xref: /openbmc/linux/kernel/signal.c (revision 174cd4b1)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/sched/user.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/coredump.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/signal.h>
26 #include <linux/signalfd.h>
27 #include <linux/ratelimit.h>
28 #include <linux/tracehook.h>
29 #include <linux/capability.h>
30 #include <linux/freezer.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/nsproxy.h>
33 #include <linux/user_namespace.h>
34 #include <linux/uprobes.h>
35 #include <linux/compat.h>
36 #include <linux/cn_proc.h>
37 #include <linux/compiler.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/signal.h>
41 
42 #include <asm/param.h>
43 #include <linux/uaccess.h>
44 #include <asm/unistd.h>
45 #include <asm/siginfo.h>
46 #include <asm/cacheflush.h>
47 #include "audit.h"	/* audit_signal_info() */
48 
49 /*
50  * SLAB caches for signal bits.
51  */
52 
53 static struct kmem_cache *sigqueue_cachep;
54 
55 int print_fatal_signals __read_mostly;
56 
57 static void __user *sig_handler(struct task_struct *t, int sig)
58 {
59 	return t->sighand->action[sig - 1].sa.sa_handler;
60 }
61 
62 static int sig_handler_ignored(void __user *handler, int sig)
63 {
64 	/* Is it explicitly or implicitly ignored? */
65 	return handler == SIG_IGN ||
66 		(handler == SIG_DFL && sig_kernel_ignore(sig));
67 }
68 
69 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
70 {
71 	void __user *handler;
72 
73 	handler = sig_handler(t, sig);
74 
75 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
76 			handler == SIG_DFL && !force)
77 		return 1;
78 
79 	return sig_handler_ignored(handler, sig);
80 }
81 
82 static int sig_ignored(struct task_struct *t, int sig, bool force)
83 {
84 	/*
85 	 * Blocked signals are never ignored, since the
86 	 * signal handler may change by the time it is
87 	 * unblocked.
88 	 */
89 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
90 		return 0;
91 
92 	if (!sig_task_ignored(t, sig, force))
93 		return 0;
94 
95 	/*
96 	 * Tracers may want to know about even ignored signals.
97 	 */
98 	return !t->ptrace;
99 }
100 
101 /*
102  * Re-calculate pending state from the set of locally pending
103  * signals, globally pending signals, and blocked signals.
104  */
105 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
106 {
107 	unsigned long ready;
108 	long i;
109 
110 	switch (_NSIG_WORDS) {
111 	default:
112 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
113 			ready |= signal->sig[i] &~ blocked->sig[i];
114 		break;
115 
116 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
117 		ready |= signal->sig[2] &~ blocked->sig[2];
118 		ready |= signal->sig[1] &~ blocked->sig[1];
119 		ready |= signal->sig[0] &~ blocked->sig[0];
120 		break;
121 
122 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
123 		ready |= signal->sig[0] &~ blocked->sig[0];
124 		break;
125 
126 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
127 	}
128 	return ready !=	0;
129 }
130 
131 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
132 
133 static int recalc_sigpending_tsk(struct task_struct *t)
134 {
135 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
136 	    PENDING(&t->pending, &t->blocked) ||
137 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
138 		set_tsk_thread_flag(t, TIF_SIGPENDING);
139 		return 1;
140 	}
141 	/*
142 	 * We must never clear the flag in another thread, or in current
143 	 * when it's possible the current syscall is returning -ERESTART*.
144 	 * So we don't clear it here, and only callers who know they should do.
145 	 */
146 	return 0;
147 }
148 
149 /*
150  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
151  * This is superfluous when called on current, the wakeup is a harmless no-op.
152  */
153 void recalc_sigpending_and_wake(struct task_struct *t)
154 {
155 	if (recalc_sigpending_tsk(t))
156 		signal_wake_up(t, 0);
157 }
158 
159 void recalc_sigpending(void)
160 {
161 	if (!recalc_sigpending_tsk(current) && !freezing(current))
162 		clear_thread_flag(TIF_SIGPENDING);
163 
164 }
165 
166 /* Given the mask, find the first available signal that should be serviced. */
167 
168 #define SYNCHRONOUS_MASK \
169 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
170 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
171 
172 int next_signal(struct sigpending *pending, sigset_t *mask)
173 {
174 	unsigned long i, *s, *m, x;
175 	int sig = 0;
176 
177 	s = pending->signal.sig;
178 	m = mask->sig;
179 
180 	/*
181 	 * Handle the first word specially: it contains the
182 	 * synchronous signals that need to be dequeued first.
183 	 */
184 	x = *s &~ *m;
185 	if (x) {
186 		if (x & SYNCHRONOUS_MASK)
187 			x &= SYNCHRONOUS_MASK;
188 		sig = ffz(~x) + 1;
189 		return sig;
190 	}
191 
192 	switch (_NSIG_WORDS) {
193 	default:
194 		for (i = 1; i < _NSIG_WORDS; ++i) {
195 			x = *++s &~ *++m;
196 			if (!x)
197 				continue;
198 			sig = ffz(~x) + i*_NSIG_BPW + 1;
199 			break;
200 		}
201 		break;
202 
203 	case 2:
204 		x = s[1] &~ m[1];
205 		if (!x)
206 			break;
207 		sig = ffz(~x) + _NSIG_BPW + 1;
208 		break;
209 
210 	case 1:
211 		/* Nothing to do */
212 		break;
213 	}
214 
215 	return sig;
216 }
217 
218 static inline void print_dropped_signal(int sig)
219 {
220 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
221 
222 	if (!print_fatal_signals)
223 		return;
224 
225 	if (!__ratelimit(&ratelimit_state))
226 		return;
227 
228 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
229 				current->comm, current->pid, sig);
230 }
231 
232 /**
233  * task_set_jobctl_pending - set jobctl pending bits
234  * @task: target task
235  * @mask: pending bits to set
236  *
237  * Clear @mask from @task->jobctl.  @mask must be subset of
238  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
239  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
240  * cleared.  If @task is already being killed or exiting, this function
241  * becomes noop.
242  *
243  * CONTEXT:
244  * Must be called with @task->sighand->siglock held.
245  *
246  * RETURNS:
247  * %true if @mask is set, %false if made noop because @task was dying.
248  */
249 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
250 {
251 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
252 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
253 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
254 
255 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
256 		return false;
257 
258 	if (mask & JOBCTL_STOP_SIGMASK)
259 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
260 
261 	task->jobctl |= mask;
262 	return true;
263 }
264 
265 /**
266  * task_clear_jobctl_trapping - clear jobctl trapping bit
267  * @task: target task
268  *
269  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
270  * Clear it and wake up the ptracer.  Note that we don't need any further
271  * locking.  @task->siglock guarantees that @task->parent points to the
272  * ptracer.
273  *
274  * CONTEXT:
275  * Must be called with @task->sighand->siglock held.
276  */
277 void task_clear_jobctl_trapping(struct task_struct *task)
278 {
279 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
280 		task->jobctl &= ~JOBCTL_TRAPPING;
281 		smp_mb();	/* advised by wake_up_bit() */
282 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
283 	}
284 }
285 
286 /**
287  * task_clear_jobctl_pending - clear jobctl pending bits
288  * @task: target task
289  * @mask: pending bits to clear
290  *
291  * Clear @mask from @task->jobctl.  @mask must be subset of
292  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
293  * STOP bits are cleared together.
294  *
295  * If clearing of @mask leaves no stop or trap pending, this function calls
296  * task_clear_jobctl_trapping().
297  *
298  * CONTEXT:
299  * Must be called with @task->sighand->siglock held.
300  */
301 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
302 {
303 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
304 
305 	if (mask & JOBCTL_STOP_PENDING)
306 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
307 
308 	task->jobctl &= ~mask;
309 
310 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
311 		task_clear_jobctl_trapping(task);
312 }
313 
314 /**
315  * task_participate_group_stop - participate in a group stop
316  * @task: task participating in a group stop
317  *
318  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
319  * Group stop states are cleared and the group stop count is consumed if
320  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
321  * stop, the appropriate %SIGNAL_* flags are set.
322  *
323  * CONTEXT:
324  * Must be called with @task->sighand->siglock held.
325  *
326  * RETURNS:
327  * %true if group stop completion should be notified to the parent, %false
328  * otherwise.
329  */
330 static bool task_participate_group_stop(struct task_struct *task)
331 {
332 	struct signal_struct *sig = task->signal;
333 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
334 
335 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
336 
337 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
338 
339 	if (!consume)
340 		return false;
341 
342 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
343 		sig->group_stop_count--;
344 
345 	/*
346 	 * Tell the caller to notify completion iff we are entering into a
347 	 * fresh group stop.  Read comment in do_signal_stop() for details.
348 	 */
349 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
350 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
351 		return true;
352 	}
353 	return false;
354 }
355 
356 /*
357  * allocate a new signal queue record
358  * - this may be called without locks if and only if t == current, otherwise an
359  *   appropriate lock must be held to stop the target task from exiting
360  */
361 static struct sigqueue *
362 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
363 {
364 	struct sigqueue *q = NULL;
365 	struct user_struct *user;
366 
367 	/*
368 	 * Protect access to @t credentials. This can go away when all
369 	 * callers hold rcu read lock.
370 	 */
371 	rcu_read_lock();
372 	user = get_uid(__task_cred(t)->user);
373 	atomic_inc(&user->sigpending);
374 	rcu_read_unlock();
375 
376 	if (override_rlimit ||
377 	    atomic_read(&user->sigpending) <=
378 			task_rlimit(t, RLIMIT_SIGPENDING)) {
379 		q = kmem_cache_alloc(sigqueue_cachep, flags);
380 	} else {
381 		print_dropped_signal(sig);
382 	}
383 
384 	if (unlikely(q == NULL)) {
385 		atomic_dec(&user->sigpending);
386 		free_uid(user);
387 	} else {
388 		INIT_LIST_HEAD(&q->list);
389 		q->flags = 0;
390 		q->user = user;
391 	}
392 
393 	return q;
394 }
395 
396 static void __sigqueue_free(struct sigqueue *q)
397 {
398 	if (q->flags & SIGQUEUE_PREALLOC)
399 		return;
400 	atomic_dec(&q->user->sigpending);
401 	free_uid(q->user);
402 	kmem_cache_free(sigqueue_cachep, q);
403 }
404 
405 void flush_sigqueue(struct sigpending *queue)
406 {
407 	struct sigqueue *q;
408 
409 	sigemptyset(&queue->signal);
410 	while (!list_empty(&queue->list)) {
411 		q = list_entry(queue->list.next, struct sigqueue , list);
412 		list_del_init(&q->list);
413 		__sigqueue_free(q);
414 	}
415 }
416 
417 /*
418  * Flush all pending signals for this kthread.
419  */
420 void flush_signals(struct task_struct *t)
421 {
422 	unsigned long flags;
423 
424 	spin_lock_irqsave(&t->sighand->siglock, flags);
425 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
426 	flush_sigqueue(&t->pending);
427 	flush_sigqueue(&t->signal->shared_pending);
428 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430 
431 #ifdef CONFIG_POSIX_TIMERS
432 static void __flush_itimer_signals(struct sigpending *pending)
433 {
434 	sigset_t signal, retain;
435 	struct sigqueue *q, *n;
436 
437 	signal = pending->signal;
438 	sigemptyset(&retain);
439 
440 	list_for_each_entry_safe(q, n, &pending->list, list) {
441 		int sig = q->info.si_signo;
442 
443 		if (likely(q->info.si_code != SI_TIMER)) {
444 			sigaddset(&retain, sig);
445 		} else {
446 			sigdelset(&signal, sig);
447 			list_del_init(&q->list);
448 			__sigqueue_free(q);
449 		}
450 	}
451 
452 	sigorsets(&pending->signal, &signal, &retain);
453 }
454 
455 void flush_itimer_signals(void)
456 {
457 	struct task_struct *tsk = current;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
461 	__flush_itimer_signals(&tsk->pending);
462 	__flush_itimer_signals(&tsk->signal->shared_pending);
463 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
464 }
465 #endif
466 
467 void ignore_signals(struct task_struct *t)
468 {
469 	int i;
470 
471 	for (i = 0; i < _NSIG; ++i)
472 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
473 
474 	flush_signals(t);
475 }
476 
477 /*
478  * Flush all handlers for a task.
479  */
480 
481 void
482 flush_signal_handlers(struct task_struct *t, int force_default)
483 {
484 	int i;
485 	struct k_sigaction *ka = &t->sighand->action[0];
486 	for (i = _NSIG ; i != 0 ; i--) {
487 		if (force_default || ka->sa.sa_handler != SIG_IGN)
488 			ka->sa.sa_handler = SIG_DFL;
489 		ka->sa.sa_flags = 0;
490 #ifdef __ARCH_HAS_SA_RESTORER
491 		ka->sa.sa_restorer = NULL;
492 #endif
493 		sigemptyset(&ka->sa.sa_mask);
494 		ka++;
495 	}
496 }
497 
498 int unhandled_signal(struct task_struct *tsk, int sig)
499 {
500 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
501 	if (is_global_init(tsk))
502 		return 1;
503 	if (handler != SIG_IGN && handler != SIG_DFL)
504 		return 0;
505 	/* if ptraced, let the tracer determine */
506 	return !tsk->ptrace;
507 }
508 
509 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
510 {
511 	struct sigqueue *q, *first = NULL;
512 
513 	/*
514 	 * Collect the siginfo appropriate to this signal.  Check if
515 	 * there is another siginfo for the same signal.
516 	*/
517 	list_for_each_entry(q, &list->list, list) {
518 		if (q->info.si_signo == sig) {
519 			if (first)
520 				goto still_pending;
521 			first = q;
522 		}
523 	}
524 
525 	sigdelset(&list->signal, sig);
526 
527 	if (first) {
528 still_pending:
529 		list_del_init(&first->list);
530 		copy_siginfo(info, &first->info);
531 		__sigqueue_free(first);
532 	} else {
533 		/*
534 		 * Ok, it wasn't in the queue.  This must be
535 		 * a fast-pathed signal or we must have been
536 		 * out of queue space.  So zero out the info.
537 		 */
538 		info->si_signo = sig;
539 		info->si_errno = 0;
540 		info->si_code = SI_USER;
541 		info->si_pid = 0;
542 		info->si_uid = 0;
543 	}
544 }
545 
546 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
547 			siginfo_t *info)
548 {
549 	int sig = next_signal(pending, mask);
550 
551 	if (sig)
552 		collect_signal(sig, pending, info);
553 	return sig;
554 }
555 
556 /*
557  * Dequeue a signal and return the element to the caller, which is
558  * expected to free it.
559  *
560  * All callers have to hold the siglock.
561  */
562 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
563 {
564 	int signr;
565 
566 	/* We only dequeue private signals from ourselves, we don't let
567 	 * signalfd steal them
568 	 */
569 	signr = __dequeue_signal(&tsk->pending, mask, info);
570 	if (!signr) {
571 		signr = __dequeue_signal(&tsk->signal->shared_pending,
572 					 mask, info);
573 #ifdef CONFIG_POSIX_TIMERS
574 		/*
575 		 * itimer signal ?
576 		 *
577 		 * itimers are process shared and we restart periodic
578 		 * itimers in the signal delivery path to prevent DoS
579 		 * attacks in the high resolution timer case. This is
580 		 * compliant with the old way of self-restarting
581 		 * itimers, as the SIGALRM is a legacy signal and only
582 		 * queued once. Changing the restart behaviour to
583 		 * restart the timer in the signal dequeue path is
584 		 * reducing the timer noise on heavy loaded !highres
585 		 * systems too.
586 		 */
587 		if (unlikely(signr == SIGALRM)) {
588 			struct hrtimer *tmr = &tsk->signal->real_timer;
589 
590 			if (!hrtimer_is_queued(tmr) &&
591 			    tsk->signal->it_real_incr != 0) {
592 				hrtimer_forward(tmr, tmr->base->get_time(),
593 						tsk->signal->it_real_incr);
594 				hrtimer_restart(tmr);
595 			}
596 		}
597 #endif
598 	}
599 
600 	recalc_sigpending();
601 	if (!signr)
602 		return 0;
603 
604 	if (unlikely(sig_kernel_stop(signr))) {
605 		/*
606 		 * Set a marker that we have dequeued a stop signal.  Our
607 		 * caller might release the siglock and then the pending
608 		 * stop signal it is about to process is no longer in the
609 		 * pending bitmasks, but must still be cleared by a SIGCONT
610 		 * (and overruled by a SIGKILL).  So those cases clear this
611 		 * shared flag after we've set it.  Note that this flag may
612 		 * remain set after the signal we return is ignored or
613 		 * handled.  That doesn't matter because its only purpose
614 		 * is to alert stop-signal processing code when another
615 		 * processor has come along and cleared the flag.
616 		 */
617 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
618 	}
619 #ifdef CONFIG_POSIX_TIMERS
620 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
621 		/*
622 		 * Release the siglock to ensure proper locking order
623 		 * of timer locks outside of siglocks.  Note, we leave
624 		 * irqs disabled here, since the posix-timers code is
625 		 * about to disable them again anyway.
626 		 */
627 		spin_unlock(&tsk->sighand->siglock);
628 		do_schedule_next_timer(info);
629 		spin_lock(&tsk->sighand->siglock);
630 	}
631 #endif
632 	return signr;
633 }
634 
635 /*
636  * Tell a process that it has a new active signal..
637  *
638  * NOTE! we rely on the previous spin_lock to
639  * lock interrupts for us! We can only be called with
640  * "siglock" held, and the local interrupt must
641  * have been disabled when that got acquired!
642  *
643  * No need to set need_resched since signal event passing
644  * goes through ->blocked
645  */
646 void signal_wake_up_state(struct task_struct *t, unsigned int state)
647 {
648 	set_tsk_thread_flag(t, TIF_SIGPENDING);
649 	/*
650 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
651 	 * case. We don't check t->state here because there is a race with it
652 	 * executing another processor and just now entering stopped state.
653 	 * By using wake_up_state, we ensure the process will wake up and
654 	 * handle its death signal.
655 	 */
656 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
657 		kick_process(t);
658 }
659 
660 /*
661  * Remove signals in mask from the pending set and queue.
662  * Returns 1 if any signals were found.
663  *
664  * All callers must be holding the siglock.
665  */
666 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
667 {
668 	struct sigqueue *q, *n;
669 	sigset_t m;
670 
671 	sigandsets(&m, mask, &s->signal);
672 	if (sigisemptyset(&m))
673 		return 0;
674 
675 	sigandnsets(&s->signal, &s->signal, mask);
676 	list_for_each_entry_safe(q, n, &s->list, list) {
677 		if (sigismember(mask, q->info.si_signo)) {
678 			list_del_init(&q->list);
679 			__sigqueue_free(q);
680 		}
681 	}
682 	return 1;
683 }
684 
685 static inline int is_si_special(const struct siginfo *info)
686 {
687 	return info <= SEND_SIG_FORCED;
688 }
689 
690 static inline bool si_fromuser(const struct siginfo *info)
691 {
692 	return info == SEND_SIG_NOINFO ||
693 		(!is_si_special(info) && SI_FROMUSER(info));
694 }
695 
696 /*
697  * called with RCU read lock from check_kill_permission()
698  */
699 static int kill_ok_by_cred(struct task_struct *t)
700 {
701 	const struct cred *cred = current_cred();
702 	const struct cred *tcred = __task_cred(t);
703 
704 	if (uid_eq(cred->euid, tcred->suid) ||
705 	    uid_eq(cred->euid, tcred->uid)  ||
706 	    uid_eq(cred->uid,  tcred->suid) ||
707 	    uid_eq(cred->uid,  tcred->uid))
708 		return 1;
709 
710 	if (ns_capable(tcred->user_ns, CAP_KILL))
711 		return 1;
712 
713 	return 0;
714 }
715 
716 /*
717  * Bad permissions for sending the signal
718  * - the caller must hold the RCU read lock
719  */
720 static int check_kill_permission(int sig, struct siginfo *info,
721 				 struct task_struct *t)
722 {
723 	struct pid *sid;
724 	int error;
725 
726 	if (!valid_signal(sig))
727 		return -EINVAL;
728 
729 	if (!si_fromuser(info))
730 		return 0;
731 
732 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
733 	if (error)
734 		return error;
735 
736 	if (!same_thread_group(current, t) &&
737 	    !kill_ok_by_cred(t)) {
738 		switch (sig) {
739 		case SIGCONT:
740 			sid = task_session(t);
741 			/*
742 			 * We don't return the error if sid == NULL. The
743 			 * task was unhashed, the caller must notice this.
744 			 */
745 			if (!sid || sid == task_session(current))
746 				break;
747 		default:
748 			return -EPERM;
749 		}
750 	}
751 
752 	return security_task_kill(t, info, sig, 0);
753 }
754 
755 /**
756  * ptrace_trap_notify - schedule trap to notify ptracer
757  * @t: tracee wanting to notify tracer
758  *
759  * This function schedules sticky ptrace trap which is cleared on the next
760  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
761  * ptracer.
762  *
763  * If @t is running, STOP trap will be taken.  If trapped for STOP and
764  * ptracer is listening for events, tracee is woken up so that it can
765  * re-trap for the new event.  If trapped otherwise, STOP trap will be
766  * eventually taken without returning to userland after the existing traps
767  * are finished by PTRACE_CONT.
768  *
769  * CONTEXT:
770  * Must be called with @task->sighand->siglock held.
771  */
772 static void ptrace_trap_notify(struct task_struct *t)
773 {
774 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
775 	assert_spin_locked(&t->sighand->siglock);
776 
777 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
778 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
779 }
780 
781 /*
782  * Handle magic process-wide effects of stop/continue signals. Unlike
783  * the signal actions, these happen immediately at signal-generation
784  * time regardless of blocking, ignoring, or handling.  This does the
785  * actual continuing for SIGCONT, but not the actual stopping for stop
786  * signals. The process stop is done as a signal action for SIG_DFL.
787  *
788  * Returns true if the signal should be actually delivered, otherwise
789  * it should be dropped.
790  */
791 static bool prepare_signal(int sig, struct task_struct *p, bool force)
792 {
793 	struct signal_struct *signal = p->signal;
794 	struct task_struct *t;
795 	sigset_t flush;
796 
797 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
798 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
799 			return sig == SIGKILL;
800 		/*
801 		 * The process is in the middle of dying, nothing to do.
802 		 */
803 	} else if (sig_kernel_stop(sig)) {
804 		/*
805 		 * This is a stop signal.  Remove SIGCONT from all queues.
806 		 */
807 		siginitset(&flush, sigmask(SIGCONT));
808 		flush_sigqueue_mask(&flush, &signal->shared_pending);
809 		for_each_thread(p, t)
810 			flush_sigqueue_mask(&flush, &t->pending);
811 	} else if (sig == SIGCONT) {
812 		unsigned int why;
813 		/*
814 		 * Remove all stop signals from all queues, wake all threads.
815 		 */
816 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
817 		flush_sigqueue_mask(&flush, &signal->shared_pending);
818 		for_each_thread(p, t) {
819 			flush_sigqueue_mask(&flush, &t->pending);
820 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
821 			if (likely(!(t->ptrace & PT_SEIZED)))
822 				wake_up_state(t, __TASK_STOPPED);
823 			else
824 				ptrace_trap_notify(t);
825 		}
826 
827 		/*
828 		 * Notify the parent with CLD_CONTINUED if we were stopped.
829 		 *
830 		 * If we were in the middle of a group stop, we pretend it
831 		 * was already finished, and then continued. Since SIGCHLD
832 		 * doesn't queue we report only CLD_STOPPED, as if the next
833 		 * CLD_CONTINUED was dropped.
834 		 */
835 		why = 0;
836 		if (signal->flags & SIGNAL_STOP_STOPPED)
837 			why |= SIGNAL_CLD_CONTINUED;
838 		else if (signal->group_stop_count)
839 			why |= SIGNAL_CLD_STOPPED;
840 
841 		if (why) {
842 			/*
843 			 * The first thread which returns from do_signal_stop()
844 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
845 			 * notify its parent. See get_signal_to_deliver().
846 			 */
847 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
848 			signal->group_stop_count = 0;
849 			signal->group_exit_code = 0;
850 		}
851 	}
852 
853 	return !sig_ignored(p, sig, force);
854 }
855 
856 /*
857  * Test if P wants to take SIG.  After we've checked all threads with this,
858  * it's equivalent to finding no threads not blocking SIG.  Any threads not
859  * blocking SIG were ruled out because they are not running and already
860  * have pending signals.  Such threads will dequeue from the shared queue
861  * as soon as they're available, so putting the signal on the shared queue
862  * will be equivalent to sending it to one such thread.
863  */
864 static inline int wants_signal(int sig, struct task_struct *p)
865 {
866 	if (sigismember(&p->blocked, sig))
867 		return 0;
868 	if (p->flags & PF_EXITING)
869 		return 0;
870 	if (sig == SIGKILL)
871 		return 1;
872 	if (task_is_stopped_or_traced(p))
873 		return 0;
874 	return task_curr(p) || !signal_pending(p);
875 }
876 
877 static void complete_signal(int sig, struct task_struct *p, int group)
878 {
879 	struct signal_struct *signal = p->signal;
880 	struct task_struct *t;
881 
882 	/*
883 	 * Now find a thread we can wake up to take the signal off the queue.
884 	 *
885 	 * If the main thread wants the signal, it gets first crack.
886 	 * Probably the least surprising to the average bear.
887 	 */
888 	if (wants_signal(sig, p))
889 		t = p;
890 	else if (!group || thread_group_empty(p))
891 		/*
892 		 * There is just one thread and it does not need to be woken.
893 		 * It will dequeue unblocked signals before it runs again.
894 		 */
895 		return;
896 	else {
897 		/*
898 		 * Otherwise try to find a suitable thread.
899 		 */
900 		t = signal->curr_target;
901 		while (!wants_signal(sig, t)) {
902 			t = next_thread(t);
903 			if (t == signal->curr_target)
904 				/*
905 				 * No thread needs to be woken.
906 				 * Any eligible threads will see
907 				 * the signal in the queue soon.
908 				 */
909 				return;
910 		}
911 		signal->curr_target = t;
912 	}
913 
914 	/*
915 	 * Found a killable thread.  If the signal will be fatal,
916 	 * then start taking the whole group down immediately.
917 	 */
918 	if (sig_fatal(p, sig) &&
919 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
920 	    !sigismember(&t->real_blocked, sig) &&
921 	    (sig == SIGKILL || !t->ptrace)) {
922 		/*
923 		 * This signal will be fatal to the whole group.
924 		 */
925 		if (!sig_kernel_coredump(sig)) {
926 			/*
927 			 * Start a group exit and wake everybody up.
928 			 * This way we don't have other threads
929 			 * running and doing things after a slower
930 			 * thread has the fatal signal pending.
931 			 */
932 			signal->flags = SIGNAL_GROUP_EXIT;
933 			signal->group_exit_code = sig;
934 			signal->group_stop_count = 0;
935 			t = p;
936 			do {
937 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
938 				sigaddset(&t->pending.signal, SIGKILL);
939 				signal_wake_up(t, 1);
940 			} while_each_thread(p, t);
941 			return;
942 		}
943 	}
944 
945 	/*
946 	 * The signal is already in the shared-pending queue.
947 	 * Tell the chosen thread to wake up and dequeue it.
948 	 */
949 	signal_wake_up(t, sig == SIGKILL);
950 	return;
951 }
952 
953 static inline int legacy_queue(struct sigpending *signals, int sig)
954 {
955 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
956 }
957 
958 #ifdef CONFIG_USER_NS
959 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
960 {
961 	if (current_user_ns() == task_cred_xxx(t, user_ns))
962 		return;
963 
964 	if (SI_FROMKERNEL(info))
965 		return;
966 
967 	rcu_read_lock();
968 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
969 					make_kuid(current_user_ns(), info->si_uid));
970 	rcu_read_unlock();
971 }
972 #else
973 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
974 {
975 	return;
976 }
977 #endif
978 
979 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
980 			int group, int from_ancestor_ns)
981 {
982 	struct sigpending *pending;
983 	struct sigqueue *q;
984 	int override_rlimit;
985 	int ret = 0, result;
986 
987 	assert_spin_locked(&t->sighand->siglock);
988 
989 	result = TRACE_SIGNAL_IGNORED;
990 	if (!prepare_signal(sig, t,
991 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
992 		goto ret;
993 
994 	pending = group ? &t->signal->shared_pending : &t->pending;
995 	/*
996 	 * Short-circuit ignored signals and support queuing
997 	 * exactly one non-rt signal, so that we can get more
998 	 * detailed information about the cause of the signal.
999 	 */
1000 	result = TRACE_SIGNAL_ALREADY_PENDING;
1001 	if (legacy_queue(pending, sig))
1002 		goto ret;
1003 
1004 	result = TRACE_SIGNAL_DELIVERED;
1005 	/*
1006 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1007 	 * or SIGKILL.
1008 	 */
1009 	if (info == SEND_SIG_FORCED)
1010 		goto out_set;
1011 
1012 	/*
1013 	 * Real-time signals must be queued if sent by sigqueue, or
1014 	 * some other real-time mechanism.  It is implementation
1015 	 * defined whether kill() does so.  We attempt to do so, on
1016 	 * the principle of least surprise, but since kill is not
1017 	 * allowed to fail with EAGAIN when low on memory we just
1018 	 * make sure at least one signal gets delivered and don't
1019 	 * pass on the info struct.
1020 	 */
1021 	if (sig < SIGRTMIN)
1022 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1023 	else
1024 		override_rlimit = 0;
1025 
1026 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1027 		override_rlimit);
1028 	if (q) {
1029 		list_add_tail(&q->list, &pending->list);
1030 		switch ((unsigned long) info) {
1031 		case (unsigned long) SEND_SIG_NOINFO:
1032 			q->info.si_signo = sig;
1033 			q->info.si_errno = 0;
1034 			q->info.si_code = SI_USER;
1035 			q->info.si_pid = task_tgid_nr_ns(current,
1036 							task_active_pid_ns(t));
1037 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1038 			break;
1039 		case (unsigned long) SEND_SIG_PRIV:
1040 			q->info.si_signo = sig;
1041 			q->info.si_errno = 0;
1042 			q->info.si_code = SI_KERNEL;
1043 			q->info.si_pid = 0;
1044 			q->info.si_uid = 0;
1045 			break;
1046 		default:
1047 			copy_siginfo(&q->info, info);
1048 			if (from_ancestor_ns)
1049 				q->info.si_pid = 0;
1050 			break;
1051 		}
1052 
1053 		userns_fixup_signal_uid(&q->info, t);
1054 
1055 	} else if (!is_si_special(info)) {
1056 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1057 			/*
1058 			 * Queue overflow, abort.  We may abort if the
1059 			 * signal was rt and sent by user using something
1060 			 * other than kill().
1061 			 */
1062 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1063 			ret = -EAGAIN;
1064 			goto ret;
1065 		} else {
1066 			/*
1067 			 * This is a silent loss of information.  We still
1068 			 * send the signal, but the *info bits are lost.
1069 			 */
1070 			result = TRACE_SIGNAL_LOSE_INFO;
1071 		}
1072 	}
1073 
1074 out_set:
1075 	signalfd_notify(t, sig);
1076 	sigaddset(&pending->signal, sig);
1077 	complete_signal(sig, t, group);
1078 ret:
1079 	trace_signal_generate(sig, info, t, group, result);
1080 	return ret;
1081 }
1082 
1083 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1084 			int group)
1085 {
1086 	int from_ancestor_ns = 0;
1087 
1088 #ifdef CONFIG_PID_NS
1089 	from_ancestor_ns = si_fromuser(info) &&
1090 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1091 #endif
1092 
1093 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1094 }
1095 
1096 static void print_fatal_signal(int signr)
1097 {
1098 	struct pt_regs *regs = signal_pt_regs();
1099 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1100 
1101 #if defined(__i386__) && !defined(__arch_um__)
1102 	pr_info("code at %08lx: ", regs->ip);
1103 	{
1104 		int i;
1105 		for (i = 0; i < 16; i++) {
1106 			unsigned char insn;
1107 
1108 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1109 				break;
1110 			pr_cont("%02x ", insn);
1111 		}
1112 	}
1113 	pr_cont("\n");
1114 #endif
1115 	preempt_disable();
1116 	show_regs(regs);
1117 	preempt_enable();
1118 }
1119 
1120 static int __init setup_print_fatal_signals(char *str)
1121 {
1122 	get_option (&str, &print_fatal_signals);
1123 
1124 	return 1;
1125 }
1126 
1127 __setup("print-fatal-signals=", setup_print_fatal_signals);
1128 
1129 int
1130 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1131 {
1132 	return send_signal(sig, info, p, 1);
1133 }
1134 
1135 static int
1136 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1137 {
1138 	return send_signal(sig, info, t, 0);
1139 }
1140 
1141 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1142 			bool group)
1143 {
1144 	unsigned long flags;
1145 	int ret = -ESRCH;
1146 
1147 	if (lock_task_sighand(p, &flags)) {
1148 		ret = send_signal(sig, info, p, group);
1149 		unlock_task_sighand(p, &flags);
1150 	}
1151 
1152 	return ret;
1153 }
1154 
1155 /*
1156  * Force a signal that the process can't ignore: if necessary
1157  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1158  *
1159  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1160  * since we do not want to have a signal handler that was blocked
1161  * be invoked when user space had explicitly blocked it.
1162  *
1163  * We don't want to have recursive SIGSEGV's etc, for example,
1164  * that is why we also clear SIGNAL_UNKILLABLE.
1165  */
1166 int
1167 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1168 {
1169 	unsigned long int flags;
1170 	int ret, blocked, ignored;
1171 	struct k_sigaction *action;
1172 
1173 	spin_lock_irqsave(&t->sighand->siglock, flags);
1174 	action = &t->sighand->action[sig-1];
1175 	ignored = action->sa.sa_handler == SIG_IGN;
1176 	blocked = sigismember(&t->blocked, sig);
1177 	if (blocked || ignored) {
1178 		action->sa.sa_handler = SIG_DFL;
1179 		if (blocked) {
1180 			sigdelset(&t->blocked, sig);
1181 			recalc_sigpending_and_wake(t);
1182 		}
1183 	}
1184 	if (action->sa.sa_handler == SIG_DFL)
1185 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1186 	ret = specific_send_sig_info(sig, info, t);
1187 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1188 
1189 	return ret;
1190 }
1191 
1192 /*
1193  * Nuke all other threads in the group.
1194  */
1195 int zap_other_threads(struct task_struct *p)
1196 {
1197 	struct task_struct *t = p;
1198 	int count = 0;
1199 
1200 	p->signal->group_stop_count = 0;
1201 
1202 	while_each_thread(p, t) {
1203 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1204 		count++;
1205 
1206 		/* Don't bother with already dead threads */
1207 		if (t->exit_state)
1208 			continue;
1209 		sigaddset(&t->pending.signal, SIGKILL);
1210 		signal_wake_up(t, 1);
1211 	}
1212 
1213 	return count;
1214 }
1215 
1216 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1217 					   unsigned long *flags)
1218 {
1219 	struct sighand_struct *sighand;
1220 
1221 	for (;;) {
1222 		/*
1223 		 * Disable interrupts early to avoid deadlocks.
1224 		 * See rcu_read_unlock() comment header for details.
1225 		 */
1226 		local_irq_save(*flags);
1227 		rcu_read_lock();
1228 		sighand = rcu_dereference(tsk->sighand);
1229 		if (unlikely(sighand == NULL)) {
1230 			rcu_read_unlock();
1231 			local_irq_restore(*flags);
1232 			break;
1233 		}
1234 		/*
1235 		 * This sighand can be already freed and even reused, but
1236 		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1237 		 * initializes ->siglock: this slab can't go away, it has
1238 		 * the same object type, ->siglock can't be reinitialized.
1239 		 *
1240 		 * We need to ensure that tsk->sighand is still the same
1241 		 * after we take the lock, we can race with de_thread() or
1242 		 * __exit_signal(). In the latter case the next iteration
1243 		 * must see ->sighand == NULL.
1244 		 */
1245 		spin_lock(&sighand->siglock);
1246 		if (likely(sighand == tsk->sighand)) {
1247 			rcu_read_unlock();
1248 			break;
1249 		}
1250 		spin_unlock(&sighand->siglock);
1251 		rcu_read_unlock();
1252 		local_irq_restore(*flags);
1253 	}
1254 
1255 	return sighand;
1256 }
1257 
1258 /*
1259  * send signal info to all the members of a group
1260  */
1261 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1262 {
1263 	int ret;
1264 
1265 	rcu_read_lock();
1266 	ret = check_kill_permission(sig, info, p);
1267 	rcu_read_unlock();
1268 
1269 	if (!ret && sig)
1270 		ret = do_send_sig_info(sig, info, p, true);
1271 
1272 	return ret;
1273 }
1274 
1275 /*
1276  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1277  * control characters do (^C, ^Z etc)
1278  * - the caller must hold at least a readlock on tasklist_lock
1279  */
1280 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1281 {
1282 	struct task_struct *p = NULL;
1283 	int retval, success;
1284 
1285 	success = 0;
1286 	retval = -ESRCH;
1287 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1288 		int err = group_send_sig_info(sig, info, p);
1289 		success |= !err;
1290 		retval = err;
1291 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1292 	return success ? 0 : retval;
1293 }
1294 
1295 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1296 {
1297 	int error = -ESRCH;
1298 	struct task_struct *p;
1299 
1300 	for (;;) {
1301 		rcu_read_lock();
1302 		p = pid_task(pid, PIDTYPE_PID);
1303 		if (p)
1304 			error = group_send_sig_info(sig, info, p);
1305 		rcu_read_unlock();
1306 		if (likely(!p || error != -ESRCH))
1307 			return error;
1308 
1309 		/*
1310 		 * The task was unhashed in between, try again.  If it
1311 		 * is dead, pid_task() will return NULL, if we race with
1312 		 * de_thread() it will find the new leader.
1313 		 */
1314 	}
1315 }
1316 
1317 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1318 {
1319 	int error;
1320 	rcu_read_lock();
1321 	error = kill_pid_info(sig, info, find_vpid(pid));
1322 	rcu_read_unlock();
1323 	return error;
1324 }
1325 
1326 static int kill_as_cred_perm(const struct cred *cred,
1327 			     struct task_struct *target)
1328 {
1329 	const struct cred *pcred = __task_cred(target);
1330 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1331 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1332 		return 0;
1333 	return 1;
1334 }
1335 
1336 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1337 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1338 			 const struct cred *cred, u32 secid)
1339 {
1340 	int ret = -EINVAL;
1341 	struct task_struct *p;
1342 	unsigned long flags;
1343 
1344 	if (!valid_signal(sig))
1345 		return ret;
1346 
1347 	rcu_read_lock();
1348 	p = pid_task(pid, PIDTYPE_PID);
1349 	if (!p) {
1350 		ret = -ESRCH;
1351 		goto out_unlock;
1352 	}
1353 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1354 		ret = -EPERM;
1355 		goto out_unlock;
1356 	}
1357 	ret = security_task_kill(p, info, sig, secid);
1358 	if (ret)
1359 		goto out_unlock;
1360 
1361 	if (sig) {
1362 		if (lock_task_sighand(p, &flags)) {
1363 			ret = __send_signal(sig, info, p, 1, 0);
1364 			unlock_task_sighand(p, &flags);
1365 		} else
1366 			ret = -ESRCH;
1367 	}
1368 out_unlock:
1369 	rcu_read_unlock();
1370 	return ret;
1371 }
1372 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1373 
1374 /*
1375  * kill_something_info() interprets pid in interesting ways just like kill(2).
1376  *
1377  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1378  * is probably wrong.  Should make it like BSD or SYSV.
1379  */
1380 
1381 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1382 {
1383 	int ret;
1384 
1385 	if (pid > 0) {
1386 		rcu_read_lock();
1387 		ret = kill_pid_info(sig, info, find_vpid(pid));
1388 		rcu_read_unlock();
1389 		return ret;
1390 	}
1391 
1392 	read_lock(&tasklist_lock);
1393 	if (pid != -1) {
1394 		ret = __kill_pgrp_info(sig, info,
1395 				pid ? find_vpid(-pid) : task_pgrp(current));
1396 	} else {
1397 		int retval = 0, count = 0;
1398 		struct task_struct * p;
1399 
1400 		for_each_process(p) {
1401 			if (task_pid_vnr(p) > 1 &&
1402 					!same_thread_group(p, current)) {
1403 				int err = group_send_sig_info(sig, info, p);
1404 				++count;
1405 				if (err != -EPERM)
1406 					retval = err;
1407 			}
1408 		}
1409 		ret = count ? retval : -ESRCH;
1410 	}
1411 	read_unlock(&tasklist_lock);
1412 
1413 	return ret;
1414 }
1415 
1416 /*
1417  * These are for backward compatibility with the rest of the kernel source.
1418  */
1419 
1420 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1421 {
1422 	/*
1423 	 * Make sure legacy kernel users don't send in bad values
1424 	 * (normal paths check this in check_kill_permission).
1425 	 */
1426 	if (!valid_signal(sig))
1427 		return -EINVAL;
1428 
1429 	return do_send_sig_info(sig, info, p, false);
1430 }
1431 
1432 #define __si_special(priv) \
1433 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1434 
1435 int
1436 send_sig(int sig, struct task_struct *p, int priv)
1437 {
1438 	return send_sig_info(sig, __si_special(priv), p);
1439 }
1440 
1441 void
1442 force_sig(int sig, struct task_struct *p)
1443 {
1444 	force_sig_info(sig, SEND_SIG_PRIV, p);
1445 }
1446 
1447 /*
1448  * When things go south during signal handling, we
1449  * will force a SIGSEGV. And if the signal that caused
1450  * the problem was already a SIGSEGV, we'll want to
1451  * make sure we don't even try to deliver the signal..
1452  */
1453 int
1454 force_sigsegv(int sig, struct task_struct *p)
1455 {
1456 	if (sig == SIGSEGV) {
1457 		unsigned long flags;
1458 		spin_lock_irqsave(&p->sighand->siglock, flags);
1459 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1460 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1461 	}
1462 	force_sig(SIGSEGV, p);
1463 	return 0;
1464 }
1465 
1466 int kill_pgrp(struct pid *pid, int sig, int priv)
1467 {
1468 	int ret;
1469 
1470 	read_lock(&tasklist_lock);
1471 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1472 	read_unlock(&tasklist_lock);
1473 
1474 	return ret;
1475 }
1476 EXPORT_SYMBOL(kill_pgrp);
1477 
1478 int kill_pid(struct pid *pid, int sig, int priv)
1479 {
1480 	return kill_pid_info(sig, __si_special(priv), pid);
1481 }
1482 EXPORT_SYMBOL(kill_pid);
1483 
1484 /*
1485  * These functions support sending signals using preallocated sigqueue
1486  * structures.  This is needed "because realtime applications cannot
1487  * afford to lose notifications of asynchronous events, like timer
1488  * expirations or I/O completions".  In the case of POSIX Timers
1489  * we allocate the sigqueue structure from the timer_create.  If this
1490  * allocation fails we are able to report the failure to the application
1491  * with an EAGAIN error.
1492  */
1493 struct sigqueue *sigqueue_alloc(void)
1494 {
1495 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1496 
1497 	if (q)
1498 		q->flags |= SIGQUEUE_PREALLOC;
1499 
1500 	return q;
1501 }
1502 
1503 void sigqueue_free(struct sigqueue *q)
1504 {
1505 	unsigned long flags;
1506 	spinlock_t *lock = &current->sighand->siglock;
1507 
1508 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1509 	/*
1510 	 * We must hold ->siglock while testing q->list
1511 	 * to serialize with collect_signal() or with
1512 	 * __exit_signal()->flush_sigqueue().
1513 	 */
1514 	spin_lock_irqsave(lock, flags);
1515 	q->flags &= ~SIGQUEUE_PREALLOC;
1516 	/*
1517 	 * If it is queued it will be freed when dequeued,
1518 	 * like the "regular" sigqueue.
1519 	 */
1520 	if (!list_empty(&q->list))
1521 		q = NULL;
1522 	spin_unlock_irqrestore(lock, flags);
1523 
1524 	if (q)
1525 		__sigqueue_free(q);
1526 }
1527 
1528 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1529 {
1530 	int sig = q->info.si_signo;
1531 	struct sigpending *pending;
1532 	unsigned long flags;
1533 	int ret, result;
1534 
1535 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1536 
1537 	ret = -1;
1538 	if (!likely(lock_task_sighand(t, &flags)))
1539 		goto ret;
1540 
1541 	ret = 1; /* the signal is ignored */
1542 	result = TRACE_SIGNAL_IGNORED;
1543 	if (!prepare_signal(sig, t, false))
1544 		goto out;
1545 
1546 	ret = 0;
1547 	if (unlikely(!list_empty(&q->list))) {
1548 		/*
1549 		 * If an SI_TIMER entry is already queue just increment
1550 		 * the overrun count.
1551 		 */
1552 		BUG_ON(q->info.si_code != SI_TIMER);
1553 		q->info.si_overrun++;
1554 		result = TRACE_SIGNAL_ALREADY_PENDING;
1555 		goto out;
1556 	}
1557 	q->info.si_overrun = 0;
1558 
1559 	signalfd_notify(t, sig);
1560 	pending = group ? &t->signal->shared_pending : &t->pending;
1561 	list_add_tail(&q->list, &pending->list);
1562 	sigaddset(&pending->signal, sig);
1563 	complete_signal(sig, t, group);
1564 	result = TRACE_SIGNAL_DELIVERED;
1565 out:
1566 	trace_signal_generate(sig, &q->info, t, group, result);
1567 	unlock_task_sighand(t, &flags);
1568 ret:
1569 	return ret;
1570 }
1571 
1572 /*
1573  * Let a parent know about the death of a child.
1574  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1575  *
1576  * Returns true if our parent ignored us and so we've switched to
1577  * self-reaping.
1578  */
1579 bool do_notify_parent(struct task_struct *tsk, int sig)
1580 {
1581 	struct siginfo info;
1582 	unsigned long flags;
1583 	struct sighand_struct *psig;
1584 	bool autoreap = false;
1585 	u64 utime, stime;
1586 
1587 	BUG_ON(sig == -1);
1588 
1589  	/* do_notify_parent_cldstop should have been called instead.  */
1590  	BUG_ON(task_is_stopped_or_traced(tsk));
1591 
1592 	BUG_ON(!tsk->ptrace &&
1593 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1594 
1595 	if (sig != SIGCHLD) {
1596 		/*
1597 		 * This is only possible if parent == real_parent.
1598 		 * Check if it has changed security domain.
1599 		 */
1600 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1601 			sig = SIGCHLD;
1602 	}
1603 
1604 	info.si_signo = sig;
1605 	info.si_errno = 0;
1606 	/*
1607 	 * We are under tasklist_lock here so our parent is tied to
1608 	 * us and cannot change.
1609 	 *
1610 	 * task_active_pid_ns will always return the same pid namespace
1611 	 * until a task passes through release_task.
1612 	 *
1613 	 * write_lock() currently calls preempt_disable() which is the
1614 	 * same as rcu_read_lock(), but according to Oleg, this is not
1615 	 * correct to rely on this
1616 	 */
1617 	rcu_read_lock();
1618 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1619 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1620 				       task_uid(tsk));
1621 	rcu_read_unlock();
1622 
1623 	task_cputime(tsk, &utime, &stime);
1624 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1625 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1626 
1627 	info.si_status = tsk->exit_code & 0x7f;
1628 	if (tsk->exit_code & 0x80)
1629 		info.si_code = CLD_DUMPED;
1630 	else if (tsk->exit_code & 0x7f)
1631 		info.si_code = CLD_KILLED;
1632 	else {
1633 		info.si_code = CLD_EXITED;
1634 		info.si_status = tsk->exit_code >> 8;
1635 	}
1636 
1637 	psig = tsk->parent->sighand;
1638 	spin_lock_irqsave(&psig->siglock, flags);
1639 	if (!tsk->ptrace && sig == SIGCHLD &&
1640 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1641 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1642 		/*
1643 		 * We are exiting and our parent doesn't care.  POSIX.1
1644 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1645 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1646 		 * automatically and not left for our parent's wait4 call.
1647 		 * Rather than having the parent do it as a magic kind of
1648 		 * signal handler, we just set this to tell do_exit that we
1649 		 * can be cleaned up without becoming a zombie.  Note that
1650 		 * we still call __wake_up_parent in this case, because a
1651 		 * blocked sys_wait4 might now return -ECHILD.
1652 		 *
1653 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1654 		 * is implementation-defined: we do (if you don't want
1655 		 * it, just use SIG_IGN instead).
1656 		 */
1657 		autoreap = true;
1658 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1659 			sig = 0;
1660 	}
1661 	if (valid_signal(sig) && sig)
1662 		__group_send_sig_info(sig, &info, tsk->parent);
1663 	__wake_up_parent(tsk, tsk->parent);
1664 	spin_unlock_irqrestore(&psig->siglock, flags);
1665 
1666 	return autoreap;
1667 }
1668 
1669 /**
1670  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1671  * @tsk: task reporting the state change
1672  * @for_ptracer: the notification is for ptracer
1673  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1674  *
1675  * Notify @tsk's parent that the stopped/continued state has changed.  If
1676  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1677  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1678  *
1679  * CONTEXT:
1680  * Must be called with tasklist_lock at least read locked.
1681  */
1682 static void do_notify_parent_cldstop(struct task_struct *tsk,
1683 				     bool for_ptracer, int why)
1684 {
1685 	struct siginfo info;
1686 	unsigned long flags;
1687 	struct task_struct *parent;
1688 	struct sighand_struct *sighand;
1689 	u64 utime, stime;
1690 
1691 	if (for_ptracer) {
1692 		parent = tsk->parent;
1693 	} else {
1694 		tsk = tsk->group_leader;
1695 		parent = tsk->real_parent;
1696 	}
1697 
1698 	info.si_signo = SIGCHLD;
1699 	info.si_errno = 0;
1700 	/*
1701 	 * see comment in do_notify_parent() about the following 4 lines
1702 	 */
1703 	rcu_read_lock();
1704 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1705 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1706 	rcu_read_unlock();
1707 
1708 	task_cputime(tsk, &utime, &stime);
1709 	info.si_utime = nsec_to_clock_t(utime);
1710 	info.si_stime = nsec_to_clock_t(stime);
1711 
1712  	info.si_code = why;
1713  	switch (why) {
1714  	case CLD_CONTINUED:
1715  		info.si_status = SIGCONT;
1716  		break;
1717  	case CLD_STOPPED:
1718  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1719  		break;
1720  	case CLD_TRAPPED:
1721  		info.si_status = tsk->exit_code & 0x7f;
1722  		break;
1723  	default:
1724  		BUG();
1725  	}
1726 
1727 	sighand = parent->sighand;
1728 	spin_lock_irqsave(&sighand->siglock, flags);
1729 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1730 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1731 		__group_send_sig_info(SIGCHLD, &info, parent);
1732 	/*
1733 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1734 	 */
1735 	__wake_up_parent(tsk, parent);
1736 	spin_unlock_irqrestore(&sighand->siglock, flags);
1737 }
1738 
1739 static inline int may_ptrace_stop(void)
1740 {
1741 	if (!likely(current->ptrace))
1742 		return 0;
1743 	/*
1744 	 * Are we in the middle of do_coredump?
1745 	 * If so and our tracer is also part of the coredump stopping
1746 	 * is a deadlock situation, and pointless because our tracer
1747 	 * is dead so don't allow us to stop.
1748 	 * If SIGKILL was already sent before the caller unlocked
1749 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1750 	 * is safe to enter schedule().
1751 	 *
1752 	 * This is almost outdated, a task with the pending SIGKILL can't
1753 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1754 	 * after SIGKILL was already dequeued.
1755 	 */
1756 	if (unlikely(current->mm->core_state) &&
1757 	    unlikely(current->mm == current->parent->mm))
1758 		return 0;
1759 
1760 	return 1;
1761 }
1762 
1763 /*
1764  * Return non-zero if there is a SIGKILL that should be waking us up.
1765  * Called with the siglock held.
1766  */
1767 static int sigkill_pending(struct task_struct *tsk)
1768 {
1769 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1770 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1771 }
1772 
1773 /*
1774  * This must be called with current->sighand->siglock held.
1775  *
1776  * This should be the path for all ptrace stops.
1777  * We always set current->last_siginfo while stopped here.
1778  * That makes it a way to test a stopped process for
1779  * being ptrace-stopped vs being job-control-stopped.
1780  *
1781  * If we actually decide not to stop at all because the tracer
1782  * is gone, we keep current->exit_code unless clear_code.
1783  */
1784 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1785 	__releases(&current->sighand->siglock)
1786 	__acquires(&current->sighand->siglock)
1787 {
1788 	bool gstop_done = false;
1789 
1790 	if (arch_ptrace_stop_needed(exit_code, info)) {
1791 		/*
1792 		 * The arch code has something special to do before a
1793 		 * ptrace stop.  This is allowed to block, e.g. for faults
1794 		 * on user stack pages.  We can't keep the siglock while
1795 		 * calling arch_ptrace_stop, so we must release it now.
1796 		 * To preserve proper semantics, we must do this before
1797 		 * any signal bookkeeping like checking group_stop_count.
1798 		 * Meanwhile, a SIGKILL could come in before we retake the
1799 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1800 		 * So after regaining the lock, we must check for SIGKILL.
1801 		 */
1802 		spin_unlock_irq(&current->sighand->siglock);
1803 		arch_ptrace_stop(exit_code, info);
1804 		spin_lock_irq(&current->sighand->siglock);
1805 		if (sigkill_pending(current))
1806 			return;
1807 	}
1808 
1809 	/*
1810 	 * We're committing to trapping.  TRACED should be visible before
1811 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1812 	 * Also, transition to TRACED and updates to ->jobctl should be
1813 	 * atomic with respect to siglock and should be done after the arch
1814 	 * hook as siglock is released and regrabbed across it.
1815 	 */
1816 	set_current_state(TASK_TRACED);
1817 
1818 	current->last_siginfo = info;
1819 	current->exit_code = exit_code;
1820 
1821 	/*
1822 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1823 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1824 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1825 	 * could be clear now.  We act as if SIGCONT is received after
1826 	 * TASK_TRACED is entered - ignore it.
1827 	 */
1828 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1829 		gstop_done = task_participate_group_stop(current);
1830 
1831 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1832 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1833 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1834 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1835 
1836 	/* entering a trap, clear TRAPPING */
1837 	task_clear_jobctl_trapping(current);
1838 
1839 	spin_unlock_irq(&current->sighand->siglock);
1840 	read_lock(&tasklist_lock);
1841 	if (may_ptrace_stop()) {
1842 		/*
1843 		 * Notify parents of the stop.
1844 		 *
1845 		 * While ptraced, there are two parents - the ptracer and
1846 		 * the real_parent of the group_leader.  The ptracer should
1847 		 * know about every stop while the real parent is only
1848 		 * interested in the completion of group stop.  The states
1849 		 * for the two don't interact with each other.  Notify
1850 		 * separately unless they're gonna be duplicates.
1851 		 */
1852 		do_notify_parent_cldstop(current, true, why);
1853 		if (gstop_done && ptrace_reparented(current))
1854 			do_notify_parent_cldstop(current, false, why);
1855 
1856 		/*
1857 		 * Don't want to allow preemption here, because
1858 		 * sys_ptrace() needs this task to be inactive.
1859 		 *
1860 		 * XXX: implement read_unlock_no_resched().
1861 		 */
1862 		preempt_disable();
1863 		read_unlock(&tasklist_lock);
1864 		preempt_enable_no_resched();
1865 		freezable_schedule();
1866 	} else {
1867 		/*
1868 		 * By the time we got the lock, our tracer went away.
1869 		 * Don't drop the lock yet, another tracer may come.
1870 		 *
1871 		 * If @gstop_done, the ptracer went away between group stop
1872 		 * completion and here.  During detach, it would have set
1873 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1874 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1875 		 * the real parent of the group stop completion is enough.
1876 		 */
1877 		if (gstop_done)
1878 			do_notify_parent_cldstop(current, false, why);
1879 
1880 		/* tasklist protects us from ptrace_freeze_traced() */
1881 		__set_current_state(TASK_RUNNING);
1882 		if (clear_code)
1883 			current->exit_code = 0;
1884 		read_unlock(&tasklist_lock);
1885 	}
1886 
1887 	/*
1888 	 * We are back.  Now reacquire the siglock before touching
1889 	 * last_siginfo, so that we are sure to have synchronized with
1890 	 * any signal-sending on another CPU that wants to examine it.
1891 	 */
1892 	spin_lock_irq(&current->sighand->siglock);
1893 	current->last_siginfo = NULL;
1894 
1895 	/* LISTENING can be set only during STOP traps, clear it */
1896 	current->jobctl &= ~JOBCTL_LISTENING;
1897 
1898 	/*
1899 	 * Queued signals ignored us while we were stopped for tracing.
1900 	 * So check for any that we should take before resuming user mode.
1901 	 * This sets TIF_SIGPENDING, but never clears it.
1902 	 */
1903 	recalc_sigpending_tsk(current);
1904 }
1905 
1906 static void ptrace_do_notify(int signr, int exit_code, int why)
1907 {
1908 	siginfo_t info;
1909 
1910 	memset(&info, 0, sizeof info);
1911 	info.si_signo = signr;
1912 	info.si_code = exit_code;
1913 	info.si_pid = task_pid_vnr(current);
1914 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1915 
1916 	/* Let the debugger run.  */
1917 	ptrace_stop(exit_code, why, 1, &info);
1918 }
1919 
1920 void ptrace_notify(int exit_code)
1921 {
1922 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1923 	if (unlikely(current->task_works))
1924 		task_work_run();
1925 
1926 	spin_lock_irq(&current->sighand->siglock);
1927 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1928 	spin_unlock_irq(&current->sighand->siglock);
1929 }
1930 
1931 /**
1932  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1933  * @signr: signr causing group stop if initiating
1934  *
1935  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1936  * and participate in it.  If already set, participate in the existing
1937  * group stop.  If participated in a group stop (and thus slept), %true is
1938  * returned with siglock released.
1939  *
1940  * If ptraced, this function doesn't handle stop itself.  Instead,
1941  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1942  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1943  * places afterwards.
1944  *
1945  * CONTEXT:
1946  * Must be called with @current->sighand->siglock held, which is released
1947  * on %true return.
1948  *
1949  * RETURNS:
1950  * %false if group stop is already cancelled or ptrace trap is scheduled.
1951  * %true if participated in group stop.
1952  */
1953 static bool do_signal_stop(int signr)
1954 	__releases(&current->sighand->siglock)
1955 {
1956 	struct signal_struct *sig = current->signal;
1957 
1958 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1959 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1960 		struct task_struct *t;
1961 
1962 		/* signr will be recorded in task->jobctl for retries */
1963 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1964 
1965 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1966 		    unlikely(signal_group_exit(sig)))
1967 			return false;
1968 		/*
1969 		 * There is no group stop already in progress.  We must
1970 		 * initiate one now.
1971 		 *
1972 		 * While ptraced, a task may be resumed while group stop is
1973 		 * still in effect and then receive a stop signal and
1974 		 * initiate another group stop.  This deviates from the
1975 		 * usual behavior as two consecutive stop signals can't
1976 		 * cause two group stops when !ptraced.  That is why we
1977 		 * also check !task_is_stopped(t) below.
1978 		 *
1979 		 * The condition can be distinguished by testing whether
1980 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1981 		 * group_exit_code in such case.
1982 		 *
1983 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1984 		 * an intervening stop signal is required to cause two
1985 		 * continued events regardless of ptrace.
1986 		 */
1987 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1988 			sig->group_exit_code = signr;
1989 
1990 		sig->group_stop_count = 0;
1991 
1992 		if (task_set_jobctl_pending(current, signr | gstop))
1993 			sig->group_stop_count++;
1994 
1995 		t = current;
1996 		while_each_thread(current, t) {
1997 			/*
1998 			 * Setting state to TASK_STOPPED for a group
1999 			 * stop is always done with the siglock held,
2000 			 * so this check has no races.
2001 			 */
2002 			if (!task_is_stopped(t) &&
2003 			    task_set_jobctl_pending(t, signr | gstop)) {
2004 				sig->group_stop_count++;
2005 				if (likely(!(t->ptrace & PT_SEIZED)))
2006 					signal_wake_up(t, 0);
2007 				else
2008 					ptrace_trap_notify(t);
2009 			}
2010 		}
2011 	}
2012 
2013 	if (likely(!current->ptrace)) {
2014 		int notify = 0;
2015 
2016 		/*
2017 		 * If there are no other threads in the group, or if there
2018 		 * is a group stop in progress and we are the last to stop,
2019 		 * report to the parent.
2020 		 */
2021 		if (task_participate_group_stop(current))
2022 			notify = CLD_STOPPED;
2023 
2024 		__set_current_state(TASK_STOPPED);
2025 		spin_unlock_irq(&current->sighand->siglock);
2026 
2027 		/*
2028 		 * Notify the parent of the group stop completion.  Because
2029 		 * we're not holding either the siglock or tasklist_lock
2030 		 * here, ptracer may attach inbetween; however, this is for
2031 		 * group stop and should always be delivered to the real
2032 		 * parent of the group leader.  The new ptracer will get
2033 		 * its notification when this task transitions into
2034 		 * TASK_TRACED.
2035 		 */
2036 		if (notify) {
2037 			read_lock(&tasklist_lock);
2038 			do_notify_parent_cldstop(current, false, notify);
2039 			read_unlock(&tasklist_lock);
2040 		}
2041 
2042 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2043 		freezable_schedule();
2044 		return true;
2045 	} else {
2046 		/*
2047 		 * While ptraced, group stop is handled by STOP trap.
2048 		 * Schedule it and let the caller deal with it.
2049 		 */
2050 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2051 		return false;
2052 	}
2053 }
2054 
2055 /**
2056  * do_jobctl_trap - take care of ptrace jobctl traps
2057  *
2058  * When PT_SEIZED, it's used for both group stop and explicit
2059  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2060  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2061  * the stop signal; otherwise, %SIGTRAP.
2062  *
2063  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2064  * number as exit_code and no siginfo.
2065  *
2066  * CONTEXT:
2067  * Must be called with @current->sighand->siglock held, which may be
2068  * released and re-acquired before returning with intervening sleep.
2069  */
2070 static void do_jobctl_trap(void)
2071 {
2072 	struct signal_struct *signal = current->signal;
2073 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2074 
2075 	if (current->ptrace & PT_SEIZED) {
2076 		if (!signal->group_stop_count &&
2077 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2078 			signr = SIGTRAP;
2079 		WARN_ON_ONCE(!signr);
2080 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2081 				 CLD_STOPPED);
2082 	} else {
2083 		WARN_ON_ONCE(!signr);
2084 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2085 		current->exit_code = 0;
2086 	}
2087 }
2088 
2089 static int ptrace_signal(int signr, siginfo_t *info)
2090 {
2091 	ptrace_signal_deliver();
2092 	/*
2093 	 * We do not check sig_kernel_stop(signr) but set this marker
2094 	 * unconditionally because we do not know whether debugger will
2095 	 * change signr. This flag has no meaning unless we are going
2096 	 * to stop after return from ptrace_stop(). In this case it will
2097 	 * be checked in do_signal_stop(), we should only stop if it was
2098 	 * not cleared by SIGCONT while we were sleeping. See also the
2099 	 * comment in dequeue_signal().
2100 	 */
2101 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2102 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2103 
2104 	/* We're back.  Did the debugger cancel the sig?  */
2105 	signr = current->exit_code;
2106 	if (signr == 0)
2107 		return signr;
2108 
2109 	current->exit_code = 0;
2110 
2111 	/*
2112 	 * Update the siginfo structure if the signal has
2113 	 * changed.  If the debugger wanted something
2114 	 * specific in the siginfo structure then it should
2115 	 * have updated *info via PTRACE_SETSIGINFO.
2116 	 */
2117 	if (signr != info->si_signo) {
2118 		info->si_signo = signr;
2119 		info->si_errno = 0;
2120 		info->si_code = SI_USER;
2121 		rcu_read_lock();
2122 		info->si_pid = task_pid_vnr(current->parent);
2123 		info->si_uid = from_kuid_munged(current_user_ns(),
2124 						task_uid(current->parent));
2125 		rcu_read_unlock();
2126 	}
2127 
2128 	/* If the (new) signal is now blocked, requeue it.  */
2129 	if (sigismember(&current->blocked, signr)) {
2130 		specific_send_sig_info(signr, info, current);
2131 		signr = 0;
2132 	}
2133 
2134 	return signr;
2135 }
2136 
2137 int get_signal(struct ksignal *ksig)
2138 {
2139 	struct sighand_struct *sighand = current->sighand;
2140 	struct signal_struct *signal = current->signal;
2141 	int signr;
2142 
2143 	if (unlikely(current->task_works))
2144 		task_work_run();
2145 
2146 	if (unlikely(uprobe_deny_signal()))
2147 		return 0;
2148 
2149 	/*
2150 	 * Do this once, we can't return to user-mode if freezing() == T.
2151 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2152 	 * thus do not need another check after return.
2153 	 */
2154 	try_to_freeze();
2155 
2156 relock:
2157 	spin_lock_irq(&sighand->siglock);
2158 	/*
2159 	 * Every stopped thread goes here after wakeup. Check to see if
2160 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2161 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2162 	 */
2163 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2164 		int why;
2165 
2166 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2167 			why = CLD_CONTINUED;
2168 		else
2169 			why = CLD_STOPPED;
2170 
2171 		signal->flags &= ~SIGNAL_CLD_MASK;
2172 
2173 		spin_unlock_irq(&sighand->siglock);
2174 
2175 		/*
2176 		 * Notify the parent that we're continuing.  This event is
2177 		 * always per-process and doesn't make whole lot of sense
2178 		 * for ptracers, who shouldn't consume the state via
2179 		 * wait(2) either, but, for backward compatibility, notify
2180 		 * the ptracer of the group leader too unless it's gonna be
2181 		 * a duplicate.
2182 		 */
2183 		read_lock(&tasklist_lock);
2184 		do_notify_parent_cldstop(current, false, why);
2185 
2186 		if (ptrace_reparented(current->group_leader))
2187 			do_notify_parent_cldstop(current->group_leader,
2188 						true, why);
2189 		read_unlock(&tasklist_lock);
2190 
2191 		goto relock;
2192 	}
2193 
2194 	for (;;) {
2195 		struct k_sigaction *ka;
2196 
2197 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2198 		    do_signal_stop(0))
2199 			goto relock;
2200 
2201 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2202 			do_jobctl_trap();
2203 			spin_unlock_irq(&sighand->siglock);
2204 			goto relock;
2205 		}
2206 
2207 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2208 
2209 		if (!signr)
2210 			break; /* will return 0 */
2211 
2212 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2213 			signr = ptrace_signal(signr, &ksig->info);
2214 			if (!signr)
2215 				continue;
2216 		}
2217 
2218 		ka = &sighand->action[signr-1];
2219 
2220 		/* Trace actually delivered signals. */
2221 		trace_signal_deliver(signr, &ksig->info, ka);
2222 
2223 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2224 			continue;
2225 		if (ka->sa.sa_handler != SIG_DFL) {
2226 			/* Run the handler.  */
2227 			ksig->ka = *ka;
2228 
2229 			if (ka->sa.sa_flags & SA_ONESHOT)
2230 				ka->sa.sa_handler = SIG_DFL;
2231 
2232 			break; /* will return non-zero "signr" value */
2233 		}
2234 
2235 		/*
2236 		 * Now we are doing the default action for this signal.
2237 		 */
2238 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2239 			continue;
2240 
2241 		/*
2242 		 * Global init gets no signals it doesn't want.
2243 		 * Container-init gets no signals it doesn't want from same
2244 		 * container.
2245 		 *
2246 		 * Note that if global/container-init sees a sig_kernel_only()
2247 		 * signal here, the signal must have been generated internally
2248 		 * or must have come from an ancestor namespace. In either
2249 		 * case, the signal cannot be dropped.
2250 		 */
2251 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2252 				!sig_kernel_only(signr))
2253 			continue;
2254 
2255 		if (sig_kernel_stop(signr)) {
2256 			/*
2257 			 * The default action is to stop all threads in
2258 			 * the thread group.  The job control signals
2259 			 * do nothing in an orphaned pgrp, but SIGSTOP
2260 			 * always works.  Note that siglock needs to be
2261 			 * dropped during the call to is_orphaned_pgrp()
2262 			 * because of lock ordering with tasklist_lock.
2263 			 * This allows an intervening SIGCONT to be posted.
2264 			 * We need to check for that and bail out if necessary.
2265 			 */
2266 			if (signr != SIGSTOP) {
2267 				spin_unlock_irq(&sighand->siglock);
2268 
2269 				/* signals can be posted during this window */
2270 
2271 				if (is_current_pgrp_orphaned())
2272 					goto relock;
2273 
2274 				spin_lock_irq(&sighand->siglock);
2275 			}
2276 
2277 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2278 				/* It released the siglock.  */
2279 				goto relock;
2280 			}
2281 
2282 			/*
2283 			 * We didn't actually stop, due to a race
2284 			 * with SIGCONT or something like that.
2285 			 */
2286 			continue;
2287 		}
2288 
2289 		spin_unlock_irq(&sighand->siglock);
2290 
2291 		/*
2292 		 * Anything else is fatal, maybe with a core dump.
2293 		 */
2294 		current->flags |= PF_SIGNALED;
2295 
2296 		if (sig_kernel_coredump(signr)) {
2297 			if (print_fatal_signals)
2298 				print_fatal_signal(ksig->info.si_signo);
2299 			proc_coredump_connector(current);
2300 			/*
2301 			 * If it was able to dump core, this kills all
2302 			 * other threads in the group and synchronizes with
2303 			 * their demise.  If we lost the race with another
2304 			 * thread getting here, it set group_exit_code
2305 			 * first and our do_group_exit call below will use
2306 			 * that value and ignore the one we pass it.
2307 			 */
2308 			do_coredump(&ksig->info);
2309 		}
2310 
2311 		/*
2312 		 * Death signals, no core dump.
2313 		 */
2314 		do_group_exit(ksig->info.si_signo);
2315 		/* NOTREACHED */
2316 	}
2317 	spin_unlock_irq(&sighand->siglock);
2318 
2319 	ksig->sig = signr;
2320 	return ksig->sig > 0;
2321 }
2322 
2323 /**
2324  * signal_delivered -
2325  * @ksig:		kernel signal struct
2326  * @stepping:		nonzero if debugger single-step or block-step in use
2327  *
2328  * This function should be called when a signal has successfully been
2329  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2330  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2331  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2332  */
2333 static void signal_delivered(struct ksignal *ksig, int stepping)
2334 {
2335 	sigset_t blocked;
2336 
2337 	/* A signal was successfully delivered, and the
2338 	   saved sigmask was stored on the signal frame,
2339 	   and will be restored by sigreturn.  So we can
2340 	   simply clear the restore sigmask flag.  */
2341 	clear_restore_sigmask();
2342 
2343 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2344 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2345 		sigaddset(&blocked, ksig->sig);
2346 	set_current_blocked(&blocked);
2347 	tracehook_signal_handler(stepping);
2348 }
2349 
2350 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2351 {
2352 	if (failed)
2353 		force_sigsegv(ksig->sig, current);
2354 	else
2355 		signal_delivered(ksig, stepping);
2356 }
2357 
2358 /*
2359  * It could be that complete_signal() picked us to notify about the
2360  * group-wide signal. Other threads should be notified now to take
2361  * the shared signals in @which since we will not.
2362  */
2363 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2364 {
2365 	sigset_t retarget;
2366 	struct task_struct *t;
2367 
2368 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2369 	if (sigisemptyset(&retarget))
2370 		return;
2371 
2372 	t = tsk;
2373 	while_each_thread(tsk, t) {
2374 		if (t->flags & PF_EXITING)
2375 			continue;
2376 
2377 		if (!has_pending_signals(&retarget, &t->blocked))
2378 			continue;
2379 		/* Remove the signals this thread can handle. */
2380 		sigandsets(&retarget, &retarget, &t->blocked);
2381 
2382 		if (!signal_pending(t))
2383 			signal_wake_up(t, 0);
2384 
2385 		if (sigisemptyset(&retarget))
2386 			break;
2387 	}
2388 }
2389 
2390 void exit_signals(struct task_struct *tsk)
2391 {
2392 	int group_stop = 0;
2393 	sigset_t unblocked;
2394 
2395 	/*
2396 	 * @tsk is about to have PF_EXITING set - lock out users which
2397 	 * expect stable threadgroup.
2398 	 */
2399 	cgroup_threadgroup_change_begin(tsk);
2400 
2401 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2402 		tsk->flags |= PF_EXITING;
2403 		cgroup_threadgroup_change_end(tsk);
2404 		return;
2405 	}
2406 
2407 	spin_lock_irq(&tsk->sighand->siglock);
2408 	/*
2409 	 * From now this task is not visible for group-wide signals,
2410 	 * see wants_signal(), do_signal_stop().
2411 	 */
2412 	tsk->flags |= PF_EXITING;
2413 
2414 	cgroup_threadgroup_change_end(tsk);
2415 
2416 	if (!signal_pending(tsk))
2417 		goto out;
2418 
2419 	unblocked = tsk->blocked;
2420 	signotset(&unblocked);
2421 	retarget_shared_pending(tsk, &unblocked);
2422 
2423 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2424 	    task_participate_group_stop(tsk))
2425 		group_stop = CLD_STOPPED;
2426 out:
2427 	spin_unlock_irq(&tsk->sighand->siglock);
2428 
2429 	/*
2430 	 * If group stop has completed, deliver the notification.  This
2431 	 * should always go to the real parent of the group leader.
2432 	 */
2433 	if (unlikely(group_stop)) {
2434 		read_lock(&tasklist_lock);
2435 		do_notify_parent_cldstop(tsk, false, group_stop);
2436 		read_unlock(&tasklist_lock);
2437 	}
2438 }
2439 
2440 EXPORT_SYMBOL(recalc_sigpending);
2441 EXPORT_SYMBOL_GPL(dequeue_signal);
2442 EXPORT_SYMBOL(flush_signals);
2443 EXPORT_SYMBOL(force_sig);
2444 EXPORT_SYMBOL(send_sig);
2445 EXPORT_SYMBOL(send_sig_info);
2446 EXPORT_SYMBOL(sigprocmask);
2447 
2448 /*
2449  * System call entry points.
2450  */
2451 
2452 /**
2453  *  sys_restart_syscall - restart a system call
2454  */
2455 SYSCALL_DEFINE0(restart_syscall)
2456 {
2457 	struct restart_block *restart = &current->restart_block;
2458 	return restart->fn(restart);
2459 }
2460 
2461 long do_no_restart_syscall(struct restart_block *param)
2462 {
2463 	return -EINTR;
2464 }
2465 
2466 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2467 {
2468 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2469 		sigset_t newblocked;
2470 		/* A set of now blocked but previously unblocked signals. */
2471 		sigandnsets(&newblocked, newset, &current->blocked);
2472 		retarget_shared_pending(tsk, &newblocked);
2473 	}
2474 	tsk->blocked = *newset;
2475 	recalc_sigpending();
2476 }
2477 
2478 /**
2479  * set_current_blocked - change current->blocked mask
2480  * @newset: new mask
2481  *
2482  * It is wrong to change ->blocked directly, this helper should be used
2483  * to ensure the process can't miss a shared signal we are going to block.
2484  */
2485 void set_current_blocked(sigset_t *newset)
2486 {
2487 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2488 	__set_current_blocked(newset);
2489 }
2490 
2491 void __set_current_blocked(const sigset_t *newset)
2492 {
2493 	struct task_struct *tsk = current;
2494 
2495 	/*
2496 	 * In case the signal mask hasn't changed, there is nothing we need
2497 	 * to do. The current->blocked shouldn't be modified by other task.
2498 	 */
2499 	if (sigequalsets(&tsk->blocked, newset))
2500 		return;
2501 
2502 	spin_lock_irq(&tsk->sighand->siglock);
2503 	__set_task_blocked(tsk, newset);
2504 	spin_unlock_irq(&tsk->sighand->siglock);
2505 }
2506 
2507 /*
2508  * This is also useful for kernel threads that want to temporarily
2509  * (or permanently) block certain signals.
2510  *
2511  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2512  * interface happily blocks "unblockable" signals like SIGKILL
2513  * and friends.
2514  */
2515 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2516 {
2517 	struct task_struct *tsk = current;
2518 	sigset_t newset;
2519 
2520 	/* Lockless, only current can change ->blocked, never from irq */
2521 	if (oldset)
2522 		*oldset = tsk->blocked;
2523 
2524 	switch (how) {
2525 	case SIG_BLOCK:
2526 		sigorsets(&newset, &tsk->blocked, set);
2527 		break;
2528 	case SIG_UNBLOCK:
2529 		sigandnsets(&newset, &tsk->blocked, set);
2530 		break;
2531 	case SIG_SETMASK:
2532 		newset = *set;
2533 		break;
2534 	default:
2535 		return -EINVAL;
2536 	}
2537 
2538 	__set_current_blocked(&newset);
2539 	return 0;
2540 }
2541 
2542 /**
2543  *  sys_rt_sigprocmask - change the list of currently blocked signals
2544  *  @how: whether to add, remove, or set signals
2545  *  @nset: stores pending signals
2546  *  @oset: previous value of signal mask if non-null
2547  *  @sigsetsize: size of sigset_t type
2548  */
2549 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2550 		sigset_t __user *, oset, size_t, sigsetsize)
2551 {
2552 	sigset_t old_set, new_set;
2553 	int error;
2554 
2555 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2556 	if (sigsetsize != sizeof(sigset_t))
2557 		return -EINVAL;
2558 
2559 	old_set = current->blocked;
2560 
2561 	if (nset) {
2562 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2563 			return -EFAULT;
2564 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2565 
2566 		error = sigprocmask(how, &new_set, NULL);
2567 		if (error)
2568 			return error;
2569 	}
2570 
2571 	if (oset) {
2572 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2573 			return -EFAULT;
2574 	}
2575 
2576 	return 0;
2577 }
2578 
2579 #ifdef CONFIG_COMPAT
2580 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2581 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2582 {
2583 #ifdef __BIG_ENDIAN
2584 	sigset_t old_set = current->blocked;
2585 
2586 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2587 	if (sigsetsize != sizeof(sigset_t))
2588 		return -EINVAL;
2589 
2590 	if (nset) {
2591 		compat_sigset_t new32;
2592 		sigset_t new_set;
2593 		int error;
2594 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2595 			return -EFAULT;
2596 
2597 		sigset_from_compat(&new_set, &new32);
2598 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2599 
2600 		error = sigprocmask(how, &new_set, NULL);
2601 		if (error)
2602 			return error;
2603 	}
2604 	if (oset) {
2605 		compat_sigset_t old32;
2606 		sigset_to_compat(&old32, &old_set);
2607 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2608 			return -EFAULT;
2609 	}
2610 	return 0;
2611 #else
2612 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2613 				  (sigset_t __user *)oset, sigsetsize);
2614 #endif
2615 }
2616 #endif
2617 
2618 static int do_sigpending(void *set, unsigned long sigsetsize)
2619 {
2620 	if (sigsetsize > sizeof(sigset_t))
2621 		return -EINVAL;
2622 
2623 	spin_lock_irq(&current->sighand->siglock);
2624 	sigorsets(set, &current->pending.signal,
2625 		  &current->signal->shared_pending.signal);
2626 	spin_unlock_irq(&current->sighand->siglock);
2627 
2628 	/* Outside the lock because only this thread touches it.  */
2629 	sigandsets(set, &current->blocked, set);
2630 	return 0;
2631 }
2632 
2633 /**
2634  *  sys_rt_sigpending - examine a pending signal that has been raised
2635  *			while blocked
2636  *  @uset: stores pending signals
2637  *  @sigsetsize: size of sigset_t type or larger
2638  */
2639 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2640 {
2641 	sigset_t set;
2642 	int err = do_sigpending(&set, sigsetsize);
2643 	if (!err && copy_to_user(uset, &set, sigsetsize))
2644 		err = -EFAULT;
2645 	return err;
2646 }
2647 
2648 #ifdef CONFIG_COMPAT
2649 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2650 		compat_size_t, sigsetsize)
2651 {
2652 #ifdef __BIG_ENDIAN
2653 	sigset_t set;
2654 	int err = do_sigpending(&set, sigsetsize);
2655 	if (!err) {
2656 		compat_sigset_t set32;
2657 		sigset_to_compat(&set32, &set);
2658 		/* we can get here only if sigsetsize <= sizeof(set) */
2659 		if (copy_to_user(uset, &set32, sigsetsize))
2660 			err = -EFAULT;
2661 	}
2662 	return err;
2663 #else
2664 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2665 #endif
2666 }
2667 #endif
2668 
2669 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2670 
2671 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2672 {
2673 	int err;
2674 
2675 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2676 		return -EFAULT;
2677 	if (from->si_code < 0)
2678 		return __copy_to_user(to, from, sizeof(siginfo_t))
2679 			? -EFAULT : 0;
2680 	/*
2681 	 * If you change siginfo_t structure, please be sure
2682 	 * this code is fixed accordingly.
2683 	 * Please remember to update the signalfd_copyinfo() function
2684 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2685 	 * It should never copy any pad contained in the structure
2686 	 * to avoid security leaks, but must copy the generic
2687 	 * 3 ints plus the relevant union member.
2688 	 */
2689 	err = __put_user(from->si_signo, &to->si_signo);
2690 	err |= __put_user(from->si_errno, &to->si_errno);
2691 	err |= __put_user((short)from->si_code, &to->si_code);
2692 	switch (from->si_code & __SI_MASK) {
2693 	case __SI_KILL:
2694 		err |= __put_user(from->si_pid, &to->si_pid);
2695 		err |= __put_user(from->si_uid, &to->si_uid);
2696 		break;
2697 	case __SI_TIMER:
2698 		 err |= __put_user(from->si_tid, &to->si_tid);
2699 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2700 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2701 		break;
2702 	case __SI_POLL:
2703 		err |= __put_user(from->si_band, &to->si_band);
2704 		err |= __put_user(from->si_fd, &to->si_fd);
2705 		break;
2706 	case __SI_FAULT:
2707 		err |= __put_user(from->si_addr, &to->si_addr);
2708 #ifdef __ARCH_SI_TRAPNO
2709 		err |= __put_user(from->si_trapno, &to->si_trapno);
2710 #endif
2711 #ifdef BUS_MCEERR_AO
2712 		/*
2713 		 * Other callers might not initialize the si_lsb field,
2714 		 * so check explicitly for the right codes here.
2715 		 */
2716 		if (from->si_signo == SIGBUS &&
2717 		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2718 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2719 #endif
2720 #ifdef SEGV_BNDERR
2721 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2722 			err |= __put_user(from->si_lower, &to->si_lower);
2723 			err |= __put_user(from->si_upper, &to->si_upper);
2724 		}
2725 #endif
2726 #ifdef SEGV_PKUERR
2727 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2728 			err |= __put_user(from->si_pkey, &to->si_pkey);
2729 #endif
2730 		break;
2731 	case __SI_CHLD:
2732 		err |= __put_user(from->si_pid, &to->si_pid);
2733 		err |= __put_user(from->si_uid, &to->si_uid);
2734 		err |= __put_user(from->si_status, &to->si_status);
2735 		err |= __put_user(from->si_utime, &to->si_utime);
2736 		err |= __put_user(from->si_stime, &to->si_stime);
2737 		break;
2738 	case __SI_RT: /* This is not generated by the kernel as of now. */
2739 	case __SI_MESGQ: /* But this is */
2740 		err |= __put_user(from->si_pid, &to->si_pid);
2741 		err |= __put_user(from->si_uid, &to->si_uid);
2742 		err |= __put_user(from->si_ptr, &to->si_ptr);
2743 		break;
2744 #ifdef __ARCH_SIGSYS
2745 	case __SI_SYS:
2746 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2747 		err |= __put_user(from->si_syscall, &to->si_syscall);
2748 		err |= __put_user(from->si_arch, &to->si_arch);
2749 		break;
2750 #endif
2751 	default: /* this is just in case for now ... */
2752 		err |= __put_user(from->si_pid, &to->si_pid);
2753 		err |= __put_user(from->si_uid, &to->si_uid);
2754 		break;
2755 	}
2756 	return err;
2757 }
2758 
2759 #endif
2760 
2761 /**
2762  *  do_sigtimedwait - wait for queued signals specified in @which
2763  *  @which: queued signals to wait for
2764  *  @info: if non-null, the signal's siginfo is returned here
2765  *  @ts: upper bound on process time suspension
2766  */
2767 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2768 		    const struct timespec *ts)
2769 {
2770 	ktime_t *to = NULL, timeout = KTIME_MAX;
2771 	struct task_struct *tsk = current;
2772 	sigset_t mask = *which;
2773 	int sig, ret = 0;
2774 
2775 	if (ts) {
2776 		if (!timespec_valid(ts))
2777 			return -EINVAL;
2778 		timeout = timespec_to_ktime(*ts);
2779 		to = &timeout;
2780 	}
2781 
2782 	/*
2783 	 * Invert the set of allowed signals to get those we want to block.
2784 	 */
2785 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2786 	signotset(&mask);
2787 
2788 	spin_lock_irq(&tsk->sighand->siglock);
2789 	sig = dequeue_signal(tsk, &mask, info);
2790 	if (!sig && timeout) {
2791 		/*
2792 		 * None ready, temporarily unblock those we're interested
2793 		 * while we are sleeping in so that we'll be awakened when
2794 		 * they arrive. Unblocking is always fine, we can avoid
2795 		 * set_current_blocked().
2796 		 */
2797 		tsk->real_blocked = tsk->blocked;
2798 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2799 		recalc_sigpending();
2800 		spin_unlock_irq(&tsk->sighand->siglock);
2801 
2802 		__set_current_state(TASK_INTERRUPTIBLE);
2803 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2804 							 HRTIMER_MODE_REL);
2805 		spin_lock_irq(&tsk->sighand->siglock);
2806 		__set_task_blocked(tsk, &tsk->real_blocked);
2807 		sigemptyset(&tsk->real_blocked);
2808 		sig = dequeue_signal(tsk, &mask, info);
2809 	}
2810 	spin_unlock_irq(&tsk->sighand->siglock);
2811 
2812 	if (sig)
2813 		return sig;
2814 	return ret ? -EINTR : -EAGAIN;
2815 }
2816 
2817 /**
2818  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2819  *			in @uthese
2820  *  @uthese: queued signals to wait for
2821  *  @uinfo: if non-null, the signal's siginfo is returned here
2822  *  @uts: upper bound on process time suspension
2823  *  @sigsetsize: size of sigset_t type
2824  */
2825 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2826 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2827 		size_t, sigsetsize)
2828 {
2829 	sigset_t these;
2830 	struct timespec ts;
2831 	siginfo_t info;
2832 	int ret;
2833 
2834 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2835 	if (sigsetsize != sizeof(sigset_t))
2836 		return -EINVAL;
2837 
2838 	if (copy_from_user(&these, uthese, sizeof(these)))
2839 		return -EFAULT;
2840 
2841 	if (uts) {
2842 		if (copy_from_user(&ts, uts, sizeof(ts)))
2843 			return -EFAULT;
2844 	}
2845 
2846 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2847 
2848 	if (ret > 0 && uinfo) {
2849 		if (copy_siginfo_to_user(uinfo, &info))
2850 			ret = -EFAULT;
2851 	}
2852 
2853 	return ret;
2854 }
2855 
2856 /**
2857  *  sys_kill - send a signal to a process
2858  *  @pid: the PID of the process
2859  *  @sig: signal to be sent
2860  */
2861 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2862 {
2863 	struct siginfo info;
2864 
2865 	info.si_signo = sig;
2866 	info.si_errno = 0;
2867 	info.si_code = SI_USER;
2868 	info.si_pid = task_tgid_vnr(current);
2869 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2870 
2871 	return kill_something_info(sig, &info, pid);
2872 }
2873 
2874 static int
2875 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2876 {
2877 	struct task_struct *p;
2878 	int error = -ESRCH;
2879 
2880 	rcu_read_lock();
2881 	p = find_task_by_vpid(pid);
2882 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2883 		error = check_kill_permission(sig, info, p);
2884 		/*
2885 		 * The null signal is a permissions and process existence
2886 		 * probe.  No signal is actually delivered.
2887 		 */
2888 		if (!error && sig) {
2889 			error = do_send_sig_info(sig, info, p, false);
2890 			/*
2891 			 * If lock_task_sighand() failed we pretend the task
2892 			 * dies after receiving the signal. The window is tiny,
2893 			 * and the signal is private anyway.
2894 			 */
2895 			if (unlikely(error == -ESRCH))
2896 				error = 0;
2897 		}
2898 	}
2899 	rcu_read_unlock();
2900 
2901 	return error;
2902 }
2903 
2904 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2905 {
2906 	struct siginfo info = {};
2907 
2908 	info.si_signo = sig;
2909 	info.si_errno = 0;
2910 	info.si_code = SI_TKILL;
2911 	info.si_pid = task_tgid_vnr(current);
2912 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2913 
2914 	return do_send_specific(tgid, pid, sig, &info);
2915 }
2916 
2917 /**
2918  *  sys_tgkill - send signal to one specific thread
2919  *  @tgid: the thread group ID of the thread
2920  *  @pid: the PID of the thread
2921  *  @sig: signal to be sent
2922  *
2923  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2924  *  exists but it's not belonging to the target process anymore. This
2925  *  method solves the problem of threads exiting and PIDs getting reused.
2926  */
2927 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2928 {
2929 	/* This is only valid for single tasks */
2930 	if (pid <= 0 || tgid <= 0)
2931 		return -EINVAL;
2932 
2933 	return do_tkill(tgid, pid, sig);
2934 }
2935 
2936 /**
2937  *  sys_tkill - send signal to one specific task
2938  *  @pid: the PID of the task
2939  *  @sig: signal to be sent
2940  *
2941  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2942  */
2943 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2944 {
2945 	/* This is only valid for single tasks */
2946 	if (pid <= 0)
2947 		return -EINVAL;
2948 
2949 	return do_tkill(0, pid, sig);
2950 }
2951 
2952 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2953 {
2954 	/* Not even root can pretend to send signals from the kernel.
2955 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2956 	 */
2957 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2958 	    (task_pid_vnr(current) != pid))
2959 		return -EPERM;
2960 
2961 	info->si_signo = sig;
2962 
2963 	/* POSIX.1b doesn't mention process groups.  */
2964 	return kill_proc_info(sig, info, pid);
2965 }
2966 
2967 /**
2968  *  sys_rt_sigqueueinfo - send signal information to a signal
2969  *  @pid: the PID of the thread
2970  *  @sig: signal to be sent
2971  *  @uinfo: signal info to be sent
2972  */
2973 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2974 		siginfo_t __user *, uinfo)
2975 {
2976 	siginfo_t info;
2977 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2978 		return -EFAULT;
2979 	return do_rt_sigqueueinfo(pid, sig, &info);
2980 }
2981 
2982 #ifdef CONFIG_COMPAT
2983 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2984 			compat_pid_t, pid,
2985 			int, sig,
2986 			struct compat_siginfo __user *, uinfo)
2987 {
2988 	siginfo_t info = {};
2989 	int ret = copy_siginfo_from_user32(&info, uinfo);
2990 	if (unlikely(ret))
2991 		return ret;
2992 	return do_rt_sigqueueinfo(pid, sig, &info);
2993 }
2994 #endif
2995 
2996 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2997 {
2998 	/* This is only valid for single tasks */
2999 	if (pid <= 0 || tgid <= 0)
3000 		return -EINVAL;
3001 
3002 	/* Not even root can pretend to send signals from the kernel.
3003 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3004 	 */
3005 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3006 	    (task_pid_vnr(current) != pid))
3007 		return -EPERM;
3008 
3009 	info->si_signo = sig;
3010 
3011 	return do_send_specific(tgid, pid, sig, info);
3012 }
3013 
3014 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3015 		siginfo_t __user *, uinfo)
3016 {
3017 	siginfo_t info;
3018 
3019 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3020 		return -EFAULT;
3021 
3022 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3023 }
3024 
3025 #ifdef CONFIG_COMPAT
3026 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3027 			compat_pid_t, tgid,
3028 			compat_pid_t, pid,
3029 			int, sig,
3030 			struct compat_siginfo __user *, uinfo)
3031 {
3032 	siginfo_t info = {};
3033 
3034 	if (copy_siginfo_from_user32(&info, uinfo))
3035 		return -EFAULT;
3036 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3037 }
3038 #endif
3039 
3040 /*
3041  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3042  */
3043 void kernel_sigaction(int sig, __sighandler_t action)
3044 {
3045 	spin_lock_irq(&current->sighand->siglock);
3046 	current->sighand->action[sig - 1].sa.sa_handler = action;
3047 	if (action == SIG_IGN) {
3048 		sigset_t mask;
3049 
3050 		sigemptyset(&mask);
3051 		sigaddset(&mask, sig);
3052 
3053 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3054 		flush_sigqueue_mask(&mask, &current->pending);
3055 		recalc_sigpending();
3056 	}
3057 	spin_unlock_irq(&current->sighand->siglock);
3058 }
3059 EXPORT_SYMBOL(kernel_sigaction);
3060 
3061 void __weak sigaction_compat_abi(struct k_sigaction *act,
3062 		struct k_sigaction *oact)
3063 {
3064 }
3065 
3066 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3067 {
3068 	struct task_struct *p = current, *t;
3069 	struct k_sigaction *k;
3070 	sigset_t mask;
3071 
3072 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3073 		return -EINVAL;
3074 
3075 	k = &p->sighand->action[sig-1];
3076 
3077 	spin_lock_irq(&p->sighand->siglock);
3078 	if (oact)
3079 		*oact = *k;
3080 
3081 	sigaction_compat_abi(act, oact);
3082 
3083 	if (act) {
3084 		sigdelsetmask(&act->sa.sa_mask,
3085 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3086 		*k = *act;
3087 		/*
3088 		 * POSIX 3.3.1.3:
3089 		 *  "Setting a signal action to SIG_IGN for a signal that is
3090 		 *   pending shall cause the pending signal to be discarded,
3091 		 *   whether or not it is blocked."
3092 		 *
3093 		 *  "Setting a signal action to SIG_DFL for a signal that is
3094 		 *   pending and whose default action is to ignore the signal
3095 		 *   (for example, SIGCHLD), shall cause the pending signal to
3096 		 *   be discarded, whether or not it is blocked"
3097 		 */
3098 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3099 			sigemptyset(&mask);
3100 			sigaddset(&mask, sig);
3101 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3102 			for_each_thread(p, t)
3103 				flush_sigqueue_mask(&mask, &t->pending);
3104 		}
3105 	}
3106 
3107 	spin_unlock_irq(&p->sighand->siglock);
3108 	return 0;
3109 }
3110 
3111 static int
3112 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3113 {
3114 	stack_t oss;
3115 	int error;
3116 
3117 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3118 	oss.ss_size = current->sas_ss_size;
3119 	oss.ss_flags = sas_ss_flags(sp) |
3120 		(current->sas_ss_flags & SS_FLAG_BITS);
3121 
3122 	if (uss) {
3123 		void __user *ss_sp;
3124 		size_t ss_size;
3125 		unsigned ss_flags;
3126 		int ss_mode;
3127 
3128 		error = -EFAULT;
3129 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3130 			goto out;
3131 		error = __get_user(ss_sp, &uss->ss_sp) |
3132 			__get_user(ss_flags, &uss->ss_flags) |
3133 			__get_user(ss_size, &uss->ss_size);
3134 		if (error)
3135 			goto out;
3136 
3137 		error = -EPERM;
3138 		if (on_sig_stack(sp))
3139 			goto out;
3140 
3141 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3142 		error = -EINVAL;
3143 		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3144 				ss_mode != 0)
3145 			goto out;
3146 
3147 		if (ss_mode == SS_DISABLE) {
3148 			ss_size = 0;
3149 			ss_sp = NULL;
3150 		} else {
3151 			error = -ENOMEM;
3152 			if (ss_size < MINSIGSTKSZ)
3153 				goto out;
3154 		}
3155 
3156 		current->sas_ss_sp = (unsigned long) ss_sp;
3157 		current->sas_ss_size = ss_size;
3158 		current->sas_ss_flags = ss_flags;
3159 	}
3160 
3161 	error = 0;
3162 	if (uoss) {
3163 		error = -EFAULT;
3164 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3165 			goto out;
3166 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3167 			__put_user(oss.ss_size, &uoss->ss_size) |
3168 			__put_user(oss.ss_flags, &uoss->ss_flags);
3169 	}
3170 
3171 out:
3172 	return error;
3173 }
3174 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3175 {
3176 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3177 }
3178 
3179 int restore_altstack(const stack_t __user *uss)
3180 {
3181 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3182 	/* squash all but EFAULT for now */
3183 	return err == -EFAULT ? err : 0;
3184 }
3185 
3186 int __save_altstack(stack_t __user *uss, unsigned long sp)
3187 {
3188 	struct task_struct *t = current;
3189 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3190 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3191 		__put_user(t->sas_ss_size, &uss->ss_size);
3192 	if (err)
3193 		return err;
3194 	if (t->sas_ss_flags & SS_AUTODISARM)
3195 		sas_ss_reset(t);
3196 	return 0;
3197 }
3198 
3199 #ifdef CONFIG_COMPAT
3200 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3201 			const compat_stack_t __user *, uss_ptr,
3202 			compat_stack_t __user *, uoss_ptr)
3203 {
3204 	stack_t uss, uoss;
3205 	int ret;
3206 	mm_segment_t seg;
3207 
3208 	if (uss_ptr) {
3209 		compat_stack_t uss32;
3210 
3211 		memset(&uss, 0, sizeof(stack_t));
3212 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3213 			return -EFAULT;
3214 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3215 		uss.ss_flags = uss32.ss_flags;
3216 		uss.ss_size = uss32.ss_size;
3217 	}
3218 	seg = get_fs();
3219 	set_fs(KERNEL_DS);
3220 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3221 			     (stack_t __force __user *) &uoss,
3222 			     compat_user_stack_pointer());
3223 	set_fs(seg);
3224 	if (ret >= 0 && uoss_ptr)  {
3225 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3226 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3227 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3228 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3229 			ret = -EFAULT;
3230 	}
3231 	return ret;
3232 }
3233 
3234 int compat_restore_altstack(const compat_stack_t __user *uss)
3235 {
3236 	int err = compat_sys_sigaltstack(uss, NULL);
3237 	/* squash all but -EFAULT for now */
3238 	return err == -EFAULT ? err : 0;
3239 }
3240 
3241 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3242 {
3243 	int err;
3244 	struct task_struct *t = current;
3245 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3246 			 &uss->ss_sp) |
3247 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3248 		__put_user(t->sas_ss_size, &uss->ss_size);
3249 	if (err)
3250 		return err;
3251 	if (t->sas_ss_flags & SS_AUTODISARM)
3252 		sas_ss_reset(t);
3253 	return 0;
3254 }
3255 #endif
3256 
3257 #ifdef __ARCH_WANT_SYS_SIGPENDING
3258 
3259 /**
3260  *  sys_sigpending - examine pending signals
3261  *  @set: where mask of pending signal is returned
3262  */
3263 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3264 {
3265 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3266 }
3267 
3268 #endif
3269 
3270 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3271 /**
3272  *  sys_sigprocmask - examine and change blocked signals
3273  *  @how: whether to add, remove, or set signals
3274  *  @nset: signals to add or remove (if non-null)
3275  *  @oset: previous value of signal mask if non-null
3276  *
3277  * Some platforms have their own version with special arguments;
3278  * others support only sys_rt_sigprocmask.
3279  */
3280 
3281 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3282 		old_sigset_t __user *, oset)
3283 {
3284 	old_sigset_t old_set, new_set;
3285 	sigset_t new_blocked;
3286 
3287 	old_set = current->blocked.sig[0];
3288 
3289 	if (nset) {
3290 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3291 			return -EFAULT;
3292 
3293 		new_blocked = current->blocked;
3294 
3295 		switch (how) {
3296 		case SIG_BLOCK:
3297 			sigaddsetmask(&new_blocked, new_set);
3298 			break;
3299 		case SIG_UNBLOCK:
3300 			sigdelsetmask(&new_blocked, new_set);
3301 			break;
3302 		case SIG_SETMASK:
3303 			new_blocked.sig[0] = new_set;
3304 			break;
3305 		default:
3306 			return -EINVAL;
3307 		}
3308 
3309 		set_current_blocked(&new_blocked);
3310 	}
3311 
3312 	if (oset) {
3313 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3314 			return -EFAULT;
3315 	}
3316 
3317 	return 0;
3318 }
3319 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3320 
3321 #ifndef CONFIG_ODD_RT_SIGACTION
3322 /**
3323  *  sys_rt_sigaction - alter an action taken by a process
3324  *  @sig: signal to be sent
3325  *  @act: new sigaction
3326  *  @oact: used to save the previous sigaction
3327  *  @sigsetsize: size of sigset_t type
3328  */
3329 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3330 		const struct sigaction __user *, act,
3331 		struct sigaction __user *, oact,
3332 		size_t, sigsetsize)
3333 {
3334 	struct k_sigaction new_sa, old_sa;
3335 	int ret = -EINVAL;
3336 
3337 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3338 	if (sigsetsize != sizeof(sigset_t))
3339 		goto out;
3340 
3341 	if (act) {
3342 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3343 			return -EFAULT;
3344 	}
3345 
3346 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3347 
3348 	if (!ret && oact) {
3349 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3350 			return -EFAULT;
3351 	}
3352 out:
3353 	return ret;
3354 }
3355 #ifdef CONFIG_COMPAT
3356 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3357 		const struct compat_sigaction __user *, act,
3358 		struct compat_sigaction __user *, oact,
3359 		compat_size_t, sigsetsize)
3360 {
3361 	struct k_sigaction new_ka, old_ka;
3362 	compat_sigset_t mask;
3363 #ifdef __ARCH_HAS_SA_RESTORER
3364 	compat_uptr_t restorer;
3365 #endif
3366 	int ret;
3367 
3368 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3369 	if (sigsetsize != sizeof(compat_sigset_t))
3370 		return -EINVAL;
3371 
3372 	if (act) {
3373 		compat_uptr_t handler;
3374 		ret = get_user(handler, &act->sa_handler);
3375 		new_ka.sa.sa_handler = compat_ptr(handler);
3376 #ifdef __ARCH_HAS_SA_RESTORER
3377 		ret |= get_user(restorer, &act->sa_restorer);
3378 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3379 #endif
3380 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3381 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3382 		if (ret)
3383 			return -EFAULT;
3384 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3385 	}
3386 
3387 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3388 	if (!ret && oact) {
3389 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3390 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3391 			       &oact->sa_handler);
3392 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3393 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3394 #ifdef __ARCH_HAS_SA_RESTORER
3395 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3396 				&oact->sa_restorer);
3397 #endif
3398 	}
3399 	return ret;
3400 }
3401 #endif
3402 #endif /* !CONFIG_ODD_RT_SIGACTION */
3403 
3404 #ifdef CONFIG_OLD_SIGACTION
3405 SYSCALL_DEFINE3(sigaction, int, sig,
3406 		const struct old_sigaction __user *, act,
3407 	        struct old_sigaction __user *, oact)
3408 {
3409 	struct k_sigaction new_ka, old_ka;
3410 	int ret;
3411 
3412 	if (act) {
3413 		old_sigset_t mask;
3414 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3415 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3416 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3417 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3418 		    __get_user(mask, &act->sa_mask))
3419 			return -EFAULT;
3420 #ifdef __ARCH_HAS_KA_RESTORER
3421 		new_ka.ka_restorer = NULL;
3422 #endif
3423 		siginitset(&new_ka.sa.sa_mask, mask);
3424 	}
3425 
3426 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3427 
3428 	if (!ret && oact) {
3429 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3430 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3431 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3432 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3433 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3434 			return -EFAULT;
3435 	}
3436 
3437 	return ret;
3438 }
3439 #endif
3440 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3441 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3442 		const struct compat_old_sigaction __user *, act,
3443 	        struct compat_old_sigaction __user *, oact)
3444 {
3445 	struct k_sigaction new_ka, old_ka;
3446 	int ret;
3447 	compat_old_sigset_t mask;
3448 	compat_uptr_t handler, restorer;
3449 
3450 	if (act) {
3451 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3452 		    __get_user(handler, &act->sa_handler) ||
3453 		    __get_user(restorer, &act->sa_restorer) ||
3454 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3455 		    __get_user(mask, &act->sa_mask))
3456 			return -EFAULT;
3457 
3458 #ifdef __ARCH_HAS_KA_RESTORER
3459 		new_ka.ka_restorer = NULL;
3460 #endif
3461 		new_ka.sa.sa_handler = compat_ptr(handler);
3462 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3463 		siginitset(&new_ka.sa.sa_mask, mask);
3464 	}
3465 
3466 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3467 
3468 	if (!ret && oact) {
3469 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3470 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3471 			       &oact->sa_handler) ||
3472 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3473 			       &oact->sa_restorer) ||
3474 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3475 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3476 			return -EFAULT;
3477 	}
3478 	return ret;
3479 }
3480 #endif
3481 
3482 #ifdef CONFIG_SGETMASK_SYSCALL
3483 
3484 /*
3485  * For backwards compatibility.  Functionality superseded by sigprocmask.
3486  */
3487 SYSCALL_DEFINE0(sgetmask)
3488 {
3489 	/* SMP safe */
3490 	return current->blocked.sig[0];
3491 }
3492 
3493 SYSCALL_DEFINE1(ssetmask, int, newmask)
3494 {
3495 	int old = current->blocked.sig[0];
3496 	sigset_t newset;
3497 
3498 	siginitset(&newset, newmask);
3499 	set_current_blocked(&newset);
3500 
3501 	return old;
3502 }
3503 #endif /* CONFIG_SGETMASK_SYSCALL */
3504 
3505 #ifdef __ARCH_WANT_SYS_SIGNAL
3506 /*
3507  * For backwards compatibility.  Functionality superseded by sigaction.
3508  */
3509 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3510 {
3511 	struct k_sigaction new_sa, old_sa;
3512 	int ret;
3513 
3514 	new_sa.sa.sa_handler = handler;
3515 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3516 	sigemptyset(&new_sa.sa.sa_mask);
3517 
3518 	ret = do_sigaction(sig, &new_sa, &old_sa);
3519 
3520 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3521 }
3522 #endif /* __ARCH_WANT_SYS_SIGNAL */
3523 
3524 #ifdef __ARCH_WANT_SYS_PAUSE
3525 
3526 SYSCALL_DEFINE0(pause)
3527 {
3528 	while (!signal_pending(current)) {
3529 		__set_current_state(TASK_INTERRUPTIBLE);
3530 		schedule();
3531 	}
3532 	return -ERESTARTNOHAND;
3533 }
3534 
3535 #endif
3536 
3537 static int sigsuspend(sigset_t *set)
3538 {
3539 	current->saved_sigmask = current->blocked;
3540 	set_current_blocked(set);
3541 
3542 	while (!signal_pending(current)) {
3543 		__set_current_state(TASK_INTERRUPTIBLE);
3544 		schedule();
3545 	}
3546 	set_restore_sigmask();
3547 	return -ERESTARTNOHAND;
3548 }
3549 
3550 /**
3551  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3552  *	@unewset value until a signal is received
3553  *  @unewset: new signal mask value
3554  *  @sigsetsize: size of sigset_t type
3555  */
3556 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3557 {
3558 	sigset_t newset;
3559 
3560 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3561 	if (sigsetsize != sizeof(sigset_t))
3562 		return -EINVAL;
3563 
3564 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3565 		return -EFAULT;
3566 	return sigsuspend(&newset);
3567 }
3568 
3569 #ifdef CONFIG_COMPAT
3570 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3571 {
3572 #ifdef __BIG_ENDIAN
3573 	sigset_t newset;
3574 	compat_sigset_t newset32;
3575 
3576 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3577 	if (sigsetsize != sizeof(sigset_t))
3578 		return -EINVAL;
3579 
3580 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3581 		return -EFAULT;
3582 	sigset_from_compat(&newset, &newset32);
3583 	return sigsuspend(&newset);
3584 #else
3585 	/* on little-endian bitmaps don't care about granularity */
3586 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3587 #endif
3588 }
3589 #endif
3590 
3591 #ifdef CONFIG_OLD_SIGSUSPEND
3592 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3593 {
3594 	sigset_t blocked;
3595 	siginitset(&blocked, mask);
3596 	return sigsuspend(&blocked);
3597 }
3598 #endif
3599 #ifdef CONFIG_OLD_SIGSUSPEND3
3600 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3601 {
3602 	sigset_t blocked;
3603 	siginitset(&blocked, mask);
3604 	return sigsuspend(&blocked);
3605 }
3606 #endif
3607 
3608 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3609 {
3610 	return NULL;
3611 }
3612 
3613 void __init signals_init(void)
3614 {
3615 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3616 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3617 		!= offsetof(struct siginfo, _sifields._pad));
3618 
3619 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3620 }
3621 
3622 #ifdef CONFIG_KGDB_KDB
3623 #include <linux/kdb.h>
3624 /*
3625  * kdb_send_sig_info - Allows kdb to send signals without exposing
3626  * signal internals.  This function checks if the required locks are
3627  * available before calling the main signal code, to avoid kdb
3628  * deadlocks.
3629  */
3630 void
3631 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3632 {
3633 	static struct task_struct *kdb_prev_t;
3634 	int sig, new_t;
3635 	if (!spin_trylock(&t->sighand->siglock)) {
3636 		kdb_printf("Can't do kill command now.\n"
3637 			   "The sigmask lock is held somewhere else in "
3638 			   "kernel, try again later\n");
3639 		return;
3640 	}
3641 	spin_unlock(&t->sighand->siglock);
3642 	new_t = kdb_prev_t != t;
3643 	kdb_prev_t = t;
3644 	if (t->state != TASK_RUNNING && new_t) {
3645 		kdb_printf("Process is not RUNNING, sending a signal from "
3646 			   "kdb risks deadlock\n"
3647 			   "on the run queue locks. "
3648 			   "The signal has _not_ been sent.\n"
3649 			   "Reissue the kill command if you want to risk "
3650 			   "the deadlock.\n");
3651 		return;
3652 	}
3653 	sig = info->si_signo;
3654 	if (send_sig_info(sig, info, t))
3655 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3656 			   sig, t->pid);
3657 	else
3658 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3659 }
3660 #endif	/* CONFIG_KGDB_KDB */
3661