler != SIG_DFL)
503 		return 0;
504 	/* if ptraced, let the tracer determine */
505 	return !tsk->ptrace;
506 }
507 
508 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
509 {
510 	struct sigqueue *q, *first = NULL;
511 
512 	/*
513 	 * Collect the siginfo appropriate to this signal.  Check if
514 	 * there is another siginfo for the same signal.
515 	*/
516 	list_for_each_entry(q, &list->list, list) {
517 		if (q->info.si_signo == sig) {
518 			if (first)
519 				goto still_pending;
520 			first = q;
521 		}
522 	}
523 
524 	sigdelset(&list->signal, sig);
525 
526 	if (first) {
527 still_pending:
528 		list_del_init(&first->list);
529 		copy_siginfo(info, &first->info);
530 		__sigqueue_free(first);
531 	} else {
532 		/*
533 		 * Ok, it wasn't in the queue.  This must be
534 		 * a fast-pathed signal or we must have been
535 		 * out of queue space.  So zero out the info.
536 		 */
537 		info->si_signo = sig;
538 		info->si_errno = 0;
539 		info->si_code = SI_USER;
540 		info->si_pid = 0;
541 		info->si_uid = 0;
542 	}
543 }
544 
545 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
546 			siginfo_t *info)
547 {
548 	int sig = next_signal(pending, mask);
549 
550 	if (sig)
551 		collect_signal(sig, pending, info);
552 	return sig;
553 }
554 
555 /*
556  * Dequeue a signal and return the element to the caller, which is
557  * expected to free it.
558  *
559  * All callers have to hold the siglock.
560  */
561 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
562 {
563 	int signr;
564 
565 	/* We only dequeue private signals from ourselves, we don't let
566 	 * signalfd steal them
567 	 */
568 	signr = __dequeue_signal(&tsk->pending, mask, info);
569 	if (!signr) {
570 		signr = __dequeue_signal(&tsk->signal->shared_pending,
571 					 mask, info);
572 #ifdef CONFIG_POSIX_TIMERS
573 		/*
574 		 * itimer signal ?
575 		 *
576 		 * itimers are process shared and we restart periodic
577 		 * itimers in the signal delivery path to prevent DoS
578 		 * attacks in the high resolution timer case. This is
579 		 * compliant with the old way of self-restarting
580 		 * itimers, as the SIGALRM is a legacy signal and only
581 		 * queued once. Changing the restart behaviour to
582 		 * restart the timer in the signal dequeue path is
583 		 * reducing the timer noise on heavy loaded !highres
584 		 * systems too.
585 		 */
586 		if (unlikely(signr == SIGALRM)) {
587 			struct hrtimer *tmr = &tsk->signal->real_timer;
588 
589 			if (!hrtimer_is_queued(tmr) &&
590 			    tsk->signal->it_real_incr != 0) {
591 				hrtimer_forward(tmr, tmr->base->get_time(),
592 						tsk->signal->it_real_incr);
593 				hrtimer_restart(tmr);
594 			}
595 		}
596 #endif
597 	}
598 
599 	recalc_sigpending();
600 	if (!signr)
601 		return 0;
602 
603 	if (unlikely(sig_kernel_stop(signr))) {
604 		/*
605 		 * Set a marker that we have dequeued a stop signal.  Our
606 		 * caller might release the siglock and then the pending
607 		 * stop signal it is about to process is no longer in the
608 		 * pending bitmasks, but must still be cleared by a SIGCONT
609 		 * (and overruled by a SIGKILL).  So those cases clear this
610 		 * shared flag after we've set it.  Note that this flag may
611 		 * remain set after the signal we return is ignored or
612 		 * handled.  That doesn't matter because its only purpose
613 		 * is to alert stop-signal processing code when another
614 		 * processor has come along and cleared the flag.
615 		 */
616 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
617 	}
618 #ifdef CONFIG_POSIX_TIMERS
619 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
620 		/*
621 		 * Release the siglock to ensure proper locking order
622 		 * of timer locks outside of siglocks.  Note, we leave
623 		 * irqs disabled here, since the posix-timers code is
624 		 * about to disable them again anyway.
625 		 */
626 		spin_unlock(&tsk->sighand->siglock);
627 		do_schedule_next_timer(info);
628 		spin_lock(&tsk->sighand->siglock);
629 	}
630 #endif
631 	return signr;
632 }
633 
634 /*
635  * Tell a process that it has a new active signal..
636  *
637  * NOTE! we rely on the previous spin_lock to
638  * lock interrupts for us! We can only be called with
639  * "siglock" held, and the local interrupt must
640  * have been disabled when that got acquired!
641  *
642  * No need to set need_resched since signal event passing
643  * goes through ->blocked
644  */
645 void signal_wake_up_state(struct task_struct *t, unsigned int state)
646 {
647 	set_tsk_thread_flag(t, TIF_SIGPENDING);
648 	/*
649 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
650 	 * case. We don't check t->state here because there is a race with it
651 	 * executing another processor and just now entering stopped state.
652 	 * By using wake_up_state, we ensure the process will wake up and
653 	 * handle its death signal.
654 	 */
655 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
656 		kick_process(t);
657 }
658 
659 /*
660  * Remove signals in mask from the pending set and queue.
661  * Returns 1 if any signals were found.
662  *
663  * All callers must be holding the siglock.
664  */
665 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
666 {
667 	struct sigqueue *q, *n;
668 	sigset_t m;
669 
670 	sigandsets(&m, mask, &s->signal);
671 	if (sigisemptyset(&m))
672 		return 0;
673 
674 	sigandnsets(&s->signal, &s->signal, mask);
675 	list_for_each_entry_safe(q, n, &s->list, list) {
676 		if (sigismember(mask, q->info.si_signo)) {
677 			list_del_init(&q->list);
678 			__sigqueue_free(q);
679 		}
680 	}
681 	return 1;
682 }
683 
684 static inline int is_si_special(const struct siginfo *info)
685 {
686 	return info <= SEND_SIG_FORCED;
687 }
688 
689 static inline bool si_fromuser(const struct siginfo *info)
690 {
691 	return info == SEND_SIG_NOINFO ||
692 		(!is_si_special(info) && SI_FROMUSER(info));
693 }
694 
695 /*
696  * called with RCU read lock from check_kill_permission()
697  */
698 static int kill_ok_by_cred(struct task_struct *t)
699 {
700 	const struct cred *cred = current_cred();
701 	const struct cred *tcred = __task_cred(t);
702 
703 	if (uid_eq(cred->euid, tcred->suid) ||
704 	    uid_eq(cred->euid, tcred->uid)  ||
705 	    uid_eq(cred->uid,  tcred->suid) ||
706 	    uid_eq(cred->uid,  tcred->uid))
707 		return 1;
708 
709 	if (ns_capable(tcred->user_ns, CAP_KILL))
710 		return 1;
711 
712 	return 0;
713 }
714 
715 /*
716  * Bad permissions for sending the signal
717  * - the caller must hold the RCU read lock
718  */
719 static int check_kill_permission(int sig, struct siginfo *info,
720 				 struct task_struct *t)
721 {
722 	struct pid *sid;
723 	int error;
724 
725 	if (!valid_signal(sig))
726 		return -EINVAL;
727 
728 	if (!si_fromuser(info))
729 		return 0;
730 
731 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
732 	if (error)
733 		return error;
734 
735 	if (!same_thread_group(current, t) &&
736 	    !kill_ok_by_cred(t)) {
737 		switch (sig) {
738 		case SIGCONT:
739 			sid = task_session(t);
740 			/*
741 			 * We don't return the error if sid == NULL. The
742 			 * task was unhashed, the caller must notice this.
743 			 */
744 			if (!sid || sid == task_session(current))
745 				break;
746 		default:
747 			return -EPERM;
748 		}
749 	}
750 
751 	return security_task_kill(t, info, sig, 0);
752 }
753 
754 /**
755  * ptrace_trap_notify - schedule trap to notify ptracer
756  * @t: tracee wanting to notify tracer
757  *
758  * This function schedules sticky ptrace trap which is cleared on the next
759  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
760  * ptracer.
761  *
762  * If @t is running, STOP trap will be taken.  If trapped for STOP and
763  * ptracer is listening for events, tracee is woken up so that it can
764  * re-trap for the new event.  If trapped otherwise, STOP trap will be
765  * eventually taken without returning to userland after the existing traps
766  * are finished by PTRACE_CONT.
767  *
768  * CONTEXT:
769  * Must be called with @task->sighand->siglock held.
770  */
771 static void ptrace_trap_notify(struct task_struct *t)
772 {
773 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
774 	assert_spin_locked(&t->sighand->siglock);
775 
776 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
777 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
778 }
779 
780 /*
781  * Handle magic process-wide effects of stop/continue signals. Unlike
782  * the signal actions, these happen immediately at signal-generation
783  * time regardless of blocking, ignoring, or handling.  This does the
784  * actual continuing for SIGCONT, but not the actual stopping for stop
785  * signals. The process stop is done as a signal action for SIG_DFL.
786  *
787  * Returns true if the signal should be actually delivered, otherwise
788  * it should be dropped.
789  */
790 static bool prepare_signal(int sig, struct task_struct *p, bool force)
791 {
792 	struct signal_struct *signal = p->signal;
793 	struct task_struct *t;
794 	sigset_t flush;
795 
796 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
797 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
798 			return sig == SIGKILL;
799 		/*
800 		 * The process is in the middle of dying, nothing to do.
801 		 */
802 	} else if (sig_kernel_stop(sig)) {
803 		/*
804 		 * This is a stop signal.  Remove SIGCONT from all queues.
805 		 */
806 		siginitset(&flush, sigmask(SIGCONT));
807 		flush_sigqueue_mask(&flush, &signal->shared_pending);
808 		for_each_thread(p, t)
809 			flush_sigqueue_mask(&flush, &t->pending);
810 	} else if (sig == SIGCONT) {
811 		unsigned int why;
812 		/*
813 		 * Remove all stop signals from all queues, wake all threads.
814 		 */
815 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
816 		flush_sigqueue_mask(&flush, &signal->shared_pending);
817 		for_each_thread(p, t) {
818 			flush_sigqueue_mask(&flush, &t->pending);
819 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
820 			if (likely(!(t->ptrace & PT_SEIZED)))
821 				wake_up_state(t, __TASK_STOPPED);
822 			else
823 				ptrace_trap_notify(t);
824 		}
825 
826 		/*
827 		 * Notify the parent with CLD_CONTINUED if we were stopped.
828 		 *
829 		 * If we were in the middle of a group stop, we pretend it
830 		 * was already finished, and then continued. Since SIGCHLD
831 		 * doesn't queue we report only CLD_STOPPED, as if the next
832 		 * CLD_CONTINUED was dropped.
833 		 */
834 		why = 0;
835 		if (signal->flags & SIGNAL_STOP_STOPPED)
836 			why |= SIGNAL_CLD_CONTINUED;
837 		else if (signal->group_stop_count)
838 			why |= SIGNAL_CLD_STOPPED;
839 
840 		if (why) {
841 			/*
842 			 * The first thread which returns from do_signal_stop()
843 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
844 			 * notify its parent. See get_signal_to_deliver().
845 			 */
846 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
847 			signal->group_stop_count = 0;
848 			signal->group_exit_code = 0;
849 		}
850 	}
851 
852 	return !sig_ignored(p, sig, force);
853 }
854 
855 /*
856  * Test if P wants to take SIG.  After we've checked all threads with this,
857  * it's equivalent to finding no threads not blocking SIG.  Any threads not
858  * blocking SIG were ruled out because they are not running and already
859  * have pending signals.  Such threads will dequeue from the shared queue
860  * as soon as they're available, so putting the signal on the shared queue
861  * will be equivalent to sending it to one such thread.
862  */
863 static inline int wants_signal(int sig, struct task_struct *p)
864 {
865 	if (sigismember(&p->blocked, sig))
866 		return 0;
867 	if (p->flags & PF_EXITING)
868 		return 0;
869 	if (sig == SIGKILL)
870 		return 1;
871 	if (task_is_stopped_or_traced(p))
872 		return 0;
873 	return task_curr(p) || !signal_pending(p);
874 }
875 
876 static void complete_signal(int sig, struct task_struct *p, int group)
877 {
878 	struct signal_struct *signal = p->signal;
879 	struct task_struct *t;
880 
881 	/*
882 	 * Now find a thread we can wake up to take the signal off the queue.
883 	 *
884 	 * If the main thread wants the signal, it gets first crack.
885 	 * Probably the least surprising to the average bear.
886 	 */
887 	if (wants_signal(sig, p))
888 		t = p;
889 	else if (!group || thread_group_empty(p))
890 		/*
891 		 * There is just one thread and it does not need to be woken.
892 		 * It will dequeue unblocked signals before it runs again.
893 		 */
894 		return;
895 	else {
896 		/*
897 		 * Otherwise try to find a suitable thread.
898 		 */
899 		t = signal->curr_target;
900 		while (!wants_signal(sig, t)) {
901 			t = next_thread(t);
902 			if (t == signal->curr_target)
903 				/*
904 				 * No thread needs to be woken.
905 				 * Any eligible threads will see
906 				 * the signal in the queue soon.
907 				 */
908 				return;
909 		}
910 		signal->curr_target = t;
911 	}
912 
913 	/*
914 	 * Found a killable thread.  If the signal will be fatal,
915 	 * then start taking the whole group down immediately.
916 	 */
917 	if (sig_fatal(p, sig) &&
918 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
919 	    !sigismember(&t->real_blocked, sig) &&
920 	    (sig == SIGKILL || !t->ptrace)) {
921 		/*
922 		 * This signal will be fatal to the whole group.
923 		 */
924 		if (!sig_kernel_coredump(sig)) {
925 			/*
926 			 * Start a group exit and wake everybody up.
927 			 * This way we don't have other threads
928 			 * running and doing things after a slower
929 			 * thread has the fatal signal pending.
930 			 */
931 			signal->flags = SIGNAL_GROUP_EXIT;
932 			signal->group_exit_code = sig;
933 			signal->group_stop_count = 0;
934 			t = p;
935 			do {
936 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
937 				sigaddset(&t->pending.signal, SIGKILL);
938 				signal_wake_up(t, 1);
939 			} while_each_thread(p, t);
940 			return;
941 		}
942 	}
943 
944 	/*
945 	 * The signal is already in the shared-pending queue.
946 	 * Tell the chosen thread to wake up and dequeue it.
947 	 */
948 	signal_wake_up(t, sig == SIGKILL);
949 	return;
950 }
951 
952 static inline int legacy_queue(struct sigpending *signals, int sig)
953 {
954 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
955 }
956 
957 #ifdef CONFIG_USER_NS
958 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
959 {
960 	if (current_user_ns() == task_cred_xxx(t, user_ns))
961 		return;
962 
963 	if (SI_FROMKERNEL(info))
964 		return;
965 
966 	rcu_read_lock();
967 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
968 					make_kuid(current_user_ns(), info->si_uid));
969 	rcu_read_unlock();
970 }
971 #else
972 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
973 {
974 	return;
975 }
976 #endif
977 
978 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
979 			int group, int from_ancestor_ns)
980 {
981 	struct sigpending *pending;
982 	struct sigqueue *q;
983 	int override_rlimit;
984 	int ret = 0, result;
985 
986 	assert_spin_locked(&t->sighand->siglock);
987 
988 	result = TRACE_SIGNAL_IGNORED;
989 	if (!prepare_signal(sig, t,
990 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
991 		goto ret;
992 
993 	pending = group ? &t->signal->shared_pending : &t->pending;
994 	/*
995 	 * Short-circuit ignored signals and support queuing
996 	 * exactly one non-rt signal, so that we can get more
997 	 * detailed information about the cause of the signal.
998 	 */
999 	result = TRACE_SIGNAL_ALREADY_PENDING;
1000 	if (legacy_queue(pending, sig))
1001 		goto ret;
1002 
1003 	result = TRACE_SIGNAL_DELIVERED;
1004 	/*
1005 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1006 	 * or SIGKILL.
1007 	 */
1008 	if (info == SEND_SIG_FORCED)
1009 		goto out_set;
1010 
1011 	/*
1012 	 * Real-time signals must be queued if sent by sigqueue, or
1013 	 * some other real-time mechanism.  It is implementation
1014 	 * defined whether kill() does so.  We attempt to do so, on
1015 	 * the principle of least surprise, but since kill is not
1016 	 * allowed to fail with EAGAIN when low on memory we just
1017 	 * make sure at least one signal gets delivered and don't
1018 	 * pass on the info struct.
1019 	 */
1020 	if (sig < SIGRTMIN)
1021 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1022 	else
1023 		override_rlimit = 0;
1024 
1025 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1026 		override_rlimit);
1027 	if (q) {
1028 		list_add_tail(&q->list, &pending->list);
1029 		switch ((unsigned long) info) {
1030 		case (unsigned long) SEND_SIG_NOINFO:
1031 			q->info.si_signo = sig;
1032 			q->info.si_errno = 0;
1033 			q->info.si_code = SI_USER;
1034 			q->info.si_pid = task_tgid_nr_ns(current,
1035 							task_active_pid_ns(t));
1036 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1037 			break;
1038 		case (unsigned long) SEND_SIG_PRIV:
1039 			q->info.si_signo = sig;
1040 			q->info.si_errno = 0;
1041 			q->info.si_code = SI_KERNEL;
1042 			q->info.si_pid = 0;
1043 			q->info.si_uid = 0;
1044 			break;
1045 		default:
1046 			copy_siginfo(&q->info, info);
1047 			if (from_ancestor_ns)
1048 				q->info.si_pid = 0;
1049 			break;
1050 		}
1051 
1052 		userns_fixup_signal_uid(&q->info, t);
1053 
1054 	} else if (!is_si_special(info)) {
1055 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1056 			/*
1057 			 * Queue overflow, abort.  We may abort if the
1058 			 * signal was rt and sent by user using something
1059 			 * other than kill().
1060 			 */
1061 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1062 			ret = -EAGAIN;
1063 			goto ret;
1064 		} else {
1065 			/*
1066 			 * This is a silent loss of information.  We still
1067 			 * send the signal, but the *info bits are lost.
1068 			 */
1069 			result = TRACE_SIGNAL_LOSE_INFO;
1070 		}
1071 	}
1072 
1073 out_set:
1074 	signalfd_notify(t, sig);
1075 	sigaddset(&pending->signal, sig);
1076 	complete_signal(sig, t, group);
1077 ret:
1078 	trace_signal_generate(sig, info, t, group, result);
1079 	return ret;
1080 }
1081 
1082 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1083 			int group)
1084 {
1085 	int from_ancestor_ns = 0;
1086 
1087 #ifdef CONFIG_PID_NS
1088 	from_ancestor_ns = si_fromuser(info) &&
1089 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1090 #endif
1091 
1092 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1093 }
1094 
1095 static void print_fatal_signal(int signr)
1096 {
1097 	struct pt_regs *regs = signal_pt_regs();
1098 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1099 
1100 #if defined(__i386__) && !defined(__arch_um__)
1101 	pr_info("code at %08lx: ", regs->ip);
1102 	{
1103 		int i;
1104 		for (i = 0; i < 16; i++) {
1105 			unsigned char insn;
1106 
1107 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1108 				break;
1109 			pr_cont("%02x ", insn);
1110 		}
1111 	}
1112 	pr_cont("\n");
1113 #endif
1114 	preempt_disable();
1115 	show_regs(regs);
1116 	preempt_enable();
1117 }
1118 
1119 static int __init setup_print_fatal_signals(char *str)
1120 {
1121 	get_option (&str, &print_fatal_signals);
1122 
1123 	return 1;
1124 }
1125 
1126 __setup("print-fatal-signals=", setup_print_fatal_signals);
1127 
1128 int
1129 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1130 {
1131 	return send_signal(sig, info, p, 1);
1132 }
1133 
1134 static int
1135 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1136 {
1137 	return send_signal(sig, info, t, 0);
1138 }
1139 
1140 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1141 			bool group)
1142 {
1143 	unsigned long flags;
1144 	int ret = -ESRCH;
1145 
1146 	if (lock_task_sighand(p, &flags)) {
1147 		ret = send_signal(sig, info, p, group);
1148 		unlock_task_sighand(p, &flags);
1149 	}
1150 
1151 	return ret;
1152 }
1153 
1154 /*
1155  * Force a signal that the process can't ignore: if necessary
1156  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1157  *
1158  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1159  * since we do not want to have a signal handler that was blocked
1160  * be invoked when user space had explicitly blocked it.
1161  *
1162  * We don't want to have recursive SIGSEGV's etc, for example,
1163  * that is why we also clear SIGNAL_UNKILLABLE.
1164  */
1165 int
1166 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1167 {
1168 	unsigned long int flags;
1169 	int ret, blocked, ignored;
1170 	struct k_sigaction *action;
1171 
1172 	spin_lock_irqsave(&t->sighand->siglock, flags);
1173 	action = &t->sighand->action[sig-1];
1174 	ignored = action->sa.sa_handler == SIG_IGN;
1175 	blocked = sigismember(&t->blocked, sig);
1176 	if (blocked || ignored) {
1177 		action->sa.sa_handler = SIG_DFL;
1178 		if (blocked) {
1179 			sigdelset(&t->blocked, sig);
1180 			recalc_sigpending_and_wake(t);
1181 		}
1182 	}
1183 	if (action->sa.sa_handler == SIG_DFL)
1184 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1185 	ret = specific_send_sig_info(sig, info, t);
1186 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1187 
1188 	return ret;
1189 }
1190 
1191 /*
1192  * Nuke all other threads in the group.
1193  */
1194 int zap_other_threads(struct task_struct *p)
1195 {
1196 	struct task_struct *t = p;
1197 	int count = 0;
1198 
1199 	p->signal->group_stop_count = 0;
1200 
1201 	while_each_thread(p, t) {
1202 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1203 		count++;
1204 
1205 		/* Don't bother with already dead threads */
1206 		if (t->exit_state)
1207 			continue;
1208 		sigaddset(&t->pending.signal, SIGKILL);
1209 		signal_wake_up(t, 1);
1210 	}
1211 
1212 	return count;
1213 }
1214 
1215 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1216 					   unsigned long *flags)
1217 {
1218 	struct sighand_struct *sighand;
1219 
1220 	for (;;) {
1221 		/*
1222 		 * Disable interrupts early to avoid deadlocks.
1223 		 * See rcu_read_unlock() comment header for details.
1224 		 */
1225 		local_irq_save(*flags);
1226 		rcu_read_lock();
1227 		sighand = rcu_dereference(tsk->sighand);
1228 		if (unlikely(sighand == NULL)) {
1229 			rcu_read_unlock();
1230 			local_irq_restore(*flags);
1231 			break;
1232 		}
1233 		/*
1234 		 * This sighand can be already freed and even reused, but
1235 		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1236 		 * initializes ->siglock: this slab can't go away, it has
1237 		 * the same object type, ->siglock can't be reinitialized.
1238 		 *
1239 		 * We need to ensure that tsk->sighand is still the same
1240 		 * after we take the lock, we can race with de_thread() or
1241 		 * __exit_signal(). In the latter case the next iteration
1242 		 * must see ->sighand == NULL.
1243 		 */
1244 		spin_lock(&sighand->siglock);
1245 		if (likely(sighand == tsk->sighand)) {
1246 			rcu_read_unlock();
1247 			break;
1248 		}
1249 		spin_unlock(&sighand->siglock);
1250 		rcu_read_unlock();
1251 		local_irq_restore(*flags);
1252 	}
1253 
1254 	return sighand;
1255 }
1256 
1257 /*
1258  * send signal info to all the members of a group
1259  */
1260 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1261 {
1262 	int ret;
1263 
1264 	rcu_read_lock();
1265 	ret = check_kill_permission(sig, info, p);
1266 	rcu_read_unlock();
1267 
1268 	if (!ret && sig)
1269 		ret = do_send_sig_info(sig, info, p, true);
1270 
1271 	return ret;
1272 }
1273 
1274 /*
1275  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1276  * control characters do (^C, ^Z etc)
1277  * - the caller must hold at least a readlock on tasklist_lock
1278  */
1279 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1280 {
1281 	struct task_struct *p = NULL;
1282 	int retval, success;
1283 
1284 	success = 0;
1285 	retval = -ESRCH;
1286 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1287 		int err = group_send_sig_info(sig, info, p);
1288 		success |= !err;
1289 		retval = err;
1290 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1291 	return success ? 0 : retval;
1292 }
1293 
1294 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1295 {
1296 	int error = -ESRCH;
1297 	struct task_struct *p;
1298 
1299 	for (;;) {
1300 		rcu_read_lock();
1301 		p = pid_task(pid, PIDTYPE_PID);
1302 		if (p)
1303 			error = group_send_sig_info(sig, info, p);
1304 		rcu_read_unlock();
1305 		if (likely(!p || error != -ESRCH))
1306 			return error;
1307 
1308 		/*
1309 		 * The task was unhashed in between, try again.  If it
1310 		 * is dead, pid_task() will return NULL, if we race with
1311 		 * de_thread() it will find the new leader.
1312 		 */
1313 	}
1314 }
1315 
1316 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1317 {
1318 	int error;
1319 	rcu_read_lock();
1320 	error = kill_pid_info(sig, info, find_vpid(pid));
1321 	rcu_read_unlock();
1322 	return error;
1323 }
1324 
1325 static int kill_as_cred_perm(const struct cred *cred,
1326 			     struct task_struct *target)
1327 {
1328 	const struct cred *pcred = __task_cred(target);
1329 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1330 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1331 		return 0;
1332 	return 1;
1333 }
1334 
1335 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1336 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1337 			 const struct cred *cred, u32 secid)
1338 {
1339 	int ret = -EINVAL;
1340 	struct task_struct *p;
1341 	unsigned long flags;
1342 
1343 	if (!valid_signal(sig))
1344 		return ret;
1345 
1346 	rcu_read_lock();
1347 	p = pid_task(pid, PIDTYPE_PID);
1348 	if (!p) {
1349 		ret = -ESRCH;
1350 		goto out_unlock;
1351 	}
1352 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1353 		ret = -EPERM;
1354 		goto out_unlock;
1355 	}
1356 	ret = security_task_kill(p, info, sig, secid);
1357 	if (ret)
1358 		goto out_unlock;
1359 
1360 	if (sig) {
1361 		if (lock_task_sighand(p, &flags)) {
1362 			ret = __send_signal(sig, info, p, 1, 0);
1363 			unlock_task_sighand(p, &flags);
1364 		} else
1365 			ret = -ESRCH;
1366 	}
1367 out_unlock:
1368 	rcu_read_unlock();
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1372 
1373 /*
1374  * kill_something_info() interprets pid in interesting ways just like kill(2).
1375  *
1376  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1377  * is probably wrong.  Should make it like BSD or SYSV.
1378  */
1379 
1380 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1381 {
1382 	int ret;
1383 
1384 	if (pid > 0) {
1385 		rcu_read_lock();
1386 		ret = kill_pid_info(sig, info, find_vpid(pid));
1387 		rcu_read_unlock();
1388 		return ret;
1389 	}
1390 
1391 	read_lock(&tasklist_lock);
1392 	if (pid != -1) {
1393 		ret = __kill_pgrp_info(sig, info,
1394 				pid ? find_vpid(-pid) : task_pgrp(current));
1395 	} else {
1396 		int retval = 0, count = 0;
1397 		struct task_struct * p;
1398 
1399 		for_each_process(p) {
1400 			if (task_pid_vnr(p) > 1 &&
1401 					!same_thread_group(p, current)) {
1402 				int err = group_send_sig_info(sig, info, p);
1403 				++count;
1404 				if (err != -EPERM)
1405 					retval = err;
1406 			}
1407 		}
1408 		ret = count ? retval : -ESRCH;
1409 	}
1410 	read_unlock(&tasklist_lock);
1411 
1412 	return ret;
1413 }
1414 
1415 /*
1416  * These are for backward compatibility with the rest of the kernel source.
1417  */
1418 
1419 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1420 {
1421 	/*
1422 	 * Make sure legacy kernel users don't send in bad values
1423 	 * (normal paths check this in check_kill_permission).
1424 	 */
1425 	if (!valid_signal(sig))
1426 		return -EINVAL;
1427 
1428 	return do_send_sig_info(sig, info, p, false);
1429 }
1430 
1431 #define __si_special(priv) \
1432 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1433 
1434 int
1435 send_sig(int sig, struct task_struct *p, int priv)
1436 {
1437 	return send_sig_info(sig, __si_special(priv), p);
1438 }
1439 
1440 void
1441 force_sig(int sig, struct task_struct *p)
1442 {
1443 	force_sig_info(sig, SEND_SIG_PRIV, p);
1444 }
1445 
1446 /*
1447  * When things go south during signal handling, we
1448  * will force a SIGSEGV. And if the signal that caused
1449  * the problem was already a SIGSEGV, we'll want to
1450  * make sure we don't even try to deliver the signal..
1451  */
1452 int
1453 force_sigsegv(int sig, struct task_struct *p)
1454 {
1455 	if (sig == SIGSEGV) {
1456 		unsigned long flags;
1457 		spin_lock_irqsave(&p->sighand->siglock, flags);
1458 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1459 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1460 	}
1461 	force_sig(SIGSEGV, p);
1462 	return 0;
1463 }
1464 
1465 int kill_pgrp(struct pid *pid, int sig, int priv)
1466 {
1467 	int ret;
1468 
1469 	read_lock(&tasklist_lock);
1470 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1471 	read_unlock(&tasklist_lock);
1472 
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL(kill_pgrp);
1476 
1477 int kill_pid(struct pid *pid, int sig, int priv)
1478 {
1479 	return kill_pid_info(sig, __si_special(priv), pid);
1480 }
1481 EXPORT_SYMBOL(kill_pid);
1482 
1483 /*
1484  * These functions support sending signals using preallocated sigqueue
1485  * structures.  This is needed "because realtime applications cannot
1486  * afford to lose notifications of asynchronous events, like timer
1487  * expirations or I/O completions".  In the case of POSIX Timers
1488  * we allocate the sigqueue structure from the timer_create.  If this
1489  * allocation fails we are able to report the failure to the application
1490  * with an EAGAIN error.
1491  */
1492 struct sigqueue *sigqueue_alloc(void)
1493 {
1494 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1495 
1496 	if (q)
1497 		q->flags |= SIGQUEUE_PREALLOC;
1498 
1499 	return q;
1500 }
1501 
1502 void sigqueue_free(struct sigqueue *q)
1503 {
1504 	unsigned long flags;
1505 	spinlock_t *lock = &current->sighand->siglock;
1506 
1507 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1508 	/*
1509 	 * We must hold ->siglock while testing q->list
1510 	 * to serialize with collect_signal() or with
1511 	 * __exit_signal()->flush_sigqueue().
1512 	 */
1513 	spin_lock_irqsave(lock, flags);
1514 	q->flags &= ~SIGQUEUE_PREALLOC;
1515 	/*
1516 	 * If it is queued it will be freed when dequeued,
1517 	 * like the "regular" sigqueue.
1518 	 */
1519 	if (!list_empty(&q->list))
1520 		q = NULL;
1521 	spin_unlock_irqrestore(lock, flags);
1522 
1523 	if (q)
1524 		__sigqueue_free(q);
1525 }
1526 
1527 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1528 {
1529 	int sig = q->info.si_signo;
1530 	struct sigpending *pending;
1531 	unsigned long flags;
1532 	int ret, result;
1533 
1534 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1535 
1536 	ret = -1;
1537 	if (!likely(lock_task_sighand(t, &flags)))
1538 		goto ret;
1539 
1540 	ret = 1; /* the signal is ignored */
1541 	result = TRACE_SIGNAL_IGNORED;
1542 	if (!prepare_signal(sig, t, false))
1543 		goto out;
1544 
1545 	ret = 0;
1546 	if (unlikely(!list_empty(&q->list))) {
1547 		/*
1548 		 * If an SI_TIMER entry is already queue just increment
1549 		 * the overrun count.
1550 		 */
1551 		BUG_ON(q->info.si_code != SI_TIMER);
1552 		q->info.si_overrun++;
1553 		result = TRACE_SIGNAL_ALREADY_PENDING;
1554 		goto out;
1555 	}
1556 	q->info.si_overrun = 0;
1557 
1558 	signalfd_notify(t, sig);
1559 	pending = group ? &t->signal->shared_pending : &t->pending;
1560 	list_add_tail(&q->list, &pending->list);
1561 	sigaddset(&pending->signal, sig);
1562 	complete_signal(sig, t, group);
1563 	result = TRACE_SIGNAL_DELIVERED;
1564 out:
1565 	trace_signal_generate(sig, &q->info, t, group, result);
1566 	unlock_task_sighand(t, &flags);
1567 ret:
1568 	return ret;
1569 }
1570 
1571 /*
1572  * Let a parent know about the death of a child.
1573  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1574  *
1575  * Returns true if our parent ignored us and so we've switched to
1576  * self-reaping.
1577  */
1578 bool do_notify_parent(struct task_struct *tsk, int sig)
1579 {
1580 	struct siginfo info;
1581 	unsigned long flags;
1582 	struct sighand_struct *psig;
1583 	bool autoreap = false;
1584 	cputime_t utime, stime;
1585 
1586 	BUG_ON(sig == -1);
1587 
1588  	/* do_notify_parent_cldstop should have been called instead.  */
1589  	BUG_ON(task_is_stopped_or_traced(tsk));
1590 
1591 	BUG_ON(!tsk->ptrace &&
1592 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1593 
1594 	if (sig != SIGCHLD) {
1595 		/*
1596 		 * This is only possible if parent == real_parent.
1597 		 * Check if it has changed security domain.
1598 		 */
1599 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1600 			sig = SIGCHLD;
1601 	}
1602 
1603 	info.si_signo = sig;
1604 	info.si_errno = 0;
1605 	/*
1606 	 * We are under tasklist_lock here so our parent is tied to
1607 	 * us and cannot change.
1608 	 *
1609 	 * task_active_pid_ns will always return the same pid namespace
1610 	 * until a task passes through release_task.
1611 	 *
1612 	 * write_lock() currently calls preempt_disable() which is the
1613 	 * same as rcu_read_lock(), but according to Oleg, this is not
1614 	 * correct to rely on this
1615 	 */
1616 	rcu_read_lock();
1617 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1618 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1619 				       task_uid(tsk));
1620 	rcu_read_unlock();
1621 
1622 	task_cputime(tsk, &utime, &stime);
1623 	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1624 	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1625 
1626 	info.si_status = tsk->exit_code & 0x7f;
1627 	if (tsk->exit_code & 0x80)
1628 		info.si_code = CLD_DUMPED;
1629 	else if (tsk->exit_code & 0x7f)
1630 		info.si_code = CLD_KILLED;
1631 	else {
1632 		info.si_code = CLD_EXITED;
1633 		info.si_status = tsk->exit_code >> 8;
1634 	}
1635 
1636 	psig = tsk->parent->sighand;
1637 	spin_lock_irqsave(&psig->siglock, flags);
1638 	if (!tsk->ptrace && sig == SIGCHLD &&
1639 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1640 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1641 		/*
1642 		 * We are exiting and our parent doesn't care.  POSIX.1
1643 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1644 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1645 		 * automatically and not left for our parent's wait4 call.
1646 		 * Rather than having the parent do it as a magic kind of
1647 		 * signal handler, we just set this to tell do_exit that we
1648 		 * can be cleaned up without becoming a zombie.  Note that
1649 		 * we still call __wake_up_parent in this case, because a
1650 		 * blocked sys_wait4 might now return -ECHILD.
1651 		 *
1652 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1653 		 * is implementation-defined: we do (if you don't want
1654 		 * it, just use SIG_IGN instead).
1655 		 */
1656 		autoreap = true;
1657 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1658 			sig = 0;
1659 	}
1660 	if (valid_signal(sig) && sig)
1661 		__group_send_sig_info(sig, &info, tsk->parent);
1662 	__wake_up_parent(tsk, tsk->parent);
1663 	spin_unlock_irqrestore(&psig->siglock, flags);
1664 
1665 	return autoreap;
1666 }
1667 
1668 /**
1669  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1670  * @tsk: task reporting the state change
1671  * @for_ptracer: the notification is for ptracer
1672  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1673  *
1674  * Notify @tsk's parent that the stopped/continued state has changed.  If
1675  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1676  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1677  *
1678  * CONTEXT:
1679  * Must be called with tasklist_lock at least read locked.
1680  */
1681 static void do_notify_parent_cldstop(struct task_struct *tsk,
1682 				     bool for_ptracer, int why)
1683 {
1684 	struct siginfo info;
1685 	unsigned long flags;
1686 	struct task_struct *parent;
1687 	struct sighand_struct *sighand;
1688 	cputime_t utime, stime;
1689 
1690 	if (for_ptracer) {
1691 		parent = tsk->parent;
1692 	} else {
1693 		tsk = tsk->group_leader;
1694 		parent = tsk->real_parent;
1695 	}
1696 
1697 	info.si_signo = SIGCHLD;
1698 	info.si_errno = 0;
1699 	/*
1700 	 * see comment in do_notify_parent() about the following 4 lines
1701 	 */
1702 	rcu_read_lock();
1703 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1704 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1705 	rcu_read_unlock();
1706 
1707 	task_cputime(tsk, &utime, &stime);
1708 	info.si_utime = cputime_to_clock_t(utime);
1709 	info.si_stime = cputime_to_clock_t(stime);
1710 
1711  	info.si_code = why;
1712  	switch (why) {
1713  	case CLD_CONTINUED:
1714  		info.si_status = SIGCONT;
1715  		break;
1716  	case CLD_STOPPED:
1717  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1718  		break;
1719  	case CLD_TRAPPED:
1720  		info.si_status = tsk->exit_code & 0x7f;
1721  		break;
1722  	default:
1723  		BUG();
1724  	}
1725 
1726 	sighand = parent->sighand;
1727 	spin_lock_irqsave(&sighand->siglock, flags);
1728 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1729 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1730 		__group_send_sig_info(SIGCHLD, &info, parent);
1731 	/*
1732 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1733 	 */
1734 	__wake_up_parent(tsk, parent);
1735 	spin_unlock_irqrestore(&sighand->siglock, flags);
1736 }
1737 
1738 static inline int may_ptrace_stop(void)
1739 {
1740 	if (!likely(current->ptrace))
1741 		return 0;
1742 	/*
1743 	 * Are we in the middle of do_coredump?
1744 	 * If so and our tracer is also part of the coredump stopping
1745 	 * is a deadlock situation, and pointless because our tracer
1746 	 * is dead so don't allow us to stop.
1747 	 * If SIGKILL was already sent before the caller unlocked
1748 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1749 	 * is safe to enter schedule().
1750 	 *
1751 	 * This is almost outdated, a task with the pending SIGKILL can't
1752 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1753 	 * after SIGKILL was already dequeued.
1754 	 */
1755 	if (unlikely(current->mm->core_state) &&
1756 	    unlikely(current->mm == current->parent->mm))
1757 		return 0;
1758 
1759 	return 1;
1760 }
1761 
1762 /*
1763  * Return non-zero if there is a SIGKILL that should be waking us up.
1764  * Called with the siglock held.
1765  */
1766 static int sigkill_pending(struct task_struct *tsk)
1767 {
1768 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1769 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1770 }
1771 
1772 /*
1773  * This must be called with current->sighand->siglock held.
1774  *
1775  * This should be the path for all ptrace stops.
1776  * We always set current->last_siginfo while stopped here.
1777  * That makes it a way to test a stopped process for
1778  * being ptrace-stopped vs being job-control-stopped.
1779  *
1780  * If we actually decide not to stop at all because the tracer
1781  * is gone, we keep current->exit_code unless clear_code.
1782  */
1783 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1784 	__releases(&current->sighand->siglock)
1785 	__acquires(&current->sighand->siglock)
1786 {
1787 	bool gstop_done = false;
1788 
1789 	if (arch_ptrace_stop_needed(exit_code, info)) {
1790 		/*
1791 		 * The arch code has something special to do before a
1792 		 * ptrace stop.  This is allowed to block, e.g. for faults
1793 		 * on user stack pages.  We can't keep the siglock while
1794 		 * calling arch_ptrace_stop, so we must release it now.
1795 		 * To preserve proper semantics, we must do this before
1796 		 * any signal bookkeeping like checking group_stop_count.
1797 		 * Meanwhile, a SIGKILL could come in before we retake the
1798 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1799 		 * So after regaining the lock, we must check for SIGKILL.
1800 		 */
1801 		spin_unlock_irq(&current->sighand->siglock);
1802 		arch_ptrace_stop(exit_code, info);
1803 		spin_lock_irq(&current->sighand->siglock);
1804 		if (sigkill_pending(current))
1805 			return;
1806 	}
1807 
1808 	/*
1809 	 * We're committing to trapping.  TRACED should be visible before
1810 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1811 	 * Also, transition to TRACED and updates to ->jobctl should be
1812 	 * atomic with respect to siglock and should be done after the arch
1813 	 * hook as siglock is released and regrabbed across it.
1814 	 */
1815 	set_current_state(TASK_TRACED);
1816 
1817 	current->last_siginfo = info;
1818 	current->exit_code = exit_code;
1819 
1820 	/*
1821 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1822 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1823 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1824 	 * could be clear now.  We act as if SIGCONT is received after
1825 	 * TASK_TRACED is entered - ignore it.
1826 	 */
1827 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1828 		gstop_done = task_participate_group_stop(current);
1829 
1830 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1831 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1832 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1833 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1834 
1835 	/* entering a trap, clear TRAPPING */
1836 	task_clear_jobctl_trapping(current);
1837 
1838 	spin_unlock_irq(&current->sighand->siglock);
1839 	read_lock(&tasklist_lock);
1840 	if (may_ptrace_stop()) {
1841 		/*
1842 		 * Notify parents of the stop.
1843 		 *
1844 		 * While ptraced, there are two parents - the ptracer and
1845 		 * the real_parent of the group_leader.  The ptracer should
1846 		 * know about every stop while the real parent is only
1847 		 * interested in the completion of group stop.  The states
1848 		 * for the two don't interact with each other.  Notify
1849 		 * separately unless they're gonna be duplicates.
1850 		 */
1851 		do_notify_parent_cldstop(current, true, why);
1852 		if (gstop_done && ptrace_reparented(current))
1853 			do_notify_parent_cldstop(current, false, why);
1854 
1855 		/*
1856 		 * Don't want to allow preemption here, because
1857 		 * sys_ptrace() needs this task to be inactive.
1858 		 *
1859 		 * XXX: implement read_unlock_no_resched().
1860 		 */
1861 		preempt_disable();
1862 		read_unlock(&tasklist_lock);
1863 		preempt_enable_no_resched();
1864 		freezable_schedule();
1865 	} else {
1866 		/*
1867 		 * By the time we got the lock, our tracer went away.
1868 		 * Don't drop the lock yet, another tracer may come.
1869 		 *
1870 		 * If @gstop_done, the ptracer went away between group stop
1871 		 * completion and here.  During detach, it would have set
1872 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1873 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1874 		 * the real parent of the group stop completion is enough.
1875 		 */
1876 		if (gstop_done)
1877 			do_notify_parent_cldstop(current, false, why);
1878 
1879 		/* tasklist protects us from ptrace_freeze_traced() */
1880 		__set_current_state(TASK_RUNNING);
1881 		if (clear_code)
1882 			current->exit_code = 0;
1883 		read_unlock(&tasklist_lock);
1884 	}
1885 
1886 	/*
1887 	 * We are back.  Now reacquire the siglock before touching
1888 	 * last_siginfo, so that we are sure to have synchronized with
1889 	 * any signal-sending on another CPU that wants to examine it.
1890 	 */
1891 	spin_lock_irq(&current->sighand->siglock);
1892 	current->last_siginfo = NULL;
1893 
1894 	/* LISTENING can be set only during STOP traps, clear it */
1895 	current->jobctl &= ~JOBCTL_LISTENING;
1896 
1897 	/*
1898 	 * Queued signals ignored us while we were stopped for tracing.
1899 	 * So check for any that we should take before resuming user mode.
1900 	 * This sets TIF_SIGPENDING, but never clears it.
1901 	 */
1902 	recalc_sigpending_tsk(current);
1903 }
1904 
1905 static void ptrace_do_notify(int signr, int exit_code, int why)
1906 {
1907 	siginfo_t info;
1908 
1909 	memset(&info, 0, sizeof info);
1910 	info.si_signo = signr;
1911 	info.si_code = exit_code;
1912 	info.si_pid = task_pid_vnr(current);
1913 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1914 
1915 	/* Let the debugger run.  */
1916 	ptrace_stop(exit_code, why, 1, &info);
1917 }
1918 
1919 void ptrace_notify(int exit_code)
1920 {
1921 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1922 	if (unlikely(current->task_works))
1923 		task_work_run();
1924 
1925 	spin_lock_irq(&current->sighand->siglock);
1926 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1927 	spin_unlock_irq(&current->sighand->siglock);
1928 }
1929 
1930 /**
1931  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1932  * @signr: signr causing group stop if initiating
1933  *
1934  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1935  * and participate in it.  If already set, participate in the existing
1936  * group stop.  If participated in a group stop (and thus slept), %true is
1937  * returned with siglock released.
1938  *
1939  * If ptraced, this function doesn't handle stop itself.  Instead,
1940  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1941  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1942  * places afterwards.
1943  *
1944  * CONTEXT:
1945  * Must be called with @current->sighand->siglock held, which is released
1946  * on %true return.
1947  *
1948  * RETURNS:
1949  * %false if group stop is already cancelled or ptrace trap is scheduled.
1950  * %true if participated in group stop.
1951  */
1952 static bool do_signal_stop(int signr)
1953 	__releases(&current->sighand->siglock)
1954 {
1955 	struct signal_struct *sig = current->signal;
1956 
1957 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1958 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1959 		struct task_struct *t;
1960 
1961 		/* signr will be recorded in task->jobctl for retries */
1962 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1963 
1964 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1965 		    unlikely(signal_group_exit(sig)))
1966 			return false;
1967 		/*
1968 		 * There is no group stop already in progress.  We must
1969 		 * initiate one now.
1970 		 *
1971 		 * While ptraced, a task may be resumed while group stop is
1972 		 * still in effect and then receive a stop signal and
1973 		 * initiate another group stop.  This deviates from the
1974 		 * usual behavior as two consecutive stop signals can't
1975 		 * cause two group stops when !ptraced.  That is why we
1976 		 * also check !task_is_stopped(t) below.
1977 		 *
1978 		 * The condition can be distinguished by testing whether
1979 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1980 		 * group_exit_code in such case.
1981 		 *
1982 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1983 		 * an intervening stop signal is required to cause two
1984 		 * continued events regardless of ptrace.
1985 		 */
1986 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1987 			sig->group_exit_code = signr;
1988 
1989 		sig->group_stop_count = 0;
1990 
1991 		if (task_set_jobctl_pending(current, signr | gstop))
1992 			sig->group_stop_count++;
1993 
1994 		t = current;
1995 		while_each_thread(current, t) {
1996 			/*
1997 			 * Setting state to TASK_STOPPED for a group
1998 			 * stop is always done with the siglock held,
1999 			 * so this check has no races.
2000 			 */
2001 			if (!task_is_stopped(t) &&
2002 			    task_set_jobctl_pending(t, signr | gstop)) {
2003 				sig->group_stop_count++;
2004 				if (likely(!(t->ptrace & PT_SEIZED)))
2005 					signal_wake_up(t, 0);
2006 				else
2007 					ptrace_trap_notify(t);
2008 			}
2009 		}
2010 	}
2011 
2012 	if (likely(!current->ptrace)) {
2013 		int notify = 0;
2014 
2015 		/*
2016 		 * If there are no other threads in the group, or if there
2017 		 * is a group stop in progress and we are the last to stop,
2018 		 * report to the parent.
2019 		 */
2020 		if (task_participate_group_stop(current))
2021 			notify = CLD_STOPPED;
2022 
2023 		__set_current_state(TASK_STOPPED);
2024 		spin_unlock_irq(&current->sighand->siglock);
2025 
2026 		/*
2027 		 * Notify the parent of the group stop completion.  Because
2028 		 * we're not holding either the siglock or tasklist_lock
2029 		 * here, ptracer may attach inbetween; however, this is for
2030 		 * group stop and should always be delivered to the real
2031 		 * parent of the group leader.  The new ptracer will get
2032 		 * its notification when this task transitions into
2033 		 * TASK_TRACED.
2034 		 */
2035 		if (notify) {
2036 			read_lock(&tasklist_lock);
2037 			do_notify_parent_cldstop(current, false, notify);
2038 			read_unlock(&tasklist_lock);
2039 		}
2040 
2041 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2042 		freezable_schedule();
2043 		return true;
2044 	} else {
2045 		/*
2046 		 * While ptraced, group stop is handled by STOP trap.
2047 		 * Schedule it and let the caller deal with it.
2048 		 */
2049 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2050 		return false;
2051 	}
2052 }
2053 
2054 /**
2055  * do_jobctl_trap - take care of ptrace jobctl traps
2056  *
2057  * When PT_SEIZED, it's used for both group stop and explicit
2058  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2059  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2060  * the stop signal; otherwise, %SIGTRAP.
2061  *
2062  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2063  * number as exit_code and no siginfo.
2064  *
2065  * CONTEXT:
2066  * Must be called with @current->sighand->siglock held, which may be
2067  * released and re-acquired before returning with intervening sleep.
2068  */
2069 static void do_jobctl_trap(void)
2070 {
2071 	struct signal_struct *signal = current->signal;
2072 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2073 
2074 	if (current->ptrace & PT_SEIZED) {
2075 		if (!signal->group_stop_count &&
2076 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2077 			signr = SIGTRAP;
2078 		WARN_ON_ONCE(!signr);
2079 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2080 				 CLD_STOPPED);
2081 	} else {
2082 		WARN_ON_ONCE(!signr);
2083 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2084 		current->exit_code = 0;
2085 	}
2086 }
2087 
2088 static int ptrace_signal(int signr, siginfo_t *info)
2089 {
2090 	ptrace_signal_deliver();
2091 	/*
2092 	 * We do not check sig_kernel_stop(signr) but set this marker
2093 	 * unconditionally because we do not know whether debugger will
2094 	 * change signr. This flag has no meaning unless we are going
2095 	 * to stop after return from ptrace_stop(). In this case it will
2096 	 * be checked in do_signal_stop(), we should only stop if it was
2097 	 * not cleared by SIGCONT while we were sleeping. See also the
2098 	 * comment in dequeue_signal().
2099 	 */
2100 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2101 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2102 
2103 	/* We're back.  Did the debugger cancel the sig?  */
2104 	signr = current->exit_code;
2105 	if (signr == 0)
2106 		return signr;
2107 
2108 	current->exit_code = 0;
2109 
2110 	/*
2111 	 * Update the siginfo structure if the signal has
2112 	 * changed.  If the debugger wanted something
2113 	 * specific in the siginfo structure then it should
2114 	 * have updated *info via PTRACE_SETSIGINFO.
2115 	 */
2116 	if (signr != info->si_signo) {
2117 		info->si_signo = signr;
2118 		info->si_errno = 0;
2119 		info->si_code = SI_USER;
2120 		rcu_read_lock();
2121 		info->si_pid = task_pid_vnr(current->parent);
2122 		info->si_uid = from_kuid_munged(current_user_ns(),
2123 						task_uid(current->parent));
2124 		rcu_read_unlock();
2125 	}
2126 
2127 	/* If the (new) signal is now blocked, requeue it.  */
2128 	if (sigismember(&current->blocked, signr)) {
2129 		specific_send_sig_info(signr, info, current);
2130 		signr = 0;
2131 	}
2132 
2133 	return signr;
2134 }
2135 
2136 int get_signal(struct ksignal *ksig)
2137 {
2138 	struct sighand_struct *sighand = current->sighand;
2139 	struct signal_struct *signal = current->signal;
2140 	int signr;
2141 
2142 	if (unlikely(current->task_works))
2143 		task_work_run();
2144 
2145 	if (unlikely(uprobe_deny_signal()))
2146 		return 0;
2147 
2148 	/*
2149 	 * Do this once, we can't return to user-mode if freezing() == T.
2150 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2151 	 * thus do not need another check after return.
2152 	 */
2153 	try_to_freeze();
2154 
2155 relock:
2156 	spin_lock_irq(&sighand->siglock);
2157 	/*
2158 	 * Every stopped thread goes here after wakeup. Check to see if
2159 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2160 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2161 	 */
2162 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2163 		int why;
2164 
2165 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2166 			why = CLD_CONTINUED;
2167 		else
2168 			why = CLD_STOPPED;
2169 
2170 		signal->flags &= ~SIGNAL_CLD_MASK;
2171 
2172 		spin_unlock_irq(&sighand->siglock);
2173 
2174 		/*
2175 		 * Notify the parent that we're continuing.  This event is
2176 		 * always per-process and doesn't make whole lot of sense
2177 		 * for ptracers, who shouldn't consume the state via
2178 		 * wait(2) either, but, for backward compatibility, notify
2179 		 * the ptracer of the group leader too unless it's gonna be
2180 		 * a duplicate.
2181 		 */
2182 		read_lock(&tasklist_lock);
2183 		do_notify_parent_cldstop(current, false, why);
2184 
2185 		if (ptrace_reparented(current->group_leader))
2186 			do_notify_parent_cldstop(current->group_leader,
2187 						true, why);
2188 		read_unlock(&tasklist_lock);
2189 
2190 		goto relock;
2191 	}
2192 
2193 	for (;;) {
2194 		struct k_sigaction *ka;
2195 
2196 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2197 		    do_signal_stop(0))
2198 			goto relock;
2199 
2200 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2201 			do_jobctl_trap();
2202 			spin_unlock_irq(&sighand->siglock);
2203 			goto relock;
2204 		}
2205 
2206 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2207 
2208 		if (!signr)
2209 			break; /* will return 0 */
2210 
2211 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2212 			signr = ptrace_signal(signr, &ksig->info);
2213 			if (!signr)
2214 				continue;
2215 		}
2216 
2217 		ka = &sighand->action[signr-1];
2218 
2219 		/* Trace actually delivered signals. */
2220 		trace_signal_deliver(signr, &ksig->info, ka);
2221 
2222 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2223 			continue;
2224 		if (ka->sa.sa_handler != SIG_DFL) {
2225 			/* Run the handler.  */
2226 			ksig->ka = *ka;
2227 
2228 			if (ka->sa.sa_flags & SA_ONESHOT)
2229 				ka->sa.sa_handler = SIG_DFL;
2230 
2231 			break; /* will return non-zero "signr" value */
2232 		}
2233 
2234 		/*
2235 		 * Now we are doing the default action for this signal.
2236 		 */
2237 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2238 			continue;
2239 
2240 		/*
2241 		 * Global init gets no signals it doesn't want.
2242 		 * Container-init gets no signals it doesn't want from same
2243 		 * container.
2244 		 *
2245 		 * Note that if global/container-init sees a sig_kernel_only()
2246 		 * signal here, the signal must have been generated internally
2247 		 * or must have come from an ancestor namespace. In either
2248 		 * case, the signal cannot be dropped.
2249 		 */
2250 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2251 				!sig_kernel_only(signr))
2252 			continue;
2253 
2254 		if (sig_kernel_stop(signr)) {
2255 			/*
2256 			 * The default action is to stop all threads in
2257 			 * the thread group.  The job control signals
2258 			 * do nothing in an orphaned pgrp, but SIGSTOP
2259 			 * always works.  Note that siglock needs to be
2260 			 * dropped during the call to is_orphaned_pgrp()
2261 			 * because of lock ordering with tasklist_lock.
2262 			 * This allows an intervening SIGCONT to be posted.
2263 			 * We need to check for that and bail out if necessary.
2264 			 */
2265 			if (signr != SIGSTOP) {
2266 				spin_unlock_irq(&sighand->siglock);
2267 
2268 				/* signals can be posted during this window */
2269 
2270 				if (is_current_pgrp_orphaned())
2271 					goto relock;
2272 
2273 				spin_lock_irq(&sighand->siglock);
2274 			}
2275 
2276 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2277 				/* It released the siglock.  */
2278 				goto relock;
2279 			}
2280 
2281 			/*
2282 			 * We didn't actually stop, due to a race
2283 			 * with SIGCONT or something like that.
2284 			 */
2285 			continue;
2286 		}
2287 
2288 		spin_unlock_irq(&sighand->siglock);
2289 
2290 		/*
2291 		 * Anything else is fatal, maybe with a core dump.
2292 		 */
2293 		current->flags |= PF_SIGNALED;
2294 
2295 		if (sig_kernel_coredump(signr)) {
2296 			if (print_fatal_signals)
2297 				print_fatal_signal(ksig->info.si_signo);
2298 			proc_coredump_connector(current);
2299 			/*
2300 			 * If it was able to dump core, this kills all
2301 			 * other threads in the group and synchronizes with
2302 			 * their demise.  If we lost the race with another
2303 			 * thread getting here, it set group_exit_code
2304 			 * first and our do_group_exit call below will use
2305 			 * that value and ignore the one we pass it.
2306 			 */
2307 			do_coredump(&ksig->info);
2308 		}
2309 
2310 		/*
2311 		 * Death signals, no core dump.
2312 		 */
2313 		do_group_exit(ksig->info.si_signo);
2314 		/* NOTREACHED */
2315 	}
2316 	spin_unlock_irq(&sighand->siglock);
2317 
2318 	ksig->sig = signr;
2319 	return ksig->sig > 0;
2320 }
2321 
2322 /**
2323  * signal_delivered -
2324  * @ksig:		kernel signal struct
2325  * @stepping:		nonzero if debugger single-step or block-step in use
2326  *
2327  * This function should be called when a signal has successfully been
2328  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2329  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2330  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2331  */
2332 static void signal_delivered(struct ksignal *ksig, int stepping)
2333 {
2334 	sigset_t blocked;
2335 
2336 	/* A signal was successfully delivered, and the
2337 	   saved sigmask was stored on the signal frame,
2338 	   and will be restored by sigreturn.  So we can
2339 	   simply clear the restore sigmask flag.  */
2340 	clear_restore_sigmask();
2341 
2342 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2343 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2344 		sigaddset(&blocked, ksig->sig);
2345 	set_current_blocked(&blocked);
2346 	tracehook_signal_handler(stepping);
2347 }
2348 
2349 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2350 {
2351 	if (failed)
2352 		force_sigsegv(ksig->sig, current);
2353 	else
2354 		signal_delivered(ksig, stepping);
2355 }
2356 
2357 /*
2358  * It could be that complete_signal() picked us to notify about the
2359  * group-wide signal. Other threads should be notified now to take
2360  * the shared signals in @which since we will not.
2361  */
2362 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2363 {
2364 	sigset_t retarget;
2365 	struct task_struct *t;
2366 
2367 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2368 	if (sigisemptyset(&retarget))
2369 		return;
2370 
2371 	t = tsk;
2372 	while_each_thread(tsk, t) {
2373 		if (t->flags & PF_EXITING)
2374 			continue;
2375 
2376 		if (!has_pending_signals(&retarget, &t->blocked))
2377 			continue;
2378 		/* Remove the signals this thread can handle. */
2379 		sigandsets(&retarget, &retarget, &t->blocked);
2380 
2381 		if (!signal_pending(t))
2382 			signal_wake_up(t, 0);
2383 
2384 		if (sigisemptyset(&retarget))
2385 			break;
2386 	}
2387 }
2388 
2389 void exit_signals(struct task_struct *tsk)
2390 {
2391 	int group_stop = 0;
2392 	sigset_t unblocked;
2393 
2394 	/*
2395 	 * @tsk is about to have PF_EXITING set - lock out users which
2396 	 * expect stable threadgroup.
2397 	 */
2398 	threadgroup_change_begin(tsk);
2399 
2400 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2401 		tsk->flags |= PF_EXITING;
2402 		threadgroup_change_end(tsk);
2403 		return;
2404 	}
2405 
2406 	spin_lock_irq(&tsk->sighand->siglock);
2407 	/*
2408 	 * From now this task is not visible for group-wide signals,
2409 	 * see wants_signal(), do_signal_stop().
2410 	 */
2411 	tsk->flags |= PF_EXITING;
2412 
2413 	threadgroup_change_end(tsk);
2414 
2415 	if (!signal_pending(tsk))
2416 		goto out;
2417 
2418 	unblocked = tsk->blocked;
2419 	signotset(&unblocked);
2420 	retarget_shared_pending(tsk, &unblocked);
2421 
2422 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2423 	    task_participate_group_stop(tsk))
2424 		group_stop = CLD_STOPPED;
2425 out:
2426 	spin_unlock_irq(&tsk->sighand->siglock);
2427 
2428 	/*
2429 	 * If group stop has completed, deliver the notification.  This
2430 	 * should always go to the real parent of the group leader.
2431 	 */
2432 	if (unlikely(group_stop)) {
2433 		read_lock(&tasklist_lock);
2434 		do_notify_parent_cldstop(tsk, false, group_stop);
2435 		read_unlock(&tasklist_lock);
2436 	}
2437 }
2438 
2439 EXPORT_SYMBOL(recalc_sigpending);
2440 EXPORT_SYMBOL_GPL(dequeue_signal);
2441 EXPORT_SYMBOL(flush_signals);
2442 EXPORT_SYMBOL(force_sig);
2443 EXPORT_SYMBOL(send_sig);
2444 EXPORT_SYMBOL(send_sig_info);
2445 EXPORT_SYMBOL(sigprocmask);
2446 
2447 /*
2448  * System call entry points.
2449  */
2450 
2451 /**
2452  *  sys_restart_syscall - restart a system call
2453  */
2454 SYSCALL_DEFINE0(restart_syscall)
2455 {
2456 	struct restart_block *restart = &current->restart_block;
2457 	return restart->fn(restart);
2458 }
2459 
2460 long do_no_restart_syscall(struct restart_block *param)
2461 {
2462 	return -EINTR;
2463 }
2464 
2465 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2466 {
2467 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2468 		sigset_t newblocked;
2469 		/* A set of now blocked but previously unblocked signals. */
2470 		sigandnsets(&newblocked, newset, &current->blocked);
2471 		retarget_shared_pending(tsk, &newblocked);
2472 	}
2473 	tsk->blocked = *newset;
2474 	recalc_sigpending();
2475 }
2476 
2477 /**
2478  * set_current_blocked - change current->blocked mask
2479  * @newset: new mask
2480  *
2481  * It is wrong to change ->blocked directly, this helper should be used
2482  * to ensure the process can't miss a shared signal we are going to block.
2483  */
2484 void set_current_blocked(sigset_t *newset)
2485 {
2486 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2487 	__set_current_blocked(newset);
2488 }
2489 
2490 void __set_current_blocked(const sigset_t *newset)
2491 {
2492 	struct task_struct *tsk = current;
2493 
2494 	/*
2495 	 * In case the signal mask hasn't changed, there is nothing we need
2496 	 * to do. The current->blocked shouldn't be modified by other task.
2497 	 */
2498 	if (sigequalsets(&tsk->blocked, newset))
2499 		return;
2500 
2501 	spin_lock_irq(&tsk->sighand->siglock);
2502 	__set_task_blocked(tsk, newset);
2503 	spin_unlock_irq(&tsk->sighand->siglock);
2504 }
2505 
2506 /*
2507  * This is also useful for kernel threads that want to temporarily
2508  * (or permanently) block certain signals.
2509  *
2510  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2511  * interface happily blocks "unblockable" signals like SIGKILL
2512  * and friends.
2513  */
2514 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2515 {
2516 	struct task_struct *tsk = current;
2517 	sigset_t newset;
2518 
2519 	/* Lockless, only current can change ->blocked, never from irq */
2520 	if (oldset)
2521 		*oldset = tsk->blocked;
2522 
2523 	switch (how) {
2524 	case SIG_BLOCK:
2525 		sigorsets(&newset, &tsk->blocked, set);
2526 		break;
2527 	case SIG_UNBLOCK:
2528 		sigandnsets(&newset, &tsk->blocked, set);
2529 		break;
2530 	case SIG_SETMASK:
2531 		newset = *set;
2532 		break;
2533 	default:
2534 		return -EINVAL;
2535 	}
2536 
2537 	__set_current_blocked(&newset);
2538 	return 0;
2539 }
2540 
2541 /**
2542  *  sys_rt_sigprocmask - change the list of currently blocked signals
2543  *  @how: whether to add, remove, or set signals
2544  *  @nset: stores pending signals
2545  *  @oset: previous value of signal mask if non-null
2546  *  @sigsetsize: size of sigset_t type
2547  */
2548 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2549 		sigset_t __user *, oset, size_t, sigsetsize)
2550 {
2551 	sigset_t old_set, new_set;
2552 	int error;
2553 
2554 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2555 	if (sigsetsize != sizeof(sigset_t))
2556 		return -EINVAL;
2557 
2558 	old_set = current->blocked;
2559 
2560 	if (nset) {
2561 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2562 			return -EFAULT;
2563 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2564 
2565 		error = sigprocmask(how, &new_set, NULL);
2566 		if (error)
2567 			return error;
2568 	}
2569 
2570 	if (oset) {
2571 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2572 			return -EFAULT;
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 #ifdef CONFIG_COMPAT
2579 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2580 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2581 {
2582 #ifdef __BIG_ENDIAN
2583 	sigset_t old_set = current->blocked;
2584 
2585 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2586 	if (sigsetsize != sizeof(sigset_t))
2587 		return -EINVAL;
2588 
2589 	if (nset) {
2590 		compat_sigset_t new32;
2591 		sigset_t new_set;
2592 		int error;
2593 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2594 			return -EFAULT;
2595 
2596 		sigset_from_compat(&new_set, &new32);
2597 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598 
2599 		error = sigprocmask(how, &new_set, NULL);
2600 		if (error)
2601 			return error;
2602 	}
2603 	if (oset) {
2604 		compat_sigset_t old32;
2605 		sigset_to_compat(&old32, &old_set);
2606 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2607 			return -EFAULT;
2608 	}
2609 	return 0;
2610 #else
2611 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2612 				  (sigset_t __user *)oset, sigsetsize);
2613 #endif
2614 }
2615 #endif
2616 
2617 static int do_sigpending(void *set, unsigned long sigsetsize)
2618 {
2619 	if (sigsetsize > sizeof(sigset_t))
2620 		return -EINVAL;
2621 
2622 	spin_lock_irq(&current->sighand->siglock);
2623 	sigorsets(set, &current->pending.signal,
2624 		  &current->signal->shared_pending.signal);
2625 	spin_unlock_irq(&current->sighand->siglock);
2626 
2627 	/* Outside the lock because only this thread touches it.  */
2628 	sigandsets(set, &current->blocked, set);
2629 	return 0;
2630 }
2631 
2632 /**
2633  *  sys_rt_sigpending - examine a pending signal that has been raised
2634  *			while blocked
2635  *  @uset: stores pending signals
2636  *  @sigsetsize: size of sigset_t type or larger
2637  */
2638 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2639 {
2640 	sigset_t set;
2641 	int err = do_sigpending(&set, sigsetsize);
2642 	if (!err && copy_to_user(uset, &set, sigsetsize))
2643 		err = -EFAULT;
2644 	return err;
2645 }
2646 
2647 #ifdef CONFIG_COMPAT
2648 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2649 		compat_size_t, sigsetsize)
2650 {
2651 #ifdef __BIG_ENDIAN
2652 	sigset_t set;
2653 	int err = do_sigpending(&set, sigsetsize);
2654 	if (!err) {
2655 		compat_sigset_t set32;
2656 		sigset_to_compat(&set32, &set);
2657 		/* we can get here only if sigsetsize <= sizeof(set) */
2658 		if (copy_to_user(uset, &set32, sigsetsize))
2659 			err = -EFAULT;
2660 	}
2661 	return err;
2662 #else
2663 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2664 #endif
2665 }
2666 #endif
2667 
2668 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2669 
2670 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2671 {
2672 	int err;
2673 
2674 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2675 		return -EFAULT;
2676 	if (from->si_code < 0)
2677 		return __copy_to_user(to, from, sizeof(siginfo_t))
2678 			? -EFAULT : 0;
2679 	/*
2680 	 * If you change siginfo_t structure, please be sure
2681 	 * this code is fixed accordingly.
2682 	 * Please remember to update the signalfd_copyinfo() function
2683 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2684 	 * It should never copy any pad contained in the structure
2685 	 * to avoid security leaks, but must copy the generic
2686 	 * 3 ints plus the relevant union member.
2687 	 */
2688 	err = __put_user(from->si_signo, &to->si_signo);
2689 	err |= __put_user(from->si_errno, &to->si_errno);
2690 	err |= __put_user((short)from->si_code, &to->si_code);
2691 	switch (from->si_code & __SI_MASK) {
2692 	case __SI_KILL:
2693 		err |= __put_user(from->si_pid, &to->si_pid);
2694 		err |= __put_user(from->si_uid, &to->si_uid);
2695 		break;
2696 	case __SI_TIMER:
2697 		 err |= __put_user(from->si_tid, &to->si_tid);
2698 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2699 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2700 		break;
2701 	case __SI_POLL:
2702 		err |= __put_user(from->si_band, &to->si_band);
2703 		err |= __put_user(from->si_fd, &to->si_fd);
2704 		break;
2705 	case __SI_FAULT:
2706 		err |= __put_user(from->si_addr, &to->si_addr);
2707 #ifdef __ARCH_SI_TRAPNO
2708 		err |= __put_user(from->si_trapno, &to->si_trapno);
2709 #endif
2710 #ifdef BUS_MCEERR_AO
2711 		/*
2712 		 * Other callers might not initialize the si_lsb field,
2713 		 * so check explicitly for the right codes here.
2714 		 */
2715 		if (from->si_signo == SIGBUS &&
2716 		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2717 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2718 #endif
2719 #ifdef SEGV_BNDERR
2720 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2721 			err |= __put_user(from->si_lower, &to->si_lower);
2722 			err |= __put_user(from->si_upper, &to->si_upper);
2723 		}
2724 #endif
2725 #ifdef SEGV_PKUERR
2726 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2727 			err |= __put_user(from->si_pkey, &to->si_pkey);
2728 #endif
2729 		break;
2730 	case __SI_CHLD:
2731 		err |= __put_user(from->si_pid, &to->si_pid);
2732 		err |= __put_user(from->si_uid, &to->si_uid);
2733 		err |= __put_user(from->si_status, &to->si_status);
2734 		err |= __put_user(from->si_utime, &to->si_utime);
2735 		err |= __put_user(from->si_stime, &to->si_stime);
2736 		break;
2737 	case __SI_RT: /* This is not generated by the kernel as of now. */
2738 	case __SI_MESGQ: /* But this is */
2739 		err |= __put_user(from->si_pid, &to->si_pid);
2740 		err |= __put_user(from->si_uid, &to->si_uid);
2741 		err |= __put_user(from->si_ptr, &to->si_ptr);
2742 		break;
2743 #ifdef __ARCH_SIGSYS
2744 	case __SI_SYS:
2745 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2746 		err |= __put_user(from->si_syscall, &to->si_syscall);
2747 		err |= __put_user(from->si_arch, &to->si_arch);
2748 		break;
2749 #endif
2750 	default: /* this is just in case for now ... */
2751 		err |= __put_user(from->si_pid, &to->si_pid);
2752 		err |= __put_user(from->si_uid, &to->si_uid);
2753 		break;
2754 	}
2755 	return err;
2756 }
2757 
2758 #endif
2759 
2760 /**
2761  *  do_sigtimedwait - wait for queued signals specified in @which
2762  *  @which: queued signals to wait for
2763  *  @info: if non-null, the signal's siginfo is returned here
2764  *  @ts: upper bound on process time suspension
2765  */
2766 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2767 		    const struct timespec *ts)
2768 {
2769 	ktime_t *to = NULL, timeout = KTIME_MAX;
2770 	struct task_struct *tsk = current;
2771 	sigset_t mask = *which;
2772 	int sig, ret = 0;
2773 
2774 	if (ts) {
2775 		if (!timespec_valid(ts))
2776 			return -EINVAL;
2777 		timeout = timespec_to_ktime(*ts);
2778 		to = &timeout;
2779 	}
2780 
2781 	/*
2782 	 * Invert the set of allowed signals to get those we want to block.
2783 	 */
2784 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2785 	signotset(&mask);
2786 
2787 	spin_lock_irq(&tsk->sighand->siglock);
2788 	sig = dequeue_signal(tsk, &mask, info);
2789 	if (!sig && timeout) {
2790 		/*
2791 		 * None ready, temporarily unblock those we're interested
2792 		 * while we are sleeping in so that we'll be awakened when
2793 		 * they arrive. Unblocking is always fine, we can avoid
2794 		 * set_current_blocked().
2795 		 */
2796 		tsk->real_blocked = tsk->blocked;
2797 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2798 		recalc_sigpending();
2799 		spin_unlock_irq(&tsk->sighand->siglock);
2800 
2801 		__set_current_state(TASK_INTERRUPTIBLE);
2802 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2803 							 HRTIMER_MODE_REL);
2804 		spin_lock_irq(&tsk->sighand->siglock);
2805 		__set_task_blocked(tsk, &tsk->real_blocked);
2806 		sigemptyset(&tsk->real_blocked);
2807 		sig = dequeue_signal(tsk, &mask, info);
2808 	}
2809 	spin_unlock_irq(&tsk->sighand->siglock);
2810 
2811 	if (sig)
2812 		return sig;
2813 	return ret ? -EINTR : -EAGAIN;
2814 }
2815 
2816 /**
2817  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2818  *			in @uthese
2819  *  @uthese: queued signals to wait for
2820  *  @uinfo: if non-null, the signal's siginfo is returned here
2821  *  @uts: upper bound on process time suspension
2822  *  @sigsetsize: size of sigset_t type
2823  */
2824 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2825 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2826 		size_t, sigsetsize)
2827 {
2828 	sigset_t these;
2829 	struct timespec ts;
2830 	siginfo_t info;
2831 	int ret;
2832 
2833 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2834 	if (sigsetsize != sizeof(sigset_t))
2835 		return -EINVAL;
2836 
2837 	if (copy_from_user(&these, uthese, sizeof(these)))
2838 		return -EFAULT;
2839 
2840 	if (uts) {
2841 		if (copy_from_user(&ts, uts, sizeof(ts)))
2842 			return -EFAULT;
2843 	}
2844 
2845 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2846 
2847 	if (ret > 0 && uinfo) {
2848 		if (copy_siginfo_to_user(uinfo, &info))
2849 			ret = -EFAULT;
2850 	}
2851 
2852 	return ret;
2853 }
2854 
2855 /**
2856  *  sys_kill - send a signal to a process
2857  *  @pid: the PID of the process
2858  *  @sig: signal to be sent
2859  */
2860 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2861 {
2862 	struct siginfo info;
2863 
2864 	info.si_signo = sig;
2865 	info.si_errno = 0;
2866 	info.si_code = SI_USER;
2867 	info.si_pid = task_tgid_vnr(current);
2868 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2869 
2870 	return kill_something_info(sig, &info, pid);
2871 }
2872 
2873 static int
2874 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2875 {
2876 	struct task_struct *p;
2877 	int error = -ESRCH;
2878 
2879 	rcu_read_lock();
2880 	p = find_task_by_vpid(pid);
2881 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2882 		error = check_kill_permission(sig, info, p);
2883 		/*
2884 		 * The null signal is a permissions and process existence
2885 		 * probe.  No signal is actually delivered.
2886 		 */
2887 		if (!error && sig) {
2888 			error = do_send_sig_info(sig, info, p, false);
2889 			/*
2890 			 * If lock_task_sighand() failed we pretend the task
2891 			 * dies after receiving the signal. The window is tiny,
2892 			 * and the signal is private anyway.
2893 			 */
2894 			if (unlikely(error == -ESRCH))
2895 				error = 0;
2896 		}
2897 	}
2898 	rcu_read_unlock();
2899 
2900 	return error;
2901 }
2902 
2903 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2904 {
2905 	struct siginfo info = {};
2906 
2907 	info.si_signo = sig;
2908 	info.si_errno = 0;
2909 	info.si_code = SI_TKILL;
2910 	info.si_pid = task_tgid_vnr(current);
2911 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2912 
2913 	return do_send_specific(tgid, pid, sig, &info);
2914 }
2915 
2916 /**
2917  *  sys_tgkill - send signal to one specific thread
2918  *  @tgid: the thread group ID of the thread
2919  *  @pid: the PID of the thread
2920  *  @sig: signal to be sent
2921  *
2922  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2923  *  exists but it's not belonging to the target process anymore. This
2924  *  method solves the problem of threads exiting and PIDs getting reused.
2925  */
2926 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2927 {
2928 	/* This is only valid for single tasks */
2929 	if (pid <= 0 || tgid <= 0)
2930 		return -EINVAL;
2931 
2932 	return do_tkill(tgid, pid, sig);
2933 }
2934 
2935 /**
2936  *  sys_tkill - send signal to one specific task
2937  *  @pid: the PID of the task
2938  *  @sig: signal to be sent
2939  *
2940  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2941  */
2942 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2943 {
2944 	/* This is only valid for single tasks */
2945 	if (pid <= 0)
2946 		return -EINVAL;
2947 
2948 	return do_tkill(0, pid, sig);
2949 }
2950 
2951 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2952 {
2953 	/* Not even root can pretend to send signals from the kernel.
2954 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2955 	 */
2956 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2957 	    (task_pid_vnr(current) != pid))
2958 		return -EPERM;
2959 
2960 	info->si_signo = sig;
2961 
2962 	/* POSIX.1b doesn't mention process groups.  */
2963 	return kill_proc_info(sig, info, pid);
2964 }
2965 
2966 /**
2967  *  sys_rt_sigqueueinfo - send signal information to a signal
2968  *  @pid: the PID of the thread
2969  *  @sig: signal to be sent
2970  *  @uinfo: signal info to be sent
2971  */
2972 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2973 		siginfo_t __user *, uinfo)
2974 {
2975 	siginfo_t info;
2976 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2977 		return -EFAULT;
2978 	return do_rt_sigqueueinfo(pid, sig, &info);
2979 }
2980 
2981 #ifdef CONFIG_COMPAT
2982 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2983 			compat_pid_t, pid,
2984 			int, sig,
2985 			struct compat_siginfo __user *, uinfo)
2986 {
2987 	siginfo_t info = {};
2988 	int ret = copy_siginfo_from_user32(&info, uinfo);
2989 	if (unlikely(ret))
2990 		return ret;
2991 	return do_rt_sigqueueinfo(pid, sig, &info);
2992 }
2993 #endif
2994 
2995 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2996 {
2997 	/* This is only valid for single tasks */
2998 	if (pid <= 0 || tgid <= 0)
2999 		return -EINVAL;
3000 
3001 	/* Not even root can pretend to send signals from the kernel.
3002 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3003 	 */
3004 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3005 	    (task_pid_vnr(current) != pid))
3006 		return -EPERM;
3007 
3008 	info->si_signo = sig;
3009 
3010 	return do_send_specific(tgid, pid, sig, info);
3011 }
3012 
3013 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3014 		siginfo_t __user *, uinfo)
3015 {
3016 	siginfo_t info;
3017 
3018 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3019 		return -EFAULT;
3020 
3021 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3022 }
3023 
3024 #ifdef CONFIG_COMPAT
3025 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3026 			compat_pid_t, tgid,
3027 			compat_pid_t, pid,
3028 			int, sig,
3029 			struct compat_siginfo __user *, uinfo)
3030 {
3031 	siginfo_t info = {};
3032 
3033 	if (copy_siginfo_from_user32(&info, uinfo))
3034 		return -EFAULT;
3035 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3036 }
3037 #endif
3038 
3039 /*
3040  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3041  */
3042 void kernel_sigaction(int sig, __sighandler_t action)
3043 {
3044 	spin_lock_irq(&current->sighand->siglock);
3045 	current->sighand->action[sig - 1].sa.sa_handler = action;
3046 	if (action == SIG_IGN) {
3047 		sigset_t mask;
3048 
3049 		sigemptyset(&mask);
3050 		sigaddset(&mask, sig);
3051 
3052 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3053 		flush_sigqueue_mask(&mask, &current->pending);
3054 		recalc_sigpending();
3055 	}
3056 	spin_unlock_irq(&current->sighand->siglock);
3057 }
3058 EXPORT_SYMBOL(kernel_sigaction);
3059 
3060 void __weak sigaction_compat_abi(struct k_sigaction *act,
3061 		struct k_sigaction *oact)
3062 {
3063 }
3064 
3065 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3066 {
3067 	struct task_struct *p = current, *t;
3068 	struct k_sigaction *k;
3069 	sigset_t mask;
3070 
3071 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3072 		return -EINVAL;
3073 
3074 	k = &p->sighand->action[sig-1];
3075 
3076 	spin_lock_irq(&p->sighand->siglock);
3077 	if (oact)
3078 		*oact = *k;
3079 
3080 	sigaction_compat_abi(act, oact);
3081 
3082 	if (act) {
3083 		sigdelsetmask(&act->sa.sa_mask,
3084 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3085 		*k = *act;
3086 		/*
3087 		 * POSIX 3.3.1.3:
3088 		 *  "Setting a signal action to SIG_IGN for a signal that is
3089 		 *   pending shall cause the pending signal to be discarded,
3090 		 *   whether or not it is blocked."
3091 		 *
3092 		 *  "Setting a signal action to SIG_DFL for a signal that is
3093 		 *   pending and whose default action is to ignore the signal
3094 		 *   (for example, SIGCHLD), shall cause the pending signal to
3095 		 *   be discarded, whether or not it is blocked"
3096 		 */
3097 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3098 			sigemptyset(&mask);
3099 			sigaddset(&mask, sig);
3100 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3101 			for_each_thread(p, t)
3102 				flush_sigqueue_mask(&mask, &t->pending);
3103 		}
3104 	}
3105 
3106 	spin_unlock_irq(&p->sighand->siglock);
3107 	return 0;
3108 }
3109 
3110 static int
3111 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3112 {
3113 	stack_t oss;
3114 	int error;
3115 
3116 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3117 	oss.ss_size = current->sas_ss_size;
3118 	oss.ss_flags = sas_ss_flags(sp) |
3119 		(current->sas_ss_flags & SS_FLAG_BITS);
3120 
3121 	if (uss) {
3122 		void __user *ss_sp;
3123 		size_t ss_size;
3124 		unsigned ss_flags;
3125 		int ss_mode;
3126 
3127 		error = -EFAULT;
3128 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3129 			goto out;
3130 		error = __get_user(ss_sp, &uss->ss_sp) |
3131 			__get_user(ss_flags, &uss->ss_flags) |
3132 			__get_user(ss_size, &uss->ss_size);
3133 		if (error)
3134 			goto out;
3135 
3136 		error = -EPERM;
3137 		if (on_sig_stack(sp))
3138 			goto out;
3139 
3140 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3141 		error = -EINVAL;
3142 		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3143 				ss_mode != 0)
3144 			goto out;
3145 
3146 		if (ss_mode == SS_DISABLE) {
3147 			ss_size = 0;
3148 			ss_sp = NULL;
3149 		} else {
3150 			error = -ENOMEM;
3151 			if (ss_size < MINSIGSTKSZ)
3152 				goto out;
3153 		}
3154 
3155 		current->sas_ss_sp = (unsigned long) ss_sp;
3156 		current->sas_ss_size = ss_size;
3157 		current->sas_ss_flags = ss_flags;
3158 	}
3159 
3160 	error = 0;
3161 	if (uoss) {
3162 		error = -EFAULT;
3163 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3164 			goto out;
3165 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3166 			__put_user(oss.ss_size, &uoss->ss_size) |
3167 			__put_user(oss.ss_flags, &uoss->ss_flags);
3168 	}
3169 
3170 out:
3171 	return error;
3172 }
3173 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3174 {
3175 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3176 }
3177 
3178 int restore_altstack(const stack_t __user *uss)
3179 {
3180 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3181 	/* squash all but EFAULT for now */
3182 	return err == -EFAULT ? err : 0;
3183 }
3184 
3185 int __save_altstack(stack_t __user *uss, unsigned long sp)
3186 {
3187 	struct task_struct *t = current;
3188 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3189 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3190 		__put_user(t->sas_ss_size, &uss->ss_size);
3191 	if (err)
3192 		return err;
3193 	if (t->sas_ss_flags & SS_AUTODISARM)
3194 		sas_ss_reset(t);
3195 	return 0;
3196 }
3197 
3198 #ifdef CONFIG_COMPAT
3199 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3200 			const compat_stack_t __user *, uss_ptr,
3201 			compat_stack_t __user *, uoss_ptr)
3202 {
3203 	stack_t uss, uoss;
3204 	int ret;
3205 	mm_segment_t seg;
3206 
3207 	if (uss_ptr) {
3208 		compat_stack_t uss32;
3209 
3210 		memset(&uss, 0, sizeof(stack_t));
3211 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3212 			return -EFAULT;
3213 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3214 		uss.ss_flags = uss32.ss_flags;
3215 		uss.ss_size = uss32.ss_size;
3216 	}
3217 	seg = get_fs();
3218 	set_fs(KERNEL_DS);
3219 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3220 			     (stack_t __force __user *) &uoss,
3221 			     compat_user_stack_pointer());
3222 	set_fs(seg);
3223 	if (ret >= 0 && uoss_ptr)  {
3224 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3225 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3226 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3227 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3228 			ret = -EFAULT;
3229 	}
3230 	return ret;
3231 }
3232 
3233 int compat_restore_altstack(const compat_stack_t __user *uss)
3234 {
3235 	int err = compat_sys_sigaltstack(uss, NULL);
3236 	/* squash all but -EFAULT for now */
3237 	return err == -EFAULT ? err : 0;
3238 }
3239 
3240 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3241 {
3242 	struct task_struct *t = current;
3243 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3244 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3245 		__put_user(t->sas_ss_size, &uss->ss_size);
3246 }
3247 #endif
3248 
3249 #ifdef __ARCH_WANT_SYS_SIGPENDING
3250 
3251 /**
3252  *  sys_sigpending - examine pending signals
3253  *  @set: where mask of pending signal is returned
3254  */
3255 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3256 {
3257 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3258 }
3259 
3260 #endif
3261 
3262 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3263 /**
3264  *  sys_sigprocmask - examine and change blocked signals
3265  *  @how: whether to add, remove, or set signals
3266  *  @nset: signals to add or remove (if non-null)
3267  *  @oset: previous value of signal mask if non-null
3268  *
3269  * Some platforms have their own version with special arguments;
3270  * others support only sys_rt_sigprocmask.
3271  */
3272 
3273 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3274 		old_sigset_t __user *, oset)
3275 {
3276 	old_sigset_t old_set, new_set;
3277 	sigset_t new_blocked;
3278 
3279 	old_set = current->blocked.sig[0];
3280 
3281 	if (nset) {
3282 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3283 			return -EFAULT;
3284 
3285 		new_blocked = current->blocked;
3286 
3287 		switch (how) {
3288 		case SIG_BLOCK:
3289 			sigaddsetmask(&new_blocked, new_set);
3290 			break;
3291 		case SIG_UNBLOCK:
3292 			sigdelsetmask(&new_blocked, new_set);
3293 			break;
3294 		case SIG_SETMASK:
3295 			new_blocked.sig[0] = new_set;
3296 			break;
3297 		default:
3298 			return -EINVAL;
3299 		}
3300 
3301 		set_current_blocked(&new_blocked);
3302 	}
3303 
3304 	if (oset) {
3305 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3306 			return -EFAULT;
3307 	}
3308 
3309 	return 0;
3310 }
3311 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3312 
3313 #ifndef CONFIG_ODD_RT_SIGACTION
3314 /**
3315  *  sys_rt_sigaction - alter an action taken by a process
3316  *  @sig: signal to be sent
3317  *  @act: new sigaction
3318  *  @oact: used to save the previous sigaction
3319  *  @sigsetsize: size of sigset_t type
3320  */
3321 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3322 		const struct sigaction __user *, act,
3323 		struct sigaction __user *, oact,
3324 		size_t, sigsetsize)
3325 {
3326 	struct k_sigaction new_sa, old_sa;
3327 	int ret = -EINVAL;
3328 
3329 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3330 	if (sigsetsize != sizeof(sigset_t))
3331 		goto out;
3332 
3333 	if (act) {
3334 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3335 			return -EFAULT;
3336 	}
3337 
3338 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3339 
3340 	if (!ret && oact) {
3341 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3342 			return -EFAULT;
3343 	}
3344 out:
3345 	return ret;
3346 }
3347 #ifdef CONFIG_COMPAT
3348 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3349 		const struct compat_sigaction __user *, act,
3350 		struct compat_sigaction __user *, oact,
3351 		compat_size_t, sigsetsize)
3352 {
3353 	struct k_sigaction new_ka, old_ka;
3354 	compat_sigset_t mask;
3355 #ifdef __ARCH_HAS_SA_RESTORER
3356 	compat_uptr_t restorer;
3357 #endif
3358 	int ret;
3359 
3360 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3361 	if (sigsetsize != sizeof(compat_sigset_t))
3362 		return -EINVAL;
3363 
3364 	if (act) {
3365 		compat_uptr_t handler;
3366 		ret = get_user(handler, &act->sa_handler);
3367 		new_ka.sa.sa_handler = compat_ptr(handler);
3368 #ifdef __ARCH_HAS_SA_RESTORER
3369 		ret |= get_user(restorer, &act->sa_restorer);
3370 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3371 #endif
3372 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3373 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3374 		if (ret)
3375 			return -EFAULT;
3376 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3377 	}
3378 
3379 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3380 	if (!ret && oact) {
3381 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3382 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3383 			       &oact->sa_handler);
3384 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3385 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3386 #ifdef __ARCH_HAS_SA_RESTORER
3387 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3388 				&oact->sa_restorer);
3389 #endif
3390 	}
3391 	return ret;
3392 }
3393 #endif
3394 #endif /* !CONFIG_ODD_RT_SIGACTION */
3395 
3396 #ifdef CONFIG_OLD_SIGACTION
3397 SYSCALL_DEFINE3(sigaction, int, sig,
3398 		const struct old_sigaction __user *, act,
3399 	        struct old_sigaction __user *, oact)
3400 {
3401 	struct k_sigaction new_ka, old_ka;
3402 	int ret;
3403 
3404 	if (act) {
3405 		old_sigset_t mask;
3406 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3407 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3408 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3409 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3410 		    __get_user(mask, &act->sa_mask))
3411 			return -EFAULT;
3412 #ifdef __ARCH_HAS_KA_RESTORER
3413 		new_ka.ka_restorer = NULL;
3414 #endif
3415 		siginitset(&new_ka.sa.sa_mask, mask);
3416 	}
3417 
3418 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3419 
3420 	if (!ret && oact) {
3421 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3422 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3423 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3424 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3425 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3426 			return -EFAULT;
3427 	}
3428 
3429 	return ret;
3430 }
3431 #endif
3432 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3433 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3434 		const struct compat_old_sigaction __user *, act,
3435 	        struct compat_old_sigaction __user *, oact)
3436 {
3437 	struct k_sigaction new_ka, old_ka;
3438 	int ret;
3439 	compat_old_sigset_t mask;
3440 	compat_uptr_t handler, restorer;
3441 
3442 	if (act) {
3443 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3444 		    __get_user(handler, &act->sa_handler) ||
3445 		    __get_user(restorer, &act->sa_restorer) ||
3446 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3447 		    __get_user(mask, &act->sa_mask))
3448 			return -EFAULT;
3449 
3450 #ifdef __ARCH_HAS_KA_RESTORER
3451 		new_ka.ka_restorer = NULL;
3452 #endif
3453 		new_ka.sa.sa_handler = compat_ptr(handler);
3454 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3455 		siginitset(&new_ka.sa.sa_mask, mask);
3456 	}
3457 
3458 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3459 
3460 	if (!ret && oact) {
3461 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3462 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3463 			       &oact->sa_handler) ||
3464 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3465 			       &oact->sa_restorer) ||
3466 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3467 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3468 			return -EFAULT;
3469 	}
3470 	return ret;
3471 }
3472 #endif
3473 
3474 #ifdef CONFIG_SGETMASK_SYSCALL
3475 
3476 /*
3477  * For backwards compatibility.  Functionality superseded by sigprocmask.
3478  */
3479 SYSCALL_DEFINE0(sgetmask)
3480 {
3481 	/* SMP safe */
3482 	return current->blocked.sig[0];
3483 }
3484 
3485 SYSCALL_DEFINE1(ssetmask, int, newmask)
3486 {
3487 	int old = current->blocked.sig[0];
3488 	sigset_t newset;
3489 
3490 	siginitset(&newset, newmask);
3491 	set_current_blocked(&newset);
3492 
3493 	return old;
3494 }
3495 #endif /* CONFIG_SGETMASK_SYSCALL */
3496 
3497 #ifdef __ARCH_WANT_SYS_SIGNAL
3498 /*
3499  * For backwards compatibility.  Functionality superseded by sigaction.
3500  */
3501 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3502 {
3503 	struct k_sigaction new_sa, old_sa;
3504 	int ret;
3505 
3506 	new_sa.sa.sa_handler = handler;
3507 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3508 	sigemptyset(&new_sa.sa.sa_mask);
3509 
3510 	ret = do_sigaction(sig, &new_sa, &old_sa);
3511 
3512 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3513 }
3514 #endif /* __ARCH_WANT_SYS_SIGNAL */
3515 
3516 #ifdef __ARCH_WANT_SYS_PAUSE
3517 
3518 SYSCALL_DEFINE0(pause)
3519 {
3520 	while (!signal_pending(current)) {
3521 		__set_current_state(TASK_INTERRUPTIBLE);
3522 		schedule();
3523 	}
3524 	return -ERESTARTNOHAND;
3525 }
3526 
3527 #endif
3528 
3529 static int sigsuspend(sigset_t *set)
3530 {
3531 	current->saved_sigmask = current->blocked;
3532 	set_current_blocked(set);
3533 
3534 	while (!signal_pending(current)) {
3535 		__set_current_state(TASK_INTERRUPTIBLE);
3536 		schedule();
3537 	}
3538 	set_restore_sigmask();
3539 	return -ERESTARTNOHAND;
3540 }
3541 
3542 /**
3543  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3544  *	@unewset value until a signal is received
3545  *  @unewset: new signal mask value
3546  *  @sigsetsize: size of sigset_t type
3547  */
3548 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3549 {
3550 	sigset_t newset;
3551 
3552 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3553 	if (sigsetsize != sizeof(sigset_t))
3554 		return -EINVAL;
3555 
3556 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3557 		return -EFAULT;
3558 	return sigsuspend(&newset);
3559 }
3560 
3561 #ifdef CONFIG_COMPAT
3562 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3563 {
3564 #ifdef __BIG_ENDIAN
3565 	sigset_t newset;
3566 	compat_sigset_t newset32;
3567 
3568 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3569 	if (sigsetsize != sizeof(sigset_t))
3570 		return -EINVAL;
3571 
3572 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3573 		return -EFAULT;
3574 	sigset_from_compat(&newset, &newset32);
3575 	return sigsuspend(&newset);
3576 #else
3577 	/* on little-endian bitmaps don't care about granularity */
3578 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3579 #endif
3580 }
3581 #endif
3582 
3583 #ifdef CONFIG_OLD_SIGSUSPEND
3584 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3585 {
3586 	sigset_t blocked;
3587 	siginitset(&blocked, mask);
3588 	return sigsuspend(&blocked);
3589 }
3590 #endif
3591 #ifdef CONFIG_OLD_SIGSUSPEND3
3592 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3593 {
3594 	sigset_t blocked;
3595 	siginitset(&blocked, mask);
3596 	return sigsuspend(&blocked);
3597 }
3598 #endif
3599 
3600 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3601 {
3602 	return NULL;
3603 }
3604 
3605 void __init signals_init(void)
3606 {
3607 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3608 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3609 		!= offsetof(struct siginfo, _sifields._pad));
3610 
3611 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3612 }
3613 
3614 #ifdef CONFIG_KGDB_KDB
3615 #include <linux/kdb.h>
3616 /*
3617  * kdb_send_sig_info - Allows kdb to send signals without exposing
3618  * signal internals.  This function checks if the required locks are
3619  * available before calling the main signal code, to avoid kdb
3620  * deadlocks.
3621  */
3622 void
3623 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3624 {
3625 	static struct task_struct *kdb_prev_t;
3626 	int sig, new_t;
3627 	if (!spin_trylock(&t->sighand->siglock)) {
3628 		kdb_printf("Can't do kill command now.\n"
3629 			   "The sigmask lock is held somewhere else in "
3630 			   "kernel, try again later\n");
3631 		return;
3632 	}
3633 	spin_unlock(&t->sighand->siglock);
3634 	new_t = kdb_prev_t != t;
3635 	kdb_prev_t = t;
3636 	if (t->state != TASK_RUNNING && new_t) {
3637 		kdb_printf("Process is not RUNNING, sending a signal from "
3638 			   "kdb risks deadlock\n"
3639 			   "on the run queue locks. "
3640 			   "The signal has _not_ been sent.\n"
3641 			   "Reissue the kill command if you want to risk "
3642 			   "the deadlock.\n");
3643 		return;
3644 	}
3645 	sig = info->si_signo;
3646 	if (send_sig_info(sig, info, t))
3647 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3648 			   sig, t->pid);
3649 	else
3650 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3651 }
3652 #endif	/* CONFIG_KGDB_KDB */
3653