1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/livepatch.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/signal.h> 52 53 #include <asm/param.h> 54 #include <linux/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/siginfo.h> 57 #include <asm/cacheflush.h> 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current) && 185 !klp_patch_pending(current)) 186 clear_thread_flag(TIF_SIGPENDING); 187 188 } 189 EXPORT_SYMBOL(recalc_sigpending); 190 191 void calculate_sigpending(void) 192 { 193 /* Have any signals or users of TIF_SIGPENDING been delayed 194 * until after fork? 195 */ 196 spin_lock_irq(¤t->sighand->siglock); 197 set_tsk_thread_flag(current, TIF_SIGPENDING); 198 recalc_sigpending(); 199 spin_unlock_irq(¤t->sighand->siglock); 200 } 201 202 /* Given the mask, find the first available signal that should be serviced. */ 203 204 #define SYNCHRONOUS_MASK \ 205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 207 208 int next_signal(struct sigpending *pending, sigset_t *mask) 209 { 210 unsigned long i, *s, *m, x; 211 int sig = 0; 212 213 s = pending->signal.sig; 214 m = mask->sig; 215 216 /* 217 * Handle the first word specially: it contains the 218 * synchronous signals that need to be dequeued first. 219 */ 220 x = *s &~ *m; 221 if (x) { 222 if (x & SYNCHRONOUS_MASK) 223 x &= SYNCHRONOUS_MASK; 224 sig = ffz(~x) + 1; 225 return sig; 226 } 227 228 switch (_NSIG_WORDS) { 229 default: 230 for (i = 1; i < _NSIG_WORDS; ++i) { 231 x = *++s &~ *++m; 232 if (!x) 233 continue; 234 sig = ffz(~x) + i*_NSIG_BPW + 1; 235 break; 236 } 237 break; 238 239 case 2: 240 x = s[1] &~ m[1]; 241 if (!x) 242 break; 243 sig = ffz(~x) + _NSIG_BPW + 1; 244 break; 245 246 case 1: 247 /* Nothing to do */ 248 break; 249 } 250 251 return sig; 252 } 253 254 static inline void print_dropped_signal(int sig) 255 { 256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 257 258 if (!print_fatal_signals) 259 return; 260 261 if (!__ratelimit(&ratelimit_state)) 262 return; 263 264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 265 current->comm, current->pid, sig); 266 } 267 268 /** 269 * task_set_jobctl_pending - set jobctl pending bits 270 * @task: target task 271 * @mask: pending bits to set 272 * 273 * Clear @mask from @task->jobctl. @mask must be subset of 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 276 * cleared. If @task is already being killed or exiting, this function 277 * becomes noop. 278 * 279 * CONTEXT: 280 * Must be called with @task->sighand->siglock held. 281 * 282 * RETURNS: 283 * %true if @mask is set, %false if made noop because @task was dying. 284 */ 285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 286 { 287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 290 291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 292 return false; 293 294 if (mask & JOBCTL_STOP_SIGMASK) 295 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 296 297 task->jobctl |= mask; 298 return true; 299 } 300 301 /** 302 * task_clear_jobctl_trapping - clear jobctl trapping bit 303 * @task: target task 304 * 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 306 * Clear it and wake up the ptracer. Note that we don't need any further 307 * locking. @task->siglock guarantees that @task->parent points to the 308 * ptracer. 309 * 310 * CONTEXT: 311 * Must be called with @task->sighand->siglock held. 312 */ 313 void task_clear_jobctl_trapping(struct task_struct *task) 314 { 315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 316 task->jobctl &= ~JOBCTL_TRAPPING; 317 smp_mb(); /* advised by wake_up_bit() */ 318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 319 } 320 } 321 322 /** 323 * task_clear_jobctl_pending - clear jobctl pending bits 324 * @task: target task 325 * @mask: pending bits to clear 326 * 327 * Clear @mask from @task->jobctl. @mask must be subset of 328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 329 * STOP bits are cleared together. 330 * 331 * If clearing of @mask leaves no stop or trap pending, this function calls 332 * task_clear_jobctl_trapping(). 333 * 334 * CONTEXT: 335 * Must be called with @task->sighand->siglock held. 336 */ 337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 338 { 339 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 340 341 if (mask & JOBCTL_STOP_PENDING) 342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 343 344 task->jobctl &= ~mask; 345 346 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 347 task_clear_jobctl_trapping(task); 348 } 349 350 /** 351 * task_participate_group_stop - participate in a group stop 352 * @task: task participating in a group stop 353 * 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 355 * Group stop states are cleared and the group stop count is consumed if 356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 357 * stop, the appropriate `SIGNAL_*` flags are set. 358 * 359 * CONTEXT: 360 * Must be called with @task->sighand->siglock held. 361 * 362 * RETURNS: 363 * %true if group stop completion should be notified to the parent, %false 364 * otherwise. 365 */ 366 static bool task_participate_group_stop(struct task_struct *task) 367 { 368 struct signal_struct *sig = task->signal; 369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 370 371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 372 373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 374 375 if (!consume) 376 return false; 377 378 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 379 sig->group_stop_count--; 380 381 /* 382 * Tell the caller to notify completion iff we are entering into a 383 * fresh group stop. Read comment in do_signal_stop() for details. 384 */ 385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 387 return true; 388 } 389 return false; 390 } 391 392 void task_join_group_stop(struct task_struct *task) 393 { 394 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 395 struct signal_struct *sig = current->signal; 396 397 if (sig->group_stop_count) { 398 sig->group_stop_count++; 399 mask |= JOBCTL_STOP_CONSUME; 400 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 401 return; 402 403 /* Have the new thread join an on-going signal group stop */ 404 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 405 } 406 407 /* 408 * allocate a new signal queue record 409 * - this may be called without locks if and only if t == current, otherwise an 410 * appropriate lock must be held to stop the target task from exiting 411 */ 412 static struct sigqueue * 413 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 414 { 415 struct sigqueue *q = NULL; 416 struct user_struct *user; 417 int sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 user = __task_cred(t)->user; 429 sigpending = atomic_inc_return(&user->sigpending); 430 if (sigpending == 1) 431 get_uid(user); 432 rcu_read_unlock(); 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 if (atomic_dec_and_test(&user->sigpending)) 442 free_uid(user); 443 } else { 444 INIT_LIST_HEAD(&q->list); 445 q->flags = 0; 446 q->user = user; 447 } 448 449 return q; 450 } 451 452 static void __sigqueue_free(struct sigqueue *q) 453 { 454 if (q->flags & SIGQUEUE_PREALLOC) 455 return; 456 if (atomic_dec_and_test(&q->user->sigpending)) 457 free_uid(q->user); 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 630 { 631 bool resched_timer = false; 632 int signr; 633 634 /* We only dequeue private signals from ourselves, we don't let 635 * signalfd steal them 636 */ 637 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 638 if (!signr) { 639 signr = __dequeue_signal(&tsk->signal->shared_pending, 640 mask, info, &resched_timer); 641 #ifdef CONFIG_POSIX_TIMERS 642 /* 643 * itimer signal ? 644 * 645 * itimers are process shared and we restart periodic 646 * itimers in the signal delivery path to prevent DoS 647 * attacks in the high resolution timer case. This is 648 * compliant with the old way of self-restarting 649 * itimers, as the SIGALRM is a legacy signal and only 650 * queued once. Changing the restart behaviour to 651 * restart the timer in the signal dequeue path is 652 * reducing the timer noise on heavy loaded !highres 653 * systems too. 654 */ 655 if (unlikely(signr == SIGALRM)) { 656 struct hrtimer *tmr = &tsk->signal->real_timer; 657 658 if (!hrtimer_is_queued(tmr) && 659 tsk->signal->it_real_incr != 0) { 660 hrtimer_forward(tmr, tmr->base->get_time(), 661 tsk->signal->it_real_incr); 662 hrtimer_restart(tmr); 663 } 664 } 665 #endif 666 } 667 668 recalc_sigpending(); 669 if (!signr) 670 return 0; 671 672 if (unlikely(sig_kernel_stop(signr))) { 673 /* 674 * Set a marker that we have dequeued a stop signal. Our 675 * caller might release the siglock and then the pending 676 * stop signal it is about to process is no longer in the 677 * pending bitmasks, but must still be cleared by a SIGCONT 678 * (and overruled by a SIGKILL). So those cases clear this 679 * shared flag after we've set it. Note that this flag may 680 * remain set after the signal we return is ignored or 681 * handled. That doesn't matter because its only purpose 682 * is to alert stop-signal processing code when another 683 * processor has come along and cleared the flag. 684 */ 685 current->jobctl |= JOBCTL_STOP_DEQUEUED; 686 } 687 #ifdef CONFIG_POSIX_TIMERS 688 if (resched_timer) { 689 /* 690 * Release the siglock to ensure proper locking order 691 * of timer locks outside of siglocks. Note, we leave 692 * irqs disabled here, since the posix-timers code is 693 * about to disable them again anyway. 694 */ 695 spin_unlock(&tsk->sighand->siglock); 696 posixtimer_rearm(info); 697 spin_lock(&tsk->sighand->siglock); 698 699 /* Don't expose the si_sys_private value to userspace */ 700 info->si_sys_private = 0; 701 } 702 #endif 703 return signr; 704 } 705 EXPORT_SYMBOL_GPL(dequeue_signal); 706 707 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 708 { 709 struct task_struct *tsk = current; 710 struct sigpending *pending = &tsk->pending; 711 struct sigqueue *q, *sync = NULL; 712 713 /* 714 * Might a synchronous signal be in the queue? 715 */ 716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 717 return 0; 718 719 /* 720 * Return the first synchronous signal in the queue. 721 */ 722 list_for_each_entry(q, &pending->list, list) { 723 /* Synchronous signals have a positive si_code */ 724 if ((q->info.si_code > SI_USER) && 725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 726 sync = q; 727 goto next; 728 } 729 } 730 return 0; 731 next: 732 /* 733 * Check if there is another siginfo for the same signal. 734 */ 735 list_for_each_entry_continue(q, &pending->list, list) { 736 if (q->info.si_signo == sync->info.si_signo) 737 goto still_pending; 738 } 739 740 sigdelset(&pending->signal, sync->info.si_signo); 741 recalc_sigpending(); 742 still_pending: 743 list_del_init(&sync->list); 744 copy_siginfo(info, &sync->info); 745 __sigqueue_free(sync); 746 return info->si_signo; 747 } 748 749 /* 750 * Tell a process that it has a new active signal.. 751 * 752 * NOTE! we rely on the previous spin_lock to 753 * lock interrupts for us! We can only be called with 754 * "siglock" held, and the local interrupt must 755 * have been disabled when that got acquired! 756 * 757 * No need to set need_resched since signal event passing 758 * goes through ->blocked 759 */ 760 void signal_wake_up_state(struct task_struct *t, unsigned int state) 761 { 762 set_tsk_thread_flag(t, TIF_SIGPENDING); 763 /* 764 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 765 * case. We don't check t->state here because there is a race with it 766 * executing another processor and just now entering stopped state. 767 * By using wake_up_state, we ensure the process will wake up and 768 * handle its death signal. 769 */ 770 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 771 kick_process(t); 772 } 773 774 /* 775 * Remove signals in mask from the pending set and queue. 776 * Returns 1 if any signals were found. 777 * 778 * All callers must be holding the siglock. 779 */ 780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 781 { 782 struct sigqueue *q, *n; 783 sigset_t m; 784 785 sigandsets(&m, mask, &s->signal); 786 if (sigisemptyset(&m)) 787 return; 788 789 sigandnsets(&s->signal, &s->signal, mask); 790 list_for_each_entry_safe(q, n, &s->list, list) { 791 if (sigismember(mask, q->info.si_signo)) { 792 list_del_init(&q->list); 793 __sigqueue_free(q); 794 } 795 } 796 } 797 798 static inline int is_si_special(const struct kernel_siginfo *info) 799 { 800 return info <= SEND_SIG_PRIV; 801 } 802 803 static inline bool si_fromuser(const struct kernel_siginfo *info) 804 { 805 return info == SEND_SIG_NOINFO || 806 (!is_si_special(info) && SI_FROMUSER(info)); 807 } 808 809 /* 810 * called with RCU read lock from check_kill_permission() 811 */ 812 static bool kill_ok_by_cred(struct task_struct *t) 813 { 814 const struct cred *cred = current_cred(); 815 const struct cred *tcred = __task_cred(t); 816 817 return uid_eq(cred->euid, tcred->suid) || 818 uid_eq(cred->euid, tcred->uid) || 819 uid_eq(cred->uid, tcred->suid) || 820 uid_eq(cred->uid, tcred->uid) || 821 ns_capable(tcred->user_ns, CAP_KILL); 822 } 823 824 /* 825 * Bad permissions for sending the signal 826 * - the caller must hold the RCU read lock 827 */ 828 static int check_kill_permission(int sig, struct kernel_siginfo *info, 829 struct task_struct *t) 830 { 831 struct pid *sid; 832 int error; 833 834 if (!valid_signal(sig)) 835 return -EINVAL; 836 837 if (!si_fromuser(info)) 838 return 0; 839 840 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 841 if (error) 842 return error; 843 844 if (!same_thread_group(current, t) && 845 !kill_ok_by_cred(t)) { 846 switch (sig) { 847 case SIGCONT: 848 sid = task_session(t); 849 /* 850 * We don't return the error if sid == NULL. The 851 * task was unhashed, the caller must notice this. 852 */ 853 if (!sid || sid == task_session(current)) 854 break; 855 fallthrough; 856 default: 857 return -EPERM; 858 } 859 } 860 861 return security_task_kill(t, info, sig, NULL); 862 } 863 864 /** 865 * ptrace_trap_notify - schedule trap to notify ptracer 866 * @t: tracee wanting to notify tracer 867 * 868 * This function schedules sticky ptrace trap which is cleared on the next 869 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 870 * ptracer. 871 * 872 * If @t is running, STOP trap will be taken. If trapped for STOP and 873 * ptracer is listening for events, tracee is woken up so that it can 874 * re-trap for the new event. If trapped otherwise, STOP trap will be 875 * eventually taken without returning to userland after the existing traps 876 * are finished by PTRACE_CONT. 877 * 878 * CONTEXT: 879 * Must be called with @task->sighand->siglock held. 880 */ 881 static void ptrace_trap_notify(struct task_struct *t) 882 { 883 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 884 assert_spin_locked(&t->sighand->siglock); 885 886 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 887 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 888 } 889 890 /* 891 * Handle magic process-wide effects of stop/continue signals. Unlike 892 * the signal actions, these happen immediately at signal-generation 893 * time regardless of blocking, ignoring, or handling. This does the 894 * actual continuing for SIGCONT, but not the actual stopping for stop 895 * signals. The process stop is done as a signal action for SIG_DFL. 896 * 897 * Returns true if the signal should be actually delivered, otherwise 898 * it should be dropped. 899 */ 900 static bool prepare_signal(int sig, struct task_struct *p, bool force) 901 { 902 struct signal_struct *signal = p->signal; 903 struct task_struct *t; 904 sigset_t flush; 905 906 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 907 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 908 return sig == SIGKILL; 909 /* 910 * The process is in the middle of dying, nothing to do. 911 */ 912 } else if (sig_kernel_stop(sig)) { 913 /* 914 * This is a stop signal. Remove SIGCONT from all queues. 915 */ 916 siginitset(&flush, sigmask(SIGCONT)); 917 flush_sigqueue_mask(&flush, &signal->shared_pending); 918 for_each_thread(p, t) 919 flush_sigqueue_mask(&flush, &t->pending); 920 } else if (sig == SIGCONT) { 921 unsigned int why; 922 /* 923 * Remove all stop signals from all queues, wake all threads. 924 */ 925 siginitset(&flush, SIG_KERNEL_STOP_MASK); 926 flush_sigqueue_mask(&flush, &signal->shared_pending); 927 for_each_thread(p, t) { 928 flush_sigqueue_mask(&flush, &t->pending); 929 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 930 if (likely(!(t->ptrace & PT_SEIZED))) 931 wake_up_state(t, __TASK_STOPPED); 932 else 933 ptrace_trap_notify(t); 934 } 935 936 /* 937 * Notify the parent with CLD_CONTINUED if we were stopped. 938 * 939 * If we were in the middle of a group stop, we pretend it 940 * was already finished, and then continued. Since SIGCHLD 941 * doesn't queue we report only CLD_STOPPED, as if the next 942 * CLD_CONTINUED was dropped. 943 */ 944 why = 0; 945 if (signal->flags & SIGNAL_STOP_STOPPED) 946 why |= SIGNAL_CLD_CONTINUED; 947 else if (signal->group_stop_count) 948 why |= SIGNAL_CLD_STOPPED; 949 950 if (why) { 951 /* 952 * The first thread which returns from do_signal_stop() 953 * will take ->siglock, notice SIGNAL_CLD_MASK, and 954 * notify its parent. See get_signal(). 955 */ 956 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 957 signal->group_stop_count = 0; 958 signal->group_exit_code = 0; 959 } 960 } 961 962 return !sig_ignored(p, sig, force); 963 } 964 965 /* 966 * Test if P wants to take SIG. After we've checked all threads with this, 967 * it's equivalent to finding no threads not blocking SIG. Any threads not 968 * blocking SIG were ruled out because they are not running and already 969 * have pending signals. Such threads will dequeue from the shared queue 970 * as soon as they're available, so putting the signal on the shared queue 971 * will be equivalent to sending it to one such thread. 972 */ 973 static inline bool wants_signal(int sig, struct task_struct *p) 974 { 975 if (sigismember(&p->blocked, sig)) 976 return false; 977 978 if (p->flags & PF_EXITING) 979 return false; 980 981 if (sig == SIGKILL) 982 return true; 983 984 if (task_is_stopped_or_traced(p)) 985 return false; 986 987 return task_curr(p) || !signal_pending(p); 988 } 989 990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 991 { 992 struct signal_struct *signal = p->signal; 993 struct task_struct *t; 994 995 /* 996 * Now find a thread we can wake up to take the signal off the queue. 997 * 998 * If the main thread wants the signal, it gets first crack. 999 * Probably the least surprising to the average bear. 1000 */ 1001 if (wants_signal(sig, p)) 1002 t = p; 1003 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1004 /* 1005 * There is just one thread and it does not need to be woken. 1006 * It will dequeue unblocked signals before it runs again. 1007 */ 1008 return; 1009 else { 1010 /* 1011 * Otherwise try to find a suitable thread. 1012 */ 1013 t = signal->curr_target; 1014 while (!wants_signal(sig, t)) { 1015 t = next_thread(t); 1016 if (t == signal->curr_target) 1017 /* 1018 * No thread needs to be woken. 1019 * Any eligible threads will see 1020 * the signal in the queue soon. 1021 */ 1022 return; 1023 } 1024 signal->curr_target = t; 1025 } 1026 1027 /* 1028 * Found a killable thread. If the signal will be fatal, 1029 * then start taking the whole group down immediately. 1030 */ 1031 if (sig_fatal(p, sig) && 1032 !(signal->flags & SIGNAL_GROUP_EXIT) && 1033 !sigismember(&t->real_blocked, sig) && 1034 (sig == SIGKILL || !p->ptrace)) { 1035 /* 1036 * This signal will be fatal to the whole group. 1037 */ 1038 if (!sig_kernel_coredump(sig)) { 1039 /* 1040 * Start a group exit and wake everybody up. 1041 * This way we don't have other threads 1042 * running and doing things after a slower 1043 * thread has the fatal signal pending. 1044 */ 1045 signal->flags = SIGNAL_GROUP_EXIT; 1046 signal->group_exit_code = sig; 1047 signal->group_stop_count = 0; 1048 t = p; 1049 do { 1050 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1051 sigaddset(&t->pending.signal, SIGKILL); 1052 signal_wake_up(t, 1); 1053 } while_each_thread(p, t); 1054 return; 1055 } 1056 } 1057 1058 /* 1059 * The signal is already in the shared-pending queue. 1060 * Tell the chosen thread to wake up and dequeue it. 1061 */ 1062 signal_wake_up(t, sig == SIGKILL); 1063 return; 1064 } 1065 1066 static inline bool legacy_queue(struct sigpending *signals, int sig) 1067 { 1068 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1069 } 1070 1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1072 enum pid_type type, bool force) 1073 { 1074 struct sigpending *pending; 1075 struct sigqueue *q; 1076 int override_rlimit; 1077 int ret = 0, result; 1078 1079 assert_spin_locked(&t->sighand->siglock); 1080 1081 result = TRACE_SIGNAL_IGNORED; 1082 if (!prepare_signal(sig, t, force)) 1083 goto ret; 1084 1085 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1086 /* 1087 * Short-circuit ignored signals and support queuing 1088 * exactly one non-rt signal, so that we can get more 1089 * detailed information about the cause of the signal. 1090 */ 1091 result = TRACE_SIGNAL_ALREADY_PENDING; 1092 if (legacy_queue(pending, sig)) 1093 goto ret; 1094 1095 result = TRACE_SIGNAL_DELIVERED; 1096 /* 1097 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1098 */ 1099 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1100 goto out_set; 1101 1102 /* 1103 * Real-time signals must be queued if sent by sigqueue, or 1104 * some other real-time mechanism. It is implementation 1105 * defined whether kill() does so. We attempt to do so, on 1106 * the principle of least surprise, but since kill is not 1107 * allowed to fail with EAGAIN when low on memory we just 1108 * make sure at least one signal gets delivered and don't 1109 * pass on the info struct. 1110 */ 1111 if (sig < SIGRTMIN) 1112 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1113 else 1114 override_rlimit = 0; 1115 1116 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1117 if (q) { 1118 list_add_tail(&q->list, &pending->list); 1119 switch ((unsigned long) info) { 1120 case (unsigned long) SEND_SIG_NOINFO: 1121 clear_siginfo(&q->info); 1122 q->info.si_signo = sig; 1123 q->info.si_errno = 0; 1124 q->info.si_code = SI_USER; 1125 q->info.si_pid = task_tgid_nr_ns(current, 1126 task_active_pid_ns(t)); 1127 rcu_read_lock(); 1128 q->info.si_uid = 1129 from_kuid_munged(task_cred_xxx(t, user_ns), 1130 current_uid()); 1131 rcu_read_unlock(); 1132 break; 1133 case (unsigned long) SEND_SIG_PRIV: 1134 clear_siginfo(&q->info); 1135 q->info.si_signo = sig; 1136 q->info.si_errno = 0; 1137 q->info.si_code = SI_KERNEL; 1138 q->info.si_pid = 0; 1139 q->info.si_uid = 0; 1140 break; 1141 default: 1142 copy_siginfo(&q->info, info); 1143 break; 1144 } 1145 } else if (!is_si_special(info) && 1146 sig >= SIGRTMIN && info->si_code != SI_USER) { 1147 /* 1148 * Queue overflow, abort. We may abort if the 1149 * signal was rt and sent by user using something 1150 * other than kill(). 1151 */ 1152 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1153 ret = -EAGAIN; 1154 goto ret; 1155 } else { 1156 /* 1157 * This is a silent loss of information. We still 1158 * send the signal, but the *info bits are lost. 1159 */ 1160 result = TRACE_SIGNAL_LOSE_INFO; 1161 } 1162 1163 out_set: 1164 signalfd_notify(t, sig); 1165 sigaddset(&pending->signal, sig); 1166 1167 /* Let multiprocess signals appear after on-going forks */ 1168 if (type > PIDTYPE_TGID) { 1169 struct multiprocess_signals *delayed; 1170 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1171 sigset_t *signal = &delayed->signal; 1172 /* Can't queue both a stop and a continue signal */ 1173 if (sig == SIGCONT) 1174 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1175 else if (sig_kernel_stop(sig)) 1176 sigdelset(signal, SIGCONT); 1177 sigaddset(signal, sig); 1178 } 1179 } 1180 1181 complete_signal(sig, t, type); 1182 ret: 1183 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1184 return ret; 1185 } 1186 1187 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1188 { 1189 bool ret = false; 1190 switch (siginfo_layout(info->si_signo, info->si_code)) { 1191 case SIL_KILL: 1192 case SIL_CHLD: 1193 case SIL_RT: 1194 ret = true; 1195 break; 1196 case SIL_TIMER: 1197 case SIL_POLL: 1198 case SIL_FAULT: 1199 case SIL_FAULT_MCEERR: 1200 case SIL_FAULT_BNDERR: 1201 case SIL_FAULT_PKUERR: 1202 case SIL_SYS: 1203 ret = false; 1204 break; 1205 } 1206 return ret; 1207 } 1208 1209 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1210 enum pid_type type) 1211 { 1212 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1213 bool force = false; 1214 1215 if (info == SEND_SIG_NOINFO) { 1216 /* Force if sent from an ancestor pid namespace */ 1217 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1218 } else if (info == SEND_SIG_PRIV) { 1219 /* Don't ignore kernel generated signals */ 1220 force = true; 1221 } else if (has_si_pid_and_uid(info)) { 1222 /* SIGKILL and SIGSTOP is special or has ids */ 1223 struct user_namespace *t_user_ns; 1224 1225 rcu_read_lock(); 1226 t_user_ns = task_cred_xxx(t, user_ns); 1227 if (current_user_ns() != t_user_ns) { 1228 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1229 info->si_uid = from_kuid_munged(t_user_ns, uid); 1230 } 1231 rcu_read_unlock(); 1232 1233 /* A kernel generated signal? */ 1234 force = (info->si_code == SI_KERNEL); 1235 1236 /* From an ancestor pid namespace? */ 1237 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1238 info->si_pid = 0; 1239 force = true; 1240 } 1241 } 1242 return __send_signal(sig, info, t, type, force); 1243 } 1244 1245 static void print_fatal_signal(int signr) 1246 { 1247 struct pt_regs *regs = signal_pt_regs(); 1248 pr_info("potentially unexpected fatal signal %d.\n", signr); 1249 1250 #if defined(__i386__) && !defined(__arch_um__) 1251 pr_info("code at %08lx: ", regs->ip); 1252 { 1253 int i; 1254 for (i = 0; i < 16; i++) { 1255 unsigned char insn; 1256 1257 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1258 break; 1259 pr_cont("%02x ", insn); 1260 } 1261 } 1262 pr_cont("\n"); 1263 #endif 1264 preempt_disable(); 1265 show_regs(regs); 1266 preempt_enable(); 1267 } 1268 1269 static int __init setup_print_fatal_signals(char *str) 1270 { 1271 get_option (&str, &print_fatal_signals); 1272 1273 return 1; 1274 } 1275 1276 __setup("print-fatal-signals=", setup_print_fatal_signals); 1277 1278 int 1279 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1280 { 1281 return send_signal(sig, info, p, PIDTYPE_TGID); 1282 } 1283 1284 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1285 enum pid_type type) 1286 { 1287 unsigned long flags; 1288 int ret = -ESRCH; 1289 1290 if (lock_task_sighand(p, &flags)) { 1291 ret = send_signal(sig, info, p, type); 1292 unlock_task_sighand(p, &flags); 1293 } 1294 1295 return ret; 1296 } 1297 1298 /* 1299 * Force a signal that the process can't ignore: if necessary 1300 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1301 * 1302 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1303 * since we do not want to have a signal handler that was blocked 1304 * be invoked when user space had explicitly blocked it. 1305 * 1306 * We don't want to have recursive SIGSEGV's etc, for example, 1307 * that is why we also clear SIGNAL_UNKILLABLE. 1308 */ 1309 static int 1310 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) 1311 { 1312 unsigned long int flags; 1313 int ret, blocked, ignored; 1314 struct k_sigaction *action; 1315 int sig = info->si_signo; 1316 1317 spin_lock_irqsave(&t->sighand->siglock, flags); 1318 action = &t->sighand->action[sig-1]; 1319 ignored = action->sa.sa_handler == SIG_IGN; 1320 blocked = sigismember(&t->blocked, sig); 1321 if (blocked || ignored) { 1322 action->sa.sa_handler = SIG_DFL; 1323 if (blocked) { 1324 sigdelset(&t->blocked, sig); 1325 recalc_sigpending_and_wake(t); 1326 } 1327 } 1328 /* 1329 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1330 * debugging to leave init killable. 1331 */ 1332 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1333 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1334 ret = send_signal(sig, info, t, PIDTYPE_PID); 1335 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1336 1337 return ret; 1338 } 1339 1340 int force_sig_info(struct kernel_siginfo *info) 1341 { 1342 return force_sig_info_to_task(info, current); 1343 } 1344 1345 /* 1346 * Nuke all other threads in the group. 1347 */ 1348 int zap_other_threads(struct task_struct *p) 1349 { 1350 struct task_struct *t = p; 1351 int count = 0; 1352 1353 p->signal->group_stop_count = 0; 1354 1355 while_each_thread(p, t) { 1356 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1357 count++; 1358 1359 /* Don't bother with already dead threads */ 1360 if (t->exit_state) 1361 continue; 1362 sigaddset(&t->pending.signal, SIGKILL); 1363 signal_wake_up(t, 1); 1364 } 1365 1366 return count; 1367 } 1368 1369 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1370 unsigned long *flags) 1371 { 1372 struct sighand_struct *sighand; 1373 1374 rcu_read_lock(); 1375 for (;;) { 1376 sighand = rcu_dereference(tsk->sighand); 1377 if (unlikely(sighand == NULL)) 1378 break; 1379 1380 /* 1381 * This sighand can be already freed and even reused, but 1382 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1383 * initializes ->siglock: this slab can't go away, it has 1384 * the same object type, ->siglock can't be reinitialized. 1385 * 1386 * We need to ensure that tsk->sighand is still the same 1387 * after we take the lock, we can race with de_thread() or 1388 * __exit_signal(). In the latter case the next iteration 1389 * must see ->sighand == NULL. 1390 */ 1391 spin_lock_irqsave(&sighand->siglock, *flags); 1392 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1393 break; 1394 spin_unlock_irqrestore(&sighand->siglock, *flags); 1395 } 1396 rcu_read_unlock(); 1397 1398 return sighand; 1399 } 1400 1401 /* 1402 * send signal info to all the members of a group 1403 */ 1404 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1405 struct task_struct *p, enum pid_type type) 1406 { 1407 int ret; 1408 1409 rcu_read_lock(); 1410 ret = check_kill_permission(sig, info, p); 1411 rcu_read_unlock(); 1412 1413 if (!ret && sig) 1414 ret = do_send_sig_info(sig, info, p, type); 1415 1416 return ret; 1417 } 1418 1419 /* 1420 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1421 * control characters do (^C, ^Z etc) 1422 * - the caller must hold at least a readlock on tasklist_lock 1423 */ 1424 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1425 { 1426 struct task_struct *p = NULL; 1427 int retval, success; 1428 1429 success = 0; 1430 retval = -ESRCH; 1431 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1432 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1433 success |= !err; 1434 retval = err; 1435 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1436 return success ? 0 : retval; 1437 } 1438 1439 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1440 { 1441 int error = -ESRCH; 1442 struct task_struct *p; 1443 1444 for (;;) { 1445 rcu_read_lock(); 1446 p = pid_task(pid, PIDTYPE_PID); 1447 if (p) 1448 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1449 rcu_read_unlock(); 1450 if (likely(!p || error != -ESRCH)) 1451 return error; 1452 1453 /* 1454 * The task was unhashed in between, try again. If it 1455 * is dead, pid_task() will return NULL, if we race with 1456 * de_thread() it will find the new leader. 1457 */ 1458 } 1459 } 1460 1461 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1462 { 1463 int error; 1464 rcu_read_lock(); 1465 error = kill_pid_info(sig, info, find_vpid(pid)); 1466 rcu_read_unlock(); 1467 return error; 1468 } 1469 1470 static inline bool kill_as_cred_perm(const struct cred *cred, 1471 struct task_struct *target) 1472 { 1473 const struct cred *pcred = __task_cred(target); 1474 1475 return uid_eq(cred->euid, pcred->suid) || 1476 uid_eq(cred->euid, pcred->uid) || 1477 uid_eq(cred->uid, pcred->suid) || 1478 uid_eq(cred->uid, pcred->uid); 1479 } 1480 1481 /* 1482 * The usb asyncio usage of siginfo is wrong. The glibc support 1483 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1484 * AKA after the generic fields: 1485 * kernel_pid_t si_pid; 1486 * kernel_uid32_t si_uid; 1487 * sigval_t si_value; 1488 * 1489 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1490 * after the generic fields is: 1491 * void __user *si_addr; 1492 * 1493 * This is a practical problem when there is a 64bit big endian kernel 1494 * and a 32bit userspace. As the 32bit address will encoded in the low 1495 * 32bits of the pointer. Those low 32bits will be stored at higher 1496 * address than appear in a 32 bit pointer. So userspace will not 1497 * see the address it was expecting for it's completions. 1498 * 1499 * There is nothing in the encoding that can allow 1500 * copy_siginfo_to_user32 to detect this confusion of formats, so 1501 * handle this by requiring the caller of kill_pid_usb_asyncio to 1502 * notice when this situration takes place and to store the 32bit 1503 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1504 * parameter. 1505 */ 1506 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1507 struct pid *pid, const struct cred *cred) 1508 { 1509 struct kernel_siginfo info; 1510 struct task_struct *p; 1511 unsigned long flags; 1512 int ret = -EINVAL; 1513 1514 if (!valid_signal(sig)) 1515 return ret; 1516 1517 clear_siginfo(&info); 1518 info.si_signo = sig; 1519 info.si_errno = errno; 1520 info.si_code = SI_ASYNCIO; 1521 *((sigval_t *)&info.si_pid) = addr; 1522 1523 rcu_read_lock(); 1524 p = pid_task(pid, PIDTYPE_PID); 1525 if (!p) { 1526 ret = -ESRCH; 1527 goto out_unlock; 1528 } 1529 if (!kill_as_cred_perm(cred, p)) { 1530 ret = -EPERM; 1531 goto out_unlock; 1532 } 1533 ret = security_task_kill(p, &info, sig, cred); 1534 if (ret) 1535 goto out_unlock; 1536 1537 if (sig) { 1538 if (lock_task_sighand(p, &flags)) { 1539 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1540 unlock_task_sighand(p, &flags); 1541 } else 1542 ret = -ESRCH; 1543 } 1544 out_unlock: 1545 rcu_read_unlock(); 1546 return ret; 1547 } 1548 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1549 1550 /* 1551 * kill_something_info() interprets pid in interesting ways just like kill(2). 1552 * 1553 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1554 * is probably wrong. Should make it like BSD or SYSV. 1555 */ 1556 1557 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1558 { 1559 int ret; 1560 1561 if (pid > 0) 1562 return kill_proc_info(sig, info, pid); 1563 1564 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1565 if (pid == INT_MIN) 1566 return -ESRCH; 1567 1568 read_lock(&tasklist_lock); 1569 if (pid != -1) { 1570 ret = __kill_pgrp_info(sig, info, 1571 pid ? find_vpid(-pid) : task_pgrp(current)); 1572 } else { 1573 int retval = 0, count = 0; 1574 struct task_struct * p; 1575 1576 for_each_process(p) { 1577 if (task_pid_vnr(p) > 1 && 1578 !same_thread_group(p, current)) { 1579 int err = group_send_sig_info(sig, info, p, 1580 PIDTYPE_MAX); 1581 ++count; 1582 if (err != -EPERM) 1583 retval = err; 1584 } 1585 } 1586 ret = count ? retval : -ESRCH; 1587 } 1588 read_unlock(&tasklist_lock); 1589 1590 return ret; 1591 } 1592 1593 /* 1594 * These are for backward compatibility with the rest of the kernel source. 1595 */ 1596 1597 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1598 { 1599 /* 1600 * Make sure legacy kernel users don't send in bad values 1601 * (normal paths check this in check_kill_permission). 1602 */ 1603 if (!valid_signal(sig)) 1604 return -EINVAL; 1605 1606 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1607 } 1608 EXPORT_SYMBOL(send_sig_info); 1609 1610 #define __si_special(priv) \ 1611 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1612 1613 int 1614 send_sig(int sig, struct task_struct *p, int priv) 1615 { 1616 return send_sig_info(sig, __si_special(priv), p); 1617 } 1618 EXPORT_SYMBOL(send_sig); 1619 1620 void force_sig(int sig) 1621 { 1622 struct kernel_siginfo info; 1623 1624 clear_siginfo(&info); 1625 info.si_signo = sig; 1626 info.si_errno = 0; 1627 info.si_code = SI_KERNEL; 1628 info.si_pid = 0; 1629 info.si_uid = 0; 1630 force_sig_info(&info); 1631 } 1632 EXPORT_SYMBOL(force_sig); 1633 1634 /* 1635 * When things go south during signal handling, we 1636 * will force a SIGSEGV. And if the signal that caused 1637 * the problem was already a SIGSEGV, we'll want to 1638 * make sure we don't even try to deliver the signal.. 1639 */ 1640 void force_sigsegv(int sig) 1641 { 1642 struct task_struct *p = current; 1643 1644 if (sig == SIGSEGV) { 1645 unsigned long flags; 1646 spin_lock_irqsave(&p->sighand->siglock, flags); 1647 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1648 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1649 } 1650 force_sig(SIGSEGV); 1651 } 1652 1653 int force_sig_fault_to_task(int sig, int code, void __user *addr 1654 ___ARCH_SI_TRAPNO(int trapno) 1655 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1656 , struct task_struct *t) 1657 { 1658 struct kernel_siginfo info; 1659 1660 clear_siginfo(&info); 1661 info.si_signo = sig; 1662 info.si_errno = 0; 1663 info.si_code = code; 1664 info.si_addr = addr; 1665 #ifdef __ARCH_SI_TRAPNO 1666 info.si_trapno = trapno; 1667 #endif 1668 #ifdef __ia64__ 1669 info.si_imm = imm; 1670 info.si_flags = flags; 1671 info.si_isr = isr; 1672 #endif 1673 return force_sig_info_to_task(&info, t); 1674 } 1675 1676 int force_sig_fault(int sig, int code, void __user *addr 1677 ___ARCH_SI_TRAPNO(int trapno) 1678 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1679 { 1680 return force_sig_fault_to_task(sig, code, addr 1681 ___ARCH_SI_TRAPNO(trapno) 1682 ___ARCH_SI_IA64(imm, flags, isr), current); 1683 } 1684 1685 int send_sig_fault(int sig, int code, void __user *addr 1686 ___ARCH_SI_TRAPNO(int trapno) 1687 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1688 , struct task_struct *t) 1689 { 1690 struct kernel_siginfo info; 1691 1692 clear_siginfo(&info); 1693 info.si_signo = sig; 1694 info.si_errno = 0; 1695 info.si_code = code; 1696 info.si_addr = addr; 1697 #ifdef __ARCH_SI_TRAPNO 1698 info.si_trapno = trapno; 1699 #endif 1700 #ifdef __ia64__ 1701 info.si_imm = imm; 1702 info.si_flags = flags; 1703 info.si_isr = isr; 1704 #endif 1705 return send_sig_info(info.si_signo, &info, t); 1706 } 1707 1708 int force_sig_mceerr(int code, void __user *addr, short lsb) 1709 { 1710 struct kernel_siginfo info; 1711 1712 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1713 clear_siginfo(&info); 1714 info.si_signo = SIGBUS; 1715 info.si_errno = 0; 1716 info.si_code = code; 1717 info.si_addr = addr; 1718 info.si_addr_lsb = lsb; 1719 return force_sig_info(&info); 1720 } 1721 1722 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1723 { 1724 struct kernel_siginfo info; 1725 1726 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1727 clear_siginfo(&info); 1728 info.si_signo = SIGBUS; 1729 info.si_errno = 0; 1730 info.si_code = code; 1731 info.si_addr = addr; 1732 info.si_addr_lsb = lsb; 1733 return send_sig_info(info.si_signo, &info, t); 1734 } 1735 EXPORT_SYMBOL(send_sig_mceerr); 1736 1737 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1738 { 1739 struct kernel_siginfo info; 1740 1741 clear_siginfo(&info); 1742 info.si_signo = SIGSEGV; 1743 info.si_errno = 0; 1744 info.si_code = SEGV_BNDERR; 1745 info.si_addr = addr; 1746 info.si_lower = lower; 1747 info.si_upper = upper; 1748 return force_sig_info(&info); 1749 } 1750 1751 #ifdef SEGV_PKUERR 1752 int force_sig_pkuerr(void __user *addr, u32 pkey) 1753 { 1754 struct kernel_siginfo info; 1755 1756 clear_siginfo(&info); 1757 info.si_signo = SIGSEGV; 1758 info.si_errno = 0; 1759 info.si_code = SEGV_PKUERR; 1760 info.si_addr = addr; 1761 info.si_pkey = pkey; 1762 return force_sig_info(&info); 1763 } 1764 #endif 1765 1766 /* For the crazy architectures that include trap information in 1767 * the errno field, instead of an actual errno value. 1768 */ 1769 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1770 { 1771 struct kernel_siginfo info; 1772 1773 clear_siginfo(&info); 1774 info.si_signo = SIGTRAP; 1775 info.si_errno = errno; 1776 info.si_code = TRAP_HWBKPT; 1777 info.si_addr = addr; 1778 return force_sig_info(&info); 1779 } 1780 1781 int kill_pgrp(struct pid *pid, int sig, int priv) 1782 { 1783 int ret; 1784 1785 read_lock(&tasklist_lock); 1786 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1787 read_unlock(&tasklist_lock); 1788 1789 return ret; 1790 } 1791 EXPORT_SYMBOL(kill_pgrp); 1792 1793 int kill_pid(struct pid *pid, int sig, int priv) 1794 { 1795 return kill_pid_info(sig, __si_special(priv), pid); 1796 } 1797 EXPORT_SYMBOL(kill_pid); 1798 1799 /* 1800 * These functions support sending signals using preallocated sigqueue 1801 * structures. This is needed "because realtime applications cannot 1802 * afford to lose notifications of asynchronous events, like timer 1803 * expirations or I/O completions". In the case of POSIX Timers 1804 * we allocate the sigqueue structure from the timer_create. If this 1805 * allocation fails we are able to report the failure to the application 1806 * with an EAGAIN error. 1807 */ 1808 struct sigqueue *sigqueue_alloc(void) 1809 { 1810 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1811 1812 if (q) 1813 q->flags |= SIGQUEUE_PREALLOC; 1814 1815 return q; 1816 } 1817 1818 void sigqueue_free(struct sigqueue *q) 1819 { 1820 unsigned long flags; 1821 spinlock_t *lock = ¤t->sighand->siglock; 1822 1823 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1824 /* 1825 * We must hold ->siglock while testing q->list 1826 * to serialize with collect_signal() or with 1827 * __exit_signal()->flush_sigqueue(). 1828 */ 1829 spin_lock_irqsave(lock, flags); 1830 q->flags &= ~SIGQUEUE_PREALLOC; 1831 /* 1832 * If it is queued it will be freed when dequeued, 1833 * like the "regular" sigqueue. 1834 */ 1835 if (!list_empty(&q->list)) 1836 q = NULL; 1837 spin_unlock_irqrestore(lock, flags); 1838 1839 if (q) 1840 __sigqueue_free(q); 1841 } 1842 1843 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1844 { 1845 int sig = q->info.si_signo; 1846 struct sigpending *pending; 1847 struct task_struct *t; 1848 unsigned long flags; 1849 int ret, result; 1850 1851 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1852 1853 ret = -1; 1854 rcu_read_lock(); 1855 t = pid_task(pid, type); 1856 if (!t || !likely(lock_task_sighand(t, &flags))) 1857 goto ret; 1858 1859 ret = 1; /* the signal is ignored */ 1860 result = TRACE_SIGNAL_IGNORED; 1861 if (!prepare_signal(sig, t, false)) 1862 goto out; 1863 1864 ret = 0; 1865 if (unlikely(!list_empty(&q->list))) { 1866 /* 1867 * If an SI_TIMER entry is already queue just increment 1868 * the overrun count. 1869 */ 1870 BUG_ON(q->info.si_code != SI_TIMER); 1871 q->info.si_overrun++; 1872 result = TRACE_SIGNAL_ALREADY_PENDING; 1873 goto out; 1874 } 1875 q->info.si_overrun = 0; 1876 1877 signalfd_notify(t, sig); 1878 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1879 list_add_tail(&q->list, &pending->list); 1880 sigaddset(&pending->signal, sig); 1881 complete_signal(sig, t, type); 1882 result = TRACE_SIGNAL_DELIVERED; 1883 out: 1884 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1885 unlock_task_sighand(t, &flags); 1886 ret: 1887 rcu_read_unlock(); 1888 return ret; 1889 } 1890 1891 static void do_notify_pidfd(struct task_struct *task) 1892 { 1893 struct pid *pid; 1894 1895 WARN_ON(task->exit_state == 0); 1896 pid = task_pid(task); 1897 wake_up_all(&pid->wait_pidfd); 1898 } 1899 1900 /* 1901 * Let a parent know about the death of a child. 1902 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1903 * 1904 * Returns true if our parent ignored us and so we've switched to 1905 * self-reaping. 1906 */ 1907 bool do_notify_parent(struct task_struct *tsk, int sig) 1908 { 1909 struct kernel_siginfo info; 1910 unsigned long flags; 1911 struct sighand_struct *psig; 1912 bool autoreap = false; 1913 u64 utime, stime; 1914 1915 BUG_ON(sig == -1); 1916 1917 /* do_notify_parent_cldstop should have been called instead. */ 1918 BUG_ON(task_is_stopped_or_traced(tsk)); 1919 1920 BUG_ON(!tsk->ptrace && 1921 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1922 1923 /* Wake up all pidfd waiters */ 1924 do_notify_pidfd(tsk); 1925 1926 if (sig != SIGCHLD) { 1927 /* 1928 * This is only possible if parent == real_parent. 1929 * Check if it has changed security domain. 1930 */ 1931 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 1932 sig = SIGCHLD; 1933 } 1934 1935 clear_siginfo(&info); 1936 info.si_signo = sig; 1937 info.si_errno = 0; 1938 /* 1939 * We are under tasklist_lock here so our parent is tied to 1940 * us and cannot change. 1941 * 1942 * task_active_pid_ns will always return the same pid namespace 1943 * until a task passes through release_task. 1944 * 1945 * write_lock() currently calls preempt_disable() which is the 1946 * same as rcu_read_lock(), but according to Oleg, this is not 1947 * correct to rely on this 1948 */ 1949 rcu_read_lock(); 1950 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1951 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1952 task_uid(tsk)); 1953 rcu_read_unlock(); 1954 1955 task_cputime(tsk, &utime, &stime); 1956 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1957 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1958 1959 info.si_status = tsk->exit_code & 0x7f; 1960 if (tsk->exit_code & 0x80) 1961 info.si_code = CLD_DUMPED; 1962 else if (tsk->exit_code & 0x7f) 1963 info.si_code = CLD_KILLED; 1964 else { 1965 info.si_code = CLD_EXITED; 1966 info.si_status = tsk->exit_code >> 8; 1967 } 1968 1969 psig = tsk->parent->sighand; 1970 spin_lock_irqsave(&psig->siglock, flags); 1971 if (!tsk->ptrace && sig == SIGCHLD && 1972 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1973 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1974 /* 1975 * We are exiting and our parent doesn't care. POSIX.1 1976 * defines special semantics for setting SIGCHLD to SIG_IGN 1977 * or setting the SA_NOCLDWAIT flag: we should be reaped 1978 * automatically and not left for our parent's wait4 call. 1979 * Rather than having the parent do it as a magic kind of 1980 * signal handler, we just set this to tell do_exit that we 1981 * can be cleaned up without becoming a zombie. Note that 1982 * we still call __wake_up_parent in this case, because a 1983 * blocked sys_wait4 might now return -ECHILD. 1984 * 1985 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1986 * is implementation-defined: we do (if you don't want 1987 * it, just use SIG_IGN instead). 1988 */ 1989 autoreap = true; 1990 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1991 sig = 0; 1992 } 1993 /* 1994 * Send with __send_signal as si_pid and si_uid are in the 1995 * parent's namespaces. 1996 */ 1997 if (valid_signal(sig) && sig) 1998 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 1999 __wake_up_parent(tsk, tsk->parent); 2000 spin_unlock_irqrestore(&psig->siglock, flags); 2001 2002 return autoreap; 2003 } 2004 2005 /** 2006 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2007 * @tsk: task reporting the state change 2008 * @for_ptracer: the notification is for ptracer 2009 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2010 * 2011 * Notify @tsk's parent that the stopped/continued state has changed. If 2012 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2013 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2014 * 2015 * CONTEXT: 2016 * Must be called with tasklist_lock at least read locked. 2017 */ 2018 static void do_notify_parent_cldstop(struct task_struct *tsk, 2019 bool for_ptracer, int why) 2020 { 2021 struct kernel_siginfo info; 2022 unsigned long flags; 2023 struct task_struct *parent; 2024 struct sighand_struct *sighand; 2025 u64 utime, stime; 2026 2027 if (for_ptracer) { 2028 parent = tsk->parent; 2029 } else { 2030 tsk = tsk->group_leader; 2031 parent = tsk->real_parent; 2032 } 2033 2034 clear_siginfo(&info); 2035 info.si_signo = SIGCHLD; 2036 info.si_errno = 0; 2037 /* 2038 * see comment in do_notify_parent() about the following 4 lines 2039 */ 2040 rcu_read_lock(); 2041 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2042 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2043 rcu_read_unlock(); 2044 2045 task_cputime(tsk, &utime, &stime); 2046 info.si_utime = nsec_to_clock_t(utime); 2047 info.si_stime = nsec_to_clock_t(stime); 2048 2049 info.si_code = why; 2050 switch (why) { 2051 case CLD_CONTINUED: 2052 info.si_status = SIGCONT; 2053 break; 2054 case CLD_STOPPED: 2055 info.si_status = tsk->signal->group_exit_code & 0x7f; 2056 break; 2057 case CLD_TRAPPED: 2058 info.si_status = tsk->exit_code & 0x7f; 2059 break; 2060 default: 2061 BUG(); 2062 } 2063 2064 sighand = parent->sighand; 2065 spin_lock_irqsave(&sighand->siglock, flags); 2066 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2067 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2068 __group_send_sig_info(SIGCHLD, &info, parent); 2069 /* 2070 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2071 */ 2072 __wake_up_parent(tsk, parent); 2073 spin_unlock_irqrestore(&sighand->siglock, flags); 2074 } 2075 2076 static inline bool may_ptrace_stop(void) 2077 { 2078 if (!likely(current->ptrace)) 2079 return false; 2080 /* 2081 * Are we in the middle of do_coredump? 2082 * If so and our tracer is also part of the coredump stopping 2083 * is a deadlock situation, and pointless because our tracer 2084 * is dead so don't allow us to stop. 2085 * If SIGKILL was already sent before the caller unlocked 2086 * ->siglock we must see ->core_state != NULL. Otherwise it 2087 * is safe to enter schedule(). 2088 * 2089 * This is almost outdated, a task with the pending SIGKILL can't 2090 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2091 * after SIGKILL was already dequeued. 2092 */ 2093 if (unlikely(current->mm->core_state) && 2094 unlikely(current->mm == current->parent->mm)) 2095 return false; 2096 2097 return true; 2098 } 2099 2100 /* 2101 * Return non-zero if there is a SIGKILL that should be waking us up. 2102 * Called with the siglock held. 2103 */ 2104 static bool sigkill_pending(struct task_struct *tsk) 2105 { 2106 return sigismember(&tsk->pending.signal, SIGKILL) || 2107 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2108 } 2109 2110 /* 2111 * This must be called with current->sighand->siglock held. 2112 * 2113 * This should be the path for all ptrace stops. 2114 * We always set current->last_siginfo while stopped here. 2115 * That makes it a way to test a stopped process for 2116 * being ptrace-stopped vs being job-control-stopped. 2117 * 2118 * If we actually decide not to stop at all because the tracer 2119 * is gone, we keep current->exit_code unless clear_code. 2120 */ 2121 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2122 __releases(¤t->sighand->siglock) 2123 __acquires(¤t->sighand->siglock) 2124 { 2125 bool gstop_done = false; 2126 2127 if (arch_ptrace_stop_needed(exit_code, info)) { 2128 /* 2129 * The arch code has something special to do before a 2130 * ptrace stop. This is allowed to block, e.g. for faults 2131 * on user stack pages. We can't keep the siglock while 2132 * calling arch_ptrace_stop, so we must release it now. 2133 * To preserve proper semantics, we must do this before 2134 * any signal bookkeeping like checking group_stop_count. 2135 * Meanwhile, a SIGKILL could come in before we retake the 2136 * siglock. That must prevent us from sleeping in TASK_TRACED. 2137 * So after regaining the lock, we must check for SIGKILL. 2138 */ 2139 spin_unlock_irq(¤t->sighand->siglock); 2140 arch_ptrace_stop(exit_code, info); 2141 spin_lock_irq(¤t->sighand->siglock); 2142 if (sigkill_pending(current)) 2143 return; 2144 } 2145 2146 set_special_state(TASK_TRACED); 2147 2148 /* 2149 * We're committing to trapping. TRACED should be visible before 2150 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2151 * Also, transition to TRACED and updates to ->jobctl should be 2152 * atomic with respect to siglock and should be done after the arch 2153 * hook as siglock is released and regrabbed across it. 2154 * 2155 * TRACER TRACEE 2156 * 2157 * ptrace_attach() 2158 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2159 * do_wait() 2160 * set_current_state() smp_wmb(); 2161 * ptrace_do_wait() 2162 * wait_task_stopped() 2163 * task_stopped_code() 2164 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2165 */ 2166 smp_wmb(); 2167 2168 current->last_siginfo = info; 2169 current->exit_code = exit_code; 2170 2171 /* 2172 * If @why is CLD_STOPPED, we're trapping to participate in a group 2173 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2174 * across siglock relocks since INTERRUPT was scheduled, PENDING 2175 * could be clear now. We act as if SIGCONT is received after 2176 * TASK_TRACED is entered - ignore it. 2177 */ 2178 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2179 gstop_done = task_participate_group_stop(current); 2180 2181 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2182 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2183 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2184 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2185 2186 /* entering a trap, clear TRAPPING */ 2187 task_clear_jobctl_trapping(current); 2188 2189 spin_unlock_irq(¤t->sighand->siglock); 2190 read_lock(&tasklist_lock); 2191 if (may_ptrace_stop()) { 2192 /* 2193 * Notify parents of the stop. 2194 * 2195 * While ptraced, there are two parents - the ptracer and 2196 * the real_parent of the group_leader. The ptracer should 2197 * know about every stop while the real parent is only 2198 * interested in the completion of group stop. The states 2199 * for the two don't interact with each other. Notify 2200 * separately unless they're gonna be duplicates. 2201 */ 2202 do_notify_parent_cldstop(current, true, why); 2203 if (gstop_done && ptrace_reparented(current)) 2204 do_notify_parent_cldstop(current, false, why); 2205 2206 /* 2207 * Don't want to allow preemption here, because 2208 * sys_ptrace() needs this task to be inactive. 2209 * 2210 * XXX: implement read_unlock_no_resched(). 2211 */ 2212 preempt_disable(); 2213 read_unlock(&tasklist_lock); 2214 cgroup_enter_frozen(); 2215 preempt_enable_no_resched(); 2216 freezable_schedule(); 2217 cgroup_leave_frozen(true); 2218 } else { 2219 /* 2220 * By the time we got the lock, our tracer went away. 2221 * Don't drop the lock yet, another tracer may come. 2222 * 2223 * If @gstop_done, the ptracer went away between group stop 2224 * completion and here. During detach, it would have set 2225 * JOBCTL_STOP_PENDING on us and we'll re-enter 2226 * TASK_STOPPED in do_signal_stop() on return, so notifying 2227 * the real parent of the group stop completion is enough. 2228 */ 2229 if (gstop_done) 2230 do_notify_parent_cldstop(current, false, why); 2231 2232 /* tasklist protects us from ptrace_freeze_traced() */ 2233 __set_current_state(TASK_RUNNING); 2234 if (clear_code) 2235 current->exit_code = 0; 2236 read_unlock(&tasklist_lock); 2237 } 2238 2239 /* 2240 * We are back. Now reacquire the siglock before touching 2241 * last_siginfo, so that we are sure to have synchronized with 2242 * any signal-sending on another CPU that wants to examine it. 2243 */ 2244 spin_lock_irq(¤t->sighand->siglock); 2245 current->last_siginfo = NULL; 2246 2247 /* LISTENING can be set only during STOP traps, clear it */ 2248 current->jobctl &= ~JOBCTL_LISTENING; 2249 2250 /* 2251 * Queued signals ignored us while we were stopped for tracing. 2252 * So check for any that we should take before resuming user mode. 2253 * This sets TIF_SIGPENDING, but never clears it. 2254 */ 2255 recalc_sigpending_tsk(current); 2256 } 2257 2258 static void ptrace_do_notify(int signr, int exit_code, int why) 2259 { 2260 kernel_siginfo_t info; 2261 2262 clear_siginfo(&info); 2263 info.si_signo = signr; 2264 info.si_code = exit_code; 2265 info.si_pid = task_pid_vnr(current); 2266 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2267 2268 /* Let the debugger run. */ 2269 ptrace_stop(exit_code, why, 1, &info); 2270 } 2271 2272 void ptrace_notify(int exit_code) 2273 { 2274 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2275 if (unlikely(current->task_works)) 2276 task_work_run(); 2277 2278 spin_lock_irq(¤t->sighand->siglock); 2279 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2280 spin_unlock_irq(¤t->sighand->siglock); 2281 } 2282 2283 /** 2284 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2285 * @signr: signr causing group stop if initiating 2286 * 2287 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2288 * and participate in it. If already set, participate in the existing 2289 * group stop. If participated in a group stop (and thus slept), %true is 2290 * returned with siglock released. 2291 * 2292 * If ptraced, this function doesn't handle stop itself. Instead, 2293 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2294 * untouched. The caller must ensure that INTERRUPT trap handling takes 2295 * places afterwards. 2296 * 2297 * CONTEXT: 2298 * Must be called with @current->sighand->siglock held, which is released 2299 * on %true return. 2300 * 2301 * RETURNS: 2302 * %false if group stop is already cancelled or ptrace trap is scheduled. 2303 * %true if participated in group stop. 2304 */ 2305 static bool do_signal_stop(int signr) 2306 __releases(¤t->sighand->siglock) 2307 { 2308 struct signal_struct *sig = current->signal; 2309 2310 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2311 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2312 struct task_struct *t; 2313 2314 /* signr will be recorded in task->jobctl for retries */ 2315 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2316 2317 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2318 unlikely(signal_group_exit(sig))) 2319 return false; 2320 /* 2321 * There is no group stop already in progress. We must 2322 * initiate one now. 2323 * 2324 * While ptraced, a task may be resumed while group stop is 2325 * still in effect and then receive a stop signal and 2326 * initiate another group stop. This deviates from the 2327 * usual behavior as two consecutive stop signals can't 2328 * cause two group stops when !ptraced. That is why we 2329 * also check !task_is_stopped(t) below. 2330 * 2331 * The condition can be distinguished by testing whether 2332 * SIGNAL_STOP_STOPPED is already set. Don't generate 2333 * group_exit_code in such case. 2334 * 2335 * This is not necessary for SIGNAL_STOP_CONTINUED because 2336 * an intervening stop signal is required to cause two 2337 * continued events regardless of ptrace. 2338 */ 2339 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2340 sig->group_exit_code = signr; 2341 2342 sig->group_stop_count = 0; 2343 2344 if (task_set_jobctl_pending(current, signr | gstop)) 2345 sig->group_stop_count++; 2346 2347 t = current; 2348 while_each_thread(current, t) { 2349 /* 2350 * Setting state to TASK_STOPPED for a group 2351 * stop is always done with the siglock held, 2352 * so this check has no races. 2353 */ 2354 if (!task_is_stopped(t) && 2355 task_set_jobctl_pending(t, signr | gstop)) { 2356 sig->group_stop_count++; 2357 if (likely(!(t->ptrace & PT_SEIZED))) 2358 signal_wake_up(t, 0); 2359 else 2360 ptrace_trap_notify(t); 2361 } 2362 } 2363 } 2364 2365 if (likely(!current->ptrace)) { 2366 int notify = 0; 2367 2368 /* 2369 * If there are no other threads in the group, or if there 2370 * is a group stop in progress and we are the last to stop, 2371 * report to the parent. 2372 */ 2373 if (task_participate_group_stop(current)) 2374 notify = CLD_STOPPED; 2375 2376 set_special_state(TASK_STOPPED); 2377 spin_unlock_irq(¤t->sighand->siglock); 2378 2379 /* 2380 * Notify the parent of the group stop completion. Because 2381 * we're not holding either the siglock or tasklist_lock 2382 * here, ptracer may attach inbetween; however, this is for 2383 * group stop and should always be delivered to the real 2384 * parent of the group leader. The new ptracer will get 2385 * its notification when this task transitions into 2386 * TASK_TRACED. 2387 */ 2388 if (notify) { 2389 read_lock(&tasklist_lock); 2390 do_notify_parent_cldstop(current, false, notify); 2391 read_unlock(&tasklist_lock); 2392 } 2393 2394 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2395 cgroup_enter_frozen(); 2396 freezable_schedule(); 2397 return true; 2398 } else { 2399 /* 2400 * While ptraced, group stop is handled by STOP trap. 2401 * Schedule it and let the caller deal with it. 2402 */ 2403 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2404 return false; 2405 } 2406 } 2407 2408 /** 2409 * do_jobctl_trap - take care of ptrace jobctl traps 2410 * 2411 * When PT_SEIZED, it's used for both group stop and explicit 2412 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2413 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2414 * the stop signal; otherwise, %SIGTRAP. 2415 * 2416 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2417 * number as exit_code and no siginfo. 2418 * 2419 * CONTEXT: 2420 * Must be called with @current->sighand->siglock held, which may be 2421 * released and re-acquired before returning with intervening sleep. 2422 */ 2423 static void do_jobctl_trap(void) 2424 { 2425 struct signal_struct *signal = current->signal; 2426 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2427 2428 if (current->ptrace & PT_SEIZED) { 2429 if (!signal->group_stop_count && 2430 !(signal->flags & SIGNAL_STOP_STOPPED)) 2431 signr = SIGTRAP; 2432 WARN_ON_ONCE(!signr); 2433 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2434 CLD_STOPPED); 2435 } else { 2436 WARN_ON_ONCE(!signr); 2437 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2438 current->exit_code = 0; 2439 } 2440 } 2441 2442 /** 2443 * do_freezer_trap - handle the freezer jobctl trap 2444 * 2445 * Puts the task into frozen state, if only the task is not about to quit. 2446 * In this case it drops JOBCTL_TRAP_FREEZE. 2447 * 2448 * CONTEXT: 2449 * Must be called with @current->sighand->siglock held, 2450 * which is always released before returning. 2451 */ 2452 static void do_freezer_trap(void) 2453 __releases(¤t->sighand->siglock) 2454 { 2455 /* 2456 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2457 * let's make another loop to give it a chance to be handled. 2458 * In any case, we'll return back. 2459 */ 2460 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2461 JOBCTL_TRAP_FREEZE) { 2462 spin_unlock_irq(¤t->sighand->siglock); 2463 return; 2464 } 2465 2466 /* 2467 * Now we're sure that there is no pending fatal signal and no 2468 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2469 * immediately (if there is a non-fatal signal pending), and 2470 * put the task into sleep. 2471 */ 2472 __set_current_state(TASK_INTERRUPTIBLE); 2473 clear_thread_flag(TIF_SIGPENDING); 2474 spin_unlock_irq(¤t->sighand->siglock); 2475 cgroup_enter_frozen(); 2476 freezable_schedule(); 2477 } 2478 2479 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2480 { 2481 /* 2482 * We do not check sig_kernel_stop(signr) but set this marker 2483 * unconditionally because we do not know whether debugger will 2484 * change signr. This flag has no meaning unless we are going 2485 * to stop after return from ptrace_stop(). In this case it will 2486 * be checked in do_signal_stop(), we should only stop if it was 2487 * not cleared by SIGCONT while we were sleeping. See also the 2488 * comment in dequeue_signal(). 2489 */ 2490 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2491 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2492 2493 /* We're back. Did the debugger cancel the sig? */ 2494 signr = current->exit_code; 2495 if (signr == 0) 2496 return signr; 2497 2498 current->exit_code = 0; 2499 2500 /* 2501 * Update the siginfo structure if the signal has 2502 * changed. If the debugger wanted something 2503 * specific in the siginfo structure then it should 2504 * have updated *info via PTRACE_SETSIGINFO. 2505 */ 2506 if (signr != info->si_signo) { 2507 clear_siginfo(info); 2508 info->si_signo = signr; 2509 info->si_errno = 0; 2510 info->si_code = SI_USER; 2511 rcu_read_lock(); 2512 info->si_pid = task_pid_vnr(current->parent); 2513 info->si_uid = from_kuid_munged(current_user_ns(), 2514 task_uid(current->parent)); 2515 rcu_read_unlock(); 2516 } 2517 2518 /* If the (new) signal is now blocked, requeue it. */ 2519 if (sigismember(¤t->blocked, signr)) { 2520 send_signal(signr, info, current, PIDTYPE_PID); 2521 signr = 0; 2522 } 2523 2524 return signr; 2525 } 2526 2527 bool get_signal(struct ksignal *ksig) 2528 { 2529 struct sighand_struct *sighand = current->sighand; 2530 struct signal_struct *signal = current->signal; 2531 int signr; 2532 2533 if (unlikely(uprobe_deny_signal())) 2534 return false; 2535 2536 /* 2537 * Do this once, we can't return to user-mode if freezing() == T. 2538 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2539 * thus do not need another check after return. 2540 */ 2541 try_to_freeze(); 2542 2543 relock: 2544 spin_lock_irq(&sighand->siglock); 2545 /* 2546 * Make sure we can safely read ->jobctl() in task_work add. As Oleg 2547 * states: 2548 * 2549 * It pairs with mb (implied by cmpxchg) before READ_ONCE. So we 2550 * roughly have 2551 * 2552 * task_work_add: get_signal: 2553 * STORE(task->task_works, new_work); STORE(task->jobctl); 2554 * mb(); mb(); 2555 * LOAD(task->jobctl); LOAD(task->task_works); 2556 * 2557 * and we can rely on STORE-MB-LOAD [ in task_work_add]. 2558 */ 2559 smp_store_mb(current->jobctl, current->jobctl & ~JOBCTL_TASK_WORK); 2560 if (unlikely(current->task_works)) { 2561 spin_unlock_irq(&sighand->siglock); 2562 task_work_run(); 2563 goto relock; 2564 } 2565 2566 /* 2567 * Every stopped thread goes here after wakeup. Check to see if 2568 * we should notify the parent, prepare_signal(SIGCONT) encodes 2569 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2570 */ 2571 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2572 int why; 2573 2574 if (signal->flags & SIGNAL_CLD_CONTINUED) 2575 why = CLD_CONTINUED; 2576 else 2577 why = CLD_STOPPED; 2578 2579 signal->flags &= ~SIGNAL_CLD_MASK; 2580 2581 spin_unlock_irq(&sighand->siglock); 2582 2583 /* 2584 * Notify the parent that we're continuing. This event is 2585 * always per-process and doesn't make whole lot of sense 2586 * for ptracers, who shouldn't consume the state via 2587 * wait(2) either, but, for backward compatibility, notify 2588 * the ptracer of the group leader too unless it's gonna be 2589 * a duplicate. 2590 */ 2591 read_lock(&tasklist_lock); 2592 do_notify_parent_cldstop(current, false, why); 2593 2594 if (ptrace_reparented(current->group_leader)) 2595 do_notify_parent_cldstop(current->group_leader, 2596 true, why); 2597 read_unlock(&tasklist_lock); 2598 2599 goto relock; 2600 } 2601 2602 /* Has this task already been marked for death? */ 2603 if (signal_group_exit(signal)) { 2604 ksig->info.si_signo = signr = SIGKILL; 2605 sigdelset(¤t->pending.signal, SIGKILL); 2606 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2607 &sighand->action[SIGKILL - 1]); 2608 recalc_sigpending(); 2609 goto fatal; 2610 } 2611 2612 for (;;) { 2613 struct k_sigaction *ka; 2614 2615 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2616 do_signal_stop(0)) 2617 goto relock; 2618 2619 if (unlikely(current->jobctl & 2620 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2621 if (current->jobctl & JOBCTL_TRAP_MASK) { 2622 do_jobctl_trap(); 2623 spin_unlock_irq(&sighand->siglock); 2624 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2625 do_freezer_trap(); 2626 2627 goto relock; 2628 } 2629 2630 /* 2631 * If the task is leaving the frozen state, let's update 2632 * cgroup counters and reset the frozen bit. 2633 */ 2634 if (unlikely(cgroup_task_frozen(current))) { 2635 spin_unlock_irq(&sighand->siglock); 2636 cgroup_leave_frozen(false); 2637 goto relock; 2638 } 2639 2640 /* 2641 * Signals generated by the execution of an instruction 2642 * need to be delivered before any other pending signals 2643 * so that the instruction pointer in the signal stack 2644 * frame points to the faulting instruction. 2645 */ 2646 signr = dequeue_synchronous_signal(&ksig->info); 2647 if (!signr) 2648 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2649 2650 if (!signr) 2651 break; /* will return 0 */ 2652 2653 if (unlikely(current->ptrace) && signr != SIGKILL) { 2654 signr = ptrace_signal(signr, &ksig->info); 2655 if (!signr) 2656 continue; 2657 } 2658 2659 ka = &sighand->action[signr-1]; 2660 2661 /* Trace actually delivered signals. */ 2662 trace_signal_deliver(signr, &ksig->info, ka); 2663 2664 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2665 continue; 2666 if (ka->sa.sa_handler != SIG_DFL) { 2667 /* Run the handler. */ 2668 ksig->ka = *ka; 2669 2670 if (ka->sa.sa_flags & SA_ONESHOT) 2671 ka->sa.sa_handler = SIG_DFL; 2672 2673 break; /* will return non-zero "signr" value */ 2674 } 2675 2676 /* 2677 * Now we are doing the default action for this signal. 2678 */ 2679 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2680 continue; 2681 2682 /* 2683 * Global init gets no signals it doesn't want. 2684 * Container-init gets no signals it doesn't want from same 2685 * container. 2686 * 2687 * Note that if global/container-init sees a sig_kernel_only() 2688 * signal here, the signal must have been generated internally 2689 * or must have come from an ancestor namespace. In either 2690 * case, the signal cannot be dropped. 2691 */ 2692 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2693 !sig_kernel_only(signr)) 2694 continue; 2695 2696 if (sig_kernel_stop(signr)) { 2697 /* 2698 * The default action is to stop all threads in 2699 * the thread group. The job control signals 2700 * do nothing in an orphaned pgrp, but SIGSTOP 2701 * always works. Note that siglock needs to be 2702 * dropped during the call to is_orphaned_pgrp() 2703 * because of lock ordering with tasklist_lock. 2704 * This allows an intervening SIGCONT to be posted. 2705 * We need to check for that and bail out if necessary. 2706 */ 2707 if (signr != SIGSTOP) { 2708 spin_unlock_irq(&sighand->siglock); 2709 2710 /* signals can be posted during this window */ 2711 2712 if (is_current_pgrp_orphaned()) 2713 goto relock; 2714 2715 spin_lock_irq(&sighand->siglock); 2716 } 2717 2718 if (likely(do_signal_stop(ksig->info.si_signo))) { 2719 /* It released the siglock. */ 2720 goto relock; 2721 } 2722 2723 /* 2724 * We didn't actually stop, due to a race 2725 * with SIGCONT or something like that. 2726 */ 2727 continue; 2728 } 2729 2730 fatal: 2731 spin_unlock_irq(&sighand->siglock); 2732 if (unlikely(cgroup_task_frozen(current))) 2733 cgroup_leave_frozen(true); 2734 2735 /* 2736 * Anything else is fatal, maybe with a core dump. 2737 */ 2738 current->flags |= PF_SIGNALED; 2739 2740 if (sig_kernel_coredump(signr)) { 2741 if (print_fatal_signals) 2742 print_fatal_signal(ksig->info.si_signo); 2743 proc_coredump_connector(current); 2744 /* 2745 * If it was able to dump core, this kills all 2746 * other threads in the group and synchronizes with 2747 * their demise. If we lost the race with another 2748 * thread getting here, it set group_exit_code 2749 * first and our do_group_exit call below will use 2750 * that value and ignore the one we pass it. 2751 */ 2752 do_coredump(&ksig->info); 2753 } 2754 2755 /* 2756 * Death signals, no core dump. 2757 */ 2758 do_group_exit(ksig->info.si_signo); 2759 /* NOTREACHED */ 2760 } 2761 spin_unlock_irq(&sighand->siglock); 2762 2763 ksig->sig = signr; 2764 return ksig->sig > 0; 2765 } 2766 2767 /** 2768 * signal_delivered - 2769 * @ksig: kernel signal struct 2770 * @stepping: nonzero if debugger single-step or block-step in use 2771 * 2772 * This function should be called when a signal has successfully been 2773 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2774 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2775 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2776 */ 2777 static void signal_delivered(struct ksignal *ksig, int stepping) 2778 { 2779 sigset_t blocked; 2780 2781 /* A signal was successfully delivered, and the 2782 saved sigmask was stored on the signal frame, 2783 and will be restored by sigreturn. So we can 2784 simply clear the restore sigmask flag. */ 2785 clear_restore_sigmask(); 2786 2787 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2788 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2789 sigaddset(&blocked, ksig->sig); 2790 set_current_blocked(&blocked); 2791 tracehook_signal_handler(stepping); 2792 } 2793 2794 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2795 { 2796 if (failed) 2797 force_sigsegv(ksig->sig); 2798 else 2799 signal_delivered(ksig, stepping); 2800 } 2801 2802 /* 2803 * It could be that complete_signal() picked us to notify about the 2804 * group-wide signal. Other threads should be notified now to take 2805 * the shared signals in @which since we will not. 2806 */ 2807 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2808 { 2809 sigset_t retarget; 2810 struct task_struct *t; 2811 2812 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2813 if (sigisemptyset(&retarget)) 2814 return; 2815 2816 t = tsk; 2817 while_each_thread(tsk, t) { 2818 if (t->flags & PF_EXITING) 2819 continue; 2820 2821 if (!has_pending_signals(&retarget, &t->blocked)) 2822 continue; 2823 /* Remove the signals this thread can handle. */ 2824 sigandsets(&retarget, &retarget, &t->blocked); 2825 2826 if (!signal_pending(t)) 2827 signal_wake_up(t, 0); 2828 2829 if (sigisemptyset(&retarget)) 2830 break; 2831 } 2832 } 2833 2834 void exit_signals(struct task_struct *tsk) 2835 { 2836 int group_stop = 0; 2837 sigset_t unblocked; 2838 2839 /* 2840 * @tsk is about to have PF_EXITING set - lock out users which 2841 * expect stable threadgroup. 2842 */ 2843 cgroup_threadgroup_change_begin(tsk); 2844 2845 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2846 tsk->flags |= PF_EXITING; 2847 cgroup_threadgroup_change_end(tsk); 2848 return; 2849 } 2850 2851 spin_lock_irq(&tsk->sighand->siglock); 2852 /* 2853 * From now this task is not visible for group-wide signals, 2854 * see wants_signal(), do_signal_stop(). 2855 */ 2856 tsk->flags |= PF_EXITING; 2857 2858 cgroup_threadgroup_change_end(tsk); 2859 2860 if (!signal_pending(tsk)) 2861 goto out; 2862 2863 unblocked = tsk->blocked; 2864 signotset(&unblocked); 2865 retarget_shared_pending(tsk, &unblocked); 2866 2867 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2868 task_participate_group_stop(tsk)) 2869 group_stop = CLD_STOPPED; 2870 out: 2871 spin_unlock_irq(&tsk->sighand->siglock); 2872 2873 /* 2874 * If group stop has completed, deliver the notification. This 2875 * should always go to the real parent of the group leader. 2876 */ 2877 if (unlikely(group_stop)) { 2878 read_lock(&tasklist_lock); 2879 do_notify_parent_cldstop(tsk, false, group_stop); 2880 read_unlock(&tasklist_lock); 2881 } 2882 } 2883 2884 /* 2885 * System call entry points. 2886 */ 2887 2888 /** 2889 * sys_restart_syscall - restart a system call 2890 */ 2891 SYSCALL_DEFINE0(restart_syscall) 2892 { 2893 struct restart_block *restart = ¤t->restart_block; 2894 return restart->fn(restart); 2895 } 2896 2897 long do_no_restart_syscall(struct restart_block *param) 2898 { 2899 return -EINTR; 2900 } 2901 2902 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2903 { 2904 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2905 sigset_t newblocked; 2906 /* A set of now blocked but previously unblocked signals. */ 2907 sigandnsets(&newblocked, newset, ¤t->blocked); 2908 retarget_shared_pending(tsk, &newblocked); 2909 } 2910 tsk->blocked = *newset; 2911 recalc_sigpending(); 2912 } 2913 2914 /** 2915 * set_current_blocked - change current->blocked mask 2916 * @newset: new mask 2917 * 2918 * It is wrong to change ->blocked directly, this helper should be used 2919 * to ensure the process can't miss a shared signal we are going to block. 2920 */ 2921 void set_current_blocked(sigset_t *newset) 2922 { 2923 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2924 __set_current_blocked(newset); 2925 } 2926 2927 void __set_current_blocked(const sigset_t *newset) 2928 { 2929 struct task_struct *tsk = current; 2930 2931 /* 2932 * In case the signal mask hasn't changed, there is nothing we need 2933 * to do. The current->blocked shouldn't be modified by other task. 2934 */ 2935 if (sigequalsets(&tsk->blocked, newset)) 2936 return; 2937 2938 spin_lock_irq(&tsk->sighand->siglock); 2939 __set_task_blocked(tsk, newset); 2940 spin_unlock_irq(&tsk->sighand->siglock); 2941 } 2942 2943 /* 2944 * This is also useful for kernel threads that want to temporarily 2945 * (or permanently) block certain signals. 2946 * 2947 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2948 * interface happily blocks "unblockable" signals like SIGKILL 2949 * and friends. 2950 */ 2951 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2952 { 2953 struct task_struct *tsk = current; 2954 sigset_t newset; 2955 2956 /* Lockless, only current can change ->blocked, never from irq */ 2957 if (oldset) 2958 *oldset = tsk->blocked; 2959 2960 switch (how) { 2961 case SIG_BLOCK: 2962 sigorsets(&newset, &tsk->blocked, set); 2963 break; 2964 case SIG_UNBLOCK: 2965 sigandnsets(&newset, &tsk->blocked, set); 2966 break; 2967 case SIG_SETMASK: 2968 newset = *set; 2969 break; 2970 default: 2971 return -EINVAL; 2972 } 2973 2974 __set_current_blocked(&newset); 2975 return 0; 2976 } 2977 EXPORT_SYMBOL(sigprocmask); 2978 2979 /* 2980 * The api helps set app-provided sigmasks. 2981 * 2982 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2983 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 2984 * 2985 * Note that it does set_restore_sigmask() in advance, so it must be always 2986 * paired with restore_saved_sigmask_unless() before return from syscall. 2987 */ 2988 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 2989 { 2990 sigset_t kmask; 2991 2992 if (!umask) 2993 return 0; 2994 if (sigsetsize != sizeof(sigset_t)) 2995 return -EINVAL; 2996 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 2997 return -EFAULT; 2998 2999 set_restore_sigmask(); 3000 current->saved_sigmask = current->blocked; 3001 set_current_blocked(&kmask); 3002 3003 return 0; 3004 } 3005 3006 #ifdef CONFIG_COMPAT 3007 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3008 size_t sigsetsize) 3009 { 3010 sigset_t kmask; 3011 3012 if (!umask) 3013 return 0; 3014 if (sigsetsize != sizeof(compat_sigset_t)) 3015 return -EINVAL; 3016 if (get_compat_sigset(&kmask, umask)) 3017 return -EFAULT; 3018 3019 set_restore_sigmask(); 3020 current->saved_sigmask = current->blocked; 3021 set_current_blocked(&kmask); 3022 3023 return 0; 3024 } 3025 #endif 3026 3027 /** 3028 * sys_rt_sigprocmask - change the list of currently blocked signals 3029 * @how: whether to add, remove, or set signals 3030 * @nset: stores pending signals 3031 * @oset: previous value of signal mask if non-null 3032 * @sigsetsize: size of sigset_t type 3033 */ 3034 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3035 sigset_t __user *, oset, size_t, sigsetsize) 3036 { 3037 sigset_t old_set, new_set; 3038 int error; 3039 3040 /* XXX: Don't preclude handling different sized sigset_t's. */ 3041 if (sigsetsize != sizeof(sigset_t)) 3042 return -EINVAL; 3043 3044 old_set = current->blocked; 3045 3046 if (nset) { 3047 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3048 return -EFAULT; 3049 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3050 3051 error = sigprocmask(how, &new_set, NULL); 3052 if (error) 3053 return error; 3054 } 3055 3056 if (oset) { 3057 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3058 return -EFAULT; 3059 } 3060 3061 return 0; 3062 } 3063 3064 #ifdef CONFIG_COMPAT 3065 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3066 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3067 { 3068 sigset_t old_set = current->blocked; 3069 3070 /* XXX: Don't preclude handling different sized sigset_t's. */ 3071 if (sigsetsize != sizeof(sigset_t)) 3072 return -EINVAL; 3073 3074 if (nset) { 3075 sigset_t new_set; 3076 int error; 3077 if (get_compat_sigset(&new_set, nset)) 3078 return -EFAULT; 3079 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3080 3081 error = sigprocmask(how, &new_set, NULL); 3082 if (error) 3083 return error; 3084 } 3085 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3086 } 3087 #endif 3088 3089 static void do_sigpending(sigset_t *set) 3090 { 3091 spin_lock_irq(¤t->sighand->siglock); 3092 sigorsets(set, ¤t->pending.signal, 3093 ¤t->signal->shared_pending.signal); 3094 spin_unlock_irq(¤t->sighand->siglock); 3095 3096 /* Outside the lock because only this thread touches it. */ 3097 sigandsets(set, ¤t->blocked, set); 3098 } 3099 3100 /** 3101 * sys_rt_sigpending - examine a pending signal that has been raised 3102 * while blocked 3103 * @uset: stores pending signals 3104 * @sigsetsize: size of sigset_t type or larger 3105 */ 3106 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3107 { 3108 sigset_t set; 3109 3110 if (sigsetsize > sizeof(*uset)) 3111 return -EINVAL; 3112 3113 do_sigpending(&set); 3114 3115 if (copy_to_user(uset, &set, sigsetsize)) 3116 return -EFAULT; 3117 3118 return 0; 3119 } 3120 3121 #ifdef CONFIG_COMPAT 3122 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3123 compat_size_t, sigsetsize) 3124 { 3125 sigset_t set; 3126 3127 if (sigsetsize > sizeof(*uset)) 3128 return -EINVAL; 3129 3130 do_sigpending(&set); 3131 3132 return put_compat_sigset(uset, &set, sigsetsize); 3133 } 3134 #endif 3135 3136 static const struct { 3137 unsigned char limit, layout; 3138 } sig_sicodes[] = { 3139 [SIGILL] = { NSIGILL, SIL_FAULT }, 3140 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3141 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3142 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3143 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3144 #if defined(SIGEMT) 3145 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3146 #endif 3147 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3148 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3149 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3150 }; 3151 3152 static bool known_siginfo_layout(unsigned sig, int si_code) 3153 { 3154 if (si_code == SI_KERNEL) 3155 return true; 3156 else if ((si_code > SI_USER)) { 3157 if (sig_specific_sicodes(sig)) { 3158 if (si_code <= sig_sicodes[sig].limit) 3159 return true; 3160 } 3161 else if (si_code <= NSIGPOLL) 3162 return true; 3163 } 3164 else if (si_code >= SI_DETHREAD) 3165 return true; 3166 else if (si_code == SI_ASYNCNL) 3167 return true; 3168 return false; 3169 } 3170 3171 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3172 { 3173 enum siginfo_layout layout = SIL_KILL; 3174 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3175 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3176 (si_code <= sig_sicodes[sig].limit)) { 3177 layout = sig_sicodes[sig].layout; 3178 /* Handle the exceptions */ 3179 if ((sig == SIGBUS) && 3180 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3181 layout = SIL_FAULT_MCEERR; 3182 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3183 layout = SIL_FAULT_BNDERR; 3184 #ifdef SEGV_PKUERR 3185 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3186 layout = SIL_FAULT_PKUERR; 3187 #endif 3188 } 3189 else if (si_code <= NSIGPOLL) 3190 layout = SIL_POLL; 3191 } else { 3192 if (si_code == SI_TIMER) 3193 layout = SIL_TIMER; 3194 else if (si_code == SI_SIGIO) 3195 layout = SIL_POLL; 3196 else if (si_code < 0) 3197 layout = SIL_RT; 3198 } 3199 return layout; 3200 } 3201 3202 static inline char __user *si_expansion(const siginfo_t __user *info) 3203 { 3204 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3205 } 3206 3207 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3208 { 3209 char __user *expansion = si_expansion(to); 3210 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3211 return -EFAULT; 3212 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3213 return -EFAULT; 3214 return 0; 3215 } 3216 3217 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3218 const siginfo_t __user *from) 3219 { 3220 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3221 char __user *expansion = si_expansion(from); 3222 char buf[SI_EXPANSION_SIZE]; 3223 int i; 3224 /* 3225 * An unknown si_code might need more than 3226 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3227 * extra bytes are 0. This guarantees copy_siginfo_to_user 3228 * will return this data to userspace exactly. 3229 */ 3230 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3231 return -EFAULT; 3232 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3233 if (buf[i] != 0) 3234 return -E2BIG; 3235 } 3236 } 3237 return 0; 3238 } 3239 3240 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3241 const siginfo_t __user *from) 3242 { 3243 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3244 return -EFAULT; 3245 to->si_signo = signo; 3246 return post_copy_siginfo_from_user(to, from); 3247 } 3248 3249 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3250 { 3251 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3252 return -EFAULT; 3253 return post_copy_siginfo_from_user(to, from); 3254 } 3255 3256 #ifdef CONFIG_COMPAT 3257 /** 3258 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3259 * @to: compat siginfo destination 3260 * @from: kernel siginfo source 3261 * 3262 * Note: This function does not work properly for the SIGCHLD on x32, but 3263 * fortunately it doesn't have to. The only valid callers for this function are 3264 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3265 * The latter does not care because SIGCHLD will never cause a coredump. 3266 */ 3267 void copy_siginfo_to_external32(struct compat_siginfo *to, 3268 const struct kernel_siginfo *from) 3269 { 3270 memset(to, 0, sizeof(*to)); 3271 3272 to->si_signo = from->si_signo; 3273 to->si_errno = from->si_errno; 3274 to->si_code = from->si_code; 3275 switch(siginfo_layout(from->si_signo, from->si_code)) { 3276 case SIL_KILL: 3277 to->si_pid = from->si_pid; 3278 to->si_uid = from->si_uid; 3279 break; 3280 case SIL_TIMER: 3281 to->si_tid = from->si_tid; 3282 to->si_overrun = from->si_overrun; 3283 to->si_int = from->si_int; 3284 break; 3285 case SIL_POLL: 3286 to->si_band = from->si_band; 3287 to->si_fd = from->si_fd; 3288 break; 3289 case SIL_FAULT: 3290 to->si_addr = ptr_to_compat(from->si_addr); 3291 #ifdef __ARCH_SI_TRAPNO 3292 to->si_trapno = from->si_trapno; 3293 #endif 3294 break; 3295 case SIL_FAULT_MCEERR: 3296 to->si_addr = ptr_to_compat(from->si_addr); 3297 #ifdef __ARCH_SI_TRAPNO 3298 to->si_trapno = from->si_trapno; 3299 #endif 3300 to->si_addr_lsb = from->si_addr_lsb; 3301 break; 3302 case SIL_FAULT_BNDERR: 3303 to->si_addr = ptr_to_compat(from->si_addr); 3304 #ifdef __ARCH_SI_TRAPNO 3305 to->si_trapno = from->si_trapno; 3306 #endif 3307 to->si_lower = ptr_to_compat(from->si_lower); 3308 to->si_upper = ptr_to_compat(from->si_upper); 3309 break; 3310 case SIL_FAULT_PKUERR: 3311 to->si_addr = ptr_to_compat(from->si_addr); 3312 #ifdef __ARCH_SI_TRAPNO 3313 to->si_trapno = from->si_trapno; 3314 #endif 3315 to->si_pkey = from->si_pkey; 3316 break; 3317 case SIL_CHLD: 3318 to->si_pid = from->si_pid; 3319 to->si_uid = from->si_uid; 3320 to->si_status = from->si_status; 3321 to->si_utime = from->si_utime; 3322 to->si_stime = from->si_stime; 3323 break; 3324 case SIL_RT: 3325 to->si_pid = from->si_pid; 3326 to->si_uid = from->si_uid; 3327 to->si_int = from->si_int; 3328 break; 3329 case SIL_SYS: 3330 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3331 to->si_syscall = from->si_syscall; 3332 to->si_arch = from->si_arch; 3333 break; 3334 } 3335 } 3336 3337 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3338 const struct kernel_siginfo *from) 3339 { 3340 struct compat_siginfo new; 3341 3342 copy_siginfo_to_external32(&new, from); 3343 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3344 return -EFAULT; 3345 return 0; 3346 } 3347 3348 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3349 const struct compat_siginfo *from) 3350 { 3351 clear_siginfo(to); 3352 to->si_signo = from->si_signo; 3353 to->si_errno = from->si_errno; 3354 to->si_code = from->si_code; 3355 switch(siginfo_layout(from->si_signo, from->si_code)) { 3356 case SIL_KILL: 3357 to->si_pid = from->si_pid; 3358 to->si_uid = from->si_uid; 3359 break; 3360 case SIL_TIMER: 3361 to->si_tid = from->si_tid; 3362 to->si_overrun = from->si_overrun; 3363 to->si_int = from->si_int; 3364 break; 3365 case SIL_POLL: 3366 to->si_band = from->si_band; 3367 to->si_fd = from->si_fd; 3368 break; 3369 case SIL_FAULT: 3370 to->si_addr = compat_ptr(from->si_addr); 3371 #ifdef __ARCH_SI_TRAPNO 3372 to->si_trapno = from->si_trapno; 3373 #endif 3374 break; 3375 case SIL_FAULT_MCEERR: 3376 to->si_addr = compat_ptr(from->si_addr); 3377 #ifdef __ARCH_SI_TRAPNO 3378 to->si_trapno = from->si_trapno; 3379 #endif 3380 to->si_addr_lsb = from->si_addr_lsb; 3381 break; 3382 case SIL_FAULT_BNDERR: 3383 to->si_addr = compat_ptr(from->si_addr); 3384 #ifdef __ARCH_SI_TRAPNO 3385 to->si_trapno = from->si_trapno; 3386 #endif 3387 to->si_lower = compat_ptr(from->si_lower); 3388 to->si_upper = compat_ptr(from->si_upper); 3389 break; 3390 case SIL_FAULT_PKUERR: 3391 to->si_addr = compat_ptr(from->si_addr); 3392 #ifdef __ARCH_SI_TRAPNO 3393 to->si_trapno = from->si_trapno; 3394 #endif 3395 to->si_pkey = from->si_pkey; 3396 break; 3397 case SIL_CHLD: 3398 to->si_pid = from->si_pid; 3399 to->si_uid = from->si_uid; 3400 to->si_status = from->si_status; 3401 #ifdef CONFIG_X86_X32_ABI 3402 if (in_x32_syscall()) { 3403 to->si_utime = from->_sifields._sigchld_x32._utime; 3404 to->si_stime = from->_sifields._sigchld_x32._stime; 3405 } else 3406 #endif 3407 { 3408 to->si_utime = from->si_utime; 3409 to->si_stime = from->si_stime; 3410 } 3411 break; 3412 case SIL_RT: 3413 to->si_pid = from->si_pid; 3414 to->si_uid = from->si_uid; 3415 to->si_int = from->si_int; 3416 break; 3417 case SIL_SYS: 3418 to->si_call_addr = compat_ptr(from->si_call_addr); 3419 to->si_syscall = from->si_syscall; 3420 to->si_arch = from->si_arch; 3421 break; 3422 } 3423 return 0; 3424 } 3425 3426 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3427 const struct compat_siginfo __user *ufrom) 3428 { 3429 struct compat_siginfo from; 3430 3431 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3432 return -EFAULT; 3433 3434 from.si_signo = signo; 3435 return post_copy_siginfo_from_user32(to, &from); 3436 } 3437 3438 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3439 const struct compat_siginfo __user *ufrom) 3440 { 3441 struct compat_siginfo from; 3442 3443 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3444 return -EFAULT; 3445 3446 return post_copy_siginfo_from_user32(to, &from); 3447 } 3448 #endif /* CONFIG_COMPAT */ 3449 3450 /** 3451 * do_sigtimedwait - wait for queued signals specified in @which 3452 * @which: queued signals to wait for 3453 * @info: if non-null, the signal's siginfo is returned here 3454 * @ts: upper bound on process time suspension 3455 */ 3456 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3457 const struct timespec64 *ts) 3458 { 3459 ktime_t *to = NULL, timeout = KTIME_MAX; 3460 struct task_struct *tsk = current; 3461 sigset_t mask = *which; 3462 int sig, ret = 0; 3463 3464 if (ts) { 3465 if (!timespec64_valid(ts)) 3466 return -EINVAL; 3467 timeout = timespec64_to_ktime(*ts); 3468 to = &timeout; 3469 } 3470 3471 /* 3472 * Invert the set of allowed signals to get those we want to block. 3473 */ 3474 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3475 signotset(&mask); 3476 3477 spin_lock_irq(&tsk->sighand->siglock); 3478 sig = dequeue_signal(tsk, &mask, info); 3479 if (!sig && timeout) { 3480 /* 3481 * None ready, temporarily unblock those we're interested 3482 * while we are sleeping in so that we'll be awakened when 3483 * they arrive. Unblocking is always fine, we can avoid 3484 * set_current_blocked(). 3485 */ 3486 tsk->real_blocked = tsk->blocked; 3487 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3488 recalc_sigpending(); 3489 spin_unlock_irq(&tsk->sighand->siglock); 3490 3491 __set_current_state(TASK_INTERRUPTIBLE); 3492 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3493 HRTIMER_MODE_REL); 3494 spin_lock_irq(&tsk->sighand->siglock); 3495 __set_task_blocked(tsk, &tsk->real_blocked); 3496 sigemptyset(&tsk->real_blocked); 3497 sig = dequeue_signal(tsk, &mask, info); 3498 } 3499 spin_unlock_irq(&tsk->sighand->siglock); 3500 3501 if (sig) 3502 return sig; 3503 return ret ? -EINTR : -EAGAIN; 3504 } 3505 3506 /** 3507 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3508 * in @uthese 3509 * @uthese: queued signals to wait for 3510 * @uinfo: if non-null, the signal's siginfo is returned here 3511 * @uts: upper bound on process time suspension 3512 * @sigsetsize: size of sigset_t type 3513 */ 3514 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3515 siginfo_t __user *, uinfo, 3516 const struct __kernel_timespec __user *, uts, 3517 size_t, sigsetsize) 3518 { 3519 sigset_t these; 3520 struct timespec64 ts; 3521 kernel_siginfo_t info; 3522 int ret; 3523 3524 /* XXX: Don't preclude handling different sized sigset_t's. */ 3525 if (sigsetsize != sizeof(sigset_t)) 3526 return -EINVAL; 3527 3528 if (copy_from_user(&these, uthese, sizeof(these))) 3529 return -EFAULT; 3530 3531 if (uts) { 3532 if (get_timespec64(&ts, uts)) 3533 return -EFAULT; 3534 } 3535 3536 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3537 3538 if (ret > 0 && uinfo) { 3539 if (copy_siginfo_to_user(uinfo, &info)) 3540 ret = -EFAULT; 3541 } 3542 3543 return ret; 3544 } 3545 3546 #ifdef CONFIG_COMPAT_32BIT_TIME 3547 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3548 siginfo_t __user *, uinfo, 3549 const struct old_timespec32 __user *, uts, 3550 size_t, sigsetsize) 3551 { 3552 sigset_t these; 3553 struct timespec64 ts; 3554 kernel_siginfo_t info; 3555 int ret; 3556 3557 if (sigsetsize != sizeof(sigset_t)) 3558 return -EINVAL; 3559 3560 if (copy_from_user(&these, uthese, sizeof(these))) 3561 return -EFAULT; 3562 3563 if (uts) { 3564 if (get_old_timespec32(&ts, uts)) 3565 return -EFAULT; 3566 } 3567 3568 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3569 3570 if (ret > 0 && uinfo) { 3571 if (copy_siginfo_to_user(uinfo, &info)) 3572 ret = -EFAULT; 3573 } 3574 3575 return ret; 3576 } 3577 #endif 3578 3579 #ifdef CONFIG_COMPAT 3580 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3581 struct compat_siginfo __user *, uinfo, 3582 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3583 { 3584 sigset_t s; 3585 struct timespec64 t; 3586 kernel_siginfo_t info; 3587 long ret; 3588 3589 if (sigsetsize != sizeof(sigset_t)) 3590 return -EINVAL; 3591 3592 if (get_compat_sigset(&s, uthese)) 3593 return -EFAULT; 3594 3595 if (uts) { 3596 if (get_timespec64(&t, uts)) 3597 return -EFAULT; 3598 } 3599 3600 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3601 3602 if (ret > 0 && uinfo) { 3603 if (copy_siginfo_to_user32(uinfo, &info)) 3604 ret = -EFAULT; 3605 } 3606 3607 return ret; 3608 } 3609 3610 #ifdef CONFIG_COMPAT_32BIT_TIME 3611 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3612 struct compat_siginfo __user *, uinfo, 3613 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3614 { 3615 sigset_t s; 3616 struct timespec64 t; 3617 kernel_siginfo_t info; 3618 long ret; 3619 3620 if (sigsetsize != sizeof(sigset_t)) 3621 return -EINVAL; 3622 3623 if (get_compat_sigset(&s, uthese)) 3624 return -EFAULT; 3625 3626 if (uts) { 3627 if (get_old_timespec32(&t, uts)) 3628 return -EFAULT; 3629 } 3630 3631 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3632 3633 if (ret > 0 && uinfo) { 3634 if (copy_siginfo_to_user32(uinfo, &info)) 3635 ret = -EFAULT; 3636 } 3637 3638 return ret; 3639 } 3640 #endif 3641 #endif 3642 3643 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3644 { 3645 clear_siginfo(info); 3646 info->si_signo = sig; 3647 info->si_errno = 0; 3648 info->si_code = SI_USER; 3649 info->si_pid = task_tgid_vnr(current); 3650 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3651 } 3652 3653 /** 3654 * sys_kill - send a signal to a process 3655 * @pid: the PID of the process 3656 * @sig: signal to be sent 3657 */ 3658 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3659 { 3660 struct kernel_siginfo info; 3661 3662 prepare_kill_siginfo(sig, &info); 3663 3664 return kill_something_info(sig, &info, pid); 3665 } 3666 3667 /* 3668 * Verify that the signaler and signalee either are in the same pid namespace 3669 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3670 * namespace. 3671 */ 3672 static bool access_pidfd_pidns(struct pid *pid) 3673 { 3674 struct pid_namespace *active = task_active_pid_ns(current); 3675 struct pid_namespace *p = ns_of_pid(pid); 3676 3677 for (;;) { 3678 if (!p) 3679 return false; 3680 if (p == active) 3681 break; 3682 p = p->parent; 3683 } 3684 3685 return true; 3686 } 3687 3688 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info) 3689 { 3690 #ifdef CONFIG_COMPAT 3691 /* 3692 * Avoid hooking up compat syscalls and instead handle necessary 3693 * conversions here. Note, this is a stop-gap measure and should not be 3694 * considered a generic solution. 3695 */ 3696 if (in_compat_syscall()) 3697 return copy_siginfo_from_user32( 3698 kinfo, (struct compat_siginfo __user *)info); 3699 #endif 3700 return copy_siginfo_from_user(kinfo, info); 3701 } 3702 3703 static struct pid *pidfd_to_pid(const struct file *file) 3704 { 3705 struct pid *pid; 3706 3707 pid = pidfd_pid(file); 3708 if (!IS_ERR(pid)) 3709 return pid; 3710 3711 return tgid_pidfd_to_pid(file); 3712 } 3713 3714 /** 3715 * sys_pidfd_send_signal - Signal a process through a pidfd 3716 * @pidfd: file descriptor of the process 3717 * @sig: signal to send 3718 * @info: signal info 3719 * @flags: future flags 3720 * 3721 * The syscall currently only signals via PIDTYPE_PID which covers 3722 * kill(<positive-pid>, <signal>. It does not signal threads or process 3723 * groups. 3724 * In order to extend the syscall to threads and process groups the @flags 3725 * argument should be used. In essence, the @flags argument will determine 3726 * what is signaled and not the file descriptor itself. Put in other words, 3727 * grouping is a property of the flags argument not a property of the file 3728 * descriptor. 3729 * 3730 * Return: 0 on success, negative errno on failure 3731 */ 3732 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3733 siginfo_t __user *, info, unsigned int, flags) 3734 { 3735 int ret; 3736 struct fd f; 3737 struct pid *pid; 3738 kernel_siginfo_t kinfo; 3739 3740 /* Enforce flags be set to 0 until we add an extension. */ 3741 if (flags) 3742 return -EINVAL; 3743 3744 f = fdget(pidfd); 3745 if (!f.file) 3746 return -EBADF; 3747 3748 /* Is this a pidfd? */ 3749 pid = pidfd_to_pid(f.file); 3750 if (IS_ERR(pid)) { 3751 ret = PTR_ERR(pid); 3752 goto err; 3753 } 3754 3755 ret = -EINVAL; 3756 if (!access_pidfd_pidns(pid)) 3757 goto err; 3758 3759 if (info) { 3760 ret = copy_siginfo_from_user_any(&kinfo, info); 3761 if (unlikely(ret)) 3762 goto err; 3763 3764 ret = -EINVAL; 3765 if (unlikely(sig != kinfo.si_signo)) 3766 goto err; 3767 3768 /* Only allow sending arbitrary signals to yourself. */ 3769 ret = -EPERM; 3770 if ((task_pid(current) != pid) && 3771 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3772 goto err; 3773 } else { 3774 prepare_kill_siginfo(sig, &kinfo); 3775 } 3776 3777 ret = kill_pid_info(sig, &kinfo, pid); 3778 3779 err: 3780 fdput(f); 3781 return ret; 3782 } 3783 3784 static int 3785 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3786 { 3787 struct task_struct *p; 3788 int error = -ESRCH; 3789 3790 rcu_read_lock(); 3791 p = find_task_by_vpid(pid); 3792 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3793 error = check_kill_permission(sig, info, p); 3794 /* 3795 * The null signal is a permissions and process existence 3796 * probe. No signal is actually delivered. 3797 */ 3798 if (!error && sig) { 3799 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3800 /* 3801 * If lock_task_sighand() failed we pretend the task 3802 * dies after receiving the signal. The window is tiny, 3803 * and the signal is private anyway. 3804 */ 3805 if (unlikely(error == -ESRCH)) 3806 error = 0; 3807 } 3808 } 3809 rcu_read_unlock(); 3810 3811 return error; 3812 } 3813 3814 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3815 { 3816 struct kernel_siginfo info; 3817 3818 clear_siginfo(&info); 3819 info.si_signo = sig; 3820 info.si_errno = 0; 3821 info.si_code = SI_TKILL; 3822 info.si_pid = task_tgid_vnr(current); 3823 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3824 3825 return do_send_specific(tgid, pid, sig, &info); 3826 } 3827 3828 /** 3829 * sys_tgkill - send signal to one specific thread 3830 * @tgid: the thread group ID of the thread 3831 * @pid: the PID of the thread 3832 * @sig: signal to be sent 3833 * 3834 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3835 * exists but it's not belonging to the target process anymore. This 3836 * method solves the problem of threads exiting and PIDs getting reused. 3837 */ 3838 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3839 { 3840 /* This is only valid for single tasks */ 3841 if (pid <= 0 || tgid <= 0) 3842 return -EINVAL; 3843 3844 return do_tkill(tgid, pid, sig); 3845 } 3846 3847 /** 3848 * sys_tkill - send signal to one specific task 3849 * @pid: the PID of the task 3850 * @sig: signal to be sent 3851 * 3852 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3853 */ 3854 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3855 { 3856 /* This is only valid for single tasks */ 3857 if (pid <= 0) 3858 return -EINVAL; 3859 3860 return do_tkill(0, pid, sig); 3861 } 3862 3863 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3864 { 3865 /* Not even root can pretend to send signals from the kernel. 3866 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3867 */ 3868 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3869 (task_pid_vnr(current) != pid)) 3870 return -EPERM; 3871 3872 /* POSIX.1b doesn't mention process groups. */ 3873 return kill_proc_info(sig, info, pid); 3874 } 3875 3876 /** 3877 * sys_rt_sigqueueinfo - send signal information to a signal 3878 * @pid: the PID of the thread 3879 * @sig: signal to be sent 3880 * @uinfo: signal info to be sent 3881 */ 3882 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3883 siginfo_t __user *, uinfo) 3884 { 3885 kernel_siginfo_t info; 3886 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3887 if (unlikely(ret)) 3888 return ret; 3889 return do_rt_sigqueueinfo(pid, sig, &info); 3890 } 3891 3892 #ifdef CONFIG_COMPAT 3893 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3894 compat_pid_t, pid, 3895 int, sig, 3896 struct compat_siginfo __user *, uinfo) 3897 { 3898 kernel_siginfo_t info; 3899 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3900 if (unlikely(ret)) 3901 return ret; 3902 return do_rt_sigqueueinfo(pid, sig, &info); 3903 } 3904 #endif 3905 3906 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3907 { 3908 /* This is only valid for single tasks */ 3909 if (pid <= 0 || tgid <= 0) 3910 return -EINVAL; 3911 3912 /* Not even root can pretend to send signals from the kernel. 3913 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3914 */ 3915 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3916 (task_pid_vnr(current) != pid)) 3917 return -EPERM; 3918 3919 return do_send_specific(tgid, pid, sig, info); 3920 } 3921 3922 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3923 siginfo_t __user *, uinfo) 3924 { 3925 kernel_siginfo_t info; 3926 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3927 if (unlikely(ret)) 3928 return ret; 3929 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3930 } 3931 3932 #ifdef CONFIG_COMPAT 3933 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3934 compat_pid_t, tgid, 3935 compat_pid_t, pid, 3936 int, sig, 3937 struct compat_siginfo __user *, uinfo) 3938 { 3939 kernel_siginfo_t info; 3940 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3941 if (unlikely(ret)) 3942 return ret; 3943 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3944 } 3945 #endif 3946 3947 /* 3948 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3949 */ 3950 void kernel_sigaction(int sig, __sighandler_t action) 3951 { 3952 spin_lock_irq(¤t->sighand->siglock); 3953 current->sighand->action[sig - 1].sa.sa_handler = action; 3954 if (action == SIG_IGN) { 3955 sigset_t mask; 3956 3957 sigemptyset(&mask); 3958 sigaddset(&mask, sig); 3959 3960 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3961 flush_sigqueue_mask(&mask, ¤t->pending); 3962 recalc_sigpending(); 3963 } 3964 spin_unlock_irq(¤t->sighand->siglock); 3965 } 3966 EXPORT_SYMBOL(kernel_sigaction); 3967 3968 void __weak sigaction_compat_abi(struct k_sigaction *act, 3969 struct k_sigaction *oact) 3970 { 3971 } 3972 3973 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3974 { 3975 struct task_struct *p = current, *t; 3976 struct k_sigaction *k; 3977 sigset_t mask; 3978 3979 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3980 return -EINVAL; 3981 3982 k = &p->sighand->action[sig-1]; 3983 3984 spin_lock_irq(&p->sighand->siglock); 3985 if (oact) 3986 *oact = *k; 3987 3988 sigaction_compat_abi(act, oact); 3989 3990 if (act) { 3991 sigdelsetmask(&act->sa.sa_mask, 3992 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3993 *k = *act; 3994 /* 3995 * POSIX 3.3.1.3: 3996 * "Setting a signal action to SIG_IGN for a signal that is 3997 * pending shall cause the pending signal to be discarded, 3998 * whether or not it is blocked." 3999 * 4000 * "Setting a signal action to SIG_DFL for a signal that is 4001 * pending and whose default action is to ignore the signal 4002 * (for example, SIGCHLD), shall cause the pending signal to 4003 * be discarded, whether or not it is blocked" 4004 */ 4005 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4006 sigemptyset(&mask); 4007 sigaddset(&mask, sig); 4008 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4009 for_each_thread(p, t) 4010 flush_sigqueue_mask(&mask, &t->pending); 4011 } 4012 } 4013 4014 spin_unlock_irq(&p->sighand->siglock); 4015 return 0; 4016 } 4017 4018 static int 4019 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4020 size_t min_ss_size) 4021 { 4022 struct task_struct *t = current; 4023 4024 if (oss) { 4025 memset(oss, 0, sizeof(stack_t)); 4026 oss->ss_sp = (void __user *) t->sas_ss_sp; 4027 oss->ss_size = t->sas_ss_size; 4028 oss->ss_flags = sas_ss_flags(sp) | 4029 (current->sas_ss_flags & SS_FLAG_BITS); 4030 } 4031 4032 if (ss) { 4033 void __user *ss_sp = ss->ss_sp; 4034 size_t ss_size = ss->ss_size; 4035 unsigned ss_flags = ss->ss_flags; 4036 int ss_mode; 4037 4038 if (unlikely(on_sig_stack(sp))) 4039 return -EPERM; 4040 4041 ss_mode = ss_flags & ~SS_FLAG_BITS; 4042 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4043 ss_mode != 0)) 4044 return -EINVAL; 4045 4046 if (ss_mode == SS_DISABLE) { 4047 ss_size = 0; 4048 ss_sp = NULL; 4049 } else { 4050 if (unlikely(ss_size < min_ss_size)) 4051 return -ENOMEM; 4052 } 4053 4054 t->sas_ss_sp = (unsigned long) ss_sp; 4055 t->sas_ss_size = ss_size; 4056 t->sas_ss_flags = ss_flags; 4057 } 4058 return 0; 4059 } 4060 4061 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4062 { 4063 stack_t new, old; 4064 int err; 4065 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4066 return -EFAULT; 4067 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4068 current_user_stack_pointer(), 4069 MINSIGSTKSZ); 4070 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4071 err = -EFAULT; 4072 return err; 4073 } 4074 4075 int restore_altstack(const stack_t __user *uss) 4076 { 4077 stack_t new; 4078 if (copy_from_user(&new, uss, sizeof(stack_t))) 4079 return -EFAULT; 4080 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4081 MINSIGSTKSZ); 4082 /* squash all but EFAULT for now */ 4083 return 0; 4084 } 4085 4086 int __save_altstack(stack_t __user *uss, unsigned long sp) 4087 { 4088 struct task_struct *t = current; 4089 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4090 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4091 __put_user(t->sas_ss_size, &uss->ss_size); 4092 if (err) 4093 return err; 4094 if (t->sas_ss_flags & SS_AUTODISARM) 4095 sas_ss_reset(t); 4096 return 0; 4097 } 4098 4099 #ifdef CONFIG_COMPAT 4100 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4101 compat_stack_t __user *uoss_ptr) 4102 { 4103 stack_t uss, uoss; 4104 int ret; 4105 4106 if (uss_ptr) { 4107 compat_stack_t uss32; 4108 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4109 return -EFAULT; 4110 uss.ss_sp = compat_ptr(uss32.ss_sp); 4111 uss.ss_flags = uss32.ss_flags; 4112 uss.ss_size = uss32.ss_size; 4113 } 4114 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4115 compat_user_stack_pointer(), 4116 COMPAT_MINSIGSTKSZ); 4117 if (ret >= 0 && uoss_ptr) { 4118 compat_stack_t old; 4119 memset(&old, 0, sizeof(old)); 4120 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4121 old.ss_flags = uoss.ss_flags; 4122 old.ss_size = uoss.ss_size; 4123 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4124 ret = -EFAULT; 4125 } 4126 return ret; 4127 } 4128 4129 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4130 const compat_stack_t __user *, uss_ptr, 4131 compat_stack_t __user *, uoss_ptr) 4132 { 4133 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4134 } 4135 4136 int compat_restore_altstack(const compat_stack_t __user *uss) 4137 { 4138 int err = do_compat_sigaltstack(uss, NULL); 4139 /* squash all but -EFAULT for now */ 4140 return err == -EFAULT ? err : 0; 4141 } 4142 4143 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4144 { 4145 int err; 4146 struct task_struct *t = current; 4147 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4148 &uss->ss_sp) | 4149 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4150 __put_user(t->sas_ss_size, &uss->ss_size); 4151 if (err) 4152 return err; 4153 if (t->sas_ss_flags & SS_AUTODISARM) 4154 sas_ss_reset(t); 4155 return 0; 4156 } 4157 #endif 4158 4159 #ifdef __ARCH_WANT_SYS_SIGPENDING 4160 4161 /** 4162 * sys_sigpending - examine pending signals 4163 * @uset: where mask of pending signal is returned 4164 */ 4165 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4166 { 4167 sigset_t set; 4168 4169 if (sizeof(old_sigset_t) > sizeof(*uset)) 4170 return -EINVAL; 4171 4172 do_sigpending(&set); 4173 4174 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4175 return -EFAULT; 4176 4177 return 0; 4178 } 4179 4180 #ifdef CONFIG_COMPAT 4181 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4182 { 4183 sigset_t set; 4184 4185 do_sigpending(&set); 4186 4187 return put_user(set.sig[0], set32); 4188 } 4189 #endif 4190 4191 #endif 4192 4193 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4194 /** 4195 * sys_sigprocmask - examine and change blocked signals 4196 * @how: whether to add, remove, or set signals 4197 * @nset: signals to add or remove (if non-null) 4198 * @oset: previous value of signal mask if non-null 4199 * 4200 * Some platforms have their own version with special arguments; 4201 * others support only sys_rt_sigprocmask. 4202 */ 4203 4204 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4205 old_sigset_t __user *, oset) 4206 { 4207 old_sigset_t old_set, new_set; 4208 sigset_t new_blocked; 4209 4210 old_set = current->blocked.sig[0]; 4211 4212 if (nset) { 4213 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4214 return -EFAULT; 4215 4216 new_blocked = current->blocked; 4217 4218 switch (how) { 4219 case SIG_BLOCK: 4220 sigaddsetmask(&new_blocked, new_set); 4221 break; 4222 case SIG_UNBLOCK: 4223 sigdelsetmask(&new_blocked, new_set); 4224 break; 4225 case SIG_SETMASK: 4226 new_blocked.sig[0] = new_set; 4227 break; 4228 default: 4229 return -EINVAL; 4230 } 4231 4232 set_current_blocked(&new_blocked); 4233 } 4234 4235 if (oset) { 4236 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4237 return -EFAULT; 4238 } 4239 4240 return 0; 4241 } 4242 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4243 4244 #ifndef CONFIG_ODD_RT_SIGACTION 4245 /** 4246 * sys_rt_sigaction - alter an action taken by a process 4247 * @sig: signal to be sent 4248 * @act: new sigaction 4249 * @oact: used to save the previous sigaction 4250 * @sigsetsize: size of sigset_t type 4251 */ 4252 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4253 const struct sigaction __user *, act, 4254 struct sigaction __user *, oact, 4255 size_t, sigsetsize) 4256 { 4257 struct k_sigaction new_sa, old_sa; 4258 int ret; 4259 4260 /* XXX: Don't preclude handling different sized sigset_t's. */ 4261 if (sigsetsize != sizeof(sigset_t)) 4262 return -EINVAL; 4263 4264 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4265 return -EFAULT; 4266 4267 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4268 if (ret) 4269 return ret; 4270 4271 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4272 return -EFAULT; 4273 4274 return 0; 4275 } 4276 #ifdef CONFIG_COMPAT 4277 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4278 const struct compat_sigaction __user *, act, 4279 struct compat_sigaction __user *, oact, 4280 compat_size_t, sigsetsize) 4281 { 4282 struct k_sigaction new_ka, old_ka; 4283 #ifdef __ARCH_HAS_SA_RESTORER 4284 compat_uptr_t restorer; 4285 #endif 4286 int ret; 4287 4288 /* XXX: Don't preclude handling different sized sigset_t's. */ 4289 if (sigsetsize != sizeof(compat_sigset_t)) 4290 return -EINVAL; 4291 4292 if (act) { 4293 compat_uptr_t handler; 4294 ret = get_user(handler, &act->sa_handler); 4295 new_ka.sa.sa_handler = compat_ptr(handler); 4296 #ifdef __ARCH_HAS_SA_RESTORER 4297 ret |= get_user(restorer, &act->sa_restorer); 4298 new_ka.sa.sa_restorer = compat_ptr(restorer); 4299 #endif 4300 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4301 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4302 if (ret) 4303 return -EFAULT; 4304 } 4305 4306 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4307 if (!ret && oact) { 4308 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4309 &oact->sa_handler); 4310 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4311 sizeof(oact->sa_mask)); 4312 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4313 #ifdef __ARCH_HAS_SA_RESTORER 4314 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4315 &oact->sa_restorer); 4316 #endif 4317 } 4318 return ret; 4319 } 4320 #endif 4321 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4322 4323 #ifdef CONFIG_OLD_SIGACTION 4324 SYSCALL_DEFINE3(sigaction, int, sig, 4325 const struct old_sigaction __user *, act, 4326 struct old_sigaction __user *, oact) 4327 { 4328 struct k_sigaction new_ka, old_ka; 4329 int ret; 4330 4331 if (act) { 4332 old_sigset_t mask; 4333 if (!access_ok(act, sizeof(*act)) || 4334 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4335 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4336 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4337 __get_user(mask, &act->sa_mask)) 4338 return -EFAULT; 4339 #ifdef __ARCH_HAS_KA_RESTORER 4340 new_ka.ka_restorer = NULL; 4341 #endif 4342 siginitset(&new_ka.sa.sa_mask, mask); 4343 } 4344 4345 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4346 4347 if (!ret && oact) { 4348 if (!access_ok(oact, sizeof(*oact)) || 4349 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4350 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4351 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4352 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4353 return -EFAULT; 4354 } 4355 4356 return ret; 4357 } 4358 #endif 4359 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4360 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4361 const struct compat_old_sigaction __user *, act, 4362 struct compat_old_sigaction __user *, oact) 4363 { 4364 struct k_sigaction new_ka, old_ka; 4365 int ret; 4366 compat_old_sigset_t mask; 4367 compat_uptr_t handler, restorer; 4368 4369 if (act) { 4370 if (!access_ok(act, sizeof(*act)) || 4371 __get_user(handler, &act->sa_handler) || 4372 __get_user(restorer, &act->sa_restorer) || 4373 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4374 __get_user(mask, &act->sa_mask)) 4375 return -EFAULT; 4376 4377 #ifdef __ARCH_HAS_KA_RESTORER 4378 new_ka.ka_restorer = NULL; 4379 #endif 4380 new_ka.sa.sa_handler = compat_ptr(handler); 4381 new_ka.sa.sa_restorer = compat_ptr(restorer); 4382 siginitset(&new_ka.sa.sa_mask, mask); 4383 } 4384 4385 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4386 4387 if (!ret && oact) { 4388 if (!access_ok(oact, sizeof(*oact)) || 4389 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4390 &oact->sa_handler) || 4391 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4392 &oact->sa_restorer) || 4393 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4394 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4395 return -EFAULT; 4396 } 4397 return ret; 4398 } 4399 #endif 4400 4401 #ifdef CONFIG_SGETMASK_SYSCALL 4402 4403 /* 4404 * For backwards compatibility. Functionality superseded by sigprocmask. 4405 */ 4406 SYSCALL_DEFINE0(sgetmask) 4407 { 4408 /* SMP safe */ 4409 return current->blocked.sig[0]; 4410 } 4411 4412 SYSCALL_DEFINE1(ssetmask, int, newmask) 4413 { 4414 int old = current->blocked.sig[0]; 4415 sigset_t newset; 4416 4417 siginitset(&newset, newmask); 4418 set_current_blocked(&newset); 4419 4420 return old; 4421 } 4422 #endif /* CONFIG_SGETMASK_SYSCALL */ 4423 4424 #ifdef __ARCH_WANT_SYS_SIGNAL 4425 /* 4426 * For backwards compatibility. Functionality superseded by sigaction. 4427 */ 4428 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4429 { 4430 struct k_sigaction new_sa, old_sa; 4431 int ret; 4432 4433 new_sa.sa.sa_handler = handler; 4434 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4435 sigemptyset(&new_sa.sa.sa_mask); 4436 4437 ret = do_sigaction(sig, &new_sa, &old_sa); 4438 4439 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4440 } 4441 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4442 4443 #ifdef __ARCH_WANT_SYS_PAUSE 4444 4445 SYSCALL_DEFINE0(pause) 4446 { 4447 while (!signal_pending(current)) { 4448 __set_current_state(TASK_INTERRUPTIBLE); 4449 schedule(); 4450 } 4451 return -ERESTARTNOHAND; 4452 } 4453 4454 #endif 4455 4456 static int sigsuspend(sigset_t *set) 4457 { 4458 current->saved_sigmask = current->blocked; 4459 set_current_blocked(set); 4460 4461 while (!signal_pending(current)) { 4462 __set_current_state(TASK_INTERRUPTIBLE); 4463 schedule(); 4464 } 4465 set_restore_sigmask(); 4466 return -ERESTARTNOHAND; 4467 } 4468 4469 /** 4470 * sys_rt_sigsuspend - replace the signal mask for a value with the 4471 * @unewset value until a signal is received 4472 * @unewset: new signal mask value 4473 * @sigsetsize: size of sigset_t type 4474 */ 4475 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4476 { 4477 sigset_t newset; 4478 4479 /* XXX: Don't preclude handling different sized sigset_t's. */ 4480 if (sigsetsize != sizeof(sigset_t)) 4481 return -EINVAL; 4482 4483 if (copy_from_user(&newset, unewset, sizeof(newset))) 4484 return -EFAULT; 4485 return sigsuspend(&newset); 4486 } 4487 4488 #ifdef CONFIG_COMPAT 4489 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4490 { 4491 sigset_t newset; 4492 4493 /* XXX: Don't preclude handling different sized sigset_t's. */ 4494 if (sigsetsize != sizeof(sigset_t)) 4495 return -EINVAL; 4496 4497 if (get_compat_sigset(&newset, unewset)) 4498 return -EFAULT; 4499 return sigsuspend(&newset); 4500 } 4501 #endif 4502 4503 #ifdef CONFIG_OLD_SIGSUSPEND 4504 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4505 { 4506 sigset_t blocked; 4507 siginitset(&blocked, mask); 4508 return sigsuspend(&blocked); 4509 } 4510 #endif 4511 #ifdef CONFIG_OLD_SIGSUSPEND3 4512 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4513 { 4514 sigset_t blocked; 4515 siginitset(&blocked, mask); 4516 return sigsuspend(&blocked); 4517 } 4518 #endif 4519 4520 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4521 { 4522 return NULL; 4523 } 4524 4525 static inline void siginfo_buildtime_checks(void) 4526 { 4527 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4528 4529 /* Verify the offsets in the two siginfos match */ 4530 #define CHECK_OFFSET(field) \ 4531 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4532 4533 /* kill */ 4534 CHECK_OFFSET(si_pid); 4535 CHECK_OFFSET(si_uid); 4536 4537 /* timer */ 4538 CHECK_OFFSET(si_tid); 4539 CHECK_OFFSET(si_overrun); 4540 CHECK_OFFSET(si_value); 4541 4542 /* rt */ 4543 CHECK_OFFSET(si_pid); 4544 CHECK_OFFSET(si_uid); 4545 CHECK_OFFSET(si_value); 4546 4547 /* sigchld */ 4548 CHECK_OFFSET(si_pid); 4549 CHECK_OFFSET(si_uid); 4550 CHECK_OFFSET(si_status); 4551 CHECK_OFFSET(si_utime); 4552 CHECK_OFFSET(si_stime); 4553 4554 /* sigfault */ 4555 CHECK_OFFSET(si_addr); 4556 CHECK_OFFSET(si_addr_lsb); 4557 CHECK_OFFSET(si_lower); 4558 CHECK_OFFSET(si_upper); 4559 CHECK_OFFSET(si_pkey); 4560 4561 /* sigpoll */ 4562 CHECK_OFFSET(si_band); 4563 CHECK_OFFSET(si_fd); 4564 4565 /* sigsys */ 4566 CHECK_OFFSET(si_call_addr); 4567 CHECK_OFFSET(si_syscall); 4568 CHECK_OFFSET(si_arch); 4569 #undef CHECK_OFFSET 4570 4571 /* usb asyncio */ 4572 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4573 offsetof(struct siginfo, si_addr)); 4574 if (sizeof(int) == sizeof(void __user *)) { 4575 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4576 sizeof(void __user *)); 4577 } else { 4578 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4579 sizeof_field(struct siginfo, si_uid)) != 4580 sizeof(void __user *)); 4581 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4582 offsetof(struct siginfo, si_uid)); 4583 } 4584 #ifdef CONFIG_COMPAT 4585 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4586 offsetof(struct compat_siginfo, si_addr)); 4587 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4588 sizeof(compat_uptr_t)); 4589 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4590 sizeof_field(struct siginfo, si_pid)); 4591 #endif 4592 } 4593 4594 void __init signals_init(void) 4595 { 4596 siginfo_buildtime_checks(); 4597 4598 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4599 } 4600 4601 #ifdef CONFIG_KGDB_KDB 4602 #include <linux/kdb.h> 4603 /* 4604 * kdb_send_sig - Allows kdb to send signals without exposing 4605 * signal internals. This function checks if the required locks are 4606 * available before calling the main signal code, to avoid kdb 4607 * deadlocks. 4608 */ 4609 void kdb_send_sig(struct task_struct *t, int sig) 4610 { 4611 static struct task_struct *kdb_prev_t; 4612 int new_t, ret; 4613 if (!spin_trylock(&t->sighand->siglock)) { 4614 kdb_printf("Can't do kill command now.\n" 4615 "The sigmask lock is held somewhere else in " 4616 "kernel, try again later\n"); 4617 return; 4618 } 4619 new_t = kdb_prev_t != t; 4620 kdb_prev_t = t; 4621 if (t->state != TASK_RUNNING && new_t) { 4622 spin_unlock(&t->sighand->siglock); 4623 kdb_printf("Process is not RUNNING, sending a signal from " 4624 "kdb risks deadlock\n" 4625 "on the run queue locks. " 4626 "The signal has _not_ been sent.\n" 4627 "Reissue the kill command if you want to risk " 4628 "the deadlock.\n"); 4629 return; 4630 } 4631 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4632 spin_unlock(&t->sighand->siglock); 4633 if (ret) 4634 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4635 sig, t->pid); 4636 else 4637 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4638 } 4639 #endif /* CONFIG_KGDB_KDB */ 4640