1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 #include <linux/posix-timers.h> 43 #include <linux/livepatch.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/signal.h> 47 48 #include <asm/param.h> 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/siginfo.h> 52 #include <asm/cacheflush.h> 53 #include "audit.h" /* audit_signal_info() */ 54 55 /* 56 * SLAB caches for signal bits. 57 */ 58 59 static struct kmem_cache *sigqueue_cachep; 60 61 int print_fatal_signals __read_mostly; 62 63 static void __user *sig_handler(struct task_struct *t, int sig) 64 { 65 return t->sighand->action[sig - 1].sa.sa_handler; 66 } 67 68 static int sig_handler_ignored(void __user *handler, int sig) 69 { 70 /* Is it explicitly or implicitly ignored? */ 71 return handler == SIG_IGN || 72 (handler == SIG_DFL && sig_kernel_ignore(sig)); 73 } 74 75 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 76 { 77 void __user *handler; 78 79 handler = sig_handler(t, sig); 80 81 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 82 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 83 return 1; 84 85 return sig_handler_ignored(handler, sig); 86 } 87 88 static int sig_ignored(struct task_struct *t, int sig, bool force) 89 { 90 /* 91 * Blocked signals are never ignored, since the 92 * signal handler may change by the time it is 93 * unblocked. 94 */ 95 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 96 return 0; 97 98 /* 99 * Tracers may want to know about even ignored signal unless it 100 * is SIGKILL which can't be reported anyway but can be ignored 101 * by SIGNAL_UNKILLABLE task. 102 */ 103 if (t->ptrace && sig != SIGKILL) 104 return 0; 105 106 return sig_task_ignored(t, sig, force); 107 } 108 109 /* 110 * Re-calculate pending state from the set of locally pending 111 * signals, globally pending signals, and blocked signals. 112 */ 113 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 114 { 115 unsigned long ready; 116 long i; 117 118 switch (_NSIG_WORDS) { 119 default: 120 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 121 ready |= signal->sig[i] &~ blocked->sig[i]; 122 break; 123 124 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 125 ready |= signal->sig[2] &~ blocked->sig[2]; 126 ready |= signal->sig[1] &~ blocked->sig[1]; 127 ready |= signal->sig[0] &~ blocked->sig[0]; 128 break; 129 130 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 131 ready |= signal->sig[0] &~ blocked->sig[0]; 132 break; 133 134 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 135 } 136 return ready != 0; 137 } 138 139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 140 141 static int recalc_sigpending_tsk(struct task_struct *t) 142 { 143 if ((t->jobctl & JOBCTL_PENDING_MASK) || 144 PENDING(&t->pending, &t->blocked) || 145 PENDING(&t->signal->shared_pending, &t->blocked)) { 146 set_tsk_thread_flag(t, TIF_SIGPENDING); 147 return 1; 148 } 149 /* 150 * We must never clear the flag in another thread, or in current 151 * when it's possible the current syscall is returning -ERESTART*. 152 * So we don't clear it here, and only callers who know they should do. 153 */ 154 return 0; 155 } 156 157 /* 158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 159 * This is superfluous when called on current, the wakeup is a harmless no-op. 160 */ 161 void recalc_sigpending_and_wake(struct task_struct *t) 162 { 163 if (recalc_sigpending_tsk(t)) 164 signal_wake_up(t, 0); 165 } 166 167 void recalc_sigpending(void) 168 { 169 if (!recalc_sigpending_tsk(current) && !freezing(current) && 170 !klp_patch_pending(current)) 171 clear_thread_flag(TIF_SIGPENDING); 172 173 } 174 175 /* Given the mask, find the first available signal that should be serviced. */ 176 177 #define SYNCHRONOUS_MASK \ 178 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 179 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 180 181 int next_signal(struct sigpending *pending, sigset_t *mask) 182 { 183 unsigned long i, *s, *m, x; 184 int sig = 0; 185 186 s = pending->signal.sig; 187 m = mask->sig; 188 189 /* 190 * Handle the first word specially: it contains the 191 * synchronous signals that need to be dequeued first. 192 */ 193 x = *s &~ *m; 194 if (x) { 195 if (x & SYNCHRONOUS_MASK) 196 x &= SYNCHRONOUS_MASK; 197 sig = ffz(~x) + 1; 198 return sig; 199 } 200 201 switch (_NSIG_WORDS) { 202 default: 203 for (i = 1; i < _NSIG_WORDS; ++i) { 204 x = *++s &~ *++m; 205 if (!x) 206 continue; 207 sig = ffz(~x) + i*_NSIG_BPW + 1; 208 break; 209 } 210 break; 211 212 case 2: 213 x = s[1] &~ m[1]; 214 if (!x) 215 break; 216 sig = ffz(~x) + _NSIG_BPW + 1; 217 break; 218 219 case 1: 220 /* Nothing to do */ 221 break; 222 } 223 224 return sig; 225 } 226 227 static inline void print_dropped_signal(int sig) 228 { 229 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 230 231 if (!print_fatal_signals) 232 return; 233 234 if (!__ratelimit(&ratelimit_state)) 235 return; 236 237 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 238 current->comm, current->pid, sig); 239 } 240 241 /** 242 * task_set_jobctl_pending - set jobctl pending bits 243 * @task: target task 244 * @mask: pending bits to set 245 * 246 * Clear @mask from @task->jobctl. @mask must be subset of 247 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 248 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 249 * cleared. If @task is already being killed or exiting, this function 250 * becomes noop. 251 * 252 * CONTEXT: 253 * Must be called with @task->sighand->siglock held. 254 * 255 * RETURNS: 256 * %true if @mask is set, %false if made noop because @task was dying. 257 */ 258 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 259 { 260 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 261 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 262 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 263 264 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 265 return false; 266 267 if (mask & JOBCTL_STOP_SIGMASK) 268 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 269 270 task->jobctl |= mask; 271 return true; 272 } 273 274 /** 275 * task_clear_jobctl_trapping - clear jobctl trapping bit 276 * @task: target task 277 * 278 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 279 * Clear it and wake up the ptracer. Note that we don't need any further 280 * locking. @task->siglock guarantees that @task->parent points to the 281 * ptracer. 282 * 283 * CONTEXT: 284 * Must be called with @task->sighand->siglock held. 285 */ 286 void task_clear_jobctl_trapping(struct task_struct *task) 287 { 288 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 289 task->jobctl &= ~JOBCTL_TRAPPING; 290 smp_mb(); /* advised by wake_up_bit() */ 291 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 292 } 293 } 294 295 /** 296 * task_clear_jobctl_pending - clear jobctl pending bits 297 * @task: target task 298 * @mask: pending bits to clear 299 * 300 * Clear @mask from @task->jobctl. @mask must be subset of 301 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 302 * STOP bits are cleared together. 303 * 304 * If clearing of @mask leaves no stop or trap pending, this function calls 305 * task_clear_jobctl_trapping(). 306 * 307 * CONTEXT: 308 * Must be called with @task->sighand->siglock held. 309 */ 310 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 311 { 312 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 313 314 if (mask & JOBCTL_STOP_PENDING) 315 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 316 317 task->jobctl &= ~mask; 318 319 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 320 task_clear_jobctl_trapping(task); 321 } 322 323 /** 324 * task_participate_group_stop - participate in a group stop 325 * @task: task participating in a group stop 326 * 327 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 328 * Group stop states are cleared and the group stop count is consumed if 329 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 330 * stop, the appropriate %SIGNAL_* flags are set. 331 * 332 * CONTEXT: 333 * Must be called with @task->sighand->siglock held. 334 * 335 * RETURNS: 336 * %true if group stop completion should be notified to the parent, %false 337 * otherwise. 338 */ 339 static bool task_participate_group_stop(struct task_struct *task) 340 { 341 struct signal_struct *sig = task->signal; 342 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 343 344 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 345 346 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 347 348 if (!consume) 349 return false; 350 351 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 352 sig->group_stop_count--; 353 354 /* 355 * Tell the caller to notify completion iff we are entering into a 356 * fresh group stop. Read comment in do_signal_stop() for details. 357 */ 358 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 359 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 360 return true; 361 } 362 return false; 363 } 364 365 /* 366 * allocate a new signal queue record 367 * - this may be called without locks if and only if t == current, otherwise an 368 * appropriate lock must be held to stop the target task from exiting 369 */ 370 static struct sigqueue * 371 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 372 { 373 struct sigqueue *q = NULL; 374 struct user_struct *user; 375 376 /* 377 * Protect access to @t credentials. This can go away when all 378 * callers hold rcu read lock. 379 */ 380 rcu_read_lock(); 381 user = get_uid(__task_cred(t)->user); 382 atomic_inc(&user->sigpending); 383 rcu_read_unlock(); 384 385 if (override_rlimit || 386 atomic_read(&user->sigpending) <= 387 task_rlimit(t, RLIMIT_SIGPENDING)) { 388 q = kmem_cache_alloc(sigqueue_cachep, flags); 389 } else { 390 print_dropped_signal(sig); 391 } 392 393 if (unlikely(q == NULL)) { 394 atomic_dec(&user->sigpending); 395 free_uid(user); 396 } else { 397 INIT_LIST_HEAD(&q->list); 398 q->flags = 0; 399 q->user = user; 400 } 401 402 return q; 403 } 404 405 static void __sigqueue_free(struct sigqueue *q) 406 { 407 if (q->flags & SIGQUEUE_PREALLOC) 408 return; 409 atomic_dec(&q->user->sigpending); 410 free_uid(q->user); 411 kmem_cache_free(sigqueue_cachep, q); 412 } 413 414 void flush_sigqueue(struct sigpending *queue) 415 { 416 struct sigqueue *q; 417 418 sigemptyset(&queue->signal); 419 while (!list_empty(&queue->list)) { 420 q = list_entry(queue->list.next, struct sigqueue , list); 421 list_del_init(&q->list); 422 __sigqueue_free(q); 423 } 424 } 425 426 /* 427 * Flush all pending signals for this kthread. 428 */ 429 void flush_signals(struct task_struct *t) 430 { 431 unsigned long flags; 432 433 spin_lock_irqsave(&t->sighand->siglock, flags); 434 clear_tsk_thread_flag(t, TIF_SIGPENDING); 435 flush_sigqueue(&t->pending); 436 flush_sigqueue(&t->signal->shared_pending); 437 spin_unlock_irqrestore(&t->sighand->siglock, flags); 438 } 439 440 #ifdef CONFIG_POSIX_TIMERS 441 static void __flush_itimer_signals(struct sigpending *pending) 442 { 443 sigset_t signal, retain; 444 struct sigqueue *q, *n; 445 446 signal = pending->signal; 447 sigemptyset(&retain); 448 449 list_for_each_entry_safe(q, n, &pending->list, list) { 450 int sig = q->info.si_signo; 451 452 if (likely(q->info.si_code != SI_TIMER)) { 453 sigaddset(&retain, sig); 454 } else { 455 sigdelset(&signal, sig); 456 list_del_init(&q->list); 457 __sigqueue_free(q); 458 } 459 } 460 461 sigorsets(&pending->signal, &signal, &retain); 462 } 463 464 void flush_itimer_signals(void) 465 { 466 struct task_struct *tsk = current; 467 unsigned long flags; 468 469 spin_lock_irqsave(&tsk->sighand->siglock, flags); 470 __flush_itimer_signals(&tsk->pending); 471 __flush_itimer_signals(&tsk->signal->shared_pending); 472 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 473 } 474 #endif 475 476 void ignore_signals(struct task_struct *t) 477 { 478 int i; 479 480 for (i = 0; i < _NSIG; ++i) 481 t->sighand->action[i].sa.sa_handler = SIG_IGN; 482 483 flush_signals(t); 484 } 485 486 /* 487 * Flush all handlers for a task. 488 */ 489 490 void 491 flush_signal_handlers(struct task_struct *t, int force_default) 492 { 493 int i; 494 struct k_sigaction *ka = &t->sighand->action[0]; 495 for (i = _NSIG ; i != 0 ; i--) { 496 if (force_default || ka->sa.sa_handler != SIG_IGN) 497 ka->sa.sa_handler = SIG_DFL; 498 ka->sa.sa_flags = 0; 499 #ifdef __ARCH_HAS_SA_RESTORER 500 ka->sa.sa_restorer = NULL; 501 #endif 502 sigemptyset(&ka->sa.sa_mask); 503 ka++; 504 } 505 } 506 507 int unhandled_signal(struct task_struct *tsk, int sig) 508 { 509 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 510 if (is_global_init(tsk)) 511 return 1; 512 if (handler != SIG_IGN && handler != SIG_DFL) 513 return 0; 514 /* if ptraced, let the tracer determine */ 515 return !tsk->ptrace; 516 } 517 518 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info, 519 bool *resched_timer) 520 { 521 struct sigqueue *q, *first = NULL; 522 523 /* 524 * Collect the siginfo appropriate to this signal. Check if 525 * there is another siginfo for the same signal. 526 */ 527 list_for_each_entry(q, &list->list, list) { 528 if (q->info.si_signo == sig) { 529 if (first) 530 goto still_pending; 531 first = q; 532 } 533 } 534 535 sigdelset(&list->signal, sig); 536 537 if (first) { 538 still_pending: 539 list_del_init(&first->list); 540 copy_siginfo(info, &first->info); 541 542 *resched_timer = 543 (first->flags & SIGQUEUE_PREALLOC) && 544 (info->si_code == SI_TIMER) && 545 (info->si_sys_private); 546 547 __sigqueue_free(first); 548 } else { 549 /* 550 * Ok, it wasn't in the queue. This must be 551 * a fast-pathed signal or we must have been 552 * out of queue space. So zero out the info. 553 */ 554 clear_siginfo(info); 555 info->si_signo = sig; 556 info->si_errno = 0; 557 info->si_code = SI_USER; 558 info->si_pid = 0; 559 info->si_uid = 0; 560 } 561 } 562 563 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 564 siginfo_t *info, bool *resched_timer) 565 { 566 int sig = next_signal(pending, mask); 567 568 if (sig) 569 collect_signal(sig, pending, info, resched_timer); 570 return sig; 571 } 572 573 /* 574 * Dequeue a signal and return the element to the caller, which is 575 * expected to free it. 576 * 577 * All callers have to hold the siglock. 578 */ 579 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 580 { 581 bool resched_timer = false; 582 int signr; 583 584 /* We only dequeue private signals from ourselves, we don't let 585 * signalfd steal them 586 */ 587 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 588 if (!signr) { 589 signr = __dequeue_signal(&tsk->signal->shared_pending, 590 mask, info, &resched_timer); 591 #ifdef CONFIG_POSIX_TIMERS 592 /* 593 * itimer signal ? 594 * 595 * itimers are process shared and we restart periodic 596 * itimers in the signal delivery path to prevent DoS 597 * attacks in the high resolution timer case. This is 598 * compliant with the old way of self-restarting 599 * itimers, as the SIGALRM is a legacy signal and only 600 * queued once. Changing the restart behaviour to 601 * restart the timer in the signal dequeue path is 602 * reducing the timer noise on heavy loaded !highres 603 * systems too. 604 */ 605 if (unlikely(signr == SIGALRM)) { 606 struct hrtimer *tmr = &tsk->signal->real_timer; 607 608 if (!hrtimer_is_queued(tmr) && 609 tsk->signal->it_real_incr != 0) { 610 hrtimer_forward(tmr, tmr->base->get_time(), 611 tsk->signal->it_real_incr); 612 hrtimer_restart(tmr); 613 } 614 } 615 #endif 616 } 617 618 recalc_sigpending(); 619 if (!signr) 620 return 0; 621 622 if (unlikely(sig_kernel_stop(signr))) { 623 /* 624 * Set a marker that we have dequeued a stop signal. Our 625 * caller might release the siglock and then the pending 626 * stop signal it is about to process is no longer in the 627 * pending bitmasks, but must still be cleared by a SIGCONT 628 * (and overruled by a SIGKILL). So those cases clear this 629 * shared flag after we've set it. Note that this flag may 630 * remain set after the signal we return is ignored or 631 * handled. That doesn't matter because its only purpose 632 * is to alert stop-signal processing code when another 633 * processor has come along and cleared the flag. 634 */ 635 current->jobctl |= JOBCTL_STOP_DEQUEUED; 636 } 637 #ifdef CONFIG_POSIX_TIMERS 638 if (resched_timer) { 639 /* 640 * Release the siglock to ensure proper locking order 641 * of timer locks outside of siglocks. Note, we leave 642 * irqs disabled here, since the posix-timers code is 643 * about to disable them again anyway. 644 */ 645 spin_unlock(&tsk->sighand->siglock); 646 posixtimer_rearm(info); 647 spin_lock(&tsk->sighand->siglock); 648 649 /* Don't expose the si_sys_private value to userspace */ 650 info->si_sys_private = 0; 651 } 652 #endif 653 return signr; 654 } 655 656 /* 657 * Tell a process that it has a new active signal.. 658 * 659 * NOTE! we rely on the previous spin_lock to 660 * lock interrupts for us! We can only be called with 661 * "siglock" held, and the local interrupt must 662 * have been disabled when that got acquired! 663 * 664 * No need to set need_resched since signal event passing 665 * goes through ->blocked 666 */ 667 void signal_wake_up_state(struct task_struct *t, unsigned int state) 668 { 669 set_tsk_thread_flag(t, TIF_SIGPENDING); 670 /* 671 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 672 * case. We don't check t->state here because there is a race with it 673 * executing another processor and just now entering stopped state. 674 * By using wake_up_state, we ensure the process will wake up and 675 * handle its death signal. 676 */ 677 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 678 kick_process(t); 679 } 680 681 /* 682 * Remove signals in mask from the pending set and queue. 683 * Returns 1 if any signals were found. 684 * 685 * All callers must be holding the siglock. 686 */ 687 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 688 { 689 struct sigqueue *q, *n; 690 sigset_t m; 691 692 sigandsets(&m, mask, &s->signal); 693 if (sigisemptyset(&m)) 694 return 0; 695 696 sigandnsets(&s->signal, &s->signal, mask); 697 list_for_each_entry_safe(q, n, &s->list, list) { 698 if (sigismember(mask, q->info.si_signo)) { 699 list_del_init(&q->list); 700 __sigqueue_free(q); 701 } 702 } 703 return 1; 704 } 705 706 static inline int is_si_special(const struct siginfo *info) 707 { 708 return info <= SEND_SIG_FORCED; 709 } 710 711 static inline bool si_fromuser(const struct siginfo *info) 712 { 713 return info == SEND_SIG_NOINFO || 714 (!is_si_special(info) && SI_FROMUSER(info)); 715 } 716 717 /* 718 * called with RCU read lock from check_kill_permission() 719 */ 720 static int kill_ok_by_cred(struct task_struct *t) 721 { 722 const struct cred *cred = current_cred(); 723 const struct cred *tcred = __task_cred(t); 724 725 if (uid_eq(cred->euid, tcred->suid) || 726 uid_eq(cred->euid, tcred->uid) || 727 uid_eq(cred->uid, tcred->suid) || 728 uid_eq(cred->uid, tcred->uid)) 729 return 1; 730 731 if (ns_capable(tcred->user_ns, CAP_KILL)) 732 return 1; 733 734 return 0; 735 } 736 737 /* 738 * Bad permissions for sending the signal 739 * - the caller must hold the RCU read lock 740 */ 741 static int check_kill_permission(int sig, struct siginfo *info, 742 struct task_struct *t) 743 { 744 struct pid *sid; 745 int error; 746 747 if (!valid_signal(sig)) 748 return -EINVAL; 749 750 if (!si_fromuser(info)) 751 return 0; 752 753 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 754 if (error) 755 return error; 756 757 if (!same_thread_group(current, t) && 758 !kill_ok_by_cred(t)) { 759 switch (sig) { 760 case SIGCONT: 761 sid = task_session(t); 762 /* 763 * We don't return the error if sid == NULL. The 764 * task was unhashed, the caller must notice this. 765 */ 766 if (!sid || sid == task_session(current)) 767 break; 768 default: 769 return -EPERM; 770 } 771 } 772 773 return security_task_kill(t, info, sig, 0); 774 } 775 776 /** 777 * ptrace_trap_notify - schedule trap to notify ptracer 778 * @t: tracee wanting to notify tracer 779 * 780 * This function schedules sticky ptrace trap which is cleared on the next 781 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 782 * ptracer. 783 * 784 * If @t is running, STOP trap will be taken. If trapped for STOP and 785 * ptracer is listening for events, tracee is woken up so that it can 786 * re-trap for the new event. If trapped otherwise, STOP trap will be 787 * eventually taken without returning to userland after the existing traps 788 * are finished by PTRACE_CONT. 789 * 790 * CONTEXT: 791 * Must be called with @task->sighand->siglock held. 792 */ 793 static void ptrace_trap_notify(struct task_struct *t) 794 { 795 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 796 assert_spin_locked(&t->sighand->siglock); 797 798 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 799 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 800 } 801 802 /* 803 * Handle magic process-wide effects of stop/continue signals. Unlike 804 * the signal actions, these happen immediately at signal-generation 805 * time regardless of blocking, ignoring, or handling. This does the 806 * actual continuing for SIGCONT, but not the actual stopping for stop 807 * signals. The process stop is done as a signal action for SIG_DFL. 808 * 809 * Returns true if the signal should be actually delivered, otherwise 810 * it should be dropped. 811 */ 812 static bool prepare_signal(int sig, struct task_struct *p, bool force) 813 { 814 struct signal_struct *signal = p->signal; 815 struct task_struct *t; 816 sigset_t flush; 817 818 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 819 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 820 return sig == SIGKILL; 821 /* 822 * The process is in the middle of dying, nothing to do. 823 */ 824 } else if (sig_kernel_stop(sig)) { 825 /* 826 * This is a stop signal. Remove SIGCONT from all queues. 827 */ 828 siginitset(&flush, sigmask(SIGCONT)); 829 flush_sigqueue_mask(&flush, &signal->shared_pending); 830 for_each_thread(p, t) 831 flush_sigqueue_mask(&flush, &t->pending); 832 } else if (sig == SIGCONT) { 833 unsigned int why; 834 /* 835 * Remove all stop signals from all queues, wake all threads. 836 */ 837 siginitset(&flush, SIG_KERNEL_STOP_MASK); 838 flush_sigqueue_mask(&flush, &signal->shared_pending); 839 for_each_thread(p, t) { 840 flush_sigqueue_mask(&flush, &t->pending); 841 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 842 if (likely(!(t->ptrace & PT_SEIZED))) 843 wake_up_state(t, __TASK_STOPPED); 844 else 845 ptrace_trap_notify(t); 846 } 847 848 /* 849 * Notify the parent with CLD_CONTINUED if we were stopped. 850 * 851 * If we were in the middle of a group stop, we pretend it 852 * was already finished, and then continued. Since SIGCHLD 853 * doesn't queue we report only CLD_STOPPED, as if the next 854 * CLD_CONTINUED was dropped. 855 */ 856 why = 0; 857 if (signal->flags & SIGNAL_STOP_STOPPED) 858 why |= SIGNAL_CLD_CONTINUED; 859 else if (signal->group_stop_count) 860 why |= SIGNAL_CLD_STOPPED; 861 862 if (why) { 863 /* 864 * The first thread which returns from do_signal_stop() 865 * will take ->siglock, notice SIGNAL_CLD_MASK, and 866 * notify its parent. See get_signal_to_deliver(). 867 */ 868 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 869 signal->group_stop_count = 0; 870 signal->group_exit_code = 0; 871 } 872 } 873 874 return !sig_ignored(p, sig, force); 875 } 876 877 /* 878 * Test if P wants to take SIG. After we've checked all threads with this, 879 * it's equivalent to finding no threads not blocking SIG. Any threads not 880 * blocking SIG were ruled out because they are not running and already 881 * have pending signals. Such threads will dequeue from the shared queue 882 * as soon as they're available, so putting the signal on the shared queue 883 * will be equivalent to sending it to one such thread. 884 */ 885 static inline int wants_signal(int sig, struct task_struct *p) 886 { 887 if (sigismember(&p->blocked, sig)) 888 return 0; 889 if (p->flags & PF_EXITING) 890 return 0; 891 if (sig == SIGKILL) 892 return 1; 893 if (task_is_stopped_or_traced(p)) 894 return 0; 895 return task_curr(p) || !signal_pending(p); 896 } 897 898 static void complete_signal(int sig, struct task_struct *p, int group) 899 { 900 struct signal_struct *signal = p->signal; 901 struct task_struct *t; 902 903 /* 904 * Now find a thread we can wake up to take the signal off the queue. 905 * 906 * If the main thread wants the signal, it gets first crack. 907 * Probably the least surprising to the average bear. 908 */ 909 if (wants_signal(sig, p)) 910 t = p; 911 else if (!group || thread_group_empty(p)) 912 /* 913 * There is just one thread and it does not need to be woken. 914 * It will dequeue unblocked signals before it runs again. 915 */ 916 return; 917 else { 918 /* 919 * Otherwise try to find a suitable thread. 920 */ 921 t = signal->curr_target; 922 while (!wants_signal(sig, t)) { 923 t = next_thread(t); 924 if (t == signal->curr_target) 925 /* 926 * No thread needs to be woken. 927 * Any eligible threads will see 928 * the signal in the queue soon. 929 */ 930 return; 931 } 932 signal->curr_target = t; 933 } 934 935 /* 936 * Found a killable thread. If the signal will be fatal, 937 * then start taking the whole group down immediately. 938 */ 939 if (sig_fatal(p, sig) && 940 !(signal->flags & SIGNAL_GROUP_EXIT) && 941 !sigismember(&t->real_blocked, sig) && 942 (sig == SIGKILL || !p->ptrace)) { 943 /* 944 * This signal will be fatal to the whole group. 945 */ 946 if (!sig_kernel_coredump(sig)) { 947 /* 948 * Start a group exit and wake everybody up. 949 * This way we don't have other threads 950 * running and doing things after a slower 951 * thread has the fatal signal pending. 952 */ 953 signal->flags = SIGNAL_GROUP_EXIT; 954 signal->group_exit_code = sig; 955 signal->group_stop_count = 0; 956 t = p; 957 do { 958 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 959 sigaddset(&t->pending.signal, SIGKILL); 960 signal_wake_up(t, 1); 961 } while_each_thread(p, t); 962 return; 963 } 964 } 965 966 /* 967 * The signal is already in the shared-pending queue. 968 * Tell the chosen thread to wake up and dequeue it. 969 */ 970 signal_wake_up(t, sig == SIGKILL); 971 return; 972 } 973 974 static inline int legacy_queue(struct sigpending *signals, int sig) 975 { 976 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 977 } 978 979 #ifdef CONFIG_USER_NS 980 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 981 { 982 if (current_user_ns() == task_cred_xxx(t, user_ns)) 983 return; 984 985 if (SI_FROMKERNEL(info)) 986 return; 987 988 rcu_read_lock(); 989 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 990 make_kuid(current_user_ns(), info->si_uid)); 991 rcu_read_unlock(); 992 } 993 #else 994 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 995 { 996 return; 997 } 998 #endif 999 1000 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1001 int group, int from_ancestor_ns) 1002 { 1003 struct sigpending *pending; 1004 struct sigqueue *q; 1005 int override_rlimit; 1006 int ret = 0, result; 1007 1008 assert_spin_locked(&t->sighand->siglock); 1009 1010 result = TRACE_SIGNAL_IGNORED; 1011 if (!prepare_signal(sig, t, 1012 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1013 goto ret; 1014 1015 pending = group ? &t->signal->shared_pending : &t->pending; 1016 /* 1017 * Short-circuit ignored signals and support queuing 1018 * exactly one non-rt signal, so that we can get more 1019 * detailed information about the cause of the signal. 1020 */ 1021 result = TRACE_SIGNAL_ALREADY_PENDING; 1022 if (legacy_queue(pending, sig)) 1023 goto ret; 1024 1025 result = TRACE_SIGNAL_DELIVERED; 1026 /* 1027 * fast-pathed signals for kernel-internal things like SIGSTOP 1028 * or SIGKILL. 1029 */ 1030 if (info == SEND_SIG_FORCED) 1031 goto out_set; 1032 1033 /* 1034 * Real-time signals must be queued if sent by sigqueue, or 1035 * some other real-time mechanism. It is implementation 1036 * defined whether kill() does so. We attempt to do so, on 1037 * the principle of least surprise, but since kill is not 1038 * allowed to fail with EAGAIN when low on memory we just 1039 * make sure at least one signal gets delivered and don't 1040 * pass on the info struct. 1041 */ 1042 if (sig < SIGRTMIN) 1043 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1044 else 1045 override_rlimit = 0; 1046 1047 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1048 if (q) { 1049 list_add_tail(&q->list, &pending->list); 1050 switch ((unsigned long) info) { 1051 case (unsigned long) SEND_SIG_NOINFO: 1052 clear_siginfo(&q->info); 1053 q->info.si_signo = sig; 1054 q->info.si_errno = 0; 1055 q->info.si_code = SI_USER; 1056 q->info.si_pid = task_tgid_nr_ns(current, 1057 task_active_pid_ns(t)); 1058 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1059 break; 1060 case (unsigned long) SEND_SIG_PRIV: 1061 clear_siginfo(&q->info); 1062 q->info.si_signo = sig; 1063 q->info.si_errno = 0; 1064 q->info.si_code = SI_KERNEL; 1065 q->info.si_pid = 0; 1066 q->info.si_uid = 0; 1067 break; 1068 default: 1069 copy_siginfo(&q->info, info); 1070 if (from_ancestor_ns) 1071 q->info.si_pid = 0; 1072 break; 1073 } 1074 1075 userns_fixup_signal_uid(&q->info, t); 1076 1077 } else if (!is_si_special(info)) { 1078 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1079 /* 1080 * Queue overflow, abort. We may abort if the 1081 * signal was rt and sent by user using something 1082 * other than kill(). 1083 */ 1084 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1085 ret = -EAGAIN; 1086 goto ret; 1087 } else { 1088 /* 1089 * This is a silent loss of information. We still 1090 * send the signal, but the *info bits are lost. 1091 */ 1092 result = TRACE_SIGNAL_LOSE_INFO; 1093 } 1094 } 1095 1096 out_set: 1097 signalfd_notify(t, sig); 1098 sigaddset(&pending->signal, sig); 1099 complete_signal(sig, t, group); 1100 ret: 1101 trace_signal_generate(sig, info, t, group, result); 1102 return ret; 1103 } 1104 1105 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1106 int group) 1107 { 1108 int from_ancestor_ns = 0; 1109 1110 #ifdef CONFIG_PID_NS 1111 from_ancestor_ns = si_fromuser(info) && 1112 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1113 #endif 1114 1115 return __send_signal(sig, info, t, group, from_ancestor_ns); 1116 } 1117 1118 static void print_fatal_signal(int signr) 1119 { 1120 struct pt_regs *regs = signal_pt_regs(); 1121 pr_info("potentially unexpected fatal signal %d.\n", signr); 1122 1123 #if defined(__i386__) && !defined(__arch_um__) 1124 pr_info("code at %08lx: ", regs->ip); 1125 { 1126 int i; 1127 for (i = 0; i < 16; i++) { 1128 unsigned char insn; 1129 1130 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1131 break; 1132 pr_cont("%02x ", insn); 1133 } 1134 } 1135 pr_cont("\n"); 1136 #endif 1137 preempt_disable(); 1138 show_regs(regs); 1139 preempt_enable(); 1140 } 1141 1142 static int __init setup_print_fatal_signals(char *str) 1143 { 1144 get_option (&str, &print_fatal_signals); 1145 1146 return 1; 1147 } 1148 1149 __setup("print-fatal-signals=", setup_print_fatal_signals); 1150 1151 int 1152 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1153 { 1154 return send_signal(sig, info, p, 1); 1155 } 1156 1157 static int 1158 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1159 { 1160 return send_signal(sig, info, t, 0); 1161 } 1162 1163 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1164 bool group) 1165 { 1166 unsigned long flags; 1167 int ret = -ESRCH; 1168 1169 if (lock_task_sighand(p, &flags)) { 1170 ret = send_signal(sig, info, p, group); 1171 unlock_task_sighand(p, &flags); 1172 } 1173 1174 return ret; 1175 } 1176 1177 /* 1178 * Force a signal that the process can't ignore: if necessary 1179 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1180 * 1181 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1182 * since we do not want to have a signal handler that was blocked 1183 * be invoked when user space had explicitly blocked it. 1184 * 1185 * We don't want to have recursive SIGSEGV's etc, for example, 1186 * that is why we also clear SIGNAL_UNKILLABLE. 1187 */ 1188 int 1189 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1190 { 1191 unsigned long int flags; 1192 int ret, blocked, ignored; 1193 struct k_sigaction *action; 1194 1195 spin_lock_irqsave(&t->sighand->siglock, flags); 1196 action = &t->sighand->action[sig-1]; 1197 ignored = action->sa.sa_handler == SIG_IGN; 1198 blocked = sigismember(&t->blocked, sig); 1199 if (blocked || ignored) { 1200 action->sa.sa_handler = SIG_DFL; 1201 if (blocked) { 1202 sigdelset(&t->blocked, sig); 1203 recalc_sigpending_and_wake(t); 1204 } 1205 } 1206 /* 1207 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1208 * debugging to leave init killable. 1209 */ 1210 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1211 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1212 ret = specific_send_sig_info(sig, info, t); 1213 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1214 1215 return ret; 1216 } 1217 1218 /* 1219 * Nuke all other threads in the group. 1220 */ 1221 int zap_other_threads(struct task_struct *p) 1222 { 1223 struct task_struct *t = p; 1224 int count = 0; 1225 1226 p->signal->group_stop_count = 0; 1227 1228 while_each_thread(p, t) { 1229 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1230 count++; 1231 1232 /* Don't bother with already dead threads */ 1233 if (t->exit_state) 1234 continue; 1235 sigaddset(&t->pending.signal, SIGKILL); 1236 signal_wake_up(t, 1); 1237 } 1238 1239 return count; 1240 } 1241 1242 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1243 unsigned long *flags) 1244 { 1245 struct sighand_struct *sighand; 1246 1247 for (;;) { 1248 /* 1249 * Disable interrupts early to avoid deadlocks. 1250 * See rcu_read_unlock() comment header for details. 1251 */ 1252 local_irq_save(*flags); 1253 rcu_read_lock(); 1254 sighand = rcu_dereference(tsk->sighand); 1255 if (unlikely(sighand == NULL)) { 1256 rcu_read_unlock(); 1257 local_irq_restore(*flags); 1258 break; 1259 } 1260 /* 1261 * This sighand can be already freed and even reused, but 1262 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1263 * initializes ->siglock: this slab can't go away, it has 1264 * the same object type, ->siglock can't be reinitialized. 1265 * 1266 * We need to ensure that tsk->sighand is still the same 1267 * after we take the lock, we can race with de_thread() or 1268 * __exit_signal(). In the latter case the next iteration 1269 * must see ->sighand == NULL. 1270 */ 1271 spin_lock(&sighand->siglock); 1272 if (likely(sighand == tsk->sighand)) { 1273 rcu_read_unlock(); 1274 break; 1275 } 1276 spin_unlock(&sighand->siglock); 1277 rcu_read_unlock(); 1278 local_irq_restore(*flags); 1279 } 1280 1281 return sighand; 1282 } 1283 1284 /* 1285 * send signal info to all the members of a group 1286 */ 1287 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1288 { 1289 int ret; 1290 1291 rcu_read_lock(); 1292 ret = check_kill_permission(sig, info, p); 1293 rcu_read_unlock(); 1294 1295 if (!ret && sig) 1296 ret = do_send_sig_info(sig, info, p, true); 1297 1298 return ret; 1299 } 1300 1301 /* 1302 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1303 * control characters do (^C, ^Z etc) 1304 * - the caller must hold at least a readlock on tasklist_lock 1305 */ 1306 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1307 { 1308 struct task_struct *p = NULL; 1309 int retval, success; 1310 1311 success = 0; 1312 retval = -ESRCH; 1313 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1314 int err = group_send_sig_info(sig, info, p); 1315 success |= !err; 1316 retval = err; 1317 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1318 return success ? 0 : retval; 1319 } 1320 1321 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1322 { 1323 int error = -ESRCH; 1324 struct task_struct *p; 1325 1326 for (;;) { 1327 rcu_read_lock(); 1328 p = pid_task(pid, PIDTYPE_PID); 1329 if (p) 1330 error = group_send_sig_info(sig, info, p); 1331 rcu_read_unlock(); 1332 if (likely(!p || error != -ESRCH)) 1333 return error; 1334 1335 /* 1336 * The task was unhashed in between, try again. If it 1337 * is dead, pid_task() will return NULL, if we race with 1338 * de_thread() it will find the new leader. 1339 */ 1340 } 1341 } 1342 1343 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1344 { 1345 int error; 1346 rcu_read_lock(); 1347 error = kill_pid_info(sig, info, find_vpid(pid)); 1348 rcu_read_unlock(); 1349 return error; 1350 } 1351 1352 static int kill_as_cred_perm(const struct cred *cred, 1353 struct task_struct *target) 1354 { 1355 const struct cred *pcred = __task_cred(target); 1356 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1357 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1358 return 0; 1359 return 1; 1360 } 1361 1362 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1363 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1364 const struct cred *cred, u32 secid) 1365 { 1366 int ret = -EINVAL; 1367 struct task_struct *p; 1368 unsigned long flags; 1369 1370 if (!valid_signal(sig)) 1371 return ret; 1372 1373 rcu_read_lock(); 1374 p = pid_task(pid, PIDTYPE_PID); 1375 if (!p) { 1376 ret = -ESRCH; 1377 goto out_unlock; 1378 } 1379 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1380 ret = -EPERM; 1381 goto out_unlock; 1382 } 1383 ret = security_task_kill(p, info, sig, secid); 1384 if (ret) 1385 goto out_unlock; 1386 1387 if (sig) { 1388 if (lock_task_sighand(p, &flags)) { 1389 ret = __send_signal(sig, info, p, 1, 0); 1390 unlock_task_sighand(p, &flags); 1391 } else 1392 ret = -ESRCH; 1393 } 1394 out_unlock: 1395 rcu_read_unlock(); 1396 return ret; 1397 } 1398 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1399 1400 /* 1401 * kill_something_info() interprets pid in interesting ways just like kill(2). 1402 * 1403 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1404 * is probably wrong. Should make it like BSD or SYSV. 1405 */ 1406 1407 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1408 { 1409 int ret; 1410 1411 if (pid > 0) { 1412 rcu_read_lock(); 1413 ret = kill_pid_info(sig, info, find_vpid(pid)); 1414 rcu_read_unlock(); 1415 return ret; 1416 } 1417 1418 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1419 if (pid == INT_MIN) 1420 return -ESRCH; 1421 1422 read_lock(&tasklist_lock); 1423 if (pid != -1) { 1424 ret = __kill_pgrp_info(sig, info, 1425 pid ? find_vpid(-pid) : task_pgrp(current)); 1426 } else { 1427 int retval = 0, count = 0; 1428 struct task_struct * p; 1429 1430 for_each_process(p) { 1431 if (task_pid_vnr(p) > 1 && 1432 !same_thread_group(p, current)) { 1433 int err = group_send_sig_info(sig, info, p); 1434 ++count; 1435 if (err != -EPERM) 1436 retval = err; 1437 } 1438 } 1439 ret = count ? retval : -ESRCH; 1440 } 1441 read_unlock(&tasklist_lock); 1442 1443 return ret; 1444 } 1445 1446 /* 1447 * These are for backward compatibility with the rest of the kernel source. 1448 */ 1449 1450 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1451 { 1452 /* 1453 * Make sure legacy kernel users don't send in bad values 1454 * (normal paths check this in check_kill_permission). 1455 */ 1456 if (!valid_signal(sig)) 1457 return -EINVAL; 1458 1459 return do_send_sig_info(sig, info, p, false); 1460 } 1461 1462 #define __si_special(priv) \ 1463 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1464 1465 int 1466 send_sig(int sig, struct task_struct *p, int priv) 1467 { 1468 return send_sig_info(sig, __si_special(priv), p); 1469 } 1470 1471 void 1472 force_sig(int sig, struct task_struct *p) 1473 { 1474 force_sig_info(sig, SEND_SIG_PRIV, p); 1475 } 1476 1477 /* 1478 * When things go south during signal handling, we 1479 * will force a SIGSEGV. And if the signal that caused 1480 * the problem was already a SIGSEGV, we'll want to 1481 * make sure we don't even try to deliver the signal.. 1482 */ 1483 int 1484 force_sigsegv(int sig, struct task_struct *p) 1485 { 1486 if (sig == SIGSEGV) { 1487 unsigned long flags; 1488 spin_lock_irqsave(&p->sighand->siglock, flags); 1489 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1490 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1491 } 1492 force_sig(SIGSEGV, p); 1493 return 0; 1494 } 1495 1496 int force_sig_fault(int sig, int code, void __user *addr 1497 ___ARCH_SI_TRAPNO(int trapno) 1498 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1499 , struct task_struct *t) 1500 { 1501 struct siginfo info; 1502 1503 clear_siginfo(&info); 1504 info.si_signo = sig; 1505 info.si_errno = 0; 1506 info.si_code = code; 1507 info.si_addr = addr; 1508 #ifdef __ARCH_SI_TRAPNO 1509 info.si_trapno = trapno; 1510 #endif 1511 #ifdef __ia64__ 1512 info.si_imm = imm; 1513 info.si_flags = flags; 1514 info.si_isr = isr; 1515 #endif 1516 return force_sig_info(info.si_signo, &info, t); 1517 } 1518 1519 int send_sig_fault(int sig, int code, void __user *addr 1520 ___ARCH_SI_TRAPNO(int trapno) 1521 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1522 , struct task_struct *t) 1523 { 1524 struct siginfo info; 1525 1526 clear_siginfo(&info); 1527 info.si_signo = sig; 1528 info.si_errno = 0; 1529 info.si_code = code; 1530 info.si_addr = addr; 1531 #ifdef __ARCH_SI_TRAPNO 1532 info.si_trapno = trapno; 1533 #endif 1534 #ifdef __ia64__ 1535 info.si_imm = imm; 1536 info.si_flags = flags; 1537 info.si_isr = isr; 1538 #endif 1539 return send_sig_info(info.si_signo, &info, t); 1540 } 1541 1542 #if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR) 1543 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1544 { 1545 struct siginfo info; 1546 1547 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1548 clear_siginfo(&info); 1549 info.si_signo = SIGBUS; 1550 info.si_errno = 0; 1551 info.si_code = code; 1552 info.si_addr = addr; 1553 info.si_addr_lsb = lsb; 1554 return force_sig_info(info.si_signo, &info, t); 1555 } 1556 1557 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1558 { 1559 struct siginfo info; 1560 1561 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1562 clear_siginfo(&info); 1563 info.si_signo = SIGBUS; 1564 info.si_errno = 0; 1565 info.si_code = code; 1566 info.si_addr = addr; 1567 info.si_addr_lsb = lsb; 1568 return send_sig_info(info.si_signo, &info, t); 1569 } 1570 EXPORT_SYMBOL(send_sig_mceerr); 1571 #endif 1572 1573 #ifdef SEGV_BNDERR 1574 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1575 { 1576 struct siginfo info; 1577 1578 clear_siginfo(&info); 1579 info.si_signo = SIGSEGV; 1580 info.si_errno = 0; 1581 info.si_code = SEGV_BNDERR; 1582 info.si_addr = addr; 1583 info.si_lower = lower; 1584 info.si_upper = upper; 1585 return force_sig_info(info.si_signo, &info, current); 1586 } 1587 #endif 1588 1589 #ifdef SEGV_PKUERR 1590 int force_sig_pkuerr(void __user *addr, u32 pkey) 1591 { 1592 struct siginfo info; 1593 1594 clear_siginfo(&info); 1595 info.si_signo = SIGSEGV; 1596 info.si_errno = 0; 1597 info.si_code = SEGV_PKUERR; 1598 info.si_addr = addr; 1599 info.si_pkey = pkey; 1600 return force_sig_info(info.si_signo, &info, current); 1601 } 1602 #endif 1603 1604 /* For the crazy architectures that include trap information in 1605 * the errno field, instead of an actual errno value. 1606 */ 1607 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1608 { 1609 struct siginfo info; 1610 1611 clear_siginfo(&info); 1612 info.si_signo = SIGTRAP; 1613 info.si_errno = errno; 1614 info.si_code = TRAP_HWBKPT; 1615 info.si_addr = addr; 1616 return force_sig_info(info.si_signo, &info, current); 1617 } 1618 1619 int kill_pgrp(struct pid *pid, int sig, int priv) 1620 { 1621 int ret; 1622 1623 read_lock(&tasklist_lock); 1624 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1625 read_unlock(&tasklist_lock); 1626 1627 return ret; 1628 } 1629 EXPORT_SYMBOL(kill_pgrp); 1630 1631 int kill_pid(struct pid *pid, int sig, int priv) 1632 { 1633 return kill_pid_info(sig, __si_special(priv), pid); 1634 } 1635 EXPORT_SYMBOL(kill_pid); 1636 1637 /* 1638 * These functions support sending signals using preallocated sigqueue 1639 * structures. This is needed "because realtime applications cannot 1640 * afford to lose notifications of asynchronous events, like timer 1641 * expirations or I/O completions". In the case of POSIX Timers 1642 * we allocate the sigqueue structure from the timer_create. If this 1643 * allocation fails we are able to report the failure to the application 1644 * with an EAGAIN error. 1645 */ 1646 struct sigqueue *sigqueue_alloc(void) 1647 { 1648 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1649 1650 if (q) 1651 q->flags |= SIGQUEUE_PREALLOC; 1652 1653 return q; 1654 } 1655 1656 void sigqueue_free(struct sigqueue *q) 1657 { 1658 unsigned long flags; 1659 spinlock_t *lock = ¤t->sighand->siglock; 1660 1661 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1662 /* 1663 * We must hold ->siglock while testing q->list 1664 * to serialize with collect_signal() or with 1665 * __exit_signal()->flush_sigqueue(). 1666 */ 1667 spin_lock_irqsave(lock, flags); 1668 q->flags &= ~SIGQUEUE_PREALLOC; 1669 /* 1670 * If it is queued it will be freed when dequeued, 1671 * like the "regular" sigqueue. 1672 */ 1673 if (!list_empty(&q->list)) 1674 q = NULL; 1675 spin_unlock_irqrestore(lock, flags); 1676 1677 if (q) 1678 __sigqueue_free(q); 1679 } 1680 1681 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1682 { 1683 int sig = q->info.si_signo; 1684 struct sigpending *pending; 1685 unsigned long flags; 1686 int ret, result; 1687 1688 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1689 1690 ret = -1; 1691 if (!likely(lock_task_sighand(t, &flags))) 1692 goto ret; 1693 1694 ret = 1; /* the signal is ignored */ 1695 result = TRACE_SIGNAL_IGNORED; 1696 if (!prepare_signal(sig, t, false)) 1697 goto out; 1698 1699 ret = 0; 1700 if (unlikely(!list_empty(&q->list))) { 1701 /* 1702 * If an SI_TIMER entry is already queue just increment 1703 * the overrun count. 1704 */ 1705 BUG_ON(q->info.si_code != SI_TIMER); 1706 q->info.si_overrun++; 1707 result = TRACE_SIGNAL_ALREADY_PENDING; 1708 goto out; 1709 } 1710 q->info.si_overrun = 0; 1711 1712 signalfd_notify(t, sig); 1713 pending = group ? &t->signal->shared_pending : &t->pending; 1714 list_add_tail(&q->list, &pending->list); 1715 sigaddset(&pending->signal, sig); 1716 complete_signal(sig, t, group); 1717 result = TRACE_SIGNAL_DELIVERED; 1718 out: 1719 trace_signal_generate(sig, &q->info, t, group, result); 1720 unlock_task_sighand(t, &flags); 1721 ret: 1722 return ret; 1723 } 1724 1725 /* 1726 * Let a parent know about the death of a child. 1727 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1728 * 1729 * Returns true if our parent ignored us and so we've switched to 1730 * self-reaping. 1731 */ 1732 bool do_notify_parent(struct task_struct *tsk, int sig) 1733 { 1734 struct siginfo info; 1735 unsigned long flags; 1736 struct sighand_struct *psig; 1737 bool autoreap = false; 1738 u64 utime, stime; 1739 1740 BUG_ON(sig == -1); 1741 1742 /* do_notify_parent_cldstop should have been called instead. */ 1743 BUG_ON(task_is_stopped_or_traced(tsk)); 1744 1745 BUG_ON(!tsk->ptrace && 1746 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1747 1748 if (sig != SIGCHLD) { 1749 /* 1750 * This is only possible if parent == real_parent. 1751 * Check if it has changed security domain. 1752 */ 1753 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1754 sig = SIGCHLD; 1755 } 1756 1757 clear_siginfo(&info); 1758 info.si_signo = sig; 1759 info.si_errno = 0; 1760 /* 1761 * We are under tasklist_lock here so our parent is tied to 1762 * us and cannot change. 1763 * 1764 * task_active_pid_ns will always return the same pid namespace 1765 * until a task passes through release_task. 1766 * 1767 * write_lock() currently calls preempt_disable() which is the 1768 * same as rcu_read_lock(), but according to Oleg, this is not 1769 * correct to rely on this 1770 */ 1771 rcu_read_lock(); 1772 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1773 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1774 task_uid(tsk)); 1775 rcu_read_unlock(); 1776 1777 task_cputime(tsk, &utime, &stime); 1778 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1779 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1780 1781 info.si_status = tsk->exit_code & 0x7f; 1782 if (tsk->exit_code & 0x80) 1783 info.si_code = CLD_DUMPED; 1784 else if (tsk->exit_code & 0x7f) 1785 info.si_code = CLD_KILLED; 1786 else { 1787 info.si_code = CLD_EXITED; 1788 info.si_status = tsk->exit_code >> 8; 1789 } 1790 1791 psig = tsk->parent->sighand; 1792 spin_lock_irqsave(&psig->siglock, flags); 1793 if (!tsk->ptrace && sig == SIGCHLD && 1794 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1795 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1796 /* 1797 * We are exiting and our parent doesn't care. POSIX.1 1798 * defines special semantics for setting SIGCHLD to SIG_IGN 1799 * or setting the SA_NOCLDWAIT flag: we should be reaped 1800 * automatically and not left for our parent's wait4 call. 1801 * Rather than having the parent do it as a magic kind of 1802 * signal handler, we just set this to tell do_exit that we 1803 * can be cleaned up without becoming a zombie. Note that 1804 * we still call __wake_up_parent in this case, because a 1805 * blocked sys_wait4 might now return -ECHILD. 1806 * 1807 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1808 * is implementation-defined: we do (if you don't want 1809 * it, just use SIG_IGN instead). 1810 */ 1811 autoreap = true; 1812 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1813 sig = 0; 1814 } 1815 if (valid_signal(sig) && sig) 1816 __group_send_sig_info(sig, &info, tsk->parent); 1817 __wake_up_parent(tsk, tsk->parent); 1818 spin_unlock_irqrestore(&psig->siglock, flags); 1819 1820 return autoreap; 1821 } 1822 1823 /** 1824 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1825 * @tsk: task reporting the state change 1826 * @for_ptracer: the notification is for ptracer 1827 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1828 * 1829 * Notify @tsk's parent that the stopped/continued state has changed. If 1830 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1831 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1832 * 1833 * CONTEXT: 1834 * Must be called with tasklist_lock at least read locked. 1835 */ 1836 static void do_notify_parent_cldstop(struct task_struct *tsk, 1837 bool for_ptracer, int why) 1838 { 1839 struct siginfo info; 1840 unsigned long flags; 1841 struct task_struct *parent; 1842 struct sighand_struct *sighand; 1843 u64 utime, stime; 1844 1845 if (for_ptracer) { 1846 parent = tsk->parent; 1847 } else { 1848 tsk = tsk->group_leader; 1849 parent = tsk->real_parent; 1850 } 1851 1852 clear_siginfo(&info); 1853 info.si_signo = SIGCHLD; 1854 info.si_errno = 0; 1855 /* 1856 * see comment in do_notify_parent() about the following 4 lines 1857 */ 1858 rcu_read_lock(); 1859 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1860 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1861 rcu_read_unlock(); 1862 1863 task_cputime(tsk, &utime, &stime); 1864 info.si_utime = nsec_to_clock_t(utime); 1865 info.si_stime = nsec_to_clock_t(stime); 1866 1867 info.si_code = why; 1868 switch (why) { 1869 case CLD_CONTINUED: 1870 info.si_status = SIGCONT; 1871 break; 1872 case CLD_STOPPED: 1873 info.si_status = tsk->signal->group_exit_code & 0x7f; 1874 break; 1875 case CLD_TRAPPED: 1876 info.si_status = tsk->exit_code & 0x7f; 1877 break; 1878 default: 1879 BUG(); 1880 } 1881 1882 sighand = parent->sighand; 1883 spin_lock_irqsave(&sighand->siglock, flags); 1884 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1885 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1886 __group_send_sig_info(SIGCHLD, &info, parent); 1887 /* 1888 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1889 */ 1890 __wake_up_parent(tsk, parent); 1891 spin_unlock_irqrestore(&sighand->siglock, flags); 1892 } 1893 1894 static inline int may_ptrace_stop(void) 1895 { 1896 if (!likely(current->ptrace)) 1897 return 0; 1898 /* 1899 * Are we in the middle of do_coredump? 1900 * If so and our tracer is also part of the coredump stopping 1901 * is a deadlock situation, and pointless because our tracer 1902 * is dead so don't allow us to stop. 1903 * If SIGKILL was already sent before the caller unlocked 1904 * ->siglock we must see ->core_state != NULL. Otherwise it 1905 * is safe to enter schedule(). 1906 * 1907 * This is almost outdated, a task with the pending SIGKILL can't 1908 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1909 * after SIGKILL was already dequeued. 1910 */ 1911 if (unlikely(current->mm->core_state) && 1912 unlikely(current->mm == current->parent->mm)) 1913 return 0; 1914 1915 return 1; 1916 } 1917 1918 /* 1919 * Return non-zero if there is a SIGKILL that should be waking us up. 1920 * Called with the siglock held. 1921 */ 1922 static int sigkill_pending(struct task_struct *tsk) 1923 { 1924 return sigismember(&tsk->pending.signal, SIGKILL) || 1925 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1926 } 1927 1928 /* 1929 * This must be called with current->sighand->siglock held. 1930 * 1931 * This should be the path for all ptrace stops. 1932 * We always set current->last_siginfo while stopped here. 1933 * That makes it a way to test a stopped process for 1934 * being ptrace-stopped vs being job-control-stopped. 1935 * 1936 * If we actually decide not to stop at all because the tracer 1937 * is gone, we keep current->exit_code unless clear_code. 1938 */ 1939 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1940 __releases(¤t->sighand->siglock) 1941 __acquires(¤t->sighand->siglock) 1942 { 1943 bool gstop_done = false; 1944 1945 if (arch_ptrace_stop_needed(exit_code, info)) { 1946 /* 1947 * The arch code has something special to do before a 1948 * ptrace stop. This is allowed to block, e.g. for faults 1949 * on user stack pages. We can't keep the siglock while 1950 * calling arch_ptrace_stop, so we must release it now. 1951 * To preserve proper semantics, we must do this before 1952 * any signal bookkeeping like checking group_stop_count. 1953 * Meanwhile, a SIGKILL could come in before we retake the 1954 * siglock. That must prevent us from sleeping in TASK_TRACED. 1955 * So after regaining the lock, we must check for SIGKILL. 1956 */ 1957 spin_unlock_irq(¤t->sighand->siglock); 1958 arch_ptrace_stop(exit_code, info); 1959 spin_lock_irq(¤t->sighand->siglock); 1960 if (sigkill_pending(current)) 1961 return; 1962 } 1963 1964 /* 1965 * We're committing to trapping. TRACED should be visible before 1966 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1967 * Also, transition to TRACED and updates to ->jobctl should be 1968 * atomic with respect to siglock and should be done after the arch 1969 * hook as siglock is released and regrabbed across it. 1970 */ 1971 set_current_state(TASK_TRACED); 1972 1973 current->last_siginfo = info; 1974 current->exit_code = exit_code; 1975 1976 /* 1977 * If @why is CLD_STOPPED, we're trapping to participate in a group 1978 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1979 * across siglock relocks since INTERRUPT was scheduled, PENDING 1980 * could be clear now. We act as if SIGCONT is received after 1981 * TASK_TRACED is entered - ignore it. 1982 */ 1983 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1984 gstop_done = task_participate_group_stop(current); 1985 1986 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1987 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1988 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1989 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1990 1991 /* entering a trap, clear TRAPPING */ 1992 task_clear_jobctl_trapping(current); 1993 1994 spin_unlock_irq(¤t->sighand->siglock); 1995 read_lock(&tasklist_lock); 1996 if (may_ptrace_stop()) { 1997 /* 1998 * Notify parents of the stop. 1999 * 2000 * While ptraced, there are two parents - the ptracer and 2001 * the real_parent of the group_leader. The ptracer should 2002 * know about every stop while the real parent is only 2003 * interested in the completion of group stop. The states 2004 * for the two don't interact with each other. Notify 2005 * separately unless they're gonna be duplicates. 2006 */ 2007 do_notify_parent_cldstop(current, true, why); 2008 if (gstop_done && ptrace_reparented(current)) 2009 do_notify_parent_cldstop(current, false, why); 2010 2011 /* 2012 * Don't want to allow preemption here, because 2013 * sys_ptrace() needs this task to be inactive. 2014 * 2015 * XXX: implement read_unlock_no_resched(). 2016 */ 2017 preempt_disable(); 2018 read_unlock(&tasklist_lock); 2019 preempt_enable_no_resched(); 2020 freezable_schedule(); 2021 } else { 2022 /* 2023 * By the time we got the lock, our tracer went away. 2024 * Don't drop the lock yet, another tracer may come. 2025 * 2026 * If @gstop_done, the ptracer went away between group stop 2027 * completion and here. During detach, it would have set 2028 * JOBCTL_STOP_PENDING on us and we'll re-enter 2029 * TASK_STOPPED in do_signal_stop() on return, so notifying 2030 * the real parent of the group stop completion is enough. 2031 */ 2032 if (gstop_done) 2033 do_notify_parent_cldstop(current, false, why); 2034 2035 /* tasklist protects us from ptrace_freeze_traced() */ 2036 __set_current_state(TASK_RUNNING); 2037 if (clear_code) 2038 current->exit_code = 0; 2039 read_unlock(&tasklist_lock); 2040 } 2041 2042 /* 2043 * We are back. Now reacquire the siglock before touching 2044 * last_siginfo, so that we are sure to have synchronized with 2045 * any signal-sending on another CPU that wants to examine it. 2046 */ 2047 spin_lock_irq(¤t->sighand->siglock); 2048 current->last_siginfo = NULL; 2049 2050 /* LISTENING can be set only during STOP traps, clear it */ 2051 current->jobctl &= ~JOBCTL_LISTENING; 2052 2053 /* 2054 * Queued signals ignored us while we were stopped for tracing. 2055 * So check for any that we should take before resuming user mode. 2056 * This sets TIF_SIGPENDING, but never clears it. 2057 */ 2058 recalc_sigpending_tsk(current); 2059 } 2060 2061 static void ptrace_do_notify(int signr, int exit_code, int why) 2062 { 2063 siginfo_t info; 2064 2065 clear_siginfo(&info); 2066 info.si_signo = signr; 2067 info.si_code = exit_code; 2068 info.si_pid = task_pid_vnr(current); 2069 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2070 2071 /* Let the debugger run. */ 2072 ptrace_stop(exit_code, why, 1, &info); 2073 } 2074 2075 void ptrace_notify(int exit_code) 2076 { 2077 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2078 if (unlikely(current->task_works)) 2079 task_work_run(); 2080 2081 spin_lock_irq(¤t->sighand->siglock); 2082 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2083 spin_unlock_irq(¤t->sighand->siglock); 2084 } 2085 2086 /** 2087 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2088 * @signr: signr causing group stop if initiating 2089 * 2090 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2091 * and participate in it. If already set, participate in the existing 2092 * group stop. If participated in a group stop (and thus slept), %true is 2093 * returned with siglock released. 2094 * 2095 * If ptraced, this function doesn't handle stop itself. Instead, 2096 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2097 * untouched. The caller must ensure that INTERRUPT trap handling takes 2098 * places afterwards. 2099 * 2100 * CONTEXT: 2101 * Must be called with @current->sighand->siglock held, which is released 2102 * on %true return. 2103 * 2104 * RETURNS: 2105 * %false if group stop is already cancelled or ptrace trap is scheduled. 2106 * %true if participated in group stop. 2107 */ 2108 static bool do_signal_stop(int signr) 2109 __releases(¤t->sighand->siglock) 2110 { 2111 struct signal_struct *sig = current->signal; 2112 2113 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2114 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2115 struct task_struct *t; 2116 2117 /* signr will be recorded in task->jobctl for retries */ 2118 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2119 2120 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2121 unlikely(signal_group_exit(sig))) 2122 return false; 2123 /* 2124 * There is no group stop already in progress. We must 2125 * initiate one now. 2126 * 2127 * While ptraced, a task may be resumed while group stop is 2128 * still in effect and then receive a stop signal and 2129 * initiate another group stop. This deviates from the 2130 * usual behavior as two consecutive stop signals can't 2131 * cause two group stops when !ptraced. That is why we 2132 * also check !task_is_stopped(t) below. 2133 * 2134 * The condition can be distinguished by testing whether 2135 * SIGNAL_STOP_STOPPED is already set. Don't generate 2136 * group_exit_code in such case. 2137 * 2138 * This is not necessary for SIGNAL_STOP_CONTINUED because 2139 * an intervening stop signal is required to cause two 2140 * continued events regardless of ptrace. 2141 */ 2142 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2143 sig->group_exit_code = signr; 2144 2145 sig->group_stop_count = 0; 2146 2147 if (task_set_jobctl_pending(current, signr | gstop)) 2148 sig->group_stop_count++; 2149 2150 t = current; 2151 while_each_thread(current, t) { 2152 /* 2153 * Setting state to TASK_STOPPED for a group 2154 * stop is always done with the siglock held, 2155 * so this check has no races. 2156 */ 2157 if (!task_is_stopped(t) && 2158 task_set_jobctl_pending(t, signr | gstop)) { 2159 sig->group_stop_count++; 2160 if (likely(!(t->ptrace & PT_SEIZED))) 2161 signal_wake_up(t, 0); 2162 else 2163 ptrace_trap_notify(t); 2164 } 2165 } 2166 } 2167 2168 if (likely(!current->ptrace)) { 2169 int notify = 0; 2170 2171 /* 2172 * If there are no other threads in the group, or if there 2173 * is a group stop in progress and we are the last to stop, 2174 * report to the parent. 2175 */ 2176 if (task_participate_group_stop(current)) 2177 notify = CLD_STOPPED; 2178 2179 __set_current_state(TASK_STOPPED); 2180 spin_unlock_irq(¤t->sighand->siglock); 2181 2182 /* 2183 * Notify the parent of the group stop completion. Because 2184 * we're not holding either the siglock or tasklist_lock 2185 * here, ptracer may attach inbetween; however, this is for 2186 * group stop and should always be delivered to the real 2187 * parent of the group leader. The new ptracer will get 2188 * its notification when this task transitions into 2189 * TASK_TRACED. 2190 */ 2191 if (notify) { 2192 read_lock(&tasklist_lock); 2193 do_notify_parent_cldstop(current, false, notify); 2194 read_unlock(&tasklist_lock); 2195 } 2196 2197 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2198 freezable_schedule(); 2199 return true; 2200 } else { 2201 /* 2202 * While ptraced, group stop is handled by STOP trap. 2203 * Schedule it and let the caller deal with it. 2204 */ 2205 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2206 return false; 2207 } 2208 } 2209 2210 /** 2211 * do_jobctl_trap - take care of ptrace jobctl traps 2212 * 2213 * When PT_SEIZED, it's used for both group stop and explicit 2214 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2215 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2216 * the stop signal; otherwise, %SIGTRAP. 2217 * 2218 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2219 * number as exit_code and no siginfo. 2220 * 2221 * CONTEXT: 2222 * Must be called with @current->sighand->siglock held, which may be 2223 * released and re-acquired before returning with intervening sleep. 2224 */ 2225 static void do_jobctl_trap(void) 2226 { 2227 struct signal_struct *signal = current->signal; 2228 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2229 2230 if (current->ptrace & PT_SEIZED) { 2231 if (!signal->group_stop_count && 2232 !(signal->flags & SIGNAL_STOP_STOPPED)) 2233 signr = SIGTRAP; 2234 WARN_ON_ONCE(!signr); 2235 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2236 CLD_STOPPED); 2237 } else { 2238 WARN_ON_ONCE(!signr); 2239 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2240 current->exit_code = 0; 2241 } 2242 } 2243 2244 static int ptrace_signal(int signr, siginfo_t *info) 2245 { 2246 /* 2247 * We do not check sig_kernel_stop(signr) but set this marker 2248 * unconditionally because we do not know whether debugger will 2249 * change signr. This flag has no meaning unless we are going 2250 * to stop after return from ptrace_stop(). In this case it will 2251 * be checked in do_signal_stop(), we should only stop if it was 2252 * not cleared by SIGCONT while we were sleeping. See also the 2253 * comment in dequeue_signal(). 2254 */ 2255 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2256 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2257 2258 /* We're back. Did the debugger cancel the sig? */ 2259 signr = current->exit_code; 2260 if (signr == 0) 2261 return signr; 2262 2263 current->exit_code = 0; 2264 2265 /* 2266 * Update the siginfo structure if the signal has 2267 * changed. If the debugger wanted something 2268 * specific in the siginfo structure then it should 2269 * have updated *info via PTRACE_SETSIGINFO. 2270 */ 2271 if (signr != info->si_signo) { 2272 clear_siginfo(info); 2273 info->si_signo = signr; 2274 info->si_errno = 0; 2275 info->si_code = SI_USER; 2276 rcu_read_lock(); 2277 info->si_pid = task_pid_vnr(current->parent); 2278 info->si_uid = from_kuid_munged(current_user_ns(), 2279 task_uid(current->parent)); 2280 rcu_read_unlock(); 2281 } 2282 2283 /* If the (new) signal is now blocked, requeue it. */ 2284 if (sigismember(¤t->blocked, signr)) { 2285 specific_send_sig_info(signr, info, current); 2286 signr = 0; 2287 } 2288 2289 return signr; 2290 } 2291 2292 int get_signal(struct ksignal *ksig) 2293 { 2294 struct sighand_struct *sighand = current->sighand; 2295 struct signal_struct *signal = current->signal; 2296 int signr; 2297 2298 if (unlikely(current->task_works)) 2299 task_work_run(); 2300 2301 if (unlikely(uprobe_deny_signal())) 2302 return 0; 2303 2304 /* 2305 * Do this once, we can't return to user-mode if freezing() == T. 2306 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2307 * thus do not need another check after return. 2308 */ 2309 try_to_freeze(); 2310 2311 relock: 2312 spin_lock_irq(&sighand->siglock); 2313 /* 2314 * Every stopped thread goes here after wakeup. Check to see if 2315 * we should notify the parent, prepare_signal(SIGCONT) encodes 2316 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2317 */ 2318 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2319 int why; 2320 2321 if (signal->flags & SIGNAL_CLD_CONTINUED) 2322 why = CLD_CONTINUED; 2323 else 2324 why = CLD_STOPPED; 2325 2326 signal->flags &= ~SIGNAL_CLD_MASK; 2327 2328 spin_unlock_irq(&sighand->siglock); 2329 2330 /* 2331 * Notify the parent that we're continuing. This event is 2332 * always per-process and doesn't make whole lot of sense 2333 * for ptracers, who shouldn't consume the state via 2334 * wait(2) either, but, for backward compatibility, notify 2335 * the ptracer of the group leader too unless it's gonna be 2336 * a duplicate. 2337 */ 2338 read_lock(&tasklist_lock); 2339 do_notify_parent_cldstop(current, false, why); 2340 2341 if (ptrace_reparented(current->group_leader)) 2342 do_notify_parent_cldstop(current->group_leader, 2343 true, why); 2344 read_unlock(&tasklist_lock); 2345 2346 goto relock; 2347 } 2348 2349 for (;;) { 2350 struct k_sigaction *ka; 2351 2352 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2353 do_signal_stop(0)) 2354 goto relock; 2355 2356 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2357 do_jobctl_trap(); 2358 spin_unlock_irq(&sighand->siglock); 2359 goto relock; 2360 } 2361 2362 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2363 2364 if (!signr) 2365 break; /* will return 0 */ 2366 2367 if (unlikely(current->ptrace) && signr != SIGKILL) { 2368 signr = ptrace_signal(signr, &ksig->info); 2369 if (!signr) 2370 continue; 2371 } 2372 2373 ka = &sighand->action[signr-1]; 2374 2375 /* Trace actually delivered signals. */ 2376 trace_signal_deliver(signr, &ksig->info, ka); 2377 2378 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2379 continue; 2380 if (ka->sa.sa_handler != SIG_DFL) { 2381 /* Run the handler. */ 2382 ksig->ka = *ka; 2383 2384 if (ka->sa.sa_flags & SA_ONESHOT) 2385 ka->sa.sa_handler = SIG_DFL; 2386 2387 break; /* will return non-zero "signr" value */ 2388 } 2389 2390 /* 2391 * Now we are doing the default action for this signal. 2392 */ 2393 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2394 continue; 2395 2396 /* 2397 * Global init gets no signals it doesn't want. 2398 * Container-init gets no signals it doesn't want from same 2399 * container. 2400 * 2401 * Note that if global/container-init sees a sig_kernel_only() 2402 * signal here, the signal must have been generated internally 2403 * or must have come from an ancestor namespace. In either 2404 * case, the signal cannot be dropped. 2405 */ 2406 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2407 !sig_kernel_only(signr)) 2408 continue; 2409 2410 if (sig_kernel_stop(signr)) { 2411 /* 2412 * The default action is to stop all threads in 2413 * the thread group. The job control signals 2414 * do nothing in an orphaned pgrp, but SIGSTOP 2415 * always works. Note that siglock needs to be 2416 * dropped during the call to is_orphaned_pgrp() 2417 * because of lock ordering with tasklist_lock. 2418 * This allows an intervening SIGCONT to be posted. 2419 * We need to check for that and bail out if necessary. 2420 */ 2421 if (signr != SIGSTOP) { 2422 spin_unlock_irq(&sighand->siglock); 2423 2424 /* signals can be posted during this window */ 2425 2426 if (is_current_pgrp_orphaned()) 2427 goto relock; 2428 2429 spin_lock_irq(&sighand->siglock); 2430 } 2431 2432 if (likely(do_signal_stop(ksig->info.si_signo))) { 2433 /* It released the siglock. */ 2434 goto relock; 2435 } 2436 2437 /* 2438 * We didn't actually stop, due to a race 2439 * with SIGCONT or something like that. 2440 */ 2441 continue; 2442 } 2443 2444 spin_unlock_irq(&sighand->siglock); 2445 2446 /* 2447 * Anything else is fatal, maybe with a core dump. 2448 */ 2449 current->flags |= PF_SIGNALED; 2450 2451 if (sig_kernel_coredump(signr)) { 2452 if (print_fatal_signals) 2453 print_fatal_signal(ksig->info.si_signo); 2454 proc_coredump_connector(current); 2455 /* 2456 * If it was able to dump core, this kills all 2457 * other threads in the group and synchronizes with 2458 * their demise. If we lost the race with another 2459 * thread getting here, it set group_exit_code 2460 * first and our do_group_exit call below will use 2461 * that value and ignore the one we pass it. 2462 */ 2463 do_coredump(&ksig->info); 2464 } 2465 2466 /* 2467 * Death signals, no core dump. 2468 */ 2469 do_group_exit(ksig->info.si_signo); 2470 /* NOTREACHED */ 2471 } 2472 spin_unlock_irq(&sighand->siglock); 2473 2474 ksig->sig = signr; 2475 return ksig->sig > 0; 2476 } 2477 2478 /** 2479 * signal_delivered - 2480 * @ksig: kernel signal struct 2481 * @stepping: nonzero if debugger single-step or block-step in use 2482 * 2483 * This function should be called when a signal has successfully been 2484 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2485 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2486 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2487 */ 2488 static void signal_delivered(struct ksignal *ksig, int stepping) 2489 { 2490 sigset_t blocked; 2491 2492 /* A signal was successfully delivered, and the 2493 saved sigmask was stored on the signal frame, 2494 and will be restored by sigreturn. So we can 2495 simply clear the restore sigmask flag. */ 2496 clear_restore_sigmask(); 2497 2498 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2499 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2500 sigaddset(&blocked, ksig->sig); 2501 set_current_blocked(&blocked); 2502 tracehook_signal_handler(stepping); 2503 } 2504 2505 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2506 { 2507 if (failed) 2508 force_sigsegv(ksig->sig, current); 2509 else 2510 signal_delivered(ksig, stepping); 2511 } 2512 2513 /* 2514 * It could be that complete_signal() picked us to notify about the 2515 * group-wide signal. Other threads should be notified now to take 2516 * the shared signals in @which since we will not. 2517 */ 2518 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2519 { 2520 sigset_t retarget; 2521 struct task_struct *t; 2522 2523 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2524 if (sigisemptyset(&retarget)) 2525 return; 2526 2527 t = tsk; 2528 while_each_thread(tsk, t) { 2529 if (t->flags & PF_EXITING) 2530 continue; 2531 2532 if (!has_pending_signals(&retarget, &t->blocked)) 2533 continue; 2534 /* Remove the signals this thread can handle. */ 2535 sigandsets(&retarget, &retarget, &t->blocked); 2536 2537 if (!signal_pending(t)) 2538 signal_wake_up(t, 0); 2539 2540 if (sigisemptyset(&retarget)) 2541 break; 2542 } 2543 } 2544 2545 void exit_signals(struct task_struct *tsk) 2546 { 2547 int group_stop = 0; 2548 sigset_t unblocked; 2549 2550 /* 2551 * @tsk is about to have PF_EXITING set - lock out users which 2552 * expect stable threadgroup. 2553 */ 2554 cgroup_threadgroup_change_begin(tsk); 2555 2556 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2557 tsk->flags |= PF_EXITING; 2558 cgroup_threadgroup_change_end(tsk); 2559 return; 2560 } 2561 2562 spin_lock_irq(&tsk->sighand->siglock); 2563 /* 2564 * From now this task is not visible for group-wide signals, 2565 * see wants_signal(), do_signal_stop(). 2566 */ 2567 tsk->flags |= PF_EXITING; 2568 2569 cgroup_threadgroup_change_end(tsk); 2570 2571 if (!signal_pending(tsk)) 2572 goto out; 2573 2574 unblocked = tsk->blocked; 2575 signotset(&unblocked); 2576 retarget_shared_pending(tsk, &unblocked); 2577 2578 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2579 task_participate_group_stop(tsk)) 2580 group_stop = CLD_STOPPED; 2581 out: 2582 spin_unlock_irq(&tsk->sighand->siglock); 2583 2584 /* 2585 * If group stop has completed, deliver the notification. This 2586 * should always go to the real parent of the group leader. 2587 */ 2588 if (unlikely(group_stop)) { 2589 read_lock(&tasklist_lock); 2590 do_notify_parent_cldstop(tsk, false, group_stop); 2591 read_unlock(&tasklist_lock); 2592 } 2593 } 2594 2595 EXPORT_SYMBOL(recalc_sigpending); 2596 EXPORT_SYMBOL_GPL(dequeue_signal); 2597 EXPORT_SYMBOL(flush_signals); 2598 EXPORT_SYMBOL(force_sig); 2599 EXPORT_SYMBOL(send_sig); 2600 EXPORT_SYMBOL(send_sig_info); 2601 EXPORT_SYMBOL(sigprocmask); 2602 2603 /* 2604 * System call entry points. 2605 */ 2606 2607 /** 2608 * sys_restart_syscall - restart a system call 2609 */ 2610 SYSCALL_DEFINE0(restart_syscall) 2611 { 2612 struct restart_block *restart = ¤t->restart_block; 2613 return restart->fn(restart); 2614 } 2615 2616 long do_no_restart_syscall(struct restart_block *param) 2617 { 2618 return -EINTR; 2619 } 2620 2621 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2622 { 2623 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2624 sigset_t newblocked; 2625 /* A set of now blocked but previously unblocked signals. */ 2626 sigandnsets(&newblocked, newset, ¤t->blocked); 2627 retarget_shared_pending(tsk, &newblocked); 2628 } 2629 tsk->blocked = *newset; 2630 recalc_sigpending(); 2631 } 2632 2633 /** 2634 * set_current_blocked - change current->blocked mask 2635 * @newset: new mask 2636 * 2637 * It is wrong to change ->blocked directly, this helper should be used 2638 * to ensure the process can't miss a shared signal we are going to block. 2639 */ 2640 void set_current_blocked(sigset_t *newset) 2641 { 2642 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2643 __set_current_blocked(newset); 2644 } 2645 2646 void __set_current_blocked(const sigset_t *newset) 2647 { 2648 struct task_struct *tsk = current; 2649 2650 /* 2651 * In case the signal mask hasn't changed, there is nothing we need 2652 * to do. The current->blocked shouldn't be modified by other task. 2653 */ 2654 if (sigequalsets(&tsk->blocked, newset)) 2655 return; 2656 2657 spin_lock_irq(&tsk->sighand->siglock); 2658 __set_task_blocked(tsk, newset); 2659 spin_unlock_irq(&tsk->sighand->siglock); 2660 } 2661 2662 /* 2663 * This is also useful for kernel threads that want to temporarily 2664 * (or permanently) block certain signals. 2665 * 2666 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2667 * interface happily blocks "unblockable" signals like SIGKILL 2668 * and friends. 2669 */ 2670 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2671 { 2672 struct task_struct *tsk = current; 2673 sigset_t newset; 2674 2675 /* Lockless, only current can change ->blocked, never from irq */ 2676 if (oldset) 2677 *oldset = tsk->blocked; 2678 2679 switch (how) { 2680 case SIG_BLOCK: 2681 sigorsets(&newset, &tsk->blocked, set); 2682 break; 2683 case SIG_UNBLOCK: 2684 sigandnsets(&newset, &tsk->blocked, set); 2685 break; 2686 case SIG_SETMASK: 2687 newset = *set; 2688 break; 2689 default: 2690 return -EINVAL; 2691 } 2692 2693 __set_current_blocked(&newset); 2694 return 0; 2695 } 2696 2697 /** 2698 * sys_rt_sigprocmask - change the list of currently blocked signals 2699 * @how: whether to add, remove, or set signals 2700 * @nset: stores pending signals 2701 * @oset: previous value of signal mask if non-null 2702 * @sigsetsize: size of sigset_t type 2703 */ 2704 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2705 sigset_t __user *, oset, size_t, sigsetsize) 2706 { 2707 sigset_t old_set, new_set; 2708 int error; 2709 2710 /* XXX: Don't preclude handling different sized sigset_t's. */ 2711 if (sigsetsize != sizeof(sigset_t)) 2712 return -EINVAL; 2713 2714 old_set = current->blocked; 2715 2716 if (nset) { 2717 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2718 return -EFAULT; 2719 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2720 2721 error = sigprocmask(how, &new_set, NULL); 2722 if (error) 2723 return error; 2724 } 2725 2726 if (oset) { 2727 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2728 return -EFAULT; 2729 } 2730 2731 return 0; 2732 } 2733 2734 #ifdef CONFIG_COMPAT 2735 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2736 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2737 { 2738 sigset_t old_set = current->blocked; 2739 2740 /* XXX: Don't preclude handling different sized sigset_t's. */ 2741 if (sigsetsize != sizeof(sigset_t)) 2742 return -EINVAL; 2743 2744 if (nset) { 2745 sigset_t new_set; 2746 int error; 2747 if (get_compat_sigset(&new_set, nset)) 2748 return -EFAULT; 2749 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2750 2751 error = sigprocmask(how, &new_set, NULL); 2752 if (error) 2753 return error; 2754 } 2755 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 2756 } 2757 #endif 2758 2759 static int do_sigpending(sigset_t *set) 2760 { 2761 spin_lock_irq(¤t->sighand->siglock); 2762 sigorsets(set, ¤t->pending.signal, 2763 ¤t->signal->shared_pending.signal); 2764 spin_unlock_irq(¤t->sighand->siglock); 2765 2766 /* Outside the lock because only this thread touches it. */ 2767 sigandsets(set, ¤t->blocked, set); 2768 return 0; 2769 } 2770 2771 /** 2772 * sys_rt_sigpending - examine a pending signal that has been raised 2773 * while blocked 2774 * @uset: stores pending signals 2775 * @sigsetsize: size of sigset_t type or larger 2776 */ 2777 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2778 { 2779 sigset_t set; 2780 int err; 2781 2782 if (sigsetsize > sizeof(*uset)) 2783 return -EINVAL; 2784 2785 err = do_sigpending(&set); 2786 if (!err && copy_to_user(uset, &set, sigsetsize)) 2787 err = -EFAULT; 2788 return err; 2789 } 2790 2791 #ifdef CONFIG_COMPAT 2792 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2793 compat_size_t, sigsetsize) 2794 { 2795 sigset_t set; 2796 int err; 2797 2798 if (sigsetsize > sizeof(*uset)) 2799 return -EINVAL; 2800 2801 err = do_sigpending(&set); 2802 if (!err) 2803 err = put_compat_sigset(uset, &set, sigsetsize); 2804 return err; 2805 } 2806 #endif 2807 2808 enum siginfo_layout siginfo_layout(int sig, int si_code) 2809 { 2810 enum siginfo_layout layout = SIL_KILL; 2811 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 2812 static const struct { 2813 unsigned char limit, layout; 2814 } filter[] = { 2815 [SIGILL] = { NSIGILL, SIL_FAULT }, 2816 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 2817 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 2818 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 2819 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 2820 #if defined(SIGEMT) && defined(NSIGEMT) 2821 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 2822 #endif 2823 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 2824 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 2825 [SIGSYS] = { NSIGSYS, SIL_SYS }, 2826 }; 2827 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) 2828 layout = filter[sig].layout; 2829 else if (si_code <= NSIGPOLL) 2830 layout = SIL_POLL; 2831 } else { 2832 if (si_code == SI_TIMER) 2833 layout = SIL_TIMER; 2834 else if (si_code == SI_SIGIO) 2835 layout = SIL_POLL; 2836 else if (si_code < 0) 2837 layout = SIL_RT; 2838 /* Tests to support buggy kernel ABIs */ 2839 #ifdef TRAP_FIXME 2840 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME)) 2841 layout = SIL_FAULT; 2842 #endif 2843 #ifdef FPE_FIXME 2844 if ((sig == SIGFPE) && (si_code == FPE_FIXME)) 2845 layout = SIL_FAULT; 2846 #endif 2847 #ifdef BUS_FIXME 2848 if ((sig == SIGBUS) && (si_code == BUS_FIXME)) 2849 layout = SIL_FAULT; 2850 #endif 2851 } 2852 return layout; 2853 } 2854 2855 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2856 { 2857 int err; 2858 2859 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2860 return -EFAULT; 2861 if (from->si_code < 0) 2862 return __copy_to_user(to, from, sizeof(siginfo_t)) 2863 ? -EFAULT : 0; 2864 /* 2865 * If you change siginfo_t structure, please be sure 2866 * this code is fixed accordingly. 2867 * Please remember to update the signalfd_copyinfo() function 2868 * inside fs/signalfd.c too, in case siginfo_t changes. 2869 * It should never copy any pad contained in the structure 2870 * to avoid security leaks, but must copy the generic 2871 * 3 ints plus the relevant union member. 2872 */ 2873 err = __put_user(from->si_signo, &to->si_signo); 2874 err |= __put_user(from->si_errno, &to->si_errno); 2875 err |= __put_user(from->si_code, &to->si_code); 2876 switch (siginfo_layout(from->si_signo, from->si_code)) { 2877 case SIL_KILL: 2878 err |= __put_user(from->si_pid, &to->si_pid); 2879 err |= __put_user(from->si_uid, &to->si_uid); 2880 break; 2881 case SIL_TIMER: 2882 /* Unreached SI_TIMER is negative */ 2883 break; 2884 case SIL_POLL: 2885 err |= __put_user(from->si_band, &to->si_band); 2886 err |= __put_user(from->si_fd, &to->si_fd); 2887 break; 2888 case SIL_FAULT: 2889 err |= __put_user(from->si_addr, &to->si_addr); 2890 #ifdef __ARCH_SI_TRAPNO 2891 err |= __put_user(from->si_trapno, &to->si_trapno); 2892 #endif 2893 #ifdef __ia64__ 2894 err |= __put_user(from->si_imm, &to->si_imm); 2895 err |= __put_user(from->si_flags, &to->si_flags); 2896 err |= __put_user(from->si_isr, &to->si_isr); 2897 #endif 2898 /* 2899 * Other callers might not initialize the si_lsb field, 2900 * so check explicitly for the right codes here. 2901 */ 2902 #ifdef BUS_MCEERR_AR 2903 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR) 2904 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2905 #endif 2906 #ifdef BUS_MCEERR_AO 2907 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO) 2908 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2909 #endif 2910 #ifdef SEGV_BNDERR 2911 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2912 err |= __put_user(from->si_lower, &to->si_lower); 2913 err |= __put_user(from->si_upper, &to->si_upper); 2914 } 2915 #endif 2916 #ifdef SEGV_PKUERR 2917 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR) 2918 err |= __put_user(from->si_pkey, &to->si_pkey); 2919 #endif 2920 break; 2921 case SIL_CHLD: 2922 err |= __put_user(from->si_pid, &to->si_pid); 2923 err |= __put_user(from->si_uid, &to->si_uid); 2924 err |= __put_user(from->si_status, &to->si_status); 2925 err |= __put_user(from->si_utime, &to->si_utime); 2926 err |= __put_user(from->si_stime, &to->si_stime); 2927 break; 2928 case SIL_RT: 2929 err |= __put_user(from->si_pid, &to->si_pid); 2930 err |= __put_user(from->si_uid, &to->si_uid); 2931 err |= __put_user(from->si_ptr, &to->si_ptr); 2932 break; 2933 case SIL_SYS: 2934 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2935 err |= __put_user(from->si_syscall, &to->si_syscall); 2936 err |= __put_user(from->si_arch, &to->si_arch); 2937 break; 2938 } 2939 return err; 2940 } 2941 2942 #ifdef CONFIG_COMPAT 2943 int copy_siginfo_to_user32(struct compat_siginfo __user *to, 2944 const struct siginfo *from) 2945 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) 2946 { 2947 return __copy_siginfo_to_user32(to, from, in_x32_syscall()); 2948 } 2949 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 2950 const struct siginfo *from, bool x32_ABI) 2951 #endif 2952 { 2953 struct compat_siginfo new; 2954 memset(&new, 0, sizeof(new)); 2955 2956 new.si_signo = from->si_signo; 2957 new.si_errno = from->si_errno; 2958 new.si_code = from->si_code; 2959 switch(siginfo_layout(from->si_signo, from->si_code)) { 2960 case SIL_KILL: 2961 new.si_pid = from->si_pid; 2962 new.si_uid = from->si_uid; 2963 break; 2964 case SIL_TIMER: 2965 new.si_tid = from->si_tid; 2966 new.si_overrun = from->si_overrun; 2967 new.si_int = from->si_int; 2968 break; 2969 case SIL_POLL: 2970 new.si_band = from->si_band; 2971 new.si_fd = from->si_fd; 2972 break; 2973 case SIL_FAULT: 2974 new.si_addr = ptr_to_compat(from->si_addr); 2975 #ifdef __ARCH_SI_TRAPNO 2976 new.si_trapno = from->si_trapno; 2977 #endif 2978 #ifdef BUS_MCEERR_AR 2979 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR)) 2980 new.si_addr_lsb = from->si_addr_lsb; 2981 #endif 2982 #ifdef BUS_MCEERR_AO 2983 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO)) 2984 new.si_addr_lsb = from->si_addr_lsb; 2985 #endif 2986 #ifdef SEGV_BNDERR 2987 if ((from->si_signo == SIGSEGV) && 2988 (from->si_code == SEGV_BNDERR)) { 2989 new.si_lower = ptr_to_compat(from->si_lower); 2990 new.si_upper = ptr_to_compat(from->si_upper); 2991 } 2992 #endif 2993 #ifdef SEGV_PKUERR 2994 if ((from->si_signo == SIGSEGV) && 2995 (from->si_code == SEGV_PKUERR)) 2996 new.si_pkey = from->si_pkey; 2997 #endif 2998 2999 break; 3000 case SIL_CHLD: 3001 new.si_pid = from->si_pid; 3002 new.si_uid = from->si_uid; 3003 new.si_status = from->si_status; 3004 #ifdef CONFIG_X86_X32_ABI 3005 if (x32_ABI) { 3006 new._sifields._sigchld_x32._utime = from->si_utime; 3007 new._sifields._sigchld_x32._stime = from->si_stime; 3008 } else 3009 #endif 3010 { 3011 new.si_utime = from->si_utime; 3012 new.si_stime = from->si_stime; 3013 } 3014 break; 3015 case SIL_RT: 3016 new.si_pid = from->si_pid; 3017 new.si_uid = from->si_uid; 3018 new.si_int = from->si_int; 3019 break; 3020 case SIL_SYS: 3021 new.si_call_addr = ptr_to_compat(from->si_call_addr); 3022 new.si_syscall = from->si_syscall; 3023 new.si_arch = from->si_arch; 3024 break; 3025 } 3026 3027 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3028 return -EFAULT; 3029 3030 return 0; 3031 } 3032 3033 int copy_siginfo_from_user32(struct siginfo *to, 3034 const struct compat_siginfo __user *ufrom) 3035 { 3036 struct compat_siginfo from; 3037 3038 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3039 return -EFAULT; 3040 3041 clear_siginfo(to); 3042 to->si_signo = from.si_signo; 3043 to->si_errno = from.si_errno; 3044 to->si_code = from.si_code; 3045 switch(siginfo_layout(from.si_signo, from.si_code)) { 3046 case SIL_KILL: 3047 to->si_pid = from.si_pid; 3048 to->si_uid = from.si_uid; 3049 break; 3050 case SIL_TIMER: 3051 to->si_tid = from.si_tid; 3052 to->si_overrun = from.si_overrun; 3053 to->si_int = from.si_int; 3054 break; 3055 case SIL_POLL: 3056 to->si_band = from.si_band; 3057 to->si_fd = from.si_fd; 3058 break; 3059 case SIL_FAULT: 3060 to->si_addr = compat_ptr(from.si_addr); 3061 #ifdef __ARCH_SI_TRAPNO 3062 to->si_trapno = from.si_trapno; 3063 #endif 3064 #ifdef BUS_MCEERR_AR 3065 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR)) 3066 to->si_addr_lsb = from.si_addr_lsb; 3067 #endif 3068 #ifdef BUS_MCEER_AO 3069 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO)) 3070 to->si_addr_lsb = from.si_addr_lsb; 3071 #endif 3072 #ifdef SEGV_BNDERR 3073 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) { 3074 to->si_lower = compat_ptr(from.si_lower); 3075 to->si_upper = compat_ptr(from.si_upper); 3076 } 3077 #endif 3078 #ifdef SEGV_PKUERR 3079 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR)) 3080 to->si_pkey = from.si_pkey; 3081 #endif 3082 break; 3083 case SIL_CHLD: 3084 to->si_pid = from.si_pid; 3085 to->si_uid = from.si_uid; 3086 to->si_status = from.si_status; 3087 #ifdef CONFIG_X86_X32_ABI 3088 if (in_x32_syscall()) { 3089 to->si_utime = from._sifields._sigchld_x32._utime; 3090 to->si_stime = from._sifields._sigchld_x32._stime; 3091 } else 3092 #endif 3093 { 3094 to->si_utime = from.si_utime; 3095 to->si_stime = from.si_stime; 3096 } 3097 break; 3098 case SIL_RT: 3099 to->si_pid = from.si_pid; 3100 to->si_uid = from.si_uid; 3101 to->si_int = from.si_int; 3102 break; 3103 case SIL_SYS: 3104 to->si_call_addr = compat_ptr(from.si_call_addr); 3105 to->si_syscall = from.si_syscall; 3106 to->si_arch = from.si_arch; 3107 break; 3108 } 3109 return 0; 3110 } 3111 #endif /* CONFIG_COMPAT */ 3112 3113 /** 3114 * do_sigtimedwait - wait for queued signals specified in @which 3115 * @which: queued signals to wait for 3116 * @info: if non-null, the signal's siginfo is returned here 3117 * @ts: upper bound on process time suspension 3118 */ 3119 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 3120 const struct timespec *ts) 3121 { 3122 ktime_t *to = NULL, timeout = KTIME_MAX; 3123 struct task_struct *tsk = current; 3124 sigset_t mask = *which; 3125 int sig, ret = 0; 3126 3127 if (ts) { 3128 if (!timespec_valid(ts)) 3129 return -EINVAL; 3130 timeout = timespec_to_ktime(*ts); 3131 to = &timeout; 3132 } 3133 3134 /* 3135 * Invert the set of allowed signals to get those we want to block. 3136 */ 3137 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3138 signotset(&mask); 3139 3140 spin_lock_irq(&tsk->sighand->siglock); 3141 sig = dequeue_signal(tsk, &mask, info); 3142 if (!sig && timeout) { 3143 /* 3144 * None ready, temporarily unblock those we're interested 3145 * while we are sleeping in so that we'll be awakened when 3146 * they arrive. Unblocking is always fine, we can avoid 3147 * set_current_blocked(). 3148 */ 3149 tsk->real_blocked = tsk->blocked; 3150 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3151 recalc_sigpending(); 3152 spin_unlock_irq(&tsk->sighand->siglock); 3153 3154 __set_current_state(TASK_INTERRUPTIBLE); 3155 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3156 HRTIMER_MODE_REL); 3157 spin_lock_irq(&tsk->sighand->siglock); 3158 __set_task_blocked(tsk, &tsk->real_blocked); 3159 sigemptyset(&tsk->real_blocked); 3160 sig = dequeue_signal(tsk, &mask, info); 3161 } 3162 spin_unlock_irq(&tsk->sighand->siglock); 3163 3164 if (sig) 3165 return sig; 3166 return ret ? -EINTR : -EAGAIN; 3167 } 3168 3169 /** 3170 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3171 * in @uthese 3172 * @uthese: queued signals to wait for 3173 * @uinfo: if non-null, the signal's siginfo is returned here 3174 * @uts: upper bound on process time suspension 3175 * @sigsetsize: size of sigset_t type 3176 */ 3177 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3178 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 3179 size_t, sigsetsize) 3180 { 3181 sigset_t these; 3182 struct timespec ts; 3183 siginfo_t info; 3184 int ret; 3185 3186 /* XXX: Don't preclude handling different sized sigset_t's. */ 3187 if (sigsetsize != sizeof(sigset_t)) 3188 return -EINVAL; 3189 3190 if (copy_from_user(&these, uthese, sizeof(these))) 3191 return -EFAULT; 3192 3193 if (uts) { 3194 if (copy_from_user(&ts, uts, sizeof(ts))) 3195 return -EFAULT; 3196 } 3197 3198 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3199 3200 if (ret > 0 && uinfo) { 3201 if (copy_siginfo_to_user(uinfo, &info)) 3202 ret = -EFAULT; 3203 } 3204 3205 return ret; 3206 } 3207 3208 #ifdef CONFIG_COMPAT 3209 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese, 3210 struct compat_siginfo __user *, uinfo, 3211 struct compat_timespec __user *, uts, compat_size_t, sigsetsize) 3212 { 3213 sigset_t s; 3214 struct timespec t; 3215 siginfo_t info; 3216 long ret; 3217 3218 if (sigsetsize != sizeof(sigset_t)) 3219 return -EINVAL; 3220 3221 if (get_compat_sigset(&s, uthese)) 3222 return -EFAULT; 3223 3224 if (uts) { 3225 if (compat_get_timespec(&t, uts)) 3226 return -EFAULT; 3227 } 3228 3229 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3230 3231 if (ret > 0 && uinfo) { 3232 if (copy_siginfo_to_user32(uinfo, &info)) 3233 ret = -EFAULT; 3234 } 3235 3236 return ret; 3237 } 3238 #endif 3239 3240 /** 3241 * sys_kill - send a signal to a process 3242 * @pid: the PID of the process 3243 * @sig: signal to be sent 3244 */ 3245 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3246 { 3247 struct siginfo info; 3248 3249 clear_siginfo(&info); 3250 info.si_signo = sig; 3251 info.si_errno = 0; 3252 info.si_code = SI_USER; 3253 info.si_pid = task_tgid_vnr(current); 3254 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3255 3256 return kill_something_info(sig, &info, pid); 3257 } 3258 3259 static int 3260 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 3261 { 3262 struct task_struct *p; 3263 int error = -ESRCH; 3264 3265 rcu_read_lock(); 3266 p = find_task_by_vpid(pid); 3267 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3268 error = check_kill_permission(sig, info, p); 3269 /* 3270 * The null signal is a permissions and process existence 3271 * probe. No signal is actually delivered. 3272 */ 3273 if (!error && sig) { 3274 error = do_send_sig_info(sig, info, p, false); 3275 /* 3276 * If lock_task_sighand() failed we pretend the task 3277 * dies after receiving the signal. The window is tiny, 3278 * and the signal is private anyway. 3279 */ 3280 if (unlikely(error == -ESRCH)) 3281 error = 0; 3282 } 3283 } 3284 rcu_read_unlock(); 3285 3286 return error; 3287 } 3288 3289 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3290 { 3291 struct siginfo info; 3292 3293 clear_siginfo(&info); 3294 info.si_signo = sig; 3295 info.si_errno = 0; 3296 info.si_code = SI_TKILL; 3297 info.si_pid = task_tgid_vnr(current); 3298 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3299 3300 return do_send_specific(tgid, pid, sig, &info); 3301 } 3302 3303 /** 3304 * sys_tgkill - send signal to one specific thread 3305 * @tgid: the thread group ID of the thread 3306 * @pid: the PID of the thread 3307 * @sig: signal to be sent 3308 * 3309 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3310 * exists but it's not belonging to the target process anymore. This 3311 * method solves the problem of threads exiting and PIDs getting reused. 3312 */ 3313 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3314 { 3315 /* This is only valid for single tasks */ 3316 if (pid <= 0 || tgid <= 0) 3317 return -EINVAL; 3318 3319 return do_tkill(tgid, pid, sig); 3320 } 3321 3322 /** 3323 * sys_tkill - send signal to one specific task 3324 * @pid: the PID of the task 3325 * @sig: signal to be sent 3326 * 3327 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3328 */ 3329 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3330 { 3331 /* This is only valid for single tasks */ 3332 if (pid <= 0) 3333 return -EINVAL; 3334 3335 return do_tkill(0, pid, sig); 3336 } 3337 3338 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 3339 { 3340 /* Not even root can pretend to send signals from the kernel. 3341 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3342 */ 3343 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3344 (task_pid_vnr(current) != pid)) 3345 return -EPERM; 3346 3347 info->si_signo = sig; 3348 3349 /* POSIX.1b doesn't mention process groups. */ 3350 return kill_proc_info(sig, info, pid); 3351 } 3352 3353 /** 3354 * sys_rt_sigqueueinfo - send signal information to a signal 3355 * @pid: the PID of the thread 3356 * @sig: signal to be sent 3357 * @uinfo: signal info to be sent 3358 */ 3359 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3360 siginfo_t __user *, uinfo) 3361 { 3362 siginfo_t info; 3363 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3364 return -EFAULT; 3365 return do_rt_sigqueueinfo(pid, sig, &info); 3366 } 3367 3368 #ifdef CONFIG_COMPAT 3369 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3370 compat_pid_t, pid, 3371 int, sig, 3372 struct compat_siginfo __user *, uinfo) 3373 { 3374 siginfo_t info; 3375 int ret = copy_siginfo_from_user32(&info, uinfo); 3376 if (unlikely(ret)) 3377 return ret; 3378 return do_rt_sigqueueinfo(pid, sig, &info); 3379 } 3380 #endif 3381 3382 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3383 { 3384 /* This is only valid for single tasks */ 3385 if (pid <= 0 || tgid <= 0) 3386 return -EINVAL; 3387 3388 /* Not even root can pretend to send signals from the kernel. 3389 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3390 */ 3391 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3392 (task_pid_vnr(current) != pid)) 3393 return -EPERM; 3394 3395 info->si_signo = sig; 3396 3397 return do_send_specific(tgid, pid, sig, info); 3398 } 3399 3400 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3401 siginfo_t __user *, uinfo) 3402 { 3403 siginfo_t info; 3404 3405 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3406 return -EFAULT; 3407 3408 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3409 } 3410 3411 #ifdef CONFIG_COMPAT 3412 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3413 compat_pid_t, tgid, 3414 compat_pid_t, pid, 3415 int, sig, 3416 struct compat_siginfo __user *, uinfo) 3417 { 3418 siginfo_t info; 3419 3420 if (copy_siginfo_from_user32(&info, uinfo)) 3421 return -EFAULT; 3422 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3423 } 3424 #endif 3425 3426 /* 3427 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3428 */ 3429 void kernel_sigaction(int sig, __sighandler_t action) 3430 { 3431 spin_lock_irq(¤t->sighand->siglock); 3432 current->sighand->action[sig - 1].sa.sa_handler = action; 3433 if (action == SIG_IGN) { 3434 sigset_t mask; 3435 3436 sigemptyset(&mask); 3437 sigaddset(&mask, sig); 3438 3439 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3440 flush_sigqueue_mask(&mask, ¤t->pending); 3441 recalc_sigpending(); 3442 } 3443 spin_unlock_irq(¤t->sighand->siglock); 3444 } 3445 EXPORT_SYMBOL(kernel_sigaction); 3446 3447 void __weak sigaction_compat_abi(struct k_sigaction *act, 3448 struct k_sigaction *oact) 3449 { 3450 } 3451 3452 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3453 { 3454 struct task_struct *p = current, *t; 3455 struct k_sigaction *k; 3456 sigset_t mask; 3457 3458 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3459 return -EINVAL; 3460 3461 k = &p->sighand->action[sig-1]; 3462 3463 spin_lock_irq(&p->sighand->siglock); 3464 if (oact) 3465 *oact = *k; 3466 3467 sigaction_compat_abi(act, oact); 3468 3469 if (act) { 3470 sigdelsetmask(&act->sa.sa_mask, 3471 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3472 *k = *act; 3473 /* 3474 * POSIX 3.3.1.3: 3475 * "Setting a signal action to SIG_IGN for a signal that is 3476 * pending shall cause the pending signal to be discarded, 3477 * whether or not it is blocked." 3478 * 3479 * "Setting a signal action to SIG_DFL for a signal that is 3480 * pending and whose default action is to ignore the signal 3481 * (for example, SIGCHLD), shall cause the pending signal to 3482 * be discarded, whether or not it is blocked" 3483 */ 3484 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3485 sigemptyset(&mask); 3486 sigaddset(&mask, sig); 3487 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3488 for_each_thread(p, t) 3489 flush_sigqueue_mask(&mask, &t->pending); 3490 } 3491 } 3492 3493 spin_unlock_irq(&p->sighand->siglock); 3494 return 0; 3495 } 3496 3497 static int 3498 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp) 3499 { 3500 struct task_struct *t = current; 3501 3502 if (oss) { 3503 memset(oss, 0, sizeof(stack_t)); 3504 oss->ss_sp = (void __user *) t->sas_ss_sp; 3505 oss->ss_size = t->sas_ss_size; 3506 oss->ss_flags = sas_ss_flags(sp) | 3507 (current->sas_ss_flags & SS_FLAG_BITS); 3508 } 3509 3510 if (ss) { 3511 void __user *ss_sp = ss->ss_sp; 3512 size_t ss_size = ss->ss_size; 3513 unsigned ss_flags = ss->ss_flags; 3514 int ss_mode; 3515 3516 if (unlikely(on_sig_stack(sp))) 3517 return -EPERM; 3518 3519 ss_mode = ss_flags & ~SS_FLAG_BITS; 3520 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3521 ss_mode != 0)) 3522 return -EINVAL; 3523 3524 if (ss_mode == SS_DISABLE) { 3525 ss_size = 0; 3526 ss_sp = NULL; 3527 } else { 3528 if (unlikely(ss_size < MINSIGSTKSZ)) 3529 return -ENOMEM; 3530 } 3531 3532 t->sas_ss_sp = (unsigned long) ss_sp; 3533 t->sas_ss_size = ss_size; 3534 t->sas_ss_flags = ss_flags; 3535 } 3536 return 0; 3537 } 3538 3539 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3540 { 3541 stack_t new, old; 3542 int err; 3543 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 3544 return -EFAULT; 3545 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 3546 current_user_stack_pointer()); 3547 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 3548 err = -EFAULT; 3549 return err; 3550 } 3551 3552 int restore_altstack(const stack_t __user *uss) 3553 { 3554 stack_t new; 3555 if (copy_from_user(&new, uss, sizeof(stack_t))) 3556 return -EFAULT; 3557 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer()); 3558 /* squash all but EFAULT for now */ 3559 return 0; 3560 } 3561 3562 int __save_altstack(stack_t __user *uss, unsigned long sp) 3563 { 3564 struct task_struct *t = current; 3565 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3566 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3567 __put_user(t->sas_ss_size, &uss->ss_size); 3568 if (err) 3569 return err; 3570 if (t->sas_ss_flags & SS_AUTODISARM) 3571 sas_ss_reset(t); 3572 return 0; 3573 } 3574 3575 #ifdef CONFIG_COMPAT 3576 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3577 const compat_stack_t __user *, uss_ptr, 3578 compat_stack_t __user *, uoss_ptr) 3579 { 3580 stack_t uss, uoss; 3581 int ret; 3582 3583 if (uss_ptr) { 3584 compat_stack_t uss32; 3585 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3586 return -EFAULT; 3587 uss.ss_sp = compat_ptr(uss32.ss_sp); 3588 uss.ss_flags = uss32.ss_flags; 3589 uss.ss_size = uss32.ss_size; 3590 } 3591 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 3592 compat_user_stack_pointer()); 3593 if (ret >= 0 && uoss_ptr) { 3594 compat_stack_t old; 3595 memset(&old, 0, sizeof(old)); 3596 old.ss_sp = ptr_to_compat(uoss.ss_sp); 3597 old.ss_flags = uoss.ss_flags; 3598 old.ss_size = uoss.ss_size; 3599 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 3600 ret = -EFAULT; 3601 } 3602 return ret; 3603 } 3604 3605 int compat_restore_altstack(const compat_stack_t __user *uss) 3606 { 3607 int err = compat_sys_sigaltstack(uss, NULL); 3608 /* squash all but -EFAULT for now */ 3609 return err == -EFAULT ? err : 0; 3610 } 3611 3612 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3613 { 3614 int err; 3615 struct task_struct *t = current; 3616 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3617 &uss->ss_sp) | 3618 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3619 __put_user(t->sas_ss_size, &uss->ss_size); 3620 if (err) 3621 return err; 3622 if (t->sas_ss_flags & SS_AUTODISARM) 3623 sas_ss_reset(t); 3624 return 0; 3625 } 3626 #endif 3627 3628 #ifdef __ARCH_WANT_SYS_SIGPENDING 3629 3630 /** 3631 * sys_sigpending - examine pending signals 3632 * @set: where mask of pending signal is returned 3633 */ 3634 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3635 { 3636 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3637 } 3638 3639 #ifdef CONFIG_COMPAT 3640 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 3641 { 3642 sigset_t set; 3643 int err = do_sigpending(&set); 3644 if (!err) 3645 err = put_user(set.sig[0], set32); 3646 return err; 3647 } 3648 #endif 3649 3650 #endif 3651 3652 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3653 /** 3654 * sys_sigprocmask - examine and change blocked signals 3655 * @how: whether to add, remove, or set signals 3656 * @nset: signals to add or remove (if non-null) 3657 * @oset: previous value of signal mask if non-null 3658 * 3659 * Some platforms have their own version with special arguments; 3660 * others support only sys_rt_sigprocmask. 3661 */ 3662 3663 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3664 old_sigset_t __user *, oset) 3665 { 3666 old_sigset_t old_set, new_set; 3667 sigset_t new_blocked; 3668 3669 old_set = current->blocked.sig[0]; 3670 3671 if (nset) { 3672 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3673 return -EFAULT; 3674 3675 new_blocked = current->blocked; 3676 3677 switch (how) { 3678 case SIG_BLOCK: 3679 sigaddsetmask(&new_blocked, new_set); 3680 break; 3681 case SIG_UNBLOCK: 3682 sigdelsetmask(&new_blocked, new_set); 3683 break; 3684 case SIG_SETMASK: 3685 new_blocked.sig[0] = new_set; 3686 break; 3687 default: 3688 return -EINVAL; 3689 } 3690 3691 set_current_blocked(&new_blocked); 3692 } 3693 3694 if (oset) { 3695 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3696 return -EFAULT; 3697 } 3698 3699 return 0; 3700 } 3701 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3702 3703 #ifndef CONFIG_ODD_RT_SIGACTION 3704 /** 3705 * sys_rt_sigaction - alter an action taken by a process 3706 * @sig: signal to be sent 3707 * @act: new sigaction 3708 * @oact: used to save the previous sigaction 3709 * @sigsetsize: size of sigset_t type 3710 */ 3711 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3712 const struct sigaction __user *, act, 3713 struct sigaction __user *, oact, 3714 size_t, sigsetsize) 3715 { 3716 struct k_sigaction new_sa, old_sa; 3717 int ret = -EINVAL; 3718 3719 /* XXX: Don't preclude handling different sized sigset_t's. */ 3720 if (sigsetsize != sizeof(sigset_t)) 3721 goto out; 3722 3723 if (act) { 3724 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3725 return -EFAULT; 3726 } 3727 3728 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3729 3730 if (!ret && oact) { 3731 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3732 return -EFAULT; 3733 } 3734 out: 3735 return ret; 3736 } 3737 #ifdef CONFIG_COMPAT 3738 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3739 const struct compat_sigaction __user *, act, 3740 struct compat_sigaction __user *, oact, 3741 compat_size_t, sigsetsize) 3742 { 3743 struct k_sigaction new_ka, old_ka; 3744 #ifdef __ARCH_HAS_SA_RESTORER 3745 compat_uptr_t restorer; 3746 #endif 3747 int ret; 3748 3749 /* XXX: Don't preclude handling different sized sigset_t's. */ 3750 if (sigsetsize != sizeof(compat_sigset_t)) 3751 return -EINVAL; 3752 3753 if (act) { 3754 compat_uptr_t handler; 3755 ret = get_user(handler, &act->sa_handler); 3756 new_ka.sa.sa_handler = compat_ptr(handler); 3757 #ifdef __ARCH_HAS_SA_RESTORER 3758 ret |= get_user(restorer, &act->sa_restorer); 3759 new_ka.sa.sa_restorer = compat_ptr(restorer); 3760 #endif 3761 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 3762 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3763 if (ret) 3764 return -EFAULT; 3765 } 3766 3767 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3768 if (!ret && oact) { 3769 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3770 &oact->sa_handler); 3771 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 3772 sizeof(oact->sa_mask)); 3773 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3774 #ifdef __ARCH_HAS_SA_RESTORER 3775 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3776 &oact->sa_restorer); 3777 #endif 3778 } 3779 return ret; 3780 } 3781 #endif 3782 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3783 3784 #ifdef CONFIG_OLD_SIGACTION 3785 SYSCALL_DEFINE3(sigaction, int, sig, 3786 const struct old_sigaction __user *, act, 3787 struct old_sigaction __user *, oact) 3788 { 3789 struct k_sigaction new_ka, old_ka; 3790 int ret; 3791 3792 if (act) { 3793 old_sigset_t mask; 3794 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3795 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3796 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3797 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3798 __get_user(mask, &act->sa_mask)) 3799 return -EFAULT; 3800 #ifdef __ARCH_HAS_KA_RESTORER 3801 new_ka.ka_restorer = NULL; 3802 #endif 3803 siginitset(&new_ka.sa.sa_mask, mask); 3804 } 3805 3806 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3807 3808 if (!ret && oact) { 3809 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3810 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3811 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3812 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3813 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3814 return -EFAULT; 3815 } 3816 3817 return ret; 3818 } 3819 #endif 3820 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3821 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3822 const struct compat_old_sigaction __user *, act, 3823 struct compat_old_sigaction __user *, oact) 3824 { 3825 struct k_sigaction new_ka, old_ka; 3826 int ret; 3827 compat_old_sigset_t mask; 3828 compat_uptr_t handler, restorer; 3829 3830 if (act) { 3831 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3832 __get_user(handler, &act->sa_handler) || 3833 __get_user(restorer, &act->sa_restorer) || 3834 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3835 __get_user(mask, &act->sa_mask)) 3836 return -EFAULT; 3837 3838 #ifdef __ARCH_HAS_KA_RESTORER 3839 new_ka.ka_restorer = NULL; 3840 #endif 3841 new_ka.sa.sa_handler = compat_ptr(handler); 3842 new_ka.sa.sa_restorer = compat_ptr(restorer); 3843 siginitset(&new_ka.sa.sa_mask, mask); 3844 } 3845 3846 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3847 3848 if (!ret && oact) { 3849 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3850 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3851 &oact->sa_handler) || 3852 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3853 &oact->sa_restorer) || 3854 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3855 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3856 return -EFAULT; 3857 } 3858 return ret; 3859 } 3860 #endif 3861 3862 #ifdef CONFIG_SGETMASK_SYSCALL 3863 3864 /* 3865 * For backwards compatibility. Functionality superseded by sigprocmask. 3866 */ 3867 SYSCALL_DEFINE0(sgetmask) 3868 { 3869 /* SMP safe */ 3870 return current->blocked.sig[0]; 3871 } 3872 3873 SYSCALL_DEFINE1(ssetmask, int, newmask) 3874 { 3875 int old = current->blocked.sig[0]; 3876 sigset_t newset; 3877 3878 siginitset(&newset, newmask); 3879 set_current_blocked(&newset); 3880 3881 return old; 3882 } 3883 #endif /* CONFIG_SGETMASK_SYSCALL */ 3884 3885 #ifdef __ARCH_WANT_SYS_SIGNAL 3886 /* 3887 * For backwards compatibility. Functionality superseded by sigaction. 3888 */ 3889 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3890 { 3891 struct k_sigaction new_sa, old_sa; 3892 int ret; 3893 3894 new_sa.sa.sa_handler = handler; 3895 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3896 sigemptyset(&new_sa.sa.sa_mask); 3897 3898 ret = do_sigaction(sig, &new_sa, &old_sa); 3899 3900 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3901 } 3902 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3903 3904 #ifdef __ARCH_WANT_SYS_PAUSE 3905 3906 SYSCALL_DEFINE0(pause) 3907 { 3908 while (!signal_pending(current)) { 3909 __set_current_state(TASK_INTERRUPTIBLE); 3910 schedule(); 3911 } 3912 return -ERESTARTNOHAND; 3913 } 3914 3915 #endif 3916 3917 static int sigsuspend(sigset_t *set) 3918 { 3919 current->saved_sigmask = current->blocked; 3920 set_current_blocked(set); 3921 3922 while (!signal_pending(current)) { 3923 __set_current_state(TASK_INTERRUPTIBLE); 3924 schedule(); 3925 } 3926 set_restore_sigmask(); 3927 return -ERESTARTNOHAND; 3928 } 3929 3930 /** 3931 * sys_rt_sigsuspend - replace the signal mask for a value with the 3932 * @unewset value until a signal is received 3933 * @unewset: new signal mask value 3934 * @sigsetsize: size of sigset_t type 3935 */ 3936 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3937 { 3938 sigset_t newset; 3939 3940 /* XXX: Don't preclude handling different sized sigset_t's. */ 3941 if (sigsetsize != sizeof(sigset_t)) 3942 return -EINVAL; 3943 3944 if (copy_from_user(&newset, unewset, sizeof(newset))) 3945 return -EFAULT; 3946 return sigsuspend(&newset); 3947 } 3948 3949 #ifdef CONFIG_COMPAT 3950 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3951 { 3952 sigset_t newset; 3953 3954 /* XXX: Don't preclude handling different sized sigset_t's. */ 3955 if (sigsetsize != sizeof(sigset_t)) 3956 return -EINVAL; 3957 3958 if (get_compat_sigset(&newset, unewset)) 3959 return -EFAULT; 3960 return sigsuspend(&newset); 3961 } 3962 #endif 3963 3964 #ifdef CONFIG_OLD_SIGSUSPEND 3965 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3966 { 3967 sigset_t blocked; 3968 siginitset(&blocked, mask); 3969 return sigsuspend(&blocked); 3970 } 3971 #endif 3972 #ifdef CONFIG_OLD_SIGSUSPEND3 3973 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3974 { 3975 sigset_t blocked; 3976 siginitset(&blocked, mask); 3977 return sigsuspend(&blocked); 3978 } 3979 #endif 3980 3981 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3982 { 3983 return NULL; 3984 } 3985 3986 void __init signals_init(void) 3987 { 3988 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 3989 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 3990 != offsetof(struct siginfo, _sifields._pad)); 3991 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 3992 3993 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3994 } 3995 3996 #ifdef CONFIG_KGDB_KDB 3997 #include <linux/kdb.h> 3998 /* 3999 * kdb_send_sig - Allows kdb to send signals without exposing 4000 * signal internals. This function checks if the required locks are 4001 * available before calling the main signal code, to avoid kdb 4002 * deadlocks. 4003 */ 4004 void kdb_send_sig(struct task_struct *t, int sig) 4005 { 4006 static struct task_struct *kdb_prev_t; 4007 int new_t, ret; 4008 if (!spin_trylock(&t->sighand->siglock)) { 4009 kdb_printf("Can't do kill command now.\n" 4010 "The sigmask lock is held somewhere else in " 4011 "kernel, try again later\n"); 4012 return; 4013 } 4014 new_t = kdb_prev_t != t; 4015 kdb_prev_t = t; 4016 if (t->state != TASK_RUNNING && new_t) { 4017 spin_unlock(&t->sighand->siglock); 4018 kdb_printf("Process is not RUNNING, sending a signal from " 4019 "kdb risks deadlock\n" 4020 "on the run queue locks. " 4021 "The signal has _not_ been sent.\n" 4022 "Reissue the kill command if you want to risk " 4023 "the deadlock.\n"); 4024 return; 4025 } 4026 ret = send_signal(sig, SEND_SIG_PRIV, t, false); 4027 spin_unlock(&t->sighand->siglock); 4028 if (ret) 4029 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4030 sig, t->pid); 4031 else 4032 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4033 } 4034 #endif /* CONFIG_KGDB_KDB */ 4035