xref: /openbmc/linux/kernel/signal.c (revision 163b0991)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & (PF_KTHREAD | PF_IO_WORKER)) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 	    !klp_patch_pending(current))
186 		clear_thread_flag(TIF_SIGPENDING);
187 
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190 
191 void calculate_sigpending(void)
192 {
193 	/* Have any signals or users of TIF_SIGPENDING been delayed
194 	 * until after fork?
195 	 */
196 	spin_lock_irq(&current->sighand->siglock);
197 	set_tsk_thread_flag(current, TIF_SIGPENDING);
198 	recalc_sigpending();
199 	spin_unlock_irq(&current->sighand->siglock);
200 }
201 
202 /* Given the mask, find the first available signal that should be serviced. */
203 
204 #define SYNCHRONOUS_MASK \
205 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 	unsigned long i, *s, *m, x;
211 	int sig = 0;
212 
213 	s = pending->signal.sig;
214 	m = mask->sig;
215 
216 	/*
217 	 * Handle the first word specially: it contains the
218 	 * synchronous signals that need to be dequeued first.
219 	 */
220 	x = *s &~ *m;
221 	if (x) {
222 		if (x & SYNCHRONOUS_MASK)
223 			x &= SYNCHRONOUS_MASK;
224 		sig = ffz(~x) + 1;
225 		return sig;
226 	}
227 
228 	switch (_NSIG_WORDS) {
229 	default:
230 		for (i = 1; i < _NSIG_WORDS; ++i) {
231 			x = *++s &~ *++m;
232 			if (!x)
233 				continue;
234 			sig = ffz(~x) + i*_NSIG_BPW + 1;
235 			break;
236 		}
237 		break;
238 
239 	case 2:
240 		x = s[1] &~ m[1];
241 		if (!x)
242 			break;
243 		sig = ffz(~x) + _NSIG_BPW + 1;
244 		break;
245 
246 	case 1:
247 		/* Nothing to do */
248 		break;
249 	}
250 
251 	return sig;
252 }
253 
254 static inline void print_dropped_signal(int sig)
255 {
256 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 
258 	if (!print_fatal_signals)
259 		return;
260 
261 	if (!__ratelimit(&ratelimit_state))
262 		return;
263 
264 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 				current->comm, current->pid, sig);
266 }
267 
268 /**
269  * task_set_jobctl_pending - set jobctl pending bits
270  * @task: target task
271  * @mask: pending bits to set
272  *
273  * Clear @mask from @task->jobctl.  @mask must be subset of
274  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276  * cleared.  If @task is already being killed or exiting, this function
277  * becomes noop.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  *
282  * RETURNS:
283  * %true if @mask is set, %false if made noop because @task was dying.
284  */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 
291 	if (unlikely(fatal_signal_pending(task) ||
292 		     (task->flags & (PF_EXITING | PF_IO_WORKER))))
293 		return false;
294 
295 	if (mask & JOBCTL_STOP_SIGMASK)
296 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
297 
298 	task->jobctl |= mask;
299 	return true;
300 }
301 
302 /**
303  * task_clear_jobctl_trapping - clear jobctl trapping bit
304  * @task: target task
305  *
306  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307  * Clear it and wake up the ptracer.  Note that we don't need any further
308  * locking.  @task->siglock guarantees that @task->parent points to the
309  * ptracer.
310  *
311  * CONTEXT:
312  * Must be called with @task->sighand->siglock held.
313  */
314 void task_clear_jobctl_trapping(struct task_struct *task)
315 {
316 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 		task->jobctl &= ~JOBCTL_TRAPPING;
318 		smp_mb();	/* advised by wake_up_bit() */
319 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
320 	}
321 }
322 
323 /**
324  * task_clear_jobctl_pending - clear jobctl pending bits
325  * @task: target task
326  * @mask: pending bits to clear
327  *
328  * Clear @mask from @task->jobctl.  @mask must be subset of
329  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
330  * STOP bits are cleared together.
331  *
332  * If clearing of @mask leaves no stop or trap pending, this function calls
333  * task_clear_jobctl_trapping().
334  *
335  * CONTEXT:
336  * Must be called with @task->sighand->siglock held.
337  */
338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
339 {
340 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
341 
342 	if (mask & JOBCTL_STOP_PENDING)
343 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
344 
345 	task->jobctl &= ~mask;
346 
347 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 		task_clear_jobctl_trapping(task);
349 }
350 
351 /**
352  * task_participate_group_stop - participate in a group stop
353  * @task: task participating in a group stop
354  *
355  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356  * Group stop states are cleared and the group stop count is consumed if
357  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
358  * stop, the appropriate `SIGNAL_*` flags are set.
359  *
360  * CONTEXT:
361  * Must be called with @task->sighand->siglock held.
362  *
363  * RETURNS:
364  * %true if group stop completion should be notified to the parent, %false
365  * otherwise.
366  */
367 static bool task_participate_group_stop(struct task_struct *task)
368 {
369 	struct signal_struct *sig = task->signal;
370 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
371 
372 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
373 
374 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
375 
376 	if (!consume)
377 		return false;
378 
379 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 		sig->group_stop_count--;
381 
382 	/*
383 	 * Tell the caller to notify completion iff we are entering into a
384 	 * fresh group stop.  Read comment in do_signal_stop() for details.
385 	 */
386 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
388 		return true;
389 	}
390 	return false;
391 }
392 
393 void task_join_group_stop(struct task_struct *task)
394 {
395 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 	struct signal_struct *sig = current->signal;
397 
398 	if (sig->group_stop_count) {
399 		sig->group_stop_count++;
400 		mask |= JOBCTL_STOP_CONSUME;
401 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 		return;
403 
404 	/* Have the new thread join an on-going signal group stop */
405 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 }
407 
408 /*
409  * allocate a new signal queue record
410  * - this may be called without locks if and only if t == current, otherwise an
411  *   appropriate lock must be held to stop the target task from exiting
412  */
413 static struct sigqueue *
414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
415 {
416 	struct sigqueue *q = NULL;
417 	struct user_struct *user;
418 	int sigpending;
419 
420 	/*
421 	 * Protect access to @t credentials. This can go away when all
422 	 * callers hold rcu read lock.
423 	 *
424 	 * NOTE! A pending signal will hold on to the user refcount,
425 	 * and we get/put the refcount only when the sigpending count
426 	 * changes from/to zero.
427 	 */
428 	rcu_read_lock();
429 	user = __task_cred(t)->user;
430 	sigpending = atomic_inc_return(&user->sigpending);
431 	if (sigpending == 1)
432 		get_uid(user);
433 	rcu_read_unlock();
434 
435 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
436 		q = kmem_cache_alloc(sigqueue_cachep, flags);
437 	} else {
438 		print_dropped_signal(sig);
439 	}
440 
441 	if (unlikely(q == NULL)) {
442 		if (atomic_dec_and_test(&user->sigpending))
443 			free_uid(user);
444 	} else {
445 		INIT_LIST_HEAD(&q->list);
446 		q->flags = 0;
447 		q->user = user;
448 	}
449 
450 	return q;
451 }
452 
453 static void __sigqueue_free(struct sigqueue *q)
454 {
455 	if (q->flags & SIGQUEUE_PREALLOC)
456 		return;
457 	if (atomic_dec_and_test(&q->user->sigpending))
458 		free_uid(q->user);
459 	kmem_cache_free(sigqueue_cachep, q);
460 }
461 
462 void flush_sigqueue(struct sigpending *queue)
463 {
464 	struct sigqueue *q;
465 
466 	sigemptyset(&queue->signal);
467 	while (!list_empty(&queue->list)) {
468 		q = list_entry(queue->list.next, struct sigqueue , list);
469 		list_del_init(&q->list);
470 		__sigqueue_free(q);
471 	}
472 }
473 
474 /*
475  * Flush all pending signals for this kthread.
476  */
477 void flush_signals(struct task_struct *t)
478 {
479 	unsigned long flags;
480 
481 	spin_lock_irqsave(&t->sighand->siglock, flags);
482 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
483 	flush_sigqueue(&t->pending);
484 	flush_sigqueue(&t->signal->shared_pending);
485 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
486 }
487 EXPORT_SYMBOL(flush_signals);
488 
489 #ifdef CONFIG_POSIX_TIMERS
490 static void __flush_itimer_signals(struct sigpending *pending)
491 {
492 	sigset_t signal, retain;
493 	struct sigqueue *q, *n;
494 
495 	signal = pending->signal;
496 	sigemptyset(&retain);
497 
498 	list_for_each_entry_safe(q, n, &pending->list, list) {
499 		int sig = q->info.si_signo;
500 
501 		if (likely(q->info.si_code != SI_TIMER)) {
502 			sigaddset(&retain, sig);
503 		} else {
504 			sigdelset(&signal, sig);
505 			list_del_init(&q->list);
506 			__sigqueue_free(q);
507 		}
508 	}
509 
510 	sigorsets(&pending->signal, &signal, &retain);
511 }
512 
513 void flush_itimer_signals(void)
514 {
515 	struct task_struct *tsk = current;
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
519 	__flush_itimer_signals(&tsk->pending);
520 	__flush_itimer_signals(&tsk->signal->shared_pending);
521 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
522 }
523 #endif
524 
525 void ignore_signals(struct task_struct *t)
526 {
527 	int i;
528 
529 	for (i = 0; i < _NSIG; ++i)
530 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
531 
532 	flush_signals(t);
533 }
534 
535 /*
536  * Flush all handlers for a task.
537  */
538 
539 void
540 flush_signal_handlers(struct task_struct *t, int force_default)
541 {
542 	int i;
543 	struct k_sigaction *ka = &t->sighand->action[0];
544 	for (i = _NSIG ; i != 0 ; i--) {
545 		if (force_default || ka->sa.sa_handler != SIG_IGN)
546 			ka->sa.sa_handler = SIG_DFL;
547 		ka->sa.sa_flags = 0;
548 #ifdef __ARCH_HAS_SA_RESTORER
549 		ka->sa.sa_restorer = NULL;
550 #endif
551 		sigemptyset(&ka->sa.sa_mask);
552 		ka++;
553 	}
554 }
555 
556 bool unhandled_signal(struct task_struct *tsk, int sig)
557 {
558 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
559 	if (is_global_init(tsk))
560 		return true;
561 
562 	if (handler != SIG_IGN && handler != SIG_DFL)
563 		return false;
564 
565 	/* if ptraced, let the tracer determine */
566 	return !tsk->ptrace;
567 }
568 
569 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
570 			   bool *resched_timer)
571 {
572 	struct sigqueue *q, *first = NULL;
573 
574 	/*
575 	 * Collect the siginfo appropriate to this signal.  Check if
576 	 * there is another siginfo for the same signal.
577 	*/
578 	list_for_each_entry(q, &list->list, list) {
579 		if (q->info.si_signo == sig) {
580 			if (first)
581 				goto still_pending;
582 			first = q;
583 		}
584 	}
585 
586 	sigdelset(&list->signal, sig);
587 
588 	if (first) {
589 still_pending:
590 		list_del_init(&first->list);
591 		copy_siginfo(info, &first->info);
592 
593 		*resched_timer =
594 			(first->flags & SIGQUEUE_PREALLOC) &&
595 			(info->si_code == SI_TIMER) &&
596 			(info->si_sys_private);
597 
598 		__sigqueue_free(first);
599 	} else {
600 		/*
601 		 * Ok, it wasn't in the queue.  This must be
602 		 * a fast-pathed signal or we must have been
603 		 * out of queue space.  So zero out the info.
604 		 */
605 		clear_siginfo(info);
606 		info->si_signo = sig;
607 		info->si_errno = 0;
608 		info->si_code = SI_USER;
609 		info->si_pid = 0;
610 		info->si_uid = 0;
611 	}
612 }
613 
614 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
615 			kernel_siginfo_t *info, bool *resched_timer)
616 {
617 	int sig = next_signal(pending, mask);
618 
619 	if (sig)
620 		collect_signal(sig, pending, info, resched_timer);
621 	return sig;
622 }
623 
624 /*
625  * Dequeue a signal and return the element to the caller, which is
626  * expected to free it.
627  *
628  * All callers have to hold the siglock.
629  */
630 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
631 {
632 	bool resched_timer = false;
633 	int signr;
634 
635 	/* We only dequeue private signals from ourselves, we don't let
636 	 * signalfd steal them
637 	 */
638 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
639 	if (!signr) {
640 		signr = __dequeue_signal(&tsk->signal->shared_pending,
641 					 mask, info, &resched_timer);
642 #ifdef CONFIG_POSIX_TIMERS
643 		/*
644 		 * itimer signal ?
645 		 *
646 		 * itimers are process shared and we restart periodic
647 		 * itimers in the signal delivery path to prevent DoS
648 		 * attacks in the high resolution timer case. This is
649 		 * compliant with the old way of self-restarting
650 		 * itimers, as the SIGALRM is a legacy signal and only
651 		 * queued once. Changing the restart behaviour to
652 		 * restart the timer in the signal dequeue path is
653 		 * reducing the timer noise on heavy loaded !highres
654 		 * systems too.
655 		 */
656 		if (unlikely(signr == SIGALRM)) {
657 			struct hrtimer *tmr = &tsk->signal->real_timer;
658 
659 			if (!hrtimer_is_queued(tmr) &&
660 			    tsk->signal->it_real_incr != 0) {
661 				hrtimer_forward(tmr, tmr->base->get_time(),
662 						tsk->signal->it_real_incr);
663 				hrtimer_restart(tmr);
664 			}
665 		}
666 #endif
667 	}
668 
669 	recalc_sigpending();
670 	if (!signr)
671 		return 0;
672 
673 	if (unlikely(sig_kernel_stop(signr))) {
674 		/*
675 		 * Set a marker that we have dequeued a stop signal.  Our
676 		 * caller might release the siglock and then the pending
677 		 * stop signal it is about to process is no longer in the
678 		 * pending bitmasks, but must still be cleared by a SIGCONT
679 		 * (and overruled by a SIGKILL).  So those cases clear this
680 		 * shared flag after we've set it.  Note that this flag may
681 		 * remain set after the signal we return is ignored or
682 		 * handled.  That doesn't matter because its only purpose
683 		 * is to alert stop-signal processing code when another
684 		 * processor has come along and cleared the flag.
685 		 */
686 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
687 	}
688 #ifdef CONFIG_POSIX_TIMERS
689 	if (resched_timer) {
690 		/*
691 		 * Release the siglock to ensure proper locking order
692 		 * of timer locks outside of siglocks.  Note, we leave
693 		 * irqs disabled here, since the posix-timers code is
694 		 * about to disable them again anyway.
695 		 */
696 		spin_unlock(&tsk->sighand->siglock);
697 		posixtimer_rearm(info);
698 		spin_lock(&tsk->sighand->siglock);
699 
700 		/* Don't expose the si_sys_private value to userspace */
701 		info->si_sys_private = 0;
702 	}
703 #endif
704 	return signr;
705 }
706 EXPORT_SYMBOL_GPL(dequeue_signal);
707 
708 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
709 {
710 	struct task_struct *tsk = current;
711 	struct sigpending *pending = &tsk->pending;
712 	struct sigqueue *q, *sync = NULL;
713 
714 	/*
715 	 * Might a synchronous signal be in the queue?
716 	 */
717 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
718 		return 0;
719 
720 	/*
721 	 * Return the first synchronous signal in the queue.
722 	 */
723 	list_for_each_entry(q, &pending->list, list) {
724 		/* Synchronous signals have a positive si_code */
725 		if ((q->info.si_code > SI_USER) &&
726 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
727 			sync = q;
728 			goto next;
729 		}
730 	}
731 	return 0;
732 next:
733 	/*
734 	 * Check if there is another siginfo for the same signal.
735 	 */
736 	list_for_each_entry_continue(q, &pending->list, list) {
737 		if (q->info.si_signo == sync->info.si_signo)
738 			goto still_pending;
739 	}
740 
741 	sigdelset(&pending->signal, sync->info.si_signo);
742 	recalc_sigpending();
743 still_pending:
744 	list_del_init(&sync->list);
745 	copy_siginfo(info, &sync->info);
746 	__sigqueue_free(sync);
747 	return info->si_signo;
748 }
749 
750 /*
751  * Tell a process that it has a new active signal..
752  *
753  * NOTE! we rely on the previous spin_lock to
754  * lock interrupts for us! We can only be called with
755  * "siglock" held, and the local interrupt must
756  * have been disabled when that got acquired!
757  *
758  * No need to set need_resched since signal event passing
759  * goes through ->blocked
760  */
761 void signal_wake_up_state(struct task_struct *t, unsigned int state)
762 {
763 	set_tsk_thread_flag(t, TIF_SIGPENDING);
764 	/*
765 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
766 	 * case. We don't check t->state here because there is a race with it
767 	 * executing another processor and just now entering stopped state.
768 	 * By using wake_up_state, we ensure the process will wake up and
769 	 * handle its death signal.
770 	 */
771 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
772 		kick_process(t);
773 }
774 
775 /*
776  * Remove signals in mask from the pending set and queue.
777  * Returns 1 if any signals were found.
778  *
779  * All callers must be holding the siglock.
780  */
781 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
782 {
783 	struct sigqueue *q, *n;
784 	sigset_t m;
785 
786 	sigandsets(&m, mask, &s->signal);
787 	if (sigisemptyset(&m))
788 		return;
789 
790 	sigandnsets(&s->signal, &s->signal, mask);
791 	list_for_each_entry_safe(q, n, &s->list, list) {
792 		if (sigismember(mask, q->info.si_signo)) {
793 			list_del_init(&q->list);
794 			__sigqueue_free(q);
795 		}
796 	}
797 }
798 
799 static inline int is_si_special(const struct kernel_siginfo *info)
800 {
801 	return info <= SEND_SIG_PRIV;
802 }
803 
804 static inline bool si_fromuser(const struct kernel_siginfo *info)
805 {
806 	return info == SEND_SIG_NOINFO ||
807 		(!is_si_special(info) && SI_FROMUSER(info));
808 }
809 
810 /*
811  * called with RCU read lock from check_kill_permission()
812  */
813 static bool kill_ok_by_cred(struct task_struct *t)
814 {
815 	const struct cred *cred = current_cred();
816 	const struct cred *tcred = __task_cred(t);
817 
818 	return uid_eq(cred->euid, tcred->suid) ||
819 	       uid_eq(cred->euid, tcred->uid) ||
820 	       uid_eq(cred->uid, tcred->suid) ||
821 	       uid_eq(cred->uid, tcred->uid) ||
822 	       ns_capable(tcred->user_ns, CAP_KILL);
823 }
824 
825 /*
826  * Bad permissions for sending the signal
827  * - the caller must hold the RCU read lock
828  */
829 static int check_kill_permission(int sig, struct kernel_siginfo *info,
830 				 struct task_struct *t)
831 {
832 	struct pid *sid;
833 	int error;
834 
835 	if (!valid_signal(sig))
836 		return -EINVAL;
837 	/* PF_IO_WORKER threads don't take any signals */
838 	if (t->flags & PF_IO_WORKER)
839 		return -ESRCH;
840 
841 	if (!si_fromuser(info))
842 		return 0;
843 
844 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
845 	if (error)
846 		return error;
847 
848 	if (!same_thread_group(current, t) &&
849 	    !kill_ok_by_cred(t)) {
850 		switch (sig) {
851 		case SIGCONT:
852 			sid = task_session(t);
853 			/*
854 			 * We don't return the error if sid == NULL. The
855 			 * task was unhashed, the caller must notice this.
856 			 */
857 			if (!sid || sid == task_session(current))
858 				break;
859 			fallthrough;
860 		default:
861 			return -EPERM;
862 		}
863 	}
864 
865 	return security_task_kill(t, info, sig, NULL);
866 }
867 
868 /**
869  * ptrace_trap_notify - schedule trap to notify ptracer
870  * @t: tracee wanting to notify tracer
871  *
872  * This function schedules sticky ptrace trap which is cleared on the next
873  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
874  * ptracer.
875  *
876  * If @t is running, STOP trap will be taken.  If trapped for STOP and
877  * ptracer is listening for events, tracee is woken up so that it can
878  * re-trap for the new event.  If trapped otherwise, STOP trap will be
879  * eventually taken without returning to userland after the existing traps
880  * are finished by PTRACE_CONT.
881  *
882  * CONTEXT:
883  * Must be called with @task->sighand->siglock held.
884  */
885 static void ptrace_trap_notify(struct task_struct *t)
886 {
887 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
888 	assert_spin_locked(&t->sighand->siglock);
889 
890 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
891 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
892 }
893 
894 /*
895  * Handle magic process-wide effects of stop/continue signals. Unlike
896  * the signal actions, these happen immediately at signal-generation
897  * time regardless of blocking, ignoring, or handling.  This does the
898  * actual continuing for SIGCONT, but not the actual stopping for stop
899  * signals. The process stop is done as a signal action for SIG_DFL.
900  *
901  * Returns true if the signal should be actually delivered, otherwise
902  * it should be dropped.
903  */
904 static bool prepare_signal(int sig, struct task_struct *p, bool force)
905 {
906 	struct signal_struct *signal = p->signal;
907 	struct task_struct *t;
908 	sigset_t flush;
909 
910 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
911 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
912 			return sig == SIGKILL;
913 		/*
914 		 * The process is in the middle of dying, nothing to do.
915 		 */
916 	} else if (sig_kernel_stop(sig)) {
917 		/*
918 		 * This is a stop signal.  Remove SIGCONT from all queues.
919 		 */
920 		siginitset(&flush, sigmask(SIGCONT));
921 		flush_sigqueue_mask(&flush, &signal->shared_pending);
922 		for_each_thread(p, t)
923 			flush_sigqueue_mask(&flush, &t->pending);
924 	} else if (sig == SIGCONT) {
925 		unsigned int why;
926 		/*
927 		 * Remove all stop signals from all queues, wake all threads.
928 		 */
929 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
930 		flush_sigqueue_mask(&flush, &signal->shared_pending);
931 		for_each_thread(p, t) {
932 			flush_sigqueue_mask(&flush, &t->pending);
933 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
934 			if (likely(!(t->ptrace & PT_SEIZED)))
935 				wake_up_state(t, __TASK_STOPPED);
936 			else
937 				ptrace_trap_notify(t);
938 		}
939 
940 		/*
941 		 * Notify the parent with CLD_CONTINUED if we were stopped.
942 		 *
943 		 * If we were in the middle of a group stop, we pretend it
944 		 * was already finished, and then continued. Since SIGCHLD
945 		 * doesn't queue we report only CLD_STOPPED, as if the next
946 		 * CLD_CONTINUED was dropped.
947 		 */
948 		why = 0;
949 		if (signal->flags & SIGNAL_STOP_STOPPED)
950 			why |= SIGNAL_CLD_CONTINUED;
951 		else if (signal->group_stop_count)
952 			why |= SIGNAL_CLD_STOPPED;
953 
954 		if (why) {
955 			/*
956 			 * The first thread which returns from do_signal_stop()
957 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
958 			 * notify its parent. See get_signal().
959 			 */
960 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
961 			signal->group_stop_count = 0;
962 			signal->group_exit_code = 0;
963 		}
964 	}
965 
966 	return !sig_ignored(p, sig, force);
967 }
968 
969 /*
970  * Test if P wants to take SIG.  After we've checked all threads with this,
971  * it's equivalent to finding no threads not blocking SIG.  Any threads not
972  * blocking SIG were ruled out because they are not running and already
973  * have pending signals.  Such threads will dequeue from the shared queue
974  * as soon as they're available, so putting the signal on the shared queue
975  * will be equivalent to sending it to one such thread.
976  */
977 static inline bool wants_signal(int sig, struct task_struct *p)
978 {
979 	if (sigismember(&p->blocked, sig))
980 		return false;
981 
982 	if (p->flags & PF_EXITING)
983 		return false;
984 
985 	if (sig == SIGKILL)
986 		return true;
987 
988 	if (task_is_stopped_or_traced(p))
989 		return false;
990 
991 	return task_curr(p) || !task_sigpending(p);
992 }
993 
994 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
995 {
996 	struct signal_struct *signal = p->signal;
997 	struct task_struct *t;
998 
999 	/*
1000 	 * Now find a thread we can wake up to take the signal off the queue.
1001 	 *
1002 	 * If the main thread wants the signal, it gets first crack.
1003 	 * Probably the least surprising to the average bear.
1004 	 */
1005 	if (wants_signal(sig, p))
1006 		t = p;
1007 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008 		/*
1009 		 * There is just one thread and it does not need to be woken.
1010 		 * It will dequeue unblocked signals before it runs again.
1011 		 */
1012 		return;
1013 	else {
1014 		/*
1015 		 * Otherwise try to find a suitable thread.
1016 		 */
1017 		t = signal->curr_target;
1018 		while (!wants_signal(sig, t)) {
1019 			t = next_thread(t);
1020 			if (t == signal->curr_target)
1021 				/*
1022 				 * No thread needs to be woken.
1023 				 * Any eligible threads will see
1024 				 * the signal in the queue soon.
1025 				 */
1026 				return;
1027 		}
1028 		signal->curr_target = t;
1029 	}
1030 
1031 	/*
1032 	 * Found a killable thread.  If the signal will be fatal,
1033 	 * then start taking the whole group down immediately.
1034 	 */
1035 	if (sig_fatal(p, sig) &&
1036 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1037 	    !sigismember(&t->real_blocked, sig) &&
1038 	    (sig == SIGKILL || !p->ptrace)) {
1039 		/*
1040 		 * This signal will be fatal to the whole group.
1041 		 */
1042 		if (!sig_kernel_coredump(sig)) {
1043 			/*
1044 			 * Start a group exit and wake everybody up.
1045 			 * This way we don't have other threads
1046 			 * running and doing things after a slower
1047 			 * thread has the fatal signal pending.
1048 			 */
1049 			signal->flags = SIGNAL_GROUP_EXIT;
1050 			signal->group_exit_code = sig;
1051 			signal->group_stop_count = 0;
1052 			t = p;
1053 			do {
1054 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1055 				sigaddset(&t->pending.signal, SIGKILL);
1056 				signal_wake_up(t, 1);
1057 			} while_each_thread(p, t);
1058 			return;
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * The signal is already in the shared-pending queue.
1064 	 * Tell the chosen thread to wake up and dequeue it.
1065 	 */
1066 	signal_wake_up(t, sig == SIGKILL);
1067 	return;
1068 }
1069 
1070 static inline bool legacy_queue(struct sigpending *signals, int sig)
1071 {
1072 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1073 }
1074 
1075 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1076 			enum pid_type type, bool force)
1077 {
1078 	struct sigpending *pending;
1079 	struct sigqueue *q;
1080 	int override_rlimit;
1081 	int ret = 0, result;
1082 
1083 	assert_spin_locked(&t->sighand->siglock);
1084 
1085 	result = TRACE_SIGNAL_IGNORED;
1086 	if (!prepare_signal(sig, t, force))
1087 		goto ret;
1088 
1089 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1090 	/*
1091 	 * Short-circuit ignored signals and support queuing
1092 	 * exactly one non-rt signal, so that we can get more
1093 	 * detailed information about the cause of the signal.
1094 	 */
1095 	result = TRACE_SIGNAL_ALREADY_PENDING;
1096 	if (legacy_queue(pending, sig))
1097 		goto ret;
1098 
1099 	result = TRACE_SIGNAL_DELIVERED;
1100 	/*
1101 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1102 	 */
1103 	if ((sig == SIGKILL) || (t->flags & (PF_KTHREAD | PF_IO_WORKER)))
1104 		goto out_set;
1105 
1106 	/*
1107 	 * Real-time signals must be queued if sent by sigqueue, or
1108 	 * some other real-time mechanism.  It is implementation
1109 	 * defined whether kill() does so.  We attempt to do so, on
1110 	 * the principle of least surprise, but since kill is not
1111 	 * allowed to fail with EAGAIN when low on memory we just
1112 	 * make sure at least one signal gets delivered and don't
1113 	 * pass on the info struct.
1114 	 */
1115 	if (sig < SIGRTMIN)
1116 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1117 	else
1118 		override_rlimit = 0;
1119 
1120 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1121 	if (q) {
1122 		list_add_tail(&q->list, &pending->list);
1123 		switch ((unsigned long) info) {
1124 		case (unsigned long) SEND_SIG_NOINFO:
1125 			clear_siginfo(&q->info);
1126 			q->info.si_signo = sig;
1127 			q->info.si_errno = 0;
1128 			q->info.si_code = SI_USER;
1129 			q->info.si_pid = task_tgid_nr_ns(current,
1130 							task_active_pid_ns(t));
1131 			rcu_read_lock();
1132 			q->info.si_uid =
1133 				from_kuid_munged(task_cred_xxx(t, user_ns),
1134 						 current_uid());
1135 			rcu_read_unlock();
1136 			break;
1137 		case (unsigned long) SEND_SIG_PRIV:
1138 			clear_siginfo(&q->info);
1139 			q->info.si_signo = sig;
1140 			q->info.si_errno = 0;
1141 			q->info.si_code = SI_KERNEL;
1142 			q->info.si_pid = 0;
1143 			q->info.si_uid = 0;
1144 			break;
1145 		default:
1146 			copy_siginfo(&q->info, info);
1147 			break;
1148 		}
1149 	} else if (!is_si_special(info) &&
1150 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151 		/*
1152 		 * Queue overflow, abort.  We may abort if the
1153 		 * signal was rt and sent by user using something
1154 		 * other than kill().
1155 		 */
1156 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157 		ret = -EAGAIN;
1158 		goto ret;
1159 	} else {
1160 		/*
1161 		 * This is a silent loss of information.  We still
1162 		 * send the signal, but the *info bits are lost.
1163 		 */
1164 		result = TRACE_SIGNAL_LOSE_INFO;
1165 	}
1166 
1167 out_set:
1168 	signalfd_notify(t, sig);
1169 	sigaddset(&pending->signal, sig);
1170 
1171 	/* Let multiprocess signals appear after on-going forks */
1172 	if (type > PIDTYPE_TGID) {
1173 		struct multiprocess_signals *delayed;
1174 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 			sigset_t *signal = &delayed->signal;
1176 			/* Can't queue both a stop and a continue signal */
1177 			if (sig == SIGCONT)
1178 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 			else if (sig_kernel_stop(sig))
1180 				sigdelset(signal, SIGCONT);
1181 			sigaddset(signal, sig);
1182 		}
1183 	}
1184 
1185 	complete_signal(sig, t, type);
1186 ret:
1187 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188 	return ret;
1189 }
1190 
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 {
1193 	bool ret = false;
1194 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195 	case SIL_KILL:
1196 	case SIL_CHLD:
1197 	case SIL_RT:
1198 		ret = true;
1199 		break;
1200 	case SIL_TIMER:
1201 	case SIL_POLL:
1202 	case SIL_FAULT:
1203 	case SIL_FAULT_MCEERR:
1204 	case SIL_FAULT_BNDERR:
1205 	case SIL_FAULT_PKUERR:
1206 	case SIL_SYS:
1207 		ret = false;
1208 		break;
1209 	}
1210 	return ret;
1211 }
1212 
1213 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1214 			enum pid_type type)
1215 {
1216 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1217 	bool force = false;
1218 
1219 	if (info == SEND_SIG_NOINFO) {
1220 		/* Force if sent from an ancestor pid namespace */
1221 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1222 	} else if (info == SEND_SIG_PRIV) {
1223 		/* Don't ignore kernel generated signals */
1224 		force = true;
1225 	} else if (has_si_pid_and_uid(info)) {
1226 		/* SIGKILL and SIGSTOP is special or has ids */
1227 		struct user_namespace *t_user_ns;
1228 
1229 		rcu_read_lock();
1230 		t_user_ns = task_cred_xxx(t, user_ns);
1231 		if (current_user_ns() != t_user_ns) {
1232 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1233 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1234 		}
1235 		rcu_read_unlock();
1236 
1237 		/* A kernel generated signal? */
1238 		force = (info->si_code == SI_KERNEL);
1239 
1240 		/* From an ancestor pid namespace? */
1241 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1242 			info->si_pid = 0;
1243 			force = true;
1244 		}
1245 	}
1246 	return __send_signal(sig, info, t, type, force);
1247 }
1248 
1249 static void print_fatal_signal(int signr)
1250 {
1251 	struct pt_regs *regs = signal_pt_regs();
1252 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1253 
1254 #if defined(__i386__) && !defined(__arch_um__)
1255 	pr_info("code at %08lx: ", regs->ip);
1256 	{
1257 		int i;
1258 		for (i = 0; i < 16; i++) {
1259 			unsigned char insn;
1260 
1261 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1262 				break;
1263 			pr_cont("%02x ", insn);
1264 		}
1265 	}
1266 	pr_cont("\n");
1267 #endif
1268 	preempt_disable();
1269 	show_regs(regs);
1270 	preempt_enable();
1271 }
1272 
1273 static int __init setup_print_fatal_signals(char *str)
1274 {
1275 	get_option (&str, &print_fatal_signals);
1276 
1277 	return 1;
1278 }
1279 
1280 __setup("print-fatal-signals=", setup_print_fatal_signals);
1281 
1282 int
1283 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1284 {
1285 	return send_signal(sig, info, p, PIDTYPE_TGID);
1286 }
1287 
1288 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1289 			enum pid_type type)
1290 {
1291 	unsigned long flags;
1292 	int ret = -ESRCH;
1293 
1294 	if (lock_task_sighand(p, &flags)) {
1295 		ret = send_signal(sig, info, p, type);
1296 		unlock_task_sighand(p, &flags);
1297 	}
1298 
1299 	return ret;
1300 }
1301 
1302 /*
1303  * Force a signal that the process can't ignore: if necessary
1304  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1305  *
1306  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1307  * since we do not want to have a signal handler that was blocked
1308  * be invoked when user space had explicitly blocked it.
1309  *
1310  * We don't want to have recursive SIGSEGV's etc, for example,
1311  * that is why we also clear SIGNAL_UNKILLABLE.
1312  */
1313 static int
1314 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1315 {
1316 	unsigned long int flags;
1317 	int ret, blocked, ignored;
1318 	struct k_sigaction *action;
1319 	int sig = info->si_signo;
1320 
1321 	spin_lock_irqsave(&t->sighand->siglock, flags);
1322 	action = &t->sighand->action[sig-1];
1323 	ignored = action->sa.sa_handler == SIG_IGN;
1324 	blocked = sigismember(&t->blocked, sig);
1325 	if (blocked || ignored) {
1326 		action->sa.sa_handler = SIG_DFL;
1327 		if (blocked) {
1328 			sigdelset(&t->blocked, sig);
1329 			recalc_sigpending_and_wake(t);
1330 		}
1331 	}
1332 	/*
1333 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1334 	 * debugging to leave init killable.
1335 	 */
1336 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1337 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1338 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1339 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1340 
1341 	return ret;
1342 }
1343 
1344 int force_sig_info(struct kernel_siginfo *info)
1345 {
1346 	return force_sig_info_to_task(info, current);
1347 }
1348 
1349 /*
1350  * Nuke all other threads in the group.
1351  */
1352 int zap_other_threads(struct task_struct *p)
1353 {
1354 	struct task_struct *t = p;
1355 	int count = 0;
1356 
1357 	p->signal->group_stop_count = 0;
1358 
1359 	while_each_thread(p, t) {
1360 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1361 		count++;
1362 
1363 		/* Don't bother with already dead threads */
1364 		if (t->exit_state)
1365 			continue;
1366 		sigaddset(&t->pending.signal, SIGKILL);
1367 		signal_wake_up(t, 1);
1368 	}
1369 
1370 	return count;
1371 }
1372 
1373 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1374 					   unsigned long *flags)
1375 {
1376 	struct sighand_struct *sighand;
1377 
1378 	rcu_read_lock();
1379 	for (;;) {
1380 		sighand = rcu_dereference(tsk->sighand);
1381 		if (unlikely(sighand == NULL))
1382 			break;
1383 
1384 		/*
1385 		 * This sighand can be already freed and even reused, but
1386 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1387 		 * initializes ->siglock: this slab can't go away, it has
1388 		 * the same object type, ->siglock can't be reinitialized.
1389 		 *
1390 		 * We need to ensure that tsk->sighand is still the same
1391 		 * after we take the lock, we can race with de_thread() or
1392 		 * __exit_signal(). In the latter case the next iteration
1393 		 * must see ->sighand == NULL.
1394 		 */
1395 		spin_lock_irqsave(&sighand->siglock, *flags);
1396 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1397 			break;
1398 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1399 	}
1400 	rcu_read_unlock();
1401 
1402 	return sighand;
1403 }
1404 
1405 /*
1406  * send signal info to all the members of a group
1407  */
1408 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409 			struct task_struct *p, enum pid_type type)
1410 {
1411 	int ret;
1412 
1413 	rcu_read_lock();
1414 	ret = check_kill_permission(sig, info, p);
1415 	rcu_read_unlock();
1416 
1417 	if (!ret && sig)
1418 		ret = do_send_sig_info(sig, info, p, type);
1419 
1420 	return ret;
1421 }
1422 
1423 /*
1424  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425  * control characters do (^C, ^Z etc)
1426  * - the caller must hold at least a readlock on tasklist_lock
1427  */
1428 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429 {
1430 	struct task_struct *p = NULL;
1431 	int retval, success;
1432 
1433 	success = 0;
1434 	retval = -ESRCH;
1435 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1436 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1437 		success |= !err;
1438 		retval = err;
1439 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1440 	return success ? 0 : retval;
1441 }
1442 
1443 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1444 {
1445 	int error = -ESRCH;
1446 	struct task_struct *p;
1447 
1448 	for (;;) {
1449 		rcu_read_lock();
1450 		p = pid_task(pid, PIDTYPE_PID);
1451 		if (p)
1452 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1453 		rcu_read_unlock();
1454 		if (likely(!p || error != -ESRCH))
1455 			return error;
1456 
1457 		/*
1458 		 * The task was unhashed in between, try again.  If it
1459 		 * is dead, pid_task() will return NULL, if we race with
1460 		 * de_thread() it will find the new leader.
1461 		 */
1462 	}
1463 }
1464 
1465 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1466 {
1467 	int error;
1468 	rcu_read_lock();
1469 	error = kill_pid_info(sig, info, find_vpid(pid));
1470 	rcu_read_unlock();
1471 	return error;
1472 }
1473 
1474 static inline bool kill_as_cred_perm(const struct cred *cred,
1475 				     struct task_struct *target)
1476 {
1477 	const struct cred *pcred = __task_cred(target);
1478 
1479 	return uid_eq(cred->euid, pcred->suid) ||
1480 	       uid_eq(cred->euid, pcred->uid) ||
1481 	       uid_eq(cred->uid, pcred->suid) ||
1482 	       uid_eq(cred->uid, pcred->uid);
1483 }
1484 
1485 /*
1486  * The usb asyncio usage of siginfo is wrong.  The glibc support
1487  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1488  * AKA after the generic fields:
1489  *	kernel_pid_t	si_pid;
1490  *	kernel_uid32_t	si_uid;
1491  *	sigval_t	si_value;
1492  *
1493  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1494  * after the generic fields is:
1495  *	void __user 	*si_addr;
1496  *
1497  * This is a practical problem when there is a 64bit big endian kernel
1498  * and a 32bit userspace.  As the 32bit address will encoded in the low
1499  * 32bits of the pointer.  Those low 32bits will be stored at higher
1500  * address than appear in a 32 bit pointer.  So userspace will not
1501  * see the address it was expecting for it's completions.
1502  *
1503  * There is nothing in the encoding that can allow
1504  * copy_siginfo_to_user32 to detect this confusion of formats, so
1505  * handle this by requiring the caller of kill_pid_usb_asyncio to
1506  * notice when this situration takes place and to store the 32bit
1507  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1508  * parameter.
1509  */
1510 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1511 			 struct pid *pid, const struct cred *cred)
1512 {
1513 	struct kernel_siginfo info;
1514 	struct task_struct *p;
1515 	unsigned long flags;
1516 	int ret = -EINVAL;
1517 
1518 	if (!valid_signal(sig))
1519 		return ret;
1520 
1521 	clear_siginfo(&info);
1522 	info.si_signo = sig;
1523 	info.si_errno = errno;
1524 	info.si_code = SI_ASYNCIO;
1525 	*((sigval_t *)&info.si_pid) = addr;
1526 
1527 	rcu_read_lock();
1528 	p = pid_task(pid, PIDTYPE_PID);
1529 	if (!p) {
1530 		ret = -ESRCH;
1531 		goto out_unlock;
1532 	}
1533 	if (!kill_as_cred_perm(cred, p)) {
1534 		ret = -EPERM;
1535 		goto out_unlock;
1536 	}
1537 	ret = security_task_kill(p, &info, sig, cred);
1538 	if (ret)
1539 		goto out_unlock;
1540 
1541 	if (sig) {
1542 		if (lock_task_sighand(p, &flags)) {
1543 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1544 			unlock_task_sighand(p, &flags);
1545 		} else
1546 			ret = -ESRCH;
1547 	}
1548 out_unlock:
1549 	rcu_read_unlock();
1550 	return ret;
1551 }
1552 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1553 
1554 /*
1555  * kill_something_info() interprets pid in interesting ways just like kill(2).
1556  *
1557  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1558  * is probably wrong.  Should make it like BSD or SYSV.
1559  */
1560 
1561 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1562 {
1563 	int ret;
1564 
1565 	if (pid > 0)
1566 		return kill_proc_info(sig, info, pid);
1567 
1568 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1569 	if (pid == INT_MIN)
1570 		return -ESRCH;
1571 
1572 	read_lock(&tasklist_lock);
1573 	if (pid != -1) {
1574 		ret = __kill_pgrp_info(sig, info,
1575 				pid ? find_vpid(-pid) : task_pgrp(current));
1576 	} else {
1577 		int retval = 0, count = 0;
1578 		struct task_struct * p;
1579 
1580 		for_each_process(p) {
1581 			if (task_pid_vnr(p) > 1 &&
1582 					!same_thread_group(p, current)) {
1583 				int err = group_send_sig_info(sig, info, p,
1584 							      PIDTYPE_MAX);
1585 				++count;
1586 				if (err != -EPERM)
1587 					retval = err;
1588 			}
1589 		}
1590 		ret = count ? retval : -ESRCH;
1591 	}
1592 	read_unlock(&tasklist_lock);
1593 
1594 	return ret;
1595 }
1596 
1597 /*
1598  * These are for backward compatibility with the rest of the kernel source.
1599  */
1600 
1601 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1602 {
1603 	/*
1604 	 * Make sure legacy kernel users don't send in bad values
1605 	 * (normal paths check this in check_kill_permission).
1606 	 */
1607 	if (!valid_signal(sig))
1608 		return -EINVAL;
1609 
1610 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1611 }
1612 EXPORT_SYMBOL(send_sig_info);
1613 
1614 #define __si_special(priv) \
1615 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1616 
1617 int
1618 send_sig(int sig, struct task_struct *p, int priv)
1619 {
1620 	return send_sig_info(sig, __si_special(priv), p);
1621 }
1622 EXPORT_SYMBOL(send_sig);
1623 
1624 void force_sig(int sig)
1625 {
1626 	struct kernel_siginfo info;
1627 
1628 	clear_siginfo(&info);
1629 	info.si_signo = sig;
1630 	info.si_errno = 0;
1631 	info.si_code = SI_KERNEL;
1632 	info.si_pid = 0;
1633 	info.si_uid = 0;
1634 	force_sig_info(&info);
1635 }
1636 EXPORT_SYMBOL(force_sig);
1637 
1638 /*
1639  * When things go south during signal handling, we
1640  * will force a SIGSEGV. And if the signal that caused
1641  * the problem was already a SIGSEGV, we'll want to
1642  * make sure we don't even try to deliver the signal..
1643  */
1644 void force_sigsegv(int sig)
1645 {
1646 	struct task_struct *p = current;
1647 
1648 	if (sig == SIGSEGV) {
1649 		unsigned long flags;
1650 		spin_lock_irqsave(&p->sighand->siglock, flags);
1651 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1652 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1653 	}
1654 	force_sig(SIGSEGV);
1655 }
1656 
1657 int force_sig_fault_to_task(int sig, int code, void __user *addr
1658 	___ARCH_SI_TRAPNO(int trapno)
1659 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1660 	, struct task_struct *t)
1661 {
1662 	struct kernel_siginfo info;
1663 
1664 	clear_siginfo(&info);
1665 	info.si_signo = sig;
1666 	info.si_errno = 0;
1667 	info.si_code  = code;
1668 	info.si_addr  = addr;
1669 #ifdef __ARCH_SI_TRAPNO
1670 	info.si_trapno = trapno;
1671 #endif
1672 #ifdef __ia64__
1673 	info.si_imm = imm;
1674 	info.si_flags = flags;
1675 	info.si_isr = isr;
1676 #endif
1677 	return force_sig_info_to_task(&info, t);
1678 }
1679 
1680 int force_sig_fault(int sig, int code, void __user *addr
1681 	___ARCH_SI_TRAPNO(int trapno)
1682 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1683 {
1684 	return force_sig_fault_to_task(sig, code, addr
1685 				       ___ARCH_SI_TRAPNO(trapno)
1686 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1687 }
1688 
1689 int send_sig_fault(int sig, int code, void __user *addr
1690 	___ARCH_SI_TRAPNO(int trapno)
1691 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1692 	, struct task_struct *t)
1693 {
1694 	struct kernel_siginfo info;
1695 
1696 	clear_siginfo(&info);
1697 	info.si_signo = sig;
1698 	info.si_errno = 0;
1699 	info.si_code  = code;
1700 	info.si_addr  = addr;
1701 #ifdef __ARCH_SI_TRAPNO
1702 	info.si_trapno = trapno;
1703 #endif
1704 #ifdef __ia64__
1705 	info.si_imm = imm;
1706 	info.si_flags = flags;
1707 	info.si_isr = isr;
1708 #endif
1709 	return send_sig_info(info.si_signo, &info, t);
1710 }
1711 
1712 int force_sig_mceerr(int code, void __user *addr, short lsb)
1713 {
1714 	struct kernel_siginfo info;
1715 
1716 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1717 	clear_siginfo(&info);
1718 	info.si_signo = SIGBUS;
1719 	info.si_errno = 0;
1720 	info.si_code = code;
1721 	info.si_addr = addr;
1722 	info.si_addr_lsb = lsb;
1723 	return force_sig_info(&info);
1724 }
1725 
1726 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1727 {
1728 	struct kernel_siginfo info;
1729 
1730 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1731 	clear_siginfo(&info);
1732 	info.si_signo = SIGBUS;
1733 	info.si_errno = 0;
1734 	info.si_code = code;
1735 	info.si_addr = addr;
1736 	info.si_addr_lsb = lsb;
1737 	return send_sig_info(info.si_signo, &info, t);
1738 }
1739 EXPORT_SYMBOL(send_sig_mceerr);
1740 
1741 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1742 {
1743 	struct kernel_siginfo info;
1744 
1745 	clear_siginfo(&info);
1746 	info.si_signo = SIGSEGV;
1747 	info.si_errno = 0;
1748 	info.si_code  = SEGV_BNDERR;
1749 	info.si_addr  = addr;
1750 	info.si_lower = lower;
1751 	info.si_upper = upper;
1752 	return force_sig_info(&info);
1753 }
1754 
1755 #ifdef SEGV_PKUERR
1756 int force_sig_pkuerr(void __user *addr, u32 pkey)
1757 {
1758 	struct kernel_siginfo info;
1759 
1760 	clear_siginfo(&info);
1761 	info.si_signo = SIGSEGV;
1762 	info.si_errno = 0;
1763 	info.si_code  = SEGV_PKUERR;
1764 	info.si_addr  = addr;
1765 	info.si_pkey  = pkey;
1766 	return force_sig_info(&info);
1767 }
1768 #endif
1769 
1770 /* For the crazy architectures that include trap information in
1771  * the errno field, instead of an actual errno value.
1772  */
1773 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1774 {
1775 	struct kernel_siginfo info;
1776 
1777 	clear_siginfo(&info);
1778 	info.si_signo = SIGTRAP;
1779 	info.si_errno = errno;
1780 	info.si_code  = TRAP_HWBKPT;
1781 	info.si_addr  = addr;
1782 	return force_sig_info(&info);
1783 }
1784 
1785 int kill_pgrp(struct pid *pid, int sig, int priv)
1786 {
1787 	int ret;
1788 
1789 	read_lock(&tasklist_lock);
1790 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1791 	read_unlock(&tasklist_lock);
1792 
1793 	return ret;
1794 }
1795 EXPORT_SYMBOL(kill_pgrp);
1796 
1797 int kill_pid(struct pid *pid, int sig, int priv)
1798 {
1799 	return kill_pid_info(sig, __si_special(priv), pid);
1800 }
1801 EXPORT_SYMBOL(kill_pid);
1802 
1803 /*
1804  * These functions support sending signals using preallocated sigqueue
1805  * structures.  This is needed "because realtime applications cannot
1806  * afford to lose notifications of asynchronous events, like timer
1807  * expirations or I/O completions".  In the case of POSIX Timers
1808  * we allocate the sigqueue structure from the timer_create.  If this
1809  * allocation fails we are able to report the failure to the application
1810  * with an EAGAIN error.
1811  */
1812 struct sigqueue *sigqueue_alloc(void)
1813 {
1814 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1815 
1816 	if (q)
1817 		q->flags |= SIGQUEUE_PREALLOC;
1818 
1819 	return q;
1820 }
1821 
1822 void sigqueue_free(struct sigqueue *q)
1823 {
1824 	unsigned long flags;
1825 	spinlock_t *lock = &current->sighand->siglock;
1826 
1827 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1828 	/*
1829 	 * We must hold ->siglock while testing q->list
1830 	 * to serialize with collect_signal() or with
1831 	 * __exit_signal()->flush_sigqueue().
1832 	 */
1833 	spin_lock_irqsave(lock, flags);
1834 	q->flags &= ~SIGQUEUE_PREALLOC;
1835 	/*
1836 	 * If it is queued it will be freed when dequeued,
1837 	 * like the "regular" sigqueue.
1838 	 */
1839 	if (!list_empty(&q->list))
1840 		q = NULL;
1841 	spin_unlock_irqrestore(lock, flags);
1842 
1843 	if (q)
1844 		__sigqueue_free(q);
1845 }
1846 
1847 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1848 {
1849 	int sig = q->info.si_signo;
1850 	struct sigpending *pending;
1851 	struct task_struct *t;
1852 	unsigned long flags;
1853 	int ret, result;
1854 
1855 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1856 
1857 	ret = -1;
1858 	rcu_read_lock();
1859 	t = pid_task(pid, type);
1860 	if (!t || !likely(lock_task_sighand(t, &flags)))
1861 		goto ret;
1862 
1863 	ret = 1; /* the signal is ignored */
1864 	result = TRACE_SIGNAL_IGNORED;
1865 	if (!prepare_signal(sig, t, false))
1866 		goto out;
1867 
1868 	ret = 0;
1869 	if (unlikely(!list_empty(&q->list))) {
1870 		/*
1871 		 * If an SI_TIMER entry is already queue just increment
1872 		 * the overrun count.
1873 		 */
1874 		BUG_ON(q->info.si_code != SI_TIMER);
1875 		q->info.si_overrun++;
1876 		result = TRACE_SIGNAL_ALREADY_PENDING;
1877 		goto out;
1878 	}
1879 	q->info.si_overrun = 0;
1880 
1881 	signalfd_notify(t, sig);
1882 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1883 	list_add_tail(&q->list, &pending->list);
1884 	sigaddset(&pending->signal, sig);
1885 	complete_signal(sig, t, type);
1886 	result = TRACE_SIGNAL_DELIVERED;
1887 out:
1888 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1889 	unlock_task_sighand(t, &flags);
1890 ret:
1891 	rcu_read_unlock();
1892 	return ret;
1893 }
1894 
1895 static void do_notify_pidfd(struct task_struct *task)
1896 {
1897 	struct pid *pid;
1898 
1899 	WARN_ON(task->exit_state == 0);
1900 	pid = task_pid(task);
1901 	wake_up_all(&pid->wait_pidfd);
1902 }
1903 
1904 /*
1905  * Let a parent know about the death of a child.
1906  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1907  *
1908  * Returns true if our parent ignored us and so we've switched to
1909  * self-reaping.
1910  */
1911 bool do_notify_parent(struct task_struct *tsk, int sig)
1912 {
1913 	struct kernel_siginfo info;
1914 	unsigned long flags;
1915 	struct sighand_struct *psig;
1916 	bool autoreap = false;
1917 	u64 utime, stime;
1918 
1919 	BUG_ON(sig == -1);
1920 
1921  	/* do_notify_parent_cldstop should have been called instead.  */
1922  	BUG_ON(task_is_stopped_or_traced(tsk));
1923 
1924 	BUG_ON(!tsk->ptrace &&
1925 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1926 
1927 	/* Wake up all pidfd waiters */
1928 	do_notify_pidfd(tsk);
1929 
1930 	if (sig != SIGCHLD) {
1931 		/*
1932 		 * This is only possible if parent == real_parent.
1933 		 * Check if it has changed security domain.
1934 		 */
1935 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1936 			sig = SIGCHLD;
1937 	}
1938 
1939 	clear_siginfo(&info);
1940 	info.si_signo = sig;
1941 	info.si_errno = 0;
1942 	/*
1943 	 * We are under tasklist_lock here so our parent is tied to
1944 	 * us and cannot change.
1945 	 *
1946 	 * task_active_pid_ns will always return the same pid namespace
1947 	 * until a task passes through release_task.
1948 	 *
1949 	 * write_lock() currently calls preempt_disable() which is the
1950 	 * same as rcu_read_lock(), but according to Oleg, this is not
1951 	 * correct to rely on this
1952 	 */
1953 	rcu_read_lock();
1954 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1955 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1956 				       task_uid(tsk));
1957 	rcu_read_unlock();
1958 
1959 	task_cputime(tsk, &utime, &stime);
1960 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1961 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1962 
1963 	info.si_status = tsk->exit_code & 0x7f;
1964 	if (tsk->exit_code & 0x80)
1965 		info.si_code = CLD_DUMPED;
1966 	else if (tsk->exit_code & 0x7f)
1967 		info.si_code = CLD_KILLED;
1968 	else {
1969 		info.si_code = CLD_EXITED;
1970 		info.si_status = tsk->exit_code >> 8;
1971 	}
1972 
1973 	psig = tsk->parent->sighand;
1974 	spin_lock_irqsave(&psig->siglock, flags);
1975 	if (!tsk->ptrace && sig == SIGCHLD &&
1976 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1977 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1978 		/*
1979 		 * We are exiting and our parent doesn't care.  POSIX.1
1980 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1981 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1982 		 * automatically and not left for our parent's wait4 call.
1983 		 * Rather than having the parent do it as a magic kind of
1984 		 * signal handler, we just set this to tell do_exit that we
1985 		 * can be cleaned up without becoming a zombie.  Note that
1986 		 * we still call __wake_up_parent in this case, because a
1987 		 * blocked sys_wait4 might now return -ECHILD.
1988 		 *
1989 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1990 		 * is implementation-defined: we do (if you don't want
1991 		 * it, just use SIG_IGN instead).
1992 		 */
1993 		autoreap = true;
1994 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1995 			sig = 0;
1996 	}
1997 	/*
1998 	 * Send with __send_signal as si_pid and si_uid are in the
1999 	 * parent's namespaces.
2000 	 */
2001 	if (valid_signal(sig) && sig)
2002 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2003 	__wake_up_parent(tsk, tsk->parent);
2004 	spin_unlock_irqrestore(&psig->siglock, flags);
2005 
2006 	return autoreap;
2007 }
2008 
2009 /**
2010  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2011  * @tsk: task reporting the state change
2012  * @for_ptracer: the notification is for ptracer
2013  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2014  *
2015  * Notify @tsk's parent that the stopped/continued state has changed.  If
2016  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2017  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2018  *
2019  * CONTEXT:
2020  * Must be called with tasklist_lock at least read locked.
2021  */
2022 static void do_notify_parent_cldstop(struct task_struct *tsk,
2023 				     bool for_ptracer, int why)
2024 {
2025 	struct kernel_siginfo info;
2026 	unsigned long flags;
2027 	struct task_struct *parent;
2028 	struct sighand_struct *sighand;
2029 	u64 utime, stime;
2030 
2031 	if (for_ptracer) {
2032 		parent = tsk->parent;
2033 	} else {
2034 		tsk = tsk->group_leader;
2035 		parent = tsk->real_parent;
2036 	}
2037 
2038 	clear_siginfo(&info);
2039 	info.si_signo = SIGCHLD;
2040 	info.si_errno = 0;
2041 	/*
2042 	 * see comment in do_notify_parent() about the following 4 lines
2043 	 */
2044 	rcu_read_lock();
2045 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2046 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2047 	rcu_read_unlock();
2048 
2049 	task_cputime(tsk, &utime, &stime);
2050 	info.si_utime = nsec_to_clock_t(utime);
2051 	info.si_stime = nsec_to_clock_t(stime);
2052 
2053  	info.si_code = why;
2054  	switch (why) {
2055  	case CLD_CONTINUED:
2056  		info.si_status = SIGCONT;
2057  		break;
2058  	case CLD_STOPPED:
2059  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2060  		break;
2061  	case CLD_TRAPPED:
2062  		info.si_status = tsk->exit_code & 0x7f;
2063  		break;
2064  	default:
2065  		BUG();
2066  	}
2067 
2068 	sighand = parent->sighand;
2069 	spin_lock_irqsave(&sighand->siglock, flags);
2070 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2071 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2072 		__group_send_sig_info(SIGCHLD, &info, parent);
2073 	/*
2074 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2075 	 */
2076 	__wake_up_parent(tsk, parent);
2077 	spin_unlock_irqrestore(&sighand->siglock, flags);
2078 }
2079 
2080 static inline bool may_ptrace_stop(void)
2081 {
2082 	if (!likely(current->ptrace))
2083 		return false;
2084 	/*
2085 	 * Are we in the middle of do_coredump?
2086 	 * If so and our tracer is also part of the coredump stopping
2087 	 * is a deadlock situation, and pointless because our tracer
2088 	 * is dead so don't allow us to stop.
2089 	 * If SIGKILL was already sent before the caller unlocked
2090 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2091 	 * is safe to enter schedule().
2092 	 *
2093 	 * This is almost outdated, a task with the pending SIGKILL can't
2094 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2095 	 * after SIGKILL was already dequeued.
2096 	 */
2097 	if (unlikely(current->mm->core_state) &&
2098 	    unlikely(current->mm == current->parent->mm))
2099 		return false;
2100 
2101 	return true;
2102 }
2103 
2104 /*
2105  * Return non-zero if there is a SIGKILL that should be waking us up.
2106  * Called with the siglock held.
2107  */
2108 static bool sigkill_pending(struct task_struct *tsk)
2109 {
2110 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2111 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2112 }
2113 
2114 /*
2115  * This must be called with current->sighand->siglock held.
2116  *
2117  * This should be the path for all ptrace stops.
2118  * We always set current->last_siginfo while stopped here.
2119  * That makes it a way to test a stopped process for
2120  * being ptrace-stopped vs being job-control-stopped.
2121  *
2122  * If we actually decide not to stop at all because the tracer
2123  * is gone, we keep current->exit_code unless clear_code.
2124  */
2125 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2126 	__releases(&current->sighand->siglock)
2127 	__acquires(&current->sighand->siglock)
2128 {
2129 	bool gstop_done = false;
2130 
2131 	if (arch_ptrace_stop_needed(exit_code, info)) {
2132 		/*
2133 		 * The arch code has something special to do before a
2134 		 * ptrace stop.  This is allowed to block, e.g. for faults
2135 		 * on user stack pages.  We can't keep the siglock while
2136 		 * calling arch_ptrace_stop, so we must release it now.
2137 		 * To preserve proper semantics, we must do this before
2138 		 * any signal bookkeeping like checking group_stop_count.
2139 		 * Meanwhile, a SIGKILL could come in before we retake the
2140 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2141 		 * So after regaining the lock, we must check for SIGKILL.
2142 		 */
2143 		spin_unlock_irq(&current->sighand->siglock);
2144 		arch_ptrace_stop(exit_code, info);
2145 		spin_lock_irq(&current->sighand->siglock);
2146 		if (sigkill_pending(current))
2147 			return;
2148 	}
2149 
2150 	set_special_state(TASK_TRACED);
2151 
2152 	/*
2153 	 * We're committing to trapping.  TRACED should be visible before
2154 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2155 	 * Also, transition to TRACED and updates to ->jobctl should be
2156 	 * atomic with respect to siglock and should be done after the arch
2157 	 * hook as siglock is released and regrabbed across it.
2158 	 *
2159 	 *     TRACER				    TRACEE
2160 	 *
2161 	 *     ptrace_attach()
2162 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2163 	 *     do_wait()
2164 	 *       set_current_state()                smp_wmb();
2165 	 *       ptrace_do_wait()
2166 	 *         wait_task_stopped()
2167 	 *           task_stopped_code()
2168 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2169 	 */
2170 	smp_wmb();
2171 
2172 	current->last_siginfo = info;
2173 	current->exit_code = exit_code;
2174 
2175 	/*
2176 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2177 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2178 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2179 	 * could be clear now.  We act as if SIGCONT is received after
2180 	 * TASK_TRACED is entered - ignore it.
2181 	 */
2182 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2183 		gstop_done = task_participate_group_stop(current);
2184 
2185 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2186 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2187 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2188 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2189 
2190 	/* entering a trap, clear TRAPPING */
2191 	task_clear_jobctl_trapping(current);
2192 
2193 	spin_unlock_irq(&current->sighand->siglock);
2194 	read_lock(&tasklist_lock);
2195 	if (may_ptrace_stop()) {
2196 		/*
2197 		 * Notify parents of the stop.
2198 		 *
2199 		 * While ptraced, there are two parents - the ptracer and
2200 		 * the real_parent of the group_leader.  The ptracer should
2201 		 * know about every stop while the real parent is only
2202 		 * interested in the completion of group stop.  The states
2203 		 * for the two don't interact with each other.  Notify
2204 		 * separately unless they're gonna be duplicates.
2205 		 */
2206 		do_notify_parent_cldstop(current, true, why);
2207 		if (gstop_done && ptrace_reparented(current))
2208 			do_notify_parent_cldstop(current, false, why);
2209 
2210 		/*
2211 		 * Don't want to allow preemption here, because
2212 		 * sys_ptrace() needs this task to be inactive.
2213 		 *
2214 		 * XXX: implement read_unlock_no_resched().
2215 		 */
2216 		preempt_disable();
2217 		read_unlock(&tasklist_lock);
2218 		cgroup_enter_frozen();
2219 		preempt_enable_no_resched();
2220 		freezable_schedule();
2221 		cgroup_leave_frozen(true);
2222 	} else {
2223 		/*
2224 		 * By the time we got the lock, our tracer went away.
2225 		 * Don't drop the lock yet, another tracer may come.
2226 		 *
2227 		 * If @gstop_done, the ptracer went away between group stop
2228 		 * completion and here.  During detach, it would have set
2229 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2230 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2231 		 * the real parent of the group stop completion is enough.
2232 		 */
2233 		if (gstop_done)
2234 			do_notify_parent_cldstop(current, false, why);
2235 
2236 		/* tasklist protects us from ptrace_freeze_traced() */
2237 		__set_current_state(TASK_RUNNING);
2238 		if (clear_code)
2239 			current->exit_code = 0;
2240 		read_unlock(&tasklist_lock);
2241 	}
2242 
2243 	/*
2244 	 * We are back.  Now reacquire the siglock before touching
2245 	 * last_siginfo, so that we are sure to have synchronized with
2246 	 * any signal-sending on another CPU that wants to examine it.
2247 	 */
2248 	spin_lock_irq(&current->sighand->siglock);
2249 	current->last_siginfo = NULL;
2250 
2251 	/* LISTENING can be set only during STOP traps, clear it */
2252 	current->jobctl &= ~JOBCTL_LISTENING;
2253 
2254 	/*
2255 	 * Queued signals ignored us while we were stopped for tracing.
2256 	 * So check for any that we should take before resuming user mode.
2257 	 * This sets TIF_SIGPENDING, but never clears it.
2258 	 */
2259 	recalc_sigpending_tsk(current);
2260 }
2261 
2262 static void ptrace_do_notify(int signr, int exit_code, int why)
2263 {
2264 	kernel_siginfo_t info;
2265 
2266 	clear_siginfo(&info);
2267 	info.si_signo = signr;
2268 	info.si_code = exit_code;
2269 	info.si_pid = task_pid_vnr(current);
2270 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2271 
2272 	/* Let the debugger run.  */
2273 	ptrace_stop(exit_code, why, 1, &info);
2274 }
2275 
2276 void ptrace_notify(int exit_code)
2277 {
2278 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2279 	if (unlikely(current->task_works))
2280 		task_work_run();
2281 
2282 	spin_lock_irq(&current->sighand->siglock);
2283 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2284 	spin_unlock_irq(&current->sighand->siglock);
2285 }
2286 
2287 /**
2288  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2289  * @signr: signr causing group stop if initiating
2290  *
2291  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2292  * and participate in it.  If already set, participate in the existing
2293  * group stop.  If participated in a group stop (and thus slept), %true is
2294  * returned with siglock released.
2295  *
2296  * If ptraced, this function doesn't handle stop itself.  Instead,
2297  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2298  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2299  * places afterwards.
2300  *
2301  * CONTEXT:
2302  * Must be called with @current->sighand->siglock held, which is released
2303  * on %true return.
2304  *
2305  * RETURNS:
2306  * %false if group stop is already cancelled or ptrace trap is scheduled.
2307  * %true if participated in group stop.
2308  */
2309 static bool do_signal_stop(int signr)
2310 	__releases(&current->sighand->siglock)
2311 {
2312 	struct signal_struct *sig = current->signal;
2313 
2314 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2315 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2316 		struct task_struct *t;
2317 
2318 		/* signr will be recorded in task->jobctl for retries */
2319 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2320 
2321 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2322 		    unlikely(signal_group_exit(sig)))
2323 			return false;
2324 		/*
2325 		 * There is no group stop already in progress.  We must
2326 		 * initiate one now.
2327 		 *
2328 		 * While ptraced, a task may be resumed while group stop is
2329 		 * still in effect and then receive a stop signal and
2330 		 * initiate another group stop.  This deviates from the
2331 		 * usual behavior as two consecutive stop signals can't
2332 		 * cause two group stops when !ptraced.  That is why we
2333 		 * also check !task_is_stopped(t) below.
2334 		 *
2335 		 * The condition can be distinguished by testing whether
2336 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2337 		 * group_exit_code in such case.
2338 		 *
2339 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2340 		 * an intervening stop signal is required to cause two
2341 		 * continued events regardless of ptrace.
2342 		 */
2343 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2344 			sig->group_exit_code = signr;
2345 
2346 		sig->group_stop_count = 0;
2347 
2348 		if (task_set_jobctl_pending(current, signr | gstop))
2349 			sig->group_stop_count++;
2350 
2351 		t = current;
2352 		while_each_thread(current, t) {
2353 			/*
2354 			 * Setting state to TASK_STOPPED for a group
2355 			 * stop is always done with the siglock held,
2356 			 * so this check has no races.
2357 			 */
2358 			if (!task_is_stopped(t) &&
2359 			    task_set_jobctl_pending(t, signr | gstop)) {
2360 				sig->group_stop_count++;
2361 				if (likely(!(t->ptrace & PT_SEIZED)))
2362 					signal_wake_up(t, 0);
2363 				else
2364 					ptrace_trap_notify(t);
2365 			}
2366 		}
2367 	}
2368 
2369 	if (likely(!current->ptrace)) {
2370 		int notify = 0;
2371 
2372 		/*
2373 		 * If there are no other threads in the group, or if there
2374 		 * is a group stop in progress and we are the last to stop,
2375 		 * report to the parent.
2376 		 */
2377 		if (task_participate_group_stop(current))
2378 			notify = CLD_STOPPED;
2379 
2380 		set_special_state(TASK_STOPPED);
2381 		spin_unlock_irq(&current->sighand->siglock);
2382 
2383 		/*
2384 		 * Notify the parent of the group stop completion.  Because
2385 		 * we're not holding either the siglock or tasklist_lock
2386 		 * here, ptracer may attach inbetween; however, this is for
2387 		 * group stop and should always be delivered to the real
2388 		 * parent of the group leader.  The new ptracer will get
2389 		 * its notification when this task transitions into
2390 		 * TASK_TRACED.
2391 		 */
2392 		if (notify) {
2393 			read_lock(&tasklist_lock);
2394 			do_notify_parent_cldstop(current, false, notify);
2395 			read_unlock(&tasklist_lock);
2396 		}
2397 
2398 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2399 		cgroup_enter_frozen();
2400 		freezable_schedule();
2401 		return true;
2402 	} else {
2403 		/*
2404 		 * While ptraced, group stop is handled by STOP trap.
2405 		 * Schedule it and let the caller deal with it.
2406 		 */
2407 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2408 		return false;
2409 	}
2410 }
2411 
2412 /**
2413  * do_jobctl_trap - take care of ptrace jobctl traps
2414  *
2415  * When PT_SEIZED, it's used for both group stop and explicit
2416  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2417  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2418  * the stop signal; otherwise, %SIGTRAP.
2419  *
2420  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2421  * number as exit_code and no siginfo.
2422  *
2423  * CONTEXT:
2424  * Must be called with @current->sighand->siglock held, which may be
2425  * released and re-acquired before returning with intervening sleep.
2426  */
2427 static void do_jobctl_trap(void)
2428 {
2429 	struct signal_struct *signal = current->signal;
2430 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2431 
2432 	if (current->ptrace & PT_SEIZED) {
2433 		if (!signal->group_stop_count &&
2434 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2435 			signr = SIGTRAP;
2436 		WARN_ON_ONCE(!signr);
2437 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2438 				 CLD_STOPPED);
2439 	} else {
2440 		WARN_ON_ONCE(!signr);
2441 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2442 		current->exit_code = 0;
2443 	}
2444 }
2445 
2446 /**
2447  * do_freezer_trap - handle the freezer jobctl trap
2448  *
2449  * Puts the task into frozen state, if only the task is not about to quit.
2450  * In this case it drops JOBCTL_TRAP_FREEZE.
2451  *
2452  * CONTEXT:
2453  * Must be called with @current->sighand->siglock held,
2454  * which is always released before returning.
2455  */
2456 static void do_freezer_trap(void)
2457 	__releases(&current->sighand->siglock)
2458 {
2459 	/*
2460 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2461 	 * let's make another loop to give it a chance to be handled.
2462 	 * In any case, we'll return back.
2463 	 */
2464 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2465 	     JOBCTL_TRAP_FREEZE) {
2466 		spin_unlock_irq(&current->sighand->siglock);
2467 		return;
2468 	}
2469 
2470 	/*
2471 	 * Now we're sure that there is no pending fatal signal and no
2472 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2473 	 * immediately (if there is a non-fatal signal pending), and
2474 	 * put the task into sleep.
2475 	 */
2476 	__set_current_state(TASK_INTERRUPTIBLE);
2477 	clear_thread_flag(TIF_SIGPENDING);
2478 	spin_unlock_irq(&current->sighand->siglock);
2479 	cgroup_enter_frozen();
2480 	freezable_schedule();
2481 }
2482 
2483 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2484 {
2485 	/*
2486 	 * We do not check sig_kernel_stop(signr) but set this marker
2487 	 * unconditionally because we do not know whether debugger will
2488 	 * change signr. This flag has no meaning unless we are going
2489 	 * to stop after return from ptrace_stop(). In this case it will
2490 	 * be checked in do_signal_stop(), we should only stop if it was
2491 	 * not cleared by SIGCONT while we were sleeping. See also the
2492 	 * comment in dequeue_signal().
2493 	 */
2494 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2495 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2496 
2497 	/* We're back.  Did the debugger cancel the sig?  */
2498 	signr = current->exit_code;
2499 	if (signr == 0)
2500 		return signr;
2501 
2502 	current->exit_code = 0;
2503 
2504 	/*
2505 	 * Update the siginfo structure if the signal has
2506 	 * changed.  If the debugger wanted something
2507 	 * specific in the siginfo structure then it should
2508 	 * have updated *info via PTRACE_SETSIGINFO.
2509 	 */
2510 	if (signr != info->si_signo) {
2511 		clear_siginfo(info);
2512 		info->si_signo = signr;
2513 		info->si_errno = 0;
2514 		info->si_code = SI_USER;
2515 		rcu_read_lock();
2516 		info->si_pid = task_pid_vnr(current->parent);
2517 		info->si_uid = from_kuid_munged(current_user_ns(),
2518 						task_uid(current->parent));
2519 		rcu_read_unlock();
2520 	}
2521 
2522 	/* If the (new) signal is now blocked, requeue it.  */
2523 	if (sigismember(&current->blocked, signr)) {
2524 		send_signal(signr, info, current, PIDTYPE_PID);
2525 		signr = 0;
2526 	}
2527 
2528 	return signr;
2529 }
2530 
2531 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2532 {
2533 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2534 	case SIL_FAULT:
2535 	case SIL_FAULT_MCEERR:
2536 	case SIL_FAULT_BNDERR:
2537 	case SIL_FAULT_PKUERR:
2538 		ksig->info.si_addr = arch_untagged_si_addr(
2539 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2540 		break;
2541 	case SIL_KILL:
2542 	case SIL_TIMER:
2543 	case SIL_POLL:
2544 	case SIL_CHLD:
2545 	case SIL_RT:
2546 	case SIL_SYS:
2547 		break;
2548 	}
2549 }
2550 
2551 bool get_signal(struct ksignal *ksig)
2552 {
2553 	struct sighand_struct *sighand = current->sighand;
2554 	struct signal_struct *signal = current->signal;
2555 	int signr;
2556 
2557 	if (unlikely(current->task_works))
2558 		task_work_run();
2559 
2560 	/*
2561 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2562 	 * that the arch handlers don't all have to do it. If we get here
2563 	 * without TIF_SIGPENDING, just exit after running signal work.
2564 	 */
2565 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2566 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2567 			tracehook_notify_signal();
2568 		if (!task_sigpending(current))
2569 			return false;
2570 	}
2571 
2572 	if (unlikely(uprobe_deny_signal()))
2573 		return false;
2574 
2575 	/*
2576 	 * Do this once, we can't return to user-mode if freezing() == T.
2577 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2578 	 * thus do not need another check after return.
2579 	 */
2580 	try_to_freeze();
2581 
2582 relock:
2583 	spin_lock_irq(&sighand->siglock);
2584 
2585 	/*
2586 	 * Every stopped thread goes here after wakeup. Check to see if
2587 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2588 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2589 	 */
2590 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2591 		int why;
2592 
2593 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2594 			why = CLD_CONTINUED;
2595 		else
2596 			why = CLD_STOPPED;
2597 
2598 		signal->flags &= ~SIGNAL_CLD_MASK;
2599 
2600 		spin_unlock_irq(&sighand->siglock);
2601 
2602 		/*
2603 		 * Notify the parent that we're continuing.  This event is
2604 		 * always per-process and doesn't make whole lot of sense
2605 		 * for ptracers, who shouldn't consume the state via
2606 		 * wait(2) either, but, for backward compatibility, notify
2607 		 * the ptracer of the group leader too unless it's gonna be
2608 		 * a duplicate.
2609 		 */
2610 		read_lock(&tasklist_lock);
2611 		do_notify_parent_cldstop(current, false, why);
2612 
2613 		if (ptrace_reparented(current->group_leader))
2614 			do_notify_parent_cldstop(current->group_leader,
2615 						true, why);
2616 		read_unlock(&tasklist_lock);
2617 
2618 		goto relock;
2619 	}
2620 
2621 	/* Has this task already been marked for death? */
2622 	if (signal_group_exit(signal)) {
2623 		ksig->info.si_signo = signr = SIGKILL;
2624 		sigdelset(&current->pending.signal, SIGKILL);
2625 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2626 				&sighand->action[SIGKILL - 1]);
2627 		recalc_sigpending();
2628 		goto fatal;
2629 	}
2630 
2631 	for (;;) {
2632 		struct k_sigaction *ka;
2633 
2634 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2635 		    do_signal_stop(0))
2636 			goto relock;
2637 
2638 		if (unlikely(current->jobctl &
2639 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2640 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2641 				do_jobctl_trap();
2642 				spin_unlock_irq(&sighand->siglock);
2643 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2644 				do_freezer_trap();
2645 
2646 			goto relock;
2647 		}
2648 
2649 		/*
2650 		 * If the task is leaving the frozen state, let's update
2651 		 * cgroup counters and reset the frozen bit.
2652 		 */
2653 		if (unlikely(cgroup_task_frozen(current))) {
2654 			spin_unlock_irq(&sighand->siglock);
2655 			cgroup_leave_frozen(false);
2656 			goto relock;
2657 		}
2658 
2659 		/*
2660 		 * Signals generated by the execution of an instruction
2661 		 * need to be delivered before any other pending signals
2662 		 * so that the instruction pointer in the signal stack
2663 		 * frame points to the faulting instruction.
2664 		 */
2665 		signr = dequeue_synchronous_signal(&ksig->info);
2666 		if (!signr)
2667 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2668 
2669 		if (!signr)
2670 			break; /* will return 0 */
2671 
2672 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2673 			signr = ptrace_signal(signr, &ksig->info);
2674 			if (!signr)
2675 				continue;
2676 		}
2677 
2678 		ka = &sighand->action[signr-1];
2679 
2680 		/* Trace actually delivered signals. */
2681 		trace_signal_deliver(signr, &ksig->info, ka);
2682 
2683 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2684 			continue;
2685 		if (ka->sa.sa_handler != SIG_DFL) {
2686 			/* Run the handler.  */
2687 			ksig->ka = *ka;
2688 
2689 			if (ka->sa.sa_flags & SA_ONESHOT)
2690 				ka->sa.sa_handler = SIG_DFL;
2691 
2692 			break; /* will return non-zero "signr" value */
2693 		}
2694 
2695 		/*
2696 		 * Now we are doing the default action for this signal.
2697 		 */
2698 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2699 			continue;
2700 
2701 		/*
2702 		 * Global init gets no signals it doesn't want.
2703 		 * Container-init gets no signals it doesn't want from same
2704 		 * container.
2705 		 *
2706 		 * Note that if global/container-init sees a sig_kernel_only()
2707 		 * signal here, the signal must have been generated internally
2708 		 * or must have come from an ancestor namespace. In either
2709 		 * case, the signal cannot be dropped.
2710 		 */
2711 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2712 				!sig_kernel_only(signr))
2713 			continue;
2714 
2715 		if (sig_kernel_stop(signr)) {
2716 			/*
2717 			 * The default action is to stop all threads in
2718 			 * the thread group.  The job control signals
2719 			 * do nothing in an orphaned pgrp, but SIGSTOP
2720 			 * always works.  Note that siglock needs to be
2721 			 * dropped during the call to is_orphaned_pgrp()
2722 			 * because of lock ordering with tasklist_lock.
2723 			 * This allows an intervening SIGCONT to be posted.
2724 			 * We need to check for that and bail out if necessary.
2725 			 */
2726 			if (signr != SIGSTOP) {
2727 				spin_unlock_irq(&sighand->siglock);
2728 
2729 				/* signals can be posted during this window */
2730 
2731 				if (is_current_pgrp_orphaned())
2732 					goto relock;
2733 
2734 				spin_lock_irq(&sighand->siglock);
2735 			}
2736 
2737 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2738 				/* It released the siglock.  */
2739 				goto relock;
2740 			}
2741 
2742 			/*
2743 			 * We didn't actually stop, due to a race
2744 			 * with SIGCONT or something like that.
2745 			 */
2746 			continue;
2747 		}
2748 
2749 	fatal:
2750 		spin_unlock_irq(&sighand->siglock);
2751 		if (unlikely(cgroup_task_frozen(current)))
2752 			cgroup_leave_frozen(true);
2753 
2754 		/*
2755 		 * Anything else is fatal, maybe with a core dump.
2756 		 */
2757 		current->flags |= PF_SIGNALED;
2758 
2759 		if (sig_kernel_coredump(signr)) {
2760 			if (print_fatal_signals)
2761 				print_fatal_signal(ksig->info.si_signo);
2762 			proc_coredump_connector(current);
2763 			/*
2764 			 * If it was able to dump core, this kills all
2765 			 * other threads in the group and synchronizes with
2766 			 * their demise.  If we lost the race with another
2767 			 * thread getting here, it set group_exit_code
2768 			 * first and our do_group_exit call below will use
2769 			 * that value and ignore the one we pass it.
2770 			 */
2771 			do_coredump(&ksig->info);
2772 		}
2773 
2774 		/*
2775 		 * Death signals, no core dump.
2776 		 */
2777 		do_group_exit(ksig->info.si_signo);
2778 		/* NOTREACHED */
2779 	}
2780 	spin_unlock_irq(&sighand->siglock);
2781 
2782 	ksig->sig = signr;
2783 
2784 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2785 		hide_si_addr_tag_bits(ksig);
2786 
2787 	return ksig->sig > 0;
2788 }
2789 
2790 /**
2791  * signal_delivered -
2792  * @ksig:		kernel signal struct
2793  * @stepping:		nonzero if debugger single-step or block-step in use
2794  *
2795  * This function should be called when a signal has successfully been
2796  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2797  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2798  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2799  */
2800 static void signal_delivered(struct ksignal *ksig, int stepping)
2801 {
2802 	sigset_t blocked;
2803 
2804 	/* A signal was successfully delivered, and the
2805 	   saved sigmask was stored on the signal frame,
2806 	   and will be restored by sigreturn.  So we can
2807 	   simply clear the restore sigmask flag.  */
2808 	clear_restore_sigmask();
2809 
2810 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2811 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2812 		sigaddset(&blocked, ksig->sig);
2813 	set_current_blocked(&blocked);
2814 	tracehook_signal_handler(stepping);
2815 }
2816 
2817 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2818 {
2819 	if (failed)
2820 		force_sigsegv(ksig->sig);
2821 	else
2822 		signal_delivered(ksig, stepping);
2823 }
2824 
2825 /*
2826  * It could be that complete_signal() picked us to notify about the
2827  * group-wide signal. Other threads should be notified now to take
2828  * the shared signals in @which since we will not.
2829  */
2830 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2831 {
2832 	sigset_t retarget;
2833 	struct task_struct *t;
2834 
2835 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2836 	if (sigisemptyset(&retarget))
2837 		return;
2838 
2839 	t = tsk;
2840 	while_each_thread(tsk, t) {
2841 		if (t->flags & PF_EXITING)
2842 			continue;
2843 
2844 		if (!has_pending_signals(&retarget, &t->blocked))
2845 			continue;
2846 		/* Remove the signals this thread can handle. */
2847 		sigandsets(&retarget, &retarget, &t->blocked);
2848 
2849 		if (!task_sigpending(t))
2850 			signal_wake_up(t, 0);
2851 
2852 		if (sigisemptyset(&retarget))
2853 			break;
2854 	}
2855 }
2856 
2857 void exit_signals(struct task_struct *tsk)
2858 {
2859 	int group_stop = 0;
2860 	sigset_t unblocked;
2861 
2862 	/*
2863 	 * @tsk is about to have PF_EXITING set - lock out users which
2864 	 * expect stable threadgroup.
2865 	 */
2866 	cgroup_threadgroup_change_begin(tsk);
2867 
2868 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2869 		tsk->flags |= PF_EXITING;
2870 		cgroup_threadgroup_change_end(tsk);
2871 		return;
2872 	}
2873 
2874 	spin_lock_irq(&tsk->sighand->siglock);
2875 	/*
2876 	 * From now this task is not visible for group-wide signals,
2877 	 * see wants_signal(), do_signal_stop().
2878 	 */
2879 	tsk->flags |= PF_EXITING;
2880 
2881 	cgroup_threadgroup_change_end(tsk);
2882 
2883 	if (!task_sigpending(tsk))
2884 		goto out;
2885 
2886 	unblocked = tsk->blocked;
2887 	signotset(&unblocked);
2888 	retarget_shared_pending(tsk, &unblocked);
2889 
2890 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2891 	    task_participate_group_stop(tsk))
2892 		group_stop = CLD_STOPPED;
2893 out:
2894 	spin_unlock_irq(&tsk->sighand->siglock);
2895 
2896 	/*
2897 	 * If group stop has completed, deliver the notification.  This
2898 	 * should always go to the real parent of the group leader.
2899 	 */
2900 	if (unlikely(group_stop)) {
2901 		read_lock(&tasklist_lock);
2902 		do_notify_parent_cldstop(tsk, false, group_stop);
2903 		read_unlock(&tasklist_lock);
2904 	}
2905 }
2906 
2907 /*
2908  * System call entry points.
2909  */
2910 
2911 /**
2912  *  sys_restart_syscall - restart a system call
2913  */
2914 SYSCALL_DEFINE0(restart_syscall)
2915 {
2916 	struct restart_block *restart = &current->restart_block;
2917 	return restart->fn(restart);
2918 }
2919 
2920 long do_no_restart_syscall(struct restart_block *param)
2921 {
2922 	return -EINTR;
2923 }
2924 
2925 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2926 {
2927 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2928 		sigset_t newblocked;
2929 		/* A set of now blocked but previously unblocked signals. */
2930 		sigandnsets(&newblocked, newset, &current->blocked);
2931 		retarget_shared_pending(tsk, &newblocked);
2932 	}
2933 	tsk->blocked = *newset;
2934 	recalc_sigpending();
2935 }
2936 
2937 /**
2938  * set_current_blocked - change current->blocked mask
2939  * @newset: new mask
2940  *
2941  * It is wrong to change ->blocked directly, this helper should be used
2942  * to ensure the process can't miss a shared signal we are going to block.
2943  */
2944 void set_current_blocked(sigset_t *newset)
2945 {
2946 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2947 	__set_current_blocked(newset);
2948 }
2949 
2950 void __set_current_blocked(const sigset_t *newset)
2951 {
2952 	struct task_struct *tsk = current;
2953 
2954 	/*
2955 	 * In case the signal mask hasn't changed, there is nothing we need
2956 	 * to do. The current->blocked shouldn't be modified by other task.
2957 	 */
2958 	if (sigequalsets(&tsk->blocked, newset))
2959 		return;
2960 
2961 	spin_lock_irq(&tsk->sighand->siglock);
2962 	__set_task_blocked(tsk, newset);
2963 	spin_unlock_irq(&tsk->sighand->siglock);
2964 }
2965 
2966 /*
2967  * This is also useful for kernel threads that want to temporarily
2968  * (or permanently) block certain signals.
2969  *
2970  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2971  * interface happily blocks "unblockable" signals like SIGKILL
2972  * and friends.
2973  */
2974 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2975 {
2976 	struct task_struct *tsk = current;
2977 	sigset_t newset;
2978 
2979 	/* Lockless, only current can change ->blocked, never from irq */
2980 	if (oldset)
2981 		*oldset = tsk->blocked;
2982 
2983 	switch (how) {
2984 	case SIG_BLOCK:
2985 		sigorsets(&newset, &tsk->blocked, set);
2986 		break;
2987 	case SIG_UNBLOCK:
2988 		sigandnsets(&newset, &tsk->blocked, set);
2989 		break;
2990 	case SIG_SETMASK:
2991 		newset = *set;
2992 		break;
2993 	default:
2994 		return -EINVAL;
2995 	}
2996 
2997 	__set_current_blocked(&newset);
2998 	return 0;
2999 }
3000 EXPORT_SYMBOL(sigprocmask);
3001 
3002 /*
3003  * The api helps set app-provided sigmasks.
3004  *
3005  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3006  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3007  *
3008  * Note that it does set_restore_sigmask() in advance, so it must be always
3009  * paired with restore_saved_sigmask_unless() before return from syscall.
3010  */
3011 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3012 {
3013 	sigset_t kmask;
3014 
3015 	if (!umask)
3016 		return 0;
3017 	if (sigsetsize != sizeof(sigset_t))
3018 		return -EINVAL;
3019 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3020 		return -EFAULT;
3021 
3022 	set_restore_sigmask();
3023 	current->saved_sigmask = current->blocked;
3024 	set_current_blocked(&kmask);
3025 
3026 	return 0;
3027 }
3028 
3029 #ifdef CONFIG_COMPAT
3030 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3031 			    size_t sigsetsize)
3032 {
3033 	sigset_t kmask;
3034 
3035 	if (!umask)
3036 		return 0;
3037 	if (sigsetsize != sizeof(compat_sigset_t))
3038 		return -EINVAL;
3039 	if (get_compat_sigset(&kmask, umask))
3040 		return -EFAULT;
3041 
3042 	set_restore_sigmask();
3043 	current->saved_sigmask = current->blocked;
3044 	set_current_blocked(&kmask);
3045 
3046 	return 0;
3047 }
3048 #endif
3049 
3050 /**
3051  *  sys_rt_sigprocmask - change the list of currently blocked signals
3052  *  @how: whether to add, remove, or set signals
3053  *  @nset: stores pending signals
3054  *  @oset: previous value of signal mask if non-null
3055  *  @sigsetsize: size of sigset_t type
3056  */
3057 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3058 		sigset_t __user *, oset, size_t, sigsetsize)
3059 {
3060 	sigset_t old_set, new_set;
3061 	int error;
3062 
3063 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3064 	if (sigsetsize != sizeof(sigset_t))
3065 		return -EINVAL;
3066 
3067 	old_set = current->blocked;
3068 
3069 	if (nset) {
3070 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3071 			return -EFAULT;
3072 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3073 
3074 		error = sigprocmask(how, &new_set, NULL);
3075 		if (error)
3076 			return error;
3077 	}
3078 
3079 	if (oset) {
3080 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3081 			return -EFAULT;
3082 	}
3083 
3084 	return 0;
3085 }
3086 
3087 #ifdef CONFIG_COMPAT
3088 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3089 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3090 {
3091 	sigset_t old_set = current->blocked;
3092 
3093 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3094 	if (sigsetsize != sizeof(sigset_t))
3095 		return -EINVAL;
3096 
3097 	if (nset) {
3098 		sigset_t new_set;
3099 		int error;
3100 		if (get_compat_sigset(&new_set, nset))
3101 			return -EFAULT;
3102 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3103 
3104 		error = sigprocmask(how, &new_set, NULL);
3105 		if (error)
3106 			return error;
3107 	}
3108 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3109 }
3110 #endif
3111 
3112 static void do_sigpending(sigset_t *set)
3113 {
3114 	spin_lock_irq(&current->sighand->siglock);
3115 	sigorsets(set, &current->pending.signal,
3116 		  &current->signal->shared_pending.signal);
3117 	spin_unlock_irq(&current->sighand->siglock);
3118 
3119 	/* Outside the lock because only this thread touches it.  */
3120 	sigandsets(set, &current->blocked, set);
3121 }
3122 
3123 /**
3124  *  sys_rt_sigpending - examine a pending signal that has been raised
3125  *			while blocked
3126  *  @uset: stores pending signals
3127  *  @sigsetsize: size of sigset_t type or larger
3128  */
3129 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3130 {
3131 	sigset_t set;
3132 
3133 	if (sigsetsize > sizeof(*uset))
3134 		return -EINVAL;
3135 
3136 	do_sigpending(&set);
3137 
3138 	if (copy_to_user(uset, &set, sigsetsize))
3139 		return -EFAULT;
3140 
3141 	return 0;
3142 }
3143 
3144 #ifdef CONFIG_COMPAT
3145 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3146 		compat_size_t, sigsetsize)
3147 {
3148 	sigset_t set;
3149 
3150 	if (sigsetsize > sizeof(*uset))
3151 		return -EINVAL;
3152 
3153 	do_sigpending(&set);
3154 
3155 	return put_compat_sigset(uset, &set, sigsetsize);
3156 }
3157 #endif
3158 
3159 static const struct {
3160 	unsigned char limit, layout;
3161 } sig_sicodes[] = {
3162 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3163 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3164 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3165 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3166 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3167 #if defined(SIGEMT)
3168 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3169 #endif
3170 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3171 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3172 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3173 };
3174 
3175 static bool known_siginfo_layout(unsigned sig, int si_code)
3176 {
3177 	if (si_code == SI_KERNEL)
3178 		return true;
3179 	else if ((si_code > SI_USER)) {
3180 		if (sig_specific_sicodes(sig)) {
3181 			if (si_code <= sig_sicodes[sig].limit)
3182 				return true;
3183 		}
3184 		else if (si_code <= NSIGPOLL)
3185 			return true;
3186 	}
3187 	else if (si_code >= SI_DETHREAD)
3188 		return true;
3189 	else if (si_code == SI_ASYNCNL)
3190 		return true;
3191 	return false;
3192 }
3193 
3194 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3195 {
3196 	enum siginfo_layout layout = SIL_KILL;
3197 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3198 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3199 		    (si_code <= sig_sicodes[sig].limit)) {
3200 			layout = sig_sicodes[sig].layout;
3201 			/* Handle the exceptions */
3202 			if ((sig == SIGBUS) &&
3203 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3204 				layout = SIL_FAULT_MCEERR;
3205 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3206 				layout = SIL_FAULT_BNDERR;
3207 #ifdef SEGV_PKUERR
3208 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3209 				layout = SIL_FAULT_PKUERR;
3210 #endif
3211 		}
3212 		else if (si_code <= NSIGPOLL)
3213 			layout = SIL_POLL;
3214 	} else {
3215 		if (si_code == SI_TIMER)
3216 			layout = SIL_TIMER;
3217 		else if (si_code == SI_SIGIO)
3218 			layout = SIL_POLL;
3219 		else if (si_code < 0)
3220 			layout = SIL_RT;
3221 	}
3222 	return layout;
3223 }
3224 
3225 static inline char __user *si_expansion(const siginfo_t __user *info)
3226 {
3227 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3228 }
3229 
3230 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3231 {
3232 	char __user *expansion = si_expansion(to);
3233 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3234 		return -EFAULT;
3235 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3236 		return -EFAULT;
3237 	return 0;
3238 }
3239 
3240 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3241 				       const siginfo_t __user *from)
3242 {
3243 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3244 		char __user *expansion = si_expansion(from);
3245 		char buf[SI_EXPANSION_SIZE];
3246 		int i;
3247 		/*
3248 		 * An unknown si_code might need more than
3249 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3250 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3251 		 * will return this data to userspace exactly.
3252 		 */
3253 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3254 			return -EFAULT;
3255 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3256 			if (buf[i] != 0)
3257 				return -E2BIG;
3258 		}
3259 	}
3260 	return 0;
3261 }
3262 
3263 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3264 				    const siginfo_t __user *from)
3265 {
3266 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3267 		return -EFAULT;
3268 	to->si_signo = signo;
3269 	return post_copy_siginfo_from_user(to, from);
3270 }
3271 
3272 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3273 {
3274 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3275 		return -EFAULT;
3276 	return post_copy_siginfo_from_user(to, from);
3277 }
3278 
3279 #ifdef CONFIG_COMPAT
3280 /**
3281  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3282  * @to: compat siginfo destination
3283  * @from: kernel siginfo source
3284  *
3285  * Note: This function does not work properly for the SIGCHLD on x32, but
3286  * fortunately it doesn't have to.  The only valid callers for this function are
3287  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3288  * The latter does not care because SIGCHLD will never cause a coredump.
3289  */
3290 void copy_siginfo_to_external32(struct compat_siginfo *to,
3291 		const struct kernel_siginfo *from)
3292 {
3293 	memset(to, 0, sizeof(*to));
3294 
3295 	to->si_signo = from->si_signo;
3296 	to->si_errno = from->si_errno;
3297 	to->si_code  = from->si_code;
3298 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3299 	case SIL_KILL:
3300 		to->si_pid = from->si_pid;
3301 		to->si_uid = from->si_uid;
3302 		break;
3303 	case SIL_TIMER:
3304 		to->si_tid     = from->si_tid;
3305 		to->si_overrun = from->si_overrun;
3306 		to->si_int     = from->si_int;
3307 		break;
3308 	case SIL_POLL:
3309 		to->si_band = from->si_band;
3310 		to->si_fd   = from->si_fd;
3311 		break;
3312 	case SIL_FAULT:
3313 		to->si_addr = ptr_to_compat(from->si_addr);
3314 #ifdef __ARCH_SI_TRAPNO
3315 		to->si_trapno = from->si_trapno;
3316 #endif
3317 		break;
3318 	case SIL_FAULT_MCEERR:
3319 		to->si_addr = ptr_to_compat(from->si_addr);
3320 #ifdef __ARCH_SI_TRAPNO
3321 		to->si_trapno = from->si_trapno;
3322 #endif
3323 		to->si_addr_lsb = from->si_addr_lsb;
3324 		break;
3325 	case SIL_FAULT_BNDERR:
3326 		to->si_addr = ptr_to_compat(from->si_addr);
3327 #ifdef __ARCH_SI_TRAPNO
3328 		to->si_trapno = from->si_trapno;
3329 #endif
3330 		to->si_lower = ptr_to_compat(from->si_lower);
3331 		to->si_upper = ptr_to_compat(from->si_upper);
3332 		break;
3333 	case SIL_FAULT_PKUERR:
3334 		to->si_addr = ptr_to_compat(from->si_addr);
3335 #ifdef __ARCH_SI_TRAPNO
3336 		to->si_trapno = from->si_trapno;
3337 #endif
3338 		to->si_pkey = from->si_pkey;
3339 		break;
3340 	case SIL_CHLD:
3341 		to->si_pid = from->si_pid;
3342 		to->si_uid = from->si_uid;
3343 		to->si_status = from->si_status;
3344 		to->si_utime = from->si_utime;
3345 		to->si_stime = from->si_stime;
3346 		break;
3347 	case SIL_RT:
3348 		to->si_pid = from->si_pid;
3349 		to->si_uid = from->si_uid;
3350 		to->si_int = from->si_int;
3351 		break;
3352 	case SIL_SYS:
3353 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3354 		to->si_syscall   = from->si_syscall;
3355 		to->si_arch      = from->si_arch;
3356 		break;
3357 	}
3358 }
3359 
3360 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3361 			   const struct kernel_siginfo *from)
3362 {
3363 	struct compat_siginfo new;
3364 
3365 	copy_siginfo_to_external32(&new, from);
3366 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3367 		return -EFAULT;
3368 	return 0;
3369 }
3370 
3371 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3372 					 const struct compat_siginfo *from)
3373 {
3374 	clear_siginfo(to);
3375 	to->si_signo = from->si_signo;
3376 	to->si_errno = from->si_errno;
3377 	to->si_code  = from->si_code;
3378 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3379 	case SIL_KILL:
3380 		to->si_pid = from->si_pid;
3381 		to->si_uid = from->si_uid;
3382 		break;
3383 	case SIL_TIMER:
3384 		to->si_tid     = from->si_tid;
3385 		to->si_overrun = from->si_overrun;
3386 		to->si_int     = from->si_int;
3387 		break;
3388 	case SIL_POLL:
3389 		to->si_band = from->si_band;
3390 		to->si_fd   = from->si_fd;
3391 		break;
3392 	case SIL_FAULT:
3393 		to->si_addr = compat_ptr(from->si_addr);
3394 #ifdef __ARCH_SI_TRAPNO
3395 		to->si_trapno = from->si_trapno;
3396 #endif
3397 		break;
3398 	case SIL_FAULT_MCEERR:
3399 		to->si_addr = compat_ptr(from->si_addr);
3400 #ifdef __ARCH_SI_TRAPNO
3401 		to->si_trapno = from->si_trapno;
3402 #endif
3403 		to->si_addr_lsb = from->si_addr_lsb;
3404 		break;
3405 	case SIL_FAULT_BNDERR:
3406 		to->si_addr = compat_ptr(from->si_addr);
3407 #ifdef __ARCH_SI_TRAPNO
3408 		to->si_trapno = from->si_trapno;
3409 #endif
3410 		to->si_lower = compat_ptr(from->si_lower);
3411 		to->si_upper = compat_ptr(from->si_upper);
3412 		break;
3413 	case SIL_FAULT_PKUERR:
3414 		to->si_addr = compat_ptr(from->si_addr);
3415 #ifdef __ARCH_SI_TRAPNO
3416 		to->si_trapno = from->si_trapno;
3417 #endif
3418 		to->si_pkey = from->si_pkey;
3419 		break;
3420 	case SIL_CHLD:
3421 		to->si_pid    = from->si_pid;
3422 		to->si_uid    = from->si_uid;
3423 		to->si_status = from->si_status;
3424 #ifdef CONFIG_X86_X32_ABI
3425 		if (in_x32_syscall()) {
3426 			to->si_utime = from->_sifields._sigchld_x32._utime;
3427 			to->si_stime = from->_sifields._sigchld_x32._stime;
3428 		} else
3429 #endif
3430 		{
3431 			to->si_utime = from->si_utime;
3432 			to->si_stime = from->si_stime;
3433 		}
3434 		break;
3435 	case SIL_RT:
3436 		to->si_pid = from->si_pid;
3437 		to->si_uid = from->si_uid;
3438 		to->si_int = from->si_int;
3439 		break;
3440 	case SIL_SYS:
3441 		to->si_call_addr = compat_ptr(from->si_call_addr);
3442 		to->si_syscall   = from->si_syscall;
3443 		to->si_arch      = from->si_arch;
3444 		break;
3445 	}
3446 	return 0;
3447 }
3448 
3449 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3450 				      const struct compat_siginfo __user *ufrom)
3451 {
3452 	struct compat_siginfo from;
3453 
3454 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3455 		return -EFAULT;
3456 
3457 	from.si_signo = signo;
3458 	return post_copy_siginfo_from_user32(to, &from);
3459 }
3460 
3461 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3462 			     const struct compat_siginfo __user *ufrom)
3463 {
3464 	struct compat_siginfo from;
3465 
3466 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3467 		return -EFAULT;
3468 
3469 	return post_copy_siginfo_from_user32(to, &from);
3470 }
3471 #endif /* CONFIG_COMPAT */
3472 
3473 /**
3474  *  do_sigtimedwait - wait for queued signals specified in @which
3475  *  @which: queued signals to wait for
3476  *  @info: if non-null, the signal's siginfo is returned here
3477  *  @ts: upper bound on process time suspension
3478  */
3479 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3480 		    const struct timespec64 *ts)
3481 {
3482 	ktime_t *to = NULL, timeout = KTIME_MAX;
3483 	struct task_struct *tsk = current;
3484 	sigset_t mask = *which;
3485 	int sig, ret = 0;
3486 
3487 	if (ts) {
3488 		if (!timespec64_valid(ts))
3489 			return -EINVAL;
3490 		timeout = timespec64_to_ktime(*ts);
3491 		to = &timeout;
3492 	}
3493 
3494 	/*
3495 	 * Invert the set of allowed signals to get those we want to block.
3496 	 */
3497 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3498 	signotset(&mask);
3499 
3500 	spin_lock_irq(&tsk->sighand->siglock);
3501 	sig = dequeue_signal(tsk, &mask, info);
3502 	if (!sig && timeout) {
3503 		/*
3504 		 * None ready, temporarily unblock those we're interested
3505 		 * while we are sleeping in so that we'll be awakened when
3506 		 * they arrive. Unblocking is always fine, we can avoid
3507 		 * set_current_blocked().
3508 		 */
3509 		tsk->real_blocked = tsk->blocked;
3510 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3511 		recalc_sigpending();
3512 		spin_unlock_irq(&tsk->sighand->siglock);
3513 
3514 		__set_current_state(TASK_INTERRUPTIBLE);
3515 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3516 							 HRTIMER_MODE_REL);
3517 		spin_lock_irq(&tsk->sighand->siglock);
3518 		__set_task_blocked(tsk, &tsk->real_blocked);
3519 		sigemptyset(&tsk->real_blocked);
3520 		sig = dequeue_signal(tsk, &mask, info);
3521 	}
3522 	spin_unlock_irq(&tsk->sighand->siglock);
3523 
3524 	if (sig)
3525 		return sig;
3526 	return ret ? -EINTR : -EAGAIN;
3527 }
3528 
3529 /**
3530  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3531  *			in @uthese
3532  *  @uthese: queued signals to wait for
3533  *  @uinfo: if non-null, the signal's siginfo is returned here
3534  *  @uts: upper bound on process time suspension
3535  *  @sigsetsize: size of sigset_t type
3536  */
3537 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3538 		siginfo_t __user *, uinfo,
3539 		const struct __kernel_timespec __user *, uts,
3540 		size_t, sigsetsize)
3541 {
3542 	sigset_t these;
3543 	struct timespec64 ts;
3544 	kernel_siginfo_t info;
3545 	int ret;
3546 
3547 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3548 	if (sigsetsize != sizeof(sigset_t))
3549 		return -EINVAL;
3550 
3551 	if (copy_from_user(&these, uthese, sizeof(these)))
3552 		return -EFAULT;
3553 
3554 	if (uts) {
3555 		if (get_timespec64(&ts, uts))
3556 			return -EFAULT;
3557 	}
3558 
3559 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3560 
3561 	if (ret > 0 && uinfo) {
3562 		if (copy_siginfo_to_user(uinfo, &info))
3563 			ret = -EFAULT;
3564 	}
3565 
3566 	return ret;
3567 }
3568 
3569 #ifdef CONFIG_COMPAT_32BIT_TIME
3570 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3571 		siginfo_t __user *, uinfo,
3572 		const struct old_timespec32 __user *, uts,
3573 		size_t, sigsetsize)
3574 {
3575 	sigset_t these;
3576 	struct timespec64 ts;
3577 	kernel_siginfo_t info;
3578 	int ret;
3579 
3580 	if (sigsetsize != sizeof(sigset_t))
3581 		return -EINVAL;
3582 
3583 	if (copy_from_user(&these, uthese, sizeof(these)))
3584 		return -EFAULT;
3585 
3586 	if (uts) {
3587 		if (get_old_timespec32(&ts, uts))
3588 			return -EFAULT;
3589 	}
3590 
3591 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3592 
3593 	if (ret > 0 && uinfo) {
3594 		if (copy_siginfo_to_user(uinfo, &info))
3595 			ret = -EFAULT;
3596 	}
3597 
3598 	return ret;
3599 }
3600 #endif
3601 
3602 #ifdef CONFIG_COMPAT
3603 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3604 		struct compat_siginfo __user *, uinfo,
3605 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3606 {
3607 	sigset_t s;
3608 	struct timespec64 t;
3609 	kernel_siginfo_t info;
3610 	long ret;
3611 
3612 	if (sigsetsize != sizeof(sigset_t))
3613 		return -EINVAL;
3614 
3615 	if (get_compat_sigset(&s, uthese))
3616 		return -EFAULT;
3617 
3618 	if (uts) {
3619 		if (get_timespec64(&t, uts))
3620 			return -EFAULT;
3621 	}
3622 
3623 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3624 
3625 	if (ret > 0 && uinfo) {
3626 		if (copy_siginfo_to_user32(uinfo, &info))
3627 			ret = -EFAULT;
3628 	}
3629 
3630 	return ret;
3631 }
3632 
3633 #ifdef CONFIG_COMPAT_32BIT_TIME
3634 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3635 		struct compat_siginfo __user *, uinfo,
3636 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3637 {
3638 	sigset_t s;
3639 	struct timespec64 t;
3640 	kernel_siginfo_t info;
3641 	long ret;
3642 
3643 	if (sigsetsize != sizeof(sigset_t))
3644 		return -EINVAL;
3645 
3646 	if (get_compat_sigset(&s, uthese))
3647 		return -EFAULT;
3648 
3649 	if (uts) {
3650 		if (get_old_timespec32(&t, uts))
3651 			return -EFAULT;
3652 	}
3653 
3654 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3655 
3656 	if (ret > 0 && uinfo) {
3657 		if (copy_siginfo_to_user32(uinfo, &info))
3658 			ret = -EFAULT;
3659 	}
3660 
3661 	return ret;
3662 }
3663 #endif
3664 #endif
3665 
3666 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3667 {
3668 	clear_siginfo(info);
3669 	info->si_signo = sig;
3670 	info->si_errno = 0;
3671 	info->si_code = SI_USER;
3672 	info->si_pid = task_tgid_vnr(current);
3673 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3674 }
3675 
3676 /**
3677  *  sys_kill - send a signal to a process
3678  *  @pid: the PID of the process
3679  *  @sig: signal to be sent
3680  */
3681 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3682 {
3683 	struct kernel_siginfo info;
3684 
3685 	prepare_kill_siginfo(sig, &info);
3686 
3687 	return kill_something_info(sig, &info, pid);
3688 }
3689 
3690 /*
3691  * Verify that the signaler and signalee either are in the same pid namespace
3692  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3693  * namespace.
3694  */
3695 static bool access_pidfd_pidns(struct pid *pid)
3696 {
3697 	struct pid_namespace *active = task_active_pid_ns(current);
3698 	struct pid_namespace *p = ns_of_pid(pid);
3699 
3700 	for (;;) {
3701 		if (!p)
3702 			return false;
3703 		if (p == active)
3704 			break;
3705 		p = p->parent;
3706 	}
3707 
3708 	return true;
3709 }
3710 
3711 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3712 		siginfo_t __user *info)
3713 {
3714 #ifdef CONFIG_COMPAT
3715 	/*
3716 	 * Avoid hooking up compat syscalls and instead handle necessary
3717 	 * conversions here. Note, this is a stop-gap measure and should not be
3718 	 * considered a generic solution.
3719 	 */
3720 	if (in_compat_syscall())
3721 		return copy_siginfo_from_user32(
3722 			kinfo, (struct compat_siginfo __user *)info);
3723 #endif
3724 	return copy_siginfo_from_user(kinfo, info);
3725 }
3726 
3727 static struct pid *pidfd_to_pid(const struct file *file)
3728 {
3729 	struct pid *pid;
3730 
3731 	pid = pidfd_pid(file);
3732 	if (!IS_ERR(pid))
3733 		return pid;
3734 
3735 	return tgid_pidfd_to_pid(file);
3736 }
3737 
3738 /**
3739  * sys_pidfd_send_signal - Signal a process through a pidfd
3740  * @pidfd:  file descriptor of the process
3741  * @sig:    signal to send
3742  * @info:   signal info
3743  * @flags:  future flags
3744  *
3745  * The syscall currently only signals via PIDTYPE_PID which covers
3746  * kill(<positive-pid>, <signal>. It does not signal threads or process
3747  * groups.
3748  * In order to extend the syscall to threads and process groups the @flags
3749  * argument should be used. In essence, the @flags argument will determine
3750  * what is signaled and not the file descriptor itself. Put in other words,
3751  * grouping is a property of the flags argument not a property of the file
3752  * descriptor.
3753  *
3754  * Return: 0 on success, negative errno on failure
3755  */
3756 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3757 		siginfo_t __user *, info, unsigned int, flags)
3758 {
3759 	int ret;
3760 	struct fd f;
3761 	struct pid *pid;
3762 	kernel_siginfo_t kinfo;
3763 
3764 	/* Enforce flags be set to 0 until we add an extension. */
3765 	if (flags)
3766 		return -EINVAL;
3767 
3768 	f = fdget(pidfd);
3769 	if (!f.file)
3770 		return -EBADF;
3771 
3772 	/* Is this a pidfd? */
3773 	pid = pidfd_to_pid(f.file);
3774 	if (IS_ERR(pid)) {
3775 		ret = PTR_ERR(pid);
3776 		goto err;
3777 	}
3778 
3779 	ret = -EINVAL;
3780 	if (!access_pidfd_pidns(pid))
3781 		goto err;
3782 
3783 	if (info) {
3784 		ret = copy_siginfo_from_user_any(&kinfo, info);
3785 		if (unlikely(ret))
3786 			goto err;
3787 
3788 		ret = -EINVAL;
3789 		if (unlikely(sig != kinfo.si_signo))
3790 			goto err;
3791 
3792 		/* Only allow sending arbitrary signals to yourself. */
3793 		ret = -EPERM;
3794 		if ((task_pid(current) != pid) &&
3795 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3796 			goto err;
3797 	} else {
3798 		prepare_kill_siginfo(sig, &kinfo);
3799 	}
3800 
3801 	ret = kill_pid_info(sig, &kinfo, pid);
3802 
3803 err:
3804 	fdput(f);
3805 	return ret;
3806 }
3807 
3808 static int
3809 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3810 {
3811 	struct task_struct *p;
3812 	int error = -ESRCH;
3813 
3814 	rcu_read_lock();
3815 	p = find_task_by_vpid(pid);
3816 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3817 		error = check_kill_permission(sig, info, p);
3818 		/*
3819 		 * The null signal is a permissions and process existence
3820 		 * probe.  No signal is actually delivered.
3821 		 */
3822 		if (!error && sig) {
3823 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3824 			/*
3825 			 * If lock_task_sighand() failed we pretend the task
3826 			 * dies after receiving the signal. The window is tiny,
3827 			 * and the signal is private anyway.
3828 			 */
3829 			if (unlikely(error == -ESRCH))
3830 				error = 0;
3831 		}
3832 	}
3833 	rcu_read_unlock();
3834 
3835 	return error;
3836 }
3837 
3838 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3839 {
3840 	struct kernel_siginfo info;
3841 
3842 	clear_siginfo(&info);
3843 	info.si_signo = sig;
3844 	info.si_errno = 0;
3845 	info.si_code = SI_TKILL;
3846 	info.si_pid = task_tgid_vnr(current);
3847 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3848 
3849 	return do_send_specific(tgid, pid, sig, &info);
3850 }
3851 
3852 /**
3853  *  sys_tgkill - send signal to one specific thread
3854  *  @tgid: the thread group ID of the thread
3855  *  @pid: the PID of the thread
3856  *  @sig: signal to be sent
3857  *
3858  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3859  *  exists but it's not belonging to the target process anymore. This
3860  *  method solves the problem of threads exiting and PIDs getting reused.
3861  */
3862 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3863 {
3864 	/* This is only valid for single tasks */
3865 	if (pid <= 0 || tgid <= 0)
3866 		return -EINVAL;
3867 
3868 	return do_tkill(tgid, pid, sig);
3869 }
3870 
3871 /**
3872  *  sys_tkill - send signal to one specific task
3873  *  @pid: the PID of the task
3874  *  @sig: signal to be sent
3875  *
3876  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3877  */
3878 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3879 {
3880 	/* This is only valid for single tasks */
3881 	if (pid <= 0)
3882 		return -EINVAL;
3883 
3884 	return do_tkill(0, pid, sig);
3885 }
3886 
3887 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3888 {
3889 	/* Not even root can pretend to send signals from the kernel.
3890 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3891 	 */
3892 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3893 	    (task_pid_vnr(current) != pid))
3894 		return -EPERM;
3895 
3896 	/* POSIX.1b doesn't mention process groups.  */
3897 	return kill_proc_info(sig, info, pid);
3898 }
3899 
3900 /**
3901  *  sys_rt_sigqueueinfo - send signal information to a signal
3902  *  @pid: the PID of the thread
3903  *  @sig: signal to be sent
3904  *  @uinfo: signal info to be sent
3905  */
3906 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3907 		siginfo_t __user *, uinfo)
3908 {
3909 	kernel_siginfo_t info;
3910 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3911 	if (unlikely(ret))
3912 		return ret;
3913 	return do_rt_sigqueueinfo(pid, sig, &info);
3914 }
3915 
3916 #ifdef CONFIG_COMPAT
3917 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3918 			compat_pid_t, pid,
3919 			int, sig,
3920 			struct compat_siginfo __user *, uinfo)
3921 {
3922 	kernel_siginfo_t info;
3923 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3924 	if (unlikely(ret))
3925 		return ret;
3926 	return do_rt_sigqueueinfo(pid, sig, &info);
3927 }
3928 #endif
3929 
3930 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3931 {
3932 	/* This is only valid for single tasks */
3933 	if (pid <= 0 || tgid <= 0)
3934 		return -EINVAL;
3935 
3936 	/* Not even root can pretend to send signals from the kernel.
3937 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3938 	 */
3939 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3940 	    (task_pid_vnr(current) != pid))
3941 		return -EPERM;
3942 
3943 	return do_send_specific(tgid, pid, sig, info);
3944 }
3945 
3946 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3947 		siginfo_t __user *, uinfo)
3948 {
3949 	kernel_siginfo_t info;
3950 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3951 	if (unlikely(ret))
3952 		return ret;
3953 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3954 }
3955 
3956 #ifdef CONFIG_COMPAT
3957 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3958 			compat_pid_t, tgid,
3959 			compat_pid_t, pid,
3960 			int, sig,
3961 			struct compat_siginfo __user *, uinfo)
3962 {
3963 	kernel_siginfo_t info;
3964 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3965 	if (unlikely(ret))
3966 		return ret;
3967 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3968 }
3969 #endif
3970 
3971 /*
3972  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3973  */
3974 void kernel_sigaction(int sig, __sighandler_t action)
3975 {
3976 	spin_lock_irq(&current->sighand->siglock);
3977 	current->sighand->action[sig - 1].sa.sa_handler = action;
3978 	if (action == SIG_IGN) {
3979 		sigset_t mask;
3980 
3981 		sigemptyset(&mask);
3982 		sigaddset(&mask, sig);
3983 
3984 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3985 		flush_sigqueue_mask(&mask, &current->pending);
3986 		recalc_sigpending();
3987 	}
3988 	spin_unlock_irq(&current->sighand->siglock);
3989 }
3990 EXPORT_SYMBOL(kernel_sigaction);
3991 
3992 void __weak sigaction_compat_abi(struct k_sigaction *act,
3993 		struct k_sigaction *oact)
3994 {
3995 }
3996 
3997 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3998 {
3999 	struct task_struct *p = current, *t;
4000 	struct k_sigaction *k;
4001 	sigset_t mask;
4002 
4003 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4004 		return -EINVAL;
4005 
4006 	k = &p->sighand->action[sig-1];
4007 
4008 	spin_lock_irq(&p->sighand->siglock);
4009 	if (oact)
4010 		*oact = *k;
4011 
4012 	/*
4013 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4014 	 * e.g. by having an architecture use the bit in their uapi.
4015 	 */
4016 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4017 
4018 	/*
4019 	 * Clear unknown flag bits in order to allow userspace to detect missing
4020 	 * support for flag bits and to allow the kernel to use non-uapi bits
4021 	 * internally.
4022 	 */
4023 	if (act)
4024 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4025 	if (oact)
4026 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4027 
4028 	sigaction_compat_abi(act, oact);
4029 
4030 	if (act) {
4031 		sigdelsetmask(&act->sa.sa_mask,
4032 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4033 		*k = *act;
4034 		/*
4035 		 * POSIX 3.3.1.3:
4036 		 *  "Setting a signal action to SIG_IGN for a signal that is
4037 		 *   pending shall cause the pending signal to be discarded,
4038 		 *   whether or not it is blocked."
4039 		 *
4040 		 *  "Setting a signal action to SIG_DFL for a signal that is
4041 		 *   pending and whose default action is to ignore the signal
4042 		 *   (for example, SIGCHLD), shall cause the pending signal to
4043 		 *   be discarded, whether or not it is blocked"
4044 		 */
4045 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4046 			sigemptyset(&mask);
4047 			sigaddset(&mask, sig);
4048 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4049 			for_each_thread(p, t)
4050 				flush_sigqueue_mask(&mask, &t->pending);
4051 		}
4052 	}
4053 
4054 	spin_unlock_irq(&p->sighand->siglock);
4055 	return 0;
4056 }
4057 
4058 static int
4059 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4060 		size_t min_ss_size)
4061 {
4062 	struct task_struct *t = current;
4063 
4064 	if (oss) {
4065 		memset(oss, 0, sizeof(stack_t));
4066 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4067 		oss->ss_size = t->sas_ss_size;
4068 		oss->ss_flags = sas_ss_flags(sp) |
4069 			(current->sas_ss_flags & SS_FLAG_BITS);
4070 	}
4071 
4072 	if (ss) {
4073 		void __user *ss_sp = ss->ss_sp;
4074 		size_t ss_size = ss->ss_size;
4075 		unsigned ss_flags = ss->ss_flags;
4076 		int ss_mode;
4077 
4078 		if (unlikely(on_sig_stack(sp)))
4079 			return -EPERM;
4080 
4081 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4082 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4083 				ss_mode != 0))
4084 			return -EINVAL;
4085 
4086 		if (ss_mode == SS_DISABLE) {
4087 			ss_size = 0;
4088 			ss_sp = NULL;
4089 		} else {
4090 			if (unlikely(ss_size < min_ss_size))
4091 				return -ENOMEM;
4092 		}
4093 
4094 		t->sas_ss_sp = (unsigned long) ss_sp;
4095 		t->sas_ss_size = ss_size;
4096 		t->sas_ss_flags = ss_flags;
4097 	}
4098 	return 0;
4099 }
4100 
4101 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4102 {
4103 	stack_t new, old;
4104 	int err;
4105 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4106 		return -EFAULT;
4107 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4108 			      current_user_stack_pointer(),
4109 			      MINSIGSTKSZ);
4110 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4111 		err = -EFAULT;
4112 	return err;
4113 }
4114 
4115 int restore_altstack(const stack_t __user *uss)
4116 {
4117 	stack_t new;
4118 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4119 		return -EFAULT;
4120 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4121 			     MINSIGSTKSZ);
4122 	/* squash all but EFAULT for now */
4123 	return 0;
4124 }
4125 
4126 int __save_altstack(stack_t __user *uss, unsigned long sp)
4127 {
4128 	struct task_struct *t = current;
4129 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4130 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4131 		__put_user(t->sas_ss_size, &uss->ss_size);
4132 	if (err)
4133 		return err;
4134 	if (t->sas_ss_flags & SS_AUTODISARM)
4135 		sas_ss_reset(t);
4136 	return 0;
4137 }
4138 
4139 #ifdef CONFIG_COMPAT
4140 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4141 				 compat_stack_t __user *uoss_ptr)
4142 {
4143 	stack_t uss, uoss;
4144 	int ret;
4145 
4146 	if (uss_ptr) {
4147 		compat_stack_t uss32;
4148 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4149 			return -EFAULT;
4150 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4151 		uss.ss_flags = uss32.ss_flags;
4152 		uss.ss_size = uss32.ss_size;
4153 	}
4154 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4155 			     compat_user_stack_pointer(),
4156 			     COMPAT_MINSIGSTKSZ);
4157 	if (ret >= 0 && uoss_ptr)  {
4158 		compat_stack_t old;
4159 		memset(&old, 0, sizeof(old));
4160 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4161 		old.ss_flags = uoss.ss_flags;
4162 		old.ss_size = uoss.ss_size;
4163 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4164 			ret = -EFAULT;
4165 	}
4166 	return ret;
4167 }
4168 
4169 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4170 			const compat_stack_t __user *, uss_ptr,
4171 			compat_stack_t __user *, uoss_ptr)
4172 {
4173 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4174 }
4175 
4176 int compat_restore_altstack(const compat_stack_t __user *uss)
4177 {
4178 	int err = do_compat_sigaltstack(uss, NULL);
4179 	/* squash all but -EFAULT for now */
4180 	return err == -EFAULT ? err : 0;
4181 }
4182 
4183 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4184 {
4185 	int err;
4186 	struct task_struct *t = current;
4187 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4188 			 &uss->ss_sp) |
4189 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4190 		__put_user(t->sas_ss_size, &uss->ss_size);
4191 	if (err)
4192 		return err;
4193 	if (t->sas_ss_flags & SS_AUTODISARM)
4194 		sas_ss_reset(t);
4195 	return 0;
4196 }
4197 #endif
4198 
4199 #ifdef __ARCH_WANT_SYS_SIGPENDING
4200 
4201 /**
4202  *  sys_sigpending - examine pending signals
4203  *  @uset: where mask of pending signal is returned
4204  */
4205 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4206 {
4207 	sigset_t set;
4208 
4209 	if (sizeof(old_sigset_t) > sizeof(*uset))
4210 		return -EINVAL;
4211 
4212 	do_sigpending(&set);
4213 
4214 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4215 		return -EFAULT;
4216 
4217 	return 0;
4218 }
4219 
4220 #ifdef CONFIG_COMPAT
4221 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4222 {
4223 	sigset_t set;
4224 
4225 	do_sigpending(&set);
4226 
4227 	return put_user(set.sig[0], set32);
4228 }
4229 #endif
4230 
4231 #endif
4232 
4233 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4234 /**
4235  *  sys_sigprocmask - examine and change blocked signals
4236  *  @how: whether to add, remove, or set signals
4237  *  @nset: signals to add or remove (if non-null)
4238  *  @oset: previous value of signal mask if non-null
4239  *
4240  * Some platforms have their own version with special arguments;
4241  * others support only sys_rt_sigprocmask.
4242  */
4243 
4244 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4245 		old_sigset_t __user *, oset)
4246 {
4247 	old_sigset_t old_set, new_set;
4248 	sigset_t new_blocked;
4249 
4250 	old_set = current->blocked.sig[0];
4251 
4252 	if (nset) {
4253 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4254 			return -EFAULT;
4255 
4256 		new_blocked = current->blocked;
4257 
4258 		switch (how) {
4259 		case SIG_BLOCK:
4260 			sigaddsetmask(&new_blocked, new_set);
4261 			break;
4262 		case SIG_UNBLOCK:
4263 			sigdelsetmask(&new_blocked, new_set);
4264 			break;
4265 		case SIG_SETMASK:
4266 			new_blocked.sig[0] = new_set;
4267 			break;
4268 		default:
4269 			return -EINVAL;
4270 		}
4271 
4272 		set_current_blocked(&new_blocked);
4273 	}
4274 
4275 	if (oset) {
4276 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4277 			return -EFAULT;
4278 	}
4279 
4280 	return 0;
4281 }
4282 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4283 
4284 #ifndef CONFIG_ODD_RT_SIGACTION
4285 /**
4286  *  sys_rt_sigaction - alter an action taken by a process
4287  *  @sig: signal to be sent
4288  *  @act: new sigaction
4289  *  @oact: used to save the previous sigaction
4290  *  @sigsetsize: size of sigset_t type
4291  */
4292 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4293 		const struct sigaction __user *, act,
4294 		struct sigaction __user *, oact,
4295 		size_t, sigsetsize)
4296 {
4297 	struct k_sigaction new_sa, old_sa;
4298 	int ret;
4299 
4300 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4301 	if (sigsetsize != sizeof(sigset_t))
4302 		return -EINVAL;
4303 
4304 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4305 		return -EFAULT;
4306 
4307 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4308 	if (ret)
4309 		return ret;
4310 
4311 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4312 		return -EFAULT;
4313 
4314 	return 0;
4315 }
4316 #ifdef CONFIG_COMPAT
4317 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4318 		const struct compat_sigaction __user *, act,
4319 		struct compat_sigaction __user *, oact,
4320 		compat_size_t, sigsetsize)
4321 {
4322 	struct k_sigaction new_ka, old_ka;
4323 #ifdef __ARCH_HAS_SA_RESTORER
4324 	compat_uptr_t restorer;
4325 #endif
4326 	int ret;
4327 
4328 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4329 	if (sigsetsize != sizeof(compat_sigset_t))
4330 		return -EINVAL;
4331 
4332 	if (act) {
4333 		compat_uptr_t handler;
4334 		ret = get_user(handler, &act->sa_handler);
4335 		new_ka.sa.sa_handler = compat_ptr(handler);
4336 #ifdef __ARCH_HAS_SA_RESTORER
4337 		ret |= get_user(restorer, &act->sa_restorer);
4338 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4339 #endif
4340 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4341 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4342 		if (ret)
4343 			return -EFAULT;
4344 	}
4345 
4346 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4347 	if (!ret && oact) {
4348 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4349 			       &oact->sa_handler);
4350 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4351 					 sizeof(oact->sa_mask));
4352 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4353 #ifdef __ARCH_HAS_SA_RESTORER
4354 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4355 				&oact->sa_restorer);
4356 #endif
4357 	}
4358 	return ret;
4359 }
4360 #endif
4361 #endif /* !CONFIG_ODD_RT_SIGACTION */
4362 
4363 #ifdef CONFIG_OLD_SIGACTION
4364 SYSCALL_DEFINE3(sigaction, int, sig,
4365 		const struct old_sigaction __user *, act,
4366 	        struct old_sigaction __user *, oact)
4367 {
4368 	struct k_sigaction new_ka, old_ka;
4369 	int ret;
4370 
4371 	if (act) {
4372 		old_sigset_t mask;
4373 		if (!access_ok(act, sizeof(*act)) ||
4374 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4375 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4376 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4377 		    __get_user(mask, &act->sa_mask))
4378 			return -EFAULT;
4379 #ifdef __ARCH_HAS_KA_RESTORER
4380 		new_ka.ka_restorer = NULL;
4381 #endif
4382 		siginitset(&new_ka.sa.sa_mask, mask);
4383 	}
4384 
4385 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4386 
4387 	if (!ret && oact) {
4388 		if (!access_ok(oact, sizeof(*oact)) ||
4389 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4390 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4391 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4392 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4393 			return -EFAULT;
4394 	}
4395 
4396 	return ret;
4397 }
4398 #endif
4399 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4400 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4401 		const struct compat_old_sigaction __user *, act,
4402 	        struct compat_old_sigaction __user *, oact)
4403 {
4404 	struct k_sigaction new_ka, old_ka;
4405 	int ret;
4406 	compat_old_sigset_t mask;
4407 	compat_uptr_t handler, restorer;
4408 
4409 	if (act) {
4410 		if (!access_ok(act, sizeof(*act)) ||
4411 		    __get_user(handler, &act->sa_handler) ||
4412 		    __get_user(restorer, &act->sa_restorer) ||
4413 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4414 		    __get_user(mask, &act->sa_mask))
4415 			return -EFAULT;
4416 
4417 #ifdef __ARCH_HAS_KA_RESTORER
4418 		new_ka.ka_restorer = NULL;
4419 #endif
4420 		new_ka.sa.sa_handler = compat_ptr(handler);
4421 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4422 		siginitset(&new_ka.sa.sa_mask, mask);
4423 	}
4424 
4425 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4426 
4427 	if (!ret && oact) {
4428 		if (!access_ok(oact, sizeof(*oact)) ||
4429 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4430 			       &oact->sa_handler) ||
4431 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4432 			       &oact->sa_restorer) ||
4433 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4434 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4435 			return -EFAULT;
4436 	}
4437 	return ret;
4438 }
4439 #endif
4440 
4441 #ifdef CONFIG_SGETMASK_SYSCALL
4442 
4443 /*
4444  * For backwards compatibility.  Functionality superseded by sigprocmask.
4445  */
4446 SYSCALL_DEFINE0(sgetmask)
4447 {
4448 	/* SMP safe */
4449 	return current->blocked.sig[0];
4450 }
4451 
4452 SYSCALL_DEFINE1(ssetmask, int, newmask)
4453 {
4454 	int old = current->blocked.sig[0];
4455 	sigset_t newset;
4456 
4457 	siginitset(&newset, newmask);
4458 	set_current_blocked(&newset);
4459 
4460 	return old;
4461 }
4462 #endif /* CONFIG_SGETMASK_SYSCALL */
4463 
4464 #ifdef __ARCH_WANT_SYS_SIGNAL
4465 /*
4466  * For backwards compatibility.  Functionality superseded by sigaction.
4467  */
4468 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4469 {
4470 	struct k_sigaction new_sa, old_sa;
4471 	int ret;
4472 
4473 	new_sa.sa.sa_handler = handler;
4474 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4475 	sigemptyset(&new_sa.sa.sa_mask);
4476 
4477 	ret = do_sigaction(sig, &new_sa, &old_sa);
4478 
4479 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4480 }
4481 #endif /* __ARCH_WANT_SYS_SIGNAL */
4482 
4483 #ifdef __ARCH_WANT_SYS_PAUSE
4484 
4485 SYSCALL_DEFINE0(pause)
4486 {
4487 	while (!signal_pending(current)) {
4488 		__set_current_state(TASK_INTERRUPTIBLE);
4489 		schedule();
4490 	}
4491 	return -ERESTARTNOHAND;
4492 }
4493 
4494 #endif
4495 
4496 static int sigsuspend(sigset_t *set)
4497 {
4498 	current->saved_sigmask = current->blocked;
4499 	set_current_blocked(set);
4500 
4501 	while (!signal_pending(current)) {
4502 		__set_current_state(TASK_INTERRUPTIBLE);
4503 		schedule();
4504 	}
4505 	set_restore_sigmask();
4506 	return -ERESTARTNOHAND;
4507 }
4508 
4509 /**
4510  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4511  *	@unewset value until a signal is received
4512  *  @unewset: new signal mask value
4513  *  @sigsetsize: size of sigset_t type
4514  */
4515 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4516 {
4517 	sigset_t newset;
4518 
4519 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4520 	if (sigsetsize != sizeof(sigset_t))
4521 		return -EINVAL;
4522 
4523 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4524 		return -EFAULT;
4525 	return sigsuspend(&newset);
4526 }
4527 
4528 #ifdef CONFIG_COMPAT
4529 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4530 {
4531 	sigset_t newset;
4532 
4533 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4534 	if (sigsetsize != sizeof(sigset_t))
4535 		return -EINVAL;
4536 
4537 	if (get_compat_sigset(&newset, unewset))
4538 		return -EFAULT;
4539 	return sigsuspend(&newset);
4540 }
4541 #endif
4542 
4543 #ifdef CONFIG_OLD_SIGSUSPEND
4544 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4545 {
4546 	sigset_t blocked;
4547 	siginitset(&blocked, mask);
4548 	return sigsuspend(&blocked);
4549 }
4550 #endif
4551 #ifdef CONFIG_OLD_SIGSUSPEND3
4552 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4553 {
4554 	sigset_t blocked;
4555 	siginitset(&blocked, mask);
4556 	return sigsuspend(&blocked);
4557 }
4558 #endif
4559 
4560 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4561 {
4562 	return NULL;
4563 }
4564 
4565 static inline void siginfo_buildtime_checks(void)
4566 {
4567 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4568 
4569 	/* Verify the offsets in the two siginfos match */
4570 #define CHECK_OFFSET(field) \
4571 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4572 
4573 	/* kill */
4574 	CHECK_OFFSET(si_pid);
4575 	CHECK_OFFSET(si_uid);
4576 
4577 	/* timer */
4578 	CHECK_OFFSET(si_tid);
4579 	CHECK_OFFSET(si_overrun);
4580 	CHECK_OFFSET(si_value);
4581 
4582 	/* rt */
4583 	CHECK_OFFSET(si_pid);
4584 	CHECK_OFFSET(si_uid);
4585 	CHECK_OFFSET(si_value);
4586 
4587 	/* sigchld */
4588 	CHECK_OFFSET(si_pid);
4589 	CHECK_OFFSET(si_uid);
4590 	CHECK_OFFSET(si_status);
4591 	CHECK_OFFSET(si_utime);
4592 	CHECK_OFFSET(si_stime);
4593 
4594 	/* sigfault */
4595 	CHECK_OFFSET(si_addr);
4596 	CHECK_OFFSET(si_addr_lsb);
4597 	CHECK_OFFSET(si_lower);
4598 	CHECK_OFFSET(si_upper);
4599 	CHECK_OFFSET(si_pkey);
4600 
4601 	/* sigpoll */
4602 	CHECK_OFFSET(si_band);
4603 	CHECK_OFFSET(si_fd);
4604 
4605 	/* sigsys */
4606 	CHECK_OFFSET(si_call_addr);
4607 	CHECK_OFFSET(si_syscall);
4608 	CHECK_OFFSET(si_arch);
4609 #undef CHECK_OFFSET
4610 
4611 	/* usb asyncio */
4612 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4613 		     offsetof(struct siginfo, si_addr));
4614 	if (sizeof(int) == sizeof(void __user *)) {
4615 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4616 			     sizeof(void __user *));
4617 	} else {
4618 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4619 			      sizeof_field(struct siginfo, si_uid)) !=
4620 			     sizeof(void __user *));
4621 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4622 			     offsetof(struct siginfo, si_uid));
4623 	}
4624 #ifdef CONFIG_COMPAT
4625 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4626 		     offsetof(struct compat_siginfo, si_addr));
4627 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4628 		     sizeof(compat_uptr_t));
4629 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4630 		     sizeof_field(struct siginfo, si_pid));
4631 #endif
4632 }
4633 
4634 void __init signals_init(void)
4635 {
4636 	siginfo_buildtime_checks();
4637 
4638 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4639 }
4640 
4641 #ifdef CONFIG_KGDB_KDB
4642 #include <linux/kdb.h>
4643 /*
4644  * kdb_send_sig - Allows kdb to send signals without exposing
4645  * signal internals.  This function checks if the required locks are
4646  * available before calling the main signal code, to avoid kdb
4647  * deadlocks.
4648  */
4649 void kdb_send_sig(struct task_struct *t, int sig)
4650 {
4651 	static struct task_struct *kdb_prev_t;
4652 	int new_t, ret;
4653 	if (!spin_trylock(&t->sighand->siglock)) {
4654 		kdb_printf("Can't do kill command now.\n"
4655 			   "The sigmask lock is held somewhere else in "
4656 			   "kernel, try again later\n");
4657 		return;
4658 	}
4659 	new_t = kdb_prev_t != t;
4660 	kdb_prev_t = t;
4661 	if (t->state != TASK_RUNNING && new_t) {
4662 		spin_unlock(&t->sighand->siglock);
4663 		kdb_printf("Process is not RUNNING, sending a signal from "
4664 			   "kdb risks deadlock\n"
4665 			   "on the run queue locks. "
4666 			   "The signal has _not_ been sent.\n"
4667 			   "Reissue the kill command if you want to risk "
4668 			   "the deadlock.\n");
4669 		return;
4670 	}
4671 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4672 	spin_unlock(&t->sighand->siglock);
4673 	if (ret)
4674 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4675 			   sig, t->pid);
4676 	else
4677 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4678 }
4679 #endif	/* CONFIG_KGDB_KDB */
4680