1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/sched/user.h> 18 #include <linux/fs.h> 19 #include <linux/tty.h> 20 #include <linux/binfmts.h> 21 #include <linux/coredump.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/ptrace.h> 25 #include <linux/signal.h> 26 #include <linux/signalfd.h> 27 #include <linux/ratelimit.h> 28 #include <linux/tracehook.h> 29 #include <linux/capability.h> 30 #include <linux/freezer.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/nsproxy.h> 33 #include <linux/user_namespace.h> 34 #include <linux/uprobes.h> 35 #include <linux/compat.h> 36 #include <linux/cn_proc.h> 37 #include <linux/compiler.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/signal.h> 41 42 #include <asm/param.h> 43 #include <linux/uaccess.h> 44 #include <asm/unistd.h> 45 #include <asm/siginfo.h> 46 #include <asm/cacheflush.h> 47 #include "audit.h" /* audit_signal_info() */ 48 49 /* 50 * SLAB caches for signal bits. 51 */ 52 53 static struct kmem_cache *sigqueue_cachep; 54 55 int print_fatal_signals __read_mostly; 56 57 static void __user *sig_handler(struct task_struct *t, int sig) 58 { 59 return t->sighand->action[sig - 1].sa.sa_handler; 60 } 61 62 static int sig_handler_ignored(void __user *handler, int sig) 63 { 64 /* Is it explicitly or implicitly ignored? */ 65 return handler == SIG_IGN || 66 (handler == SIG_DFL && sig_kernel_ignore(sig)); 67 } 68 69 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 70 { 71 void __user *handler; 72 73 handler = sig_handler(t, sig); 74 75 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 76 handler == SIG_DFL && !force) 77 return 1; 78 79 return sig_handler_ignored(handler, sig); 80 } 81 82 static int sig_ignored(struct task_struct *t, int sig, bool force) 83 { 84 /* 85 * Blocked signals are never ignored, since the 86 * signal handler may change by the time it is 87 * unblocked. 88 */ 89 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 90 return 0; 91 92 if (!sig_task_ignored(t, sig, force)) 93 return 0; 94 95 /* 96 * Tracers may want to know about even ignored signals. 97 */ 98 return !t->ptrace; 99 } 100 101 /* 102 * Re-calculate pending state from the set of locally pending 103 * signals, globally pending signals, and blocked signals. 104 */ 105 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 106 { 107 unsigned long ready; 108 long i; 109 110 switch (_NSIG_WORDS) { 111 default: 112 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 113 ready |= signal->sig[i] &~ blocked->sig[i]; 114 break; 115 116 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 117 ready |= signal->sig[2] &~ blocked->sig[2]; 118 ready |= signal->sig[1] &~ blocked->sig[1]; 119 ready |= signal->sig[0] &~ blocked->sig[0]; 120 break; 121 122 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 123 ready |= signal->sig[0] &~ blocked->sig[0]; 124 break; 125 126 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 127 } 128 return ready != 0; 129 } 130 131 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 132 133 static int recalc_sigpending_tsk(struct task_struct *t) 134 { 135 if ((t->jobctl & JOBCTL_PENDING_MASK) || 136 PENDING(&t->pending, &t->blocked) || 137 PENDING(&t->signal->shared_pending, &t->blocked)) { 138 set_tsk_thread_flag(t, TIF_SIGPENDING); 139 return 1; 140 } 141 /* 142 * We must never clear the flag in another thread, or in current 143 * when it's possible the current syscall is returning -ERESTART*. 144 * So we don't clear it here, and only callers who know they should do. 145 */ 146 return 0; 147 } 148 149 /* 150 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 151 * This is superfluous when called on current, the wakeup is a harmless no-op. 152 */ 153 void recalc_sigpending_and_wake(struct task_struct *t) 154 { 155 if (recalc_sigpending_tsk(t)) 156 signal_wake_up(t, 0); 157 } 158 159 void recalc_sigpending(void) 160 { 161 if (!recalc_sigpending_tsk(current) && !freezing(current)) 162 clear_thread_flag(TIF_SIGPENDING); 163 164 } 165 166 /* Given the mask, find the first available signal that should be serviced. */ 167 168 #define SYNCHRONOUS_MASK \ 169 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 170 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 171 172 int next_signal(struct sigpending *pending, sigset_t *mask) 173 { 174 unsigned long i, *s, *m, x; 175 int sig = 0; 176 177 s = pending->signal.sig; 178 m = mask->sig; 179 180 /* 181 * Handle the first word specially: it contains the 182 * synchronous signals that need to be dequeued first. 183 */ 184 x = *s &~ *m; 185 if (x) { 186 if (x & SYNCHRONOUS_MASK) 187 x &= SYNCHRONOUS_MASK; 188 sig = ffz(~x) + 1; 189 return sig; 190 } 191 192 switch (_NSIG_WORDS) { 193 default: 194 for (i = 1; i < _NSIG_WORDS; ++i) { 195 x = *++s &~ *++m; 196 if (!x) 197 continue; 198 sig = ffz(~x) + i*_NSIG_BPW + 1; 199 break; 200 } 201 break; 202 203 case 2: 204 x = s[1] &~ m[1]; 205 if (!x) 206 break; 207 sig = ffz(~x) + _NSIG_BPW + 1; 208 break; 209 210 case 1: 211 /* Nothing to do */ 212 break; 213 } 214 215 return sig; 216 } 217 218 static inline void print_dropped_signal(int sig) 219 { 220 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 221 222 if (!print_fatal_signals) 223 return; 224 225 if (!__ratelimit(&ratelimit_state)) 226 return; 227 228 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 229 current->comm, current->pid, sig); 230 } 231 232 /** 233 * task_set_jobctl_pending - set jobctl pending bits 234 * @task: target task 235 * @mask: pending bits to set 236 * 237 * Clear @mask from @task->jobctl. @mask must be subset of 238 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 239 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 240 * cleared. If @task is already being killed or exiting, this function 241 * becomes noop. 242 * 243 * CONTEXT: 244 * Must be called with @task->sighand->siglock held. 245 * 246 * RETURNS: 247 * %true if @mask is set, %false if made noop because @task was dying. 248 */ 249 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 250 { 251 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 252 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 253 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 254 255 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 256 return false; 257 258 if (mask & JOBCTL_STOP_SIGMASK) 259 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 260 261 task->jobctl |= mask; 262 return true; 263 } 264 265 /** 266 * task_clear_jobctl_trapping - clear jobctl trapping bit 267 * @task: target task 268 * 269 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 270 * Clear it and wake up the ptracer. Note that we don't need any further 271 * locking. @task->siglock guarantees that @task->parent points to the 272 * ptracer. 273 * 274 * CONTEXT: 275 * Must be called with @task->sighand->siglock held. 276 */ 277 void task_clear_jobctl_trapping(struct task_struct *task) 278 { 279 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 280 task->jobctl &= ~JOBCTL_TRAPPING; 281 smp_mb(); /* advised by wake_up_bit() */ 282 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 283 } 284 } 285 286 /** 287 * task_clear_jobctl_pending - clear jobctl pending bits 288 * @task: target task 289 * @mask: pending bits to clear 290 * 291 * Clear @mask from @task->jobctl. @mask must be subset of 292 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 293 * STOP bits are cleared together. 294 * 295 * If clearing of @mask leaves no stop or trap pending, this function calls 296 * task_clear_jobctl_trapping(). 297 * 298 * CONTEXT: 299 * Must be called with @task->sighand->siglock held. 300 */ 301 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 302 { 303 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 304 305 if (mask & JOBCTL_STOP_PENDING) 306 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 307 308 task->jobctl &= ~mask; 309 310 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 311 task_clear_jobctl_trapping(task); 312 } 313 314 /** 315 * task_participate_group_stop - participate in a group stop 316 * @task: task participating in a group stop 317 * 318 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 319 * Group stop states are cleared and the group stop count is consumed if 320 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 321 * stop, the appropriate %SIGNAL_* flags are set. 322 * 323 * CONTEXT: 324 * Must be called with @task->sighand->siglock held. 325 * 326 * RETURNS: 327 * %true if group stop completion should be notified to the parent, %false 328 * otherwise. 329 */ 330 static bool task_participate_group_stop(struct task_struct *task) 331 { 332 struct signal_struct *sig = task->signal; 333 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 334 335 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 336 337 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 338 339 if (!consume) 340 return false; 341 342 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 343 sig->group_stop_count--; 344 345 /* 346 * Tell the caller to notify completion iff we are entering into a 347 * fresh group stop. Read comment in do_signal_stop() for details. 348 */ 349 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 350 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 351 return true; 352 } 353 return false; 354 } 355 356 /* 357 * allocate a new signal queue record 358 * - this may be called without locks if and only if t == current, otherwise an 359 * appropriate lock must be held to stop the target task from exiting 360 */ 361 static struct sigqueue * 362 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 363 { 364 struct sigqueue *q = NULL; 365 struct user_struct *user; 366 367 /* 368 * Protect access to @t credentials. This can go away when all 369 * callers hold rcu read lock. 370 */ 371 rcu_read_lock(); 372 user = get_uid(__task_cred(t)->user); 373 atomic_inc(&user->sigpending); 374 rcu_read_unlock(); 375 376 if (override_rlimit || 377 atomic_read(&user->sigpending) <= 378 task_rlimit(t, RLIMIT_SIGPENDING)) { 379 q = kmem_cache_alloc(sigqueue_cachep, flags); 380 } else { 381 print_dropped_signal(sig); 382 } 383 384 if (unlikely(q == NULL)) { 385 atomic_dec(&user->sigpending); 386 free_uid(user); 387 } else { 388 INIT_LIST_HEAD(&q->list); 389 q->flags = 0; 390 q->user = user; 391 } 392 393 return q; 394 } 395 396 static void __sigqueue_free(struct sigqueue *q) 397 { 398 if (q->flags & SIGQUEUE_PREALLOC) 399 return; 400 atomic_dec(&q->user->sigpending); 401 free_uid(q->user); 402 kmem_cache_free(sigqueue_cachep, q); 403 } 404 405 void flush_sigqueue(struct sigpending *queue) 406 { 407 struct sigqueue *q; 408 409 sigemptyset(&queue->signal); 410 while (!list_empty(&queue->list)) { 411 q = list_entry(queue->list.next, struct sigqueue , list); 412 list_del_init(&q->list); 413 __sigqueue_free(q); 414 } 415 } 416 417 /* 418 * Flush all pending signals for this kthread. 419 */ 420 void flush_signals(struct task_struct *t) 421 { 422 unsigned long flags; 423 424 spin_lock_irqsave(&t->sighand->siglock, flags); 425 clear_tsk_thread_flag(t, TIF_SIGPENDING); 426 flush_sigqueue(&t->pending); 427 flush_sigqueue(&t->signal->shared_pending); 428 spin_unlock_irqrestore(&t->sighand->siglock, flags); 429 } 430 431 #ifdef CONFIG_POSIX_TIMERS 432 static void __flush_itimer_signals(struct sigpending *pending) 433 { 434 sigset_t signal, retain; 435 struct sigqueue *q, *n; 436 437 signal = pending->signal; 438 sigemptyset(&retain); 439 440 list_for_each_entry_safe(q, n, &pending->list, list) { 441 int sig = q->info.si_signo; 442 443 if (likely(q->info.si_code != SI_TIMER)) { 444 sigaddset(&retain, sig); 445 } else { 446 sigdelset(&signal, sig); 447 list_del_init(&q->list); 448 __sigqueue_free(q); 449 } 450 } 451 452 sigorsets(&pending->signal, &signal, &retain); 453 } 454 455 void flush_itimer_signals(void) 456 { 457 struct task_struct *tsk = current; 458 unsigned long flags; 459 460 spin_lock_irqsave(&tsk->sighand->siglock, flags); 461 __flush_itimer_signals(&tsk->pending); 462 __flush_itimer_signals(&tsk->signal->shared_pending); 463 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 464 } 465 #endif 466 467 void ignore_signals(struct task_struct *t) 468 { 469 int i; 470 471 for (i = 0; i < _NSIG; ++i) 472 t->sighand->action[i].sa.sa_handler = SIG_IGN; 473 474 flush_signals(t); 475 } 476 477 /* 478 * Flush all handlers for a task. 479 */ 480 481 void 482 flush_signal_handlers(struct task_struct *t, int force_default) 483 { 484 int i; 485 struct k_sigaction *ka = &t->sighand->action[0]; 486 for (i = _NSIG ; i != 0 ; i--) { 487 if (force_default || ka->sa.sa_handler != SIG_IGN) 488 ka->sa.sa_handler = SIG_DFL; 489 ka->sa.sa_flags = 0; 490 #ifdef __ARCH_HAS_SA_RESTORER 491 ka->sa.sa_restorer = NULL; 492 #endif 493 sigemptyset(&ka->sa.sa_mask); 494 ka++; 495 } 496 } 497 498 int unhandled_signal(struct task_struct *tsk, int sig) 499 { 500 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 501 if (is_global_init(tsk)) 502 return 1; 503 if (handler != SIG_IGN && handler != SIG_DFL) 504 return 0; 505 /* if ptraced, let the tracer determine */ 506 return !tsk->ptrace; 507 } 508 509 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 510 { 511 struct sigqueue *q, *first = NULL; 512 513 /* 514 * Collect the siginfo appropriate to this signal. Check if 515 * there is another siginfo for the same signal. 516 */ 517 list_for_each_entry(q, &list->list, list) { 518 if (q->info.si_signo == sig) { 519 if (first) 520 goto still_pending; 521 first = q; 522 } 523 } 524 525 sigdelset(&list->signal, sig); 526 527 if (first) { 528 still_pending: 529 list_del_init(&first->list); 530 copy_siginfo(info, &first->info); 531 __sigqueue_free(first); 532 } else { 533 /* 534 * Ok, it wasn't in the queue. This must be 535 * a fast-pathed signal or we must have been 536 * out of queue space. So zero out the info. 537 */ 538 info->si_signo = sig; 539 info->si_errno = 0; 540 info->si_code = SI_USER; 541 info->si_pid = 0; 542 info->si_uid = 0; 543 } 544 } 545 546 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 547 siginfo_t *info) 548 { 549 int sig = next_signal(pending, mask); 550 551 if (sig) 552 collect_signal(sig, pending, info); 553 return sig; 554 } 555 556 /* 557 * Dequeue a signal and return the element to the caller, which is 558 * expected to free it. 559 * 560 * All callers have to hold the siglock. 561 */ 562 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 563 { 564 int signr; 565 566 /* We only dequeue private signals from ourselves, we don't let 567 * signalfd steal them 568 */ 569 signr = __dequeue_signal(&tsk->pending, mask, info); 570 if (!signr) { 571 signr = __dequeue_signal(&tsk->signal->shared_pending, 572 mask, info); 573 #ifdef CONFIG_POSIX_TIMERS 574 /* 575 * itimer signal ? 576 * 577 * itimers are process shared and we restart periodic 578 * itimers in the signal delivery path to prevent DoS 579 * attacks in the high resolution timer case. This is 580 * compliant with the old way of self-restarting 581 * itimers, as the SIGALRM is a legacy signal and only 582 * queued once. Changing the restart behaviour to 583 * restart the timer in the signal dequeue path is 584 * reducing the timer noise on heavy loaded !highres 585 * systems too. 586 */ 587 if (unlikely(signr == SIGALRM)) { 588 struct hrtimer *tmr = &tsk->signal->real_timer; 589 590 if (!hrtimer_is_queued(tmr) && 591 tsk->signal->it_real_incr != 0) { 592 hrtimer_forward(tmr, tmr->base->get_time(), 593 tsk->signal->it_real_incr); 594 hrtimer_restart(tmr); 595 } 596 } 597 #endif 598 } 599 600 recalc_sigpending(); 601 if (!signr) 602 return 0; 603 604 if (unlikely(sig_kernel_stop(signr))) { 605 /* 606 * Set a marker that we have dequeued a stop signal. Our 607 * caller might release the siglock and then the pending 608 * stop signal it is about to process is no longer in the 609 * pending bitmasks, but must still be cleared by a SIGCONT 610 * (and overruled by a SIGKILL). So those cases clear this 611 * shared flag after we've set it. Note that this flag may 612 * remain set after the signal we return is ignored or 613 * handled. That doesn't matter because its only purpose 614 * is to alert stop-signal processing code when another 615 * processor has come along and cleared the flag. 616 */ 617 current->jobctl |= JOBCTL_STOP_DEQUEUED; 618 } 619 #ifdef CONFIG_POSIX_TIMERS 620 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 621 /* 622 * Release the siglock to ensure proper locking order 623 * of timer locks outside of siglocks. Note, we leave 624 * irqs disabled here, since the posix-timers code is 625 * about to disable them again anyway. 626 */ 627 spin_unlock(&tsk->sighand->siglock); 628 do_schedule_next_timer(info); 629 spin_lock(&tsk->sighand->siglock); 630 } 631 #endif 632 return signr; 633 } 634 635 /* 636 * Tell a process that it has a new active signal.. 637 * 638 * NOTE! we rely on the previous spin_lock to 639 * lock interrupts for us! We can only be called with 640 * "siglock" held, and the local interrupt must 641 * have been disabled when that got acquired! 642 * 643 * No need to set need_resched since signal event passing 644 * goes through ->blocked 645 */ 646 void signal_wake_up_state(struct task_struct *t, unsigned int state) 647 { 648 set_tsk_thread_flag(t, TIF_SIGPENDING); 649 /* 650 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 651 * case. We don't check t->state here because there is a race with it 652 * executing another processor and just now entering stopped state. 653 * By using wake_up_state, we ensure the process will wake up and 654 * handle its death signal. 655 */ 656 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 657 kick_process(t); 658 } 659 660 /* 661 * Remove signals in mask from the pending set and queue. 662 * Returns 1 if any signals were found. 663 * 664 * All callers must be holding the siglock. 665 */ 666 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 667 { 668 struct sigqueue *q, *n; 669 sigset_t m; 670 671 sigandsets(&m, mask, &s->signal); 672 if (sigisemptyset(&m)) 673 return 0; 674 675 sigandnsets(&s->signal, &s->signal, mask); 676 list_for_each_entry_safe(q, n, &s->list, list) { 677 if (sigismember(mask, q->info.si_signo)) { 678 list_del_init(&q->list); 679 __sigqueue_free(q); 680 } 681 } 682 return 1; 683 } 684 685 static inline int is_si_special(const struct siginfo *info) 686 { 687 return info <= SEND_SIG_FORCED; 688 } 689 690 static inline bool si_fromuser(const struct siginfo *info) 691 { 692 return info == SEND_SIG_NOINFO || 693 (!is_si_special(info) && SI_FROMUSER(info)); 694 } 695 696 /* 697 * called with RCU read lock from check_kill_permission() 698 */ 699 static int kill_ok_by_cred(struct task_struct *t) 700 { 701 const struct cred *cred = current_cred(); 702 const struct cred *tcred = __task_cred(t); 703 704 if (uid_eq(cred->euid, tcred->suid) || 705 uid_eq(cred->euid, tcred->uid) || 706 uid_eq(cred->uid, tcred->suid) || 707 uid_eq(cred->uid, tcred->uid)) 708 return 1; 709 710 if (ns_capable(tcred->user_ns, CAP_KILL)) 711 return 1; 712 713 return 0; 714 } 715 716 /* 717 * Bad permissions for sending the signal 718 * - the caller must hold the RCU read lock 719 */ 720 static int check_kill_permission(int sig, struct siginfo *info, 721 struct task_struct *t) 722 { 723 struct pid *sid; 724 int error; 725 726 if (!valid_signal(sig)) 727 return -EINVAL; 728 729 if (!si_fromuser(info)) 730 return 0; 731 732 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 733 if (error) 734 return error; 735 736 if (!same_thread_group(current, t) && 737 !kill_ok_by_cred(t)) { 738 switch (sig) { 739 case SIGCONT: 740 sid = task_session(t); 741 /* 742 * We don't return the error if sid == NULL. The 743 * task was unhashed, the caller must notice this. 744 */ 745 if (!sid || sid == task_session(current)) 746 break; 747 default: 748 return -EPERM; 749 } 750 } 751 752 return security_task_kill(t, info, sig, 0); 753 } 754 755 /** 756 * ptrace_trap_notify - schedule trap to notify ptracer 757 * @t: tracee wanting to notify tracer 758 * 759 * This function schedules sticky ptrace trap which is cleared on the next 760 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 761 * ptracer. 762 * 763 * If @t is running, STOP trap will be taken. If trapped for STOP and 764 * ptracer is listening for events, tracee is woken up so that it can 765 * re-trap for the new event. If trapped otherwise, STOP trap will be 766 * eventually taken without returning to userland after the existing traps 767 * are finished by PTRACE_CONT. 768 * 769 * CONTEXT: 770 * Must be called with @task->sighand->siglock held. 771 */ 772 static void ptrace_trap_notify(struct task_struct *t) 773 { 774 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 775 assert_spin_locked(&t->sighand->siglock); 776 777 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 778 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 779 } 780 781 /* 782 * Handle magic process-wide effects of stop/continue signals. Unlike 783 * the signal actions, these happen immediately at signal-generation 784 * time regardless of blocking, ignoring, or handling. This does the 785 * actual continuing for SIGCONT, but not the actual stopping for stop 786 * signals. The process stop is done as a signal action for SIG_DFL. 787 * 788 * Returns true if the signal should be actually delivered, otherwise 789 * it should be dropped. 790 */ 791 static bool prepare_signal(int sig, struct task_struct *p, bool force) 792 { 793 struct signal_struct *signal = p->signal; 794 struct task_struct *t; 795 sigset_t flush; 796 797 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 798 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 799 return sig == SIGKILL; 800 /* 801 * The process is in the middle of dying, nothing to do. 802 */ 803 } else if (sig_kernel_stop(sig)) { 804 /* 805 * This is a stop signal. Remove SIGCONT from all queues. 806 */ 807 siginitset(&flush, sigmask(SIGCONT)); 808 flush_sigqueue_mask(&flush, &signal->shared_pending); 809 for_each_thread(p, t) 810 flush_sigqueue_mask(&flush, &t->pending); 811 } else if (sig == SIGCONT) { 812 unsigned int why; 813 /* 814 * Remove all stop signals from all queues, wake all threads. 815 */ 816 siginitset(&flush, SIG_KERNEL_STOP_MASK); 817 flush_sigqueue_mask(&flush, &signal->shared_pending); 818 for_each_thread(p, t) { 819 flush_sigqueue_mask(&flush, &t->pending); 820 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 821 if (likely(!(t->ptrace & PT_SEIZED))) 822 wake_up_state(t, __TASK_STOPPED); 823 else 824 ptrace_trap_notify(t); 825 } 826 827 /* 828 * Notify the parent with CLD_CONTINUED if we were stopped. 829 * 830 * If we were in the middle of a group stop, we pretend it 831 * was already finished, and then continued. Since SIGCHLD 832 * doesn't queue we report only CLD_STOPPED, as if the next 833 * CLD_CONTINUED was dropped. 834 */ 835 why = 0; 836 if (signal->flags & SIGNAL_STOP_STOPPED) 837 why |= SIGNAL_CLD_CONTINUED; 838 else if (signal->group_stop_count) 839 why |= SIGNAL_CLD_STOPPED; 840 841 if (why) { 842 /* 843 * The first thread which returns from do_signal_stop() 844 * will take ->siglock, notice SIGNAL_CLD_MASK, and 845 * notify its parent. See get_signal_to_deliver(). 846 */ 847 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 848 signal->group_stop_count = 0; 849 signal->group_exit_code = 0; 850 } 851 } 852 853 return !sig_ignored(p, sig, force); 854 } 855 856 /* 857 * Test if P wants to take SIG. After we've checked all threads with this, 858 * it's equivalent to finding no threads not blocking SIG. Any threads not 859 * blocking SIG were ruled out because they are not running and already 860 * have pending signals. Such threads will dequeue from the shared queue 861 * as soon as they're available, so putting the signal on the shared queue 862 * will be equivalent to sending it to one such thread. 863 */ 864 static inline int wants_signal(int sig, struct task_struct *p) 865 { 866 if (sigismember(&p->blocked, sig)) 867 return 0; 868 if (p->flags & PF_EXITING) 869 return 0; 870 if (sig == SIGKILL) 871 return 1; 872 if (task_is_stopped_or_traced(p)) 873 return 0; 874 return task_curr(p) || !signal_pending(p); 875 } 876 877 static void complete_signal(int sig, struct task_struct *p, int group) 878 { 879 struct signal_struct *signal = p->signal; 880 struct task_struct *t; 881 882 /* 883 * Now find a thread we can wake up to take the signal off the queue. 884 * 885 * If the main thread wants the signal, it gets first crack. 886 * Probably the least surprising to the average bear. 887 */ 888 if (wants_signal(sig, p)) 889 t = p; 890 else if (!group || thread_group_empty(p)) 891 /* 892 * There is just one thread and it does not need to be woken. 893 * It will dequeue unblocked signals before it runs again. 894 */ 895 return; 896 else { 897 /* 898 * Otherwise try to find a suitable thread. 899 */ 900 t = signal->curr_target; 901 while (!wants_signal(sig, t)) { 902 t = next_thread(t); 903 if (t == signal->curr_target) 904 /* 905 * No thread needs to be woken. 906 * Any eligible threads will see 907 * the signal in the queue soon. 908 */ 909 return; 910 } 911 signal->curr_target = t; 912 } 913 914 /* 915 * Found a killable thread. If the signal will be fatal, 916 * then start taking the whole group down immediately. 917 */ 918 if (sig_fatal(p, sig) && 919 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 920 !sigismember(&t->real_blocked, sig) && 921 (sig == SIGKILL || !t->ptrace)) { 922 /* 923 * This signal will be fatal to the whole group. 924 */ 925 if (!sig_kernel_coredump(sig)) { 926 /* 927 * Start a group exit and wake everybody up. 928 * This way we don't have other threads 929 * running and doing things after a slower 930 * thread has the fatal signal pending. 931 */ 932 signal->flags = SIGNAL_GROUP_EXIT; 933 signal->group_exit_code = sig; 934 signal->group_stop_count = 0; 935 t = p; 936 do { 937 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 938 sigaddset(&t->pending.signal, SIGKILL); 939 signal_wake_up(t, 1); 940 } while_each_thread(p, t); 941 return; 942 } 943 } 944 945 /* 946 * The signal is already in the shared-pending queue. 947 * Tell the chosen thread to wake up and dequeue it. 948 */ 949 signal_wake_up(t, sig == SIGKILL); 950 return; 951 } 952 953 static inline int legacy_queue(struct sigpending *signals, int sig) 954 { 955 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 956 } 957 958 #ifdef CONFIG_USER_NS 959 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 960 { 961 if (current_user_ns() == task_cred_xxx(t, user_ns)) 962 return; 963 964 if (SI_FROMKERNEL(info)) 965 return; 966 967 rcu_read_lock(); 968 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 969 make_kuid(current_user_ns(), info->si_uid)); 970 rcu_read_unlock(); 971 } 972 #else 973 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 974 { 975 return; 976 } 977 #endif 978 979 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 980 int group, int from_ancestor_ns) 981 { 982 struct sigpending *pending; 983 struct sigqueue *q; 984 int override_rlimit; 985 int ret = 0, result; 986 987 assert_spin_locked(&t->sighand->siglock); 988 989 result = TRACE_SIGNAL_IGNORED; 990 if (!prepare_signal(sig, t, 991 from_ancestor_ns || (info == SEND_SIG_FORCED))) 992 goto ret; 993 994 pending = group ? &t->signal->shared_pending : &t->pending; 995 /* 996 * Short-circuit ignored signals and support queuing 997 * exactly one non-rt signal, so that we can get more 998 * detailed information about the cause of the signal. 999 */ 1000 result = TRACE_SIGNAL_ALREADY_PENDING; 1001 if (legacy_queue(pending, sig)) 1002 goto ret; 1003 1004 result = TRACE_SIGNAL_DELIVERED; 1005 /* 1006 * fast-pathed signals for kernel-internal things like SIGSTOP 1007 * or SIGKILL. 1008 */ 1009 if (info == SEND_SIG_FORCED) 1010 goto out_set; 1011 1012 /* 1013 * Real-time signals must be queued if sent by sigqueue, or 1014 * some other real-time mechanism. It is implementation 1015 * defined whether kill() does so. We attempt to do so, on 1016 * the principle of least surprise, but since kill is not 1017 * allowed to fail with EAGAIN when low on memory we just 1018 * make sure at least one signal gets delivered and don't 1019 * pass on the info struct. 1020 */ 1021 if (sig < SIGRTMIN) 1022 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1023 else 1024 override_rlimit = 0; 1025 1026 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1027 override_rlimit); 1028 if (q) { 1029 list_add_tail(&q->list, &pending->list); 1030 switch ((unsigned long) info) { 1031 case (unsigned long) SEND_SIG_NOINFO: 1032 q->info.si_signo = sig; 1033 q->info.si_errno = 0; 1034 q->info.si_code = SI_USER; 1035 q->info.si_pid = task_tgid_nr_ns(current, 1036 task_active_pid_ns(t)); 1037 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1038 break; 1039 case (unsigned long) SEND_SIG_PRIV: 1040 q->info.si_signo = sig; 1041 q->info.si_errno = 0; 1042 q->info.si_code = SI_KERNEL; 1043 q->info.si_pid = 0; 1044 q->info.si_uid = 0; 1045 break; 1046 default: 1047 copy_siginfo(&q->info, info); 1048 if (from_ancestor_ns) 1049 q->info.si_pid = 0; 1050 break; 1051 } 1052 1053 userns_fixup_signal_uid(&q->info, t); 1054 1055 } else if (!is_si_special(info)) { 1056 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1057 /* 1058 * Queue overflow, abort. We may abort if the 1059 * signal was rt and sent by user using something 1060 * other than kill(). 1061 */ 1062 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1063 ret = -EAGAIN; 1064 goto ret; 1065 } else { 1066 /* 1067 * This is a silent loss of information. We still 1068 * send the signal, but the *info bits are lost. 1069 */ 1070 result = TRACE_SIGNAL_LOSE_INFO; 1071 } 1072 } 1073 1074 out_set: 1075 signalfd_notify(t, sig); 1076 sigaddset(&pending->signal, sig); 1077 complete_signal(sig, t, group); 1078 ret: 1079 trace_signal_generate(sig, info, t, group, result); 1080 return ret; 1081 } 1082 1083 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1084 int group) 1085 { 1086 int from_ancestor_ns = 0; 1087 1088 #ifdef CONFIG_PID_NS 1089 from_ancestor_ns = si_fromuser(info) && 1090 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1091 #endif 1092 1093 return __send_signal(sig, info, t, group, from_ancestor_ns); 1094 } 1095 1096 static void print_fatal_signal(int signr) 1097 { 1098 struct pt_regs *regs = signal_pt_regs(); 1099 pr_info("potentially unexpected fatal signal %d.\n", signr); 1100 1101 #if defined(__i386__) && !defined(__arch_um__) 1102 pr_info("code at %08lx: ", regs->ip); 1103 { 1104 int i; 1105 for (i = 0; i < 16; i++) { 1106 unsigned char insn; 1107 1108 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1109 break; 1110 pr_cont("%02x ", insn); 1111 } 1112 } 1113 pr_cont("\n"); 1114 #endif 1115 preempt_disable(); 1116 show_regs(regs); 1117 preempt_enable(); 1118 } 1119 1120 static int __init setup_print_fatal_signals(char *str) 1121 { 1122 get_option (&str, &print_fatal_signals); 1123 1124 return 1; 1125 } 1126 1127 __setup("print-fatal-signals=", setup_print_fatal_signals); 1128 1129 int 1130 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1131 { 1132 return send_signal(sig, info, p, 1); 1133 } 1134 1135 static int 1136 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1137 { 1138 return send_signal(sig, info, t, 0); 1139 } 1140 1141 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1142 bool group) 1143 { 1144 unsigned long flags; 1145 int ret = -ESRCH; 1146 1147 if (lock_task_sighand(p, &flags)) { 1148 ret = send_signal(sig, info, p, group); 1149 unlock_task_sighand(p, &flags); 1150 } 1151 1152 return ret; 1153 } 1154 1155 /* 1156 * Force a signal that the process can't ignore: if necessary 1157 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1158 * 1159 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1160 * since we do not want to have a signal handler that was blocked 1161 * be invoked when user space had explicitly blocked it. 1162 * 1163 * We don't want to have recursive SIGSEGV's etc, for example, 1164 * that is why we also clear SIGNAL_UNKILLABLE. 1165 */ 1166 int 1167 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1168 { 1169 unsigned long int flags; 1170 int ret, blocked, ignored; 1171 struct k_sigaction *action; 1172 1173 spin_lock_irqsave(&t->sighand->siglock, flags); 1174 action = &t->sighand->action[sig-1]; 1175 ignored = action->sa.sa_handler == SIG_IGN; 1176 blocked = sigismember(&t->blocked, sig); 1177 if (blocked || ignored) { 1178 action->sa.sa_handler = SIG_DFL; 1179 if (blocked) { 1180 sigdelset(&t->blocked, sig); 1181 recalc_sigpending_and_wake(t); 1182 } 1183 } 1184 if (action->sa.sa_handler == SIG_DFL) 1185 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1186 ret = specific_send_sig_info(sig, info, t); 1187 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1188 1189 return ret; 1190 } 1191 1192 /* 1193 * Nuke all other threads in the group. 1194 */ 1195 int zap_other_threads(struct task_struct *p) 1196 { 1197 struct task_struct *t = p; 1198 int count = 0; 1199 1200 p->signal->group_stop_count = 0; 1201 1202 while_each_thread(p, t) { 1203 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1204 count++; 1205 1206 /* Don't bother with already dead threads */ 1207 if (t->exit_state) 1208 continue; 1209 sigaddset(&t->pending.signal, SIGKILL); 1210 signal_wake_up(t, 1); 1211 } 1212 1213 return count; 1214 } 1215 1216 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1217 unsigned long *flags) 1218 { 1219 struct sighand_struct *sighand; 1220 1221 for (;;) { 1222 /* 1223 * Disable interrupts early to avoid deadlocks. 1224 * See rcu_read_unlock() comment header for details. 1225 */ 1226 local_irq_save(*flags); 1227 rcu_read_lock(); 1228 sighand = rcu_dereference(tsk->sighand); 1229 if (unlikely(sighand == NULL)) { 1230 rcu_read_unlock(); 1231 local_irq_restore(*flags); 1232 break; 1233 } 1234 /* 1235 * This sighand can be already freed and even reused, but 1236 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which 1237 * initializes ->siglock: this slab can't go away, it has 1238 * the same object type, ->siglock can't be reinitialized. 1239 * 1240 * We need to ensure that tsk->sighand is still the same 1241 * after we take the lock, we can race with de_thread() or 1242 * __exit_signal(). In the latter case the next iteration 1243 * must see ->sighand == NULL. 1244 */ 1245 spin_lock(&sighand->siglock); 1246 if (likely(sighand == tsk->sighand)) { 1247 rcu_read_unlock(); 1248 break; 1249 } 1250 spin_unlock(&sighand->siglock); 1251 rcu_read_unlock(); 1252 local_irq_restore(*flags); 1253 } 1254 1255 return sighand; 1256 } 1257 1258 /* 1259 * send signal info to all the members of a group 1260 */ 1261 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1262 { 1263 int ret; 1264 1265 rcu_read_lock(); 1266 ret = check_kill_permission(sig, info, p); 1267 rcu_read_unlock(); 1268 1269 if (!ret && sig) 1270 ret = do_send_sig_info(sig, info, p, true); 1271 1272 return ret; 1273 } 1274 1275 /* 1276 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1277 * control characters do (^C, ^Z etc) 1278 * - the caller must hold at least a readlock on tasklist_lock 1279 */ 1280 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1281 { 1282 struct task_struct *p = NULL; 1283 int retval, success; 1284 1285 success = 0; 1286 retval = -ESRCH; 1287 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1288 int err = group_send_sig_info(sig, info, p); 1289 success |= !err; 1290 retval = err; 1291 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1292 return success ? 0 : retval; 1293 } 1294 1295 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1296 { 1297 int error = -ESRCH; 1298 struct task_struct *p; 1299 1300 for (;;) { 1301 rcu_read_lock(); 1302 p = pid_task(pid, PIDTYPE_PID); 1303 if (p) 1304 error = group_send_sig_info(sig, info, p); 1305 rcu_read_unlock(); 1306 if (likely(!p || error != -ESRCH)) 1307 return error; 1308 1309 /* 1310 * The task was unhashed in between, try again. If it 1311 * is dead, pid_task() will return NULL, if we race with 1312 * de_thread() it will find the new leader. 1313 */ 1314 } 1315 } 1316 1317 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1318 { 1319 int error; 1320 rcu_read_lock(); 1321 error = kill_pid_info(sig, info, find_vpid(pid)); 1322 rcu_read_unlock(); 1323 return error; 1324 } 1325 1326 static int kill_as_cred_perm(const struct cred *cred, 1327 struct task_struct *target) 1328 { 1329 const struct cred *pcred = __task_cred(target); 1330 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1331 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1332 return 0; 1333 return 1; 1334 } 1335 1336 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1337 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1338 const struct cred *cred, u32 secid) 1339 { 1340 int ret = -EINVAL; 1341 struct task_struct *p; 1342 unsigned long flags; 1343 1344 if (!valid_signal(sig)) 1345 return ret; 1346 1347 rcu_read_lock(); 1348 p = pid_task(pid, PIDTYPE_PID); 1349 if (!p) { 1350 ret = -ESRCH; 1351 goto out_unlock; 1352 } 1353 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1354 ret = -EPERM; 1355 goto out_unlock; 1356 } 1357 ret = security_task_kill(p, info, sig, secid); 1358 if (ret) 1359 goto out_unlock; 1360 1361 if (sig) { 1362 if (lock_task_sighand(p, &flags)) { 1363 ret = __send_signal(sig, info, p, 1, 0); 1364 unlock_task_sighand(p, &flags); 1365 } else 1366 ret = -ESRCH; 1367 } 1368 out_unlock: 1369 rcu_read_unlock(); 1370 return ret; 1371 } 1372 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1373 1374 /* 1375 * kill_something_info() interprets pid in interesting ways just like kill(2). 1376 * 1377 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1378 * is probably wrong. Should make it like BSD or SYSV. 1379 */ 1380 1381 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1382 { 1383 int ret; 1384 1385 if (pid > 0) { 1386 rcu_read_lock(); 1387 ret = kill_pid_info(sig, info, find_vpid(pid)); 1388 rcu_read_unlock(); 1389 return ret; 1390 } 1391 1392 read_lock(&tasklist_lock); 1393 if (pid != -1) { 1394 ret = __kill_pgrp_info(sig, info, 1395 pid ? find_vpid(-pid) : task_pgrp(current)); 1396 } else { 1397 int retval = 0, count = 0; 1398 struct task_struct * p; 1399 1400 for_each_process(p) { 1401 if (task_pid_vnr(p) > 1 && 1402 !same_thread_group(p, current)) { 1403 int err = group_send_sig_info(sig, info, p); 1404 ++count; 1405 if (err != -EPERM) 1406 retval = err; 1407 } 1408 } 1409 ret = count ? retval : -ESRCH; 1410 } 1411 read_unlock(&tasklist_lock); 1412 1413 return ret; 1414 } 1415 1416 /* 1417 * These are for backward compatibility with the rest of the kernel source. 1418 */ 1419 1420 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1421 { 1422 /* 1423 * Make sure legacy kernel users don't send in bad values 1424 * (normal paths check this in check_kill_permission). 1425 */ 1426 if (!valid_signal(sig)) 1427 return -EINVAL; 1428 1429 return do_send_sig_info(sig, info, p, false); 1430 } 1431 1432 #define __si_special(priv) \ 1433 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1434 1435 int 1436 send_sig(int sig, struct task_struct *p, int priv) 1437 { 1438 return send_sig_info(sig, __si_special(priv), p); 1439 } 1440 1441 void 1442 force_sig(int sig, struct task_struct *p) 1443 { 1444 force_sig_info(sig, SEND_SIG_PRIV, p); 1445 } 1446 1447 /* 1448 * When things go south during signal handling, we 1449 * will force a SIGSEGV. And if the signal that caused 1450 * the problem was already a SIGSEGV, we'll want to 1451 * make sure we don't even try to deliver the signal.. 1452 */ 1453 int 1454 force_sigsegv(int sig, struct task_struct *p) 1455 { 1456 if (sig == SIGSEGV) { 1457 unsigned long flags; 1458 spin_lock_irqsave(&p->sighand->siglock, flags); 1459 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1460 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1461 } 1462 force_sig(SIGSEGV, p); 1463 return 0; 1464 } 1465 1466 int kill_pgrp(struct pid *pid, int sig, int priv) 1467 { 1468 int ret; 1469 1470 read_lock(&tasklist_lock); 1471 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1472 read_unlock(&tasklist_lock); 1473 1474 return ret; 1475 } 1476 EXPORT_SYMBOL(kill_pgrp); 1477 1478 int kill_pid(struct pid *pid, int sig, int priv) 1479 { 1480 return kill_pid_info(sig, __si_special(priv), pid); 1481 } 1482 EXPORT_SYMBOL(kill_pid); 1483 1484 /* 1485 * These functions support sending signals using preallocated sigqueue 1486 * structures. This is needed "because realtime applications cannot 1487 * afford to lose notifications of asynchronous events, like timer 1488 * expirations or I/O completions". In the case of POSIX Timers 1489 * we allocate the sigqueue structure from the timer_create. If this 1490 * allocation fails we are able to report the failure to the application 1491 * with an EAGAIN error. 1492 */ 1493 struct sigqueue *sigqueue_alloc(void) 1494 { 1495 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1496 1497 if (q) 1498 q->flags |= SIGQUEUE_PREALLOC; 1499 1500 return q; 1501 } 1502 1503 void sigqueue_free(struct sigqueue *q) 1504 { 1505 unsigned long flags; 1506 spinlock_t *lock = ¤t->sighand->siglock; 1507 1508 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1509 /* 1510 * We must hold ->siglock while testing q->list 1511 * to serialize with collect_signal() or with 1512 * __exit_signal()->flush_sigqueue(). 1513 */ 1514 spin_lock_irqsave(lock, flags); 1515 q->flags &= ~SIGQUEUE_PREALLOC; 1516 /* 1517 * If it is queued it will be freed when dequeued, 1518 * like the "regular" sigqueue. 1519 */ 1520 if (!list_empty(&q->list)) 1521 q = NULL; 1522 spin_unlock_irqrestore(lock, flags); 1523 1524 if (q) 1525 __sigqueue_free(q); 1526 } 1527 1528 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1529 { 1530 int sig = q->info.si_signo; 1531 struct sigpending *pending; 1532 unsigned long flags; 1533 int ret, result; 1534 1535 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1536 1537 ret = -1; 1538 if (!likely(lock_task_sighand(t, &flags))) 1539 goto ret; 1540 1541 ret = 1; /* the signal is ignored */ 1542 result = TRACE_SIGNAL_IGNORED; 1543 if (!prepare_signal(sig, t, false)) 1544 goto out; 1545 1546 ret = 0; 1547 if (unlikely(!list_empty(&q->list))) { 1548 /* 1549 * If an SI_TIMER entry is already queue just increment 1550 * the overrun count. 1551 */ 1552 BUG_ON(q->info.si_code != SI_TIMER); 1553 q->info.si_overrun++; 1554 result = TRACE_SIGNAL_ALREADY_PENDING; 1555 goto out; 1556 } 1557 q->info.si_overrun = 0; 1558 1559 signalfd_notify(t, sig); 1560 pending = group ? &t->signal->shared_pending : &t->pending; 1561 list_add_tail(&q->list, &pending->list); 1562 sigaddset(&pending->signal, sig); 1563 complete_signal(sig, t, group); 1564 result = TRACE_SIGNAL_DELIVERED; 1565 out: 1566 trace_signal_generate(sig, &q->info, t, group, result); 1567 unlock_task_sighand(t, &flags); 1568 ret: 1569 return ret; 1570 } 1571 1572 /* 1573 * Let a parent know about the death of a child. 1574 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1575 * 1576 * Returns true if our parent ignored us and so we've switched to 1577 * self-reaping. 1578 */ 1579 bool do_notify_parent(struct task_struct *tsk, int sig) 1580 { 1581 struct siginfo info; 1582 unsigned long flags; 1583 struct sighand_struct *psig; 1584 bool autoreap = false; 1585 u64 utime, stime; 1586 1587 BUG_ON(sig == -1); 1588 1589 /* do_notify_parent_cldstop should have been called instead. */ 1590 BUG_ON(task_is_stopped_or_traced(tsk)); 1591 1592 BUG_ON(!tsk->ptrace && 1593 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1594 1595 if (sig != SIGCHLD) { 1596 /* 1597 * This is only possible if parent == real_parent. 1598 * Check if it has changed security domain. 1599 */ 1600 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1601 sig = SIGCHLD; 1602 } 1603 1604 info.si_signo = sig; 1605 info.si_errno = 0; 1606 /* 1607 * We are under tasklist_lock here so our parent is tied to 1608 * us and cannot change. 1609 * 1610 * task_active_pid_ns will always return the same pid namespace 1611 * until a task passes through release_task. 1612 * 1613 * write_lock() currently calls preempt_disable() which is the 1614 * same as rcu_read_lock(), but according to Oleg, this is not 1615 * correct to rely on this 1616 */ 1617 rcu_read_lock(); 1618 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1619 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1620 task_uid(tsk)); 1621 rcu_read_unlock(); 1622 1623 task_cputime(tsk, &utime, &stime); 1624 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1625 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1626 1627 info.si_status = tsk->exit_code & 0x7f; 1628 if (tsk->exit_code & 0x80) 1629 info.si_code = CLD_DUMPED; 1630 else if (tsk->exit_code & 0x7f) 1631 info.si_code = CLD_KILLED; 1632 else { 1633 info.si_code = CLD_EXITED; 1634 info.si_status = tsk->exit_code >> 8; 1635 } 1636 1637 psig = tsk->parent->sighand; 1638 spin_lock_irqsave(&psig->siglock, flags); 1639 if (!tsk->ptrace && sig == SIGCHLD && 1640 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1641 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1642 /* 1643 * We are exiting and our parent doesn't care. POSIX.1 1644 * defines special semantics for setting SIGCHLD to SIG_IGN 1645 * or setting the SA_NOCLDWAIT flag: we should be reaped 1646 * automatically and not left for our parent's wait4 call. 1647 * Rather than having the parent do it as a magic kind of 1648 * signal handler, we just set this to tell do_exit that we 1649 * can be cleaned up without becoming a zombie. Note that 1650 * we still call __wake_up_parent in this case, because a 1651 * blocked sys_wait4 might now return -ECHILD. 1652 * 1653 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1654 * is implementation-defined: we do (if you don't want 1655 * it, just use SIG_IGN instead). 1656 */ 1657 autoreap = true; 1658 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1659 sig = 0; 1660 } 1661 if (valid_signal(sig) && sig) 1662 __group_send_sig_info(sig, &info, tsk->parent); 1663 __wake_up_parent(tsk, tsk->parent); 1664 spin_unlock_irqrestore(&psig->siglock, flags); 1665 1666 return autoreap; 1667 } 1668 1669 /** 1670 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1671 * @tsk: task reporting the state change 1672 * @for_ptracer: the notification is for ptracer 1673 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1674 * 1675 * Notify @tsk's parent that the stopped/continued state has changed. If 1676 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1677 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1678 * 1679 * CONTEXT: 1680 * Must be called with tasklist_lock at least read locked. 1681 */ 1682 static void do_notify_parent_cldstop(struct task_struct *tsk, 1683 bool for_ptracer, int why) 1684 { 1685 struct siginfo info; 1686 unsigned long flags; 1687 struct task_struct *parent; 1688 struct sighand_struct *sighand; 1689 u64 utime, stime; 1690 1691 if (for_ptracer) { 1692 parent = tsk->parent; 1693 } else { 1694 tsk = tsk->group_leader; 1695 parent = tsk->real_parent; 1696 } 1697 1698 info.si_signo = SIGCHLD; 1699 info.si_errno = 0; 1700 /* 1701 * see comment in do_notify_parent() about the following 4 lines 1702 */ 1703 rcu_read_lock(); 1704 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1705 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1706 rcu_read_unlock(); 1707 1708 task_cputime(tsk, &utime, &stime); 1709 info.si_utime = nsec_to_clock_t(utime); 1710 info.si_stime = nsec_to_clock_t(stime); 1711 1712 info.si_code = why; 1713 switch (why) { 1714 case CLD_CONTINUED: 1715 info.si_status = SIGCONT; 1716 break; 1717 case CLD_STOPPED: 1718 info.si_status = tsk->signal->group_exit_code & 0x7f; 1719 break; 1720 case CLD_TRAPPED: 1721 info.si_status = tsk->exit_code & 0x7f; 1722 break; 1723 default: 1724 BUG(); 1725 } 1726 1727 sighand = parent->sighand; 1728 spin_lock_irqsave(&sighand->siglock, flags); 1729 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1730 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1731 __group_send_sig_info(SIGCHLD, &info, parent); 1732 /* 1733 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1734 */ 1735 __wake_up_parent(tsk, parent); 1736 spin_unlock_irqrestore(&sighand->siglock, flags); 1737 } 1738 1739 static inline int may_ptrace_stop(void) 1740 { 1741 if (!likely(current->ptrace)) 1742 return 0; 1743 /* 1744 * Are we in the middle of do_coredump? 1745 * If so and our tracer is also part of the coredump stopping 1746 * is a deadlock situation, and pointless because our tracer 1747 * is dead so don't allow us to stop. 1748 * If SIGKILL was already sent before the caller unlocked 1749 * ->siglock we must see ->core_state != NULL. Otherwise it 1750 * is safe to enter schedule(). 1751 * 1752 * This is almost outdated, a task with the pending SIGKILL can't 1753 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1754 * after SIGKILL was already dequeued. 1755 */ 1756 if (unlikely(current->mm->core_state) && 1757 unlikely(current->mm == current->parent->mm)) 1758 return 0; 1759 1760 return 1; 1761 } 1762 1763 /* 1764 * Return non-zero if there is a SIGKILL that should be waking us up. 1765 * Called with the siglock held. 1766 */ 1767 static int sigkill_pending(struct task_struct *tsk) 1768 { 1769 return sigismember(&tsk->pending.signal, SIGKILL) || 1770 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1771 } 1772 1773 /* 1774 * This must be called with current->sighand->siglock held. 1775 * 1776 * This should be the path for all ptrace stops. 1777 * We always set current->last_siginfo while stopped here. 1778 * That makes it a way to test a stopped process for 1779 * being ptrace-stopped vs being job-control-stopped. 1780 * 1781 * If we actually decide not to stop at all because the tracer 1782 * is gone, we keep current->exit_code unless clear_code. 1783 */ 1784 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1785 __releases(¤t->sighand->siglock) 1786 __acquires(¤t->sighand->siglock) 1787 { 1788 bool gstop_done = false; 1789 1790 if (arch_ptrace_stop_needed(exit_code, info)) { 1791 /* 1792 * The arch code has something special to do before a 1793 * ptrace stop. This is allowed to block, e.g. for faults 1794 * on user stack pages. We can't keep the siglock while 1795 * calling arch_ptrace_stop, so we must release it now. 1796 * To preserve proper semantics, we must do this before 1797 * any signal bookkeeping like checking group_stop_count. 1798 * Meanwhile, a SIGKILL could come in before we retake the 1799 * siglock. That must prevent us from sleeping in TASK_TRACED. 1800 * So after regaining the lock, we must check for SIGKILL. 1801 */ 1802 spin_unlock_irq(¤t->sighand->siglock); 1803 arch_ptrace_stop(exit_code, info); 1804 spin_lock_irq(¤t->sighand->siglock); 1805 if (sigkill_pending(current)) 1806 return; 1807 } 1808 1809 /* 1810 * We're committing to trapping. TRACED should be visible before 1811 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1812 * Also, transition to TRACED and updates to ->jobctl should be 1813 * atomic with respect to siglock and should be done after the arch 1814 * hook as siglock is released and regrabbed across it. 1815 */ 1816 set_current_state(TASK_TRACED); 1817 1818 current->last_siginfo = info; 1819 current->exit_code = exit_code; 1820 1821 /* 1822 * If @why is CLD_STOPPED, we're trapping to participate in a group 1823 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1824 * across siglock relocks since INTERRUPT was scheduled, PENDING 1825 * could be clear now. We act as if SIGCONT is received after 1826 * TASK_TRACED is entered - ignore it. 1827 */ 1828 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1829 gstop_done = task_participate_group_stop(current); 1830 1831 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1832 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1833 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1834 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1835 1836 /* entering a trap, clear TRAPPING */ 1837 task_clear_jobctl_trapping(current); 1838 1839 spin_unlock_irq(¤t->sighand->siglock); 1840 read_lock(&tasklist_lock); 1841 if (may_ptrace_stop()) { 1842 /* 1843 * Notify parents of the stop. 1844 * 1845 * While ptraced, there are two parents - the ptracer and 1846 * the real_parent of the group_leader. The ptracer should 1847 * know about every stop while the real parent is only 1848 * interested in the completion of group stop. The states 1849 * for the two don't interact with each other. Notify 1850 * separately unless they're gonna be duplicates. 1851 */ 1852 do_notify_parent_cldstop(current, true, why); 1853 if (gstop_done && ptrace_reparented(current)) 1854 do_notify_parent_cldstop(current, false, why); 1855 1856 /* 1857 * Don't want to allow preemption here, because 1858 * sys_ptrace() needs this task to be inactive. 1859 * 1860 * XXX: implement read_unlock_no_resched(). 1861 */ 1862 preempt_disable(); 1863 read_unlock(&tasklist_lock); 1864 preempt_enable_no_resched(); 1865 freezable_schedule(); 1866 } else { 1867 /* 1868 * By the time we got the lock, our tracer went away. 1869 * Don't drop the lock yet, another tracer may come. 1870 * 1871 * If @gstop_done, the ptracer went away between group stop 1872 * completion and here. During detach, it would have set 1873 * JOBCTL_STOP_PENDING on us and we'll re-enter 1874 * TASK_STOPPED in do_signal_stop() on return, so notifying 1875 * the real parent of the group stop completion is enough. 1876 */ 1877 if (gstop_done) 1878 do_notify_parent_cldstop(current, false, why); 1879 1880 /* tasklist protects us from ptrace_freeze_traced() */ 1881 __set_current_state(TASK_RUNNING); 1882 if (clear_code) 1883 current->exit_code = 0; 1884 read_unlock(&tasklist_lock); 1885 } 1886 1887 /* 1888 * We are back. Now reacquire the siglock before touching 1889 * last_siginfo, so that we are sure to have synchronized with 1890 * any signal-sending on another CPU that wants to examine it. 1891 */ 1892 spin_lock_irq(¤t->sighand->siglock); 1893 current->last_siginfo = NULL; 1894 1895 /* LISTENING can be set only during STOP traps, clear it */ 1896 current->jobctl &= ~JOBCTL_LISTENING; 1897 1898 /* 1899 * Queued signals ignored us while we were stopped for tracing. 1900 * So check for any that we should take before resuming user mode. 1901 * This sets TIF_SIGPENDING, but never clears it. 1902 */ 1903 recalc_sigpending_tsk(current); 1904 } 1905 1906 static void ptrace_do_notify(int signr, int exit_code, int why) 1907 { 1908 siginfo_t info; 1909 1910 memset(&info, 0, sizeof info); 1911 info.si_signo = signr; 1912 info.si_code = exit_code; 1913 info.si_pid = task_pid_vnr(current); 1914 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1915 1916 /* Let the debugger run. */ 1917 ptrace_stop(exit_code, why, 1, &info); 1918 } 1919 1920 void ptrace_notify(int exit_code) 1921 { 1922 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1923 if (unlikely(current->task_works)) 1924 task_work_run(); 1925 1926 spin_lock_irq(¤t->sighand->siglock); 1927 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1928 spin_unlock_irq(¤t->sighand->siglock); 1929 } 1930 1931 /** 1932 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1933 * @signr: signr causing group stop if initiating 1934 * 1935 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1936 * and participate in it. If already set, participate in the existing 1937 * group stop. If participated in a group stop (and thus slept), %true is 1938 * returned with siglock released. 1939 * 1940 * If ptraced, this function doesn't handle stop itself. Instead, 1941 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1942 * untouched. The caller must ensure that INTERRUPT trap handling takes 1943 * places afterwards. 1944 * 1945 * CONTEXT: 1946 * Must be called with @current->sighand->siglock held, which is released 1947 * on %true return. 1948 * 1949 * RETURNS: 1950 * %false if group stop is already cancelled or ptrace trap is scheduled. 1951 * %true if participated in group stop. 1952 */ 1953 static bool do_signal_stop(int signr) 1954 __releases(¤t->sighand->siglock) 1955 { 1956 struct signal_struct *sig = current->signal; 1957 1958 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1959 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 1960 struct task_struct *t; 1961 1962 /* signr will be recorded in task->jobctl for retries */ 1963 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 1964 1965 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 1966 unlikely(signal_group_exit(sig))) 1967 return false; 1968 /* 1969 * There is no group stop already in progress. We must 1970 * initiate one now. 1971 * 1972 * While ptraced, a task may be resumed while group stop is 1973 * still in effect and then receive a stop signal and 1974 * initiate another group stop. This deviates from the 1975 * usual behavior as two consecutive stop signals can't 1976 * cause two group stops when !ptraced. That is why we 1977 * also check !task_is_stopped(t) below. 1978 * 1979 * The condition can be distinguished by testing whether 1980 * SIGNAL_STOP_STOPPED is already set. Don't generate 1981 * group_exit_code in such case. 1982 * 1983 * This is not necessary for SIGNAL_STOP_CONTINUED because 1984 * an intervening stop signal is required to cause two 1985 * continued events regardless of ptrace. 1986 */ 1987 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 1988 sig->group_exit_code = signr; 1989 1990 sig->group_stop_count = 0; 1991 1992 if (task_set_jobctl_pending(current, signr | gstop)) 1993 sig->group_stop_count++; 1994 1995 t = current; 1996 while_each_thread(current, t) { 1997 /* 1998 * Setting state to TASK_STOPPED for a group 1999 * stop is always done with the siglock held, 2000 * so this check has no races. 2001 */ 2002 if (!task_is_stopped(t) && 2003 task_set_jobctl_pending(t, signr | gstop)) { 2004 sig->group_stop_count++; 2005 if (likely(!(t->ptrace & PT_SEIZED))) 2006 signal_wake_up(t, 0); 2007 else 2008 ptrace_trap_notify(t); 2009 } 2010 } 2011 } 2012 2013 if (likely(!current->ptrace)) { 2014 int notify = 0; 2015 2016 /* 2017 * If there are no other threads in the group, or if there 2018 * is a group stop in progress and we are the last to stop, 2019 * report to the parent. 2020 */ 2021 if (task_participate_group_stop(current)) 2022 notify = CLD_STOPPED; 2023 2024 __set_current_state(TASK_STOPPED); 2025 spin_unlock_irq(¤t->sighand->siglock); 2026 2027 /* 2028 * Notify the parent of the group stop completion. Because 2029 * we're not holding either the siglock or tasklist_lock 2030 * here, ptracer may attach inbetween; however, this is for 2031 * group stop and should always be delivered to the real 2032 * parent of the group leader. The new ptracer will get 2033 * its notification when this task transitions into 2034 * TASK_TRACED. 2035 */ 2036 if (notify) { 2037 read_lock(&tasklist_lock); 2038 do_notify_parent_cldstop(current, false, notify); 2039 read_unlock(&tasklist_lock); 2040 } 2041 2042 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2043 freezable_schedule(); 2044 return true; 2045 } else { 2046 /* 2047 * While ptraced, group stop is handled by STOP trap. 2048 * Schedule it and let the caller deal with it. 2049 */ 2050 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2051 return false; 2052 } 2053 } 2054 2055 /** 2056 * do_jobctl_trap - take care of ptrace jobctl traps 2057 * 2058 * When PT_SEIZED, it's used for both group stop and explicit 2059 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2060 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2061 * the stop signal; otherwise, %SIGTRAP. 2062 * 2063 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2064 * number as exit_code and no siginfo. 2065 * 2066 * CONTEXT: 2067 * Must be called with @current->sighand->siglock held, which may be 2068 * released and re-acquired before returning with intervening sleep. 2069 */ 2070 static void do_jobctl_trap(void) 2071 { 2072 struct signal_struct *signal = current->signal; 2073 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2074 2075 if (current->ptrace & PT_SEIZED) { 2076 if (!signal->group_stop_count && 2077 !(signal->flags & SIGNAL_STOP_STOPPED)) 2078 signr = SIGTRAP; 2079 WARN_ON_ONCE(!signr); 2080 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2081 CLD_STOPPED); 2082 } else { 2083 WARN_ON_ONCE(!signr); 2084 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2085 current->exit_code = 0; 2086 } 2087 } 2088 2089 static int ptrace_signal(int signr, siginfo_t *info) 2090 { 2091 ptrace_signal_deliver(); 2092 /* 2093 * We do not check sig_kernel_stop(signr) but set this marker 2094 * unconditionally because we do not know whether debugger will 2095 * change signr. This flag has no meaning unless we are going 2096 * to stop after return from ptrace_stop(). In this case it will 2097 * be checked in do_signal_stop(), we should only stop if it was 2098 * not cleared by SIGCONT while we were sleeping. See also the 2099 * comment in dequeue_signal(). 2100 */ 2101 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2102 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2103 2104 /* We're back. Did the debugger cancel the sig? */ 2105 signr = current->exit_code; 2106 if (signr == 0) 2107 return signr; 2108 2109 current->exit_code = 0; 2110 2111 /* 2112 * Update the siginfo structure if the signal has 2113 * changed. If the debugger wanted something 2114 * specific in the siginfo structure then it should 2115 * have updated *info via PTRACE_SETSIGINFO. 2116 */ 2117 if (signr != info->si_signo) { 2118 info->si_signo = signr; 2119 info->si_errno = 0; 2120 info->si_code = SI_USER; 2121 rcu_read_lock(); 2122 info->si_pid = task_pid_vnr(current->parent); 2123 info->si_uid = from_kuid_munged(current_user_ns(), 2124 task_uid(current->parent)); 2125 rcu_read_unlock(); 2126 } 2127 2128 /* If the (new) signal is now blocked, requeue it. */ 2129 if (sigismember(¤t->blocked, signr)) { 2130 specific_send_sig_info(signr, info, current); 2131 signr = 0; 2132 } 2133 2134 return signr; 2135 } 2136 2137 int get_signal(struct ksignal *ksig) 2138 { 2139 struct sighand_struct *sighand = current->sighand; 2140 struct signal_struct *signal = current->signal; 2141 int signr; 2142 2143 if (unlikely(current->task_works)) 2144 task_work_run(); 2145 2146 if (unlikely(uprobe_deny_signal())) 2147 return 0; 2148 2149 /* 2150 * Do this once, we can't return to user-mode if freezing() == T. 2151 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2152 * thus do not need another check after return. 2153 */ 2154 try_to_freeze(); 2155 2156 relock: 2157 spin_lock_irq(&sighand->siglock); 2158 /* 2159 * Every stopped thread goes here after wakeup. Check to see if 2160 * we should notify the parent, prepare_signal(SIGCONT) encodes 2161 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2162 */ 2163 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2164 int why; 2165 2166 if (signal->flags & SIGNAL_CLD_CONTINUED) 2167 why = CLD_CONTINUED; 2168 else 2169 why = CLD_STOPPED; 2170 2171 signal->flags &= ~SIGNAL_CLD_MASK; 2172 2173 spin_unlock_irq(&sighand->siglock); 2174 2175 /* 2176 * Notify the parent that we're continuing. This event is 2177 * always per-process and doesn't make whole lot of sense 2178 * for ptracers, who shouldn't consume the state via 2179 * wait(2) either, but, for backward compatibility, notify 2180 * the ptracer of the group leader too unless it's gonna be 2181 * a duplicate. 2182 */ 2183 read_lock(&tasklist_lock); 2184 do_notify_parent_cldstop(current, false, why); 2185 2186 if (ptrace_reparented(current->group_leader)) 2187 do_notify_parent_cldstop(current->group_leader, 2188 true, why); 2189 read_unlock(&tasklist_lock); 2190 2191 goto relock; 2192 } 2193 2194 for (;;) { 2195 struct k_sigaction *ka; 2196 2197 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2198 do_signal_stop(0)) 2199 goto relock; 2200 2201 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2202 do_jobctl_trap(); 2203 spin_unlock_irq(&sighand->siglock); 2204 goto relock; 2205 } 2206 2207 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2208 2209 if (!signr) 2210 break; /* will return 0 */ 2211 2212 if (unlikely(current->ptrace) && signr != SIGKILL) { 2213 signr = ptrace_signal(signr, &ksig->info); 2214 if (!signr) 2215 continue; 2216 } 2217 2218 ka = &sighand->action[signr-1]; 2219 2220 /* Trace actually delivered signals. */ 2221 trace_signal_deliver(signr, &ksig->info, ka); 2222 2223 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2224 continue; 2225 if (ka->sa.sa_handler != SIG_DFL) { 2226 /* Run the handler. */ 2227 ksig->ka = *ka; 2228 2229 if (ka->sa.sa_flags & SA_ONESHOT) 2230 ka->sa.sa_handler = SIG_DFL; 2231 2232 break; /* will return non-zero "signr" value */ 2233 } 2234 2235 /* 2236 * Now we are doing the default action for this signal. 2237 */ 2238 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2239 continue; 2240 2241 /* 2242 * Global init gets no signals it doesn't want. 2243 * Container-init gets no signals it doesn't want from same 2244 * container. 2245 * 2246 * Note that if global/container-init sees a sig_kernel_only() 2247 * signal here, the signal must have been generated internally 2248 * or must have come from an ancestor namespace. In either 2249 * case, the signal cannot be dropped. 2250 */ 2251 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2252 !sig_kernel_only(signr)) 2253 continue; 2254 2255 if (sig_kernel_stop(signr)) { 2256 /* 2257 * The default action is to stop all threads in 2258 * the thread group. The job control signals 2259 * do nothing in an orphaned pgrp, but SIGSTOP 2260 * always works. Note that siglock needs to be 2261 * dropped during the call to is_orphaned_pgrp() 2262 * because of lock ordering with tasklist_lock. 2263 * This allows an intervening SIGCONT to be posted. 2264 * We need to check for that and bail out if necessary. 2265 */ 2266 if (signr != SIGSTOP) { 2267 spin_unlock_irq(&sighand->siglock); 2268 2269 /* signals can be posted during this window */ 2270 2271 if (is_current_pgrp_orphaned()) 2272 goto relock; 2273 2274 spin_lock_irq(&sighand->siglock); 2275 } 2276 2277 if (likely(do_signal_stop(ksig->info.si_signo))) { 2278 /* It released the siglock. */ 2279 goto relock; 2280 } 2281 2282 /* 2283 * We didn't actually stop, due to a race 2284 * with SIGCONT or something like that. 2285 */ 2286 continue; 2287 } 2288 2289 spin_unlock_irq(&sighand->siglock); 2290 2291 /* 2292 * Anything else is fatal, maybe with a core dump. 2293 */ 2294 current->flags |= PF_SIGNALED; 2295 2296 if (sig_kernel_coredump(signr)) { 2297 if (print_fatal_signals) 2298 print_fatal_signal(ksig->info.si_signo); 2299 proc_coredump_connector(current); 2300 /* 2301 * If it was able to dump core, this kills all 2302 * other threads in the group and synchronizes with 2303 * their demise. If we lost the race with another 2304 * thread getting here, it set group_exit_code 2305 * first and our do_group_exit call below will use 2306 * that value and ignore the one we pass it. 2307 */ 2308 do_coredump(&ksig->info); 2309 } 2310 2311 /* 2312 * Death signals, no core dump. 2313 */ 2314 do_group_exit(ksig->info.si_signo); 2315 /* NOTREACHED */ 2316 } 2317 spin_unlock_irq(&sighand->siglock); 2318 2319 ksig->sig = signr; 2320 return ksig->sig > 0; 2321 } 2322 2323 /** 2324 * signal_delivered - 2325 * @ksig: kernel signal struct 2326 * @stepping: nonzero if debugger single-step or block-step in use 2327 * 2328 * This function should be called when a signal has successfully been 2329 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2330 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2331 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2332 */ 2333 static void signal_delivered(struct ksignal *ksig, int stepping) 2334 { 2335 sigset_t blocked; 2336 2337 /* A signal was successfully delivered, and the 2338 saved sigmask was stored on the signal frame, 2339 and will be restored by sigreturn. So we can 2340 simply clear the restore sigmask flag. */ 2341 clear_restore_sigmask(); 2342 2343 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2344 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2345 sigaddset(&blocked, ksig->sig); 2346 set_current_blocked(&blocked); 2347 tracehook_signal_handler(stepping); 2348 } 2349 2350 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2351 { 2352 if (failed) 2353 force_sigsegv(ksig->sig, current); 2354 else 2355 signal_delivered(ksig, stepping); 2356 } 2357 2358 /* 2359 * It could be that complete_signal() picked us to notify about the 2360 * group-wide signal. Other threads should be notified now to take 2361 * the shared signals in @which since we will not. 2362 */ 2363 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2364 { 2365 sigset_t retarget; 2366 struct task_struct *t; 2367 2368 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2369 if (sigisemptyset(&retarget)) 2370 return; 2371 2372 t = tsk; 2373 while_each_thread(tsk, t) { 2374 if (t->flags & PF_EXITING) 2375 continue; 2376 2377 if (!has_pending_signals(&retarget, &t->blocked)) 2378 continue; 2379 /* Remove the signals this thread can handle. */ 2380 sigandsets(&retarget, &retarget, &t->blocked); 2381 2382 if (!signal_pending(t)) 2383 signal_wake_up(t, 0); 2384 2385 if (sigisemptyset(&retarget)) 2386 break; 2387 } 2388 } 2389 2390 void exit_signals(struct task_struct *tsk) 2391 { 2392 int group_stop = 0; 2393 sigset_t unblocked; 2394 2395 /* 2396 * @tsk is about to have PF_EXITING set - lock out users which 2397 * expect stable threadgroup. 2398 */ 2399 cgroup_threadgroup_change_begin(tsk); 2400 2401 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2402 tsk->flags |= PF_EXITING; 2403 cgroup_threadgroup_change_end(tsk); 2404 return; 2405 } 2406 2407 spin_lock_irq(&tsk->sighand->siglock); 2408 /* 2409 * From now this task is not visible for group-wide signals, 2410 * see wants_signal(), do_signal_stop(). 2411 */ 2412 tsk->flags |= PF_EXITING; 2413 2414 cgroup_threadgroup_change_end(tsk); 2415 2416 if (!signal_pending(tsk)) 2417 goto out; 2418 2419 unblocked = tsk->blocked; 2420 signotset(&unblocked); 2421 retarget_shared_pending(tsk, &unblocked); 2422 2423 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2424 task_participate_group_stop(tsk)) 2425 group_stop = CLD_STOPPED; 2426 out: 2427 spin_unlock_irq(&tsk->sighand->siglock); 2428 2429 /* 2430 * If group stop has completed, deliver the notification. This 2431 * should always go to the real parent of the group leader. 2432 */ 2433 if (unlikely(group_stop)) { 2434 read_lock(&tasklist_lock); 2435 do_notify_parent_cldstop(tsk, false, group_stop); 2436 read_unlock(&tasklist_lock); 2437 } 2438 } 2439 2440 EXPORT_SYMBOL(recalc_sigpending); 2441 EXPORT_SYMBOL_GPL(dequeue_signal); 2442 EXPORT_SYMBOL(flush_signals); 2443 EXPORT_SYMBOL(force_sig); 2444 EXPORT_SYMBOL(send_sig); 2445 EXPORT_SYMBOL(send_sig_info); 2446 EXPORT_SYMBOL(sigprocmask); 2447 2448 /* 2449 * System call entry points. 2450 */ 2451 2452 /** 2453 * sys_restart_syscall - restart a system call 2454 */ 2455 SYSCALL_DEFINE0(restart_syscall) 2456 { 2457 struct restart_block *restart = ¤t->restart_block; 2458 return restart->fn(restart); 2459 } 2460 2461 long do_no_restart_syscall(struct restart_block *param) 2462 { 2463 return -EINTR; 2464 } 2465 2466 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2467 { 2468 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2469 sigset_t newblocked; 2470 /* A set of now blocked but previously unblocked signals. */ 2471 sigandnsets(&newblocked, newset, ¤t->blocked); 2472 retarget_shared_pending(tsk, &newblocked); 2473 } 2474 tsk->blocked = *newset; 2475 recalc_sigpending(); 2476 } 2477 2478 /** 2479 * set_current_blocked - change current->blocked mask 2480 * @newset: new mask 2481 * 2482 * It is wrong to change ->blocked directly, this helper should be used 2483 * to ensure the process can't miss a shared signal we are going to block. 2484 */ 2485 void set_current_blocked(sigset_t *newset) 2486 { 2487 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2488 __set_current_blocked(newset); 2489 } 2490 2491 void __set_current_blocked(const sigset_t *newset) 2492 { 2493 struct task_struct *tsk = current; 2494 2495 /* 2496 * In case the signal mask hasn't changed, there is nothing we need 2497 * to do. The current->blocked shouldn't be modified by other task. 2498 */ 2499 if (sigequalsets(&tsk->blocked, newset)) 2500 return; 2501 2502 spin_lock_irq(&tsk->sighand->siglock); 2503 __set_task_blocked(tsk, newset); 2504 spin_unlock_irq(&tsk->sighand->siglock); 2505 } 2506 2507 /* 2508 * This is also useful for kernel threads that want to temporarily 2509 * (or permanently) block certain signals. 2510 * 2511 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2512 * interface happily blocks "unblockable" signals like SIGKILL 2513 * and friends. 2514 */ 2515 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2516 { 2517 struct task_struct *tsk = current; 2518 sigset_t newset; 2519 2520 /* Lockless, only current can change ->blocked, never from irq */ 2521 if (oldset) 2522 *oldset = tsk->blocked; 2523 2524 switch (how) { 2525 case SIG_BLOCK: 2526 sigorsets(&newset, &tsk->blocked, set); 2527 break; 2528 case SIG_UNBLOCK: 2529 sigandnsets(&newset, &tsk->blocked, set); 2530 break; 2531 case SIG_SETMASK: 2532 newset = *set; 2533 break; 2534 default: 2535 return -EINVAL; 2536 } 2537 2538 __set_current_blocked(&newset); 2539 return 0; 2540 } 2541 2542 /** 2543 * sys_rt_sigprocmask - change the list of currently blocked signals 2544 * @how: whether to add, remove, or set signals 2545 * @nset: stores pending signals 2546 * @oset: previous value of signal mask if non-null 2547 * @sigsetsize: size of sigset_t type 2548 */ 2549 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2550 sigset_t __user *, oset, size_t, sigsetsize) 2551 { 2552 sigset_t old_set, new_set; 2553 int error; 2554 2555 /* XXX: Don't preclude handling different sized sigset_t's. */ 2556 if (sigsetsize != sizeof(sigset_t)) 2557 return -EINVAL; 2558 2559 old_set = current->blocked; 2560 2561 if (nset) { 2562 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2563 return -EFAULT; 2564 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2565 2566 error = sigprocmask(how, &new_set, NULL); 2567 if (error) 2568 return error; 2569 } 2570 2571 if (oset) { 2572 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2573 return -EFAULT; 2574 } 2575 2576 return 0; 2577 } 2578 2579 #ifdef CONFIG_COMPAT 2580 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2581 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2582 { 2583 #ifdef __BIG_ENDIAN 2584 sigset_t old_set = current->blocked; 2585 2586 /* XXX: Don't preclude handling different sized sigset_t's. */ 2587 if (sigsetsize != sizeof(sigset_t)) 2588 return -EINVAL; 2589 2590 if (nset) { 2591 compat_sigset_t new32; 2592 sigset_t new_set; 2593 int error; 2594 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2595 return -EFAULT; 2596 2597 sigset_from_compat(&new_set, &new32); 2598 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2599 2600 error = sigprocmask(how, &new_set, NULL); 2601 if (error) 2602 return error; 2603 } 2604 if (oset) { 2605 compat_sigset_t old32; 2606 sigset_to_compat(&old32, &old_set); 2607 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2608 return -EFAULT; 2609 } 2610 return 0; 2611 #else 2612 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2613 (sigset_t __user *)oset, sigsetsize); 2614 #endif 2615 } 2616 #endif 2617 2618 static int do_sigpending(void *set, unsigned long sigsetsize) 2619 { 2620 if (sigsetsize > sizeof(sigset_t)) 2621 return -EINVAL; 2622 2623 spin_lock_irq(¤t->sighand->siglock); 2624 sigorsets(set, ¤t->pending.signal, 2625 ¤t->signal->shared_pending.signal); 2626 spin_unlock_irq(¤t->sighand->siglock); 2627 2628 /* Outside the lock because only this thread touches it. */ 2629 sigandsets(set, ¤t->blocked, set); 2630 return 0; 2631 } 2632 2633 /** 2634 * sys_rt_sigpending - examine a pending signal that has been raised 2635 * while blocked 2636 * @uset: stores pending signals 2637 * @sigsetsize: size of sigset_t type or larger 2638 */ 2639 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2640 { 2641 sigset_t set; 2642 int err = do_sigpending(&set, sigsetsize); 2643 if (!err && copy_to_user(uset, &set, sigsetsize)) 2644 err = -EFAULT; 2645 return err; 2646 } 2647 2648 #ifdef CONFIG_COMPAT 2649 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2650 compat_size_t, sigsetsize) 2651 { 2652 #ifdef __BIG_ENDIAN 2653 sigset_t set; 2654 int err = do_sigpending(&set, sigsetsize); 2655 if (!err) { 2656 compat_sigset_t set32; 2657 sigset_to_compat(&set32, &set); 2658 /* we can get here only if sigsetsize <= sizeof(set) */ 2659 if (copy_to_user(uset, &set32, sigsetsize)) 2660 err = -EFAULT; 2661 } 2662 return err; 2663 #else 2664 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2665 #endif 2666 } 2667 #endif 2668 2669 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2670 2671 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2672 { 2673 int err; 2674 2675 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2676 return -EFAULT; 2677 if (from->si_code < 0) 2678 return __copy_to_user(to, from, sizeof(siginfo_t)) 2679 ? -EFAULT : 0; 2680 /* 2681 * If you change siginfo_t structure, please be sure 2682 * this code is fixed accordingly. 2683 * Please remember to update the signalfd_copyinfo() function 2684 * inside fs/signalfd.c too, in case siginfo_t changes. 2685 * It should never copy any pad contained in the structure 2686 * to avoid security leaks, but must copy the generic 2687 * 3 ints plus the relevant union member. 2688 */ 2689 err = __put_user(from->si_signo, &to->si_signo); 2690 err |= __put_user(from->si_errno, &to->si_errno); 2691 err |= __put_user((short)from->si_code, &to->si_code); 2692 switch (from->si_code & __SI_MASK) { 2693 case __SI_KILL: 2694 err |= __put_user(from->si_pid, &to->si_pid); 2695 err |= __put_user(from->si_uid, &to->si_uid); 2696 break; 2697 case __SI_TIMER: 2698 err |= __put_user(from->si_tid, &to->si_tid); 2699 err |= __put_user(from->si_overrun, &to->si_overrun); 2700 err |= __put_user(from->si_ptr, &to->si_ptr); 2701 break; 2702 case __SI_POLL: 2703 err |= __put_user(from->si_band, &to->si_band); 2704 err |= __put_user(from->si_fd, &to->si_fd); 2705 break; 2706 case __SI_FAULT: 2707 err |= __put_user(from->si_addr, &to->si_addr); 2708 #ifdef __ARCH_SI_TRAPNO 2709 err |= __put_user(from->si_trapno, &to->si_trapno); 2710 #endif 2711 #ifdef BUS_MCEERR_AO 2712 /* 2713 * Other callers might not initialize the si_lsb field, 2714 * so check explicitly for the right codes here. 2715 */ 2716 if (from->si_signo == SIGBUS && 2717 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)) 2718 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2719 #endif 2720 #ifdef SEGV_BNDERR 2721 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2722 err |= __put_user(from->si_lower, &to->si_lower); 2723 err |= __put_user(from->si_upper, &to->si_upper); 2724 } 2725 #endif 2726 #ifdef SEGV_PKUERR 2727 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR) 2728 err |= __put_user(from->si_pkey, &to->si_pkey); 2729 #endif 2730 break; 2731 case __SI_CHLD: 2732 err |= __put_user(from->si_pid, &to->si_pid); 2733 err |= __put_user(from->si_uid, &to->si_uid); 2734 err |= __put_user(from->si_status, &to->si_status); 2735 err |= __put_user(from->si_utime, &to->si_utime); 2736 err |= __put_user(from->si_stime, &to->si_stime); 2737 break; 2738 case __SI_RT: /* This is not generated by the kernel as of now. */ 2739 case __SI_MESGQ: /* But this is */ 2740 err |= __put_user(from->si_pid, &to->si_pid); 2741 err |= __put_user(from->si_uid, &to->si_uid); 2742 err |= __put_user(from->si_ptr, &to->si_ptr); 2743 break; 2744 #ifdef __ARCH_SIGSYS 2745 case __SI_SYS: 2746 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2747 err |= __put_user(from->si_syscall, &to->si_syscall); 2748 err |= __put_user(from->si_arch, &to->si_arch); 2749 break; 2750 #endif 2751 default: /* this is just in case for now ... */ 2752 err |= __put_user(from->si_pid, &to->si_pid); 2753 err |= __put_user(from->si_uid, &to->si_uid); 2754 break; 2755 } 2756 return err; 2757 } 2758 2759 #endif 2760 2761 /** 2762 * do_sigtimedwait - wait for queued signals specified in @which 2763 * @which: queued signals to wait for 2764 * @info: if non-null, the signal's siginfo is returned here 2765 * @ts: upper bound on process time suspension 2766 */ 2767 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2768 const struct timespec *ts) 2769 { 2770 ktime_t *to = NULL, timeout = KTIME_MAX; 2771 struct task_struct *tsk = current; 2772 sigset_t mask = *which; 2773 int sig, ret = 0; 2774 2775 if (ts) { 2776 if (!timespec_valid(ts)) 2777 return -EINVAL; 2778 timeout = timespec_to_ktime(*ts); 2779 to = &timeout; 2780 } 2781 2782 /* 2783 * Invert the set of allowed signals to get those we want to block. 2784 */ 2785 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2786 signotset(&mask); 2787 2788 spin_lock_irq(&tsk->sighand->siglock); 2789 sig = dequeue_signal(tsk, &mask, info); 2790 if (!sig && timeout) { 2791 /* 2792 * None ready, temporarily unblock those we're interested 2793 * while we are sleeping in so that we'll be awakened when 2794 * they arrive. Unblocking is always fine, we can avoid 2795 * set_current_blocked(). 2796 */ 2797 tsk->real_blocked = tsk->blocked; 2798 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2799 recalc_sigpending(); 2800 spin_unlock_irq(&tsk->sighand->siglock); 2801 2802 __set_current_state(TASK_INTERRUPTIBLE); 2803 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 2804 HRTIMER_MODE_REL); 2805 spin_lock_irq(&tsk->sighand->siglock); 2806 __set_task_blocked(tsk, &tsk->real_blocked); 2807 sigemptyset(&tsk->real_blocked); 2808 sig = dequeue_signal(tsk, &mask, info); 2809 } 2810 spin_unlock_irq(&tsk->sighand->siglock); 2811 2812 if (sig) 2813 return sig; 2814 return ret ? -EINTR : -EAGAIN; 2815 } 2816 2817 /** 2818 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2819 * in @uthese 2820 * @uthese: queued signals to wait for 2821 * @uinfo: if non-null, the signal's siginfo is returned here 2822 * @uts: upper bound on process time suspension 2823 * @sigsetsize: size of sigset_t type 2824 */ 2825 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2826 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2827 size_t, sigsetsize) 2828 { 2829 sigset_t these; 2830 struct timespec ts; 2831 siginfo_t info; 2832 int ret; 2833 2834 /* XXX: Don't preclude handling different sized sigset_t's. */ 2835 if (sigsetsize != sizeof(sigset_t)) 2836 return -EINVAL; 2837 2838 if (copy_from_user(&these, uthese, sizeof(these))) 2839 return -EFAULT; 2840 2841 if (uts) { 2842 if (copy_from_user(&ts, uts, sizeof(ts))) 2843 return -EFAULT; 2844 } 2845 2846 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2847 2848 if (ret > 0 && uinfo) { 2849 if (copy_siginfo_to_user(uinfo, &info)) 2850 ret = -EFAULT; 2851 } 2852 2853 return ret; 2854 } 2855 2856 /** 2857 * sys_kill - send a signal to a process 2858 * @pid: the PID of the process 2859 * @sig: signal to be sent 2860 */ 2861 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2862 { 2863 struct siginfo info; 2864 2865 info.si_signo = sig; 2866 info.si_errno = 0; 2867 info.si_code = SI_USER; 2868 info.si_pid = task_tgid_vnr(current); 2869 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2870 2871 return kill_something_info(sig, &info, pid); 2872 } 2873 2874 static int 2875 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2876 { 2877 struct task_struct *p; 2878 int error = -ESRCH; 2879 2880 rcu_read_lock(); 2881 p = find_task_by_vpid(pid); 2882 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2883 error = check_kill_permission(sig, info, p); 2884 /* 2885 * The null signal is a permissions and process existence 2886 * probe. No signal is actually delivered. 2887 */ 2888 if (!error && sig) { 2889 error = do_send_sig_info(sig, info, p, false); 2890 /* 2891 * If lock_task_sighand() failed we pretend the task 2892 * dies after receiving the signal. The window is tiny, 2893 * and the signal is private anyway. 2894 */ 2895 if (unlikely(error == -ESRCH)) 2896 error = 0; 2897 } 2898 } 2899 rcu_read_unlock(); 2900 2901 return error; 2902 } 2903 2904 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2905 { 2906 struct siginfo info = {}; 2907 2908 info.si_signo = sig; 2909 info.si_errno = 0; 2910 info.si_code = SI_TKILL; 2911 info.si_pid = task_tgid_vnr(current); 2912 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2913 2914 return do_send_specific(tgid, pid, sig, &info); 2915 } 2916 2917 /** 2918 * sys_tgkill - send signal to one specific thread 2919 * @tgid: the thread group ID of the thread 2920 * @pid: the PID of the thread 2921 * @sig: signal to be sent 2922 * 2923 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2924 * exists but it's not belonging to the target process anymore. This 2925 * method solves the problem of threads exiting and PIDs getting reused. 2926 */ 2927 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2928 { 2929 /* This is only valid for single tasks */ 2930 if (pid <= 0 || tgid <= 0) 2931 return -EINVAL; 2932 2933 return do_tkill(tgid, pid, sig); 2934 } 2935 2936 /** 2937 * sys_tkill - send signal to one specific task 2938 * @pid: the PID of the task 2939 * @sig: signal to be sent 2940 * 2941 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2942 */ 2943 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2944 { 2945 /* This is only valid for single tasks */ 2946 if (pid <= 0) 2947 return -EINVAL; 2948 2949 return do_tkill(0, pid, sig); 2950 } 2951 2952 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2953 { 2954 /* Not even root can pretend to send signals from the kernel. 2955 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2956 */ 2957 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 2958 (task_pid_vnr(current) != pid)) 2959 return -EPERM; 2960 2961 info->si_signo = sig; 2962 2963 /* POSIX.1b doesn't mention process groups. */ 2964 return kill_proc_info(sig, info, pid); 2965 } 2966 2967 /** 2968 * sys_rt_sigqueueinfo - send signal information to a signal 2969 * @pid: the PID of the thread 2970 * @sig: signal to be sent 2971 * @uinfo: signal info to be sent 2972 */ 2973 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2974 siginfo_t __user *, uinfo) 2975 { 2976 siginfo_t info; 2977 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2978 return -EFAULT; 2979 return do_rt_sigqueueinfo(pid, sig, &info); 2980 } 2981 2982 #ifdef CONFIG_COMPAT 2983 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 2984 compat_pid_t, pid, 2985 int, sig, 2986 struct compat_siginfo __user *, uinfo) 2987 { 2988 siginfo_t info = {}; 2989 int ret = copy_siginfo_from_user32(&info, uinfo); 2990 if (unlikely(ret)) 2991 return ret; 2992 return do_rt_sigqueueinfo(pid, sig, &info); 2993 } 2994 #endif 2995 2996 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2997 { 2998 /* This is only valid for single tasks */ 2999 if (pid <= 0 || tgid <= 0) 3000 return -EINVAL; 3001 3002 /* Not even root can pretend to send signals from the kernel. 3003 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3004 */ 3005 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3006 (task_pid_vnr(current) != pid)) 3007 return -EPERM; 3008 3009 info->si_signo = sig; 3010 3011 return do_send_specific(tgid, pid, sig, info); 3012 } 3013 3014 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3015 siginfo_t __user *, uinfo) 3016 { 3017 siginfo_t info; 3018 3019 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3020 return -EFAULT; 3021 3022 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3023 } 3024 3025 #ifdef CONFIG_COMPAT 3026 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3027 compat_pid_t, tgid, 3028 compat_pid_t, pid, 3029 int, sig, 3030 struct compat_siginfo __user *, uinfo) 3031 { 3032 siginfo_t info = {}; 3033 3034 if (copy_siginfo_from_user32(&info, uinfo)) 3035 return -EFAULT; 3036 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3037 } 3038 #endif 3039 3040 /* 3041 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3042 */ 3043 void kernel_sigaction(int sig, __sighandler_t action) 3044 { 3045 spin_lock_irq(¤t->sighand->siglock); 3046 current->sighand->action[sig - 1].sa.sa_handler = action; 3047 if (action == SIG_IGN) { 3048 sigset_t mask; 3049 3050 sigemptyset(&mask); 3051 sigaddset(&mask, sig); 3052 3053 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3054 flush_sigqueue_mask(&mask, ¤t->pending); 3055 recalc_sigpending(); 3056 } 3057 spin_unlock_irq(¤t->sighand->siglock); 3058 } 3059 EXPORT_SYMBOL(kernel_sigaction); 3060 3061 void __weak sigaction_compat_abi(struct k_sigaction *act, 3062 struct k_sigaction *oact) 3063 { 3064 } 3065 3066 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3067 { 3068 struct task_struct *p = current, *t; 3069 struct k_sigaction *k; 3070 sigset_t mask; 3071 3072 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3073 return -EINVAL; 3074 3075 k = &p->sighand->action[sig-1]; 3076 3077 spin_lock_irq(&p->sighand->siglock); 3078 if (oact) 3079 *oact = *k; 3080 3081 sigaction_compat_abi(act, oact); 3082 3083 if (act) { 3084 sigdelsetmask(&act->sa.sa_mask, 3085 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3086 *k = *act; 3087 /* 3088 * POSIX 3.3.1.3: 3089 * "Setting a signal action to SIG_IGN for a signal that is 3090 * pending shall cause the pending signal to be discarded, 3091 * whether or not it is blocked." 3092 * 3093 * "Setting a signal action to SIG_DFL for a signal that is 3094 * pending and whose default action is to ignore the signal 3095 * (for example, SIGCHLD), shall cause the pending signal to 3096 * be discarded, whether or not it is blocked" 3097 */ 3098 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3099 sigemptyset(&mask); 3100 sigaddset(&mask, sig); 3101 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3102 for_each_thread(p, t) 3103 flush_sigqueue_mask(&mask, &t->pending); 3104 } 3105 } 3106 3107 spin_unlock_irq(&p->sighand->siglock); 3108 return 0; 3109 } 3110 3111 static int 3112 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3113 { 3114 stack_t oss; 3115 int error; 3116 3117 oss.ss_sp = (void __user *) current->sas_ss_sp; 3118 oss.ss_size = current->sas_ss_size; 3119 oss.ss_flags = sas_ss_flags(sp) | 3120 (current->sas_ss_flags & SS_FLAG_BITS); 3121 3122 if (uss) { 3123 void __user *ss_sp; 3124 size_t ss_size; 3125 unsigned ss_flags; 3126 int ss_mode; 3127 3128 error = -EFAULT; 3129 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3130 goto out; 3131 error = __get_user(ss_sp, &uss->ss_sp) | 3132 __get_user(ss_flags, &uss->ss_flags) | 3133 __get_user(ss_size, &uss->ss_size); 3134 if (error) 3135 goto out; 3136 3137 error = -EPERM; 3138 if (on_sig_stack(sp)) 3139 goto out; 3140 3141 ss_mode = ss_flags & ~SS_FLAG_BITS; 3142 error = -EINVAL; 3143 if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3144 ss_mode != 0) 3145 goto out; 3146 3147 if (ss_mode == SS_DISABLE) { 3148 ss_size = 0; 3149 ss_sp = NULL; 3150 } else { 3151 error = -ENOMEM; 3152 if (ss_size < MINSIGSTKSZ) 3153 goto out; 3154 } 3155 3156 current->sas_ss_sp = (unsigned long) ss_sp; 3157 current->sas_ss_size = ss_size; 3158 current->sas_ss_flags = ss_flags; 3159 } 3160 3161 error = 0; 3162 if (uoss) { 3163 error = -EFAULT; 3164 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3165 goto out; 3166 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3167 __put_user(oss.ss_size, &uoss->ss_size) | 3168 __put_user(oss.ss_flags, &uoss->ss_flags); 3169 } 3170 3171 out: 3172 return error; 3173 } 3174 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3175 { 3176 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3177 } 3178 3179 int restore_altstack(const stack_t __user *uss) 3180 { 3181 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3182 /* squash all but EFAULT for now */ 3183 return err == -EFAULT ? err : 0; 3184 } 3185 3186 int __save_altstack(stack_t __user *uss, unsigned long sp) 3187 { 3188 struct task_struct *t = current; 3189 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3190 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3191 __put_user(t->sas_ss_size, &uss->ss_size); 3192 if (err) 3193 return err; 3194 if (t->sas_ss_flags & SS_AUTODISARM) 3195 sas_ss_reset(t); 3196 return 0; 3197 } 3198 3199 #ifdef CONFIG_COMPAT 3200 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3201 const compat_stack_t __user *, uss_ptr, 3202 compat_stack_t __user *, uoss_ptr) 3203 { 3204 stack_t uss, uoss; 3205 int ret; 3206 mm_segment_t seg; 3207 3208 if (uss_ptr) { 3209 compat_stack_t uss32; 3210 3211 memset(&uss, 0, sizeof(stack_t)); 3212 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3213 return -EFAULT; 3214 uss.ss_sp = compat_ptr(uss32.ss_sp); 3215 uss.ss_flags = uss32.ss_flags; 3216 uss.ss_size = uss32.ss_size; 3217 } 3218 seg = get_fs(); 3219 set_fs(KERNEL_DS); 3220 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3221 (stack_t __force __user *) &uoss, 3222 compat_user_stack_pointer()); 3223 set_fs(seg); 3224 if (ret >= 0 && uoss_ptr) { 3225 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3226 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3227 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3228 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3229 ret = -EFAULT; 3230 } 3231 return ret; 3232 } 3233 3234 int compat_restore_altstack(const compat_stack_t __user *uss) 3235 { 3236 int err = compat_sys_sigaltstack(uss, NULL); 3237 /* squash all but -EFAULT for now */ 3238 return err == -EFAULT ? err : 0; 3239 } 3240 3241 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3242 { 3243 int err; 3244 struct task_struct *t = current; 3245 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3246 &uss->ss_sp) | 3247 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3248 __put_user(t->sas_ss_size, &uss->ss_size); 3249 if (err) 3250 return err; 3251 if (t->sas_ss_flags & SS_AUTODISARM) 3252 sas_ss_reset(t); 3253 return 0; 3254 } 3255 #endif 3256 3257 #ifdef __ARCH_WANT_SYS_SIGPENDING 3258 3259 /** 3260 * sys_sigpending - examine pending signals 3261 * @set: where mask of pending signal is returned 3262 */ 3263 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3264 { 3265 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3266 } 3267 3268 #endif 3269 3270 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3271 /** 3272 * sys_sigprocmask - examine and change blocked signals 3273 * @how: whether to add, remove, or set signals 3274 * @nset: signals to add or remove (if non-null) 3275 * @oset: previous value of signal mask if non-null 3276 * 3277 * Some platforms have their own version with special arguments; 3278 * others support only sys_rt_sigprocmask. 3279 */ 3280 3281 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3282 old_sigset_t __user *, oset) 3283 { 3284 old_sigset_t old_set, new_set; 3285 sigset_t new_blocked; 3286 3287 old_set = current->blocked.sig[0]; 3288 3289 if (nset) { 3290 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3291 return -EFAULT; 3292 3293 new_blocked = current->blocked; 3294 3295 switch (how) { 3296 case SIG_BLOCK: 3297 sigaddsetmask(&new_blocked, new_set); 3298 break; 3299 case SIG_UNBLOCK: 3300 sigdelsetmask(&new_blocked, new_set); 3301 break; 3302 case SIG_SETMASK: 3303 new_blocked.sig[0] = new_set; 3304 break; 3305 default: 3306 return -EINVAL; 3307 } 3308 3309 set_current_blocked(&new_blocked); 3310 } 3311 3312 if (oset) { 3313 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3314 return -EFAULT; 3315 } 3316 3317 return 0; 3318 } 3319 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3320 3321 #ifndef CONFIG_ODD_RT_SIGACTION 3322 /** 3323 * sys_rt_sigaction - alter an action taken by a process 3324 * @sig: signal to be sent 3325 * @act: new sigaction 3326 * @oact: used to save the previous sigaction 3327 * @sigsetsize: size of sigset_t type 3328 */ 3329 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3330 const struct sigaction __user *, act, 3331 struct sigaction __user *, oact, 3332 size_t, sigsetsize) 3333 { 3334 struct k_sigaction new_sa, old_sa; 3335 int ret = -EINVAL; 3336 3337 /* XXX: Don't preclude handling different sized sigset_t's. */ 3338 if (sigsetsize != sizeof(sigset_t)) 3339 goto out; 3340 3341 if (act) { 3342 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3343 return -EFAULT; 3344 } 3345 3346 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3347 3348 if (!ret && oact) { 3349 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3350 return -EFAULT; 3351 } 3352 out: 3353 return ret; 3354 } 3355 #ifdef CONFIG_COMPAT 3356 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3357 const struct compat_sigaction __user *, act, 3358 struct compat_sigaction __user *, oact, 3359 compat_size_t, sigsetsize) 3360 { 3361 struct k_sigaction new_ka, old_ka; 3362 compat_sigset_t mask; 3363 #ifdef __ARCH_HAS_SA_RESTORER 3364 compat_uptr_t restorer; 3365 #endif 3366 int ret; 3367 3368 /* XXX: Don't preclude handling different sized sigset_t's. */ 3369 if (sigsetsize != sizeof(compat_sigset_t)) 3370 return -EINVAL; 3371 3372 if (act) { 3373 compat_uptr_t handler; 3374 ret = get_user(handler, &act->sa_handler); 3375 new_ka.sa.sa_handler = compat_ptr(handler); 3376 #ifdef __ARCH_HAS_SA_RESTORER 3377 ret |= get_user(restorer, &act->sa_restorer); 3378 new_ka.sa.sa_restorer = compat_ptr(restorer); 3379 #endif 3380 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3381 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3382 if (ret) 3383 return -EFAULT; 3384 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3385 } 3386 3387 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3388 if (!ret && oact) { 3389 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3390 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3391 &oact->sa_handler); 3392 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3393 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3394 #ifdef __ARCH_HAS_SA_RESTORER 3395 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3396 &oact->sa_restorer); 3397 #endif 3398 } 3399 return ret; 3400 } 3401 #endif 3402 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3403 3404 #ifdef CONFIG_OLD_SIGACTION 3405 SYSCALL_DEFINE3(sigaction, int, sig, 3406 const struct old_sigaction __user *, act, 3407 struct old_sigaction __user *, oact) 3408 { 3409 struct k_sigaction new_ka, old_ka; 3410 int ret; 3411 3412 if (act) { 3413 old_sigset_t mask; 3414 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3415 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3416 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3417 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3418 __get_user(mask, &act->sa_mask)) 3419 return -EFAULT; 3420 #ifdef __ARCH_HAS_KA_RESTORER 3421 new_ka.ka_restorer = NULL; 3422 #endif 3423 siginitset(&new_ka.sa.sa_mask, mask); 3424 } 3425 3426 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3427 3428 if (!ret && oact) { 3429 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3430 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3431 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3432 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3433 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3434 return -EFAULT; 3435 } 3436 3437 return ret; 3438 } 3439 #endif 3440 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3441 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3442 const struct compat_old_sigaction __user *, act, 3443 struct compat_old_sigaction __user *, oact) 3444 { 3445 struct k_sigaction new_ka, old_ka; 3446 int ret; 3447 compat_old_sigset_t mask; 3448 compat_uptr_t handler, restorer; 3449 3450 if (act) { 3451 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3452 __get_user(handler, &act->sa_handler) || 3453 __get_user(restorer, &act->sa_restorer) || 3454 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3455 __get_user(mask, &act->sa_mask)) 3456 return -EFAULT; 3457 3458 #ifdef __ARCH_HAS_KA_RESTORER 3459 new_ka.ka_restorer = NULL; 3460 #endif 3461 new_ka.sa.sa_handler = compat_ptr(handler); 3462 new_ka.sa.sa_restorer = compat_ptr(restorer); 3463 siginitset(&new_ka.sa.sa_mask, mask); 3464 } 3465 3466 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3467 3468 if (!ret && oact) { 3469 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3470 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3471 &oact->sa_handler) || 3472 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3473 &oact->sa_restorer) || 3474 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3475 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3476 return -EFAULT; 3477 } 3478 return ret; 3479 } 3480 #endif 3481 3482 #ifdef CONFIG_SGETMASK_SYSCALL 3483 3484 /* 3485 * For backwards compatibility. Functionality superseded by sigprocmask. 3486 */ 3487 SYSCALL_DEFINE0(sgetmask) 3488 { 3489 /* SMP safe */ 3490 return current->blocked.sig[0]; 3491 } 3492 3493 SYSCALL_DEFINE1(ssetmask, int, newmask) 3494 { 3495 int old = current->blocked.sig[0]; 3496 sigset_t newset; 3497 3498 siginitset(&newset, newmask); 3499 set_current_blocked(&newset); 3500 3501 return old; 3502 } 3503 #endif /* CONFIG_SGETMASK_SYSCALL */ 3504 3505 #ifdef __ARCH_WANT_SYS_SIGNAL 3506 /* 3507 * For backwards compatibility. Functionality superseded by sigaction. 3508 */ 3509 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3510 { 3511 struct k_sigaction new_sa, old_sa; 3512 int ret; 3513 3514 new_sa.sa.sa_handler = handler; 3515 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3516 sigemptyset(&new_sa.sa.sa_mask); 3517 3518 ret = do_sigaction(sig, &new_sa, &old_sa); 3519 3520 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3521 } 3522 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3523 3524 #ifdef __ARCH_WANT_SYS_PAUSE 3525 3526 SYSCALL_DEFINE0(pause) 3527 { 3528 while (!signal_pending(current)) { 3529 __set_current_state(TASK_INTERRUPTIBLE); 3530 schedule(); 3531 } 3532 return -ERESTARTNOHAND; 3533 } 3534 3535 #endif 3536 3537 static int sigsuspend(sigset_t *set) 3538 { 3539 current->saved_sigmask = current->blocked; 3540 set_current_blocked(set); 3541 3542 while (!signal_pending(current)) { 3543 __set_current_state(TASK_INTERRUPTIBLE); 3544 schedule(); 3545 } 3546 set_restore_sigmask(); 3547 return -ERESTARTNOHAND; 3548 } 3549 3550 /** 3551 * sys_rt_sigsuspend - replace the signal mask for a value with the 3552 * @unewset value until a signal is received 3553 * @unewset: new signal mask value 3554 * @sigsetsize: size of sigset_t type 3555 */ 3556 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3557 { 3558 sigset_t newset; 3559 3560 /* XXX: Don't preclude handling different sized sigset_t's. */ 3561 if (sigsetsize != sizeof(sigset_t)) 3562 return -EINVAL; 3563 3564 if (copy_from_user(&newset, unewset, sizeof(newset))) 3565 return -EFAULT; 3566 return sigsuspend(&newset); 3567 } 3568 3569 #ifdef CONFIG_COMPAT 3570 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3571 { 3572 #ifdef __BIG_ENDIAN 3573 sigset_t newset; 3574 compat_sigset_t newset32; 3575 3576 /* XXX: Don't preclude handling different sized sigset_t's. */ 3577 if (sigsetsize != sizeof(sigset_t)) 3578 return -EINVAL; 3579 3580 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3581 return -EFAULT; 3582 sigset_from_compat(&newset, &newset32); 3583 return sigsuspend(&newset); 3584 #else 3585 /* on little-endian bitmaps don't care about granularity */ 3586 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3587 #endif 3588 } 3589 #endif 3590 3591 #ifdef CONFIG_OLD_SIGSUSPEND 3592 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3593 { 3594 sigset_t blocked; 3595 siginitset(&blocked, mask); 3596 return sigsuspend(&blocked); 3597 } 3598 #endif 3599 #ifdef CONFIG_OLD_SIGSUSPEND3 3600 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3601 { 3602 sigset_t blocked; 3603 siginitset(&blocked, mask); 3604 return sigsuspend(&blocked); 3605 } 3606 #endif 3607 3608 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3609 { 3610 return NULL; 3611 } 3612 3613 void __init signals_init(void) 3614 { 3615 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 3616 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 3617 != offsetof(struct siginfo, _sifields._pad)); 3618 3619 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3620 } 3621 3622 #ifdef CONFIG_KGDB_KDB 3623 #include <linux/kdb.h> 3624 /* 3625 * kdb_send_sig_info - Allows kdb to send signals without exposing 3626 * signal internals. This function checks if the required locks are 3627 * available before calling the main signal code, to avoid kdb 3628 * deadlocks. 3629 */ 3630 void 3631 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3632 { 3633 static struct task_struct *kdb_prev_t; 3634 int sig, new_t; 3635 if (!spin_trylock(&t->sighand->siglock)) { 3636 kdb_printf("Can't do kill command now.\n" 3637 "The sigmask lock is held somewhere else in " 3638 "kernel, try again later\n"); 3639 return; 3640 } 3641 spin_unlock(&t->sighand->siglock); 3642 new_t = kdb_prev_t != t; 3643 kdb_prev_t = t; 3644 if (t->state != TASK_RUNNING && new_t) { 3645 kdb_printf("Process is not RUNNING, sending a signal from " 3646 "kdb risks deadlock\n" 3647 "on the run queue locks. " 3648 "The signal has _not_ been sent.\n" 3649 "Reissue the kill command if you want to risk " 3650 "the deadlock.\n"); 3651 return; 3652 } 3653 sig = info->si_signo; 3654 if (send_sig_info(sig, info, t)) 3655 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3656 sig, t->pid); 3657 else 3658 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3659 } 3660 #endif /* CONFIG_KGDB_KDB */ 3661