xref: /openbmc/linux/kernel/signal.c (revision 11976fe2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h>	/* for syscall_get_* */
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current))
185 		clear_thread_flag(TIF_SIGPENDING);
186 
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189 
190 void calculate_sigpending(void)
191 {
192 	/* Have any signals or users of TIF_SIGPENDING been delayed
193 	 * until after fork?
194 	 */
195 	spin_lock_irq(&current->sighand->siglock);
196 	set_tsk_thread_flag(current, TIF_SIGPENDING);
197 	recalc_sigpending();
198 	spin_unlock_irq(&current->sighand->siglock);
199 }
200 
201 /* Given the mask, find the first available signal that should be serviced. */
202 
203 #define SYNCHRONOUS_MASK \
204 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 	unsigned long i, *s, *m, x;
210 	int sig = 0;
211 
212 	s = pending->signal.sig;
213 	m = mask->sig;
214 
215 	/*
216 	 * Handle the first word specially: it contains the
217 	 * synchronous signals that need to be dequeued first.
218 	 */
219 	x = *s &~ *m;
220 	if (x) {
221 		if (x & SYNCHRONOUS_MASK)
222 			x &= SYNCHRONOUS_MASK;
223 		sig = ffz(~x) + 1;
224 		return sig;
225 	}
226 
227 	switch (_NSIG_WORDS) {
228 	default:
229 		for (i = 1; i < _NSIG_WORDS; ++i) {
230 			x = *++s &~ *++m;
231 			if (!x)
232 				continue;
233 			sig = ffz(~x) + i*_NSIG_BPW + 1;
234 			break;
235 		}
236 		break;
237 
238 	case 2:
239 		x = s[1] &~ m[1];
240 		if (!x)
241 			break;
242 		sig = ffz(~x) + _NSIG_BPW + 1;
243 		break;
244 
245 	case 1:
246 		/* Nothing to do */
247 		break;
248 	}
249 
250 	return sig;
251 }
252 
253 static inline void print_dropped_signal(int sig)
254 {
255 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 
257 	if (!print_fatal_signals)
258 		return;
259 
260 	if (!__ratelimit(&ratelimit_state))
261 		return;
262 
263 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 				current->comm, current->pid, sig);
265 }
266 
267 /**
268  * task_set_jobctl_pending - set jobctl pending bits
269  * @task: target task
270  * @mask: pending bits to set
271  *
272  * Clear @mask from @task->jobctl.  @mask must be subset of
273  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
275  * cleared.  If @task is already being killed or exiting, this function
276  * becomes noop.
277  *
278  * CONTEXT:
279  * Must be called with @task->sighand->siglock held.
280  *
281  * RETURNS:
282  * %true if @mask is set, %false if made noop because @task was dying.
283  */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 
290 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 		return false;
292 
293 	if (mask & JOBCTL_STOP_SIGMASK)
294 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 
296 	task->jobctl |= mask;
297 	return true;
298 }
299 
300 /**
301  * task_clear_jobctl_trapping - clear jobctl trapping bit
302  * @task: target task
303  *
304  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305  * Clear it and wake up the ptracer.  Note that we don't need any further
306  * locking.  @task->siglock guarantees that @task->parent points to the
307  * ptracer.
308  *
309  * CONTEXT:
310  * Must be called with @task->sighand->siglock held.
311  */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 		task->jobctl &= ~JOBCTL_TRAPPING;
316 		smp_mb();	/* advised by wake_up_bit() */
317 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 	}
319 }
320 
321 /**
322  * task_clear_jobctl_pending - clear jobctl pending bits
323  * @task: target task
324  * @mask: pending bits to clear
325  *
326  * Clear @mask from @task->jobctl.  @mask must be subset of
327  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
328  * STOP bits are cleared together.
329  *
330  * If clearing of @mask leaves no stop or trap pending, this function calls
331  * task_clear_jobctl_trapping().
332  *
333  * CONTEXT:
334  * Must be called with @task->sighand->siglock held.
335  */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 
340 	if (mask & JOBCTL_STOP_PENDING)
341 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 
343 	task->jobctl &= ~mask;
344 
345 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 		task_clear_jobctl_trapping(task);
347 }
348 
349 /**
350  * task_participate_group_stop - participate in a group stop
351  * @task: task participating in a group stop
352  *
353  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354  * Group stop states are cleared and the group stop count is consumed if
355  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
356  * stop, the appropriate `SIGNAL_*` flags are set.
357  *
358  * CONTEXT:
359  * Must be called with @task->sighand->siglock held.
360  *
361  * RETURNS:
362  * %true if group stop completion should be notified to the parent, %false
363  * otherwise.
364  */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 	struct signal_struct *sig = task->signal;
368 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 
370 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 
372 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373 
374 	if (!consume)
375 		return false;
376 
377 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 		sig->group_stop_count--;
379 
380 	/*
381 	 * Tell the caller to notify completion iff we are entering into a
382 	 * fresh group stop.  Read comment in do_signal_stop() for details.
383 	 */
384 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 		return true;
387 	}
388 	return false;
389 }
390 
391 void task_join_group_stop(struct task_struct *task)
392 {
393 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 	struct signal_struct *sig = current->signal;
395 
396 	if (sig->group_stop_count) {
397 		sig->group_stop_count++;
398 		mask |= JOBCTL_STOP_CONSUME;
399 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 		return;
401 
402 	/* Have the new thread join an on-going signal group stop */
403 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 		 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 	struct sigqueue *q = NULL;
416 	struct ucounts *ucounts = NULL;
417 	long sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	ucounts = task_ucounts(t);
429 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 	rcu_read_unlock();
431 	if (!sigpending)
432 		return NULL;
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = sigqueue_flags;
445 		q->ucounts = ucounts;
446 	}
447 	return q;
448 }
449 
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 	if (q->flags & SIGQUEUE_PREALLOC)
453 		return;
454 	if (q->ucounts) {
455 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 		q->ucounts = NULL;
457 	}
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 		   kernel_siginfo_t *info, enum pid_type *type)
631 {
632 	bool resched_timer = false;
633 	int signr;
634 
635 	/* We only dequeue private signals from ourselves, we don't let
636 	 * signalfd steal them
637 	 */
638 	*type = PIDTYPE_PID;
639 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
640 	if (!signr) {
641 		*type = PIDTYPE_TGID;
642 		signr = __dequeue_signal(&tsk->signal->shared_pending,
643 					 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
645 		/*
646 		 * itimer signal ?
647 		 *
648 		 * itimers are process shared and we restart periodic
649 		 * itimers in the signal delivery path to prevent DoS
650 		 * attacks in the high resolution timer case. This is
651 		 * compliant with the old way of self-restarting
652 		 * itimers, as the SIGALRM is a legacy signal and only
653 		 * queued once. Changing the restart behaviour to
654 		 * restart the timer in the signal dequeue path is
655 		 * reducing the timer noise on heavy loaded !highres
656 		 * systems too.
657 		 */
658 		if (unlikely(signr == SIGALRM)) {
659 			struct hrtimer *tmr = &tsk->signal->real_timer;
660 
661 			if (!hrtimer_is_queued(tmr) &&
662 			    tsk->signal->it_real_incr != 0) {
663 				hrtimer_forward(tmr, tmr->base->get_time(),
664 						tsk->signal->it_real_incr);
665 				hrtimer_restart(tmr);
666 			}
667 		}
668 #endif
669 	}
670 
671 	recalc_sigpending();
672 	if (!signr)
673 		return 0;
674 
675 	if (unlikely(sig_kernel_stop(signr))) {
676 		/*
677 		 * Set a marker that we have dequeued a stop signal.  Our
678 		 * caller might release the siglock and then the pending
679 		 * stop signal it is about to process is no longer in the
680 		 * pending bitmasks, but must still be cleared by a SIGCONT
681 		 * (and overruled by a SIGKILL).  So those cases clear this
682 		 * shared flag after we've set it.  Note that this flag may
683 		 * remain set after the signal we return is ignored or
684 		 * handled.  That doesn't matter because its only purpose
685 		 * is to alert stop-signal processing code when another
686 		 * processor has come along and cleared the flag.
687 		 */
688 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
689 	}
690 #ifdef CONFIG_POSIX_TIMERS
691 	if (resched_timer) {
692 		/*
693 		 * Release the siglock to ensure proper locking order
694 		 * of timer locks outside of siglocks.  Note, we leave
695 		 * irqs disabled here, since the posix-timers code is
696 		 * about to disable them again anyway.
697 		 */
698 		spin_unlock(&tsk->sighand->siglock);
699 		posixtimer_rearm(info);
700 		spin_lock(&tsk->sighand->siglock);
701 
702 		/* Don't expose the si_sys_private value to userspace */
703 		info->si_sys_private = 0;
704 	}
705 #endif
706 	return signr;
707 }
708 EXPORT_SYMBOL_GPL(dequeue_signal);
709 
710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
711 {
712 	struct task_struct *tsk = current;
713 	struct sigpending *pending = &tsk->pending;
714 	struct sigqueue *q, *sync = NULL;
715 
716 	/*
717 	 * Might a synchronous signal be in the queue?
718 	 */
719 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 		return 0;
721 
722 	/*
723 	 * Return the first synchronous signal in the queue.
724 	 */
725 	list_for_each_entry(q, &pending->list, list) {
726 		/* Synchronous signals have a positive si_code */
727 		if ((q->info.si_code > SI_USER) &&
728 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
729 			sync = q;
730 			goto next;
731 		}
732 	}
733 	return 0;
734 next:
735 	/*
736 	 * Check if there is another siginfo for the same signal.
737 	 */
738 	list_for_each_entry_continue(q, &pending->list, list) {
739 		if (q->info.si_signo == sync->info.si_signo)
740 			goto still_pending;
741 	}
742 
743 	sigdelset(&pending->signal, sync->info.si_signo);
744 	recalc_sigpending();
745 still_pending:
746 	list_del_init(&sync->list);
747 	copy_siginfo(info, &sync->info);
748 	__sigqueue_free(sync);
749 	return info->si_signo;
750 }
751 
752 /*
753  * Tell a process that it has a new active signal..
754  *
755  * NOTE! we rely on the previous spin_lock to
756  * lock interrupts for us! We can only be called with
757  * "siglock" held, and the local interrupt must
758  * have been disabled when that got acquired!
759  *
760  * No need to set need_resched since signal event passing
761  * goes through ->blocked
762  */
763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
764 {
765 	lockdep_assert_held(&t->sighand->siglock);
766 
767 	set_tsk_thread_flag(t, TIF_SIGPENDING);
768 
769 	/*
770 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
771 	 * case. We don't check t->state here because there is a race with it
772 	 * executing another processor and just now entering stopped state.
773 	 * By using wake_up_state, we ensure the process will wake up and
774 	 * handle its death signal.
775 	 */
776 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
777 		kick_process(t);
778 }
779 
780 /*
781  * Remove signals in mask from the pending set and queue.
782  * Returns 1 if any signals were found.
783  *
784  * All callers must be holding the siglock.
785  */
786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
787 {
788 	struct sigqueue *q, *n;
789 	sigset_t m;
790 
791 	sigandsets(&m, mask, &s->signal);
792 	if (sigisemptyset(&m))
793 		return;
794 
795 	sigandnsets(&s->signal, &s->signal, mask);
796 	list_for_each_entry_safe(q, n, &s->list, list) {
797 		if (sigismember(mask, q->info.si_signo)) {
798 			list_del_init(&q->list);
799 			__sigqueue_free(q);
800 		}
801 	}
802 }
803 
804 static inline int is_si_special(const struct kernel_siginfo *info)
805 {
806 	return info <= SEND_SIG_PRIV;
807 }
808 
809 static inline bool si_fromuser(const struct kernel_siginfo *info)
810 {
811 	return info == SEND_SIG_NOINFO ||
812 		(!is_si_special(info) && SI_FROMUSER(info));
813 }
814 
815 /*
816  * called with RCU read lock from check_kill_permission()
817  */
818 static bool kill_ok_by_cred(struct task_struct *t)
819 {
820 	const struct cred *cred = current_cred();
821 	const struct cred *tcred = __task_cred(t);
822 
823 	return uid_eq(cred->euid, tcred->suid) ||
824 	       uid_eq(cred->euid, tcred->uid) ||
825 	       uid_eq(cred->uid, tcred->suid) ||
826 	       uid_eq(cred->uid, tcred->uid) ||
827 	       ns_capable(tcred->user_ns, CAP_KILL);
828 }
829 
830 /*
831  * Bad permissions for sending the signal
832  * - the caller must hold the RCU read lock
833  */
834 static int check_kill_permission(int sig, struct kernel_siginfo *info,
835 				 struct task_struct *t)
836 {
837 	struct pid *sid;
838 	int error;
839 
840 	if (!valid_signal(sig))
841 		return -EINVAL;
842 
843 	if (!si_fromuser(info))
844 		return 0;
845 
846 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 	if (error)
848 		return error;
849 
850 	if (!same_thread_group(current, t) &&
851 	    !kill_ok_by_cred(t)) {
852 		switch (sig) {
853 		case SIGCONT:
854 			sid = task_session(t);
855 			/*
856 			 * We don't return the error if sid == NULL. The
857 			 * task was unhashed, the caller must notice this.
858 			 */
859 			if (!sid || sid == task_session(current))
860 				break;
861 			fallthrough;
862 		default:
863 			return -EPERM;
864 		}
865 	}
866 
867 	return security_task_kill(t, info, sig, NULL);
868 }
869 
870 /**
871  * ptrace_trap_notify - schedule trap to notify ptracer
872  * @t: tracee wanting to notify tracer
873  *
874  * This function schedules sticky ptrace trap which is cleared on the next
875  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
876  * ptracer.
877  *
878  * If @t is running, STOP trap will be taken.  If trapped for STOP and
879  * ptracer is listening for events, tracee is woken up so that it can
880  * re-trap for the new event.  If trapped otherwise, STOP trap will be
881  * eventually taken without returning to userland after the existing traps
882  * are finished by PTRACE_CONT.
883  *
884  * CONTEXT:
885  * Must be called with @task->sighand->siglock held.
886  */
887 static void ptrace_trap_notify(struct task_struct *t)
888 {
889 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
890 	lockdep_assert_held(&t->sighand->siglock);
891 
892 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
893 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894 }
895 
896 /*
897  * Handle magic process-wide effects of stop/continue signals. Unlike
898  * the signal actions, these happen immediately at signal-generation
899  * time regardless of blocking, ignoring, or handling.  This does the
900  * actual continuing for SIGCONT, but not the actual stopping for stop
901  * signals. The process stop is done as a signal action for SIG_DFL.
902  *
903  * Returns true if the signal should be actually delivered, otherwise
904  * it should be dropped.
905  */
906 static bool prepare_signal(int sig, struct task_struct *p, bool force)
907 {
908 	struct signal_struct *signal = p->signal;
909 	struct task_struct *t;
910 	sigset_t flush;
911 
912 	if (signal->flags & SIGNAL_GROUP_EXIT) {
913 		if (signal->core_state)
914 			return sig == SIGKILL;
915 		/*
916 		 * The process is in the middle of dying, drop the signal.
917 		 */
918 		return false;
919 	} else if (sig_kernel_stop(sig)) {
920 		/*
921 		 * This is a stop signal.  Remove SIGCONT from all queues.
922 		 */
923 		siginitset(&flush, sigmask(SIGCONT));
924 		flush_sigqueue_mask(&flush, &signal->shared_pending);
925 		for_each_thread(p, t)
926 			flush_sigqueue_mask(&flush, &t->pending);
927 	} else if (sig == SIGCONT) {
928 		unsigned int why;
929 		/*
930 		 * Remove all stop signals from all queues, wake all threads.
931 		 */
932 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
933 		flush_sigqueue_mask(&flush, &signal->shared_pending);
934 		for_each_thread(p, t) {
935 			flush_sigqueue_mask(&flush, &t->pending);
936 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
937 			if (likely(!(t->ptrace & PT_SEIZED))) {
938 				t->jobctl &= ~JOBCTL_STOPPED;
939 				wake_up_state(t, __TASK_STOPPED);
940 			} else
941 				ptrace_trap_notify(t);
942 		}
943 
944 		/*
945 		 * Notify the parent with CLD_CONTINUED if we were stopped.
946 		 *
947 		 * If we were in the middle of a group stop, we pretend it
948 		 * was already finished, and then continued. Since SIGCHLD
949 		 * doesn't queue we report only CLD_STOPPED, as if the next
950 		 * CLD_CONTINUED was dropped.
951 		 */
952 		why = 0;
953 		if (signal->flags & SIGNAL_STOP_STOPPED)
954 			why |= SIGNAL_CLD_CONTINUED;
955 		else if (signal->group_stop_count)
956 			why |= SIGNAL_CLD_STOPPED;
957 
958 		if (why) {
959 			/*
960 			 * The first thread which returns from do_signal_stop()
961 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
962 			 * notify its parent. See get_signal().
963 			 */
964 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
965 			signal->group_stop_count = 0;
966 			signal->group_exit_code = 0;
967 		}
968 	}
969 
970 	return !sig_ignored(p, sig, force);
971 }
972 
973 /*
974  * Test if P wants to take SIG.  After we've checked all threads with this,
975  * it's equivalent to finding no threads not blocking SIG.  Any threads not
976  * blocking SIG were ruled out because they are not running and already
977  * have pending signals.  Such threads will dequeue from the shared queue
978  * as soon as they're available, so putting the signal on the shared queue
979  * will be equivalent to sending it to one such thread.
980  */
981 static inline bool wants_signal(int sig, struct task_struct *p)
982 {
983 	if (sigismember(&p->blocked, sig))
984 		return false;
985 
986 	if (p->flags & PF_EXITING)
987 		return false;
988 
989 	if (sig == SIGKILL)
990 		return true;
991 
992 	if (task_is_stopped_or_traced(p))
993 		return false;
994 
995 	return task_curr(p) || !task_sigpending(p);
996 }
997 
998 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
999 {
1000 	struct signal_struct *signal = p->signal;
1001 	struct task_struct *t;
1002 
1003 	/*
1004 	 * Now find a thread we can wake up to take the signal off the queue.
1005 	 *
1006 	 * Try the suggested task first (may or may not be the main thread).
1007 	 */
1008 	if (wants_signal(sig, p))
1009 		t = p;
1010 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1011 		/*
1012 		 * There is just one thread and it does not need to be woken.
1013 		 * It will dequeue unblocked signals before it runs again.
1014 		 */
1015 		return;
1016 	else {
1017 		/*
1018 		 * Otherwise try to find a suitable thread.
1019 		 */
1020 		t = signal->curr_target;
1021 		while (!wants_signal(sig, t)) {
1022 			t = next_thread(t);
1023 			if (t == signal->curr_target)
1024 				/*
1025 				 * No thread needs to be woken.
1026 				 * Any eligible threads will see
1027 				 * the signal in the queue soon.
1028 				 */
1029 				return;
1030 		}
1031 		signal->curr_target = t;
1032 	}
1033 
1034 	/*
1035 	 * Found a killable thread.  If the signal will be fatal,
1036 	 * then start taking the whole group down immediately.
1037 	 */
1038 	if (sig_fatal(p, sig) &&
1039 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1040 	    !sigismember(&t->real_blocked, sig) &&
1041 	    (sig == SIGKILL || !p->ptrace)) {
1042 		/*
1043 		 * This signal will be fatal to the whole group.
1044 		 */
1045 		if (!sig_kernel_coredump(sig)) {
1046 			/*
1047 			 * Start a group exit and wake everybody up.
1048 			 * This way we don't have other threads
1049 			 * running and doing things after a slower
1050 			 * thread has the fatal signal pending.
1051 			 */
1052 			signal->flags = SIGNAL_GROUP_EXIT;
1053 			signal->group_exit_code = sig;
1054 			signal->group_stop_count = 0;
1055 			t = p;
1056 			do {
1057 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1058 				sigaddset(&t->pending.signal, SIGKILL);
1059 				signal_wake_up(t, 1);
1060 			} while_each_thread(p, t);
1061 			return;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * The signal is already in the shared-pending queue.
1067 	 * Tell the chosen thread to wake up and dequeue it.
1068 	 */
1069 	signal_wake_up(t, sig == SIGKILL);
1070 	return;
1071 }
1072 
1073 static inline bool legacy_queue(struct sigpending *signals, int sig)
1074 {
1075 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1076 }
1077 
1078 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1079 				struct task_struct *t, enum pid_type type, bool force)
1080 {
1081 	struct sigpending *pending;
1082 	struct sigqueue *q;
1083 	int override_rlimit;
1084 	int ret = 0, result;
1085 
1086 	lockdep_assert_held(&t->sighand->siglock);
1087 
1088 	result = TRACE_SIGNAL_IGNORED;
1089 	if (!prepare_signal(sig, t, force))
1090 		goto ret;
1091 
1092 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1093 	/*
1094 	 * Short-circuit ignored signals and support queuing
1095 	 * exactly one non-rt signal, so that we can get more
1096 	 * detailed information about the cause of the signal.
1097 	 */
1098 	result = TRACE_SIGNAL_ALREADY_PENDING;
1099 	if (legacy_queue(pending, sig))
1100 		goto ret;
1101 
1102 	result = TRACE_SIGNAL_DELIVERED;
1103 	/*
1104 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1105 	 */
1106 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1107 		goto out_set;
1108 
1109 	/*
1110 	 * Real-time signals must be queued if sent by sigqueue, or
1111 	 * some other real-time mechanism.  It is implementation
1112 	 * defined whether kill() does so.  We attempt to do so, on
1113 	 * the principle of least surprise, but since kill is not
1114 	 * allowed to fail with EAGAIN when low on memory we just
1115 	 * make sure at least one signal gets delivered and don't
1116 	 * pass on the info struct.
1117 	 */
1118 	if (sig < SIGRTMIN)
1119 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1120 	else
1121 		override_rlimit = 0;
1122 
1123 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1124 
1125 	if (q) {
1126 		list_add_tail(&q->list, &pending->list);
1127 		switch ((unsigned long) info) {
1128 		case (unsigned long) SEND_SIG_NOINFO:
1129 			clear_siginfo(&q->info);
1130 			q->info.si_signo = sig;
1131 			q->info.si_errno = 0;
1132 			q->info.si_code = SI_USER;
1133 			q->info.si_pid = task_tgid_nr_ns(current,
1134 							task_active_pid_ns(t));
1135 			rcu_read_lock();
1136 			q->info.si_uid =
1137 				from_kuid_munged(task_cred_xxx(t, user_ns),
1138 						 current_uid());
1139 			rcu_read_unlock();
1140 			break;
1141 		case (unsigned long) SEND_SIG_PRIV:
1142 			clear_siginfo(&q->info);
1143 			q->info.si_signo = sig;
1144 			q->info.si_errno = 0;
1145 			q->info.si_code = SI_KERNEL;
1146 			q->info.si_pid = 0;
1147 			q->info.si_uid = 0;
1148 			break;
1149 		default:
1150 			copy_siginfo(&q->info, info);
1151 			break;
1152 		}
1153 	} else if (!is_si_special(info) &&
1154 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1155 		/*
1156 		 * Queue overflow, abort.  We may abort if the
1157 		 * signal was rt and sent by user using something
1158 		 * other than kill().
1159 		 */
1160 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1161 		ret = -EAGAIN;
1162 		goto ret;
1163 	} else {
1164 		/*
1165 		 * This is a silent loss of information.  We still
1166 		 * send the signal, but the *info bits are lost.
1167 		 */
1168 		result = TRACE_SIGNAL_LOSE_INFO;
1169 	}
1170 
1171 out_set:
1172 	signalfd_notify(t, sig);
1173 	sigaddset(&pending->signal, sig);
1174 
1175 	/* Let multiprocess signals appear after on-going forks */
1176 	if (type > PIDTYPE_TGID) {
1177 		struct multiprocess_signals *delayed;
1178 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1179 			sigset_t *signal = &delayed->signal;
1180 			/* Can't queue both a stop and a continue signal */
1181 			if (sig == SIGCONT)
1182 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1183 			else if (sig_kernel_stop(sig))
1184 				sigdelset(signal, SIGCONT);
1185 			sigaddset(signal, sig);
1186 		}
1187 	}
1188 
1189 	complete_signal(sig, t, type);
1190 ret:
1191 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1192 	return ret;
1193 }
1194 
1195 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1196 {
1197 	bool ret = false;
1198 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1199 	case SIL_KILL:
1200 	case SIL_CHLD:
1201 	case SIL_RT:
1202 		ret = true;
1203 		break;
1204 	case SIL_TIMER:
1205 	case SIL_POLL:
1206 	case SIL_FAULT:
1207 	case SIL_FAULT_TRAPNO:
1208 	case SIL_FAULT_MCEERR:
1209 	case SIL_FAULT_BNDERR:
1210 	case SIL_FAULT_PKUERR:
1211 	case SIL_FAULT_PERF_EVENT:
1212 	case SIL_SYS:
1213 		ret = false;
1214 		break;
1215 	}
1216 	return ret;
1217 }
1218 
1219 int send_signal_locked(int sig, struct kernel_siginfo *info,
1220 		       struct task_struct *t, enum pid_type type)
1221 {
1222 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1223 	bool force = false;
1224 
1225 	if (info == SEND_SIG_NOINFO) {
1226 		/* Force if sent from an ancestor pid namespace */
1227 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1228 	} else if (info == SEND_SIG_PRIV) {
1229 		/* Don't ignore kernel generated signals */
1230 		force = true;
1231 	} else if (has_si_pid_and_uid(info)) {
1232 		/* SIGKILL and SIGSTOP is special or has ids */
1233 		struct user_namespace *t_user_ns;
1234 
1235 		rcu_read_lock();
1236 		t_user_ns = task_cred_xxx(t, user_ns);
1237 		if (current_user_ns() != t_user_ns) {
1238 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1239 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1240 		}
1241 		rcu_read_unlock();
1242 
1243 		/* A kernel generated signal? */
1244 		force = (info->si_code == SI_KERNEL);
1245 
1246 		/* From an ancestor pid namespace? */
1247 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1248 			info->si_pid = 0;
1249 			force = true;
1250 		}
1251 	}
1252 	return __send_signal_locked(sig, info, t, type, force);
1253 }
1254 
1255 static void print_fatal_signal(int signr)
1256 {
1257 	struct pt_regs *regs = task_pt_regs(current);
1258 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1259 
1260 #if defined(__i386__) && !defined(__arch_um__)
1261 	pr_info("code at %08lx: ", regs->ip);
1262 	{
1263 		int i;
1264 		for (i = 0; i < 16; i++) {
1265 			unsigned char insn;
1266 
1267 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1268 				break;
1269 			pr_cont("%02x ", insn);
1270 		}
1271 	}
1272 	pr_cont("\n");
1273 #endif
1274 	preempt_disable();
1275 	show_regs(regs);
1276 	preempt_enable();
1277 }
1278 
1279 static int __init setup_print_fatal_signals(char *str)
1280 {
1281 	get_option (&str, &print_fatal_signals);
1282 
1283 	return 1;
1284 }
1285 
1286 __setup("print-fatal-signals=", setup_print_fatal_signals);
1287 
1288 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1289 			enum pid_type type)
1290 {
1291 	unsigned long flags;
1292 	int ret = -ESRCH;
1293 
1294 	if (lock_task_sighand(p, &flags)) {
1295 		ret = send_signal_locked(sig, info, p, type);
1296 		unlock_task_sighand(p, &flags);
1297 	}
1298 
1299 	return ret;
1300 }
1301 
1302 enum sig_handler {
1303 	HANDLER_CURRENT, /* If reachable use the current handler */
1304 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1305 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1306 };
1307 
1308 /*
1309  * Force a signal that the process can't ignore: if necessary
1310  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1311  *
1312  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1313  * since we do not want to have a signal handler that was blocked
1314  * be invoked when user space had explicitly blocked it.
1315  *
1316  * We don't want to have recursive SIGSEGV's etc, for example,
1317  * that is why we also clear SIGNAL_UNKILLABLE.
1318  */
1319 static int
1320 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1321 	enum sig_handler handler)
1322 {
1323 	unsigned long int flags;
1324 	int ret, blocked, ignored;
1325 	struct k_sigaction *action;
1326 	int sig = info->si_signo;
1327 
1328 	spin_lock_irqsave(&t->sighand->siglock, flags);
1329 	action = &t->sighand->action[sig-1];
1330 	ignored = action->sa.sa_handler == SIG_IGN;
1331 	blocked = sigismember(&t->blocked, sig);
1332 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1333 		action->sa.sa_handler = SIG_DFL;
1334 		if (handler == HANDLER_EXIT)
1335 			action->sa.sa_flags |= SA_IMMUTABLE;
1336 		if (blocked) {
1337 			sigdelset(&t->blocked, sig);
1338 			recalc_sigpending_and_wake(t);
1339 		}
1340 	}
1341 	/*
1342 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1343 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1344 	 */
1345 	if (action->sa.sa_handler == SIG_DFL &&
1346 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1347 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1348 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1349 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1350 
1351 	return ret;
1352 }
1353 
1354 int force_sig_info(struct kernel_siginfo *info)
1355 {
1356 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1357 }
1358 
1359 /*
1360  * Nuke all other threads in the group.
1361  */
1362 int zap_other_threads(struct task_struct *p)
1363 {
1364 	struct task_struct *t = p;
1365 	int count = 0;
1366 
1367 	p->signal->group_stop_count = 0;
1368 
1369 	while_each_thread(p, t) {
1370 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1371 		/* Don't require de_thread to wait for the vhost_worker */
1372 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1373 			count++;
1374 
1375 		/* Don't bother with already dead threads */
1376 		if (t->exit_state)
1377 			continue;
1378 		sigaddset(&t->pending.signal, SIGKILL);
1379 		signal_wake_up(t, 1);
1380 	}
1381 
1382 	return count;
1383 }
1384 
1385 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1386 					   unsigned long *flags)
1387 {
1388 	struct sighand_struct *sighand;
1389 
1390 	rcu_read_lock();
1391 	for (;;) {
1392 		sighand = rcu_dereference(tsk->sighand);
1393 		if (unlikely(sighand == NULL))
1394 			break;
1395 
1396 		/*
1397 		 * This sighand can be already freed and even reused, but
1398 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1399 		 * initializes ->siglock: this slab can't go away, it has
1400 		 * the same object type, ->siglock can't be reinitialized.
1401 		 *
1402 		 * We need to ensure that tsk->sighand is still the same
1403 		 * after we take the lock, we can race with de_thread() or
1404 		 * __exit_signal(). In the latter case the next iteration
1405 		 * must see ->sighand == NULL.
1406 		 */
1407 		spin_lock_irqsave(&sighand->siglock, *flags);
1408 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1409 			break;
1410 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1411 	}
1412 	rcu_read_unlock();
1413 
1414 	return sighand;
1415 }
1416 
1417 #ifdef CONFIG_LOCKDEP
1418 void lockdep_assert_task_sighand_held(struct task_struct *task)
1419 {
1420 	struct sighand_struct *sighand;
1421 
1422 	rcu_read_lock();
1423 	sighand = rcu_dereference(task->sighand);
1424 	if (sighand)
1425 		lockdep_assert_held(&sighand->siglock);
1426 	else
1427 		WARN_ON_ONCE(1);
1428 	rcu_read_unlock();
1429 }
1430 #endif
1431 
1432 /*
1433  * send signal info to all the members of a group
1434  */
1435 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1436 			struct task_struct *p, enum pid_type type)
1437 {
1438 	int ret;
1439 
1440 	rcu_read_lock();
1441 	ret = check_kill_permission(sig, info, p);
1442 	rcu_read_unlock();
1443 
1444 	if (!ret && sig)
1445 		ret = do_send_sig_info(sig, info, p, type);
1446 
1447 	return ret;
1448 }
1449 
1450 /*
1451  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1452  * control characters do (^C, ^Z etc)
1453  * - the caller must hold at least a readlock on tasklist_lock
1454  */
1455 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1456 {
1457 	struct task_struct *p = NULL;
1458 	int retval, success;
1459 
1460 	success = 0;
1461 	retval = -ESRCH;
1462 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1463 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1464 		success |= !err;
1465 		retval = err;
1466 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1467 	return success ? 0 : retval;
1468 }
1469 
1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471 {
1472 	int error = -ESRCH;
1473 	struct task_struct *p;
1474 
1475 	for (;;) {
1476 		rcu_read_lock();
1477 		p = pid_task(pid, PIDTYPE_PID);
1478 		if (p)
1479 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1480 		rcu_read_unlock();
1481 		if (likely(!p || error != -ESRCH))
1482 			return error;
1483 
1484 		/*
1485 		 * The task was unhashed in between, try again.  If it
1486 		 * is dead, pid_task() will return NULL, if we race with
1487 		 * de_thread() it will find the new leader.
1488 		 */
1489 	}
1490 }
1491 
1492 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1493 {
1494 	int error;
1495 	rcu_read_lock();
1496 	error = kill_pid_info(sig, info, find_vpid(pid));
1497 	rcu_read_unlock();
1498 	return error;
1499 }
1500 
1501 static inline bool kill_as_cred_perm(const struct cred *cred,
1502 				     struct task_struct *target)
1503 {
1504 	const struct cred *pcred = __task_cred(target);
1505 
1506 	return uid_eq(cred->euid, pcred->suid) ||
1507 	       uid_eq(cred->euid, pcred->uid) ||
1508 	       uid_eq(cred->uid, pcred->suid) ||
1509 	       uid_eq(cred->uid, pcred->uid);
1510 }
1511 
1512 /*
1513  * The usb asyncio usage of siginfo is wrong.  The glibc support
1514  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1515  * AKA after the generic fields:
1516  *	kernel_pid_t	si_pid;
1517  *	kernel_uid32_t	si_uid;
1518  *	sigval_t	si_value;
1519  *
1520  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1521  * after the generic fields is:
1522  *	void __user 	*si_addr;
1523  *
1524  * This is a practical problem when there is a 64bit big endian kernel
1525  * and a 32bit userspace.  As the 32bit address will encoded in the low
1526  * 32bits of the pointer.  Those low 32bits will be stored at higher
1527  * address than appear in a 32 bit pointer.  So userspace will not
1528  * see the address it was expecting for it's completions.
1529  *
1530  * There is nothing in the encoding that can allow
1531  * copy_siginfo_to_user32 to detect this confusion of formats, so
1532  * handle this by requiring the caller of kill_pid_usb_asyncio to
1533  * notice when this situration takes place and to store the 32bit
1534  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1535  * parameter.
1536  */
1537 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1538 			 struct pid *pid, const struct cred *cred)
1539 {
1540 	struct kernel_siginfo info;
1541 	struct task_struct *p;
1542 	unsigned long flags;
1543 	int ret = -EINVAL;
1544 
1545 	if (!valid_signal(sig))
1546 		return ret;
1547 
1548 	clear_siginfo(&info);
1549 	info.si_signo = sig;
1550 	info.si_errno = errno;
1551 	info.si_code = SI_ASYNCIO;
1552 	*((sigval_t *)&info.si_pid) = addr;
1553 
1554 	rcu_read_lock();
1555 	p = pid_task(pid, PIDTYPE_PID);
1556 	if (!p) {
1557 		ret = -ESRCH;
1558 		goto out_unlock;
1559 	}
1560 	if (!kill_as_cred_perm(cred, p)) {
1561 		ret = -EPERM;
1562 		goto out_unlock;
1563 	}
1564 	ret = security_task_kill(p, &info, sig, cred);
1565 	if (ret)
1566 		goto out_unlock;
1567 
1568 	if (sig) {
1569 		if (lock_task_sighand(p, &flags)) {
1570 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1571 			unlock_task_sighand(p, &flags);
1572 		} else
1573 			ret = -ESRCH;
1574 	}
1575 out_unlock:
1576 	rcu_read_unlock();
1577 	return ret;
1578 }
1579 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1580 
1581 /*
1582  * kill_something_info() interprets pid in interesting ways just like kill(2).
1583  *
1584  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1585  * is probably wrong.  Should make it like BSD or SYSV.
1586  */
1587 
1588 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1589 {
1590 	int ret;
1591 
1592 	if (pid > 0)
1593 		return kill_proc_info(sig, info, pid);
1594 
1595 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1596 	if (pid == INT_MIN)
1597 		return -ESRCH;
1598 
1599 	read_lock(&tasklist_lock);
1600 	if (pid != -1) {
1601 		ret = __kill_pgrp_info(sig, info,
1602 				pid ? find_vpid(-pid) : task_pgrp(current));
1603 	} else {
1604 		int retval = 0, count = 0;
1605 		struct task_struct * p;
1606 
1607 		for_each_process(p) {
1608 			if (task_pid_vnr(p) > 1 &&
1609 					!same_thread_group(p, current)) {
1610 				int err = group_send_sig_info(sig, info, p,
1611 							      PIDTYPE_MAX);
1612 				++count;
1613 				if (err != -EPERM)
1614 					retval = err;
1615 			}
1616 		}
1617 		ret = count ? retval : -ESRCH;
1618 	}
1619 	read_unlock(&tasklist_lock);
1620 
1621 	return ret;
1622 }
1623 
1624 /*
1625  * These are for backward compatibility with the rest of the kernel source.
1626  */
1627 
1628 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1629 {
1630 	/*
1631 	 * Make sure legacy kernel users don't send in bad values
1632 	 * (normal paths check this in check_kill_permission).
1633 	 */
1634 	if (!valid_signal(sig))
1635 		return -EINVAL;
1636 
1637 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1638 }
1639 EXPORT_SYMBOL(send_sig_info);
1640 
1641 #define __si_special(priv) \
1642 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1643 
1644 int
1645 send_sig(int sig, struct task_struct *p, int priv)
1646 {
1647 	return send_sig_info(sig, __si_special(priv), p);
1648 }
1649 EXPORT_SYMBOL(send_sig);
1650 
1651 void force_sig(int sig)
1652 {
1653 	struct kernel_siginfo info;
1654 
1655 	clear_siginfo(&info);
1656 	info.si_signo = sig;
1657 	info.si_errno = 0;
1658 	info.si_code = SI_KERNEL;
1659 	info.si_pid = 0;
1660 	info.si_uid = 0;
1661 	force_sig_info(&info);
1662 }
1663 EXPORT_SYMBOL(force_sig);
1664 
1665 void force_fatal_sig(int sig)
1666 {
1667 	struct kernel_siginfo info;
1668 
1669 	clear_siginfo(&info);
1670 	info.si_signo = sig;
1671 	info.si_errno = 0;
1672 	info.si_code = SI_KERNEL;
1673 	info.si_pid = 0;
1674 	info.si_uid = 0;
1675 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1676 }
1677 
1678 void force_exit_sig(int sig)
1679 {
1680 	struct kernel_siginfo info;
1681 
1682 	clear_siginfo(&info);
1683 	info.si_signo = sig;
1684 	info.si_errno = 0;
1685 	info.si_code = SI_KERNEL;
1686 	info.si_pid = 0;
1687 	info.si_uid = 0;
1688 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1689 }
1690 
1691 /*
1692  * When things go south during signal handling, we
1693  * will force a SIGSEGV. And if the signal that caused
1694  * the problem was already a SIGSEGV, we'll want to
1695  * make sure we don't even try to deliver the signal..
1696  */
1697 void force_sigsegv(int sig)
1698 {
1699 	if (sig == SIGSEGV)
1700 		force_fatal_sig(SIGSEGV);
1701 	else
1702 		force_sig(SIGSEGV);
1703 }
1704 
1705 int force_sig_fault_to_task(int sig, int code, void __user *addr
1706 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1707 	, struct task_struct *t)
1708 {
1709 	struct kernel_siginfo info;
1710 
1711 	clear_siginfo(&info);
1712 	info.si_signo = sig;
1713 	info.si_errno = 0;
1714 	info.si_code  = code;
1715 	info.si_addr  = addr;
1716 #ifdef __ia64__
1717 	info.si_imm = imm;
1718 	info.si_flags = flags;
1719 	info.si_isr = isr;
1720 #endif
1721 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1722 }
1723 
1724 int force_sig_fault(int sig, int code, void __user *addr
1725 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1726 {
1727 	return force_sig_fault_to_task(sig, code, addr
1728 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1729 }
1730 
1731 int send_sig_fault(int sig, int code, void __user *addr
1732 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1733 	, struct task_struct *t)
1734 {
1735 	struct kernel_siginfo info;
1736 
1737 	clear_siginfo(&info);
1738 	info.si_signo = sig;
1739 	info.si_errno = 0;
1740 	info.si_code  = code;
1741 	info.si_addr  = addr;
1742 #ifdef __ia64__
1743 	info.si_imm = imm;
1744 	info.si_flags = flags;
1745 	info.si_isr = isr;
1746 #endif
1747 	return send_sig_info(info.si_signo, &info, t);
1748 }
1749 
1750 int force_sig_mceerr(int code, void __user *addr, short lsb)
1751 {
1752 	struct kernel_siginfo info;
1753 
1754 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1755 	clear_siginfo(&info);
1756 	info.si_signo = SIGBUS;
1757 	info.si_errno = 0;
1758 	info.si_code = code;
1759 	info.si_addr = addr;
1760 	info.si_addr_lsb = lsb;
1761 	return force_sig_info(&info);
1762 }
1763 
1764 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1765 {
1766 	struct kernel_siginfo info;
1767 
1768 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1769 	clear_siginfo(&info);
1770 	info.si_signo = SIGBUS;
1771 	info.si_errno = 0;
1772 	info.si_code = code;
1773 	info.si_addr = addr;
1774 	info.si_addr_lsb = lsb;
1775 	return send_sig_info(info.si_signo, &info, t);
1776 }
1777 EXPORT_SYMBOL(send_sig_mceerr);
1778 
1779 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1780 {
1781 	struct kernel_siginfo info;
1782 
1783 	clear_siginfo(&info);
1784 	info.si_signo = SIGSEGV;
1785 	info.si_errno = 0;
1786 	info.si_code  = SEGV_BNDERR;
1787 	info.si_addr  = addr;
1788 	info.si_lower = lower;
1789 	info.si_upper = upper;
1790 	return force_sig_info(&info);
1791 }
1792 
1793 #ifdef SEGV_PKUERR
1794 int force_sig_pkuerr(void __user *addr, u32 pkey)
1795 {
1796 	struct kernel_siginfo info;
1797 
1798 	clear_siginfo(&info);
1799 	info.si_signo = SIGSEGV;
1800 	info.si_errno = 0;
1801 	info.si_code  = SEGV_PKUERR;
1802 	info.si_addr  = addr;
1803 	info.si_pkey  = pkey;
1804 	return force_sig_info(&info);
1805 }
1806 #endif
1807 
1808 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1809 {
1810 	struct kernel_siginfo info;
1811 
1812 	clear_siginfo(&info);
1813 	info.si_signo     = SIGTRAP;
1814 	info.si_errno     = 0;
1815 	info.si_code      = TRAP_PERF;
1816 	info.si_addr      = addr;
1817 	info.si_perf_data = sig_data;
1818 	info.si_perf_type = type;
1819 
1820 	/*
1821 	 * Signals generated by perf events should not terminate the whole
1822 	 * process if SIGTRAP is blocked, however, delivering the signal
1823 	 * asynchronously is better than not delivering at all. But tell user
1824 	 * space if the signal was asynchronous, so it can clearly be
1825 	 * distinguished from normal synchronous ones.
1826 	 */
1827 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1828 				     TRAP_PERF_FLAG_ASYNC :
1829 				     0;
1830 
1831 	return send_sig_info(info.si_signo, &info, current);
1832 }
1833 
1834 /**
1835  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1836  * @syscall: syscall number to send to userland
1837  * @reason: filter-supplied reason code to send to userland (via si_errno)
1838  * @force_coredump: true to trigger a coredump
1839  *
1840  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1841  */
1842 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1843 {
1844 	struct kernel_siginfo info;
1845 
1846 	clear_siginfo(&info);
1847 	info.si_signo = SIGSYS;
1848 	info.si_code = SYS_SECCOMP;
1849 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1850 	info.si_errno = reason;
1851 	info.si_arch = syscall_get_arch(current);
1852 	info.si_syscall = syscall;
1853 	return force_sig_info_to_task(&info, current,
1854 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1855 }
1856 
1857 /* For the crazy architectures that include trap information in
1858  * the errno field, instead of an actual errno value.
1859  */
1860 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1861 {
1862 	struct kernel_siginfo info;
1863 
1864 	clear_siginfo(&info);
1865 	info.si_signo = SIGTRAP;
1866 	info.si_errno = errno;
1867 	info.si_code  = TRAP_HWBKPT;
1868 	info.si_addr  = addr;
1869 	return force_sig_info(&info);
1870 }
1871 
1872 /* For the rare architectures that include trap information using
1873  * si_trapno.
1874  */
1875 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1876 {
1877 	struct kernel_siginfo info;
1878 
1879 	clear_siginfo(&info);
1880 	info.si_signo = sig;
1881 	info.si_errno = 0;
1882 	info.si_code  = code;
1883 	info.si_addr  = addr;
1884 	info.si_trapno = trapno;
1885 	return force_sig_info(&info);
1886 }
1887 
1888 /* For the rare architectures that include trap information using
1889  * si_trapno.
1890  */
1891 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1892 			  struct task_struct *t)
1893 {
1894 	struct kernel_siginfo info;
1895 
1896 	clear_siginfo(&info);
1897 	info.si_signo = sig;
1898 	info.si_errno = 0;
1899 	info.si_code  = code;
1900 	info.si_addr  = addr;
1901 	info.si_trapno = trapno;
1902 	return send_sig_info(info.si_signo, &info, t);
1903 }
1904 
1905 int kill_pgrp(struct pid *pid, int sig, int priv)
1906 {
1907 	int ret;
1908 
1909 	read_lock(&tasklist_lock);
1910 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1911 	read_unlock(&tasklist_lock);
1912 
1913 	return ret;
1914 }
1915 EXPORT_SYMBOL(kill_pgrp);
1916 
1917 int kill_pid(struct pid *pid, int sig, int priv)
1918 {
1919 	return kill_pid_info(sig, __si_special(priv), pid);
1920 }
1921 EXPORT_SYMBOL(kill_pid);
1922 
1923 /*
1924  * These functions support sending signals using preallocated sigqueue
1925  * structures.  This is needed "because realtime applications cannot
1926  * afford to lose notifications of asynchronous events, like timer
1927  * expirations or I/O completions".  In the case of POSIX Timers
1928  * we allocate the sigqueue structure from the timer_create.  If this
1929  * allocation fails we are able to report the failure to the application
1930  * with an EAGAIN error.
1931  */
1932 struct sigqueue *sigqueue_alloc(void)
1933 {
1934 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1935 }
1936 
1937 void sigqueue_free(struct sigqueue *q)
1938 {
1939 	unsigned long flags;
1940 	spinlock_t *lock = &current->sighand->siglock;
1941 
1942 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1943 	/*
1944 	 * We must hold ->siglock while testing q->list
1945 	 * to serialize with collect_signal() or with
1946 	 * __exit_signal()->flush_sigqueue().
1947 	 */
1948 	spin_lock_irqsave(lock, flags);
1949 	q->flags &= ~SIGQUEUE_PREALLOC;
1950 	/*
1951 	 * If it is queued it will be freed when dequeued,
1952 	 * like the "regular" sigqueue.
1953 	 */
1954 	if (!list_empty(&q->list))
1955 		q = NULL;
1956 	spin_unlock_irqrestore(lock, flags);
1957 
1958 	if (q)
1959 		__sigqueue_free(q);
1960 }
1961 
1962 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1963 {
1964 	int sig = q->info.si_signo;
1965 	struct sigpending *pending;
1966 	struct task_struct *t;
1967 	unsigned long flags;
1968 	int ret, result;
1969 
1970 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1971 
1972 	ret = -1;
1973 	rcu_read_lock();
1974 
1975 	/*
1976 	 * This function is used by POSIX timers to deliver a timer signal.
1977 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1978 	 * set), the signal must be delivered to the specific thread (queues
1979 	 * into t->pending).
1980 	 *
1981 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1982 	 * process. In this case, prefer to deliver to current if it is in
1983 	 * the same thread group as the target process, which avoids
1984 	 * unnecessarily waking up a potentially idle task.
1985 	 */
1986 	t = pid_task(pid, type);
1987 	if (!t)
1988 		goto ret;
1989 	if (type != PIDTYPE_PID && same_thread_group(t, current))
1990 		t = current;
1991 	if (!likely(lock_task_sighand(t, &flags)))
1992 		goto ret;
1993 
1994 	ret = 1; /* the signal is ignored */
1995 	result = TRACE_SIGNAL_IGNORED;
1996 	if (!prepare_signal(sig, t, false))
1997 		goto out;
1998 
1999 	ret = 0;
2000 	if (unlikely(!list_empty(&q->list))) {
2001 		/*
2002 		 * If an SI_TIMER entry is already queue just increment
2003 		 * the overrun count.
2004 		 */
2005 		BUG_ON(q->info.si_code != SI_TIMER);
2006 		q->info.si_overrun++;
2007 		result = TRACE_SIGNAL_ALREADY_PENDING;
2008 		goto out;
2009 	}
2010 	q->info.si_overrun = 0;
2011 
2012 	signalfd_notify(t, sig);
2013 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2014 	list_add_tail(&q->list, &pending->list);
2015 	sigaddset(&pending->signal, sig);
2016 	complete_signal(sig, t, type);
2017 	result = TRACE_SIGNAL_DELIVERED;
2018 out:
2019 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2020 	unlock_task_sighand(t, &flags);
2021 ret:
2022 	rcu_read_unlock();
2023 	return ret;
2024 }
2025 
2026 static void do_notify_pidfd(struct task_struct *task)
2027 {
2028 	struct pid *pid;
2029 
2030 	WARN_ON(task->exit_state == 0);
2031 	pid = task_pid(task);
2032 	wake_up_all(&pid->wait_pidfd);
2033 }
2034 
2035 /*
2036  * Let a parent know about the death of a child.
2037  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2038  *
2039  * Returns true if our parent ignored us and so we've switched to
2040  * self-reaping.
2041  */
2042 bool do_notify_parent(struct task_struct *tsk, int sig)
2043 {
2044 	struct kernel_siginfo info;
2045 	unsigned long flags;
2046 	struct sighand_struct *psig;
2047 	bool autoreap = false;
2048 	u64 utime, stime;
2049 
2050 	WARN_ON_ONCE(sig == -1);
2051 
2052 	/* do_notify_parent_cldstop should have been called instead.  */
2053 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2054 
2055 	WARN_ON_ONCE(!tsk->ptrace &&
2056 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2057 
2058 	/* Wake up all pidfd waiters */
2059 	do_notify_pidfd(tsk);
2060 
2061 	if (sig != SIGCHLD) {
2062 		/*
2063 		 * This is only possible if parent == real_parent.
2064 		 * Check if it has changed security domain.
2065 		 */
2066 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2067 			sig = SIGCHLD;
2068 	}
2069 
2070 	clear_siginfo(&info);
2071 	info.si_signo = sig;
2072 	info.si_errno = 0;
2073 	/*
2074 	 * We are under tasklist_lock here so our parent is tied to
2075 	 * us and cannot change.
2076 	 *
2077 	 * task_active_pid_ns will always return the same pid namespace
2078 	 * until a task passes through release_task.
2079 	 *
2080 	 * write_lock() currently calls preempt_disable() which is the
2081 	 * same as rcu_read_lock(), but according to Oleg, this is not
2082 	 * correct to rely on this
2083 	 */
2084 	rcu_read_lock();
2085 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2086 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2087 				       task_uid(tsk));
2088 	rcu_read_unlock();
2089 
2090 	task_cputime(tsk, &utime, &stime);
2091 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2092 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2093 
2094 	info.si_status = tsk->exit_code & 0x7f;
2095 	if (tsk->exit_code & 0x80)
2096 		info.si_code = CLD_DUMPED;
2097 	else if (tsk->exit_code & 0x7f)
2098 		info.si_code = CLD_KILLED;
2099 	else {
2100 		info.si_code = CLD_EXITED;
2101 		info.si_status = tsk->exit_code >> 8;
2102 	}
2103 
2104 	psig = tsk->parent->sighand;
2105 	spin_lock_irqsave(&psig->siglock, flags);
2106 	if (!tsk->ptrace && sig == SIGCHLD &&
2107 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2108 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2109 		/*
2110 		 * We are exiting and our parent doesn't care.  POSIX.1
2111 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2112 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2113 		 * automatically and not left for our parent's wait4 call.
2114 		 * Rather than having the parent do it as a magic kind of
2115 		 * signal handler, we just set this to tell do_exit that we
2116 		 * can be cleaned up without becoming a zombie.  Note that
2117 		 * we still call __wake_up_parent in this case, because a
2118 		 * blocked sys_wait4 might now return -ECHILD.
2119 		 *
2120 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2121 		 * is implementation-defined: we do (if you don't want
2122 		 * it, just use SIG_IGN instead).
2123 		 */
2124 		autoreap = true;
2125 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2126 			sig = 0;
2127 	}
2128 	/*
2129 	 * Send with __send_signal as si_pid and si_uid are in the
2130 	 * parent's namespaces.
2131 	 */
2132 	if (valid_signal(sig) && sig)
2133 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2134 	__wake_up_parent(tsk, tsk->parent);
2135 	spin_unlock_irqrestore(&psig->siglock, flags);
2136 
2137 	return autoreap;
2138 }
2139 
2140 /**
2141  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2142  * @tsk: task reporting the state change
2143  * @for_ptracer: the notification is for ptracer
2144  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2145  *
2146  * Notify @tsk's parent that the stopped/continued state has changed.  If
2147  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2148  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2149  *
2150  * CONTEXT:
2151  * Must be called with tasklist_lock at least read locked.
2152  */
2153 static void do_notify_parent_cldstop(struct task_struct *tsk,
2154 				     bool for_ptracer, int why)
2155 {
2156 	struct kernel_siginfo info;
2157 	unsigned long flags;
2158 	struct task_struct *parent;
2159 	struct sighand_struct *sighand;
2160 	u64 utime, stime;
2161 
2162 	if (for_ptracer) {
2163 		parent = tsk->parent;
2164 	} else {
2165 		tsk = tsk->group_leader;
2166 		parent = tsk->real_parent;
2167 	}
2168 
2169 	clear_siginfo(&info);
2170 	info.si_signo = SIGCHLD;
2171 	info.si_errno = 0;
2172 	/*
2173 	 * see comment in do_notify_parent() about the following 4 lines
2174 	 */
2175 	rcu_read_lock();
2176 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2177 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2178 	rcu_read_unlock();
2179 
2180 	task_cputime(tsk, &utime, &stime);
2181 	info.si_utime = nsec_to_clock_t(utime);
2182 	info.si_stime = nsec_to_clock_t(stime);
2183 
2184  	info.si_code = why;
2185  	switch (why) {
2186  	case CLD_CONTINUED:
2187  		info.si_status = SIGCONT;
2188  		break;
2189  	case CLD_STOPPED:
2190  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2191  		break;
2192  	case CLD_TRAPPED:
2193  		info.si_status = tsk->exit_code & 0x7f;
2194  		break;
2195  	default:
2196  		BUG();
2197  	}
2198 
2199 	sighand = parent->sighand;
2200 	spin_lock_irqsave(&sighand->siglock, flags);
2201 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2202 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2203 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2204 	/*
2205 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2206 	 */
2207 	__wake_up_parent(tsk, parent);
2208 	spin_unlock_irqrestore(&sighand->siglock, flags);
2209 }
2210 
2211 /*
2212  * This must be called with current->sighand->siglock held.
2213  *
2214  * This should be the path for all ptrace stops.
2215  * We always set current->last_siginfo while stopped here.
2216  * That makes it a way to test a stopped process for
2217  * being ptrace-stopped vs being job-control-stopped.
2218  *
2219  * Returns the signal the ptracer requested the code resume
2220  * with.  If the code did not stop because the tracer is gone,
2221  * the stop signal remains unchanged unless clear_code.
2222  */
2223 static int ptrace_stop(int exit_code, int why, unsigned long message,
2224 		       kernel_siginfo_t *info)
2225 	__releases(&current->sighand->siglock)
2226 	__acquires(&current->sighand->siglock)
2227 {
2228 	bool gstop_done = false;
2229 
2230 	if (arch_ptrace_stop_needed()) {
2231 		/*
2232 		 * The arch code has something special to do before a
2233 		 * ptrace stop.  This is allowed to block, e.g. for faults
2234 		 * on user stack pages.  We can't keep the siglock while
2235 		 * calling arch_ptrace_stop, so we must release it now.
2236 		 * To preserve proper semantics, we must do this before
2237 		 * any signal bookkeeping like checking group_stop_count.
2238 		 */
2239 		spin_unlock_irq(&current->sighand->siglock);
2240 		arch_ptrace_stop();
2241 		spin_lock_irq(&current->sighand->siglock);
2242 	}
2243 
2244 	/*
2245 	 * After this point ptrace_signal_wake_up or signal_wake_up
2246 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2247 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2248 	 * signals here to prevent ptrace_stop sleeping in schedule.
2249 	 */
2250 	if (!current->ptrace || __fatal_signal_pending(current))
2251 		return exit_code;
2252 
2253 	set_special_state(TASK_TRACED);
2254 	current->jobctl |= JOBCTL_TRACED;
2255 
2256 	/*
2257 	 * We're committing to trapping.  TRACED should be visible before
2258 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2259 	 * Also, transition to TRACED and updates to ->jobctl should be
2260 	 * atomic with respect to siglock and should be done after the arch
2261 	 * hook as siglock is released and regrabbed across it.
2262 	 *
2263 	 *     TRACER				    TRACEE
2264 	 *
2265 	 *     ptrace_attach()
2266 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2267 	 *     do_wait()
2268 	 *       set_current_state()                smp_wmb();
2269 	 *       ptrace_do_wait()
2270 	 *         wait_task_stopped()
2271 	 *           task_stopped_code()
2272 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2273 	 */
2274 	smp_wmb();
2275 
2276 	current->ptrace_message = message;
2277 	current->last_siginfo = info;
2278 	current->exit_code = exit_code;
2279 
2280 	/*
2281 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2282 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2283 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2284 	 * could be clear now.  We act as if SIGCONT is received after
2285 	 * TASK_TRACED is entered - ignore it.
2286 	 */
2287 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2288 		gstop_done = task_participate_group_stop(current);
2289 
2290 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2291 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2292 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2293 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2294 
2295 	/* entering a trap, clear TRAPPING */
2296 	task_clear_jobctl_trapping(current);
2297 
2298 	spin_unlock_irq(&current->sighand->siglock);
2299 	read_lock(&tasklist_lock);
2300 	/*
2301 	 * Notify parents of the stop.
2302 	 *
2303 	 * While ptraced, there are two parents - the ptracer and
2304 	 * the real_parent of the group_leader.  The ptracer should
2305 	 * know about every stop while the real parent is only
2306 	 * interested in the completion of group stop.  The states
2307 	 * for the two don't interact with each other.  Notify
2308 	 * separately unless they're gonna be duplicates.
2309 	 */
2310 	if (current->ptrace)
2311 		do_notify_parent_cldstop(current, true, why);
2312 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2313 		do_notify_parent_cldstop(current, false, why);
2314 
2315 	/*
2316 	 * Don't want to allow preemption here, because
2317 	 * sys_ptrace() needs this task to be inactive.
2318 	 *
2319 	 * XXX: implement read_unlock_no_resched().
2320 	 */
2321 	preempt_disable();
2322 	read_unlock(&tasklist_lock);
2323 	cgroup_enter_frozen();
2324 	preempt_enable_no_resched();
2325 	schedule();
2326 	cgroup_leave_frozen(true);
2327 
2328 	/*
2329 	 * We are back.  Now reacquire the siglock before touching
2330 	 * last_siginfo, so that we are sure to have synchronized with
2331 	 * any signal-sending on another CPU that wants to examine it.
2332 	 */
2333 	spin_lock_irq(&current->sighand->siglock);
2334 	exit_code = current->exit_code;
2335 	current->last_siginfo = NULL;
2336 	current->ptrace_message = 0;
2337 	current->exit_code = 0;
2338 
2339 	/* LISTENING can be set only during STOP traps, clear it */
2340 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2341 
2342 	/*
2343 	 * Queued signals ignored us while we were stopped for tracing.
2344 	 * So check for any that we should take before resuming user mode.
2345 	 * This sets TIF_SIGPENDING, but never clears it.
2346 	 */
2347 	recalc_sigpending_tsk(current);
2348 	return exit_code;
2349 }
2350 
2351 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2352 {
2353 	kernel_siginfo_t info;
2354 
2355 	clear_siginfo(&info);
2356 	info.si_signo = signr;
2357 	info.si_code = exit_code;
2358 	info.si_pid = task_pid_vnr(current);
2359 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2360 
2361 	/* Let the debugger run.  */
2362 	return ptrace_stop(exit_code, why, message, &info);
2363 }
2364 
2365 int ptrace_notify(int exit_code, unsigned long message)
2366 {
2367 	int signr;
2368 
2369 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2370 	if (unlikely(task_work_pending(current)))
2371 		task_work_run();
2372 
2373 	spin_lock_irq(&current->sighand->siglock);
2374 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2375 	spin_unlock_irq(&current->sighand->siglock);
2376 	return signr;
2377 }
2378 
2379 /**
2380  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2381  * @signr: signr causing group stop if initiating
2382  *
2383  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2384  * and participate in it.  If already set, participate in the existing
2385  * group stop.  If participated in a group stop (and thus slept), %true is
2386  * returned with siglock released.
2387  *
2388  * If ptraced, this function doesn't handle stop itself.  Instead,
2389  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2390  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2391  * places afterwards.
2392  *
2393  * CONTEXT:
2394  * Must be called with @current->sighand->siglock held, which is released
2395  * on %true return.
2396  *
2397  * RETURNS:
2398  * %false if group stop is already cancelled or ptrace trap is scheduled.
2399  * %true if participated in group stop.
2400  */
2401 static bool do_signal_stop(int signr)
2402 	__releases(&current->sighand->siglock)
2403 {
2404 	struct signal_struct *sig = current->signal;
2405 
2406 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2407 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2408 		struct task_struct *t;
2409 
2410 		/* signr will be recorded in task->jobctl for retries */
2411 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2412 
2413 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2414 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2415 		    unlikely(sig->group_exec_task))
2416 			return false;
2417 		/*
2418 		 * There is no group stop already in progress.  We must
2419 		 * initiate one now.
2420 		 *
2421 		 * While ptraced, a task may be resumed while group stop is
2422 		 * still in effect and then receive a stop signal and
2423 		 * initiate another group stop.  This deviates from the
2424 		 * usual behavior as two consecutive stop signals can't
2425 		 * cause two group stops when !ptraced.  That is why we
2426 		 * also check !task_is_stopped(t) below.
2427 		 *
2428 		 * The condition can be distinguished by testing whether
2429 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2430 		 * group_exit_code in such case.
2431 		 *
2432 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2433 		 * an intervening stop signal is required to cause two
2434 		 * continued events regardless of ptrace.
2435 		 */
2436 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2437 			sig->group_exit_code = signr;
2438 
2439 		sig->group_stop_count = 0;
2440 
2441 		if (task_set_jobctl_pending(current, signr | gstop))
2442 			sig->group_stop_count++;
2443 
2444 		t = current;
2445 		while_each_thread(current, t) {
2446 			/*
2447 			 * Setting state to TASK_STOPPED for a group
2448 			 * stop is always done with the siglock held,
2449 			 * so this check has no races.
2450 			 */
2451 			if (!task_is_stopped(t) &&
2452 			    task_set_jobctl_pending(t, signr | gstop)) {
2453 				sig->group_stop_count++;
2454 				if (likely(!(t->ptrace & PT_SEIZED)))
2455 					signal_wake_up(t, 0);
2456 				else
2457 					ptrace_trap_notify(t);
2458 			}
2459 		}
2460 	}
2461 
2462 	if (likely(!current->ptrace)) {
2463 		int notify = 0;
2464 
2465 		/*
2466 		 * If there are no other threads in the group, or if there
2467 		 * is a group stop in progress and we are the last to stop,
2468 		 * report to the parent.
2469 		 */
2470 		if (task_participate_group_stop(current))
2471 			notify = CLD_STOPPED;
2472 
2473 		current->jobctl |= JOBCTL_STOPPED;
2474 		set_special_state(TASK_STOPPED);
2475 		spin_unlock_irq(&current->sighand->siglock);
2476 
2477 		/*
2478 		 * Notify the parent of the group stop completion.  Because
2479 		 * we're not holding either the siglock or tasklist_lock
2480 		 * here, ptracer may attach inbetween; however, this is for
2481 		 * group stop and should always be delivered to the real
2482 		 * parent of the group leader.  The new ptracer will get
2483 		 * its notification when this task transitions into
2484 		 * TASK_TRACED.
2485 		 */
2486 		if (notify) {
2487 			read_lock(&tasklist_lock);
2488 			do_notify_parent_cldstop(current, false, notify);
2489 			read_unlock(&tasklist_lock);
2490 		}
2491 
2492 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2493 		cgroup_enter_frozen();
2494 		schedule();
2495 		return true;
2496 	} else {
2497 		/*
2498 		 * While ptraced, group stop is handled by STOP trap.
2499 		 * Schedule it and let the caller deal with it.
2500 		 */
2501 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2502 		return false;
2503 	}
2504 }
2505 
2506 /**
2507  * do_jobctl_trap - take care of ptrace jobctl traps
2508  *
2509  * When PT_SEIZED, it's used for both group stop and explicit
2510  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2511  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2512  * the stop signal; otherwise, %SIGTRAP.
2513  *
2514  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2515  * number as exit_code and no siginfo.
2516  *
2517  * CONTEXT:
2518  * Must be called with @current->sighand->siglock held, which may be
2519  * released and re-acquired before returning with intervening sleep.
2520  */
2521 static void do_jobctl_trap(void)
2522 {
2523 	struct signal_struct *signal = current->signal;
2524 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2525 
2526 	if (current->ptrace & PT_SEIZED) {
2527 		if (!signal->group_stop_count &&
2528 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2529 			signr = SIGTRAP;
2530 		WARN_ON_ONCE(!signr);
2531 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2532 				 CLD_STOPPED, 0);
2533 	} else {
2534 		WARN_ON_ONCE(!signr);
2535 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2536 	}
2537 }
2538 
2539 /**
2540  * do_freezer_trap - handle the freezer jobctl trap
2541  *
2542  * Puts the task into frozen state, if only the task is not about to quit.
2543  * In this case it drops JOBCTL_TRAP_FREEZE.
2544  *
2545  * CONTEXT:
2546  * Must be called with @current->sighand->siglock held,
2547  * which is always released before returning.
2548  */
2549 static void do_freezer_trap(void)
2550 	__releases(&current->sighand->siglock)
2551 {
2552 	/*
2553 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2554 	 * let's make another loop to give it a chance to be handled.
2555 	 * In any case, we'll return back.
2556 	 */
2557 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2558 	     JOBCTL_TRAP_FREEZE) {
2559 		spin_unlock_irq(&current->sighand->siglock);
2560 		return;
2561 	}
2562 
2563 	/*
2564 	 * Now we're sure that there is no pending fatal signal and no
2565 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2566 	 * immediately (if there is a non-fatal signal pending), and
2567 	 * put the task into sleep.
2568 	 */
2569 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2570 	clear_thread_flag(TIF_SIGPENDING);
2571 	spin_unlock_irq(&current->sighand->siglock);
2572 	cgroup_enter_frozen();
2573 	schedule();
2574 }
2575 
2576 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2577 {
2578 	/*
2579 	 * We do not check sig_kernel_stop(signr) but set this marker
2580 	 * unconditionally because we do not know whether debugger will
2581 	 * change signr. This flag has no meaning unless we are going
2582 	 * to stop after return from ptrace_stop(). In this case it will
2583 	 * be checked in do_signal_stop(), we should only stop if it was
2584 	 * not cleared by SIGCONT while we were sleeping. See also the
2585 	 * comment in dequeue_signal().
2586 	 */
2587 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2588 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2589 
2590 	/* We're back.  Did the debugger cancel the sig?  */
2591 	if (signr == 0)
2592 		return signr;
2593 
2594 	/*
2595 	 * Update the siginfo structure if the signal has
2596 	 * changed.  If the debugger wanted something
2597 	 * specific in the siginfo structure then it should
2598 	 * have updated *info via PTRACE_SETSIGINFO.
2599 	 */
2600 	if (signr != info->si_signo) {
2601 		clear_siginfo(info);
2602 		info->si_signo = signr;
2603 		info->si_errno = 0;
2604 		info->si_code = SI_USER;
2605 		rcu_read_lock();
2606 		info->si_pid = task_pid_vnr(current->parent);
2607 		info->si_uid = from_kuid_munged(current_user_ns(),
2608 						task_uid(current->parent));
2609 		rcu_read_unlock();
2610 	}
2611 
2612 	/* If the (new) signal is now blocked, requeue it.  */
2613 	if (sigismember(&current->blocked, signr) ||
2614 	    fatal_signal_pending(current)) {
2615 		send_signal_locked(signr, info, current, type);
2616 		signr = 0;
2617 	}
2618 
2619 	return signr;
2620 }
2621 
2622 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2623 {
2624 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2625 	case SIL_FAULT:
2626 	case SIL_FAULT_TRAPNO:
2627 	case SIL_FAULT_MCEERR:
2628 	case SIL_FAULT_BNDERR:
2629 	case SIL_FAULT_PKUERR:
2630 	case SIL_FAULT_PERF_EVENT:
2631 		ksig->info.si_addr = arch_untagged_si_addr(
2632 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2633 		break;
2634 	case SIL_KILL:
2635 	case SIL_TIMER:
2636 	case SIL_POLL:
2637 	case SIL_CHLD:
2638 	case SIL_RT:
2639 	case SIL_SYS:
2640 		break;
2641 	}
2642 }
2643 
2644 bool get_signal(struct ksignal *ksig)
2645 {
2646 	struct sighand_struct *sighand = current->sighand;
2647 	struct signal_struct *signal = current->signal;
2648 	int signr;
2649 
2650 	clear_notify_signal();
2651 	if (unlikely(task_work_pending(current)))
2652 		task_work_run();
2653 
2654 	if (!task_sigpending(current))
2655 		return false;
2656 
2657 	if (unlikely(uprobe_deny_signal()))
2658 		return false;
2659 
2660 	/*
2661 	 * Do this once, we can't return to user-mode if freezing() == T.
2662 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2663 	 * thus do not need another check after return.
2664 	 */
2665 	try_to_freeze();
2666 
2667 relock:
2668 	spin_lock_irq(&sighand->siglock);
2669 
2670 	/*
2671 	 * Every stopped thread goes here after wakeup. Check to see if
2672 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2673 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2674 	 */
2675 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2676 		int why;
2677 
2678 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2679 			why = CLD_CONTINUED;
2680 		else
2681 			why = CLD_STOPPED;
2682 
2683 		signal->flags &= ~SIGNAL_CLD_MASK;
2684 
2685 		spin_unlock_irq(&sighand->siglock);
2686 
2687 		/*
2688 		 * Notify the parent that we're continuing.  This event is
2689 		 * always per-process and doesn't make whole lot of sense
2690 		 * for ptracers, who shouldn't consume the state via
2691 		 * wait(2) either, but, for backward compatibility, notify
2692 		 * the ptracer of the group leader too unless it's gonna be
2693 		 * a duplicate.
2694 		 */
2695 		read_lock(&tasklist_lock);
2696 		do_notify_parent_cldstop(current, false, why);
2697 
2698 		if (ptrace_reparented(current->group_leader))
2699 			do_notify_parent_cldstop(current->group_leader,
2700 						true, why);
2701 		read_unlock(&tasklist_lock);
2702 
2703 		goto relock;
2704 	}
2705 
2706 	for (;;) {
2707 		struct k_sigaction *ka;
2708 		enum pid_type type;
2709 
2710 		/* Has this task already been marked for death? */
2711 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2712 		     signal->group_exec_task) {
2713 			clear_siginfo(&ksig->info);
2714 			ksig->info.si_signo = signr = SIGKILL;
2715 			sigdelset(&current->pending.signal, SIGKILL);
2716 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2717 				&sighand->action[SIGKILL - 1]);
2718 			recalc_sigpending();
2719 			goto fatal;
2720 		}
2721 
2722 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2723 		    do_signal_stop(0))
2724 			goto relock;
2725 
2726 		if (unlikely(current->jobctl &
2727 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2728 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2729 				do_jobctl_trap();
2730 				spin_unlock_irq(&sighand->siglock);
2731 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2732 				do_freezer_trap();
2733 
2734 			goto relock;
2735 		}
2736 
2737 		/*
2738 		 * If the task is leaving the frozen state, let's update
2739 		 * cgroup counters and reset the frozen bit.
2740 		 */
2741 		if (unlikely(cgroup_task_frozen(current))) {
2742 			spin_unlock_irq(&sighand->siglock);
2743 			cgroup_leave_frozen(false);
2744 			goto relock;
2745 		}
2746 
2747 		/*
2748 		 * Signals generated by the execution of an instruction
2749 		 * need to be delivered before any other pending signals
2750 		 * so that the instruction pointer in the signal stack
2751 		 * frame points to the faulting instruction.
2752 		 */
2753 		type = PIDTYPE_PID;
2754 		signr = dequeue_synchronous_signal(&ksig->info);
2755 		if (!signr)
2756 			signr = dequeue_signal(current, &current->blocked,
2757 					       &ksig->info, &type);
2758 
2759 		if (!signr)
2760 			break; /* will return 0 */
2761 
2762 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2763 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2764 			signr = ptrace_signal(signr, &ksig->info, type);
2765 			if (!signr)
2766 				continue;
2767 		}
2768 
2769 		ka = &sighand->action[signr-1];
2770 
2771 		/* Trace actually delivered signals. */
2772 		trace_signal_deliver(signr, &ksig->info, ka);
2773 
2774 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2775 			continue;
2776 		if (ka->sa.sa_handler != SIG_DFL) {
2777 			/* Run the handler.  */
2778 			ksig->ka = *ka;
2779 
2780 			if (ka->sa.sa_flags & SA_ONESHOT)
2781 				ka->sa.sa_handler = SIG_DFL;
2782 
2783 			break; /* will return non-zero "signr" value */
2784 		}
2785 
2786 		/*
2787 		 * Now we are doing the default action for this signal.
2788 		 */
2789 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2790 			continue;
2791 
2792 		/*
2793 		 * Global init gets no signals it doesn't want.
2794 		 * Container-init gets no signals it doesn't want from same
2795 		 * container.
2796 		 *
2797 		 * Note that if global/container-init sees a sig_kernel_only()
2798 		 * signal here, the signal must have been generated internally
2799 		 * or must have come from an ancestor namespace. In either
2800 		 * case, the signal cannot be dropped.
2801 		 */
2802 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2803 				!sig_kernel_only(signr))
2804 			continue;
2805 
2806 		if (sig_kernel_stop(signr)) {
2807 			/*
2808 			 * The default action is to stop all threads in
2809 			 * the thread group.  The job control signals
2810 			 * do nothing in an orphaned pgrp, but SIGSTOP
2811 			 * always works.  Note that siglock needs to be
2812 			 * dropped during the call to is_orphaned_pgrp()
2813 			 * because of lock ordering with tasklist_lock.
2814 			 * This allows an intervening SIGCONT to be posted.
2815 			 * We need to check for that and bail out if necessary.
2816 			 */
2817 			if (signr != SIGSTOP) {
2818 				spin_unlock_irq(&sighand->siglock);
2819 
2820 				/* signals can be posted during this window */
2821 
2822 				if (is_current_pgrp_orphaned())
2823 					goto relock;
2824 
2825 				spin_lock_irq(&sighand->siglock);
2826 			}
2827 
2828 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2829 				/* It released the siglock.  */
2830 				goto relock;
2831 			}
2832 
2833 			/*
2834 			 * We didn't actually stop, due to a race
2835 			 * with SIGCONT or something like that.
2836 			 */
2837 			continue;
2838 		}
2839 
2840 	fatal:
2841 		spin_unlock_irq(&sighand->siglock);
2842 		if (unlikely(cgroup_task_frozen(current)))
2843 			cgroup_leave_frozen(true);
2844 
2845 		/*
2846 		 * Anything else is fatal, maybe with a core dump.
2847 		 */
2848 		current->flags |= PF_SIGNALED;
2849 
2850 		if (sig_kernel_coredump(signr)) {
2851 			if (print_fatal_signals)
2852 				print_fatal_signal(ksig->info.si_signo);
2853 			proc_coredump_connector(current);
2854 			/*
2855 			 * If it was able to dump core, this kills all
2856 			 * other threads in the group and synchronizes with
2857 			 * their demise.  If we lost the race with another
2858 			 * thread getting here, it set group_exit_code
2859 			 * first and our do_group_exit call below will use
2860 			 * that value and ignore the one we pass it.
2861 			 */
2862 			do_coredump(&ksig->info);
2863 		}
2864 
2865 		/*
2866 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2867 		 * themselves. They have cleanup that must be performed, so
2868 		 * we cannot call do_exit() on their behalf.
2869 		 */
2870 		if (current->flags & PF_USER_WORKER)
2871 			goto out;
2872 
2873 		/*
2874 		 * Death signals, no core dump.
2875 		 */
2876 		do_group_exit(ksig->info.si_signo);
2877 		/* NOTREACHED */
2878 	}
2879 	spin_unlock_irq(&sighand->siglock);
2880 out:
2881 	ksig->sig = signr;
2882 
2883 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2884 		hide_si_addr_tag_bits(ksig);
2885 
2886 	return ksig->sig > 0;
2887 }
2888 
2889 /**
2890  * signal_delivered - called after signal delivery to update blocked signals
2891  * @ksig:		kernel signal struct
2892  * @stepping:		nonzero if debugger single-step or block-step in use
2893  *
2894  * This function should be called when a signal has successfully been
2895  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2896  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2897  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2898  */
2899 static void signal_delivered(struct ksignal *ksig, int stepping)
2900 {
2901 	sigset_t blocked;
2902 
2903 	/* A signal was successfully delivered, and the
2904 	   saved sigmask was stored on the signal frame,
2905 	   and will be restored by sigreturn.  So we can
2906 	   simply clear the restore sigmask flag.  */
2907 	clear_restore_sigmask();
2908 
2909 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2910 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2911 		sigaddset(&blocked, ksig->sig);
2912 	set_current_blocked(&blocked);
2913 	if (current->sas_ss_flags & SS_AUTODISARM)
2914 		sas_ss_reset(current);
2915 	if (stepping)
2916 		ptrace_notify(SIGTRAP, 0);
2917 }
2918 
2919 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2920 {
2921 	if (failed)
2922 		force_sigsegv(ksig->sig);
2923 	else
2924 		signal_delivered(ksig, stepping);
2925 }
2926 
2927 /*
2928  * It could be that complete_signal() picked us to notify about the
2929  * group-wide signal. Other threads should be notified now to take
2930  * the shared signals in @which since we will not.
2931  */
2932 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2933 {
2934 	sigset_t retarget;
2935 	struct task_struct *t;
2936 
2937 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2938 	if (sigisemptyset(&retarget))
2939 		return;
2940 
2941 	t = tsk;
2942 	while_each_thread(tsk, t) {
2943 		if (t->flags & PF_EXITING)
2944 			continue;
2945 
2946 		if (!has_pending_signals(&retarget, &t->blocked))
2947 			continue;
2948 		/* Remove the signals this thread can handle. */
2949 		sigandsets(&retarget, &retarget, &t->blocked);
2950 
2951 		if (!task_sigpending(t))
2952 			signal_wake_up(t, 0);
2953 
2954 		if (sigisemptyset(&retarget))
2955 			break;
2956 	}
2957 }
2958 
2959 void exit_signals(struct task_struct *tsk)
2960 {
2961 	int group_stop = 0;
2962 	sigset_t unblocked;
2963 
2964 	/*
2965 	 * @tsk is about to have PF_EXITING set - lock out users which
2966 	 * expect stable threadgroup.
2967 	 */
2968 	cgroup_threadgroup_change_begin(tsk);
2969 
2970 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2971 		sched_mm_cid_exit_signals(tsk);
2972 		tsk->flags |= PF_EXITING;
2973 		cgroup_threadgroup_change_end(tsk);
2974 		return;
2975 	}
2976 
2977 	spin_lock_irq(&tsk->sighand->siglock);
2978 	/*
2979 	 * From now this task is not visible for group-wide signals,
2980 	 * see wants_signal(), do_signal_stop().
2981 	 */
2982 	sched_mm_cid_exit_signals(tsk);
2983 	tsk->flags |= PF_EXITING;
2984 
2985 	cgroup_threadgroup_change_end(tsk);
2986 
2987 	if (!task_sigpending(tsk))
2988 		goto out;
2989 
2990 	unblocked = tsk->blocked;
2991 	signotset(&unblocked);
2992 	retarget_shared_pending(tsk, &unblocked);
2993 
2994 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2995 	    task_participate_group_stop(tsk))
2996 		group_stop = CLD_STOPPED;
2997 out:
2998 	spin_unlock_irq(&tsk->sighand->siglock);
2999 
3000 	/*
3001 	 * If group stop has completed, deliver the notification.  This
3002 	 * should always go to the real parent of the group leader.
3003 	 */
3004 	if (unlikely(group_stop)) {
3005 		read_lock(&tasklist_lock);
3006 		do_notify_parent_cldstop(tsk, false, group_stop);
3007 		read_unlock(&tasklist_lock);
3008 	}
3009 }
3010 
3011 /*
3012  * System call entry points.
3013  */
3014 
3015 /**
3016  *  sys_restart_syscall - restart a system call
3017  */
3018 SYSCALL_DEFINE0(restart_syscall)
3019 {
3020 	struct restart_block *restart = &current->restart_block;
3021 	return restart->fn(restart);
3022 }
3023 
3024 long do_no_restart_syscall(struct restart_block *param)
3025 {
3026 	return -EINTR;
3027 }
3028 
3029 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3030 {
3031 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3032 		sigset_t newblocked;
3033 		/* A set of now blocked but previously unblocked signals. */
3034 		sigandnsets(&newblocked, newset, &current->blocked);
3035 		retarget_shared_pending(tsk, &newblocked);
3036 	}
3037 	tsk->blocked = *newset;
3038 	recalc_sigpending();
3039 }
3040 
3041 /**
3042  * set_current_blocked - change current->blocked mask
3043  * @newset: new mask
3044  *
3045  * It is wrong to change ->blocked directly, this helper should be used
3046  * to ensure the process can't miss a shared signal we are going to block.
3047  */
3048 void set_current_blocked(sigset_t *newset)
3049 {
3050 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3051 	__set_current_blocked(newset);
3052 }
3053 
3054 void __set_current_blocked(const sigset_t *newset)
3055 {
3056 	struct task_struct *tsk = current;
3057 
3058 	/*
3059 	 * In case the signal mask hasn't changed, there is nothing we need
3060 	 * to do. The current->blocked shouldn't be modified by other task.
3061 	 */
3062 	if (sigequalsets(&tsk->blocked, newset))
3063 		return;
3064 
3065 	spin_lock_irq(&tsk->sighand->siglock);
3066 	__set_task_blocked(tsk, newset);
3067 	spin_unlock_irq(&tsk->sighand->siglock);
3068 }
3069 
3070 /*
3071  * This is also useful for kernel threads that want to temporarily
3072  * (or permanently) block certain signals.
3073  *
3074  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3075  * interface happily blocks "unblockable" signals like SIGKILL
3076  * and friends.
3077  */
3078 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3079 {
3080 	struct task_struct *tsk = current;
3081 	sigset_t newset;
3082 
3083 	/* Lockless, only current can change ->blocked, never from irq */
3084 	if (oldset)
3085 		*oldset = tsk->blocked;
3086 
3087 	switch (how) {
3088 	case SIG_BLOCK:
3089 		sigorsets(&newset, &tsk->blocked, set);
3090 		break;
3091 	case SIG_UNBLOCK:
3092 		sigandnsets(&newset, &tsk->blocked, set);
3093 		break;
3094 	case SIG_SETMASK:
3095 		newset = *set;
3096 		break;
3097 	default:
3098 		return -EINVAL;
3099 	}
3100 
3101 	__set_current_blocked(&newset);
3102 	return 0;
3103 }
3104 EXPORT_SYMBOL(sigprocmask);
3105 
3106 /*
3107  * The api helps set app-provided sigmasks.
3108  *
3109  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3110  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3111  *
3112  * Note that it does set_restore_sigmask() in advance, so it must be always
3113  * paired with restore_saved_sigmask_unless() before return from syscall.
3114  */
3115 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3116 {
3117 	sigset_t kmask;
3118 
3119 	if (!umask)
3120 		return 0;
3121 	if (sigsetsize != sizeof(sigset_t))
3122 		return -EINVAL;
3123 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3124 		return -EFAULT;
3125 
3126 	set_restore_sigmask();
3127 	current->saved_sigmask = current->blocked;
3128 	set_current_blocked(&kmask);
3129 
3130 	return 0;
3131 }
3132 
3133 #ifdef CONFIG_COMPAT
3134 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3135 			    size_t sigsetsize)
3136 {
3137 	sigset_t kmask;
3138 
3139 	if (!umask)
3140 		return 0;
3141 	if (sigsetsize != sizeof(compat_sigset_t))
3142 		return -EINVAL;
3143 	if (get_compat_sigset(&kmask, umask))
3144 		return -EFAULT;
3145 
3146 	set_restore_sigmask();
3147 	current->saved_sigmask = current->blocked;
3148 	set_current_blocked(&kmask);
3149 
3150 	return 0;
3151 }
3152 #endif
3153 
3154 /**
3155  *  sys_rt_sigprocmask - change the list of currently blocked signals
3156  *  @how: whether to add, remove, or set signals
3157  *  @nset: stores pending signals
3158  *  @oset: previous value of signal mask if non-null
3159  *  @sigsetsize: size of sigset_t type
3160  */
3161 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3162 		sigset_t __user *, oset, size_t, sigsetsize)
3163 {
3164 	sigset_t old_set, new_set;
3165 	int error;
3166 
3167 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3168 	if (sigsetsize != sizeof(sigset_t))
3169 		return -EINVAL;
3170 
3171 	old_set = current->blocked;
3172 
3173 	if (nset) {
3174 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3175 			return -EFAULT;
3176 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3177 
3178 		error = sigprocmask(how, &new_set, NULL);
3179 		if (error)
3180 			return error;
3181 	}
3182 
3183 	if (oset) {
3184 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3185 			return -EFAULT;
3186 	}
3187 
3188 	return 0;
3189 }
3190 
3191 #ifdef CONFIG_COMPAT
3192 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3193 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3194 {
3195 	sigset_t old_set = current->blocked;
3196 
3197 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3198 	if (sigsetsize != sizeof(sigset_t))
3199 		return -EINVAL;
3200 
3201 	if (nset) {
3202 		sigset_t new_set;
3203 		int error;
3204 		if (get_compat_sigset(&new_set, nset))
3205 			return -EFAULT;
3206 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3207 
3208 		error = sigprocmask(how, &new_set, NULL);
3209 		if (error)
3210 			return error;
3211 	}
3212 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3213 }
3214 #endif
3215 
3216 static void do_sigpending(sigset_t *set)
3217 {
3218 	spin_lock_irq(&current->sighand->siglock);
3219 	sigorsets(set, &current->pending.signal,
3220 		  &current->signal->shared_pending.signal);
3221 	spin_unlock_irq(&current->sighand->siglock);
3222 
3223 	/* Outside the lock because only this thread touches it.  */
3224 	sigandsets(set, &current->blocked, set);
3225 }
3226 
3227 /**
3228  *  sys_rt_sigpending - examine a pending signal that has been raised
3229  *			while blocked
3230  *  @uset: stores pending signals
3231  *  @sigsetsize: size of sigset_t type or larger
3232  */
3233 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3234 {
3235 	sigset_t set;
3236 
3237 	if (sigsetsize > sizeof(*uset))
3238 		return -EINVAL;
3239 
3240 	do_sigpending(&set);
3241 
3242 	if (copy_to_user(uset, &set, sigsetsize))
3243 		return -EFAULT;
3244 
3245 	return 0;
3246 }
3247 
3248 #ifdef CONFIG_COMPAT
3249 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3250 		compat_size_t, sigsetsize)
3251 {
3252 	sigset_t set;
3253 
3254 	if (sigsetsize > sizeof(*uset))
3255 		return -EINVAL;
3256 
3257 	do_sigpending(&set);
3258 
3259 	return put_compat_sigset(uset, &set, sigsetsize);
3260 }
3261 #endif
3262 
3263 static const struct {
3264 	unsigned char limit, layout;
3265 } sig_sicodes[] = {
3266 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3267 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3268 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3269 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3270 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3271 #if defined(SIGEMT)
3272 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3273 #endif
3274 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3275 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3276 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3277 };
3278 
3279 static bool known_siginfo_layout(unsigned sig, int si_code)
3280 {
3281 	if (si_code == SI_KERNEL)
3282 		return true;
3283 	else if ((si_code > SI_USER)) {
3284 		if (sig_specific_sicodes(sig)) {
3285 			if (si_code <= sig_sicodes[sig].limit)
3286 				return true;
3287 		}
3288 		else if (si_code <= NSIGPOLL)
3289 			return true;
3290 	}
3291 	else if (si_code >= SI_DETHREAD)
3292 		return true;
3293 	else if (si_code == SI_ASYNCNL)
3294 		return true;
3295 	return false;
3296 }
3297 
3298 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3299 {
3300 	enum siginfo_layout layout = SIL_KILL;
3301 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3302 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3303 		    (si_code <= sig_sicodes[sig].limit)) {
3304 			layout = sig_sicodes[sig].layout;
3305 			/* Handle the exceptions */
3306 			if ((sig == SIGBUS) &&
3307 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3308 				layout = SIL_FAULT_MCEERR;
3309 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3310 				layout = SIL_FAULT_BNDERR;
3311 #ifdef SEGV_PKUERR
3312 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3313 				layout = SIL_FAULT_PKUERR;
3314 #endif
3315 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3316 				layout = SIL_FAULT_PERF_EVENT;
3317 			else if (IS_ENABLED(CONFIG_SPARC) &&
3318 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3319 				layout = SIL_FAULT_TRAPNO;
3320 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3321 				 ((sig == SIGFPE) ||
3322 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3323 				layout = SIL_FAULT_TRAPNO;
3324 		}
3325 		else if (si_code <= NSIGPOLL)
3326 			layout = SIL_POLL;
3327 	} else {
3328 		if (si_code == SI_TIMER)
3329 			layout = SIL_TIMER;
3330 		else if (si_code == SI_SIGIO)
3331 			layout = SIL_POLL;
3332 		else if (si_code < 0)
3333 			layout = SIL_RT;
3334 	}
3335 	return layout;
3336 }
3337 
3338 static inline char __user *si_expansion(const siginfo_t __user *info)
3339 {
3340 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3341 }
3342 
3343 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3344 {
3345 	char __user *expansion = si_expansion(to);
3346 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3347 		return -EFAULT;
3348 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3349 		return -EFAULT;
3350 	return 0;
3351 }
3352 
3353 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3354 				       const siginfo_t __user *from)
3355 {
3356 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3357 		char __user *expansion = si_expansion(from);
3358 		char buf[SI_EXPANSION_SIZE];
3359 		int i;
3360 		/*
3361 		 * An unknown si_code might need more than
3362 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3363 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3364 		 * will return this data to userspace exactly.
3365 		 */
3366 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3367 			return -EFAULT;
3368 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3369 			if (buf[i] != 0)
3370 				return -E2BIG;
3371 		}
3372 	}
3373 	return 0;
3374 }
3375 
3376 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3377 				    const siginfo_t __user *from)
3378 {
3379 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3380 		return -EFAULT;
3381 	to->si_signo = signo;
3382 	return post_copy_siginfo_from_user(to, from);
3383 }
3384 
3385 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3386 {
3387 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3388 		return -EFAULT;
3389 	return post_copy_siginfo_from_user(to, from);
3390 }
3391 
3392 #ifdef CONFIG_COMPAT
3393 /**
3394  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3395  * @to: compat siginfo destination
3396  * @from: kernel siginfo source
3397  *
3398  * Note: This function does not work properly for the SIGCHLD on x32, but
3399  * fortunately it doesn't have to.  The only valid callers for this function are
3400  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3401  * The latter does not care because SIGCHLD will never cause a coredump.
3402  */
3403 void copy_siginfo_to_external32(struct compat_siginfo *to,
3404 		const struct kernel_siginfo *from)
3405 {
3406 	memset(to, 0, sizeof(*to));
3407 
3408 	to->si_signo = from->si_signo;
3409 	to->si_errno = from->si_errno;
3410 	to->si_code  = from->si_code;
3411 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3412 	case SIL_KILL:
3413 		to->si_pid = from->si_pid;
3414 		to->si_uid = from->si_uid;
3415 		break;
3416 	case SIL_TIMER:
3417 		to->si_tid     = from->si_tid;
3418 		to->si_overrun = from->si_overrun;
3419 		to->si_int     = from->si_int;
3420 		break;
3421 	case SIL_POLL:
3422 		to->si_band = from->si_band;
3423 		to->si_fd   = from->si_fd;
3424 		break;
3425 	case SIL_FAULT:
3426 		to->si_addr = ptr_to_compat(from->si_addr);
3427 		break;
3428 	case SIL_FAULT_TRAPNO:
3429 		to->si_addr = ptr_to_compat(from->si_addr);
3430 		to->si_trapno = from->si_trapno;
3431 		break;
3432 	case SIL_FAULT_MCEERR:
3433 		to->si_addr = ptr_to_compat(from->si_addr);
3434 		to->si_addr_lsb = from->si_addr_lsb;
3435 		break;
3436 	case SIL_FAULT_BNDERR:
3437 		to->si_addr = ptr_to_compat(from->si_addr);
3438 		to->si_lower = ptr_to_compat(from->si_lower);
3439 		to->si_upper = ptr_to_compat(from->si_upper);
3440 		break;
3441 	case SIL_FAULT_PKUERR:
3442 		to->si_addr = ptr_to_compat(from->si_addr);
3443 		to->si_pkey = from->si_pkey;
3444 		break;
3445 	case SIL_FAULT_PERF_EVENT:
3446 		to->si_addr = ptr_to_compat(from->si_addr);
3447 		to->si_perf_data = from->si_perf_data;
3448 		to->si_perf_type = from->si_perf_type;
3449 		to->si_perf_flags = from->si_perf_flags;
3450 		break;
3451 	case SIL_CHLD:
3452 		to->si_pid = from->si_pid;
3453 		to->si_uid = from->si_uid;
3454 		to->si_status = from->si_status;
3455 		to->si_utime = from->si_utime;
3456 		to->si_stime = from->si_stime;
3457 		break;
3458 	case SIL_RT:
3459 		to->si_pid = from->si_pid;
3460 		to->si_uid = from->si_uid;
3461 		to->si_int = from->si_int;
3462 		break;
3463 	case SIL_SYS:
3464 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3465 		to->si_syscall   = from->si_syscall;
3466 		to->si_arch      = from->si_arch;
3467 		break;
3468 	}
3469 }
3470 
3471 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3472 			   const struct kernel_siginfo *from)
3473 {
3474 	struct compat_siginfo new;
3475 
3476 	copy_siginfo_to_external32(&new, from);
3477 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3478 		return -EFAULT;
3479 	return 0;
3480 }
3481 
3482 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3483 					 const struct compat_siginfo *from)
3484 {
3485 	clear_siginfo(to);
3486 	to->si_signo = from->si_signo;
3487 	to->si_errno = from->si_errno;
3488 	to->si_code  = from->si_code;
3489 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3490 	case SIL_KILL:
3491 		to->si_pid = from->si_pid;
3492 		to->si_uid = from->si_uid;
3493 		break;
3494 	case SIL_TIMER:
3495 		to->si_tid     = from->si_tid;
3496 		to->si_overrun = from->si_overrun;
3497 		to->si_int     = from->si_int;
3498 		break;
3499 	case SIL_POLL:
3500 		to->si_band = from->si_band;
3501 		to->si_fd   = from->si_fd;
3502 		break;
3503 	case SIL_FAULT:
3504 		to->si_addr = compat_ptr(from->si_addr);
3505 		break;
3506 	case SIL_FAULT_TRAPNO:
3507 		to->si_addr = compat_ptr(from->si_addr);
3508 		to->si_trapno = from->si_trapno;
3509 		break;
3510 	case SIL_FAULT_MCEERR:
3511 		to->si_addr = compat_ptr(from->si_addr);
3512 		to->si_addr_lsb = from->si_addr_lsb;
3513 		break;
3514 	case SIL_FAULT_BNDERR:
3515 		to->si_addr = compat_ptr(from->si_addr);
3516 		to->si_lower = compat_ptr(from->si_lower);
3517 		to->si_upper = compat_ptr(from->si_upper);
3518 		break;
3519 	case SIL_FAULT_PKUERR:
3520 		to->si_addr = compat_ptr(from->si_addr);
3521 		to->si_pkey = from->si_pkey;
3522 		break;
3523 	case SIL_FAULT_PERF_EVENT:
3524 		to->si_addr = compat_ptr(from->si_addr);
3525 		to->si_perf_data = from->si_perf_data;
3526 		to->si_perf_type = from->si_perf_type;
3527 		to->si_perf_flags = from->si_perf_flags;
3528 		break;
3529 	case SIL_CHLD:
3530 		to->si_pid    = from->si_pid;
3531 		to->si_uid    = from->si_uid;
3532 		to->si_status = from->si_status;
3533 #ifdef CONFIG_X86_X32_ABI
3534 		if (in_x32_syscall()) {
3535 			to->si_utime = from->_sifields._sigchld_x32._utime;
3536 			to->si_stime = from->_sifields._sigchld_x32._stime;
3537 		} else
3538 #endif
3539 		{
3540 			to->si_utime = from->si_utime;
3541 			to->si_stime = from->si_stime;
3542 		}
3543 		break;
3544 	case SIL_RT:
3545 		to->si_pid = from->si_pid;
3546 		to->si_uid = from->si_uid;
3547 		to->si_int = from->si_int;
3548 		break;
3549 	case SIL_SYS:
3550 		to->si_call_addr = compat_ptr(from->si_call_addr);
3551 		to->si_syscall   = from->si_syscall;
3552 		to->si_arch      = from->si_arch;
3553 		break;
3554 	}
3555 	return 0;
3556 }
3557 
3558 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3559 				      const struct compat_siginfo __user *ufrom)
3560 {
3561 	struct compat_siginfo from;
3562 
3563 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3564 		return -EFAULT;
3565 
3566 	from.si_signo = signo;
3567 	return post_copy_siginfo_from_user32(to, &from);
3568 }
3569 
3570 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3571 			     const struct compat_siginfo __user *ufrom)
3572 {
3573 	struct compat_siginfo from;
3574 
3575 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3576 		return -EFAULT;
3577 
3578 	return post_copy_siginfo_from_user32(to, &from);
3579 }
3580 #endif /* CONFIG_COMPAT */
3581 
3582 /**
3583  *  do_sigtimedwait - wait for queued signals specified in @which
3584  *  @which: queued signals to wait for
3585  *  @info: if non-null, the signal's siginfo is returned here
3586  *  @ts: upper bound on process time suspension
3587  */
3588 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3589 		    const struct timespec64 *ts)
3590 {
3591 	ktime_t *to = NULL, timeout = KTIME_MAX;
3592 	struct task_struct *tsk = current;
3593 	sigset_t mask = *which;
3594 	enum pid_type type;
3595 	int sig, ret = 0;
3596 
3597 	if (ts) {
3598 		if (!timespec64_valid(ts))
3599 			return -EINVAL;
3600 		timeout = timespec64_to_ktime(*ts);
3601 		to = &timeout;
3602 	}
3603 
3604 	/*
3605 	 * Invert the set of allowed signals to get those we want to block.
3606 	 */
3607 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3608 	signotset(&mask);
3609 
3610 	spin_lock_irq(&tsk->sighand->siglock);
3611 	sig = dequeue_signal(tsk, &mask, info, &type);
3612 	if (!sig && timeout) {
3613 		/*
3614 		 * None ready, temporarily unblock those we're interested
3615 		 * while we are sleeping in so that we'll be awakened when
3616 		 * they arrive. Unblocking is always fine, we can avoid
3617 		 * set_current_blocked().
3618 		 */
3619 		tsk->real_blocked = tsk->blocked;
3620 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3621 		recalc_sigpending();
3622 		spin_unlock_irq(&tsk->sighand->siglock);
3623 
3624 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3625 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3626 					       HRTIMER_MODE_REL);
3627 		spin_lock_irq(&tsk->sighand->siglock);
3628 		__set_task_blocked(tsk, &tsk->real_blocked);
3629 		sigemptyset(&tsk->real_blocked);
3630 		sig = dequeue_signal(tsk, &mask, info, &type);
3631 	}
3632 	spin_unlock_irq(&tsk->sighand->siglock);
3633 
3634 	if (sig)
3635 		return sig;
3636 	return ret ? -EINTR : -EAGAIN;
3637 }
3638 
3639 /**
3640  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3641  *			in @uthese
3642  *  @uthese: queued signals to wait for
3643  *  @uinfo: if non-null, the signal's siginfo is returned here
3644  *  @uts: upper bound on process time suspension
3645  *  @sigsetsize: size of sigset_t type
3646  */
3647 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3648 		siginfo_t __user *, uinfo,
3649 		const struct __kernel_timespec __user *, uts,
3650 		size_t, sigsetsize)
3651 {
3652 	sigset_t these;
3653 	struct timespec64 ts;
3654 	kernel_siginfo_t info;
3655 	int ret;
3656 
3657 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3658 	if (sigsetsize != sizeof(sigset_t))
3659 		return -EINVAL;
3660 
3661 	if (copy_from_user(&these, uthese, sizeof(these)))
3662 		return -EFAULT;
3663 
3664 	if (uts) {
3665 		if (get_timespec64(&ts, uts))
3666 			return -EFAULT;
3667 	}
3668 
3669 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3670 
3671 	if (ret > 0 && uinfo) {
3672 		if (copy_siginfo_to_user(uinfo, &info))
3673 			ret = -EFAULT;
3674 	}
3675 
3676 	return ret;
3677 }
3678 
3679 #ifdef CONFIG_COMPAT_32BIT_TIME
3680 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3681 		siginfo_t __user *, uinfo,
3682 		const struct old_timespec32 __user *, uts,
3683 		size_t, sigsetsize)
3684 {
3685 	sigset_t these;
3686 	struct timespec64 ts;
3687 	kernel_siginfo_t info;
3688 	int ret;
3689 
3690 	if (sigsetsize != sizeof(sigset_t))
3691 		return -EINVAL;
3692 
3693 	if (copy_from_user(&these, uthese, sizeof(these)))
3694 		return -EFAULT;
3695 
3696 	if (uts) {
3697 		if (get_old_timespec32(&ts, uts))
3698 			return -EFAULT;
3699 	}
3700 
3701 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3702 
3703 	if (ret > 0 && uinfo) {
3704 		if (copy_siginfo_to_user(uinfo, &info))
3705 			ret = -EFAULT;
3706 	}
3707 
3708 	return ret;
3709 }
3710 #endif
3711 
3712 #ifdef CONFIG_COMPAT
3713 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3714 		struct compat_siginfo __user *, uinfo,
3715 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3716 {
3717 	sigset_t s;
3718 	struct timespec64 t;
3719 	kernel_siginfo_t info;
3720 	long ret;
3721 
3722 	if (sigsetsize != sizeof(sigset_t))
3723 		return -EINVAL;
3724 
3725 	if (get_compat_sigset(&s, uthese))
3726 		return -EFAULT;
3727 
3728 	if (uts) {
3729 		if (get_timespec64(&t, uts))
3730 			return -EFAULT;
3731 	}
3732 
3733 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3734 
3735 	if (ret > 0 && uinfo) {
3736 		if (copy_siginfo_to_user32(uinfo, &info))
3737 			ret = -EFAULT;
3738 	}
3739 
3740 	return ret;
3741 }
3742 
3743 #ifdef CONFIG_COMPAT_32BIT_TIME
3744 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3745 		struct compat_siginfo __user *, uinfo,
3746 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3747 {
3748 	sigset_t s;
3749 	struct timespec64 t;
3750 	kernel_siginfo_t info;
3751 	long ret;
3752 
3753 	if (sigsetsize != sizeof(sigset_t))
3754 		return -EINVAL;
3755 
3756 	if (get_compat_sigset(&s, uthese))
3757 		return -EFAULT;
3758 
3759 	if (uts) {
3760 		if (get_old_timespec32(&t, uts))
3761 			return -EFAULT;
3762 	}
3763 
3764 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3765 
3766 	if (ret > 0 && uinfo) {
3767 		if (copy_siginfo_to_user32(uinfo, &info))
3768 			ret = -EFAULT;
3769 	}
3770 
3771 	return ret;
3772 }
3773 #endif
3774 #endif
3775 
3776 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3777 {
3778 	clear_siginfo(info);
3779 	info->si_signo = sig;
3780 	info->si_errno = 0;
3781 	info->si_code = SI_USER;
3782 	info->si_pid = task_tgid_vnr(current);
3783 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3784 }
3785 
3786 /**
3787  *  sys_kill - send a signal to a process
3788  *  @pid: the PID of the process
3789  *  @sig: signal to be sent
3790  */
3791 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3792 {
3793 	struct kernel_siginfo info;
3794 
3795 	prepare_kill_siginfo(sig, &info);
3796 
3797 	return kill_something_info(sig, &info, pid);
3798 }
3799 
3800 /*
3801  * Verify that the signaler and signalee either are in the same pid namespace
3802  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3803  * namespace.
3804  */
3805 static bool access_pidfd_pidns(struct pid *pid)
3806 {
3807 	struct pid_namespace *active = task_active_pid_ns(current);
3808 	struct pid_namespace *p = ns_of_pid(pid);
3809 
3810 	for (;;) {
3811 		if (!p)
3812 			return false;
3813 		if (p == active)
3814 			break;
3815 		p = p->parent;
3816 	}
3817 
3818 	return true;
3819 }
3820 
3821 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3822 		siginfo_t __user *info)
3823 {
3824 #ifdef CONFIG_COMPAT
3825 	/*
3826 	 * Avoid hooking up compat syscalls and instead handle necessary
3827 	 * conversions here. Note, this is a stop-gap measure and should not be
3828 	 * considered a generic solution.
3829 	 */
3830 	if (in_compat_syscall())
3831 		return copy_siginfo_from_user32(
3832 			kinfo, (struct compat_siginfo __user *)info);
3833 #endif
3834 	return copy_siginfo_from_user(kinfo, info);
3835 }
3836 
3837 static struct pid *pidfd_to_pid(const struct file *file)
3838 {
3839 	struct pid *pid;
3840 
3841 	pid = pidfd_pid(file);
3842 	if (!IS_ERR(pid))
3843 		return pid;
3844 
3845 	return tgid_pidfd_to_pid(file);
3846 }
3847 
3848 /**
3849  * sys_pidfd_send_signal - Signal a process through a pidfd
3850  * @pidfd:  file descriptor of the process
3851  * @sig:    signal to send
3852  * @info:   signal info
3853  * @flags:  future flags
3854  *
3855  * The syscall currently only signals via PIDTYPE_PID which covers
3856  * kill(<positive-pid>, <signal>. It does not signal threads or process
3857  * groups.
3858  * In order to extend the syscall to threads and process groups the @flags
3859  * argument should be used. In essence, the @flags argument will determine
3860  * what is signaled and not the file descriptor itself. Put in other words,
3861  * grouping is a property of the flags argument not a property of the file
3862  * descriptor.
3863  *
3864  * Return: 0 on success, negative errno on failure
3865  */
3866 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3867 		siginfo_t __user *, info, unsigned int, flags)
3868 {
3869 	int ret;
3870 	struct fd f;
3871 	struct pid *pid;
3872 	kernel_siginfo_t kinfo;
3873 
3874 	/* Enforce flags be set to 0 until we add an extension. */
3875 	if (flags)
3876 		return -EINVAL;
3877 
3878 	f = fdget(pidfd);
3879 	if (!f.file)
3880 		return -EBADF;
3881 
3882 	/* Is this a pidfd? */
3883 	pid = pidfd_to_pid(f.file);
3884 	if (IS_ERR(pid)) {
3885 		ret = PTR_ERR(pid);
3886 		goto err;
3887 	}
3888 
3889 	ret = -EINVAL;
3890 	if (!access_pidfd_pidns(pid))
3891 		goto err;
3892 
3893 	if (info) {
3894 		ret = copy_siginfo_from_user_any(&kinfo, info);
3895 		if (unlikely(ret))
3896 			goto err;
3897 
3898 		ret = -EINVAL;
3899 		if (unlikely(sig != kinfo.si_signo))
3900 			goto err;
3901 
3902 		/* Only allow sending arbitrary signals to yourself. */
3903 		ret = -EPERM;
3904 		if ((task_pid(current) != pid) &&
3905 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3906 			goto err;
3907 	} else {
3908 		prepare_kill_siginfo(sig, &kinfo);
3909 	}
3910 
3911 	ret = kill_pid_info(sig, &kinfo, pid);
3912 
3913 err:
3914 	fdput(f);
3915 	return ret;
3916 }
3917 
3918 static int
3919 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3920 {
3921 	struct task_struct *p;
3922 	int error = -ESRCH;
3923 
3924 	rcu_read_lock();
3925 	p = find_task_by_vpid(pid);
3926 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3927 		error = check_kill_permission(sig, info, p);
3928 		/*
3929 		 * The null signal is a permissions and process existence
3930 		 * probe.  No signal is actually delivered.
3931 		 */
3932 		if (!error && sig) {
3933 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3934 			/*
3935 			 * If lock_task_sighand() failed we pretend the task
3936 			 * dies after receiving the signal. The window is tiny,
3937 			 * and the signal is private anyway.
3938 			 */
3939 			if (unlikely(error == -ESRCH))
3940 				error = 0;
3941 		}
3942 	}
3943 	rcu_read_unlock();
3944 
3945 	return error;
3946 }
3947 
3948 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3949 {
3950 	struct kernel_siginfo info;
3951 
3952 	clear_siginfo(&info);
3953 	info.si_signo = sig;
3954 	info.si_errno = 0;
3955 	info.si_code = SI_TKILL;
3956 	info.si_pid = task_tgid_vnr(current);
3957 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3958 
3959 	return do_send_specific(tgid, pid, sig, &info);
3960 }
3961 
3962 /**
3963  *  sys_tgkill - send signal to one specific thread
3964  *  @tgid: the thread group ID of the thread
3965  *  @pid: the PID of the thread
3966  *  @sig: signal to be sent
3967  *
3968  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3969  *  exists but it's not belonging to the target process anymore. This
3970  *  method solves the problem of threads exiting and PIDs getting reused.
3971  */
3972 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3973 {
3974 	/* This is only valid for single tasks */
3975 	if (pid <= 0 || tgid <= 0)
3976 		return -EINVAL;
3977 
3978 	return do_tkill(tgid, pid, sig);
3979 }
3980 
3981 /**
3982  *  sys_tkill - send signal to one specific task
3983  *  @pid: the PID of the task
3984  *  @sig: signal to be sent
3985  *
3986  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3987  */
3988 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3989 {
3990 	/* This is only valid for single tasks */
3991 	if (pid <= 0)
3992 		return -EINVAL;
3993 
3994 	return do_tkill(0, pid, sig);
3995 }
3996 
3997 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3998 {
3999 	/* Not even root can pretend to send signals from the kernel.
4000 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4001 	 */
4002 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4003 	    (task_pid_vnr(current) != pid))
4004 		return -EPERM;
4005 
4006 	/* POSIX.1b doesn't mention process groups.  */
4007 	return kill_proc_info(sig, info, pid);
4008 }
4009 
4010 /**
4011  *  sys_rt_sigqueueinfo - send signal information to a signal
4012  *  @pid: the PID of the thread
4013  *  @sig: signal to be sent
4014  *  @uinfo: signal info to be sent
4015  */
4016 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4017 		siginfo_t __user *, uinfo)
4018 {
4019 	kernel_siginfo_t info;
4020 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4021 	if (unlikely(ret))
4022 		return ret;
4023 	return do_rt_sigqueueinfo(pid, sig, &info);
4024 }
4025 
4026 #ifdef CONFIG_COMPAT
4027 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4028 			compat_pid_t, pid,
4029 			int, sig,
4030 			struct compat_siginfo __user *, uinfo)
4031 {
4032 	kernel_siginfo_t info;
4033 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4034 	if (unlikely(ret))
4035 		return ret;
4036 	return do_rt_sigqueueinfo(pid, sig, &info);
4037 }
4038 #endif
4039 
4040 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4041 {
4042 	/* This is only valid for single tasks */
4043 	if (pid <= 0 || tgid <= 0)
4044 		return -EINVAL;
4045 
4046 	/* Not even root can pretend to send signals from the kernel.
4047 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4048 	 */
4049 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4050 	    (task_pid_vnr(current) != pid))
4051 		return -EPERM;
4052 
4053 	return do_send_specific(tgid, pid, sig, info);
4054 }
4055 
4056 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4057 		siginfo_t __user *, uinfo)
4058 {
4059 	kernel_siginfo_t info;
4060 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4061 	if (unlikely(ret))
4062 		return ret;
4063 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4064 }
4065 
4066 #ifdef CONFIG_COMPAT
4067 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4068 			compat_pid_t, tgid,
4069 			compat_pid_t, pid,
4070 			int, sig,
4071 			struct compat_siginfo __user *, uinfo)
4072 {
4073 	kernel_siginfo_t info;
4074 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4075 	if (unlikely(ret))
4076 		return ret;
4077 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4078 }
4079 #endif
4080 
4081 /*
4082  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4083  */
4084 void kernel_sigaction(int sig, __sighandler_t action)
4085 {
4086 	spin_lock_irq(&current->sighand->siglock);
4087 	current->sighand->action[sig - 1].sa.sa_handler = action;
4088 	if (action == SIG_IGN) {
4089 		sigset_t mask;
4090 
4091 		sigemptyset(&mask);
4092 		sigaddset(&mask, sig);
4093 
4094 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4095 		flush_sigqueue_mask(&mask, &current->pending);
4096 		recalc_sigpending();
4097 	}
4098 	spin_unlock_irq(&current->sighand->siglock);
4099 }
4100 EXPORT_SYMBOL(kernel_sigaction);
4101 
4102 void __weak sigaction_compat_abi(struct k_sigaction *act,
4103 		struct k_sigaction *oact)
4104 {
4105 }
4106 
4107 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4108 {
4109 	struct task_struct *p = current, *t;
4110 	struct k_sigaction *k;
4111 	sigset_t mask;
4112 
4113 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4114 		return -EINVAL;
4115 
4116 	k = &p->sighand->action[sig-1];
4117 
4118 	spin_lock_irq(&p->sighand->siglock);
4119 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4120 		spin_unlock_irq(&p->sighand->siglock);
4121 		return -EINVAL;
4122 	}
4123 	if (oact)
4124 		*oact = *k;
4125 
4126 	/*
4127 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4128 	 * e.g. by having an architecture use the bit in their uapi.
4129 	 */
4130 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4131 
4132 	/*
4133 	 * Clear unknown flag bits in order to allow userspace to detect missing
4134 	 * support for flag bits and to allow the kernel to use non-uapi bits
4135 	 * internally.
4136 	 */
4137 	if (act)
4138 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4139 	if (oact)
4140 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4141 
4142 	sigaction_compat_abi(act, oact);
4143 
4144 	if (act) {
4145 		sigdelsetmask(&act->sa.sa_mask,
4146 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4147 		*k = *act;
4148 		/*
4149 		 * POSIX 3.3.1.3:
4150 		 *  "Setting a signal action to SIG_IGN for a signal that is
4151 		 *   pending shall cause the pending signal to be discarded,
4152 		 *   whether or not it is blocked."
4153 		 *
4154 		 *  "Setting a signal action to SIG_DFL for a signal that is
4155 		 *   pending and whose default action is to ignore the signal
4156 		 *   (for example, SIGCHLD), shall cause the pending signal to
4157 		 *   be discarded, whether or not it is blocked"
4158 		 */
4159 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4160 			sigemptyset(&mask);
4161 			sigaddset(&mask, sig);
4162 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4163 			for_each_thread(p, t)
4164 				flush_sigqueue_mask(&mask, &t->pending);
4165 		}
4166 	}
4167 
4168 	spin_unlock_irq(&p->sighand->siglock);
4169 	return 0;
4170 }
4171 
4172 #ifdef CONFIG_DYNAMIC_SIGFRAME
4173 static inline void sigaltstack_lock(void)
4174 	__acquires(&current->sighand->siglock)
4175 {
4176 	spin_lock_irq(&current->sighand->siglock);
4177 }
4178 
4179 static inline void sigaltstack_unlock(void)
4180 	__releases(&current->sighand->siglock)
4181 {
4182 	spin_unlock_irq(&current->sighand->siglock);
4183 }
4184 #else
4185 static inline void sigaltstack_lock(void) { }
4186 static inline void sigaltstack_unlock(void) { }
4187 #endif
4188 
4189 static int
4190 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4191 		size_t min_ss_size)
4192 {
4193 	struct task_struct *t = current;
4194 	int ret = 0;
4195 
4196 	if (oss) {
4197 		memset(oss, 0, sizeof(stack_t));
4198 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4199 		oss->ss_size = t->sas_ss_size;
4200 		oss->ss_flags = sas_ss_flags(sp) |
4201 			(current->sas_ss_flags & SS_FLAG_BITS);
4202 	}
4203 
4204 	if (ss) {
4205 		void __user *ss_sp = ss->ss_sp;
4206 		size_t ss_size = ss->ss_size;
4207 		unsigned ss_flags = ss->ss_flags;
4208 		int ss_mode;
4209 
4210 		if (unlikely(on_sig_stack(sp)))
4211 			return -EPERM;
4212 
4213 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4214 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4215 				ss_mode != 0))
4216 			return -EINVAL;
4217 
4218 		/*
4219 		 * Return before taking any locks if no actual
4220 		 * sigaltstack changes were requested.
4221 		 */
4222 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4223 		    t->sas_ss_size == ss_size &&
4224 		    t->sas_ss_flags == ss_flags)
4225 			return 0;
4226 
4227 		sigaltstack_lock();
4228 		if (ss_mode == SS_DISABLE) {
4229 			ss_size = 0;
4230 			ss_sp = NULL;
4231 		} else {
4232 			if (unlikely(ss_size < min_ss_size))
4233 				ret = -ENOMEM;
4234 			if (!sigaltstack_size_valid(ss_size))
4235 				ret = -ENOMEM;
4236 		}
4237 		if (!ret) {
4238 			t->sas_ss_sp = (unsigned long) ss_sp;
4239 			t->sas_ss_size = ss_size;
4240 			t->sas_ss_flags = ss_flags;
4241 		}
4242 		sigaltstack_unlock();
4243 	}
4244 	return ret;
4245 }
4246 
4247 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4248 {
4249 	stack_t new, old;
4250 	int err;
4251 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4252 		return -EFAULT;
4253 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4254 			      current_user_stack_pointer(),
4255 			      MINSIGSTKSZ);
4256 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4257 		err = -EFAULT;
4258 	return err;
4259 }
4260 
4261 int restore_altstack(const stack_t __user *uss)
4262 {
4263 	stack_t new;
4264 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4265 		return -EFAULT;
4266 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4267 			     MINSIGSTKSZ);
4268 	/* squash all but EFAULT for now */
4269 	return 0;
4270 }
4271 
4272 int __save_altstack(stack_t __user *uss, unsigned long sp)
4273 {
4274 	struct task_struct *t = current;
4275 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4276 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4277 		__put_user(t->sas_ss_size, &uss->ss_size);
4278 	return err;
4279 }
4280 
4281 #ifdef CONFIG_COMPAT
4282 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4283 				 compat_stack_t __user *uoss_ptr)
4284 {
4285 	stack_t uss, uoss;
4286 	int ret;
4287 
4288 	if (uss_ptr) {
4289 		compat_stack_t uss32;
4290 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4291 			return -EFAULT;
4292 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4293 		uss.ss_flags = uss32.ss_flags;
4294 		uss.ss_size = uss32.ss_size;
4295 	}
4296 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4297 			     compat_user_stack_pointer(),
4298 			     COMPAT_MINSIGSTKSZ);
4299 	if (ret >= 0 && uoss_ptr)  {
4300 		compat_stack_t old;
4301 		memset(&old, 0, sizeof(old));
4302 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4303 		old.ss_flags = uoss.ss_flags;
4304 		old.ss_size = uoss.ss_size;
4305 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4306 			ret = -EFAULT;
4307 	}
4308 	return ret;
4309 }
4310 
4311 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4312 			const compat_stack_t __user *, uss_ptr,
4313 			compat_stack_t __user *, uoss_ptr)
4314 {
4315 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4316 }
4317 
4318 int compat_restore_altstack(const compat_stack_t __user *uss)
4319 {
4320 	int err = do_compat_sigaltstack(uss, NULL);
4321 	/* squash all but -EFAULT for now */
4322 	return err == -EFAULT ? err : 0;
4323 }
4324 
4325 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4326 {
4327 	int err;
4328 	struct task_struct *t = current;
4329 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4330 			 &uss->ss_sp) |
4331 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4332 		__put_user(t->sas_ss_size, &uss->ss_size);
4333 	return err;
4334 }
4335 #endif
4336 
4337 #ifdef __ARCH_WANT_SYS_SIGPENDING
4338 
4339 /**
4340  *  sys_sigpending - examine pending signals
4341  *  @uset: where mask of pending signal is returned
4342  */
4343 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4344 {
4345 	sigset_t set;
4346 
4347 	if (sizeof(old_sigset_t) > sizeof(*uset))
4348 		return -EINVAL;
4349 
4350 	do_sigpending(&set);
4351 
4352 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4353 		return -EFAULT;
4354 
4355 	return 0;
4356 }
4357 
4358 #ifdef CONFIG_COMPAT
4359 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4360 {
4361 	sigset_t set;
4362 
4363 	do_sigpending(&set);
4364 
4365 	return put_user(set.sig[0], set32);
4366 }
4367 #endif
4368 
4369 #endif
4370 
4371 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4372 /**
4373  *  sys_sigprocmask - examine and change blocked signals
4374  *  @how: whether to add, remove, or set signals
4375  *  @nset: signals to add or remove (if non-null)
4376  *  @oset: previous value of signal mask if non-null
4377  *
4378  * Some platforms have their own version with special arguments;
4379  * others support only sys_rt_sigprocmask.
4380  */
4381 
4382 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4383 		old_sigset_t __user *, oset)
4384 {
4385 	old_sigset_t old_set, new_set;
4386 	sigset_t new_blocked;
4387 
4388 	old_set = current->blocked.sig[0];
4389 
4390 	if (nset) {
4391 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4392 			return -EFAULT;
4393 
4394 		new_blocked = current->blocked;
4395 
4396 		switch (how) {
4397 		case SIG_BLOCK:
4398 			sigaddsetmask(&new_blocked, new_set);
4399 			break;
4400 		case SIG_UNBLOCK:
4401 			sigdelsetmask(&new_blocked, new_set);
4402 			break;
4403 		case SIG_SETMASK:
4404 			new_blocked.sig[0] = new_set;
4405 			break;
4406 		default:
4407 			return -EINVAL;
4408 		}
4409 
4410 		set_current_blocked(&new_blocked);
4411 	}
4412 
4413 	if (oset) {
4414 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4415 			return -EFAULT;
4416 	}
4417 
4418 	return 0;
4419 }
4420 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4421 
4422 #ifndef CONFIG_ODD_RT_SIGACTION
4423 /**
4424  *  sys_rt_sigaction - alter an action taken by a process
4425  *  @sig: signal to be sent
4426  *  @act: new sigaction
4427  *  @oact: used to save the previous sigaction
4428  *  @sigsetsize: size of sigset_t type
4429  */
4430 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4431 		const struct sigaction __user *, act,
4432 		struct sigaction __user *, oact,
4433 		size_t, sigsetsize)
4434 {
4435 	struct k_sigaction new_sa, old_sa;
4436 	int ret;
4437 
4438 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4439 	if (sigsetsize != sizeof(sigset_t))
4440 		return -EINVAL;
4441 
4442 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4443 		return -EFAULT;
4444 
4445 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4446 	if (ret)
4447 		return ret;
4448 
4449 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4450 		return -EFAULT;
4451 
4452 	return 0;
4453 }
4454 #ifdef CONFIG_COMPAT
4455 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4456 		const struct compat_sigaction __user *, act,
4457 		struct compat_sigaction __user *, oact,
4458 		compat_size_t, sigsetsize)
4459 {
4460 	struct k_sigaction new_ka, old_ka;
4461 #ifdef __ARCH_HAS_SA_RESTORER
4462 	compat_uptr_t restorer;
4463 #endif
4464 	int ret;
4465 
4466 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4467 	if (sigsetsize != sizeof(compat_sigset_t))
4468 		return -EINVAL;
4469 
4470 	if (act) {
4471 		compat_uptr_t handler;
4472 		ret = get_user(handler, &act->sa_handler);
4473 		new_ka.sa.sa_handler = compat_ptr(handler);
4474 #ifdef __ARCH_HAS_SA_RESTORER
4475 		ret |= get_user(restorer, &act->sa_restorer);
4476 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4477 #endif
4478 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4479 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4480 		if (ret)
4481 			return -EFAULT;
4482 	}
4483 
4484 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4485 	if (!ret && oact) {
4486 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4487 			       &oact->sa_handler);
4488 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4489 					 sizeof(oact->sa_mask));
4490 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4491 #ifdef __ARCH_HAS_SA_RESTORER
4492 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4493 				&oact->sa_restorer);
4494 #endif
4495 	}
4496 	return ret;
4497 }
4498 #endif
4499 #endif /* !CONFIG_ODD_RT_SIGACTION */
4500 
4501 #ifdef CONFIG_OLD_SIGACTION
4502 SYSCALL_DEFINE3(sigaction, int, sig,
4503 		const struct old_sigaction __user *, act,
4504 	        struct old_sigaction __user *, oact)
4505 {
4506 	struct k_sigaction new_ka, old_ka;
4507 	int ret;
4508 
4509 	if (act) {
4510 		old_sigset_t mask;
4511 		if (!access_ok(act, sizeof(*act)) ||
4512 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4513 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4514 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4515 		    __get_user(mask, &act->sa_mask))
4516 			return -EFAULT;
4517 #ifdef __ARCH_HAS_KA_RESTORER
4518 		new_ka.ka_restorer = NULL;
4519 #endif
4520 		siginitset(&new_ka.sa.sa_mask, mask);
4521 	}
4522 
4523 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4524 
4525 	if (!ret && oact) {
4526 		if (!access_ok(oact, sizeof(*oact)) ||
4527 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4528 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4529 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4530 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4531 			return -EFAULT;
4532 	}
4533 
4534 	return ret;
4535 }
4536 #endif
4537 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4538 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4539 		const struct compat_old_sigaction __user *, act,
4540 	        struct compat_old_sigaction __user *, oact)
4541 {
4542 	struct k_sigaction new_ka, old_ka;
4543 	int ret;
4544 	compat_old_sigset_t mask;
4545 	compat_uptr_t handler, restorer;
4546 
4547 	if (act) {
4548 		if (!access_ok(act, sizeof(*act)) ||
4549 		    __get_user(handler, &act->sa_handler) ||
4550 		    __get_user(restorer, &act->sa_restorer) ||
4551 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4552 		    __get_user(mask, &act->sa_mask))
4553 			return -EFAULT;
4554 
4555 #ifdef __ARCH_HAS_KA_RESTORER
4556 		new_ka.ka_restorer = NULL;
4557 #endif
4558 		new_ka.sa.sa_handler = compat_ptr(handler);
4559 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4560 		siginitset(&new_ka.sa.sa_mask, mask);
4561 	}
4562 
4563 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4564 
4565 	if (!ret && oact) {
4566 		if (!access_ok(oact, sizeof(*oact)) ||
4567 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4568 			       &oact->sa_handler) ||
4569 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4570 			       &oact->sa_restorer) ||
4571 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4572 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4573 			return -EFAULT;
4574 	}
4575 	return ret;
4576 }
4577 #endif
4578 
4579 #ifdef CONFIG_SGETMASK_SYSCALL
4580 
4581 /*
4582  * For backwards compatibility.  Functionality superseded by sigprocmask.
4583  */
4584 SYSCALL_DEFINE0(sgetmask)
4585 {
4586 	/* SMP safe */
4587 	return current->blocked.sig[0];
4588 }
4589 
4590 SYSCALL_DEFINE1(ssetmask, int, newmask)
4591 {
4592 	int old = current->blocked.sig[0];
4593 	sigset_t newset;
4594 
4595 	siginitset(&newset, newmask);
4596 	set_current_blocked(&newset);
4597 
4598 	return old;
4599 }
4600 #endif /* CONFIG_SGETMASK_SYSCALL */
4601 
4602 #ifdef __ARCH_WANT_SYS_SIGNAL
4603 /*
4604  * For backwards compatibility.  Functionality superseded by sigaction.
4605  */
4606 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4607 {
4608 	struct k_sigaction new_sa, old_sa;
4609 	int ret;
4610 
4611 	new_sa.sa.sa_handler = handler;
4612 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4613 	sigemptyset(&new_sa.sa.sa_mask);
4614 
4615 	ret = do_sigaction(sig, &new_sa, &old_sa);
4616 
4617 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4618 }
4619 #endif /* __ARCH_WANT_SYS_SIGNAL */
4620 
4621 #ifdef __ARCH_WANT_SYS_PAUSE
4622 
4623 SYSCALL_DEFINE0(pause)
4624 {
4625 	while (!signal_pending(current)) {
4626 		__set_current_state(TASK_INTERRUPTIBLE);
4627 		schedule();
4628 	}
4629 	return -ERESTARTNOHAND;
4630 }
4631 
4632 #endif
4633 
4634 static int sigsuspend(sigset_t *set)
4635 {
4636 	current->saved_sigmask = current->blocked;
4637 	set_current_blocked(set);
4638 
4639 	while (!signal_pending(current)) {
4640 		__set_current_state(TASK_INTERRUPTIBLE);
4641 		schedule();
4642 	}
4643 	set_restore_sigmask();
4644 	return -ERESTARTNOHAND;
4645 }
4646 
4647 /**
4648  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4649  *	@unewset value until a signal is received
4650  *  @unewset: new signal mask value
4651  *  @sigsetsize: size of sigset_t type
4652  */
4653 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4654 {
4655 	sigset_t newset;
4656 
4657 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4658 	if (sigsetsize != sizeof(sigset_t))
4659 		return -EINVAL;
4660 
4661 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4662 		return -EFAULT;
4663 	return sigsuspend(&newset);
4664 }
4665 
4666 #ifdef CONFIG_COMPAT
4667 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4668 {
4669 	sigset_t newset;
4670 
4671 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4672 	if (sigsetsize != sizeof(sigset_t))
4673 		return -EINVAL;
4674 
4675 	if (get_compat_sigset(&newset, unewset))
4676 		return -EFAULT;
4677 	return sigsuspend(&newset);
4678 }
4679 #endif
4680 
4681 #ifdef CONFIG_OLD_SIGSUSPEND
4682 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4683 {
4684 	sigset_t blocked;
4685 	siginitset(&blocked, mask);
4686 	return sigsuspend(&blocked);
4687 }
4688 #endif
4689 #ifdef CONFIG_OLD_SIGSUSPEND3
4690 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4691 {
4692 	sigset_t blocked;
4693 	siginitset(&blocked, mask);
4694 	return sigsuspend(&blocked);
4695 }
4696 #endif
4697 
4698 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4699 {
4700 	return NULL;
4701 }
4702 
4703 static inline void siginfo_buildtime_checks(void)
4704 {
4705 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4706 
4707 	/* Verify the offsets in the two siginfos match */
4708 #define CHECK_OFFSET(field) \
4709 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4710 
4711 	/* kill */
4712 	CHECK_OFFSET(si_pid);
4713 	CHECK_OFFSET(si_uid);
4714 
4715 	/* timer */
4716 	CHECK_OFFSET(si_tid);
4717 	CHECK_OFFSET(si_overrun);
4718 	CHECK_OFFSET(si_value);
4719 
4720 	/* rt */
4721 	CHECK_OFFSET(si_pid);
4722 	CHECK_OFFSET(si_uid);
4723 	CHECK_OFFSET(si_value);
4724 
4725 	/* sigchld */
4726 	CHECK_OFFSET(si_pid);
4727 	CHECK_OFFSET(si_uid);
4728 	CHECK_OFFSET(si_status);
4729 	CHECK_OFFSET(si_utime);
4730 	CHECK_OFFSET(si_stime);
4731 
4732 	/* sigfault */
4733 	CHECK_OFFSET(si_addr);
4734 	CHECK_OFFSET(si_trapno);
4735 	CHECK_OFFSET(si_addr_lsb);
4736 	CHECK_OFFSET(si_lower);
4737 	CHECK_OFFSET(si_upper);
4738 	CHECK_OFFSET(si_pkey);
4739 	CHECK_OFFSET(si_perf_data);
4740 	CHECK_OFFSET(si_perf_type);
4741 	CHECK_OFFSET(si_perf_flags);
4742 
4743 	/* sigpoll */
4744 	CHECK_OFFSET(si_band);
4745 	CHECK_OFFSET(si_fd);
4746 
4747 	/* sigsys */
4748 	CHECK_OFFSET(si_call_addr);
4749 	CHECK_OFFSET(si_syscall);
4750 	CHECK_OFFSET(si_arch);
4751 #undef CHECK_OFFSET
4752 
4753 	/* usb asyncio */
4754 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4755 		     offsetof(struct siginfo, si_addr));
4756 	if (sizeof(int) == sizeof(void __user *)) {
4757 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4758 			     sizeof(void __user *));
4759 	} else {
4760 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4761 			      sizeof_field(struct siginfo, si_uid)) !=
4762 			     sizeof(void __user *));
4763 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4764 			     offsetof(struct siginfo, si_uid));
4765 	}
4766 #ifdef CONFIG_COMPAT
4767 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4768 		     offsetof(struct compat_siginfo, si_addr));
4769 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4770 		     sizeof(compat_uptr_t));
4771 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4772 		     sizeof_field(struct siginfo, si_pid));
4773 #endif
4774 }
4775 
4776 void __init signals_init(void)
4777 {
4778 	siginfo_buildtime_checks();
4779 
4780 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4781 }
4782 
4783 #ifdef CONFIG_KGDB_KDB
4784 #include <linux/kdb.h>
4785 /*
4786  * kdb_send_sig - Allows kdb to send signals without exposing
4787  * signal internals.  This function checks if the required locks are
4788  * available before calling the main signal code, to avoid kdb
4789  * deadlocks.
4790  */
4791 void kdb_send_sig(struct task_struct *t, int sig)
4792 {
4793 	static struct task_struct *kdb_prev_t;
4794 	int new_t, ret;
4795 	if (!spin_trylock(&t->sighand->siglock)) {
4796 		kdb_printf("Can't do kill command now.\n"
4797 			   "The sigmask lock is held somewhere else in "
4798 			   "kernel, try again later\n");
4799 		return;
4800 	}
4801 	new_t = kdb_prev_t != t;
4802 	kdb_prev_t = t;
4803 	if (!task_is_running(t) && new_t) {
4804 		spin_unlock(&t->sighand->siglock);
4805 		kdb_printf("Process is not RUNNING, sending a signal from "
4806 			   "kdb risks deadlock\n"
4807 			   "on the run queue locks. "
4808 			   "The signal has _not_ been sent.\n"
4809 			   "Reissue the kill command if you want to risk "
4810 			   "the deadlock.\n");
4811 		return;
4812 	}
4813 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4814 	spin_unlock(&t->sighand->siglock);
4815 	if (ret)
4816 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4817 			   sig, t->pid);
4818 	else
4819 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4820 }
4821 #endif	/* CONFIG_KGDB_KDB */
4822