xref: /openbmc/linux/kernel/signal.c (revision 1da177e4)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <asm/param.h>
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/siginfo.h>
30 
31 /*
32  * SLAB caches for signal bits.
33  */
34 
35 static kmem_cache_t *sigqueue_cachep;
36 
37 /*
38  * In POSIX a signal is sent either to a specific thread (Linux task)
39  * or to the process as a whole (Linux thread group).  How the signal
40  * is sent determines whether it's to one thread or the whole group,
41  * which determines which signal mask(s) are involved in blocking it
42  * from being delivered until later.  When the signal is delivered,
43  * either it's caught or ignored by a user handler or it has a default
44  * effect that applies to the whole thread group (POSIX process).
45  *
46  * The possible effects an unblocked signal set to SIG_DFL can have are:
47  *   ignore	- Nothing Happens
48  *   terminate	- kill the process, i.e. all threads in the group,
49  * 		  similar to exit_group.  The group leader (only) reports
50  *		  WIFSIGNALED status to its parent.
51  *   coredump	- write a core dump file describing all threads using
52  *		  the same mm and then kill all those threads
53  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
54  *
55  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
56  * Other signals when not blocked and set to SIG_DFL behaves as follows.
57  * The job control signals also have other special effects.
58  *
59  *	+--------------------+------------------+
60  *	|  POSIX signal      |  default action  |
61  *	+--------------------+------------------+
62  *	|  SIGHUP            |  terminate	|
63  *	|  SIGINT            |	terminate	|
64  *	|  SIGQUIT           |	coredump 	|
65  *	|  SIGILL            |	coredump 	|
66  *	|  SIGTRAP           |	coredump 	|
67  *	|  SIGABRT/SIGIOT    |	coredump 	|
68  *	|  SIGBUS            |	coredump 	|
69  *	|  SIGFPE            |	coredump 	|
70  *	|  SIGKILL           |	terminate(+)	|
71  *	|  SIGUSR1           |	terminate	|
72  *	|  SIGSEGV           |	coredump 	|
73  *	|  SIGUSR2           |	terminate	|
74  *	|  SIGPIPE           |	terminate	|
75  *	|  SIGALRM           |	terminate	|
76  *	|  SIGTERM           |	terminate	|
77  *	|  SIGCHLD           |	ignore   	|
78  *	|  SIGCONT           |	ignore(*)	|
79  *	|  SIGSTOP           |	stop(*)(+)  	|
80  *	|  SIGTSTP           |	stop(*)  	|
81  *	|  SIGTTIN           |	stop(*)  	|
82  *	|  SIGTTOU           |	stop(*)  	|
83  *	|  SIGURG            |	ignore   	|
84  *	|  SIGXCPU           |	coredump 	|
85  *	|  SIGXFSZ           |	coredump 	|
86  *	|  SIGVTALRM         |	terminate	|
87  *	|  SIGPROF           |	terminate	|
88  *	|  SIGPOLL/SIGIO     |	terminate	|
89  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
90  *	|  SIGSTKFLT         |	terminate	|
91  *	|  SIGWINCH          |	ignore   	|
92  *	|  SIGPWR            |	terminate	|
93  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
94  *	+--------------------+------------------+
95  *	|  non-POSIX signal  |  default action  |
96  *	+--------------------+------------------+
97  *	|  SIGEMT            |  coredump	|
98  *	+--------------------+------------------+
99  *
100  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
101  * (*) Special job control effects:
102  * When SIGCONT is sent, it resumes the process (all threads in the group)
103  * from TASK_STOPPED state and also clears any pending/queued stop signals
104  * (any of those marked with "stop(*)").  This happens regardless of blocking,
105  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
106  * any pending/queued SIGCONT signals; this happens regardless of blocking,
107  * catching, or ignored the stop signal, though (except for SIGSTOP) the
108  * default action of stopping the process may happen later or never.
109  */
110 
111 #ifdef SIGEMT
112 #define M_SIGEMT	M(SIGEMT)
113 #else
114 #define M_SIGEMT	0
115 #endif
116 
117 #if SIGRTMIN > BITS_PER_LONG
118 #define M(sig) (1ULL << ((sig)-1))
119 #else
120 #define M(sig) (1UL << ((sig)-1))
121 #endif
122 #define T(sig, mask) (M(sig) & (mask))
123 
124 #define SIG_KERNEL_ONLY_MASK (\
125 	M(SIGKILL)   |  M(SIGSTOP)                                   )
126 
127 #define SIG_KERNEL_STOP_MASK (\
128 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
129 
130 #define SIG_KERNEL_COREDUMP_MASK (\
131         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
132         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
133         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
134 
135 #define SIG_KERNEL_IGNORE_MASK (\
136         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
137 
138 #define sig_kernel_only(sig) \
139 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
140 #define sig_kernel_coredump(sig) \
141 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
142 #define sig_kernel_ignore(sig) \
143 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
144 #define sig_kernel_stop(sig) \
145 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
146 
147 #define sig_user_defined(t, signr) \
148 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
149 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
150 
151 #define sig_fatal(t, signr) \
152 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
153 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
154 
155 static int sig_ignored(struct task_struct *t, int sig)
156 {
157 	void __user * handler;
158 
159 	/*
160 	 * Tracers always want to know about signals..
161 	 */
162 	if (t->ptrace & PT_PTRACED)
163 		return 0;
164 
165 	/*
166 	 * Blocked signals are never ignored, since the
167 	 * signal handler may change by the time it is
168 	 * unblocked.
169 	 */
170 	if (sigismember(&t->blocked, sig))
171 		return 0;
172 
173 	/* Is it explicitly or implicitly ignored? */
174 	handler = t->sighand->action[sig-1].sa.sa_handler;
175 	return   handler == SIG_IGN ||
176 		(handler == SIG_DFL && sig_kernel_ignore(sig));
177 }
178 
179 /*
180  * Re-calculate pending state from the set of locally pending
181  * signals, globally pending signals, and blocked signals.
182  */
183 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
184 {
185 	unsigned long ready;
186 	long i;
187 
188 	switch (_NSIG_WORDS) {
189 	default:
190 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
191 			ready |= signal->sig[i] &~ blocked->sig[i];
192 		break;
193 
194 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
195 		ready |= signal->sig[2] &~ blocked->sig[2];
196 		ready |= signal->sig[1] &~ blocked->sig[1];
197 		ready |= signal->sig[0] &~ blocked->sig[0];
198 		break;
199 
200 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
201 		ready |= signal->sig[0] &~ blocked->sig[0];
202 		break;
203 
204 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
205 	}
206 	return ready !=	0;
207 }
208 
209 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
210 
211 fastcall void recalc_sigpending_tsk(struct task_struct *t)
212 {
213 	if (t->signal->group_stop_count > 0 ||
214 	    PENDING(&t->pending, &t->blocked) ||
215 	    PENDING(&t->signal->shared_pending, &t->blocked))
216 		set_tsk_thread_flag(t, TIF_SIGPENDING);
217 	else
218 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
219 }
220 
221 void recalc_sigpending(void)
222 {
223 	recalc_sigpending_tsk(current);
224 }
225 
226 /* Given the mask, find the first available signal that should be serviced. */
227 
228 static int
229 next_signal(struct sigpending *pending, sigset_t *mask)
230 {
231 	unsigned long i, *s, *m, x;
232 	int sig = 0;
233 
234 	s = pending->signal.sig;
235 	m = mask->sig;
236 	switch (_NSIG_WORDS) {
237 	default:
238 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
239 			if ((x = *s &~ *m) != 0) {
240 				sig = ffz(~x) + i*_NSIG_BPW + 1;
241 				break;
242 			}
243 		break;
244 
245 	case 2: if ((x = s[0] &~ m[0]) != 0)
246 			sig = 1;
247 		else if ((x = s[1] &~ m[1]) != 0)
248 			sig = _NSIG_BPW + 1;
249 		else
250 			break;
251 		sig += ffz(~x);
252 		break;
253 
254 	case 1: if ((x = *s &~ *m) != 0)
255 			sig = ffz(~x) + 1;
256 		break;
257 	}
258 
259 	return sig;
260 }
261 
262 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
263 					 int override_rlimit)
264 {
265 	struct sigqueue *q = NULL;
266 
267 	atomic_inc(&t->user->sigpending);
268 	if (override_rlimit ||
269 	    atomic_read(&t->user->sigpending) <=
270 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
271 		q = kmem_cache_alloc(sigqueue_cachep, flags);
272 	if (unlikely(q == NULL)) {
273 		atomic_dec(&t->user->sigpending);
274 	} else {
275 		INIT_LIST_HEAD(&q->list);
276 		q->flags = 0;
277 		q->lock = NULL;
278 		q->user = get_uid(t->user);
279 	}
280 	return(q);
281 }
282 
283 static inline void __sigqueue_free(struct sigqueue *q)
284 {
285 	if (q->flags & SIGQUEUE_PREALLOC)
286 		return;
287 	atomic_dec(&q->user->sigpending);
288 	free_uid(q->user);
289 	kmem_cache_free(sigqueue_cachep, q);
290 }
291 
292 static void flush_sigqueue(struct sigpending *queue)
293 {
294 	struct sigqueue *q;
295 
296 	sigemptyset(&queue->signal);
297 	while (!list_empty(&queue->list)) {
298 		q = list_entry(queue->list.next, struct sigqueue , list);
299 		list_del_init(&q->list);
300 		__sigqueue_free(q);
301 	}
302 }
303 
304 /*
305  * Flush all pending signals for a task.
306  */
307 
308 void
309 flush_signals(struct task_struct *t)
310 {
311 	unsigned long flags;
312 
313 	spin_lock_irqsave(&t->sighand->siglock, flags);
314 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
315 	flush_sigqueue(&t->pending);
316 	flush_sigqueue(&t->signal->shared_pending);
317 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
318 }
319 
320 /*
321  * This function expects the tasklist_lock write-locked.
322  */
323 void __exit_sighand(struct task_struct *tsk)
324 {
325 	struct sighand_struct * sighand = tsk->sighand;
326 
327 	/* Ok, we're done with the signal handlers */
328 	tsk->sighand = NULL;
329 	if (atomic_dec_and_test(&sighand->count))
330 		kmem_cache_free(sighand_cachep, sighand);
331 }
332 
333 void exit_sighand(struct task_struct *tsk)
334 {
335 	write_lock_irq(&tasklist_lock);
336 	__exit_sighand(tsk);
337 	write_unlock_irq(&tasklist_lock);
338 }
339 
340 /*
341  * This function expects the tasklist_lock write-locked.
342  */
343 void __exit_signal(struct task_struct *tsk)
344 {
345 	struct signal_struct * sig = tsk->signal;
346 	struct sighand_struct * sighand = tsk->sighand;
347 
348 	if (!sig)
349 		BUG();
350 	if (!atomic_read(&sig->count))
351 		BUG();
352 	spin_lock(&sighand->siglock);
353 	posix_cpu_timers_exit(tsk);
354 	if (atomic_dec_and_test(&sig->count)) {
355 		posix_cpu_timers_exit_group(tsk);
356 		if (tsk == sig->curr_target)
357 			sig->curr_target = next_thread(tsk);
358 		tsk->signal = NULL;
359 		spin_unlock(&sighand->siglock);
360 		flush_sigqueue(&sig->shared_pending);
361 	} else {
362 		/*
363 		 * If there is any task waiting for the group exit
364 		 * then notify it:
365 		 */
366 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
367 			wake_up_process(sig->group_exit_task);
368 			sig->group_exit_task = NULL;
369 		}
370 		if (tsk == sig->curr_target)
371 			sig->curr_target = next_thread(tsk);
372 		tsk->signal = NULL;
373 		/*
374 		 * Accumulate here the counters for all threads but the
375 		 * group leader as they die, so they can be added into
376 		 * the process-wide totals when those are taken.
377 		 * The group leader stays around as a zombie as long
378 		 * as there are other threads.  When it gets reaped,
379 		 * the exit.c code will add its counts into these totals.
380 		 * We won't ever get here for the group leader, since it
381 		 * will have been the last reference on the signal_struct.
382 		 */
383 		sig->utime = cputime_add(sig->utime, tsk->utime);
384 		sig->stime = cputime_add(sig->stime, tsk->stime);
385 		sig->min_flt += tsk->min_flt;
386 		sig->maj_flt += tsk->maj_flt;
387 		sig->nvcsw += tsk->nvcsw;
388 		sig->nivcsw += tsk->nivcsw;
389 		sig->sched_time += tsk->sched_time;
390 		spin_unlock(&sighand->siglock);
391 		sig = NULL;	/* Marker for below.  */
392 	}
393 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
394 	flush_sigqueue(&tsk->pending);
395 	if (sig) {
396 		/*
397 		 * We are cleaning up the signal_struct here.  We delayed
398 		 * calling exit_itimers until after flush_sigqueue, just in
399 		 * case our thread-local pending queue contained a queued
400 		 * timer signal that would have been cleared in
401 		 * exit_itimers.  When that called sigqueue_free, it would
402 		 * attempt to re-take the tasklist_lock and deadlock.  This
403 		 * can never happen if we ensure that all queues the
404 		 * timer's signal might be queued on have been flushed
405 		 * first.  The shared_pending queue, and our own pending
406 		 * queue are the only queues the timer could be on, since
407 		 * there are no other threads left in the group and timer
408 		 * signals are constrained to threads inside the group.
409 		 */
410 		exit_itimers(sig);
411 		exit_thread_group_keys(sig);
412 		kmem_cache_free(signal_cachep, sig);
413 	}
414 }
415 
416 void exit_signal(struct task_struct *tsk)
417 {
418 	write_lock_irq(&tasklist_lock);
419 	__exit_signal(tsk);
420 	write_unlock_irq(&tasklist_lock);
421 }
422 
423 /*
424  * Flush all handlers for a task.
425  */
426 
427 void
428 flush_signal_handlers(struct task_struct *t, int force_default)
429 {
430 	int i;
431 	struct k_sigaction *ka = &t->sighand->action[0];
432 	for (i = _NSIG ; i != 0 ; i--) {
433 		if (force_default || ka->sa.sa_handler != SIG_IGN)
434 			ka->sa.sa_handler = SIG_DFL;
435 		ka->sa.sa_flags = 0;
436 		sigemptyset(&ka->sa.sa_mask);
437 		ka++;
438 	}
439 }
440 
441 
442 /* Notify the system that a driver wants to block all signals for this
443  * process, and wants to be notified if any signals at all were to be
444  * sent/acted upon.  If the notifier routine returns non-zero, then the
445  * signal will be acted upon after all.  If the notifier routine returns 0,
446  * then then signal will be blocked.  Only one block per process is
447  * allowed.  priv is a pointer to private data that the notifier routine
448  * can use to determine if the signal should be blocked or not.  */
449 
450 void
451 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
452 {
453 	unsigned long flags;
454 
455 	spin_lock_irqsave(&current->sighand->siglock, flags);
456 	current->notifier_mask = mask;
457 	current->notifier_data = priv;
458 	current->notifier = notifier;
459 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
460 }
461 
462 /* Notify the system that blocking has ended. */
463 
464 void
465 unblock_all_signals(void)
466 {
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&current->sighand->siglock, flags);
470 	current->notifier = NULL;
471 	current->notifier_data = NULL;
472 	recalc_sigpending();
473 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
474 }
475 
476 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
477 {
478 	struct sigqueue *q, *first = NULL;
479 	int still_pending = 0;
480 
481 	if (unlikely(!sigismember(&list->signal, sig)))
482 		return 0;
483 
484 	/*
485 	 * Collect the siginfo appropriate to this signal.  Check if
486 	 * there is another siginfo for the same signal.
487 	*/
488 	list_for_each_entry(q, &list->list, list) {
489 		if (q->info.si_signo == sig) {
490 			if (first) {
491 				still_pending = 1;
492 				break;
493 			}
494 			first = q;
495 		}
496 	}
497 	if (first) {
498 		list_del_init(&first->list);
499 		copy_siginfo(info, &first->info);
500 		__sigqueue_free(first);
501 		if (!still_pending)
502 			sigdelset(&list->signal, sig);
503 	} else {
504 
505 		/* Ok, it wasn't in the queue.  This must be
506 		   a fast-pathed signal or we must have been
507 		   out of queue space.  So zero out the info.
508 		 */
509 		sigdelset(&list->signal, sig);
510 		info->si_signo = sig;
511 		info->si_errno = 0;
512 		info->si_code = 0;
513 		info->si_pid = 0;
514 		info->si_uid = 0;
515 	}
516 	return 1;
517 }
518 
519 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
520 			siginfo_t *info)
521 {
522 	int sig = 0;
523 
524 	sig = next_signal(pending, mask);
525 	if (sig) {
526 		if (current->notifier) {
527 			if (sigismember(current->notifier_mask, sig)) {
528 				if (!(current->notifier)(current->notifier_data)) {
529 					clear_thread_flag(TIF_SIGPENDING);
530 					return 0;
531 				}
532 			}
533 		}
534 
535 		if (!collect_signal(sig, pending, info))
536 			sig = 0;
537 
538 	}
539 	recalc_sigpending();
540 
541 	return sig;
542 }
543 
544 /*
545  * Dequeue a signal and return the element to the caller, which is
546  * expected to free it.
547  *
548  * All callers have to hold the siglock.
549  */
550 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
551 {
552 	int signr = __dequeue_signal(&tsk->pending, mask, info);
553 	if (!signr)
554 		signr = __dequeue_signal(&tsk->signal->shared_pending,
555 					 mask, info);
556  	if (signr && unlikely(sig_kernel_stop(signr))) {
557  		/*
558  		 * Set a marker that we have dequeued a stop signal.  Our
559  		 * caller might release the siglock and then the pending
560  		 * stop signal it is about to process is no longer in the
561  		 * pending bitmasks, but must still be cleared by a SIGCONT
562  		 * (and overruled by a SIGKILL).  So those cases clear this
563  		 * shared flag after we've set it.  Note that this flag may
564  		 * remain set after the signal we return is ignored or
565  		 * handled.  That doesn't matter because its only purpose
566  		 * is to alert stop-signal processing code when another
567  		 * processor has come along and cleared the flag.
568  		 */
569  		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
570  	}
571 	if ( signr &&
572 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
573 	     info->si_sys_private){
574 		/*
575 		 * Release the siglock to ensure proper locking order
576 		 * of timer locks outside of siglocks.  Note, we leave
577 		 * irqs disabled here, since the posix-timers code is
578 		 * about to disable them again anyway.
579 		 */
580 		spin_unlock(&tsk->sighand->siglock);
581 		do_schedule_next_timer(info);
582 		spin_lock(&tsk->sighand->siglock);
583 	}
584 	return signr;
585 }
586 
587 /*
588  * Tell a process that it has a new active signal..
589  *
590  * NOTE! we rely on the previous spin_lock to
591  * lock interrupts for us! We can only be called with
592  * "siglock" held, and the local interrupt must
593  * have been disabled when that got acquired!
594  *
595  * No need to set need_resched since signal event passing
596  * goes through ->blocked
597  */
598 void signal_wake_up(struct task_struct *t, int resume)
599 {
600 	unsigned int mask;
601 
602 	set_tsk_thread_flag(t, TIF_SIGPENDING);
603 
604 	/*
605 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
606 	 * We don't check t->state here because there is a race with it
607 	 * executing another processor and just now entering stopped state.
608 	 * By using wake_up_state, we ensure the process will wake up and
609 	 * handle its death signal.
610 	 */
611 	mask = TASK_INTERRUPTIBLE;
612 	if (resume)
613 		mask |= TASK_STOPPED | TASK_TRACED;
614 	if (!wake_up_state(t, mask))
615 		kick_process(t);
616 }
617 
618 /*
619  * Remove signals in mask from the pending set and queue.
620  * Returns 1 if any signals were found.
621  *
622  * All callers must be holding the siglock.
623  */
624 static int rm_from_queue(unsigned long mask, struct sigpending *s)
625 {
626 	struct sigqueue *q, *n;
627 
628 	if (!sigtestsetmask(&s->signal, mask))
629 		return 0;
630 
631 	sigdelsetmask(&s->signal, mask);
632 	list_for_each_entry_safe(q, n, &s->list, list) {
633 		if (q->info.si_signo < SIGRTMIN &&
634 		    (mask & sigmask(q->info.si_signo))) {
635 			list_del_init(&q->list);
636 			__sigqueue_free(q);
637 		}
638 	}
639 	return 1;
640 }
641 
642 /*
643  * Bad permissions for sending the signal
644  */
645 static int check_kill_permission(int sig, struct siginfo *info,
646 				 struct task_struct *t)
647 {
648 	int error = -EINVAL;
649 	if (sig < 0 || sig > _NSIG)
650 		return error;
651 	error = -EPERM;
652 	if ((!info || ((unsigned long)info != 1 &&
653 			(unsigned long)info != 2 && SI_FROMUSER(info)))
654 	    && ((sig != SIGCONT) ||
655 		(current->signal->session != t->signal->session))
656 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
657 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
658 	    && !capable(CAP_KILL))
659 		return error;
660 	return security_task_kill(t, info, sig);
661 }
662 
663 /* forward decl */
664 static void do_notify_parent_cldstop(struct task_struct *tsk,
665 				     struct task_struct *parent,
666 				     int why);
667 
668 /*
669  * Handle magic process-wide effects of stop/continue signals.
670  * Unlike the signal actions, these happen immediately at signal-generation
671  * time regardless of blocking, ignoring, or handling.  This does the
672  * actual continuing for SIGCONT, but not the actual stopping for stop
673  * signals.  The process stop is done as a signal action for SIG_DFL.
674  */
675 static void handle_stop_signal(int sig, struct task_struct *p)
676 {
677 	struct task_struct *t;
678 
679 	if (p->flags & SIGNAL_GROUP_EXIT)
680 		/*
681 		 * The process is in the middle of dying already.
682 		 */
683 		return;
684 
685 	if (sig_kernel_stop(sig)) {
686 		/*
687 		 * This is a stop signal.  Remove SIGCONT from all queues.
688 		 */
689 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
690 		t = p;
691 		do {
692 			rm_from_queue(sigmask(SIGCONT), &t->pending);
693 			t = next_thread(t);
694 		} while (t != p);
695 	} else if (sig == SIGCONT) {
696 		/*
697 		 * Remove all stop signals from all queues,
698 		 * and wake all threads.
699 		 */
700 		if (unlikely(p->signal->group_stop_count > 0)) {
701 			/*
702 			 * There was a group stop in progress.  We'll
703 			 * pretend it finished before we got here.  We are
704 			 * obliged to report it to the parent: if the
705 			 * SIGSTOP happened "after" this SIGCONT, then it
706 			 * would have cleared this pending SIGCONT.  If it
707 			 * happened "before" this SIGCONT, then the parent
708 			 * got the SIGCHLD about the stop finishing before
709 			 * the continue happened.  We do the notification
710 			 * now, and it's as if the stop had finished and
711 			 * the SIGCHLD was pending on entry to this kill.
712 			 */
713 			p->signal->group_stop_count = 0;
714 			p->signal->flags = SIGNAL_STOP_CONTINUED;
715 			spin_unlock(&p->sighand->siglock);
716 			if (p->ptrace & PT_PTRACED)
717 				do_notify_parent_cldstop(p, p->parent,
718 							 CLD_STOPPED);
719 			else
720 				do_notify_parent_cldstop(
721 					p->group_leader,
722 					p->group_leader->real_parent,
723 							 CLD_STOPPED);
724 			spin_lock(&p->sighand->siglock);
725 		}
726 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
727 		t = p;
728 		do {
729 			unsigned int state;
730 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
731 
732 			/*
733 			 * If there is a handler for SIGCONT, we must make
734 			 * sure that no thread returns to user mode before
735 			 * we post the signal, in case it was the only
736 			 * thread eligible to run the signal handler--then
737 			 * it must not do anything between resuming and
738 			 * running the handler.  With the TIF_SIGPENDING
739 			 * flag set, the thread will pause and acquire the
740 			 * siglock that we hold now and until we've queued
741 			 * the pending signal.
742 			 *
743 			 * Wake up the stopped thread _after_ setting
744 			 * TIF_SIGPENDING
745 			 */
746 			state = TASK_STOPPED;
747 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
748 				set_tsk_thread_flag(t, TIF_SIGPENDING);
749 				state |= TASK_INTERRUPTIBLE;
750 			}
751 			wake_up_state(t, state);
752 
753 			t = next_thread(t);
754 		} while (t != p);
755 
756 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
757 			/*
758 			 * We were in fact stopped, and are now continued.
759 			 * Notify the parent with CLD_CONTINUED.
760 			 */
761 			p->signal->flags = SIGNAL_STOP_CONTINUED;
762 			p->signal->group_exit_code = 0;
763 			spin_unlock(&p->sighand->siglock);
764 			if (p->ptrace & PT_PTRACED)
765 				do_notify_parent_cldstop(p, p->parent,
766 							 CLD_CONTINUED);
767 			else
768 				do_notify_parent_cldstop(
769 					p->group_leader,
770 					p->group_leader->real_parent,
771 							 CLD_CONTINUED);
772 			spin_lock(&p->sighand->siglock);
773 		} else {
774 			/*
775 			 * We are not stopped, but there could be a stop
776 			 * signal in the middle of being processed after
777 			 * being removed from the queue.  Clear that too.
778 			 */
779 			p->signal->flags = 0;
780 		}
781 	} else if (sig == SIGKILL) {
782 		/*
783 		 * Make sure that any pending stop signal already dequeued
784 		 * is undone by the wakeup for SIGKILL.
785 		 */
786 		p->signal->flags = 0;
787 	}
788 }
789 
790 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
791 			struct sigpending *signals)
792 {
793 	struct sigqueue * q = NULL;
794 	int ret = 0;
795 
796 	/*
797 	 * fast-pathed signals for kernel-internal things like SIGSTOP
798 	 * or SIGKILL.
799 	 */
800 	if ((unsigned long)info == 2)
801 		goto out_set;
802 
803 	/* Real-time signals must be queued if sent by sigqueue, or
804 	   some other real-time mechanism.  It is implementation
805 	   defined whether kill() does so.  We attempt to do so, on
806 	   the principle of least surprise, but since kill is not
807 	   allowed to fail with EAGAIN when low on memory we just
808 	   make sure at least one signal gets delivered and don't
809 	   pass on the info struct.  */
810 
811 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
812 					     ((unsigned long) info < 2 ||
813 					      info->si_code >= 0)));
814 	if (q) {
815 		list_add_tail(&q->list, &signals->list);
816 		switch ((unsigned long) info) {
817 		case 0:
818 			q->info.si_signo = sig;
819 			q->info.si_errno = 0;
820 			q->info.si_code = SI_USER;
821 			q->info.si_pid = current->pid;
822 			q->info.si_uid = current->uid;
823 			break;
824 		case 1:
825 			q->info.si_signo = sig;
826 			q->info.si_errno = 0;
827 			q->info.si_code = SI_KERNEL;
828 			q->info.si_pid = 0;
829 			q->info.si_uid = 0;
830 			break;
831 		default:
832 			copy_siginfo(&q->info, info);
833 			break;
834 		}
835 	} else {
836 		if (sig >= SIGRTMIN && info && (unsigned long)info != 1
837 		   && info->si_code != SI_USER)
838 		/*
839 		 * Queue overflow, abort.  We may abort if the signal was rt
840 		 * and sent by user using something other than kill().
841 		 */
842 			return -EAGAIN;
843 		if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
844 			/*
845 			 * Set up a return to indicate that we dropped
846 			 * the signal.
847 			 */
848 			ret = info->si_sys_private;
849 	}
850 
851 out_set:
852 	sigaddset(&signals->signal, sig);
853 	return ret;
854 }
855 
856 #define LEGACY_QUEUE(sigptr, sig) \
857 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
858 
859 
860 static int
861 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
862 {
863 	int ret = 0;
864 
865 	if (!irqs_disabled())
866 		BUG();
867 	assert_spin_locked(&t->sighand->siglock);
868 
869 	if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
870 		/*
871 		 * Set up a return to indicate that we dropped the signal.
872 		 */
873 		ret = info->si_sys_private;
874 
875 	/* Short-circuit ignored signals.  */
876 	if (sig_ignored(t, sig))
877 		goto out;
878 
879 	/* Support queueing exactly one non-rt signal, so that we
880 	   can get more detailed information about the cause of
881 	   the signal. */
882 	if (LEGACY_QUEUE(&t->pending, sig))
883 		goto out;
884 
885 	ret = send_signal(sig, info, t, &t->pending);
886 	if (!ret && !sigismember(&t->blocked, sig))
887 		signal_wake_up(t, sig == SIGKILL);
888 out:
889 	return ret;
890 }
891 
892 /*
893  * Force a signal that the process can't ignore: if necessary
894  * we unblock the signal and change any SIG_IGN to SIG_DFL.
895  */
896 
897 int
898 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
899 {
900 	unsigned long int flags;
901 	int ret;
902 
903 	spin_lock_irqsave(&t->sighand->siglock, flags);
904 	if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
905 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
906 		sigdelset(&t->blocked, sig);
907 		recalc_sigpending_tsk(t);
908 	}
909 	ret = specific_send_sig_info(sig, info, t);
910 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
911 
912 	return ret;
913 }
914 
915 void
916 force_sig_specific(int sig, struct task_struct *t)
917 {
918 	unsigned long int flags;
919 
920 	spin_lock_irqsave(&t->sighand->siglock, flags);
921 	if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
922 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
923 	sigdelset(&t->blocked, sig);
924 	recalc_sigpending_tsk(t);
925 	specific_send_sig_info(sig, (void *)2, t);
926 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
927 }
928 
929 /*
930  * Test if P wants to take SIG.  After we've checked all threads with this,
931  * it's equivalent to finding no threads not blocking SIG.  Any threads not
932  * blocking SIG were ruled out because they are not running and already
933  * have pending signals.  Such threads will dequeue from the shared queue
934  * as soon as they're available, so putting the signal on the shared queue
935  * will be equivalent to sending it to one such thread.
936  */
937 #define wants_signal(sig, p, mask) 			\
938 	(!sigismember(&(p)->blocked, sig)		\
939 	 && !((p)->state & mask)			\
940 	 && !((p)->flags & PF_EXITING)			\
941 	 && (task_curr(p) || !signal_pending(p)))
942 
943 
944 static void
945 __group_complete_signal(int sig, struct task_struct *p)
946 {
947 	unsigned int mask;
948 	struct task_struct *t;
949 
950 	/*
951 	 * Don't bother traced and stopped tasks (but
952 	 * SIGKILL will punch through that).
953 	 */
954 	mask = TASK_STOPPED | TASK_TRACED;
955 	if (sig == SIGKILL)
956 		mask = 0;
957 
958 	/*
959 	 * Now find a thread we can wake up to take the signal off the queue.
960 	 *
961 	 * If the main thread wants the signal, it gets first crack.
962 	 * Probably the least surprising to the average bear.
963 	 */
964 	if (wants_signal(sig, p, mask))
965 		t = p;
966 	else if (thread_group_empty(p))
967 		/*
968 		 * There is just one thread and it does not need to be woken.
969 		 * It will dequeue unblocked signals before it runs again.
970 		 */
971 		return;
972 	else {
973 		/*
974 		 * Otherwise try to find a suitable thread.
975 		 */
976 		t = p->signal->curr_target;
977 		if (t == NULL)
978 			/* restart balancing at this thread */
979 			t = p->signal->curr_target = p;
980 		BUG_ON(t->tgid != p->tgid);
981 
982 		while (!wants_signal(sig, t, mask)) {
983 			t = next_thread(t);
984 			if (t == p->signal->curr_target)
985 				/*
986 				 * No thread needs to be woken.
987 				 * Any eligible threads will see
988 				 * the signal in the queue soon.
989 				 */
990 				return;
991 		}
992 		p->signal->curr_target = t;
993 	}
994 
995 	/*
996 	 * Found a killable thread.  If the signal will be fatal,
997 	 * then start taking the whole group down immediately.
998 	 */
999 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
1000 	    !sigismember(&t->real_blocked, sig) &&
1001 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1002 		/*
1003 		 * This signal will be fatal to the whole group.
1004 		 */
1005 		if (!sig_kernel_coredump(sig)) {
1006 			/*
1007 			 * Start a group exit and wake everybody up.
1008 			 * This way we don't have other threads
1009 			 * running and doing things after a slower
1010 			 * thread has the fatal signal pending.
1011 			 */
1012 			p->signal->flags = SIGNAL_GROUP_EXIT;
1013 			p->signal->group_exit_code = sig;
1014 			p->signal->group_stop_count = 0;
1015 			t = p;
1016 			do {
1017 				sigaddset(&t->pending.signal, SIGKILL);
1018 				signal_wake_up(t, 1);
1019 				t = next_thread(t);
1020 			} while (t != p);
1021 			return;
1022 		}
1023 
1024 		/*
1025 		 * There will be a core dump.  We make all threads other
1026 		 * than the chosen one go into a group stop so that nothing
1027 		 * happens until it gets scheduled, takes the signal off
1028 		 * the shared queue, and does the core dump.  This is a
1029 		 * little more complicated than strictly necessary, but it
1030 		 * keeps the signal state that winds up in the core dump
1031 		 * unchanged from the death state, e.g. which thread had
1032 		 * the core-dump signal unblocked.
1033 		 */
1034 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1035 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1036 		p->signal->group_stop_count = 0;
1037 		p->signal->group_exit_task = t;
1038 		t = p;
1039 		do {
1040 			p->signal->group_stop_count++;
1041 			signal_wake_up(t, 0);
1042 			t = next_thread(t);
1043 		} while (t != p);
1044 		wake_up_process(p->signal->group_exit_task);
1045 		return;
1046 	}
1047 
1048 	/*
1049 	 * The signal is already in the shared-pending queue.
1050 	 * Tell the chosen thread to wake up and dequeue it.
1051 	 */
1052 	signal_wake_up(t, sig == SIGKILL);
1053 	return;
1054 }
1055 
1056 int
1057 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1058 {
1059 	int ret = 0;
1060 
1061 	assert_spin_locked(&p->sighand->siglock);
1062 	handle_stop_signal(sig, p);
1063 
1064 	if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1065 		/*
1066 		 * Set up a return to indicate that we dropped the signal.
1067 		 */
1068 		ret = info->si_sys_private;
1069 
1070 	/* Short-circuit ignored signals.  */
1071 	if (sig_ignored(p, sig))
1072 		return ret;
1073 
1074 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1075 		/* This is a non-RT signal and we already have one queued.  */
1076 		return ret;
1077 
1078 	/*
1079 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1080 	 * We always use the shared queue for process-wide signals,
1081 	 * to avoid several races.
1082 	 */
1083 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
1084 	if (unlikely(ret))
1085 		return ret;
1086 
1087 	__group_complete_signal(sig, p);
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Nuke all other threads in the group.
1093  */
1094 void zap_other_threads(struct task_struct *p)
1095 {
1096 	struct task_struct *t;
1097 
1098 	p->signal->flags = SIGNAL_GROUP_EXIT;
1099 	p->signal->group_stop_count = 0;
1100 
1101 	if (thread_group_empty(p))
1102 		return;
1103 
1104 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1105 		/*
1106 		 * Don't bother with already dead threads
1107 		 */
1108 		if (t->exit_state)
1109 			continue;
1110 
1111 		/*
1112 		 * We don't want to notify the parent, since we are
1113 		 * killed as part of a thread group due to another
1114 		 * thread doing an execve() or similar. So set the
1115 		 * exit signal to -1 to allow immediate reaping of
1116 		 * the process.  But don't detach the thread group
1117 		 * leader.
1118 		 */
1119 		if (t != p->group_leader)
1120 			t->exit_signal = -1;
1121 
1122 		sigaddset(&t->pending.signal, SIGKILL);
1123 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1124 		signal_wake_up(t, 1);
1125 	}
1126 }
1127 
1128 /*
1129  * Must be called with the tasklist_lock held for reading!
1130  */
1131 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1132 {
1133 	unsigned long flags;
1134 	int ret;
1135 
1136 	ret = check_kill_permission(sig, info, p);
1137 	if (!ret && sig && p->sighand) {
1138 		spin_lock_irqsave(&p->sighand->siglock, flags);
1139 		ret = __group_send_sig_info(sig, info, p);
1140 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1141 	}
1142 
1143 	return ret;
1144 }
1145 
1146 /*
1147  * kill_pg_info() sends a signal to a process group: this is what the tty
1148  * control characters do (^C, ^Z etc)
1149  */
1150 
1151 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1152 {
1153 	struct task_struct *p = NULL;
1154 	int retval, success;
1155 
1156 	if (pgrp <= 0)
1157 		return -EINVAL;
1158 
1159 	success = 0;
1160 	retval = -ESRCH;
1161 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1162 		int err = group_send_sig_info(sig, info, p);
1163 		success |= !err;
1164 		retval = err;
1165 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1166 	return success ? 0 : retval;
1167 }
1168 
1169 int
1170 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1171 {
1172 	int retval;
1173 
1174 	read_lock(&tasklist_lock);
1175 	retval = __kill_pg_info(sig, info, pgrp);
1176 	read_unlock(&tasklist_lock);
1177 
1178 	return retval;
1179 }
1180 
1181 int
1182 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1183 {
1184 	int error;
1185 	struct task_struct *p;
1186 
1187 	read_lock(&tasklist_lock);
1188 	p = find_task_by_pid(pid);
1189 	error = -ESRCH;
1190 	if (p)
1191 		error = group_send_sig_info(sig, info, p);
1192 	read_unlock(&tasklist_lock);
1193 	return error;
1194 }
1195 
1196 
1197 /*
1198  * kill_something_info() interprets pid in interesting ways just like kill(2).
1199  *
1200  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1201  * is probably wrong.  Should make it like BSD or SYSV.
1202  */
1203 
1204 static int kill_something_info(int sig, struct siginfo *info, int pid)
1205 {
1206 	if (!pid) {
1207 		return kill_pg_info(sig, info, process_group(current));
1208 	} else if (pid == -1) {
1209 		int retval = 0, count = 0;
1210 		struct task_struct * p;
1211 
1212 		read_lock(&tasklist_lock);
1213 		for_each_process(p) {
1214 			if (p->pid > 1 && p->tgid != current->tgid) {
1215 				int err = group_send_sig_info(sig, info, p);
1216 				++count;
1217 				if (err != -EPERM)
1218 					retval = err;
1219 			}
1220 		}
1221 		read_unlock(&tasklist_lock);
1222 		return count ? retval : -ESRCH;
1223 	} else if (pid < 0) {
1224 		return kill_pg_info(sig, info, -pid);
1225 	} else {
1226 		return kill_proc_info(sig, info, pid);
1227 	}
1228 }
1229 
1230 /*
1231  * These are for backward compatibility with the rest of the kernel source.
1232  */
1233 
1234 /*
1235  * These two are the most common entry points.  They send a signal
1236  * just to the specific thread.
1237  */
1238 int
1239 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1240 {
1241 	int ret;
1242 	unsigned long flags;
1243 
1244 	/*
1245 	 * Make sure legacy kernel users don't send in bad values
1246 	 * (normal paths check this in check_kill_permission).
1247 	 */
1248 	if (sig < 0 || sig > _NSIG)
1249 		return -EINVAL;
1250 
1251 	/*
1252 	 * We need the tasklist lock even for the specific
1253 	 * thread case (when we don't need to follow the group
1254 	 * lists) in order to avoid races with "p->sighand"
1255 	 * going away or changing from under us.
1256 	 */
1257 	read_lock(&tasklist_lock);
1258 	spin_lock_irqsave(&p->sighand->siglock, flags);
1259 	ret = specific_send_sig_info(sig, info, p);
1260 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1261 	read_unlock(&tasklist_lock);
1262 	return ret;
1263 }
1264 
1265 int
1266 send_sig(int sig, struct task_struct *p, int priv)
1267 {
1268 	return send_sig_info(sig, (void*)(long)(priv != 0), p);
1269 }
1270 
1271 /*
1272  * This is the entry point for "process-wide" signals.
1273  * They will go to an appropriate thread in the thread group.
1274  */
1275 int
1276 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1277 {
1278 	int ret;
1279 	read_lock(&tasklist_lock);
1280 	ret = group_send_sig_info(sig, info, p);
1281 	read_unlock(&tasklist_lock);
1282 	return ret;
1283 }
1284 
1285 void
1286 force_sig(int sig, struct task_struct *p)
1287 {
1288 	force_sig_info(sig, (void*)1L, p);
1289 }
1290 
1291 /*
1292  * When things go south during signal handling, we
1293  * will force a SIGSEGV. And if the signal that caused
1294  * the problem was already a SIGSEGV, we'll want to
1295  * make sure we don't even try to deliver the signal..
1296  */
1297 int
1298 force_sigsegv(int sig, struct task_struct *p)
1299 {
1300 	if (sig == SIGSEGV) {
1301 		unsigned long flags;
1302 		spin_lock_irqsave(&p->sighand->siglock, flags);
1303 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1304 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1305 	}
1306 	force_sig(SIGSEGV, p);
1307 	return 0;
1308 }
1309 
1310 int
1311 kill_pg(pid_t pgrp, int sig, int priv)
1312 {
1313 	return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1314 }
1315 
1316 int
1317 kill_proc(pid_t pid, int sig, int priv)
1318 {
1319 	return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1320 }
1321 
1322 /*
1323  * These functions support sending signals using preallocated sigqueue
1324  * structures.  This is needed "because realtime applications cannot
1325  * afford to lose notifications of asynchronous events, like timer
1326  * expirations or I/O completions".  In the case of Posix Timers
1327  * we allocate the sigqueue structure from the timer_create.  If this
1328  * allocation fails we are able to report the failure to the application
1329  * with an EAGAIN error.
1330  */
1331 
1332 struct sigqueue *sigqueue_alloc(void)
1333 {
1334 	struct sigqueue *q;
1335 
1336 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1337 		q->flags |= SIGQUEUE_PREALLOC;
1338 	return(q);
1339 }
1340 
1341 void sigqueue_free(struct sigqueue *q)
1342 {
1343 	unsigned long flags;
1344 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1345 	/*
1346 	 * If the signal is still pending remove it from the
1347 	 * pending queue.
1348 	 */
1349 	if (unlikely(!list_empty(&q->list))) {
1350 		read_lock(&tasklist_lock);
1351 		spin_lock_irqsave(q->lock, flags);
1352 		if (!list_empty(&q->list))
1353 			list_del_init(&q->list);
1354 		spin_unlock_irqrestore(q->lock, flags);
1355 		read_unlock(&tasklist_lock);
1356 	}
1357 	q->flags &= ~SIGQUEUE_PREALLOC;
1358 	__sigqueue_free(q);
1359 }
1360 
1361 int
1362 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1363 {
1364 	unsigned long flags;
1365 	int ret = 0;
1366 
1367 	/*
1368 	 * We need the tasklist lock even for the specific
1369 	 * thread case (when we don't need to follow the group
1370 	 * lists) in order to avoid races with "p->sighand"
1371 	 * going away or changing from under us.
1372 	 */
1373 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1374 	read_lock(&tasklist_lock);
1375 	spin_lock_irqsave(&p->sighand->siglock, flags);
1376 
1377 	if (unlikely(!list_empty(&q->list))) {
1378 		/*
1379 		 * If an SI_TIMER entry is already queue just increment
1380 		 * the overrun count.
1381 		 */
1382 		if (q->info.si_code != SI_TIMER)
1383 			BUG();
1384 		q->info.si_overrun++;
1385 		goto out;
1386 	}
1387 	/* Short-circuit ignored signals.  */
1388 	if (sig_ignored(p, sig)) {
1389 		ret = 1;
1390 		goto out;
1391 	}
1392 
1393 	q->lock = &p->sighand->siglock;
1394 	list_add_tail(&q->list, &p->pending.list);
1395 	sigaddset(&p->pending.signal, sig);
1396 	if (!sigismember(&p->blocked, sig))
1397 		signal_wake_up(p, sig == SIGKILL);
1398 
1399 out:
1400 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1401 	read_unlock(&tasklist_lock);
1402 	return(ret);
1403 }
1404 
1405 int
1406 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1407 {
1408 	unsigned long flags;
1409 	int ret = 0;
1410 
1411 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1412 	read_lock(&tasklist_lock);
1413 	spin_lock_irqsave(&p->sighand->siglock, flags);
1414 	handle_stop_signal(sig, p);
1415 
1416 	/* Short-circuit ignored signals.  */
1417 	if (sig_ignored(p, sig)) {
1418 		ret = 1;
1419 		goto out;
1420 	}
1421 
1422 	if (unlikely(!list_empty(&q->list))) {
1423 		/*
1424 		 * If an SI_TIMER entry is already queue just increment
1425 		 * the overrun count.  Other uses should not try to
1426 		 * send the signal multiple times.
1427 		 */
1428 		if (q->info.si_code != SI_TIMER)
1429 			BUG();
1430 		q->info.si_overrun++;
1431 		goto out;
1432 	}
1433 
1434 	/*
1435 	 * Put this signal on the shared-pending queue.
1436 	 * We always use the shared queue for process-wide signals,
1437 	 * to avoid several races.
1438 	 */
1439 	q->lock = &p->sighand->siglock;
1440 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1441 	sigaddset(&p->signal->shared_pending.signal, sig);
1442 
1443 	__group_complete_signal(sig, p);
1444 out:
1445 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1446 	read_unlock(&tasklist_lock);
1447 	return(ret);
1448 }
1449 
1450 /*
1451  * Wake up any threads in the parent blocked in wait* syscalls.
1452  */
1453 static inline void __wake_up_parent(struct task_struct *p,
1454 				    struct task_struct *parent)
1455 {
1456 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1457 }
1458 
1459 /*
1460  * Let a parent know about the death of a child.
1461  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1462  */
1463 
1464 void do_notify_parent(struct task_struct *tsk, int sig)
1465 {
1466 	struct siginfo info;
1467 	unsigned long flags;
1468 	struct sighand_struct *psig;
1469 
1470 	BUG_ON(sig == -1);
1471 
1472  	/* do_notify_parent_cldstop should have been called instead.  */
1473  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1474 
1475 	BUG_ON(!tsk->ptrace &&
1476 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1477 
1478 	info.si_signo = sig;
1479 	info.si_errno = 0;
1480 	info.si_pid = tsk->pid;
1481 	info.si_uid = tsk->uid;
1482 
1483 	/* FIXME: find out whether or not this is supposed to be c*time. */
1484 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1485 						       tsk->signal->utime));
1486 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1487 						       tsk->signal->stime));
1488 
1489 	info.si_status = tsk->exit_code & 0x7f;
1490 	if (tsk->exit_code & 0x80)
1491 		info.si_code = CLD_DUMPED;
1492 	else if (tsk->exit_code & 0x7f)
1493 		info.si_code = CLD_KILLED;
1494 	else {
1495 		info.si_code = CLD_EXITED;
1496 		info.si_status = tsk->exit_code >> 8;
1497 	}
1498 
1499 	psig = tsk->parent->sighand;
1500 	spin_lock_irqsave(&psig->siglock, flags);
1501 	if (sig == SIGCHLD &&
1502 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1503 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1504 		/*
1505 		 * We are exiting and our parent doesn't care.  POSIX.1
1506 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1507 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1508 		 * automatically and not left for our parent's wait4 call.
1509 		 * Rather than having the parent do it as a magic kind of
1510 		 * signal handler, we just set this to tell do_exit that we
1511 		 * can be cleaned up without becoming a zombie.  Note that
1512 		 * we still call __wake_up_parent in this case, because a
1513 		 * blocked sys_wait4 might now return -ECHILD.
1514 		 *
1515 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1516 		 * is implementation-defined: we do (if you don't want
1517 		 * it, just use SIG_IGN instead).
1518 		 */
1519 		tsk->exit_signal = -1;
1520 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1521 			sig = 0;
1522 	}
1523 	if (sig > 0 && sig <= _NSIG)
1524 		__group_send_sig_info(sig, &info, tsk->parent);
1525 	__wake_up_parent(tsk, tsk->parent);
1526 	spin_unlock_irqrestore(&psig->siglock, flags);
1527 }
1528 
1529 static void
1530 do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent,
1531 			 int why)
1532 {
1533 	struct siginfo info;
1534 	unsigned long flags;
1535 	struct sighand_struct *sighand;
1536 
1537 	info.si_signo = SIGCHLD;
1538 	info.si_errno = 0;
1539 	info.si_pid = tsk->pid;
1540 	info.si_uid = tsk->uid;
1541 
1542 	/* FIXME: find out whether or not this is supposed to be c*time. */
1543 	info.si_utime = cputime_to_jiffies(tsk->utime);
1544 	info.si_stime = cputime_to_jiffies(tsk->stime);
1545 
1546  	info.si_code = why;
1547  	switch (why) {
1548  	case CLD_CONTINUED:
1549  		info.si_status = SIGCONT;
1550  		break;
1551  	case CLD_STOPPED:
1552  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1553  		break;
1554  	case CLD_TRAPPED:
1555  		info.si_status = tsk->exit_code & 0x7f;
1556  		break;
1557  	default:
1558  		BUG();
1559  	}
1560 
1561 	sighand = parent->sighand;
1562 	spin_lock_irqsave(&sighand->siglock, flags);
1563 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1564 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1565 		__group_send_sig_info(SIGCHLD, &info, parent);
1566 	/*
1567 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1568 	 */
1569 	__wake_up_parent(tsk, parent);
1570 	spin_unlock_irqrestore(&sighand->siglock, flags);
1571 }
1572 
1573 /*
1574  * This must be called with current->sighand->siglock held.
1575  *
1576  * This should be the path for all ptrace stops.
1577  * We always set current->last_siginfo while stopped here.
1578  * That makes it a way to test a stopped process for
1579  * being ptrace-stopped vs being job-control-stopped.
1580  *
1581  * If we actually decide not to stop at all because the tracer is gone,
1582  * we leave nostop_code in current->exit_code.
1583  */
1584 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1585 {
1586 	/*
1587 	 * If there is a group stop in progress,
1588 	 * we must participate in the bookkeeping.
1589 	 */
1590 	if (current->signal->group_stop_count > 0)
1591 		--current->signal->group_stop_count;
1592 
1593 	current->last_siginfo = info;
1594 	current->exit_code = exit_code;
1595 
1596 	/* Let the debugger run.  */
1597 	set_current_state(TASK_TRACED);
1598 	spin_unlock_irq(&current->sighand->siglock);
1599 	read_lock(&tasklist_lock);
1600 	if (likely(current->ptrace & PT_PTRACED) &&
1601 	    likely(current->parent != current->real_parent ||
1602 		   !(current->ptrace & PT_ATTACHED)) &&
1603 	    (likely(current->parent->signal != current->signal) ||
1604 	     !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1605 		do_notify_parent_cldstop(current, current->parent,
1606 					 CLD_TRAPPED);
1607 		read_unlock(&tasklist_lock);
1608 		schedule();
1609 	} else {
1610 		/*
1611 		 * By the time we got the lock, our tracer went away.
1612 		 * Don't stop here.
1613 		 */
1614 		read_unlock(&tasklist_lock);
1615 		set_current_state(TASK_RUNNING);
1616 		current->exit_code = nostop_code;
1617 	}
1618 
1619 	/*
1620 	 * We are back.  Now reacquire the siglock before touching
1621 	 * last_siginfo, so that we are sure to have synchronized with
1622 	 * any signal-sending on another CPU that wants to examine it.
1623 	 */
1624 	spin_lock_irq(&current->sighand->siglock);
1625 	current->last_siginfo = NULL;
1626 
1627 	/*
1628 	 * Queued signals ignored us while we were stopped for tracing.
1629 	 * So check for any that we should take before resuming user mode.
1630 	 */
1631 	recalc_sigpending();
1632 }
1633 
1634 void ptrace_notify(int exit_code)
1635 {
1636 	siginfo_t info;
1637 
1638 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1639 
1640 	memset(&info, 0, sizeof info);
1641 	info.si_signo = SIGTRAP;
1642 	info.si_code = exit_code;
1643 	info.si_pid = current->pid;
1644 	info.si_uid = current->uid;
1645 
1646 	/* Let the debugger run.  */
1647 	spin_lock_irq(&current->sighand->siglock);
1648 	ptrace_stop(exit_code, 0, &info);
1649 	spin_unlock_irq(&current->sighand->siglock);
1650 }
1651 
1652 #ifndef HAVE_ARCH_GET_SIGNAL_TO_DELIVER
1653 
1654 static void
1655 finish_stop(int stop_count)
1656 {
1657 	/*
1658 	 * If there are no other threads in the group, or if there is
1659 	 * a group stop in progress and we are the last to stop,
1660 	 * report to the parent.  When ptraced, every thread reports itself.
1661 	 */
1662 	if (stop_count < 0 || (current->ptrace & PT_PTRACED)) {
1663 		read_lock(&tasklist_lock);
1664 		do_notify_parent_cldstop(current, current->parent,
1665 					 CLD_STOPPED);
1666 		read_unlock(&tasklist_lock);
1667 	}
1668 	else if (stop_count == 0) {
1669 		read_lock(&tasklist_lock);
1670 		do_notify_parent_cldstop(current->group_leader,
1671 					 current->group_leader->real_parent,
1672 					 CLD_STOPPED);
1673 		read_unlock(&tasklist_lock);
1674 	}
1675 
1676 	schedule();
1677 	/*
1678 	 * Now we don't run again until continued.
1679 	 */
1680 	current->exit_code = 0;
1681 }
1682 
1683 /*
1684  * This performs the stopping for SIGSTOP and other stop signals.
1685  * We have to stop all threads in the thread group.
1686  * Returns nonzero if we've actually stopped and released the siglock.
1687  * Returns zero if we didn't stop and still hold the siglock.
1688  */
1689 static int
1690 do_signal_stop(int signr)
1691 {
1692 	struct signal_struct *sig = current->signal;
1693 	struct sighand_struct *sighand = current->sighand;
1694 	int stop_count = -1;
1695 
1696 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1697 		return 0;
1698 
1699 	if (sig->group_stop_count > 0) {
1700 		/*
1701 		 * There is a group stop in progress.  We don't need to
1702 		 * start another one.
1703 		 */
1704 		signr = sig->group_exit_code;
1705 		stop_count = --sig->group_stop_count;
1706 		current->exit_code = signr;
1707 		set_current_state(TASK_STOPPED);
1708 		if (stop_count == 0)
1709 			sig->flags = SIGNAL_STOP_STOPPED;
1710 		spin_unlock_irq(&sighand->siglock);
1711 	}
1712 	else if (thread_group_empty(current)) {
1713 		/*
1714 		 * Lock must be held through transition to stopped state.
1715 		 */
1716 		current->exit_code = current->signal->group_exit_code = signr;
1717 		set_current_state(TASK_STOPPED);
1718 		sig->flags = SIGNAL_STOP_STOPPED;
1719 		spin_unlock_irq(&sighand->siglock);
1720 	}
1721 	else {
1722 		/*
1723 		 * There is no group stop already in progress.
1724 		 * We must initiate one now, but that requires
1725 		 * dropping siglock to get both the tasklist lock
1726 		 * and siglock again in the proper order.  Note that
1727 		 * this allows an intervening SIGCONT to be posted.
1728 		 * We need to check for that and bail out if necessary.
1729 		 */
1730 		struct task_struct *t;
1731 
1732 		spin_unlock_irq(&sighand->siglock);
1733 
1734 		/* signals can be posted during this window */
1735 
1736 		read_lock(&tasklist_lock);
1737 		spin_lock_irq(&sighand->siglock);
1738 
1739 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1740 			/*
1741 			 * Another stop or continue happened while we
1742 			 * didn't have the lock.  We can just swallow this
1743 			 * signal now.  If we raced with a SIGCONT, that
1744 			 * should have just cleared it now.  If we raced
1745 			 * with another processor delivering a stop signal,
1746 			 * then the SIGCONT that wakes us up should clear it.
1747 			 */
1748 			read_unlock(&tasklist_lock);
1749 			return 0;
1750 		}
1751 
1752 		if (sig->group_stop_count == 0) {
1753 			sig->group_exit_code = signr;
1754 			stop_count = 0;
1755 			for (t = next_thread(current); t != current;
1756 			     t = next_thread(t))
1757 				/*
1758 				 * Setting state to TASK_STOPPED for a group
1759 				 * stop is always done with the siglock held,
1760 				 * so this check has no races.
1761 				 */
1762 				if (t->state < TASK_STOPPED) {
1763 					stop_count++;
1764 					signal_wake_up(t, 0);
1765 				}
1766 			sig->group_stop_count = stop_count;
1767 		}
1768 		else {
1769 			/* A race with another thread while unlocked.  */
1770 			signr = sig->group_exit_code;
1771 			stop_count = --sig->group_stop_count;
1772 		}
1773 
1774 		current->exit_code = signr;
1775 		set_current_state(TASK_STOPPED);
1776 		if (stop_count == 0)
1777 			sig->flags = SIGNAL_STOP_STOPPED;
1778 
1779 		spin_unlock_irq(&sighand->siglock);
1780 		read_unlock(&tasklist_lock);
1781 	}
1782 
1783 	finish_stop(stop_count);
1784 	return 1;
1785 }
1786 
1787 /*
1788  * Do appropriate magic when group_stop_count > 0.
1789  * We return nonzero if we stopped, after releasing the siglock.
1790  * We return zero if we still hold the siglock and should look
1791  * for another signal without checking group_stop_count again.
1792  */
1793 static inline int handle_group_stop(void)
1794 {
1795 	int stop_count;
1796 
1797 	if (current->signal->group_exit_task == current) {
1798 		/*
1799 		 * Group stop is so we can do a core dump,
1800 		 * We are the initiating thread, so get on with it.
1801 		 */
1802 		current->signal->group_exit_task = NULL;
1803 		return 0;
1804 	}
1805 
1806 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1807 		/*
1808 		 * Group stop is so another thread can do a core dump,
1809 		 * or else we are racing against a death signal.
1810 		 * Just punt the stop so we can get the next signal.
1811 		 */
1812 		return 0;
1813 
1814 	/*
1815 	 * There is a group stop in progress.  We stop
1816 	 * without any associated signal being in our queue.
1817 	 */
1818 	stop_count = --current->signal->group_stop_count;
1819 	if (stop_count == 0)
1820 		current->signal->flags = SIGNAL_STOP_STOPPED;
1821 	current->exit_code = current->signal->group_exit_code;
1822 	set_current_state(TASK_STOPPED);
1823 	spin_unlock_irq(&current->sighand->siglock);
1824 	finish_stop(stop_count);
1825 	return 1;
1826 }
1827 
1828 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1829 			  struct pt_regs *regs, void *cookie)
1830 {
1831 	sigset_t *mask = &current->blocked;
1832 	int signr = 0;
1833 
1834 relock:
1835 	spin_lock_irq(&current->sighand->siglock);
1836 	for (;;) {
1837 		struct k_sigaction *ka;
1838 
1839 		if (unlikely(current->signal->group_stop_count > 0) &&
1840 		    handle_group_stop())
1841 			goto relock;
1842 
1843 		signr = dequeue_signal(current, mask, info);
1844 
1845 		if (!signr)
1846 			break; /* will return 0 */
1847 
1848 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1849 			ptrace_signal_deliver(regs, cookie);
1850 
1851 			/* Let the debugger run.  */
1852 			ptrace_stop(signr, signr, info);
1853 
1854 			/* We're back.  Did the debugger cancel the sig?  */
1855 			signr = current->exit_code;
1856 			if (signr == 0)
1857 				continue;
1858 
1859 			current->exit_code = 0;
1860 
1861 			/* Update the siginfo structure if the signal has
1862 			   changed.  If the debugger wanted something
1863 			   specific in the siginfo structure then it should
1864 			   have updated *info via PTRACE_SETSIGINFO.  */
1865 			if (signr != info->si_signo) {
1866 				info->si_signo = signr;
1867 				info->si_errno = 0;
1868 				info->si_code = SI_USER;
1869 				info->si_pid = current->parent->pid;
1870 				info->si_uid = current->parent->uid;
1871 			}
1872 
1873 			/* If the (new) signal is now blocked, requeue it.  */
1874 			if (sigismember(&current->blocked, signr)) {
1875 				specific_send_sig_info(signr, info, current);
1876 				continue;
1877 			}
1878 		}
1879 
1880 		ka = &current->sighand->action[signr-1];
1881 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1882 			continue;
1883 		if (ka->sa.sa_handler != SIG_DFL) {
1884 			/* Run the handler.  */
1885 			*return_ka = *ka;
1886 
1887 			if (ka->sa.sa_flags & SA_ONESHOT)
1888 				ka->sa.sa_handler = SIG_DFL;
1889 
1890 			break; /* will return non-zero "signr" value */
1891 		}
1892 
1893 		/*
1894 		 * Now we are doing the default action for this signal.
1895 		 */
1896 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1897 			continue;
1898 
1899 		/* Init gets no signals it doesn't want.  */
1900 		if (current->pid == 1)
1901 			continue;
1902 
1903 		if (sig_kernel_stop(signr)) {
1904 			/*
1905 			 * The default action is to stop all threads in
1906 			 * the thread group.  The job control signals
1907 			 * do nothing in an orphaned pgrp, but SIGSTOP
1908 			 * always works.  Note that siglock needs to be
1909 			 * dropped during the call to is_orphaned_pgrp()
1910 			 * because of lock ordering with tasklist_lock.
1911 			 * This allows an intervening SIGCONT to be posted.
1912 			 * We need to check for that and bail out if necessary.
1913 			 */
1914 			if (signr != SIGSTOP) {
1915 				spin_unlock_irq(&current->sighand->siglock);
1916 
1917 				/* signals can be posted during this window */
1918 
1919 				if (is_orphaned_pgrp(process_group(current)))
1920 					goto relock;
1921 
1922 				spin_lock_irq(&current->sighand->siglock);
1923 			}
1924 
1925 			if (likely(do_signal_stop(signr))) {
1926 				/* It released the siglock.  */
1927 				goto relock;
1928 			}
1929 
1930 			/*
1931 			 * We didn't actually stop, due to a race
1932 			 * with SIGCONT or something like that.
1933 			 */
1934 			continue;
1935 		}
1936 
1937 		spin_unlock_irq(&current->sighand->siglock);
1938 
1939 		/*
1940 		 * Anything else is fatal, maybe with a core dump.
1941 		 */
1942 		current->flags |= PF_SIGNALED;
1943 		if (sig_kernel_coredump(signr)) {
1944 			/*
1945 			 * If it was able to dump core, this kills all
1946 			 * other threads in the group and synchronizes with
1947 			 * their demise.  If we lost the race with another
1948 			 * thread getting here, it set group_exit_code
1949 			 * first and our do_group_exit call below will use
1950 			 * that value and ignore the one we pass it.
1951 			 */
1952 			do_coredump((long)signr, signr, regs);
1953 		}
1954 
1955 		/*
1956 		 * Death signals, no core dump.
1957 		 */
1958 		do_group_exit(signr);
1959 		/* NOTREACHED */
1960 	}
1961 	spin_unlock_irq(&current->sighand->siglock);
1962 	return signr;
1963 }
1964 
1965 #endif
1966 
1967 EXPORT_SYMBOL(recalc_sigpending);
1968 EXPORT_SYMBOL_GPL(dequeue_signal);
1969 EXPORT_SYMBOL(flush_signals);
1970 EXPORT_SYMBOL(force_sig);
1971 EXPORT_SYMBOL(kill_pg);
1972 EXPORT_SYMBOL(kill_proc);
1973 EXPORT_SYMBOL(ptrace_notify);
1974 EXPORT_SYMBOL(send_sig);
1975 EXPORT_SYMBOL(send_sig_info);
1976 EXPORT_SYMBOL(sigprocmask);
1977 EXPORT_SYMBOL(block_all_signals);
1978 EXPORT_SYMBOL(unblock_all_signals);
1979 
1980 
1981 /*
1982  * System call entry points.
1983  */
1984 
1985 asmlinkage long sys_restart_syscall(void)
1986 {
1987 	struct restart_block *restart = &current_thread_info()->restart_block;
1988 	return restart->fn(restart);
1989 }
1990 
1991 long do_no_restart_syscall(struct restart_block *param)
1992 {
1993 	return -EINTR;
1994 }
1995 
1996 /*
1997  * We don't need to get the kernel lock - this is all local to this
1998  * particular thread.. (and that's good, because this is _heavily_
1999  * used by various programs)
2000  */
2001 
2002 /*
2003  * This is also useful for kernel threads that want to temporarily
2004  * (or permanently) block certain signals.
2005  *
2006  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2007  * interface happily blocks "unblockable" signals like SIGKILL
2008  * and friends.
2009  */
2010 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2011 {
2012 	int error;
2013 	sigset_t old_block;
2014 
2015 	spin_lock_irq(&current->sighand->siglock);
2016 	old_block = current->blocked;
2017 	error = 0;
2018 	switch (how) {
2019 	case SIG_BLOCK:
2020 		sigorsets(&current->blocked, &current->blocked, set);
2021 		break;
2022 	case SIG_UNBLOCK:
2023 		signandsets(&current->blocked, &current->blocked, set);
2024 		break;
2025 	case SIG_SETMASK:
2026 		current->blocked = *set;
2027 		break;
2028 	default:
2029 		error = -EINVAL;
2030 	}
2031 	recalc_sigpending();
2032 	spin_unlock_irq(&current->sighand->siglock);
2033 	if (oldset)
2034 		*oldset = old_block;
2035 	return error;
2036 }
2037 
2038 asmlinkage long
2039 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2040 {
2041 	int error = -EINVAL;
2042 	sigset_t old_set, new_set;
2043 
2044 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2045 	if (sigsetsize != sizeof(sigset_t))
2046 		goto out;
2047 
2048 	if (set) {
2049 		error = -EFAULT;
2050 		if (copy_from_user(&new_set, set, sizeof(*set)))
2051 			goto out;
2052 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2053 
2054 		error = sigprocmask(how, &new_set, &old_set);
2055 		if (error)
2056 			goto out;
2057 		if (oset)
2058 			goto set_old;
2059 	} else if (oset) {
2060 		spin_lock_irq(&current->sighand->siglock);
2061 		old_set = current->blocked;
2062 		spin_unlock_irq(&current->sighand->siglock);
2063 
2064 	set_old:
2065 		error = -EFAULT;
2066 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2067 			goto out;
2068 	}
2069 	error = 0;
2070 out:
2071 	return error;
2072 }
2073 
2074 long do_sigpending(void __user *set, unsigned long sigsetsize)
2075 {
2076 	long error = -EINVAL;
2077 	sigset_t pending;
2078 
2079 	if (sigsetsize > sizeof(sigset_t))
2080 		goto out;
2081 
2082 	spin_lock_irq(&current->sighand->siglock);
2083 	sigorsets(&pending, &current->pending.signal,
2084 		  &current->signal->shared_pending.signal);
2085 	spin_unlock_irq(&current->sighand->siglock);
2086 
2087 	/* Outside the lock because only this thread touches it.  */
2088 	sigandsets(&pending, &current->blocked, &pending);
2089 
2090 	error = -EFAULT;
2091 	if (!copy_to_user(set, &pending, sigsetsize))
2092 		error = 0;
2093 
2094 out:
2095 	return error;
2096 }
2097 
2098 asmlinkage long
2099 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2100 {
2101 	return do_sigpending(set, sigsetsize);
2102 }
2103 
2104 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2105 
2106 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2107 {
2108 	int err;
2109 
2110 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2111 		return -EFAULT;
2112 	if (from->si_code < 0)
2113 		return __copy_to_user(to, from, sizeof(siginfo_t))
2114 			? -EFAULT : 0;
2115 	/*
2116 	 * If you change siginfo_t structure, please be sure
2117 	 * this code is fixed accordingly.
2118 	 * It should never copy any pad contained in the structure
2119 	 * to avoid security leaks, but must copy the generic
2120 	 * 3 ints plus the relevant union member.
2121 	 */
2122 	err = __put_user(from->si_signo, &to->si_signo);
2123 	err |= __put_user(from->si_errno, &to->si_errno);
2124 	err |= __put_user((short)from->si_code, &to->si_code);
2125 	switch (from->si_code & __SI_MASK) {
2126 	case __SI_KILL:
2127 		err |= __put_user(from->si_pid, &to->si_pid);
2128 		err |= __put_user(from->si_uid, &to->si_uid);
2129 		break;
2130 	case __SI_TIMER:
2131 		 err |= __put_user(from->si_tid, &to->si_tid);
2132 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2133 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2134 		break;
2135 	case __SI_POLL:
2136 		err |= __put_user(from->si_band, &to->si_band);
2137 		err |= __put_user(from->si_fd, &to->si_fd);
2138 		break;
2139 	case __SI_FAULT:
2140 		err |= __put_user(from->si_addr, &to->si_addr);
2141 #ifdef __ARCH_SI_TRAPNO
2142 		err |= __put_user(from->si_trapno, &to->si_trapno);
2143 #endif
2144 		break;
2145 	case __SI_CHLD:
2146 		err |= __put_user(from->si_pid, &to->si_pid);
2147 		err |= __put_user(from->si_uid, &to->si_uid);
2148 		err |= __put_user(from->si_status, &to->si_status);
2149 		err |= __put_user(from->si_utime, &to->si_utime);
2150 		err |= __put_user(from->si_stime, &to->si_stime);
2151 		break;
2152 	case __SI_RT: /* This is not generated by the kernel as of now. */
2153 	case __SI_MESGQ: /* But this is */
2154 		err |= __put_user(from->si_pid, &to->si_pid);
2155 		err |= __put_user(from->si_uid, &to->si_uid);
2156 		err |= __put_user(from->si_ptr, &to->si_ptr);
2157 		break;
2158 	default: /* this is just in case for now ... */
2159 		err |= __put_user(from->si_pid, &to->si_pid);
2160 		err |= __put_user(from->si_uid, &to->si_uid);
2161 		break;
2162 	}
2163 	return err;
2164 }
2165 
2166 #endif
2167 
2168 asmlinkage long
2169 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2170 		    siginfo_t __user *uinfo,
2171 		    const struct timespec __user *uts,
2172 		    size_t sigsetsize)
2173 {
2174 	int ret, sig;
2175 	sigset_t these;
2176 	struct timespec ts;
2177 	siginfo_t info;
2178 	long timeout = 0;
2179 
2180 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2181 	if (sigsetsize != sizeof(sigset_t))
2182 		return -EINVAL;
2183 
2184 	if (copy_from_user(&these, uthese, sizeof(these)))
2185 		return -EFAULT;
2186 
2187 	/*
2188 	 * Invert the set of allowed signals to get those we
2189 	 * want to block.
2190 	 */
2191 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2192 	signotset(&these);
2193 
2194 	if (uts) {
2195 		if (copy_from_user(&ts, uts, sizeof(ts)))
2196 			return -EFAULT;
2197 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2198 		    || ts.tv_sec < 0)
2199 			return -EINVAL;
2200 	}
2201 
2202 	spin_lock_irq(&current->sighand->siglock);
2203 	sig = dequeue_signal(current, &these, &info);
2204 	if (!sig) {
2205 		timeout = MAX_SCHEDULE_TIMEOUT;
2206 		if (uts)
2207 			timeout = (timespec_to_jiffies(&ts)
2208 				   + (ts.tv_sec || ts.tv_nsec));
2209 
2210 		if (timeout) {
2211 			/* None ready -- temporarily unblock those we're
2212 			 * interested while we are sleeping in so that we'll
2213 			 * be awakened when they arrive.  */
2214 			current->real_blocked = current->blocked;
2215 			sigandsets(&current->blocked, &current->blocked, &these);
2216 			recalc_sigpending();
2217 			spin_unlock_irq(&current->sighand->siglock);
2218 
2219 			current->state = TASK_INTERRUPTIBLE;
2220 			timeout = schedule_timeout(timeout);
2221 
2222 			if (current->flags & PF_FREEZE)
2223 				refrigerator(PF_FREEZE);
2224 			spin_lock_irq(&current->sighand->siglock);
2225 			sig = dequeue_signal(current, &these, &info);
2226 			current->blocked = current->real_blocked;
2227 			siginitset(&current->real_blocked, 0);
2228 			recalc_sigpending();
2229 		}
2230 	}
2231 	spin_unlock_irq(&current->sighand->siglock);
2232 
2233 	if (sig) {
2234 		ret = sig;
2235 		if (uinfo) {
2236 			if (copy_siginfo_to_user(uinfo, &info))
2237 				ret = -EFAULT;
2238 		}
2239 	} else {
2240 		ret = -EAGAIN;
2241 		if (timeout)
2242 			ret = -EINTR;
2243 	}
2244 
2245 	return ret;
2246 }
2247 
2248 asmlinkage long
2249 sys_kill(int pid, int sig)
2250 {
2251 	struct siginfo info;
2252 
2253 	info.si_signo = sig;
2254 	info.si_errno = 0;
2255 	info.si_code = SI_USER;
2256 	info.si_pid = current->tgid;
2257 	info.si_uid = current->uid;
2258 
2259 	return kill_something_info(sig, &info, pid);
2260 }
2261 
2262 /**
2263  *  sys_tgkill - send signal to one specific thread
2264  *  @tgid: the thread group ID of the thread
2265  *  @pid: the PID of the thread
2266  *  @sig: signal to be sent
2267  *
2268  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2269  *  exists but it's not belonging to the target process anymore. This
2270  *  method solves the problem of threads exiting and PIDs getting reused.
2271  */
2272 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2273 {
2274 	struct siginfo info;
2275 	int error;
2276 	struct task_struct *p;
2277 
2278 	/* This is only valid for single tasks */
2279 	if (pid <= 0 || tgid <= 0)
2280 		return -EINVAL;
2281 
2282 	info.si_signo = sig;
2283 	info.si_errno = 0;
2284 	info.si_code = SI_TKILL;
2285 	info.si_pid = current->tgid;
2286 	info.si_uid = current->uid;
2287 
2288 	read_lock(&tasklist_lock);
2289 	p = find_task_by_pid(pid);
2290 	error = -ESRCH;
2291 	if (p && (p->tgid == tgid)) {
2292 		error = check_kill_permission(sig, &info, p);
2293 		/*
2294 		 * The null signal is a permissions and process existence
2295 		 * probe.  No signal is actually delivered.
2296 		 */
2297 		if (!error && sig && p->sighand) {
2298 			spin_lock_irq(&p->sighand->siglock);
2299 			handle_stop_signal(sig, p);
2300 			error = specific_send_sig_info(sig, &info, p);
2301 			spin_unlock_irq(&p->sighand->siglock);
2302 		}
2303 	}
2304 	read_unlock(&tasklist_lock);
2305 	return error;
2306 }
2307 
2308 /*
2309  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2310  */
2311 asmlinkage long
2312 sys_tkill(int pid, int sig)
2313 {
2314 	struct siginfo info;
2315 	int error;
2316 	struct task_struct *p;
2317 
2318 	/* This is only valid for single tasks */
2319 	if (pid <= 0)
2320 		return -EINVAL;
2321 
2322 	info.si_signo = sig;
2323 	info.si_errno = 0;
2324 	info.si_code = SI_TKILL;
2325 	info.si_pid = current->tgid;
2326 	info.si_uid = current->uid;
2327 
2328 	read_lock(&tasklist_lock);
2329 	p = find_task_by_pid(pid);
2330 	error = -ESRCH;
2331 	if (p) {
2332 		error = check_kill_permission(sig, &info, p);
2333 		/*
2334 		 * The null signal is a permissions and process existence
2335 		 * probe.  No signal is actually delivered.
2336 		 */
2337 		if (!error && sig && p->sighand) {
2338 			spin_lock_irq(&p->sighand->siglock);
2339 			handle_stop_signal(sig, p);
2340 			error = specific_send_sig_info(sig, &info, p);
2341 			spin_unlock_irq(&p->sighand->siglock);
2342 		}
2343 	}
2344 	read_unlock(&tasklist_lock);
2345 	return error;
2346 }
2347 
2348 asmlinkage long
2349 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2350 {
2351 	siginfo_t info;
2352 
2353 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2354 		return -EFAULT;
2355 
2356 	/* Not even root can pretend to send signals from the kernel.
2357 	   Nor can they impersonate a kill(), which adds source info.  */
2358 	if (info.si_code >= 0)
2359 		return -EPERM;
2360 	info.si_signo = sig;
2361 
2362 	/* POSIX.1b doesn't mention process groups.  */
2363 	return kill_proc_info(sig, &info, pid);
2364 }
2365 
2366 int
2367 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2368 {
2369 	struct k_sigaction *k;
2370 
2371 	if (sig < 1 || sig > _NSIG || (act && sig_kernel_only(sig)))
2372 		return -EINVAL;
2373 
2374 	k = &current->sighand->action[sig-1];
2375 
2376 	spin_lock_irq(&current->sighand->siglock);
2377 	if (signal_pending(current)) {
2378 		/*
2379 		 * If there might be a fatal signal pending on multiple
2380 		 * threads, make sure we take it before changing the action.
2381 		 */
2382 		spin_unlock_irq(&current->sighand->siglock);
2383 		return -ERESTARTNOINTR;
2384 	}
2385 
2386 	if (oact)
2387 		*oact = *k;
2388 
2389 	if (act) {
2390 		/*
2391 		 * POSIX 3.3.1.3:
2392 		 *  "Setting a signal action to SIG_IGN for a signal that is
2393 		 *   pending shall cause the pending signal to be discarded,
2394 		 *   whether or not it is blocked."
2395 		 *
2396 		 *  "Setting a signal action to SIG_DFL for a signal that is
2397 		 *   pending and whose default action is to ignore the signal
2398 		 *   (for example, SIGCHLD), shall cause the pending signal to
2399 		 *   be discarded, whether or not it is blocked"
2400 		 */
2401 		if (act->sa.sa_handler == SIG_IGN ||
2402 		    (act->sa.sa_handler == SIG_DFL &&
2403 		     sig_kernel_ignore(sig))) {
2404 			/*
2405 			 * This is a fairly rare case, so we only take the
2406 			 * tasklist_lock once we're sure we'll need it.
2407 			 * Now we must do this little unlock and relock
2408 			 * dance to maintain the lock hierarchy.
2409 			 */
2410 			struct task_struct *t = current;
2411 			spin_unlock_irq(&t->sighand->siglock);
2412 			read_lock(&tasklist_lock);
2413 			spin_lock_irq(&t->sighand->siglock);
2414 			*k = *act;
2415 			sigdelsetmask(&k->sa.sa_mask,
2416 				      sigmask(SIGKILL) | sigmask(SIGSTOP));
2417 			rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2418 			do {
2419 				rm_from_queue(sigmask(sig), &t->pending);
2420 				recalc_sigpending_tsk(t);
2421 				t = next_thread(t);
2422 			} while (t != current);
2423 			spin_unlock_irq(&current->sighand->siglock);
2424 			read_unlock(&tasklist_lock);
2425 			return 0;
2426 		}
2427 
2428 		*k = *act;
2429 		sigdelsetmask(&k->sa.sa_mask,
2430 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2431 	}
2432 
2433 	spin_unlock_irq(&current->sighand->siglock);
2434 	return 0;
2435 }
2436 
2437 int
2438 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2439 {
2440 	stack_t oss;
2441 	int error;
2442 
2443 	if (uoss) {
2444 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2445 		oss.ss_size = current->sas_ss_size;
2446 		oss.ss_flags = sas_ss_flags(sp);
2447 	}
2448 
2449 	if (uss) {
2450 		void __user *ss_sp;
2451 		size_t ss_size;
2452 		int ss_flags;
2453 
2454 		error = -EFAULT;
2455 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2456 		    || __get_user(ss_sp, &uss->ss_sp)
2457 		    || __get_user(ss_flags, &uss->ss_flags)
2458 		    || __get_user(ss_size, &uss->ss_size))
2459 			goto out;
2460 
2461 		error = -EPERM;
2462 		if (on_sig_stack(sp))
2463 			goto out;
2464 
2465 		error = -EINVAL;
2466 		/*
2467 		 *
2468 		 * Note - this code used to test ss_flags incorrectly
2469 		 *  	  old code may have been written using ss_flags==0
2470 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2471 		 *	  way that worked) - this fix preserves that older
2472 		 *	  mechanism
2473 		 */
2474 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2475 			goto out;
2476 
2477 		if (ss_flags == SS_DISABLE) {
2478 			ss_size = 0;
2479 			ss_sp = NULL;
2480 		} else {
2481 			error = -ENOMEM;
2482 			if (ss_size < MINSIGSTKSZ)
2483 				goto out;
2484 		}
2485 
2486 		current->sas_ss_sp = (unsigned long) ss_sp;
2487 		current->sas_ss_size = ss_size;
2488 	}
2489 
2490 	if (uoss) {
2491 		error = -EFAULT;
2492 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2493 			goto out;
2494 	}
2495 
2496 	error = 0;
2497 out:
2498 	return error;
2499 }
2500 
2501 #ifdef __ARCH_WANT_SYS_SIGPENDING
2502 
2503 asmlinkage long
2504 sys_sigpending(old_sigset_t __user *set)
2505 {
2506 	return do_sigpending(set, sizeof(*set));
2507 }
2508 
2509 #endif
2510 
2511 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2512 /* Some platforms have their own version with special arguments others
2513    support only sys_rt_sigprocmask.  */
2514 
2515 asmlinkage long
2516 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2517 {
2518 	int error;
2519 	old_sigset_t old_set, new_set;
2520 
2521 	if (set) {
2522 		error = -EFAULT;
2523 		if (copy_from_user(&new_set, set, sizeof(*set)))
2524 			goto out;
2525 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2526 
2527 		spin_lock_irq(&current->sighand->siglock);
2528 		old_set = current->blocked.sig[0];
2529 
2530 		error = 0;
2531 		switch (how) {
2532 		default:
2533 			error = -EINVAL;
2534 			break;
2535 		case SIG_BLOCK:
2536 			sigaddsetmask(&current->blocked, new_set);
2537 			break;
2538 		case SIG_UNBLOCK:
2539 			sigdelsetmask(&current->blocked, new_set);
2540 			break;
2541 		case SIG_SETMASK:
2542 			current->blocked.sig[0] = new_set;
2543 			break;
2544 		}
2545 
2546 		recalc_sigpending();
2547 		spin_unlock_irq(&current->sighand->siglock);
2548 		if (error)
2549 			goto out;
2550 		if (oset)
2551 			goto set_old;
2552 	} else if (oset) {
2553 		old_set = current->blocked.sig[0];
2554 	set_old:
2555 		error = -EFAULT;
2556 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2557 			goto out;
2558 	}
2559 	error = 0;
2560 out:
2561 	return error;
2562 }
2563 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2564 
2565 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2566 asmlinkage long
2567 sys_rt_sigaction(int sig,
2568 		 const struct sigaction __user *act,
2569 		 struct sigaction __user *oact,
2570 		 size_t sigsetsize)
2571 {
2572 	struct k_sigaction new_sa, old_sa;
2573 	int ret = -EINVAL;
2574 
2575 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2576 	if (sigsetsize != sizeof(sigset_t))
2577 		goto out;
2578 
2579 	if (act) {
2580 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2581 			return -EFAULT;
2582 	}
2583 
2584 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2585 
2586 	if (!ret && oact) {
2587 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2588 			return -EFAULT;
2589 	}
2590 out:
2591 	return ret;
2592 }
2593 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2594 
2595 #ifdef __ARCH_WANT_SYS_SGETMASK
2596 
2597 /*
2598  * For backwards compatibility.  Functionality superseded by sigprocmask.
2599  */
2600 asmlinkage long
2601 sys_sgetmask(void)
2602 {
2603 	/* SMP safe */
2604 	return current->blocked.sig[0];
2605 }
2606 
2607 asmlinkage long
2608 sys_ssetmask(int newmask)
2609 {
2610 	int old;
2611 
2612 	spin_lock_irq(&current->sighand->siglock);
2613 	old = current->blocked.sig[0];
2614 
2615 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2616 						  sigmask(SIGSTOP)));
2617 	recalc_sigpending();
2618 	spin_unlock_irq(&current->sighand->siglock);
2619 
2620 	return old;
2621 }
2622 #endif /* __ARCH_WANT_SGETMASK */
2623 
2624 #ifdef __ARCH_WANT_SYS_SIGNAL
2625 /*
2626  * For backwards compatibility.  Functionality superseded by sigaction.
2627  */
2628 asmlinkage unsigned long
2629 sys_signal(int sig, __sighandler_t handler)
2630 {
2631 	struct k_sigaction new_sa, old_sa;
2632 	int ret;
2633 
2634 	new_sa.sa.sa_handler = handler;
2635 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2636 
2637 	ret = do_sigaction(sig, &new_sa, &old_sa);
2638 
2639 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2640 }
2641 #endif /* __ARCH_WANT_SYS_SIGNAL */
2642 
2643 #ifdef __ARCH_WANT_SYS_PAUSE
2644 
2645 asmlinkage long
2646 sys_pause(void)
2647 {
2648 	current->state = TASK_INTERRUPTIBLE;
2649 	schedule();
2650 	return -ERESTARTNOHAND;
2651 }
2652 
2653 #endif
2654 
2655 void __init signals_init(void)
2656 {
2657 	sigqueue_cachep =
2658 		kmem_cache_create("sigqueue",
2659 				  sizeof(struct sigqueue),
2660 				  __alignof__(struct sigqueue),
2661 				  SLAB_PANIC, NULL, NULL);
2662 }
2663