xref: /openbmc/linux/kernel/signal.c (revision 0c7beb2d)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/proc_fs.h>
25 #include <linux/tty.h>
26 #include <linux/binfmts.h>
27 #include <linux/coredump.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/ptrace.h>
31 #include <linux/signal.h>
32 #include <linux/signalfd.h>
33 #include <linux/ratelimit.h>
34 #include <linux/tracehook.h>
35 #include <linux/capability.h>
36 #include <linux/freezer.h>
37 #include <linux/pid_namespace.h>
38 #include <linux/nsproxy.h>
39 #include <linux/user_namespace.h>
40 #include <linux/uprobes.h>
41 #include <linux/compat.h>
42 #include <linux/cn_proc.h>
43 #include <linux/compiler.h>
44 #include <linux/posix-timers.h>
45 #include <linux/livepatch.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/signal.h>
49 
50 #include <asm/param.h>
51 #include <linux/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/siginfo.h>
54 #include <asm/cacheflush.h>
55 #include "audit.h"	/* audit_signal_info() */
56 
57 /*
58  * SLAB caches for signal bits.
59  */
60 
61 static struct kmem_cache *sigqueue_cachep;
62 
63 int print_fatal_signals __read_mostly;
64 
65 static void __user *sig_handler(struct task_struct *t, int sig)
66 {
67 	return t->sighand->action[sig - 1].sa.sa_handler;
68 }
69 
70 static inline bool sig_handler_ignored(void __user *handler, int sig)
71 {
72 	/* Is it explicitly or implicitly ignored? */
73 	return handler == SIG_IGN ||
74 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
75 }
76 
77 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
78 {
79 	void __user *handler;
80 
81 	handler = sig_handler(t, sig);
82 
83 	/* SIGKILL and SIGSTOP may not be sent to the global init */
84 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
85 		return true;
86 
87 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
88 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
89 		return true;
90 
91 	return sig_handler_ignored(handler, sig);
92 }
93 
94 static bool sig_ignored(struct task_struct *t, int sig, bool force)
95 {
96 	/*
97 	 * Blocked signals are never ignored, since the
98 	 * signal handler may change by the time it is
99 	 * unblocked.
100 	 */
101 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
102 		return false;
103 
104 	/*
105 	 * Tracers may want to know about even ignored signal unless it
106 	 * is SIGKILL which can't be reported anyway but can be ignored
107 	 * by SIGNAL_UNKILLABLE task.
108 	 */
109 	if (t->ptrace && sig != SIGKILL)
110 		return false;
111 
112 	return sig_task_ignored(t, sig, force);
113 }
114 
115 /*
116  * Re-calculate pending state from the set of locally pending
117  * signals, globally pending signals, and blocked signals.
118  */
119 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
120 {
121 	unsigned long ready;
122 	long i;
123 
124 	switch (_NSIG_WORDS) {
125 	default:
126 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
127 			ready |= signal->sig[i] &~ blocked->sig[i];
128 		break;
129 
130 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
131 		ready |= signal->sig[2] &~ blocked->sig[2];
132 		ready |= signal->sig[1] &~ blocked->sig[1];
133 		ready |= signal->sig[0] &~ blocked->sig[0];
134 		break;
135 
136 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
137 		ready |= signal->sig[0] &~ blocked->sig[0];
138 		break;
139 
140 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
141 	}
142 	return ready !=	0;
143 }
144 
145 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
146 
147 static bool recalc_sigpending_tsk(struct task_struct *t)
148 {
149 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
150 	    PENDING(&t->pending, &t->blocked) ||
151 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
152 		set_tsk_thread_flag(t, TIF_SIGPENDING);
153 		return true;
154 	}
155 
156 	/*
157 	 * We must never clear the flag in another thread, or in current
158 	 * when it's possible the current syscall is returning -ERESTART*.
159 	 * So we don't clear it here, and only callers who know they should do.
160 	 */
161 	return false;
162 }
163 
164 /*
165  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
166  * This is superfluous when called on current, the wakeup is a harmless no-op.
167  */
168 void recalc_sigpending_and_wake(struct task_struct *t)
169 {
170 	if (recalc_sigpending_tsk(t))
171 		signal_wake_up(t, 0);
172 }
173 
174 void recalc_sigpending(void)
175 {
176 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
177 	    !klp_patch_pending(current))
178 		clear_thread_flag(TIF_SIGPENDING);
179 
180 }
181 EXPORT_SYMBOL(recalc_sigpending);
182 
183 void calculate_sigpending(void)
184 {
185 	/* Have any signals or users of TIF_SIGPENDING been delayed
186 	 * until after fork?
187 	 */
188 	spin_lock_irq(&current->sighand->siglock);
189 	set_tsk_thread_flag(current, TIF_SIGPENDING);
190 	recalc_sigpending();
191 	spin_unlock_irq(&current->sighand->siglock);
192 }
193 
194 /* Given the mask, find the first available signal that should be serviced. */
195 
196 #define SYNCHRONOUS_MASK \
197 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
199 
200 int next_signal(struct sigpending *pending, sigset_t *mask)
201 {
202 	unsigned long i, *s, *m, x;
203 	int sig = 0;
204 
205 	s = pending->signal.sig;
206 	m = mask->sig;
207 
208 	/*
209 	 * Handle the first word specially: it contains the
210 	 * synchronous signals that need to be dequeued first.
211 	 */
212 	x = *s &~ *m;
213 	if (x) {
214 		if (x & SYNCHRONOUS_MASK)
215 			x &= SYNCHRONOUS_MASK;
216 		sig = ffz(~x) + 1;
217 		return sig;
218 	}
219 
220 	switch (_NSIG_WORDS) {
221 	default:
222 		for (i = 1; i < _NSIG_WORDS; ++i) {
223 			x = *++s &~ *++m;
224 			if (!x)
225 				continue;
226 			sig = ffz(~x) + i*_NSIG_BPW + 1;
227 			break;
228 		}
229 		break;
230 
231 	case 2:
232 		x = s[1] &~ m[1];
233 		if (!x)
234 			break;
235 		sig = ffz(~x) + _NSIG_BPW + 1;
236 		break;
237 
238 	case 1:
239 		/* Nothing to do */
240 		break;
241 	}
242 
243 	return sig;
244 }
245 
246 static inline void print_dropped_signal(int sig)
247 {
248 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
249 
250 	if (!print_fatal_signals)
251 		return;
252 
253 	if (!__ratelimit(&ratelimit_state))
254 		return;
255 
256 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 				current->comm, current->pid, sig);
258 }
259 
260 /**
261  * task_set_jobctl_pending - set jobctl pending bits
262  * @task: target task
263  * @mask: pending bits to set
264  *
265  * Clear @mask from @task->jobctl.  @mask must be subset of
266  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
268  * cleared.  If @task is already being killed or exiting, this function
269  * becomes noop.
270  *
271  * CONTEXT:
272  * Must be called with @task->sighand->siglock held.
273  *
274  * RETURNS:
275  * %true if @mask is set, %false if made noop because @task was dying.
276  */
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
278 {
279 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
282 
283 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
284 		return false;
285 
286 	if (mask & JOBCTL_STOP_SIGMASK)
287 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
288 
289 	task->jobctl |= mask;
290 	return true;
291 }
292 
293 /**
294  * task_clear_jobctl_trapping - clear jobctl trapping bit
295  * @task: target task
296  *
297  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298  * Clear it and wake up the ptracer.  Note that we don't need any further
299  * locking.  @task->siglock guarantees that @task->parent points to the
300  * ptracer.
301  *
302  * CONTEXT:
303  * Must be called with @task->sighand->siglock held.
304  */
305 void task_clear_jobctl_trapping(struct task_struct *task)
306 {
307 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 		task->jobctl &= ~JOBCTL_TRAPPING;
309 		smp_mb();	/* advised by wake_up_bit() */
310 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
311 	}
312 }
313 
314 /**
315  * task_clear_jobctl_pending - clear jobctl pending bits
316  * @task: target task
317  * @mask: pending bits to clear
318  *
319  * Clear @mask from @task->jobctl.  @mask must be subset of
320  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
321  * STOP bits are cleared together.
322  *
323  * If clearing of @mask leaves no stop or trap pending, this function calls
324  * task_clear_jobctl_trapping().
325  *
326  * CONTEXT:
327  * Must be called with @task->sighand->siglock held.
328  */
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
330 {
331 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
332 
333 	if (mask & JOBCTL_STOP_PENDING)
334 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
335 
336 	task->jobctl &= ~mask;
337 
338 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 		task_clear_jobctl_trapping(task);
340 }
341 
342 /**
343  * task_participate_group_stop - participate in a group stop
344  * @task: task participating in a group stop
345  *
346  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347  * Group stop states are cleared and the group stop count is consumed if
348  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
349  * stop, the appropriate %SIGNAL_* flags are set.
350  *
351  * CONTEXT:
352  * Must be called with @task->sighand->siglock held.
353  *
354  * RETURNS:
355  * %true if group stop completion should be notified to the parent, %false
356  * otherwise.
357  */
358 static bool task_participate_group_stop(struct task_struct *task)
359 {
360 	struct signal_struct *sig = task->signal;
361 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
362 
363 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
364 
365 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
366 
367 	if (!consume)
368 		return false;
369 
370 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 		sig->group_stop_count--;
372 
373 	/*
374 	 * Tell the caller to notify completion iff we are entering into a
375 	 * fresh group stop.  Read comment in do_signal_stop() for details.
376 	 */
377 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
379 		return true;
380 	}
381 	return false;
382 }
383 
384 void task_join_group_stop(struct task_struct *task)
385 {
386 	/* Have the new thread join an on-going signal group stop */
387 	unsigned long jobctl = current->jobctl;
388 	if (jobctl & JOBCTL_STOP_PENDING) {
389 		struct signal_struct *sig = current->signal;
390 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
391 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
392 		if (task_set_jobctl_pending(task, signr | gstop)) {
393 			sig->group_stop_count++;
394 		}
395 	}
396 }
397 
398 /*
399  * allocate a new signal queue record
400  * - this may be called without locks if and only if t == current, otherwise an
401  *   appropriate lock must be held to stop the target task from exiting
402  */
403 static struct sigqueue *
404 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
405 {
406 	struct sigqueue *q = NULL;
407 	struct user_struct *user;
408 
409 	/*
410 	 * Protect access to @t credentials. This can go away when all
411 	 * callers hold rcu read lock.
412 	 */
413 	rcu_read_lock();
414 	user = get_uid(__task_cred(t)->user);
415 	atomic_inc(&user->sigpending);
416 	rcu_read_unlock();
417 
418 	if (override_rlimit ||
419 	    atomic_read(&user->sigpending) <=
420 			task_rlimit(t, RLIMIT_SIGPENDING)) {
421 		q = kmem_cache_alloc(sigqueue_cachep, flags);
422 	} else {
423 		print_dropped_signal(sig);
424 	}
425 
426 	if (unlikely(q == NULL)) {
427 		atomic_dec(&user->sigpending);
428 		free_uid(user);
429 	} else {
430 		INIT_LIST_HEAD(&q->list);
431 		q->flags = 0;
432 		q->user = user;
433 	}
434 
435 	return q;
436 }
437 
438 static void __sigqueue_free(struct sigqueue *q)
439 {
440 	if (q->flags & SIGQUEUE_PREALLOC)
441 		return;
442 	atomic_dec(&q->user->sigpending);
443 	free_uid(q->user);
444 	kmem_cache_free(sigqueue_cachep, q);
445 }
446 
447 void flush_sigqueue(struct sigpending *queue)
448 {
449 	struct sigqueue *q;
450 
451 	sigemptyset(&queue->signal);
452 	while (!list_empty(&queue->list)) {
453 		q = list_entry(queue->list.next, struct sigqueue , list);
454 		list_del_init(&q->list);
455 		__sigqueue_free(q);
456 	}
457 }
458 
459 /*
460  * Flush all pending signals for this kthread.
461  */
462 void flush_signals(struct task_struct *t)
463 {
464 	unsigned long flags;
465 
466 	spin_lock_irqsave(&t->sighand->siglock, flags);
467 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
468 	flush_sigqueue(&t->pending);
469 	flush_sigqueue(&t->signal->shared_pending);
470 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
471 }
472 EXPORT_SYMBOL(flush_signals);
473 
474 #ifdef CONFIG_POSIX_TIMERS
475 static void __flush_itimer_signals(struct sigpending *pending)
476 {
477 	sigset_t signal, retain;
478 	struct sigqueue *q, *n;
479 
480 	signal = pending->signal;
481 	sigemptyset(&retain);
482 
483 	list_for_each_entry_safe(q, n, &pending->list, list) {
484 		int sig = q->info.si_signo;
485 
486 		if (likely(q->info.si_code != SI_TIMER)) {
487 			sigaddset(&retain, sig);
488 		} else {
489 			sigdelset(&signal, sig);
490 			list_del_init(&q->list);
491 			__sigqueue_free(q);
492 		}
493 	}
494 
495 	sigorsets(&pending->signal, &signal, &retain);
496 }
497 
498 void flush_itimer_signals(void)
499 {
500 	struct task_struct *tsk = current;
501 	unsigned long flags;
502 
503 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
504 	__flush_itimer_signals(&tsk->pending);
505 	__flush_itimer_signals(&tsk->signal->shared_pending);
506 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
507 }
508 #endif
509 
510 void ignore_signals(struct task_struct *t)
511 {
512 	int i;
513 
514 	for (i = 0; i < _NSIG; ++i)
515 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
516 
517 	flush_signals(t);
518 }
519 
520 /*
521  * Flush all handlers for a task.
522  */
523 
524 void
525 flush_signal_handlers(struct task_struct *t, int force_default)
526 {
527 	int i;
528 	struct k_sigaction *ka = &t->sighand->action[0];
529 	for (i = _NSIG ; i != 0 ; i--) {
530 		if (force_default || ka->sa.sa_handler != SIG_IGN)
531 			ka->sa.sa_handler = SIG_DFL;
532 		ka->sa.sa_flags = 0;
533 #ifdef __ARCH_HAS_SA_RESTORER
534 		ka->sa.sa_restorer = NULL;
535 #endif
536 		sigemptyset(&ka->sa.sa_mask);
537 		ka++;
538 	}
539 }
540 
541 bool unhandled_signal(struct task_struct *tsk, int sig)
542 {
543 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
544 	if (is_global_init(tsk))
545 		return true;
546 
547 	if (handler != SIG_IGN && handler != SIG_DFL)
548 		return false;
549 
550 	/* if ptraced, let the tracer determine */
551 	return !tsk->ptrace;
552 }
553 
554 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
555 			   bool *resched_timer)
556 {
557 	struct sigqueue *q, *first = NULL;
558 
559 	/*
560 	 * Collect the siginfo appropriate to this signal.  Check if
561 	 * there is another siginfo for the same signal.
562 	*/
563 	list_for_each_entry(q, &list->list, list) {
564 		if (q->info.si_signo == sig) {
565 			if (first)
566 				goto still_pending;
567 			first = q;
568 		}
569 	}
570 
571 	sigdelset(&list->signal, sig);
572 
573 	if (first) {
574 still_pending:
575 		list_del_init(&first->list);
576 		copy_siginfo(info, &first->info);
577 
578 		*resched_timer =
579 			(first->flags & SIGQUEUE_PREALLOC) &&
580 			(info->si_code == SI_TIMER) &&
581 			(info->si_sys_private);
582 
583 		__sigqueue_free(first);
584 	} else {
585 		/*
586 		 * Ok, it wasn't in the queue.  This must be
587 		 * a fast-pathed signal or we must have been
588 		 * out of queue space.  So zero out the info.
589 		 */
590 		clear_siginfo(info);
591 		info->si_signo = sig;
592 		info->si_errno = 0;
593 		info->si_code = SI_USER;
594 		info->si_pid = 0;
595 		info->si_uid = 0;
596 	}
597 }
598 
599 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
600 			kernel_siginfo_t *info, bool *resched_timer)
601 {
602 	int sig = next_signal(pending, mask);
603 
604 	if (sig)
605 		collect_signal(sig, pending, info, resched_timer);
606 	return sig;
607 }
608 
609 /*
610  * Dequeue a signal and return the element to the caller, which is
611  * expected to free it.
612  *
613  * All callers have to hold the siglock.
614  */
615 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
616 {
617 	bool resched_timer = false;
618 	int signr;
619 
620 	/* We only dequeue private signals from ourselves, we don't let
621 	 * signalfd steal them
622 	 */
623 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
624 	if (!signr) {
625 		signr = __dequeue_signal(&tsk->signal->shared_pending,
626 					 mask, info, &resched_timer);
627 #ifdef CONFIG_POSIX_TIMERS
628 		/*
629 		 * itimer signal ?
630 		 *
631 		 * itimers are process shared and we restart periodic
632 		 * itimers in the signal delivery path to prevent DoS
633 		 * attacks in the high resolution timer case. This is
634 		 * compliant with the old way of self-restarting
635 		 * itimers, as the SIGALRM is a legacy signal and only
636 		 * queued once. Changing the restart behaviour to
637 		 * restart the timer in the signal dequeue path is
638 		 * reducing the timer noise on heavy loaded !highres
639 		 * systems too.
640 		 */
641 		if (unlikely(signr == SIGALRM)) {
642 			struct hrtimer *tmr = &tsk->signal->real_timer;
643 
644 			if (!hrtimer_is_queued(tmr) &&
645 			    tsk->signal->it_real_incr != 0) {
646 				hrtimer_forward(tmr, tmr->base->get_time(),
647 						tsk->signal->it_real_incr);
648 				hrtimer_restart(tmr);
649 			}
650 		}
651 #endif
652 	}
653 
654 	recalc_sigpending();
655 	if (!signr)
656 		return 0;
657 
658 	if (unlikely(sig_kernel_stop(signr))) {
659 		/*
660 		 * Set a marker that we have dequeued a stop signal.  Our
661 		 * caller might release the siglock and then the pending
662 		 * stop signal it is about to process is no longer in the
663 		 * pending bitmasks, but must still be cleared by a SIGCONT
664 		 * (and overruled by a SIGKILL).  So those cases clear this
665 		 * shared flag after we've set it.  Note that this flag may
666 		 * remain set after the signal we return is ignored or
667 		 * handled.  That doesn't matter because its only purpose
668 		 * is to alert stop-signal processing code when another
669 		 * processor has come along and cleared the flag.
670 		 */
671 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
672 	}
673 #ifdef CONFIG_POSIX_TIMERS
674 	if (resched_timer) {
675 		/*
676 		 * Release the siglock to ensure proper locking order
677 		 * of timer locks outside of siglocks.  Note, we leave
678 		 * irqs disabled here, since the posix-timers code is
679 		 * about to disable them again anyway.
680 		 */
681 		spin_unlock(&tsk->sighand->siglock);
682 		posixtimer_rearm(info);
683 		spin_lock(&tsk->sighand->siglock);
684 
685 		/* Don't expose the si_sys_private value to userspace */
686 		info->si_sys_private = 0;
687 	}
688 #endif
689 	return signr;
690 }
691 EXPORT_SYMBOL_GPL(dequeue_signal);
692 
693 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
694 {
695 	struct task_struct *tsk = current;
696 	struct sigpending *pending = &tsk->pending;
697 	struct sigqueue *q, *sync = NULL;
698 
699 	/*
700 	 * Might a synchronous signal be in the queue?
701 	 */
702 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
703 		return 0;
704 
705 	/*
706 	 * Return the first synchronous signal in the queue.
707 	 */
708 	list_for_each_entry(q, &pending->list, list) {
709 		/* Synchronous signals have a postive si_code */
710 		if ((q->info.si_code > SI_USER) &&
711 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
712 			sync = q;
713 			goto next;
714 		}
715 	}
716 	return 0;
717 next:
718 	/*
719 	 * Check if there is another siginfo for the same signal.
720 	 */
721 	list_for_each_entry_continue(q, &pending->list, list) {
722 		if (q->info.si_signo == sync->info.si_signo)
723 			goto still_pending;
724 	}
725 
726 	sigdelset(&pending->signal, sync->info.si_signo);
727 	recalc_sigpending();
728 still_pending:
729 	list_del_init(&sync->list);
730 	copy_siginfo(info, &sync->info);
731 	__sigqueue_free(sync);
732 	return info->si_signo;
733 }
734 
735 /*
736  * Tell a process that it has a new active signal..
737  *
738  * NOTE! we rely on the previous spin_lock to
739  * lock interrupts for us! We can only be called with
740  * "siglock" held, and the local interrupt must
741  * have been disabled when that got acquired!
742  *
743  * No need to set need_resched since signal event passing
744  * goes through ->blocked
745  */
746 void signal_wake_up_state(struct task_struct *t, unsigned int state)
747 {
748 	set_tsk_thread_flag(t, TIF_SIGPENDING);
749 	/*
750 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
751 	 * case. We don't check t->state here because there is a race with it
752 	 * executing another processor and just now entering stopped state.
753 	 * By using wake_up_state, we ensure the process will wake up and
754 	 * handle its death signal.
755 	 */
756 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
757 		kick_process(t);
758 }
759 
760 /*
761  * Remove signals in mask from the pending set and queue.
762  * Returns 1 if any signals were found.
763  *
764  * All callers must be holding the siglock.
765  */
766 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
767 {
768 	struct sigqueue *q, *n;
769 	sigset_t m;
770 
771 	sigandsets(&m, mask, &s->signal);
772 	if (sigisemptyset(&m))
773 		return;
774 
775 	sigandnsets(&s->signal, &s->signal, mask);
776 	list_for_each_entry_safe(q, n, &s->list, list) {
777 		if (sigismember(mask, q->info.si_signo)) {
778 			list_del_init(&q->list);
779 			__sigqueue_free(q);
780 		}
781 	}
782 }
783 
784 static inline int is_si_special(const struct kernel_siginfo *info)
785 {
786 	return info <= SEND_SIG_PRIV;
787 }
788 
789 static inline bool si_fromuser(const struct kernel_siginfo *info)
790 {
791 	return info == SEND_SIG_NOINFO ||
792 		(!is_si_special(info) && SI_FROMUSER(info));
793 }
794 
795 /*
796  * called with RCU read lock from check_kill_permission()
797  */
798 static bool kill_ok_by_cred(struct task_struct *t)
799 {
800 	const struct cred *cred = current_cred();
801 	const struct cred *tcred = __task_cred(t);
802 
803 	return uid_eq(cred->euid, tcred->suid) ||
804 	       uid_eq(cred->euid, tcred->uid) ||
805 	       uid_eq(cred->uid, tcred->suid) ||
806 	       uid_eq(cred->uid, tcred->uid) ||
807 	       ns_capable(tcred->user_ns, CAP_KILL);
808 }
809 
810 /*
811  * Bad permissions for sending the signal
812  * - the caller must hold the RCU read lock
813  */
814 static int check_kill_permission(int sig, struct kernel_siginfo *info,
815 				 struct task_struct *t)
816 {
817 	struct pid *sid;
818 	int error;
819 
820 	if (!valid_signal(sig))
821 		return -EINVAL;
822 
823 	if (!si_fromuser(info))
824 		return 0;
825 
826 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
827 	if (error)
828 		return error;
829 
830 	if (!same_thread_group(current, t) &&
831 	    !kill_ok_by_cred(t)) {
832 		switch (sig) {
833 		case SIGCONT:
834 			sid = task_session(t);
835 			/*
836 			 * We don't return the error if sid == NULL. The
837 			 * task was unhashed, the caller must notice this.
838 			 */
839 			if (!sid || sid == task_session(current))
840 				break;
841 		default:
842 			return -EPERM;
843 		}
844 	}
845 
846 	return security_task_kill(t, info, sig, NULL);
847 }
848 
849 /**
850  * ptrace_trap_notify - schedule trap to notify ptracer
851  * @t: tracee wanting to notify tracer
852  *
853  * This function schedules sticky ptrace trap which is cleared on the next
854  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
855  * ptracer.
856  *
857  * If @t is running, STOP trap will be taken.  If trapped for STOP and
858  * ptracer is listening for events, tracee is woken up so that it can
859  * re-trap for the new event.  If trapped otherwise, STOP trap will be
860  * eventually taken without returning to userland after the existing traps
861  * are finished by PTRACE_CONT.
862  *
863  * CONTEXT:
864  * Must be called with @task->sighand->siglock held.
865  */
866 static void ptrace_trap_notify(struct task_struct *t)
867 {
868 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
869 	assert_spin_locked(&t->sighand->siglock);
870 
871 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
872 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
873 }
874 
875 /*
876  * Handle magic process-wide effects of stop/continue signals. Unlike
877  * the signal actions, these happen immediately at signal-generation
878  * time regardless of blocking, ignoring, or handling.  This does the
879  * actual continuing for SIGCONT, but not the actual stopping for stop
880  * signals. The process stop is done as a signal action for SIG_DFL.
881  *
882  * Returns true if the signal should be actually delivered, otherwise
883  * it should be dropped.
884  */
885 static bool prepare_signal(int sig, struct task_struct *p, bool force)
886 {
887 	struct signal_struct *signal = p->signal;
888 	struct task_struct *t;
889 	sigset_t flush;
890 
891 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
892 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
893 			return sig == SIGKILL;
894 		/*
895 		 * The process is in the middle of dying, nothing to do.
896 		 */
897 	} else if (sig_kernel_stop(sig)) {
898 		/*
899 		 * This is a stop signal.  Remove SIGCONT from all queues.
900 		 */
901 		siginitset(&flush, sigmask(SIGCONT));
902 		flush_sigqueue_mask(&flush, &signal->shared_pending);
903 		for_each_thread(p, t)
904 			flush_sigqueue_mask(&flush, &t->pending);
905 	} else if (sig == SIGCONT) {
906 		unsigned int why;
907 		/*
908 		 * Remove all stop signals from all queues, wake all threads.
909 		 */
910 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
911 		flush_sigqueue_mask(&flush, &signal->shared_pending);
912 		for_each_thread(p, t) {
913 			flush_sigqueue_mask(&flush, &t->pending);
914 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
915 			if (likely(!(t->ptrace & PT_SEIZED)))
916 				wake_up_state(t, __TASK_STOPPED);
917 			else
918 				ptrace_trap_notify(t);
919 		}
920 
921 		/*
922 		 * Notify the parent with CLD_CONTINUED if we were stopped.
923 		 *
924 		 * If we were in the middle of a group stop, we pretend it
925 		 * was already finished, and then continued. Since SIGCHLD
926 		 * doesn't queue we report only CLD_STOPPED, as if the next
927 		 * CLD_CONTINUED was dropped.
928 		 */
929 		why = 0;
930 		if (signal->flags & SIGNAL_STOP_STOPPED)
931 			why |= SIGNAL_CLD_CONTINUED;
932 		else if (signal->group_stop_count)
933 			why |= SIGNAL_CLD_STOPPED;
934 
935 		if (why) {
936 			/*
937 			 * The first thread which returns from do_signal_stop()
938 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
939 			 * notify its parent. See get_signal().
940 			 */
941 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
942 			signal->group_stop_count = 0;
943 			signal->group_exit_code = 0;
944 		}
945 	}
946 
947 	return !sig_ignored(p, sig, force);
948 }
949 
950 /*
951  * Test if P wants to take SIG.  After we've checked all threads with this,
952  * it's equivalent to finding no threads not blocking SIG.  Any threads not
953  * blocking SIG were ruled out because they are not running and already
954  * have pending signals.  Such threads will dequeue from the shared queue
955  * as soon as they're available, so putting the signal on the shared queue
956  * will be equivalent to sending it to one such thread.
957  */
958 static inline bool wants_signal(int sig, struct task_struct *p)
959 {
960 	if (sigismember(&p->blocked, sig))
961 		return false;
962 
963 	if (p->flags & PF_EXITING)
964 		return false;
965 
966 	if (sig == SIGKILL)
967 		return true;
968 
969 	if (task_is_stopped_or_traced(p))
970 		return false;
971 
972 	return task_curr(p) || !signal_pending(p);
973 }
974 
975 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
976 {
977 	struct signal_struct *signal = p->signal;
978 	struct task_struct *t;
979 
980 	/*
981 	 * Now find a thread we can wake up to take the signal off the queue.
982 	 *
983 	 * If the main thread wants the signal, it gets first crack.
984 	 * Probably the least surprising to the average bear.
985 	 */
986 	if (wants_signal(sig, p))
987 		t = p;
988 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
989 		/*
990 		 * There is just one thread and it does not need to be woken.
991 		 * It will dequeue unblocked signals before it runs again.
992 		 */
993 		return;
994 	else {
995 		/*
996 		 * Otherwise try to find a suitable thread.
997 		 */
998 		t = signal->curr_target;
999 		while (!wants_signal(sig, t)) {
1000 			t = next_thread(t);
1001 			if (t == signal->curr_target)
1002 				/*
1003 				 * No thread needs to be woken.
1004 				 * Any eligible threads will see
1005 				 * the signal in the queue soon.
1006 				 */
1007 				return;
1008 		}
1009 		signal->curr_target = t;
1010 	}
1011 
1012 	/*
1013 	 * Found a killable thread.  If the signal will be fatal,
1014 	 * then start taking the whole group down immediately.
1015 	 */
1016 	if (sig_fatal(p, sig) &&
1017 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1018 	    !sigismember(&t->real_blocked, sig) &&
1019 	    (sig == SIGKILL || !p->ptrace)) {
1020 		/*
1021 		 * This signal will be fatal to the whole group.
1022 		 */
1023 		if (!sig_kernel_coredump(sig)) {
1024 			/*
1025 			 * Start a group exit and wake everybody up.
1026 			 * This way we don't have other threads
1027 			 * running and doing things after a slower
1028 			 * thread has the fatal signal pending.
1029 			 */
1030 			signal->flags = SIGNAL_GROUP_EXIT;
1031 			signal->group_exit_code = sig;
1032 			signal->group_stop_count = 0;
1033 			t = p;
1034 			do {
1035 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1036 				sigaddset(&t->pending.signal, SIGKILL);
1037 				signal_wake_up(t, 1);
1038 			} while_each_thread(p, t);
1039 			return;
1040 		}
1041 	}
1042 
1043 	/*
1044 	 * The signal is already in the shared-pending queue.
1045 	 * Tell the chosen thread to wake up and dequeue it.
1046 	 */
1047 	signal_wake_up(t, sig == SIGKILL);
1048 	return;
1049 }
1050 
1051 static inline bool legacy_queue(struct sigpending *signals, int sig)
1052 {
1053 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1054 }
1055 
1056 #ifdef CONFIG_USER_NS
1057 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1058 {
1059 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1060 		return;
1061 
1062 	if (SI_FROMKERNEL(info))
1063 		return;
1064 
1065 	rcu_read_lock();
1066 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1067 					make_kuid(current_user_ns(), info->si_uid));
1068 	rcu_read_unlock();
1069 }
1070 #else
1071 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1072 {
1073 	return;
1074 }
1075 #endif
1076 
1077 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1078 			enum pid_type type, int from_ancestor_ns)
1079 {
1080 	struct sigpending *pending;
1081 	struct sigqueue *q;
1082 	int override_rlimit;
1083 	int ret = 0, result;
1084 
1085 	assert_spin_locked(&t->sighand->siglock);
1086 
1087 	result = TRACE_SIGNAL_IGNORED;
1088 	if (!prepare_signal(sig, t,
1089 			from_ancestor_ns || (info == SEND_SIG_PRIV)))
1090 		goto ret;
1091 
1092 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1093 	/*
1094 	 * Short-circuit ignored signals and support queuing
1095 	 * exactly one non-rt signal, so that we can get more
1096 	 * detailed information about the cause of the signal.
1097 	 */
1098 	result = TRACE_SIGNAL_ALREADY_PENDING;
1099 	if (legacy_queue(pending, sig))
1100 		goto ret;
1101 
1102 	result = TRACE_SIGNAL_DELIVERED;
1103 	/*
1104 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1105 	 */
1106 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1107 		goto out_set;
1108 
1109 	/*
1110 	 * Real-time signals must be queued if sent by sigqueue, or
1111 	 * some other real-time mechanism.  It is implementation
1112 	 * defined whether kill() does so.  We attempt to do so, on
1113 	 * the principle of least surprise, but since kill is not
1114 	 * allowed to fail with EAGAIN when low on memory we just
1115 	 * make sure at least one signal gets delivered and don't
1116 	 * pass on the info struct.
1117 	 */
1118 	if (sig < SIGRTMIN)
1119 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1120 	else
1121 		override_rlimit = 0;
1122 
1123 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1124 	if (q) {
1125 		list_add_tail(&q->list, &pending->list);
1126 		switch ((unsigned long) info) {
1127 		case (unsigned long) SEND_SIG_NOINFO:
1128 			clear_siginfo(&q->info);
1129 			q->info.si_signo = sig;
1130 			q->info.si_errno = 0;
1131 			q->info.si_code = SI_USER;
1132 			q->info.si_pid = task_tgid_nr_ns(current,
1133 							task_active_pid_ns(t));
1134 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1135 			break;
1136 		case (unsigned long) SEND_SIG_PRIV:
1137 			clear_siginfo(&q->info);
1138 			q->info.si_signo = sig;
1139 			q->info.si_errno = 0;
1140 			q->info.si_code = SI_KERNEL;
1141 			q->info.si_pid = 0;
1142 			q->info.si_uid = 0;
1143 			break;
1144 		default:
1145 			copy_siginfo(&q->info, info);
1146 			if (from_ancestor_ns)
1147 				q->info.si_pid = 0;
1148 			break;
1149 		}
1150 
1151 		userns_fixup_signal_uid(&q->info, t);
1152 
1153 	} else if (!is_si_special(info)) {
1154 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1155 			/*
1156 			 * Queue overflow, abort.  We may abort if the
1157 			 * signal was rt and sent by user using something
1158 			 * other than kill().
1159 			 */
1160 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1161 			ret = -EAGAIN;
1162 			goto ret;
1163 		} else {
1164 			/*
1165 			 * This is a silent loss of information.  We still
1166 			 * send the signal, but the *info bits are lost.
1167 			 */
1168 			result = TRACE_SIGNAL_LOSE_INFO;
1169 		}
1170 	}
1171 
1172 out_set:
1173 	signalfd_notify(t, sig);
1174 	sigaddset(&pending->signal, sig);
1175 
1176 	/* Let multiprocess signals appear after on-going forks */
1177 	if (type > PIDTYPE_TGID) {
1178 		struct multiprocess_signals *delayed;
1179 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180 			sigset_t *signal = &delayed->signal;
1181 			/* Can't queue both a stop and a continue signal */
1182 			if (sig == SIGCONT)
1183 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184 			else if (sig_kernel_stop(sig))
1185 				sigdelset(signal, SIGCONT);
1186 			sigaddset(signal, sig);
1187 		}
1188 	}
1189 
1190 	complete_signal(sig, t, type);
1191 ret:
1192 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193 	return ret;
1194 }
1195 
1196 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1197 			enum pid_type type)
1198 {
1199 	int from_ancestor_ns = 0;
1200 
1201 #ifdef CONFIG_PID_NS
1202 	from_ancestor_ns = si_fromuser(info) &&
1203 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1204 #endif
1205 
1206 	return __send_signal(sig, info, t, type, from_ancestor_ns);
1207 }
1208 
1209 static void print_fatal_signal(int signr)
1210 {
1211 	struct pt_regs *regs = signal_pt_regs();
1212 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1213 
1214 #if defined(__i386__) && !defined(__arch_um__)
1215 	pr_info("code at %08lx: ", regs->ip);
1216 	{
1217 		int i;
1218 		for (i = 0; i < 16; i++) {
1219 			unsigned char insn;
1220 
1221 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1222 				break;
1223 			pr_cont("%02x ", insn);
1224 		}
1225 	}
1226 	pr_cont("\n");
1227 #endif
1228 	preempt_disable();
1229 	show_regs(regs);
1230 	preempt_enable();
1231 }
1232 
1233 static int __init setup_print_fatal_signals(char *str)
1234 {
1235 	get_option (&str, &print_fatal_signals);
1236 
1237 	return 1;
1238 }
1239 
1240 __setup("print-fatal-signals=", setup_print_fatal_signals);
1241 
1242 int
1243 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1244 {
1245 	return send_signal(sig, info, p, PIDTYPE_TGID);
1246 }
1247 
1248 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1249 			enum pid_type type)
1250 {
1251 	unsigned long flags;
1252 	int ret = -ESRCH;
1253 
1254 	if (lock_task_sighand(p, &flags)) {
1255 		ret = send_signal(sig, info, p, type);
1256 		unlock_task_sighand(p, &flags);
1257 	}
1258 
1259 	return ret;
1260 }
1261 
1262 /*
1263  * Force a signal that the process can't ignore: if necessary
1264  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1265  *
1266  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1267  * since we do not want to have a signal handler that was blocked
1268  * be invoked when user space had explicitly blocked it.
1269  *
1270  * We don't want to have recursive SIGSEGV's etc, for example,
1271  * that is why we also clear SIGNAL_UNKILLABLE.
1272  */
1273 int
1274 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t)
1275 {
1276 	unsigned long int flags;
1277 	int ret, blocked, ignored;
1278 	struct k_sigaction *action;
1279 
1280 	spin_lock_irqsave(&t->sighand->siglock, flags);
1281 	action = &t->sighand->action[sig-1];
1282 	ignored = action->sa.sa_handler == SIG_IGN;
1283 	blocked = sigismember(&t->blocked, sig);
1284 	if (blocked || ignored) {
1285 		action->sa.sa_handler = SIG_DFL;
1286 		if (blocked) {
1287 			sigdelset(&t->blocked, sig);
1288 			recalc_sigpending_and_wake(t);
1289 		}
1290 	}
1291 	/*
1292 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1293 	 * debugging to leave init killable.
1294 	 */
1295 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1296 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1297 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1298 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1299 
1300 	return ret;
1301 }
1302 
1303 /*
1304  * Nuke all other threads in the group.
1305  */
1306 int zap_other_threads(struct task_struct *p)
1307 {
1308 	struct task_struct *t = p;
1309 	int count = 0;
1310 
1311 	p->signal->group_stop_count = 0;
1312 
1313 	while_each_thread(p, t) {
1314 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1315 		count++;
1316 
1317 		/* Don't bother with already dead threads */
1318 		if (t->exit_state)
1319 			continue;
1320 		sigaddset(&t->pending.signal, SIGKILL);
1321 		signal_wake_up(t, 1);
1322 	}
1323 
1324 	return count;
1325 }
1326 
1327 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1328 					   unsigned long *flags)
1329 {
1330 	struct sighand_struct *sighand;
1331 
1332 	rcu_read_lock();
1333 	for (;;) {
1334 		sighand = rcu_dereference(tsk->sighand);
1335 		if (unlikely(sighand == NULL))
1336 			break;
1337 
1338 		/*
1339 		 * This sighand can be already freed and even reused, but
1340 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1341 		 * initializes ->siglock: this slab can't go away, it has
1342 		 * the same object type, ->siglock can't be reinitialized.
1343 		 *
1344 		 * We need to ensure that tsk->sighand is still the same
1345 		 * after we take the lock, we can race with de_thread() or
1346 		 * __exit_signal(). In the latter case the next iteration
1347 		 * must see ->sighand == NULL.
1348 		 */
1349 		spin_lock_irqsave(&sighand->siglock, *flags);
1350 		if (likely(sighand == tsk->sighand))
1351 			break;
1352 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1353 	}
1354 	rcu_read_unlock();
1355 
1356 	return sighand;
1357 }
1358 
1359 /*
1360  * send signal info to all the members of a group
1361  */
1362 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1363 			struct task_struct *p, enum pid_type type)
1364 {
1365 	int ret;
1366 
1367 	rcu_read_lock();
1368 	ret = check_kill_permission(sig, info, p);
1369 	rcu_read_unlock();
1370 
1371 	if (!ret && sig)
1372 		ret = do_send_sig_info(sig, info, p, type);
1373 
1374 	return ret;
1375 }
1376 
1377 /*
1378  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1379  * control characters do (^C, ^Z etc)
1380  * - the caller must hold at least a readlock on tasklist_lock
1381  */
1382 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1383 {
1384 	struct task_struct *p = NULL;
1385 	int retval, success;
1386 
1387 	success = 0;
1388 	retval = -ESRCH;
1389 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1390 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1391 		success |= !err;
1392 		retval = err;
1393 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1394 	return success ? 0 : retval;
1395 }
1396 
1397 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1398 {
1399 	int error = -ESRCH;
1400 	struct task_struct *p;
1401 
1402 	for (;;) {
1403 		rcu_read_lock();
1404 		p = pid_task(pid, PIDTYPE_PID);
1405 		if (p)
1406 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1407 		rcu_read_unlock();
1408 		if (likely(!p || error != -ESRCH))
1409 			return error;
1410 
1411 		/*
1412 		 * The task was unhashed in between, try again.  If it
1413 		 * is dead, pid_task() will return NULL, if we race with
1414 		 * de_thread() it will find the new leader.
1415 		 */
1416 	}
1417 }
1418 
1419 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1420 {
1421 	int error;
1422 	rcu_read_lock();
1423 	error = kill_pid_info(sig, info, find_vpid(pid));
1424 	rcu_read_unlock();
1425 	return error;
1426 }
1427 
1428 static inline bool kill_as_cred_perm(const struct cred *cred,
1429 				     struct task_struct *target)
1430 {
1431 	const struct cred *pcred = __task_cred(target);
1432 
1433 	return uid_eq(cred->euid, pcred->suid) ||
1434 	       uid_eq(cred->euid, pcred->uid) ||
1435 	       uid_eq(cred->uid, pcred->suid) ||
1436 	       uid_eq(cred->uid, pcred->uid);
1437 }
1438 
1439 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1440 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid,
1441 			 const struct cred *cred)
1442 {
1443 	int ret = -EINVAL;
1444 	struct task_struct *p;
1445 	unsigned long flags;
1446 
1447 	if (!valid_signal(sig))
1448 		return ret;
1449 
1450 	rcu_read_lock();
1451 	p = pid_task(pid, PIDTYPE_PID);
1452 	if (!p) {
1453 		ret = -ESRCH;
1454 		goto out_unlock;
1455 	}
1456 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1457 		ret = -EPERM;
1458 		goto out_unlock;
1459 	}
1460 	ret = security_task_kill(p, info, sig, cred);
1461 	if (ret)
1462 		goto out_unlock;
1463 
1464 	if (sig) {
1465 		if (lock_task_sighand(p, &flags)) {
1466 			ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1467 			unlock_task_sighand(p, &flags);
1468 		} else
1469 			ret = -ESRCH;
1470 	}
1471 out_unlock:
1472 	rcu_read_unlock();
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1476 
1477 /*
1478  * kill_something_info() interprets pid in interesting ways just like kill(2).
1479  *
1480  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1481  * is probably wrong.  Should make it like BSD or SYSV.
1482  */
1483 
1484 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1485 {
1486 	int ret;
1487 
1488 	if (pid > 0) {
1489 		rcu_read_lock();
1490 		ret = kill_pid_info(sig, info, find_vpid(pid));
1491 		rcu_read_unlock();
1492 		return ret;
1493 	}
1494 
1495 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1496 	if (pid == INT_MIN)
1497 		return -ESRCH;
1498 
1499 	read_lock(&tasklist_lock);
1500 	if (pid != -1) {
1501 		ret = __kill_pgrp_info(sig, info,
1502 				pid ? find_vpid(-pid) : task_pgrp(current));
1503 	} else {
1504 		int retval = 0, count = 0;
1505 		struct task_struct * p;
1506 
1507 		for_each_process(p) {
1508 			if (task_pid_vnr(p) > 1 &&
1509 					!same_thread_group(p, current)) {
1510 				int err = group_send_sig_info(sig, info, p,
1511 							      PIDTYPE_MAX);
1512 				++count;
1513 				if (err != -EPERM)
1514 					retval = err;
1515 			}
1516 		}
1517 		ret = count ? retval : -ESRCH;
1518 	}
1519 	read_unlock(&tasklist_lock);
1520 
1521 	return ret;
1522 }
1523 
1524 /*
1525  * These are for backward compatibility with the rest of the kernel source.
1526  */
1527 
1528 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1529 {
1530 	/*
1531 	 * Make sure legacy kernel users don't send in bad values
1532 	 * (normal paths check this in check_kill_permission).
1533 	 */
1534 	if (!valid_signal(sig))
1535 		return -EINVAL;
1536 
1537 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1538 }
1539 EXPORT_SYMBOL(send_sig_info);
1540 
1541 #define __si_special(priv) \
1542 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1543 
1544 int
1545 send_sig(int sig, struct task_struct *p, int priv)
1546 {
1547 	return send_sig_info(sig, __si_special(priv), p);
1548 }
1549 EXPORT_SYMBOL(send_sig);
1550 
1551 void force_sig(int sig, struct task_struct *p)
1552 {
1553 	force_sig_info(sig, SEND_SIG_PRIV, p);
1554 }
1555 EXPORT_SYMBOL(force_sig);
1556 
1557 /*
1558  * When things go south during signal handling, we
1559  * will force a SIGSEGV. And if the signal that caused
1560  * the problem was already a SIGSEGV, we'll want to
1561  * make sure we don't even try to deliver the signal..
1562  */
1563 void force_sigsegv(int sig, struct task_struct *p)
1564 {
1565 	if (sig == SIGSEGV) {
1566 		unsigned long flags;
1567 		spin_lock_irqsave(&p->sighand->siglock, flags);
1568 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1569 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1570 	}
1571 	force_sig(SIGSEGV, p);
1572 }
1573 
1574 int force_sig_fault(int sig, int code, void __user *addr
1575 	___ARCH_SI_TRAPNO(int trapno)
1576 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1577 	, struct task_struct *t)
1578 {
1579 	struct kernel_siginfo info;
1580 
1581 	clear_siginfo(&info);
1582 	info.si_signo = sig;
1583 	info.si_errno = 0;
1584 	info.si_code  = code;
1585 	info.si_addr  = addr;
1586 #ifdef __ARCH_SI_TRAPNO
1587 	info.si_trapno = trapno;
1588 #endif
1589 #ifdef __ia64__
1590 	info.si_imm = imm;
1591 	info.si_flags = flags;
1592 	info.si_isr = isr;
1593 #endif
1594 	return force_sig_info(info.si_signo, &info, t);
1595 }
1596 
1597 int send_sig_fault(int sig, int code, void __user *addr
1598 	___ARCH_SI_TRAPNO(int trapno)
1599 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1600 	, struct task_struct *t)
1601 {
1602 	struct kernel_siginfo info;
1603 
1604 	clear_siginfo(&info);
1605 	info.si_signo = sig;
1606 	info.si_errno = 0;
1607 	info.si_code  = code;
1608 	info.si_addr  = addr;
1609 #ifdef __ARCH_SI_TRAPNO
1610 	info.si_trapno = trapno;
1611 #endif
1612 #ifdef __ia64__
1613 	info.si_imm = imm;
1614 	info.si_flags = flags;
1615 	info.si_isr = isr;
1616 #endif
1617 	return send_sig_info(info.si_signo, &info, t);
1618 }
1619 
1620 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1621 {
1622 	struct kernel_siginfo info;
1623 
1624 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1625 	clear_siginfo(&info);
1626 	info.si_signo = SIGBUS;
1627 	info.si_errno = 0;
1628 	info.si_code = code;
1629 	info.si_addr = addr;
1630 	info.si_addr_lsb = lsb;
1631 	return force_sig_info(info.si_signo, &info, t);
1632 }
1633 
1634 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1635 {
1636 	struct kernel_siginfo info;
1637 
1638 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1639 	clear_siginfo(&info);
1640 	info.si_signo = SIGBUS;
1641 	info.si_errno = 0;
1642 	info.si_code = code;
1643 	info.si_addr = addr;
1644 	info.si_addr_lsb = lsb;
1645 	return send_sig_info(info.si_signo, &info, t);
1646 }
1647 EXPORT_SYMBOL(send_sig_mceerr);
1648 
1649 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1650 {
1651 	struct kernel_siginfo info;
1652 
1653 	clear_siginfo(&info);
1654 	info.si_signo = SIGSEGV;
1655 	info.si_errno = 0;
1656 	info.si_code  = SEGV_BNDERR;
1657 	info.si_addr  = addr;
1658 	info.si_lower = lower;
1659 	info.si_upper = upper;
1660 	return force_sig_info(info.si_signo, &info, current);
1661 }
1662 
1663 #ifdef SEGV_PKUERR
1664 int force_sig_pkuerr(void __user *addr, u32 pkey)
1665 {
1666 	struct kernel_siginfo info;
1667 
1668 	clear_siginfo(&info);
1669 	info.si_signo = SIGSEGV;
1670 	info.si_errno = 0;
1671 	info.si_code  = SEGV_PKUERR;
1672 	info.si_addr  = addr;
1673 	info.si_pkey  = pkey;
1674 	return force_sig_info(info.si_signo, &info, current);
1675 }
1676 #endif
1677 
1678 /* For the crazy architectures that include trap information in
1679  * the errno field, instead of an actual errno value.
1680  */
1681 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1682 {
1683 	struct kernel_siginfo info;
1684 
1685 	clear_siginfo(&info);
1686 	info.si_signo = SIGTRAP;
1687 	info.si_errno = errno;
1688 	info.si_code  = TRAP_HWBKPT;
1689 	info.si_addr  = addr;
1690 	return force_sig_info(info.si_signo, &info, current);
1691 }
1692 
1693 int kill_pgrp(struct pid *pid, int sig, int priv)
1694 {
1695 	int ret;
1696 
1697 	read_lock(&tasklist_lock);
1698 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1699 	read_unlock(&tasklist_lock);
1700 
1701 	return ret;
1702 }
1703 EXPORT_SYMBOL(kill_pgrp);
1704 
1705 int kill_pid(struct pid *pid, int sig, int priv)
1706 {
1707 	return kill_pid_info(sig, __si_special(priv), pid);
1708 }
1709 EXPORT_SYMBOL(kill_pid);
1710 
1711 /*
1712  * These functions support sending signals using preallocated sigqueue
1713  * structures.  This is needed "because realtime applications cannot
1714  * afford to lose notifications of asynchronous events, like timer
1715  * expirations or I/O completions".  In the case of POSIX Timers
1716  * we allocate the sigqueue structure from the timer_create.  If this
1717  * allocation fails we are able to report the failure to the application
1718  * with an EAGAIN error.
1719  */
1720 struct sigqueue *sigqueue_alloc(void)
1721 {
1722 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1723 
1724 	if (q)
1725 		q->flags |= SIGQUEUE_PREALLOC;
1726 
1727 	return q;
1728 }
1729 
1730 void sigqueue_free(struct sigqueue *q)
1731 {
1732 	unsigned long flags;
1733 	spinlock_t *lock = &current->sighand->siglock;
1734 
1735 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1736 	/*
1737 	 * We must hold ->siglock while testing q->list
1738 	 * to serialize with collect_signal() or with
1739 	 * __exit_signal()->flush_sigqueue().
1740 	 */
1741 	spin_lock_irqsave(lock, flags);
1742 	q->flags &= ~SIGQUEUE_PREALLOC;
1743 	/*
1744 	 * If it is queued it will be freed when dequeued,
1745 	 * like the "regular" sigqueue.
1746 	 */
1747 	if (!list_empty(&q->list))
1748 		q = NULL;
1749 	spin_unlock_irqrestore(lock, flags);
1750 
1751 	if (q)
1752 		__sigqueue_free(q);
1753 }
1754 
1755 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1756 {
1757 	int sig = q->info.si_signo;
1758 	struct sigpending *pending;
1759 	struct task_struct *t;
1760 	unsigned long flags;
1761 	int ret, result;
1762 
1763 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1764 
1765 	ret = -1;
1766 	rcu_read_lock();
1767 	t = pid_task(pid, type);
1768 	if (!t || !likely(lock_task_sighand(t, &flags)))
1769 		goto ret;
1770 
1771 	ret = 1; /* the signal is ignored */
1772 	result = TRACE_SIGNAL_IGNORED;
1773 	if (!prepare_signal(sig, t, false))
1774 		goto out;
1775 
1776 	ret = 0;
1777 	if (unlikely(!list_empty(&q->list))) {
1778 		/*
1779 		 * If an SI_TIMER entry is already queue just increment
1780 		 * the overrun count.
1781 		 */
1782 		BUG_ON(q->info.si_code != SI_TIMER);
1783 		q->info.si_overrun++;
1784 		result = TRACE_SIGNAL_ALREADY_PENDING;
1785 		goto out;
1786 	}
1787 	q->info.si_overrun = 0;
1788 
1789 	signalfd_notify(t, sig);
1790 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1791 	list_add_tail(&q->list, &pending->list);
1792 	sigaddset(&pending->signal, sig);
1793 	complete_signal(sig, t, type);
1794 	result = TRACE_SIGNAL_DELIVERED;
1795 out:
1796 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1797 	unlock_task_sighand(t, &flags);
1798 ret:
1799 	rcu_read_unlock();
1800 	return ret;
1801 }
1802 
1803 /*
1804  * Let a parent know about the death of a child.
1805  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1806  *
1807  * Returns true if our parent ignored us and so we've switched to
1808  * self-reaping.
1809  */
1810 bool do_notify_parent(struct task_struct *tsk, int sig)
1811 {
1812 	struct kernel_siginfo info;
1813 	unsigned long flags;
1814 	struct sighand_struct *psig;
1815 	bool autoreap = false;
1816 	u64 utime, stime;
1817 
1818 	BUG_ON(sig == -1);
1819 
1820  	/* do_notify_parent_cldstop should have been called instead.  */
1821  	BUG_ON(task_is_stopped_or_traced(tsk));
1822 
1823 	BUG_ON(!tsk->ptrace &&
1824 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1825 
1826 	if (sig != SIGCHLD) {
1827 		/*
1828 		 * This is only possible if parent == real_parent.
1829 		 * Check if it has changed security domain.
1830 		 */
1831 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1832 			sig = SIGCHLD;
1833 	}
1834 
1835 	clear_siginfo(&info);
1836 	info.si_signo = sig;
1837 	info.si_errno = 0;
1838 	/*
1839 	 * We are under tasklist_lock here so our parent is tied to
1840 	 * us and cannot change.
1841 	 *
1842 	 * task_active_pid_ns will always return the same pid namespace
1843 	 * until a task passes through release_task.
1844 	 *
1845 	 * write_lock() currently calls preempt_disable() which is the
1846 	 * same as rcu_read_lock(), but according to Oleg, this is not
1847 	 * correct to rely on this
1848 	 */
1849 	rcu_read_lock();
1850 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1851 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1852 				       task_uid(tsk));
1853 	rcu_read_unlock();
1854 
1855 	task_cputime(tsk, &utime, &stime);
1856 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1857 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1858 
1859 	info.si_status = tsk->exit_code & 0x7f;
1860 	if (tsk->exit_code & 0x80)
1861 		info.si_code = CLD_DUMPED;
1862 	else if (tsk->exit_code & 0x7f)
1863 		info.si_code = CLD_KILLED;
1864 	else {
1865 		info.si_code = CLD_EXITED;
1866 		info.si_status = tsk->exit_code >> 8;
1867 	}
1868 
1869 	psig = tsk->parent->sighand;
1870 	spin_lock_irqsave(&psig->siglock, flags);
1871 	if (!tsk->ptrace && sig == SIGCHLD &&
1872 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1873 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1874 		/*
1875 		 * We are exiting and our parent doesn't care.  POSIX.1
1876 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1877 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1878 		 * automatically and not left for our parent's wait4 call.
1879 		 * Rather than having the parent do it as a magic kind of
1880 		 * signal handler, we just set this to tell do_exit that we
1881 		 * can be cleaned up without becoming a zombie.  Note that
1882 		 * we still call __wake_up_parent in this case, because a
1883 		 * blocked sys_wait4 might now return -ECHILD.
1884 		 *
1885 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1886 		 * is implementation-defined: we do (if you don't want
1887 		 * it, just use SIG_IGN instead).
1888 		 */
1889 		autoreap = true;
1890 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1891 			sig = 0;
1892 	}
1893 	if (valid_signal(sig) && sig)
1894 		__group_send_sig_info(sig, &info, tsk->parent);
1895 	__wake_up_parent(tsk, tsk->parent);
1896 	spin_unlock_irqrestore(&psig->siglock, flags);
1897 
1898 	return autoreap;
1899 }
1900 
1901 /**
1902  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1903  * @tsk: task reporting the state change
1904  * @for_ptracer: the notification is for ptracer
1905  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1906  *
1907  * Notify @tsk's parent that the stopped/continued state has changed.  If
1908  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1909  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1910  *
1911  * CONTEXT:
1912  * Must be called with tasklist_lock at least read locked.
1913  */
1914 static void do_notify_parent_cldstop(struct task_struct *tsk,
1915 				     bool for_ptracer, int why)
1916 {
1917 	struct kernel_siginfo info;
1918 	unsigned long flags;
1919 	struct task_struct *parent;
1920 	struct sighand_struct *sighand;
1921 	u64 utime, stime;
1922 
1923 	if (for_ptracer) {
1924 		parent = tsk->parent;
1925 	} else {
1926 		tsk = tsk->group_leader;
1927 		parent = tsk->real_parent;
1928 	}
1929 
1930 	clear_siginfo(&info);
1931 	info.si_signo = SIGCHLD;
1932 	info.si_errno = 0;
1933 	/*
1934 	 * see comment in do_notify_parent() about the following 4 lines
1935 	 */
1936 	rcu_read_lock();
1937 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1938 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1939 	rcu_read_unlock();
1940 
1941 	task_cputime(tsk, &utime, &stime);
1942 	info.si_utime = nsec_to_clock_t(utime);
1943 	info.si_stime = nsec_to_clock_t(stime);
1944 
1945  	info.si_code = why;
1946  	switch (why) {
1947  	case CLD_CONTINUED:
1948  		info.si_status = SIGCONT;
1949  		break;
1950  	case CLD_STOPPED:
1951  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1952  		break;
1953  	case CLD_TRAPPED:
1954  		info.si_status = tsk->exit_code & 0x7f;
1955  		break;
1956  	default:
1957  		BUG();
1958  	}
1959 
1960 	sighand = parent->sighand;
1961 	spin_lock_irqsave(&sighand->siglock, flags);
1962 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1963 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1964 		__group_send_sig_info(SIGCHLD, &info, parent);
1965 	/*
1966 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1967 	 */
1968 	__wake_up_parent(tsk, parent);
1969 	spin_unlock_irqrestore(&sighand->siglock, flags);
1970 }
1971 
1972 static inline bool may_ptrace_stop(void)
1973 {
1974 	if (!likely(current->ptrace))
1975 		return false;
1976 	/*
1977 	 * Are we in the middle of do_coredump?
1978 	 * If so and our tracer is also part of the coredump stopping
1979 	 * is a deadlock situation, and pointless because our tracer
1980 	 * is dead so don't allow us to stop.
1981 	 * If SIGKILL was already sent before the caller unlocked
1982 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1983 	 * is safe to enter schedule().
1984 	 *
1985 	 * This is almost outdated, a task with the pending SIGKILL can't
1986 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1987 	 * after SIGKILL was already dequeued.
1988 	 */
1989 	if (unlikely(current->mm->core_state) &&
1990 	    unlikely(current->mm == current->parent->mm))
1991 		return false;
1992 
1993 	return true;
1994 }
1995 
1996 /*
1997  * Return non-zero if there is a SIGKILL that should be waking us up.
1998  * Called with the siglock held.
1999  */
2000 static bool sigkill_pending(struct task_struct *tsk)
2001 {
2002 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2003 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2004 }
2005 
2006 /*
2007  * This must be called with current->sighand->siglock held.
2008  *
2009  * This should be the path for all ptrace stops.
2010  * We always set current->last_siginfo while stopped here.
2011  * That makes it a way to test a stopped process for
2012  * being ptrace-stopped vs being job-control-stopped.
2013  *
2014  * If we actually decide not to stop at all because the tracer
2015  * is gone, we keep current->exit_code unless clear_code.
2016  */
2017 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2018 	__releases(&current->sighand->siglock)
2019 	__acquires(&current->sighand->siglock)
2020 {
2021 	bool gstop_done = false;
2022 
2023 	if (arch_ptrace_stop_needed(exit_code, info)) {
2024 		/*
2025 		 * The arch code has something special to do before a
2026 		 * ptrace stop.  This is allowed to block, e.g. for faults
2027 		 * on user stack pages.  We can't keep the siglock while
2028 		 * calling arch_ptrace_stop, so we must release it now.
2029 		 * To preserve proper semantics, we must do this before
2030 		 * any signal bookkeeping like checking group_stop_count.
2031 		 * Meanwhile, a SIGKILL could come in before we retake the
2032 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2033 		 * So after regaining the lock, we must check for SIGKILL.
2034 		 */
2035 		spin_unlock_irq(&current->sighand->siglock);
2036 		arch_ptrace_stop(exit_code, info);
2037 		spin_lock_irq(&current->sighand->siglock);
2038 		if (sigkill_pending(current))
2039 			return;
2040 	}
2041 
2042 	set_special_state(TASK_TRACED);
2043 
2044 	/*
2045 	 * We're committing to trapping.  TRACED should be visible before
2046 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2047 	 * Also, transition to TRACED and updates to ->jobctl should be
2048 	 * atomic with respect to siglock and should be done after the arch
2049 	 * hook as siglock is released and regrabbed across it.
2050 	 *
2051 	 *     TRACER				    TRACEE
2052 	 *
2053 	 *     ptrace_attach()
2054 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2055 	 *     do_wait()
2056 	 *       set_current_state()                smp_wmb();
2057 	 *       ptrace_do_wait()
2058 	 *         wait_task_stopped()
2059 	 *           task_stopped_code()
2060 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2061 	 */
2062 	smp_wmb();
2063 
2064 	current->last_siginfo = info;
2065 	current->exit_code = exit_code;
2066 
2067 	/*
2068 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2069 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2070 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2071 	 * could be clear now.  We act as if SIGCONT is received after
2072 	 * TASK_TRACED is entered - ignore it.
2073 	 */
2074 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2075 		gstop_done = task_participate_group_stop(current);
2076 
2077 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2078 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2079 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2080 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2081 
2082 	/* entering a trap, clear TRAPPING */
2083 	task_clear_jobctl_trapping(current);
2084 
2085 	spin_unlock_irq(&current->sighand->siglock);
2086 	read_lock(&tasklist_lock);
2087 	if (may_ptrace_stop()) {
2088 		/*
2089 		 * Notify parents of the stop.
2090 		 *
2091 		 * While ptraced, there are two parents - the ptracer and
2092 		 * the real_parent of the group_leader.  The ptracer should
2093 		 * know about every stop while the real parent is only
2094 		 * interested in the completion of group stop.  The states
2095 		 * for the two don't interact with each other.  Notify
2096 		 * separately unless they're gonna be duplicates.
2097 		 */
2098 		do_notify_parent_cldstop(current, true, why);
2099 		if (gstop_done && ptrace_reparented(current))
2100 			do_notify_parent_cldstop(current, false, why);
2101 
2102 		/*
2103 		 * Don't want to allow preemption here, because
2104 		 * sys_ptrace() needs this task to be inactive.
2105 		 *
2106 		 * XXX: implement read_unlock_no_resched().
2107 		 */
2108 		preempt_disable();
2109 		read_unlock(&tasklist_lock);
2110 		preempt_enable_no_resched();
2111 		freezable_schedule();
2112 	} else {
2113 		/*
2114 		 * By the time we got the lock, our tracer went away.
2115 		 * Don't drop the lock yet, another tracer may come.
2116 		 *
2117 		 * If @gstop_done, the ptracer went away between group stop
2118 		 * completion and here.  During detach, it would have set
2119 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2120 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2121 		 * the real parent of the group stop completion is enough.
2122 		 */
2123 		if (gstop_done)
2124 			do_notify_parent_cldstop(current, false, why);
2125 
2126 		/* tasklist protects us from ptrace_freeze_traced() */
2127 		__set_current_state(TASK_RUNNING);
2128 		if (clear_code)
2129 			current->exit_code = 0;
2130 		read_unlock(&tasklist_lock);
2131 	}
2132 
2133 	/*
2134 	 * We are back.  Now reacquire the siglock before touching
2135 	 * last_siginfo, so that we are sure to have synchronized with
2136 	 * any signal-sending on another CPU that wants to examine it.
2137 	 */
2138 	spin_lock_irq(&current->sighand->siglock);
2139 	current->last_siginfo = NULL;
2140 
2141 	/* LISTENING can be set only during STOP traps, clear it */
2142 	current->jobctl &= ~JOBCTL_LISTENING;
2143 
2144 	/*
2145 	 * Queued signals ignored us while we were stopped for tracing.
2146 	 * So check for any that we should take before resuming user mode.
2147 	 * This sets TIF_SIGPENDING, but never clears it.
2148 	 */
2149 	recalc_sigpending_tsk(current);
2150 }
2151 
2152 static void ptrace_do_notify(int signr, int exit_code, int why)
2153 {
2154 	kernel_siginfo_t info;
2155 
2156 	clear_siginfo(&info);
2157 	info.si_signo = signr;
2158 	info.si_code = exit_code;
2159 	info.si_pid = task_pid_vnr(current);
2160 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2161 
2162 	/* Let the debugger run.  */
2163 	ptrace_stop(exit_code, why, 1, &info);
2164 }
2165 
2166 void ptrace_notify(int exit_code)
2167 {
2168 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2169 	if (unlikely(current->task_works))
2170 		task_work_run();
2171 
2172 	spin_lock_irq(&current->sighand->siglock);
2173 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2174 	spin_unlock_irq(&current->sighand->siglock);
2175 }
2176 
2177 /**
2178  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2179  * @signr: signr causing group stop if initiating
2180  *
2181  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2182  * and participate in it.  If already set, participate in the existing
2183  * group stop.  If participated in a group stop (and thus slept), %true is
2184  * returned with siglock released.
2185  *
2186  * If ptraced, this function doesn't handle stop itself.  Instead,
2187  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2188  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2189  * places afterwards.
2190  *
2191  * CONTEXT:
2192  * Must be called with @current->sighand->siglock held, which is released
2193  * on %true return.
2194  *
2195  * RETURNS:
2196  * %false if group stop is already cancelled or ptrace trap is scheduled.
2197  * %true if participated in group stop.
2198  */
2199 static bool do_signal_stop(int signr)
2200 	__releases(&current->sighand->siglock)
2201 {
2202 	struct signal_struct *sig = current->signal;
2203 
2204 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2205 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2206 		struct task_struct *t;
2207 
2208 		/* signr will be recorded in task->jobctl for retries */
2209 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2210 
2211 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2212 		    unlikely(signal_group_exit(sig)))
2213 			return false;
2214 		/*
2215 		 * There is no group stop already in progress.  We must
2216 		 * initiate one now.
2217 		 *
2218 		 * While ptraced, a task may be resumed while group stop is
2219 		 * still in effect and then receive a stop signal and
2220 		 * initiate another group stop.  This deviates from the
2221 		 * usual behavior as two consecutive stop signals can't
2222 		 * cause two group stops when !ptraced.  That is why we
2223 		 * also check !task_is_stopped(t) below.
2224 		 *
2225 		 * The condition can be distinguished by testing whether
2226 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2227 		 * group_exit_code in such case.
2228 		 *
2229 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2230 		 * an intervening stop signal is required to cause two
2231 		 * continued events regardless of ptrace.
2232 		 */
2233 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2234 			sig->group_exit_code = signr;
2235 
2236 		sig->group_stop_count = 0;
2237 
2238 		if (task_set_jobctl_pending(current, signr | gstop))
2239 			sig->group_stop_count++;
2240 
2241 		t = current;
2242 		while_each_thread(current, t) {
2243 			/*
2244 			 * Setting state to TASK_STOPPED for a group
2245 			 * stop is always done with the siglock held,
2246 			 * so this check has no races.
2247 			 */
2248 			if (!task_is_stopped(t) &&
2249 			    task_set_jobctl_pending(t, signr | gstop)) {
2250 				sig->group_stop_count++;
2251 				if (likely(!(t->ptrace & PT_SEIZED)))
2252 					signal_wake_up(t, 0);
2253 				else
2254 					ptrace_trap_notify(t);
2255 			}
2256 		}
2257 	}
2258 
2259 	if (likely(!current->ptrace)) {
2260 		int notify = 0;
2261 
2262 		/*
2263 		 * If there are no other threads in the group, or if there
2264 		 * is a group stop in progress and we are the last to stop,
2265 		 * report to the parent.
2266 		 */
2267 		if (task_participate_group_stop(current))
2268 			notify = CLD_STOPPED;
2269 
2270 		set_special_state(TASK_STOPPED);
2271 		spin_unlock_irq(&current->sighand->siglock);
2272 
2273 		/*
2274 		 * Notify the parent of the group stop completion.  Because
2275 		 * we're not holding either the siglock or tasklist_lock
2276 		 * here, ptracer may attach inbetween; however, this is for
2277 		 * group stop and should always be delivered to the real
2278 		 * parent of the group leader.  The new ptracer will get
2279 		 * its notification when this task transitions into
2280 		 * TASK_TRACED.
2281 		 */
2282 		if (notify) {
2283 			read_lock(&tasklist_lock);
2284 			do_notify_parent_cldstop(current, false, notify);
2285 			read_unlock(&tasklist_lock);
2286 		}
2287 
2288 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2289 		freezable_schedule();
2290 		return true;
2291 	} else {
2292 		/*
2293 		 * While ptraced, group stop is handled by STOP trap.
2294 		 * Schedule it and let the caller deal with it.
2295 		 */
2296 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2297 		return false;
2298 	}
2299 }
2300 
2301 /**
2302  * do_jobctl_trap - take care of ptrace jobctl traps
2303  *
2304  * When PT_SEIZED, it's used for both group stop and explicit
2305  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2306  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2307  * the stop signal; otherwise, %SIGTRAP.
2308  *
2309  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2310  * number as exit_code and no siginfo.
2311  *
2312  * CONTEXT:
2313  * Must be called with @current->sighand->siglock held, which may be
2314  * released and re-acquired before returning with intervening sleep.
2315  */
2316 static void do_jobctl_trap(void)
2317 {
2318 	struct signal_struct *signal = current->signal;
2319 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2320 
2321 	if (current->ptrace & PT_SEIZED) {
2322 		if (!signal->group_stop_count &&
2323 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2324 			signr = SIGTRAP;
2325 		WARN_ON_ONCE(!signr);
2326 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2327 				 CLD_STOPPED);
2328 	} else {
2329 		WARN_ON_ONCE(!signr);
2330 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2331 		current->exit_code = 0;
2332 	}
2333 }
2334 
2335 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2336 {
2337 	/*
2338 	 * We do not check sig_kernel_stop(signr) but set this marker
2339 	 * unconditionally because we do not know whether debugger will
2340 	 * change signr. This flag has no meaning unless we are going
2341 	 * to stop after return from ptrace_stop(). In this case it will
2342 	 * be checked in do_signal_stop(), we should only stop if it was
2343 	 * not cleared by SIGCONT while we were sleeping. See also the
2344 	 * comment in dequeue_signal().
2345 	 */
2346 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2347 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2348 
2349 	/* We're back.  Did the debugger cancel the sig?  */
2350 	signr = current->exit_code;
2351 	if (signr == 0)
2352 		return signr;
2353 
2354 	current->exit_code = 0;
2355 
2356 	/*
2357 	 * Update the siginfo structure if the signal has
2358 	 * changed.  If the debugger wanted something
2359 	 * specific in the siginfo structure then it should
2360 	 * have updated *info via PTRACE_SETSIGINFO.
2361 	 */
2362 	if (signr != info->si_signo) {
2363 		clear_siginfo(info);
2364 		info->si_signo = signr;
2365 		info->si_errno = 0;
2366 		info->si_code = SI_USER;
2367 		rcu_read_lock();
2368 		info->si_pid = task_pid_vnr(current->parent);
2369 		info->si_uid = from_kuid_munged(current_user_ns(),
2370 						task_uid(current->parent));
2371 		rcu_read_unlock();
2372 	}
2373 
2374 	/* If the (new) signal is now blocked, requeue it.  */
2375 	if (sigismember(&current->blocked, signr)) {
2376 		send_signal(signr, info, current, PIDTYPE_PID);
2377 		signr = 0;
2378 	}
2379 
2380 	return signr;
2381 }
2382 
2383 bool get_signal(struct ksignal *ksig)
2384 {
2385 	struct sighand_struct *sighand = current->sighand;
2386 	struct signal_struct *signal = current->signal;
2387 	int signr;
2388 
2389 	if (unlikely(current->task_works))
2390 		task_work_run();
2391 
2392 	if (unlikely(uprobe_deny_signal()))
2393 		return false;
2394 
2395 	/*
2396 	 * Do this once, we can't return to user-mode if freezing() == T.
2397 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2398 	 * thus do not need another check after return.
2399 	 */
2400 	try_to_freeze();
2401 
2402 relock:
2403 	spin_lock_irq(&sighand->siglock);
2404 	/*
2405 	 * Every stopped thread goes here after wakeup. Check to see if
2406 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2407 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2408 	 */
2409 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2410 		int why;
2411 
2412 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2413 			why = CLD_CONTINUED;
2414 		else
2415 			why = CLD_STOPPED;
2416 
2417 		signal->flags &= ~SIGNAL_CLD_MASK;
2418 
2419 		spin_unlock_irq(&sighand->siglock);
2420 
2421 		/*
2422 		 * Notify the parent that we're continuing.  This event is
2423 		 * always per-process and doesn't make whole lot of sense
2424 		 * for ptracers, who shouldn't consume the state via
2425 		 * wait(2) either, but, for backward compatibility, notify
2426 		 * the ptracer of the group leader too unless it's gonna be
2427 		 * a duplicate.
2428 		 */
2429 		read_lock(&tasklist_lock);
2430 		do_notify_parent_cldstop(current, false, why);
2431 
2432 		if (ptrace_reparented(current->group_leader))
2433 			do_notify_parent_cldstop(current->group_leader,
2434 						true, why);
2435 		read_unlock(&tasklist_lock);
2436 
2437 		goto relock;
2438 	}
2439 
2440 	/* Has this task already been marked for death? */
2441 	if (signal_group_exit(signal)) {
2442 		ksig->info.si_signo = signr = SIGKILL;
2443 		sigdelset(&current->pending.signal, SIGKILL);
2444 		recalc_sigpending();
2445 		goto fatal;
2446 	}
2447 
2448 	for (;;) {
2449 		struct k_sigaction *ka;
2450 
2451 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2452 		    do_signal_stop(0))
2453 			goto relock;
2454 
2455 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2456 			do_jobctl_trap();
2457 			spin_unlock_irq(&sighand->siglock);
2458 			goto relock;
2459 		}
2460 
2461 		/*
2462 		 * Signals generated by the execution of an instruction
2463 		 * need to be delivered before any other pending signals
2464 		 * so that the instruction pointer in the signal stack
2465 		 * frame points to the faulting instruction.
2466 		 */
2467 		signr = dequeue_synchronous_signal(&ksig->info);
2468 		if (!signr)
2469 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2470 
2471 		if (!signr)
2472 			break; /* will return 0 */
2473 
2474 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2475 			signr = ptrace_signal(signr, &ksig->info);
2476 			if (!signr)
2477 				continue;
2478 		}
2479 
2480 		ka = &sighand->action[signr-1];
2481 
2482 		/* Trace actually delivered signals. */
2483 		trace_signal_deliver(signr, &ksig->info, ka);
2484 
2485 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2486 			continue;
2487 		if (ka->sa.sa_handler != SIG_DFL) {
2488 			/* Run the handler.  */
2489 			ksig->ka = *ka;
2490 
2491 			if (ka->sa.sa_flags & SA_ONESHOT)
2492 				ka->sa.sa_handler = SIG_DFL;
2493 
2494 			break; /* will return non-zero "signr" value */
2495 		}
2496 
2497 		/*
2498 		 * Now we are doing the default action for this signal.
2499 		 */
2500 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2501 			continue;
2502 
2503 		/*
2504 		 * Global init gets no signals it doesn't want.
2505 		 * Container-init gets no signals it doesn't want from same
2506 		 * container.
2507 		 *
2508 		 * Note that if global/container-init sees a sig_kernel_only()
2509 		 * signal here, the signal must have been generated internally
2510 		 * or must have come from an ancestor namespace. In either
2511 		 * case, the signal cannot be dropped.
2512 		 */
2513 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2514 				!sig_kernel_only(signr))
2515 			continue;
2516 
2517 		if (sig_kernel_stop(signr)) {
2518 			/*
2519 			 * The default action is to stop all threads in
2520 			 * the thread group.  The job control signals
2521 			 * do nothing in an orphaned pgrp, but SIGSTOP
2522 			 * always works.  Note that siglock needs to be
2523 			 * dropped during the call to is_orphaned_pgrp()
2524 			 * because of lock ordering with tasklist_lock.
2525 			 * This allows an intervening SIGCONT to be posted.
2526 			 * We need to check for that and bail out if necessary.
2527 			 */
2528 			if (signr != SIGSTOP) {
2529 				spin_unlock_irq(&sighand->siglock);
2530 
2531 				/* signals can be posted during this window */
2532 
2533 				if (is_current_pgrp_orphaned())
2534 					goto relock;
2535 
2536 				spin_lock_irq(&sighand->siglock);
2537 			}
2538 
2539 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2540 				/* It released the siglock.  */
2541 				goto relock;
2542 			}
2543 
2544 			/*
2545 			 * We didn't actually stop, due to a race
2546 			 * with SIGCONT or something like that.
2547 			 */
2548 			continue;
2549 		}
2550 
2551 	fatal:
2552 		spin_unlock_irq(&sighand->siglock);
2553 
2554 		/*
2555 		 * Anything else is fatal, maybe with a core dump.
2556 		 */
2557 		current->flags |= PF_SIGNALED;
2558 
2559 		if (sig_kernel_coredump(signr)) {
2560 			if (print_fatal_signals)
2561 				print_fatal_signal(ksig->info.si_signo);
2562 			proc_coredump_connector(current);
2563 			/*
2564 			 * If it was able to dump core, this kills all
2565 			 * other threads in the group and synchronizes with
2566 			 * their demise.  If we lost the race with another
2567 			 * thread getting here, it set group_exit_code
2568 			 * first and our do_group_exit call below will use
2569 			 * that value and ignore the one we pass it.
2570 			 */
2571 			do_coredump(&ksig->info);
2572 		}
2573 
2574 		/*
2575 		 * Death signals, no core dump.
2576 		 */
2577 		do_group_exit(ksig->info.si_signo);
2578 		/* NOTREACHED */
2579 	}
2580 	spin_unlock_irq(&sighand->siglock);
2581 
2582 	ksig->sig = signr;
2583 	return ksig->sig > 0;
2584 }
2585 
2586 /**
2587  * signal_delivered -
2588  * @ksig:		kernel signal struct
2589  * @stepping:		nonzero if debugger single-step or block-step in use
2590  *
2591  * This function should be called when a signal has successfully been
2592  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2593  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2594  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2595  */
2596 static void signal_delivered(struct ksignal *ksig, int stepping)
2597 {
2598 	sigset_t blocked;
2599 
2600 	/* A signal was successfully delivered, and the
2601 	   saved sigmask was stored on the signal frame,
2602 	   and will be restored by sigreturn.  So we can
2603 	   simply clear the restore sigmask flag.  */
2604 	clear_restore_sigmask();
2605 
2606 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2607 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2608 		sigaddset(&blocked, ksig->sig);
2609 	set_current_blocked(&blocked);
2610 	tracehook_signal_handler(stepping);
2611 }
2612 
2613 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2614 {
2615 	if (failed)
2616 		force_sigsegv(ksig->sig, current);
2617 	else
2618 		signal_delivered(ksig, stepping);
2619 }
2620 
2621 /*
2622  * It could be that complete_signal() picked us to notify about the
2623  * group-wide signal. Other threads should be notified now to take
2624  * the shared signals in @which since we will not.
2625  */
2626 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2627 {
2628 	sigset_t retarget;
2629 	struct task_struct *t;
2630 
2631 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2632 	if (sigisemptyset(&retarget))
2633 		return;
2634 
2635 	t = tsk;
2636 	while_each_thread(tsk, t) {
2637 		if (t->flags & PF_EXITING)
2638 			continue;
2639 
2640 		if (!has_pending_signals(&retarget, &t->blocked))
2641 			continue;
2642 		/* Remove the signals this thread can handle. */
2643 		sigandsets(&retarget, &retarget, &t->blocked);
2644 
2645 		if (!signal_pending(t))
2646 			signal_wake_up(t, 0);
2647 
2648 		if (sigisemptyset(&retarget))
2649 			break;
2650 	}
2651 }
2652 
2653 void exit_signals(struct task_struct *tsk)
2654 {
2655 	int group_stop = 0;
2656 	sigset_t unblocked;
2657 
2658 	/*
2659 	 * @tsk is about to have PF_EXITING set - lock out users which
2660 	 * expect stable threadgroup.
2661 	 */
2662 	cgroup_threadgroup_change_begin(tsk);
2663 
2664 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2665 		tsk->flags |= PF_EXITING;
2666 		cgroup_threadgroup_change_end(tsk);
2667 		return;
2668 	}
2669 
2670 	spin_lock_irq(&tsk->sighand->siglock);
2671 	/*
2672 	 * From now this task is not visible for group-wide signals,
2673 	 * see wants_signal(), do_signal_stop().
2674 	 */
2675 	tsk->flags |= PF_EXITING;
2676 
2677 	cgroup_threadgroup_change_end(tsk);
2678 
2679 	if (!signal_pending(tsk))
2680 		goto out;
2681 
2682 	unblocked = tsk->blocked;
2683 	signotset(&unblocked);
2684 	retarget_shared_pending(tsk, &unblocked);
2685 
2686 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2687 	    task_participate_group_stop(tsk))
2688 		group_stop = CLD_STOPPED;
2689 out:
2690 	spin_unlock_irq(&tsk->sighand->siglock);
2691 
2692 	/*
2693 	 * If group stop has completed, deliver the notification.  This
2694 	 * should always go to the real parent of the group leader.
2695 	 */
2696 	if (unlikely(group_stop)) {
2697 		read_lock(&tasklist_lock);
2698 		do_notify_parent_cldstop(tsk, false, group_stop);
2699 		read_unlock(&tasklist_lock);
2700 	}
2701 }
2702 
2703 /*
2704  * System call entry points.
2705  */
2706 
2707 /**
2708  *  sys_restart_syscall - restart a system call
2709  */
2710 SYSCALL_DEFINE0(restart_syscall)
2711 {
2712 	struct restart_block *restart = &current->restart_block;
2713 	return restart->fn(restart);
2714 }
2715 
2716 long do_no_restart_syscall(struct restart_block *param)
2717 {
2718 	return -EINTR;
2719 }
2720 
2721 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2722 {
2723 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2724 		sigset_t newblocked;
2725 		/* A set of now blocked but previously unblocked signals. */
2726 		sigandnsets(&newblocked, newset, &current->blocked);
2727 		retarget_shared_pending(tsk, &newblocked);
2728 	}
2729 	tsk->blocked = *newset;
2730 	recalc_sigpending();
2731 }
2732 
2733 /**
2734  * set_current_blocked - change current->blocked mask
2735  * @newset: new mask
2736  *
2737  * It is wrong to change ->blocked directly, this helper should be used
2738  * to ensure the process can't miss a shared signal we are going to block.
2739  */
2740 void set_current_blocked(sigset_t *newset)
2741 {
2742 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2743 	__set_current_blocked(newset);
2744 }
2745 
2746 void __set_current_blocked(const sigset_t *newset)
2747 {
2748 	struct task_struct *tsk = current;
2749 
2750 	/*
2751 	 * In case the signal mask hasn't changed, there is nothing we need
2752 	 * to do. The current->blocked shouldn't be modified by other task.
2753 	 */
2754 	if (sigequalsets(&tsk->blocked, newset))
2755 		return;
2756 
2757 	spin_lock_irq(&tsk->sighand->siglock);
2758 	__set_task_blocked(tsk, newset);
2759 	spin_unlock_irq(&tsk->sighand->siglock);
2760 }
2761 
2762 /*
2763  * This is also useful for kernel threads that want to temporarily
2764  * (or permanently) block certain signals.
2765  *
2766  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2767  * interface happily blocks "unblockable" signals like SIGKILL
2768  * and friends.
2769  */
2770 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2771 {
2772 	struct task_struct *tsk = current;
2773 	sigset_t newset;
2774 
2775 	/* Lockless, only current can change ->blocked, never from irq */
2776 	if (oldset)
2777 		*oldset = tsk->blocked;
2778 
2779 	switch (how) {
2780 	case SIG_BLOCK:
2781 		sigorsets(&newset, &tsk->blocked, set);
2782 		break;
2783 	case SIG_UNBLOCK:
2784 		sigandnsets(&newset, &tsk->blocked, set);
2785 		break;
2786 	case SIG_SETMASK:
2787 		newset = *set;
2788 		break;
2789 	default:
2790 		return -EINVAL;
2791 	}
2792 
2793 	__set_current_blocked(&newset);
2794 	return 0;
2795 }
2796 EXPORT_SYMBOL(sigprocmask);
2797 
2798 /*
2799  * The api helps set app-provided sigmasks.
2800  *
2801  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2802  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2803  */
2804 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set,
2805 		     sigset_t *oldset, size_t sigsetsize)
2806 {
2807 	if (!usigmask)
2808 		return 0;
2809 
2810 	if (sigsetsize != sizeof(sigset_t))
2811 		return -EINVAL;
2812 	if (copy_from_user(set, usigmask, sizeof(sigset_t)))
2813 		return -EFAULT;
2814 
2815 	*oldset = current->blocked;
2816 	set_current_blocked(set);
2817 
2818 	return 0;
2819 }
2820 EXPORT_SYMBOL(set_user_sigmask);
2821 
2822 #ifdef CONFIG_COMPAT
2823 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask,
2824 			    sigset_t *set, sigset_t *oldset,
2825 			    size_t sigsetsize)
2826 {
2827 	if (!usigmask)
2828 		return 0;
2829 
2830 	if (sigsetsize != sizeof(compat_sigset_t))
2831 		return -EINVAL;
2832 	if (get_compat_sigset(set, usigmask))
2833 		return -EFAULT;
2834 
2835 	*oldset = current->blocked;
2836 	set_current_blocked(set);
2837 
2838 	return 0;
2839 }
2840 EXPORT_SYMBOL(set_compat_user_sigmask);
2841 #endif
2842 
2843 /*
2844  * restore_user_sigmask:
2845  * usigmask: sigmask passed in from userland.
2846  * sigsaved: saved sigmask when the syscall started and changed the sigmask to
2847  *           usigmask.
2848  *
2849  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2850  * epoll_pwait where a new sigmask is passed in from userland for the syscalls.
2851  */
2852 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved)
2853 {
2854 
2855 	if (!usigmask)
2856 		return;
2857 	/*
2858 	 * When signals are pending, do not restore them here.
2859 	 * Restoring sigmask here can lead to delivering signals that the above
2860 	 * syscalls are intended to block because of the sigmask passed in.
2861 	 */
2862 	if (signal_pending(current)) {
2863 		current->saved_sigmask = *sigsaved;
2864 		set_restore_sigmask();
2865 		return;
2866 	}
2867 
2868 	/*
2869 	 * This is needed because the fast syscall return path does not restore
2870 	 * saved_sigmask when signals are not pending.
2871 	 */
2872 	set_current_blocked(sigsaved);
2873 }
2874 EXPORT_SYMBOL(restore_user_sigmask);
2875 
2876 /**
2877  *  sys_rt_sigprocmask - change the list of currently blocked signals
2878  *  @how: whether to add, remove, or set signals
2879  *  @nset: stores pending signals
2880  *  @oset: previous value of signal mask if non-null
2881  *  @sigsetsize: size of sigset_t type
2882  */
2883 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2884 		sigset_t __user *, oset, size_t, sigsetsize)
2885 {
2886 	sigset_t old_set, new_set;
2887 	int error;
2888 
2889 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2890 	if (sigsetsize != sizeof(sigset_t))
2891 		return -EINVAL;
2892 
2893 	old_set = current->blocked;
2894 
2895 	if (nset) {
2896 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2897 			return -EFAULT;
2898 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2899 
2900 		error = sigprocmask(how, &new_set, NULL);
2901 		if (error)
2902 			return error;
2903 	}
2904 
2905 	if (oset) {
2906 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2907 			return -EFAULT;
2908 	}
2909 
2910 	return 0;
2911 }
2912 
2913 #ifdef CONFIG_COMPAT
2914 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2915 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2916 {
2917 	sigset_t old_set = current->blocked;
2918 
2919 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2920 	if (sigsetsize != sizeof(sigset_t))
2921 		return -EINVAL;
2922 
2923 	if (nset) {
2924 		sigset_t new_set;
2925 		int error;
2926 		if (get_compat_sigset(&new_set, nset))
2927 			return -EFAULT;
2928 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2929 
2930 		error = sigprocmask(how, &new_set, NULL);
2931 		if (error)
2932 			return error;
2933 	}
2934 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2935 }
2936 #endif
2937 
2938 static void do_sigpending(sigset_t *set)
2939 {
2940 	spin_lock_irq(&current->sighand->siglock);
2941 	sigorsets(set, &current->pending.signal,
2942 		  &current->signal->shared_pending.signal);
2943 	spin_unlock_irq(&current->sighand->siglock);
2944 
2945 	/* Outside the lock because only this thread touches it.  */
2946 	sigandsets(set, &current->blocked, set);
2947 }
2948 
2949 /**
2950  *  sys_rt_sigpending - examine a pending signal that has been raised
2951  *			while blocked
2952  *  @uset: stores pending signals
2953  *  @sigsetsize: size of sigset_t type or larger
2954  */
2955 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2956 {
2957 	sigset_t set;
2958 
2959 	if (sigsetsize > sizeof(*uset))
2960 		return -EINVAL;
2961 
2962 	do_sigpending(&set);
2963 
2964 	if (copy_to_user(uset, &set, sigsetsize))
2965 		return -EFAULT;
2966 
2967 	return 0;
2968 }
2969 
2970 #ifdef CONFIG_COMPAT
2971 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2972 		compat_size_t, sigsetsize)
2973 {
2974 	sigset_t set;
2975 
2976 	if (sigsetsize > sizeof(*uset))
2977 		return -EINVAL;
2978 
2979 	do_sigpending(&set);
2980 
2981 	return put_compat_sigset(uset, &set, sigsetsize);
2982 }
2983 #endif
2984 
2985 static const struct {
2986 	unsigned char limit, layout;
2987 } sig_sicodes[] = {
2988 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
2989 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2990 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2991 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2992 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2993 #if defined(SIGEMT)
2994 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2995 #endif
2996 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2997 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2998 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2999 };
3000 
3001 static bool known_siginfo_layout(unsigned sig, int si_code)
3002 {
3003 	if (si_code == SI_KERNEL)
3004 		return true;
3005 	else if ((si_code > SI_USER)) {
3006 		if (sig_specific_sicodes(sig)) {
3007 			if (si_code <= sig_sicodes[sig].limit)
3008 				return true;
3009 		}
3010 		else if (si_code <= NSIGPOLL)
3011 			return true;
3012 	}
3013 	else if (si_code >= SI_DETHREAD)
3014 		return true;
3015 	else if (si_code == SI_ASYNCNL)
3016 		return true;
3017 	return false;
3018 }
3019 
3020 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3021 {
3022 	enum siginfo_layout layout = SIL_KILL;
3023 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3024 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3025 		    (si_code <= sig_sicodes[sig].limit)) {
3026 			layout = sig_sicodes[sig].layout;
3027 			/* Handle the exceptions */
3028 			if ((sig == SIGBUS) &&
3029 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3030 				layout = SIL_FAULT_MCEERR;
3031 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3032 				layout = SIL_FAULT_BNDERR;
3033 #ifdef SEGV_PKUERR
3034 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3035 				layout = SIL_FAULT_PKUERR;
3036 #endif
3037 		}
3038 		else if (si_code <= NSIGPOLL)
3039 			layout = SIL_POLL;
3040 	} else {
3041 		if (si_code == SI_TIMER)
3042 			layout = SIL_TIMER;
3043 		else if (si_code == SI_SIGIO)
3044 			layout = SIL_POLL;
3045 		else if (si_code < 0)
3046 			layout = SIL_RT;
3047 	}
3048 	return layout;
3049 }
3050 
3051 static inline char __user *si_expansion(const siginfo_t __user *info)
3052 {
3053 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3054 }
3055 
3056 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3057 {
3058 	char __user *expansion = si_expansion(to);
3059 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3060 		return -EFAULT;
3061 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3062 		return -EFAULT;
3063 	return 0;
3064 }
3065 
3066 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3067 				       const siginfo_t __user *from)
3068 {
3069 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3070 		char __user *expansion = si_expansion(from);
3071 		char buf[SI_EXPANSION_SIZE];
3072 		int i;
3073 		/*
3074 		 * An unknown si_code might need more than
3075 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3076 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3077 		 * will return this data to userspace exactly.
3078 		 */
3079 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3080 			return -EFAULT;
3081 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3082 			if (buf[i] != 0)
3083 				return -E2BIG;
3084 		}
3085 	}
3086 	return 0;
3087 }
3088 
3089 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3090 				    const siginfo_t __user *from)
3091 {
3092 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3093 		return -EFAULT;
3094 	to->si_signo = signo;
3095 	return post_copy_siginfo_from_user(to, from);
3096 }
3097 
3098 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3099 {
3100 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3101 		return -EFAULT;
3102 	return post_copy_siginfo_from_user(to, from);
3103 }
3104 
3105 #ifdef CONFIG_COMPAT
3106 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3107 			   const struct kernel_siginfo *from)
3108 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3109 {
3110 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3111 }
3112 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3113 			     const struct kernel_siginfo *from, bool x32_ABI)
3114 #endif
3115 {
3116 	struct compat_siginfo new;
3117 	memset(&new, 0, sizeof(new));
3118 
3119 	new.si_signo = from->si_signo;
3120 	new.si_errno = from->si_errno;
3121 	new.si_code  = from->si_code;
3122 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3123 	case SIL_KILL:
3124 		new.si_pid = from->si_pid;
3125 		new.si_uid = from->si_uid;
3126 		break;
3127 	case SIL_TIMER:
3128 		new.si_tid     = from->si_tid;
3129 		new.si_overrun = from->si_overrun;
3130 		new.si_int     = from->si_int;
3131 		break;
3132 	case SIL_POLL:
3133 		new.si_band = from->si_band;
3134 		new.si_fd   = from->si_fd;
3135 		break;
3136 	case SIL_FAULT:
3137 		new.si_addr = ptr_to_compat(from->si_addr);
3138 #ifdef __ARCH_SI_TRAPNO
3139 		new.si_trapno = from->si_trapno;
3140 #endif
3141 		break;
3142 	case SIL_FAULT_MCEERR:
3143 		new.si_addr = ptr_to_compat(from->si_addr);
3144 #ifdef __ARCH_SI_TRAPNO
3145 		new.si_trapno = from->si_trapno;
3146 #endif
3147 		new.si_addr_lsb = from->si_addr_lsb;
3148 		break;
3149 	case SIL_FAULT_BNDERR:
3150 		new.si_addr = ptr_to_compat(from->si_addr);
3151 #ifdef __ARCH_SI_TRAPNO
3152 		new.si_trapno = from->si_trapno;
3153 #endif
3154 		new.si_lower = ptr_to_compat(from->si_lower);
3155 		new.si_upper = ptr_to_compat(from->si_upper);
3156 		break;
3157 	case SIL_FAULT_PKUERR:
3158 		new.si_addr = ptr_to_compat(from->si_addr);
3159 #ifdef __ARCH_SI_TRAPNO
3160 		new.si_trapno = from->si_trapno;
3161 #endif
3162 		new.si_pkey = from->si_pkey;
3163 		break;
3164 	case SIL_CHLD:
3165 		new.si_pid    = from->si_pid;
3166 		new.si_uid    = from->si_uid;
3167 		new.si_status = from->si_status;
3168 #ifdef CONFIG_X86_X32_ABI
3169 		if (x32_ABI) {
3170 			new._sifields._sigchld_x32._utime = from->si_utime;
3171 			new._sifields._sigchld_x32._stime = from->si_stime;
3172 		} else
3173 #endif
3174 		{
3175 			new.si_utime = from->si_utime;
3176 			new.si_stime = from->si_stime;
3177 		}
3178 		break;
3179 	case SIL_RT:
3180 		new.si_pid = from->si_pid;
3181 		new.si_uid = from->si_uid;
3182 		new.si_int = from->si_int;
3183 		break;
3184 	case SIL_SYS:
3185 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3186 		new.si_syscall   = from->si_syscall;
3187 		new.si_arch      = from->si_arch;
3188 		break;
3189 	}
3190 
3191 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3192 		return -EFAULT;
3193 
3194 	return 0;
3195 }
3196 
3197 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3198 					 const struct compat_siginfo *from)
3199 {
3200 	clear_siginfo(to);
3201 	to->si_signo = from->si_signo;
3202 	to->si_errno = from->si_errno;
3203 	to->si_code  = from->si_code;
3204 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3205 	case SIL_KILL:
3206 		to->si_pid = from->si_pid;
3207 		to->si_uid = from->si_uid;
3208 		break;
3209 	case SIL_TIMER:
3210 		to->si_tid     = from->si_tid;
3211 		to->si_overrun = from->si_overrun;
3212 		to->si_int     = from->si_int;
3213 		break;
3214 	case SIL_POLL:
3215 		to->si_band = from->si_band;
3216 		to->si_fd   = from->si_fd;
3217 		break;
3218 	case SIL_FAULT:
3219 		to->si_addr = compat_ptr(from->si_addr);
3220 #ifdef __ARCH_SI_TRAPNO
3221 		to->si_trapno = from->si_trapno;
3222 #endif
3223 		break;
3224 	case SIL_FAULT_MCEERR:
3225 		to->si_addr = compat_ptr(from->si_addr);
3226 #ifdef __ARCH_SI_TRAPNO
3227 		to->si_trapno = from->si_trapno;
3228 #endif
3229 		to->si_addr_lsb = from->si_addr_lsb;
3230 		break;
3231 	case SIL_FAULT_BNDERR:
3232 		to->si_addr = compat_ptr(from->si_addr);
3233 #ifdef __ARCH_SI_TRAPNO
3234 		to->si_trapno = from->si_trapno;
3235 #endif
3236 		to->si_lower = compat_ptr(from->si_lower);
3237 		to->si_upper = compat_ptr(from->si_upper);
3238 		break;
3239 	case SIL_FAULT_PKUERR:
3240 		to->si_addr = compat_ptr(from->si_addr);
3241 #ifdef __ARCH_SI_TRAPNO
3242 		to->si_trapno = from->si_trapno;
3243 #endif
3244 		to->si_pkey = from->si_pkey;
3245 		break;
3246 	case SIL_CHLD:
3247 		to->si_pid    = from->si_pid;
3248 		to->si_uid    = from->si_uid;
3249 		to->si_status = from->si_status;
3250 #ifdef CONFIG_X86_X32_ABI
3251 		if (in_x32_syscall()) {
3252 			to->si_utime = from->_sifields._sigchld_x32._utime;
3253 			to->si_stime = from->_sifields._sigchld_x32._stime;
3254 		} else
3255 #endif
3256 		{
3257 			to->si_utime = from->si_utime;
3258 			to->si_stime = from->si_stime;
3259 		}
3260 		break;
3261 	case SIL_RT:
3262 		to->si_pid = from->si_pid;
3263 		to->si_uid = from->si_uid;
3264 		to->si_int = from->si_int;
3265 		break;
3266 	case SIL_SYS:
3267 		to->si_call_addr = compat_ptr(from->si_call_addr);
3268 		to->si_syscall   = from->si_syscall;
3269 		to->si_arch      = from->si_arch;
3270 		break;
3271 	}
3272 	return 0;
3273 }
3274 
3275 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3276 				      const struct compat_siginfo __user *ufrom)
3277 {
3278 	struct compat_siginfo from;
3279 
3280 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3281 		return -EFAULT;
3282 
3283 	from.si_signo = signo;
3284 	return post_copy_siginfo_from_user32(to, &from);
3285 }
3286 
3287 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3288 			     const struct compat_siginfo __user *ufrom)
3289 {
3290 	struct compat_siginfo from;
3291 
3292 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3293 		return -EFAULT;
3294 
3295 	return post_copy_siginfo_from_user32(to, &from);
3296 }
3297 #endif /* CONFIG_COMPAT */
3298 
3299 /**
3300  *  do_sigtimedwait - wait for queued signals specified in @which
3301  *  @which: queued signals to wait for
3302  *  @info: if non-null, the signal's siginfo is returned here
3303  *  @ts: upper bound on process time suspension
3304  */
3305 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3306 		    const struct timespec64 *ts)
3307 {
3308 	ktime_t *to = NULL, timeout = KTIME_MAX;
3309 	struct task_struct *tsk = current;
3310 	sigset_t mask = *which;
3311 	int sig, ret = 0;
3312 
3313 	if (ts) {
3314 		if (!timespec64_valid(ts))
3315 			return -EINVAL;
3316 		timeout = timespec64_to_ktime(*ts);
3317 		to = &timeout;
3318 	}
3319 
3320 	/*
3321 	 * Invert the set of allowed signals to get those we want to block.
3322 	 */
3323 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3324 	signotset(&mask);
3325 
3326 	spin_lock_irq(&tsk->sighand->siglock);
3327 	sig = dequeue_signal(tsk, &mask, info);
3328 	if (!sig && timeout) {
3329 		/*
3330 		 * None ready, temporarily unblock those we're interested
3331 		 * while we are sleeping in so that we'll be awakened when
3332 		 * they arrive. Unblocking is always fine, we can avoid
3333 		 * set_current_blocked().
3334 		 */
3335 		tsk->real_blocked = tsk->blocked;
3336 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3337 		recalc_sigpending();
3338 		spin_unlock_irq(&tsk->sighand->siglock);
3339 
3340 		__set_current_state(TASK_INTERRUPTIBLE);
3341 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3342 							 HRTIMER_MODE_REL);
3343 		spin_lock_irq(&tsk->sighand->siglock);
3344 		__set_task_blocked(tsk, &tsk->real_blocked);
3345 		sigemptyset(&tsk->real_blocked);
3346 		sig = dequeue_signal(tsk, &mask, info);
3347 	}
3348 	spin_unlock_irq(&tsk->sighand->siglock);
3349 
3350 	if (sig)
3351 		return sig;
3352 	return ret ? -EINTR : -EAGAIN;
3353 }
3354 
3355 /**
3356  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3357  *			in @uthese
3358  *  @uthese: queued signals to wait for
3359  *  @uinfo: if non-null, the signal's siginfo is returned here
3360  *  @uts: upper bound on process time suspension
3361  *  @sigsetsize: size of sigset_t type
3362  */
3363 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3364 		siginfo_t __user *, uinfo,
3365 		const struct __kernel_timespec __user *, uts,
3366 		size_t, sigsetsize)
3367 {
3368 	sigset_t these;
3369 	struct timespec64 ts;
3370 	kernel_siginfo_t info;
3371 	int ret;
3372 
3373 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3374 	if (sigsetsize != sizeof(sigset_t))
3375 		return -EINVAL;
3376 
3377 	if (copy_from_user(&these, uthese, sizeof(these)))
3378 		return -EFAULT;
3379 
3380 	if (uts) {
3381 		if (get_timespec64(&ts, uts))
3382 			return -EFAULT;
3383 	}
3384 
3385 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3386 
3387 	if (ret > 0 && uinfo) {
3388 		if (copy_siginfo_to_user(uinfo, &info))
3389 			ret = -EFAULT;
3390 	}
3391 
3392 	return ret;
3393 }
3394 
3395 #ifdef CONFIG_COMPAT_32BIT_TIME
3396 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3397 		siginfo_t __user *, uinfo,
3398 		const struct old_timespec32 __user *, uts,
3399 		size_t, sigsetsize)
3400 {
3401 	sigset_t these;
3402 	struct timespec64 ts;
3403 	kernel_siginfo_t info;
3404 	int ret;
3405 
3406 	if (sigsetsize != sizeof(sigset_t))
3407 		return -EINVAL;
3408 
3409 	if (copy_from_user(&these, uthese, sizeof(these)))
3410 		return -EFAULT;
3411 
3412 	if (uts) {
3413 		if (get_old_timespec32(&ts, uts))
3414 			return -EFAULT;
3415 	}
3416 
3417 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3418 
3419 	if (ret > 0 && uinfo) {
3420 		if (copy_siginfo_to_user(uinfo, &info))
3421 			ret = -EFAULT;
3422 	}
3423 
3424 	return ret;
3425 }
3426 #endif
3427 
3428 #ifdef CONFIG_COMPAT
3429 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3430 		struct compat_siginfo __user *, uinfo,
3431 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3432 {
3433 	sigset_t s;
3434 	struct timespec64 t;
3435 	kernel_siginfo_t info;
3436 	long ret;
3437 
3438 	if (sigsetsize != sizeof(sigset_t))
3439 		return -EINVAL;
3440 
3441 	if (get_compat_sigset(&s, uthese))
3442 		return -EFAULT;
3443 
3444 	if (uts) {
3445 		if (get_timespec64(&t, uts))
3446 			return -EFAULT;
3447 	}
3448 
3449 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3450 
3451 	if (ret > 0 && uinfo) {
3452 		if (copy_siginfo_to_user32(uinfo, &info))
3453 			ret = -EFAULT;
3454 	}
3455 
3456 	return ret;
3457 }
3458 
3459 #ifdef CONFIG_COMPAT_32BIT_TIME
3460 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3461 		struct compat_siginfo __user *, uinfo,
3462 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3463 {
3464 	sigset_t s;
3465 	struct timespec64 t;
3466 	kernel_siginfo_t info;
3467 	long ret;
3468 
3469 	if (sigsetsize != sizeof(sigset_t))
3470 		return -EINVAL;
3471 
3472 	if (get_compat_sigset(&s, uthese))
3473 		return -EFAULT;
3474 
3475 	if (uts) {
3476 		if (get_old_timespec32(&t, uts))
3477 			return -EFAULT;
3478 	}
3479 
3480 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3481 
3482 	if (ret > 0 && uinfo) {
3483 		if (copy_siginfo_to_user32(uinfo, &info))
3484 			ret = -EFAULT;
3485 	}
3486 
3487 	return ret;
3488 }
3489 #endif
3490 #endif
3491 
3492 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3493 {
3494 	clear_siginfo(info);
3495 	info->si_signo = sig;
3496 	info->si_errno = 0;
3497 	info->si_code = SI_USER;
3498 	info->si_pid = task_tgid_vnr(current);
3499 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3500 }
3501 
3502 /**
3503  *  sys_kill - send a signal to a process
3504  *  @pid: the PID of the process
3505  *  @sig: signal to be sent
3506  */
3507 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3508 {
3509 	struct kernel_siginfo info;
3510 
3511 	prepare_kill_siginfo(sig, &info);
3512 
3513 	return kill_something_info(sig, &info, pid);
3514 }
3515 
3516 #ifdef CONFIG_PROC_FS
3517 /*
3518  * Verify that the signaler and signalee either are in the same pid namespace
3519  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3520  * namespace.
3521  */
3522 static bool access_pidfd_pidns(struct pid *pid)
3523 {
3524 	struct pid_namespace *active = task_active_pid_ns(current);
3525 	struct pid_namespace *p = ns_of_pid(pid);
3526 
3527 	for (;;) {
3528 		if (!p)
3529 			return false;
3530 		if (p == active)
3531 			break;
3532 		p = p->parent;
3533 	}
3534 
3535 	return true;
3536 }
3537 
3538 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3539 {
3540 #ifdef CONFIG_COMPAT
3541 	/*
3542 	 * Avoid hooking up compat syscalls and instead handle necessary
3543 	 * conversions here. Note, this is a stop-gap measure and should not be
3544 	 * considered a generic solution.
3545 	 */
3546 	if (in_compat_syscall())
3547 		return copy_siginfo_from_user32(
3548 			kinfo, (struct compat_siginfo __user *)info);
3549 #endif
3550 	return copy_siginfo_from_user(kinfo, info);
3551 }
3552 
3553 /**
3554  * sys_pidfd_send_signal - send a signal to a process through a task file
3555  *                          descriptor
3556  * @pidfd:  the file descriptor of the process
3557  * @sig:    signal to be sent
3558  * @info:   the signal info
3559  * @flags:  future flags to be passed
3560  *
3561  * The syscall currently only signals via PIDTYPE_PID which covers
3562  * kill(<positive-pid>, <signal>. It does not signal threads or process
3563  * groups.
3564  * In order to extend the syscall to threads and process groups the @flags
3565  * argument should be used. In essence, the @flags argument will determine
3566  * what is signaled and not the file descriptor itself. Put in other words,
3567  * grouping is a property of the flags argument not a property of the file
3568  * descriptor.
3569  *
3570  * Return: 0 on success, negative errno on failure
3571  */
3572 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3573 		siginfo_t __user *, info, unsigned int, flags)
3574 {
3575 	int ret;
3576 	struct fd f;
3577 	struct pid *pid;
3578 	kernel_siginfo_t kinfo;
3579 
3580 	/* Enforce flags be set to 0 until we add an extension. */
3581 	if (flags)
3582 		return -EINVAL;
3583 
3584 	f = fdget_raw(pidfd);
3585 	if (!f.file)
3586 		return -EBADF;
3587 
3588 	/* Is this a pidfd? */
3589 	pid = tgid_pidfd_to_pid(f.file);
3590 	if (IS_ERR(pid)) {
3591 		ret = PTR_ERR(pid);
3592 		goto err;
3593 	}
3594 
3595 	ret = -EINVAL;
3596 	if (!access_pidfd_pidns(pid))
3597 		goto err;
3598 
3599 	if (info) {
3600 		ret = copy_siginfo_from_user_any(&kinfo, info);
3601 		if (unlikely(ret))
3602 			goto err;
3603 
3604 		ret = -EINVAL;
3605 		if (unlikely(sig != kinfo.si_signo))
3606 			goto err;
3607 
3608 		/* Only allow sending arbitrary signals to yourself. */
3609 		ret = -EPERM;
3610 		if ((task_pid(current) != pid) &&
3611 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3612 			goto err;
3613 	} else {
3614 		prepare_kill_siginfo(sig, &kinfo);
3615 	}
3616 
3617 	ret = kill_pid_info(sig, &kinfo, pid);
3618 
3619 err:
3620 	fdput(f);
3621 	return ret;
3622 }
3623 #endif /* CONFIG_PROC_FS */
3624 
3625 static int
3626 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3627 {
3628 	struct task_struct *p;
3629 	int error = -ESRCH;
3630 
3631 	rcu_read_lock();
3632 	p = find_task_by_vpid(pid);
3633 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3634 		error = check_kill_permission(sig, info, p);
3635 		/*
3636 		 * The null signal is a permissions and process existence
3637 		 * probe.  No signal is actually delivered.
3638 		 */
3639 		if (!error && sig) {
3640 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3641 			/*
3642 			 * If lock_task_sighand() failed we pretend the task
3643 			 * dies after receiving the signal. The window is tiny,
3644 			 * and the signal is private anyway.
3645 			 */
3646 			if (unlikely(error == -ESRCH))
3647 				error = 0;
3648 		}
3649 	}
3650 	rcu_read_unlock();
3651 
3652 	return error;
3653 }
3654 
3655 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3656 {
3657 	struct kernel_siginfo info;
3658 
3659 	clear_siginfo(&info);
3660 	info.si_signo = sig;
3661 	info.si_errno = 0;
3662 	info.si_code = SI_TKILL;
3663 	info.si_pid = task_tgid_vnr(current);
3664 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3665 
3666 	return do_send_specific(tgid, pid, sig, &info);
3667 }
3668 
3669 /**
3670  *  sys_tgkill - send signal to one specific thread
3671  *  @tgid: the thread group ID of the thread
3672  *  @pid: the PID of the thread
3673  *  @sig: signal to be sent
3674  *
3675  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3676  *  exists but it's not belonging to the target process anymore. This
3677  *  method solves the problem of threads exiting and PIDs getting reused.
3678  */
3679 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3680 {
3681 	/* This is only valid for single tasks */
3682 	if (pid <= 0 || tgid <= 0)
3683 		return -EINVAL;
3684 
3685 	return do_tkill(tgid, pid, sig);
3686 }
3687 
3688 /**
3689  *  sys_tkill - send signal to one specific task
3690  *  @pid: the PID of the task
3691  *  @sig: signal to be sent
3692  *
3693  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3694  */
3695 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3696 {
3697 	/* This is only valid for single tasks */
3698 	if (pid <= 0)
3699 		return -EINVAL;
3700 
3701 	return do_tkill(0, pid, sig);
3702 }
3703 
3704 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3705 {
3706 	/* Not even root can pretend to send signals from the kernel.
3707 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3708 	 */
3709 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3710 	    (task_pid_vnr(current) != pid))
3711 		return -EPERM;
3712 
3713 	/* POSIX.1b doesn't mention process groups.  */
3714 	return kill_proc_info(sig, info, pid);
3715 }
3716 
3717 /**
3718  *  sys_rt_sigqueueinfo - send signal information to a signal
3719  *  @pid: the PID of the thread
3720  *  @sig: signal to be sent
3721  *  @uinfo: signal info to be sent
3722  */
3723 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3724 		siginfo_t __user *, uinfo)
3725 {
3726 	kernel_siginfo_t info;
3727 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3728 	if (unlikely(ret))
3729 		return ret;
3730 	return do_rt_sigqueueinfo(pid, sig, &info);
3731 }
3732 
3733 #ifdef CONFIG_COMPAT
3734 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3735 			compat_pid_t, pid,
3736 			int, sig,
3737 			struct compat_siginfo __user *, uinfo)
3738 {
3739 	kernel_siginfo_t info;
3740 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3741 	if (unlikely(ret))
3742 		return ret;
3743 	return do_rt_sigqueueinfo(pid, sig, &info);
3744 }
3745 #endif
3746 
3747 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3748 {
3749 	/* This is only valid for single tasks */
3750 	if (pid <= 0 || tgid <= 0)
3751 		return -EINVAL;
3752 
3753 	/* Not even root can pretend to send signals from the kernel.
3754 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3755 	 */
3756 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3757 	    (task_pid_vnr(current) != pid))
3758 		return -EPERM;
3759 
3760 	return do_send_specific(tgid, pid, sig, info);
3761 }
3762 
3763 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3764 		siginfo_t __user *, uinfo)
3765 {
3766 	kernel_siginfo_t info;
3767 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3768 	if (unlikely(ret))
3769 		return ret;
3770 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3771 }
3772 
3773 #ifdef CONFIG_COMPAT
3774 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3775 			compat_pid_t, tgid,
3776 			compat_pid_t, pid,
3777 			int, sig,
3778 			struct compat_siginfo __user *, uinfo)
3779 {
3780 	kernel_siginfo_t info;
3781 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3782 	if (unlikely(ret))
3783 		return ret;
3784 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3785 }
3786 #endif
3787 
3788 /*
3789  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3790  */
3791 void kernel_sigaction(int sig, __sighandler_t action)
3792 {
3793 	spin_lock_irq(&current->sighand->siglock);
3794 	current->sighand->action[sig - 1].sa.sa_handler = action;
3795 	if (action == SIG_IGN) {
3796 		sigset_t mask;
3797 
3798 		sigemptyset(&mask);
3799 		sigaddset(&mask, sig);
3800 
3801 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3802 		flush_sigqueue_mask(&mask, &current->pending);
3803 		recalc_sigpending();
3804 	}
3805 	spin_unlock_irq(&current->sighand->siglock);
3806 }
3807 EXPORT_SYMBOL(kernel_sigaction);
3808 
3809 void __weak sigaction_compat_abi(struct k_sigaction *act,
3810 		struct k_sigaction *oact)
3811 {
3812 }
3813 
3814 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3815 {
3816 	struct task_struct *p = current, *t;
3817 	struct k_sigaction *k;
3818 	sigset_t mask;
3819 
3820 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3821 		return -EINVAL;
3822 
3823 	k = &p->sighand->action[sig-1];
3824 
3825 	spin_lock_irq(&p->sighand->siglock);
3826 	if (oact)
3827 		*oact = *k;
3828 
3829 	sigaction_compat_abi(act, oact);
3830 
3831 	if (act) {
3832 		sigdelsetmask(&act->sa.sa_mask,
3833 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3834 		*k = *act;
3835 		/*
3836 		 * POSIX 3.3.1.3:
3837 		 *  "Setting a signal action to SIG_IGN for a signal that is
3838 		 *   pending shall cause the pending signal to be discarded,
3839 		 *   whether or not it is blocked."
3840 		 *
3841 		 *  "Setting a signal action to SIG_DFL for a signal that is
3842 		 *   pending and whose default action is to ignore the signal
3843 		 *   (for example, SIGCHLD), shall cause the pending signal to
3844 		 *   be discarded, whether or not it is blocked"
3845 		 */
3846 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3847 			sigemptyset(&mask);
3848 			sigaddset(&mask, sig);
3849 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3850 			for_each_thread(p, t)
3851 				flush_sigqueue_mask(&mask, &t->pending);
3852 		}
3853 	}
3854 
3855 	spin_unlock_irq(&p->sighand->siglock);
3856 	return 0;
3857 }
3858 
3859 static int
3860 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3861 		size_t min_ss_size)
3862 {
3863 	struct task_struct *t = current;
3864 
3865 	if (oss) {
3866 		memset(oss, 0, sizeof(stack_t));
3867 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3868 		oss->ss_size = t->sas_ss_size;
3869 		oss->ss_flags = sas_ss_flags(sp) |
3870 			(current->sas_ss_flags & SS_FLAG_BITS);
3871 	}
3872 
3873 	if (ss) {
3874 		void __user *ss_sp = ss->ss_sp;
3875 		size_t ss_size = ss->ss_size;
3876 		unsigned ss_flags = ss->ss_flags;
3877 		int ss_mode;
3878 
3879 		if (unlikely(on_sig_stack(sp)))
3880 			return -EPERM;
3881 
3882 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3883 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3884 				ss_mode != 0))
3885 			return -EINVAL;
3886 
3887 		if (ss_mode == SS_DISABLE) {
3888 			ss_size = 0;
3889 			ss_sp = NULL;
3890 		} else {
3891 			if (unlikely(ss_size < min_ss_size))
3892 				return -ENOMEM;
3893 		}
3894 
3895 		t->sas_ss_sp = (unsigned long) ss_sp;
3896 		t->sas_ss_size = ss_size;
3897 		t->sas_ss_flags = ss_flags;
3898 	}
3899 	return 0;
3900 }
3901 
3902 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3903 {
3904 	stack_t new, old;
3905 	int err;
3906 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3907 		return -EFAULT;
3908 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3909 			      current_user_stack_pointer(),
3910 			      MINSIGSTKSZ);
3911 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3912 		err = -EFAULT;
3913 	return err;
3914 }
3915 
3916 int restore_altstack(const stack_t __user *uss)
3917 {
3918 	stack_t new;
3919 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3920 		return -EFAULT;
3921 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3922 			     MINSIGSTKSZ);
3923 	/* squash all but EFAULT for now */
3924 	return 0;
3925 }
3926 
3927 int __save_altstack(stack_t __user *uss, unsigned long sp)
3928 {
3929 	struct task_struct *t = current;
3930 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3931 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3932 		__put_user(t->sas_ss_size, &uss->ss_size);
3933 	if (err)
3934 		return err;
3935 	if (t->sas_ss_flags & SS_AUTODISARM)
3936 		sas_ss_reset(t);
3937 	return 0;
3938 }
3939 
3940 #ifdef CONFIG_COMPAT
3941 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3942 				 compat_stack_t __user *uoss_ptr)
3943 {
3944 	stack_t uss, uoss;
3945 	int ret;
3946 
3947 	if (uss_ptr) {
3948 		compat_stack_t uss32;
3949 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3950 			return -EFAULT;
3951 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3952 		uss.ss_flags = uss32.ss_flags;
3953 		uss.ss_size = uss32.ss_size;
3954 	}
3955 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3956 			     compat_user_stack_pointer(),
3957 			     COMPAT_MINSIGSTKSZ);
3958 	if (ret >= 0 && uoss_ptr)  {
3959 		compat_stack_t old;
3960 		memset(&old, 0, sizeof(old));
3961 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3962 		old.ss_flags = uoss.ss_flags;
3963 		old.ss_size = uoss.ss_size;
3964 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3965 			ret = -EFAULT;
3966 	}
3967 	return ret;
3968 }
3969 
3970 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3971 			const compat_stack_t __user *, uss_ptr,
3972 			compat_stack_t __user *, uoss_ptr)
3973 {
3974 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3975 }
3976 
3977 int compat_restore_altstack(const compat_stack_t __user *uss)
3978 {
3979 	int err = do_compat_sigaltstack(uss, NULL);
3980 	/* squash all but -EFAULT for now */
3981 	return err == -EFAULT ? err : 0;
3982 }
3983 
3984 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3985 {
3986 	int err;
3987 	struct task_struct *t = current;
3988 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3989 			 &uss->ss_sp) |
3990 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3991 		__put_user(t->sas_ss_size, &uss->ss_size);
3992 	if (err)
3993 		return err;
3994 	if (t->sas_ss_flags & SS_AUTODISARM)
3995 		sas_ss_reset(t);
3996 	return 0;
3997 }
3998 #endif
3999 
4000 #ifdef __ARCH_WANT_SYS_SIGPENDING
4001 
4002 /**
4003  *  sys_sigpending - examine pending signals
4004  *  @uset: where mask of pending signal is returned
4005  */
4006 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4007 {
4008 	sigset_t set;
4009 
4010 	if (sizeof(old_sigset_t) > sizeof(*uset))
4011 		return -EINVAL;
4012 
4013 	do_sigpending(&set);
4014 
4015 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4016 		return -EFAULT;
4017 
4018 	return 0;
4019 }
4020 
4021 #ifdef CONFIG_COMPAT
4022 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4023 {
4024 	sigset_t set;
4025 
4026 	do_sigpending(&set);
4027 
4028 	return put_user(set.sig[0], set32);
4029 }
4030 #endif
4031 
4032 #endif
4033 
4034 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4035 /**
4036  *  sys_sigprocmask - examine and change blocked signals
4037  *  @how: whether to add, remove, or set signals
4038  *  @nset: signals to add or remove (if non-null)
4039  *  @oset: previous value of signal mask if non-null
4040  *
4041  * Some platforms have their own version with special arguments;
4042  * others support only sys_rt_sigprocmask.
4043  */
4044 
4045 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4046 		old_sigset_t __user *, oset)
4047 {
4048 	old_sigset_t old_set, new_set;
4049 	sigset_t new_blocked;
4050 
4051 	old_set = current->blocked.sig[0];
4052 
4053 	if (nset) {
4054 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4055 			return -EFAULT;
4056 
4057 		new_blocked = current->blocked;
4058 
4059 		switch (how) {
4060 		case SIG_BLOCK:
4061 			sigaddsetmask(&new_blocked, new_set);
4062 			break;
4063 		case SIG_UNBLOCK:
4064 			sigdelsetmask(&new_blocked, new_set);
4065 			break;
4066 		case SIG_SETMASK:
4067 			new_blocked.sig[0] = new_set;
4068 			break;
4069 		default:
4070 			return -EINVAL;
4071 		}
4072 
4073 		set_current_blocked(&new_blocked);
4074 	}
4075 
4076 	if (oset) {
4077 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4078 			return -EFAULT;
4079 	}
4080 
4081 	return 0;
4082 }
4083 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4084 
4085 #ifndef CONFIG_ODD_RT_SIGACTION
4086 /**
4087  *  sys_rt_sigaction - alter an action taken by a process
4088  *  @sig: signal to be sent
4089  *  @act: new sigaction
4090  *  @oact: used to save the previous sigaction
4091  *  @sigsetsize: size of sigset_t type
4092  */
4093 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4094 		const struct sigaction __user *, act,
4095 		struct sigaction __user *, oact,
4096 		size_t, sigsetsize)
4097 {
4098 	struct k_sigaction new_sa, old_sa;
4099 	int ret;
4100 
4101 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4102 	if (sigsetsize != sizeof(sigset_t))
4103 		return -EINVAL;
4104 
4105 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4106 		return -EFAULT;
4107 
4108 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4109 	if (ret)
4110 		return ret;
4111 
4112 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4113 		return -EFAULT;
4114 
4115 	return 0;
4116 }
4117 #ifdef CONFIG_COMPAT
4118 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4119 		const struct compat_sigaction __user *, act,
4120 		struct compat_sigaction __user *, oact,
4121 		compat_size_t, sigsetsize)
4122 {
4123 	struct k_sigaction new_ka, old_ka;
4124 #ifdef __ARCH_HAS_SA_RESTORER
4125 	compat_uptr_t restorer;
4126 #endif
4127 	int ret;
4128 
4129 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4130 	if (sigsetsize != sizeof(compat_sigset_t))
4131 		return -EINVAL;
4132 
4133 	if (act) {
4134 		compat_uptr_t handler;
4135 		ret = get_user(handler, &act->sa_handler);
4136 		new_ka.sa.sa_handler = compat_ptr(handler);
4137 #ifdef __ARCH_HAS_SA_RESTORER
4138 		ret |= get_user(restorer, &act->sa_restorer);
4139 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4140 #endif
4141 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4142 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4143 		if (ret)
4144 			return -EFAULT;
4145 	}
4146 
4147 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4148 	if (!ret && oact) {
4149 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4150 			       &oact->sa_handler);
4151 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4152 					 sizeof(oact->sa_mask));
4153 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4154 #ifdef __ARCH_HAS_SA_RESTORER
4155 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4156 				&oact->sa_restorer);
4157 #endif
4158 	}
4159 	return ret;
4160 }
4161 #endif
4162 #endif /* !CONFIG_ODD_RT_SIGACTION */
4163 
4164 #ifdef CONFIG_OLD_SIGACTION
4165 SYSCALL_DEFINE3(sigaction, int, sig,
4166 		const struct old_sigaction __user *, act,
4167 	        struct old_sigaction __user *, oact)
4168 {
4169 	struct k_sigaction new_ka, old_ka;
4170 	int ret;
4171 
4172 	if (act) {
4173 		old_sigset_t mask;
4174 		if (!access_ok(act, sizeof(*act)) ||
4175 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4176 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4177 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4178 		    __get_user(mask, &act->sa_mask))
4179 			return -EFAULT;
4180 #ifdef __ARCH_HAS_KA_RESTORER
4181 		new_ka.ka_restorer = NULL;
4182 #endif
4183 		siginitset(&new_ka.sa.sa_mask, mask);
4184 	}
4185 
4186 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4187 
4188 	if (!ret && oact) {
4189 		if (!access_ok(oact, sizeof(*oact)) ||
4190 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4191 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4192 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4193 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4194 			return -EFAULT;
4195 	}
4196 
4197 	return ret;
4198 }
4199 #endif
4200 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4201 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4202 		const struct compat_old_sigaction __user *, act,
4203 	        struct compat_old_sigaction __user *, oact)
4204 {
4205 	struct k_sigaction new_ka, old_ka;
4206 	int ret;
4207 	compat_old_sigset_t mask;
4208 	compat_uptr_t handler, restorer;
4209 
4210 	if (act) {
4211 		if (!access_ok(act, sizeof(*act)) ||
4212 		    __get_user(handler, &act->sa_handler) ||
4213 		    __get_user(restorer, &act->sa_restorer) ||
4214 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4215 		    __get_user(mask, &act->sa_mask))
4216 			return -EFAULT;
4217 
4218 #ifdef __ARCH_HAS_KA_RESTORER
4219 		new_ka.ka_restorer = NULL;
4220 #endif
4221 		new_ka.sa.sa_handler = compat_ptr(handler);
4222 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4223 		siginitset(&new_ka.sa.sa_mask, mask);
4224 	}
4225 
4226 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4227 
4228 	if (!ret && oact) {
4229 		if (!access_ok(oact, sizeof(*oact)) ||
4230 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4231 			       &oact->sa_handler) ||
4232 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4233 			       &oact->sa_restorer) ||
4234 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4235 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4236 			return -EFAULT;
4237 	}
4238 	return ret;
4239 }
4240 #endif
4241 
4242 #ifdef CONFIG_SGETMASK_SYSCALL
4243 
4244 /*
4245  * For backwards compatibility.  Functionality superseded by sigprocmask.
4246  */
4247 SYSCALL_DEFINE0(sgetmask)
4248 {
4249 	/* SMP safe */
4250 	return current->blocked.sig[0];
4251 }
4252 
4253 SYSCALL_DEFINE1(ssetmask, int, newmask)
4254 {
4255 	int old = current->blocked.sig[0];
4256 	sigset_t newset;
4257 
4258 	siginitset(&newset, newmask);
4259 	set_current_blocked(&newset);
4260 
4261 	return old;
4262 }
4263 #endif /* CONFIG_SGETMASK_SYSCALL */
4264 
4265 #ifdef __ARCH_WANT_SYS_SIGNAL
4266 /*
4267  * For backwards compatibility.  Functionality superseded by sigaction.
4268  */
4269 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4270 {
4271 	struct k_sigaction new_sa, old_sa;
4272 	int ret;
4273 
4274 	new_sa.sa.sa_handler = handler;
4275 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4276 	sigemptyset(&new_sa.sa.sa_mask);
4277 
4278 	ret = do_sigaction(sig, &new_sa, &old_sa);
4279 
4280 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4281 }
4282 #endif /* __ARCH_WANT_SYS_SIGNAL */
4283 
4284 #ifdef __ARCH_WANT_SYS_PAUSE
4285 
4286 SYSCALL_DEFINE0(pause)
4287 {
4288 	while (!signal_pending(current)) {
4289 		__set_current_state(TASK_INTERRUPTIBLE);
4290 		schedule();
4291 	}
4292 	return -ERESTARTNOHAND;
4293 }
4294 
4295 #endif
4296 
4297 static int sigsuspend(sigset_t *set)
4298 {
4299 	current->saved_sigmask = current->blocked;
4300 	set_current_blocked(set);
4301 
4302 	while (!signal_pending(current)) {
4303 		__set_current_state(TASK_INTERRUPTIBLE);
4304 		schedule();
4305 	}
4306 	set_restore_sigmask();
4307 	return -ERESTARTNOHAND;
4308 }
4309 
4310 /**
4311  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4312  *	@unewset value until a signal is received
4313  *  @unewset: new signal mask value
4314  *  @sigsetsize: size of sigset_t type
4315  */
4316 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4317 {
4318 	sigset_t newset;
4319 
4320 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4321 	if (sigsetsize != sizeof(sigset_t))
4322 		return -EINVAL;
4323 
4324 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4325 		return -EFAULT;
4326 	return sigsuspend(&newset);
4327 }
4328 
4329 #ifdef CONFIG_COMPAT
4330 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4331 {
4332 	sigset_t newset;
4333 
4334 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4335 	if (sigsetsize != sizeof(sigset_t))
4336 		return -EINVAL;
4337 
4338 	if (get_compat_sigset(&newset, unewset))
4339 		return -EFAULT;
4340 	return sigsuspend(&newset);
4341 }
4342 #endif
4343 
4344 #ifdef CONFIG_OLD_SIGSUSPEND
4345 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4346 {
4347 	sigset_t blocked;
4348 	siginitset(&blocked, mask);
4349 	return sigsuspend(&blocked);
4350 }
4351 #endif
4352 #ifdef CONFIG_OLD_SIGSUSPEND3
4353 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4354 {
4355 	sigset_t blocked;
4356 	siginitset(&blocked, mask);
4357 	return sigsuspend(&blocked);
4358 }
4359 #endif
4360 
4361 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4362 {
4363 	return NULL;
4364 }
4365 
4366 static inline void siginfo_buildtime_checks(void)
4367 {
4368 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4369 
4370 	/* Verify the offsets in the two siginfos match */
4371 #define CHECK_OFFSET(field) \
4372 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4373 
4374 	/* kill */
4375 	CHECK_OFFSET(si_pid);
4376 	CHECK_OFFSET(si_uid);
4377 
4378 	/* timer */
4379 	CHECK_OFFSET(si_tid);
4380 	CHECK_OFFSET(si_overrun);
4381 	CHECK_OFFSET(si_value);
4382 
4383 	/* rt */
4384 	CHECK_OFFSET(si_pid);
4385 	CHECK_OFFSET(si_uid);
4386 	CHECK_OFFSET(si_value);
4387 
4388 	/* sigchld */
4389 	CHECK_OFFSET(si_pid);
4390 	CHECK_OFFSET(si_uid);
4391 	CHECK_OFFSET(si_status);
4392 	CHECK_OFFSET(si_utime);
4393 	CHECK_OFFSET(si_stime);
4394 
4395 	/* sigfault */
4396 	CHECK_OFFSET(si_addr);
4397 	CHECK_OFFSET(si_addr_lsb);
4398 	CHECK_OFFSET(si_lower);
4399 	CHECK_OFFSET(si_upper);
4400 	CHECK_OFFSET(si_pkey);
4401 
4402 	/* sigpoll */
4403 	CHECK_OFFSET(si_band);
4404 	CHECK_OFFSET(si_fd);
4405 
4406 	/* sigsys */
4407 	CHECK_OFFSET(si_call_addr);
4408 	CHECK_OFFSET(si_syscall);
4409 	CHECK_OFFSET(si_arch);
4410 #undef CHECK_OFFSET
4411 }
4412 
4413 void __init signals_init(void)
4414 {
4415 	siginfo_buildtime_checks();
4416 
4417 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4418 }
4419 
4420 #ifdef CONFIG_KGDB_KDB
4421 #include <linux/kdb.h>
4422 /*
4423  * kdb_send_sig - Allows kdb to send signals without exposing
4424  * signal internals.  This function checks if the required locks are
4425  * available before calling the main signal code, to avoid kdb
4426  * deadlocks.
4427  */
4428 void kdb_send_sig(struct task_struct *t, int sig)
4429 {
4430 	static struct task_struct *kdb_prev_t;
4431 	int new_t, ret;
4432 	if (!spin_trylock(&t->sighand->siglock)) {
4433 		kdb_printf("Can't do kill command now.\n"
4434 			   "The sigmask lock is held somewhere else in "
4435 			   "kernel, try again later\n");
4436 		return;
4437 	}
4438 	new_t = kdb_prev_t != t;
4439 	kdb_prev_t = t;
4440 	if (t->state != TASK_RUNNING && new_t) {
4441 		spin_unlock(&t->sighand->siglock);
4442 		kdb_printf("Process is not RUNNING, sending a signal from "
4443 			   "kdb risks deadlock\n"
4444 			   "on the run queue locks. "
4445 			   "The signal has _not_ been sent.\n"
4446 			   "Reissue the kill command if you want to risk "
4447 			   "the deadlock.\n");
4448 		return;
4449 	}
4450 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4451 	spin_unlock(&t->sighand->siglock);
4452 	if (ret)
4453 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4454 			   sig, t->pid);
4455 	else
4456 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4457 }
4458 #endif	/* CONFIG_KGDB_KDB */
4459