xref: /openbmc/linux/kernel/signal.c (revision 0c5c62ddf88c34bc83b66e4ac9beb2bb0e1887d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h>	/* for syscall_get_* */
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current))
185 		clear_thread_flag(TIF_SIGPENDING);
186 
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189 
190 void calculate_sigpending(void)
191 {
192 	/* Have any signals or users of TIF_SIGPENDING been delayed
193 	 * until after fork?
194 	 */
195 	spin_lock_irq(&current->sighand->siglock);
196 	set_tsk_thread_flag(current, TIF_SIGPENDING);
197 	recalc_sigpending();
198 	spin_unlock_irq(&current->sighand->siglock);
199 }
200 
201 /* Given the mask, find the first available signal that should be serviced. */
202 
203 #define SYNCHRONOUS_MASK \
204 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 	unsigned long i, *s, *m, x;
210 	int sig = 0;
211 
212 	s = pending->signal.sig;
213 	m = mask->sig;
214 
215 	/*
216 	 * Handle the first word specially: it contains the
217 	 * synchronous signals that need to be dequeued first.
218 	 */
219 	x = *s &~ *m;
220 	if (x) {
221 		if (x & SYNCHRONOUS_MASK)
222 			x &= SYNCHRONOUS_MASK;
223 		sig = ffz(~x) + 1;
224 		return sig;
225 	}
226 
227 	switch (_NSIG_WORDS) {
228 	default:
229 		for (i = 1; i < _NSIG_WORDS; ++i) {
230 			x = *++s &~ *++m;
231 			if (!x)
232 				continue;
233 			sig = ffz(~x) + i*_NSIG_BPW + 1;
234 			break;
235 		}
236 		break;
237 
238 	case 2:
239 		x = s[1] &~ m[1];
240 		if (!x)
241 			break;
242 		sig = ffz(~x) + _NSIG_BPW + 1;
243 		break;
244 
245 	case 1:
246 		/* Nothing to do */
247 		break;
248 	}
249 
250 	return sig;
251 }
252 
253 static inline void print_dropped_signal(int sig)
254 {
255 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 
257 	if (!print_fatal_signals)
258 		return;
259 
260 	if (!__ratelimit(&ratelimit_state))
261 		return;
262 
263 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 				current->comm, current->pid, sig);
265 }
266 
267 /**
268  * task_set_jobctl_pending - set jobctl pending bits
269  * @task: target task
270  * @mask: pending bits to set
271  *
272  * Clear @mask from @task->jobctl.  @mask must be subset of
273  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
275  * cleared.  If @task is already being killed or exiting, this function
276  * becomes noop.
277  *
278  * CONTEXT:
279  * Must be called with @task->sighand->siglock held.
280  *
281  * RETURNS:
282  * %true if @mask is set, %false if made noop because @task was dying.
283  */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 
290 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 		return false;
292 
293 	if (mask & JOBCTL_STOP_SIGMASK)
294 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 
296 	task->jobctl |= mask;
297 	return true;
298 }
299 
300 /**
301  * task_clear_jobctl_trapping - clear jobctl trapping bit
302  * @task: target task
303  *
304  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305  * Clear it and wake up the ptracer.  Note that we don't need any further
306  * locking.  @task->siglock guarantees that @task->parent points to the
307  * ptracer.
308  *
309  * CONTEXT:
310  * Must be called with @task->sighand->siglock held.
311  */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 		task->jobctl &= ~JOBCTL_TRAPPING;
316 		smp_mb();	/* advised by wake_up_bit() */
317 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 	}
319 }
320 
321 /**
322  * task_clear_jobctl_pending - clear jobctl pending bits
323  * @task: target task
324  * @mask: pending bits to clear
325  *
326  * Clear @mask from @task->jobctl.  @mask must be subset of
327  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
328  * STOP bits are cleared together.
329  *
330  * If clearing of @mask leaves no stop or trap pending, this function calls
331  * task_clear_jobctl_trapping().
332  *
333  * CONTEXT:
334  * Must be called with @task->sighand->siglock held.
335  */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 
340 	if (mask & JOBCTL_STOP_PENDING)
341 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 
343 	task->jobctl &= ~mask;
344 
345 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 		task_clear_jobctl_trapping(task);
347 }
348 
349 /**
350  * task_participate_group_stop - participate in a group stop
351  * @task: task participating in a group stop
352  *
353  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354  * Group stop states are cleared and the group stop count is consumed if
355  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
356  * stop, the appropriate `SIGNAL_*` flags are set.
357  *
358  * CONTEXT:
359  * Must be called with @task->sighand->siglock held.
360  *
361  * RETURNS:
362  * %true if group stop completion should be notified to the parent, %false
363  * otherwise.
364  */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 	struct signal_struct *sig = task->signal;
368 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 
370 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 
372 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373 
374 	if (!consume)
375 		return false;
376 
377 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 		sig->group_stop_count--;
379 
380 	/*
381 	 * Tell the caller to notify completion iff we are entering into a
382 	 * fresh group stop.  Read comment in do_signal_stop() for details.
383 	 */
384 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 		return true;
387 	}
388 	return false;
389 }
390 
391 void task_join_group_stop(struct task_struct *task)
392 {
393 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 	struct signal_struct *sig = current->signal;
395 
396 	if (sig->group_stop_count) {
397 		sig->group_stop_count++;
398 		mask |= JOBCTL_STOP_CONSUME;
399 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 		return;
401 
402 	/* Have the new thread join an on-going signal group stop */
403 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 		 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 	struct sigqueue *q = NULL;
416 	struct ucounts *ucounts = NULL;
417 	long sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	ucounts = task_ucounts(t);
429 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 	rcu_read_unlock();
431 	if (!sigpending)
432 		return NULL;
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = sigqueue_flags;
445 		q->ucounts = ucounts;
446 	}
447 	return q;
448 }
449 
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 	if (q->flags & SIGQUEUE_PREALLOC)
453 		return;
454 	if (q->ucounts) {
455 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 		q->ucounts = NULL;
457 	}
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 	bool resched_timer = false;
632 	int signr;
633 
634 	/* We only dequeue private signals from ourselves, we don't let
635 	 * signalfd steal them
636 	 */
637 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 	if (!signr) {
639 		signr = __dequeue_signal(&tsk->signal->shared_pending,
640 					 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 		/*
643 		 * itimer signal ?
644 		 *
645 		 * itimers are process shared and we restart periodic
646 		 * itimers in the signal delivery path to prevent DoS
647 		 * attacks in the high resolution timer case. This is
648 		 * compliant with the old way of self-restarting
649 		 * itimers, as the SIGALRM is a legacy signal and only
650 		 * queued once. Changing the restart behaviour to
651 		 * restart the timer in the signal dequeue path is
652 		 * reducing the timer noise on heavy loaded !highres
653 		 * systems too.
654 		 */
655 		if (unlikely(signr == SIGALRM)) {
656 			struct hrtimer *tmr = &tsk->signal->real_timer;
657 
658 			if (!hrtimer_is_queued(tmr) &&
659 			    tsk->signal->it_real_incr != 0) {
660 				hrtimer_forward(tmr, tmr->base->get_time(),
661 						tsk->signal->it_real_incr);
662 				hrtimer_restart(tmr);
663 			}
664 		}
665 #endif
666 	}
667 
668 	recalc_sigpending();
669 	if (!signr)
670 		return 0;
671 
672 	if (unlikely(sig_kernel_stop(signr))) {
673 		/*
674 		 * Set a marker that we have dequeued a stop signal.  Our
675 		 * caller might release the siglock and then the pending
676 		 * stop signal it is about to process is no longer in the
677 		 * pending bitmasks, but must still be cleared by a SIGCONT
678 		 * (and overruled by a SIGKILL).  So those cases clear this
679 		 * shared flag after we've set it.  Note that this flag may
680 		 * remain set after the signal we return is ignored or
681 		 * handled.  That doesn't matter because its only purpose
682 		 * is to alert stop-signal processing code when another
683 		 * processor has come along and cleared the flag.
684 		 */
685 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 	}
687 #ifdef CONFIG_POSIX_TIMERS
688 	if (resched_timer) {
689 		/*
690 		 * Release the siglock to ensure proper locking order
691 		 * of timer locks outside of siglocks.  Note, we leave
692 		 * irqs disabled here, since the posix-timers code is
693 		 * about to disable them again anyway.
694 		 */
695 		spin_unlock(&tsk->sighand->siglock);
696 		posixtimer_rearm(info);
697 		spin_lock(&tsk->sighand->siglock);
698 
699 		/* Don't expose the si_sys_private value to userspace */
700 		info->si_sys_private = 0;
701 	}
702 #endif
703 	return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706 
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 	struct task_struct *tsk = current;
710 	struct sigpending *pending = &tsk->pending;
711 	struct sigqueue *q, *sync = NULL;
712 
713 	/*
714 	 * Might a synchronous signal be in the queue?
715 	 */
716 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 		return 0;
718 
719 	/*
720 	 * Return the first synchronous signal in the queue.
721 	 */
722 	list_for_each_entry(q, &pending->list, list) {
723 		/* Synchronous signals have a positive si_code */
724 		if ((q->info.si_code > SI_USER) &&
725 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 			sync = q;
727 			goto next;
728 		}
729 	}
730 	return 0;
731 next:
732 	/*
733 	 * Check if there is another siginfo for the same signal.
734 	 */
735 	list_for_each_entry_continue(q, &pending->list, list) {
736 		if (q->info.si_signo == sync->info.si_signo)
737 			goto still_pending;
738 	}
739 
740 	sigdelset(&pending->signal, sync->info.si_signo);
741 	recalc_sigpending();
742 still_pending:
743 	list_del_init(&sync->list);
744 	copy_siginfo(info, &sync->info);
745 	__sigqueue_free(sync);
746 	return info->si_signo;
747 }
748 
749 /*
750  * Tell a process that it has a new active signal..
751  *
752  * NOTE! we rely on the previous spin_lock to
753  * lock interrupts for us! We can only be called with
754  * "siglock" held, and the local interrupt must
755  * have been disabled when that got acquired!
756  *
757  * No need to set need_resched since signal event passing
758  * goes through ->blocked
759  */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 	set_tsk_thread_flag(t, TIF_SIGPENDING);
763 	/*
764 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 	 * case. We don't check t->state here because there is a race with it
766 	 * executing another processor and just now entering stopped state.
767 	 * By using wake_up_state, we ensure the process will wake up and
768 	 * handle its death signal.
769 	 */
770 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 		kick_process(t);
772 }
773 
774 /*
775  * Remove signals in mask from the pending set and queue.
776  * Returns 1 if any signals were found.
777  *
778  * All callers must be holding the siglock.
779  */
780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 	struct sigqueue *q, *n;
783 	sigset_t m;
784 
785 	sigandsets(&m, mask, &s->signal);
786 	if (sigisemptyset(&m))
787 		return;
788 
789 	sigandnsets(&s->signal, &s->signal, mask);
790 	list_for_each_entry_safe(q, n, &s->list, list) {
791 		if (sigismember(mask, q->info.si_signo)) {
792 			list_del_init(&q->list);
793 			__sigqueue_free(q);
794 		}
795 	}
796 }
797 
798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 	return info <= SEND_SIG_PRIV;
801 }
802 
803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 	return info == SEND_SIG_NOINFO ||
806 		(!is_si_special(info) && SI_FROMUSER(info));
807 }
808 
809 /*
810  * called with RCU read lock from check_kill_permission()
811  */
812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 	const struct cred *cred = current_cred();
815 	const struct cred *tcred = __task_cred(t);
816 
817 	return uid_eq(cred->euid, tcred->suid) ||
818 	       uid_eq(cred->euid, tcred->uid) ||
819 	       uid_eq(cred->uid, tcred->suid) ||
820 	       uid_eq(cred->uid, tcred->uid) ||
821 	       ns_capable(tcred->user_ns, CAP_KILL);
822 }
823 
824 /*
825  * Bad permissions for sending the signal
826  * - the caller must hold the RCU read lock
827  */
828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 				 struct task_struct *t)
830 {
831 	struct pid *sid;
832 	int error;
833 
834 	if (!valid_signal(sig))
835 		return -EINVAL;
836 
837 	if (!si_fromuser(info))
838 		return 0;
839 
840 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 	if (error)
842 		return error;
843 
844 	if (!same_thread_group(current, t) &&
845 	    !kill_ok_by_cred(t)) {
846 		switch (sig) {
847 		case SIGCONT:
848 			sid = task_session(t);
849 			/*
850 			 * We don't return the error if sid == NULL. The
851 			 * task was unhashed, the caller must notice this.
852 			 */
853 			if (!sid || sid == task_session(current))
854 				break;
855 			fallthrough;
856 		default:
857 			return -EPERM;
858 		}
859 	}
860 
861 	return security_task_kill(t, info, sig, NULL);
862 }
863 
864 /**
865  * ptrace_trap_notify - schedule trap to notify ptracer
866  * @t: tracee wanting to notify tracer
867  *
868  * This function schedules sticky ptrace trap which is cleared on the next
869  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
870  * ptracer.
871  *
872  * If @t is running, STOP trap will be taken.  If trapped for STOP and
873  * ptracer is listening for events, tracee is woken up so that it can
874  * re-trap for the new event.  If trapped otherwise, STOP trap will be
875  * eventually taken without returning to userland after the existing traps
876  * are finished by PTRACE_CONT.
877  *
878  * CONTEXT:
879  * Must be called with @task->sighand->siglock held.
880  */
881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 	assert_spin_locked(&t->sighand->siglock);
885 
886 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889 
890 /*
891  * Handle magic process-wide effects of stop/continue signals. Unlike
892  * the signal actions, these happen immediately at signal-generation
893  * time regardless of blocking, ignoring, or handling.  This does the
894  * actual continuing for SIGCONT, but not the actual stopping for stop
895  * signals. The process stop is done as a signal action for SIG_DFL.
896  *
897  * Returns true if the signal should be actually delivered, otherwise
898  * it should be dropped.
899  */
900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 	struct signal_struct *signal = p->signal;
903 	struct task_struct *t;
904 	sigset_t flush;
905 
906 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 			return sig == SIGKILL;
909 		/*
910 		 * The process is in the middle of dying, nothing to do.
911 		 */
912 	} else if (sig_kernel_stop(sig)) {
913 		/*
914 		 * This is a stop signal.  Remove SIGCONT from all queues.
915 		 */
916 		siginitset(&flush, sigmask(SIGCONT));
917 		flush_sigqueue_mask(&flush, &signal->shared_pending);
918 		for_each_thread(p, t)
919 			flush_sigqueue_mask(&flush, &t->pending);
920 	} else if (sig == SIGCONT) {
921 		unsigned int why;
922 		/*
923 		 * Remove all stop signals from all queues, wake all threads.
924 		 */
925 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 		flush_sigqueue_mask(&flush, &signal->shared_pending);
927 		for_each_thread(p, t) {
928 			flush_sigqueue_mask(&flush, &t->pending);
929 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 			if (likely(!(t->ptrace & PT_SEIZED)))
931 				wake_up_state(t, __TASK_STOPPED);
932 			else
933 				ptrace_trap_notify(t);
934 		}
935 
936 		/*
937 		 * Notify the parent with CLD_CONTINUED if we were stopped.
938 		 *
939 		 * If we were in the middle of a group stop, we pretend it
940 		 * was already finished, and then continued. Since SIGCHLD
941 		 * doesn't queue we report only CLD_STOPPED, as if the next
942 		 * CLD_CONTINUED was dropped.
943 		 */
944 		why = 0;
945 		if (signal->flags & SIGNAL_STOP_STOPPED)
946 			why |= SIGNAL_CLD_CONTINUED;
947 		else if (signal->group_stop_count)
948 			why |= SIGNAL_CLD_STOPPED;
949 
950 		if (why) {
951 			/*
952 			 * The first thread which returns from do_signal_stop()
953 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 			 * notify its parent. See get_signal().
955 			 */
956 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 			signal->group_stop_count = 0;
958 			signal->group_exit_code = 0;
959 		}
960 	}
961 
962 	return !sig_ignored(p, sig, force);
963 }
964 
965 /*
966  * Test if P wants to take SIG.  After we've checked all threads with this,
967  * it's equivalent to finding no threads not blocking SIG.  Any threads not
968  * blocking SIG were ruled out because they are not running and already
969  * have pending signals.  Such threads will dequeue from the shared queue
970  * as soon as they're available, so putting the signal on the shared queue
971  * will be equivalent to sending it to one such thread.
972  */
973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 	if (sigismember(&p->blocked, sig))
976 		return false;
977 
978 	if (p->flags & PF_EXITING)
979 		return false;
980 
981 	if (sig == SIGKILL)
982 		return true;
983 
984 	if (task_is_stopped_or_traced(p))
985 		return false;
986 
987 	return task_curr(p) || !task_sigpending(p);
988 }
989 
990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 	struct signal_struct *signal = p->signal;
993 	struct task_struct *t;
994 
995 	/*
996 	 * Now find a thread we can wake up to take the signal off the queue.
997 	 *
998 	 * If the main thread wants the signal, it gets first crack.
999 	 * Probably the least surprising to the average bear.
1000 	 */
1001 	if (wants_signal(sig, p))
1002 		t = p;
1003 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 		/*
1005 		 * There is just one thread and it does not need to be woken.
1006 		 * It will dequeue unblocked signals before it runs again.
1007 		 */
1008 		return;
1009 	else {
1010 		/*
1011 		 * Otherwise try to find a suitable thread.
1012 		 */
1013 		t = signal->curr_target;
1014 		while (!wants_signal(sig, t)) {
1015 			t = next_thread(t);
1016 			if (t == signal->curr_target)
1017 				/*
1018 				 * No thread needs to be woken.
1019 				 * Any eligible threads will see
1020 				 * the signal in the queue soon.
1021 				 */
1022 				return;
1023 		}
1024 		signal->curr_target = t;
1025 	}
1026 
1027 	/*
1028 	 * Found a killable thread.  If the signal will be fatal,
1029 	 * then start taking the whole group down immediately.
1030 	 */
1031 	if (sig_fatal(p, sig) &&
1032 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 	    !sigismember(&t->real_blocked, sig) &&
1034 	    (sig == SIGKILL || !p->ptrace)) {
1035 		/*
1036 		 * This signal will be fatal to the whole group.
1037 		 */
1038 		if (!sig_kernel_coredump(sig)) {
1039 			/*
1040 			 * Start a group exit and wake everybody up.
1041 			 * This way we don't have other threads
1042 			 * running and doing things after a slower
1043 			 * thread has the fatal signal pending.
1044 			 */
1045 			signal->flags = SIGNAL_GROUP_EXIT;
1046 			signal->group_exit_code = sig;
1047 			signal->group_stop_count = 0;
1048 			t = p;
1049 			do {
1050 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 				sigaddset(&t->pending.signal, SIGKILL);
1052 				signal_wake_up(t, 1);
1053 			} while_each_thread(p, t);
1054 			return;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * The signal is already in the shared-pending queue.
1060 	 * Tell the chosen thread to wake up and dequeue it.
1061 	 */
1062 	signal_wake_up(t, sig == SIGKILL);
1063 	return;
1064 }
1065 
1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070 
1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 			enum pid_type type, bool force)
1073 {
1074 	struct sigpending *pending;
1075 	struct sigqueue *q;
1076 	int override_rlimit;
1077 	int ret = 0, result;
1078 
1079 	assert_spin_locked(&t->sighand->siglock);
1080 
1081 	result = TRACE_SIGNAL_IGNORED;
1082 	if (!prepare_signal(sig, t, force))
1083 		goto ret;
1084 
1085 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 	/*
1087 	 * Short-circuit ignored signals and support queuing
1088 	 * exactly one non-rt signal, so that we can get more
1089 	 * detailed information about the cause of the signal.
1090 	 */
1091 	result = TRACE_SIGNAL_ALREADY_PENDING;
1092 	if (legacy_queue(pending, sig))
1093 		goto ret;
1094 
1095 	result = TRACE_SIGNAL_DELIVERED;
1096 	/*
1097 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 	 */
1099 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 		goto out_set;
1101 
1102 	/*
1103 	 * Real-time signals must be queued if sent by sigqueue, or
1104 	 * some other real-time mechanism.  It is implementation
1105 	 * defined whether kill() does so.  We attempt to do so, on
1106 	 * the principle of least surprise, but since kill is not
1107 	 * allowed to fail with EAGAIN when low on memory we just
1108 	 * make sure at least one signal gets delivered and don't
1109 	 * pass on the info struct.
1110 	 */
1111 	if (sig < SIGRTMIN)
1112 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 	else
1114 		override_rlimit = 0;
1115 
1116 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1117 
1118 	if (q) {
1119 		list_add_tail(&q->list, &pending->list);
1120 		switch ((unsigned long) info) {
1121 		case (unsigned long) SEND_SIG_NOINFO:
1122 			clear_siginfo(&q->info);
1123 			q->info.si_signo = sig;
1124 			q->info.si_errno = 0;
1125 			q->info.si_code = SI_USER;
1126 			q->info.si_pid = task_tgid_nr_ns(current,
1127 							task_active_pid_ns(t));
1128 			rcu_read_lock();
1129 			q->info.si_uid =
1130 				from_kuid_munged(task_cred_xxx(t, user_ns),
1131 						 current_uid());
1132 			rcu_read_unlock();
1133 			break;
1134 		case (unsigned long) SEND_SIG_PRIV:
1135 			clear_siginfo(&q->info);
1136 			q->info.si_signo = sig;
1137 			q->info.si_errno = 0;
1138 			q->info.si_code = SI_KERNEL;
1139 			q->info.si_pid = 0;
1140 			q->info.si_uid = 0;
1141 			break;
1142 		default:
1143 			copy_siginfo(&q->info, info);
1144 			break;
1145 		}
1146 	} else if (!is_si_special(info) &&
1147 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1148 		/*
1149 		 * Queue overflow, abort.  We may abort if the
1150 		 * signal was rt and sent by user using something
1151 		 * other than kill().
1152 		 */
1153 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1154 		ret = -EAGAIN;
1155 		goto ret;
1156 	} else {
1157 		/*
1158 		 * This is a silent loss of information.  We still
1159 		 * send the signal, but the *info bits are lost.
1160 		 */
1161 		result = TRACE_SIGNAL_LOSE_INFO;
1162 	}
1163 
1164 out_set:
1165 	signalfd_notify(t, sig);
1166 	sigaddset(&pending->signal, sig);
1167 
1168 	/* Let multiprocess signals appear after on-going forks */
1169 	if (type > PIDTYPE_TGID) {
1170 		struct multiprocess_signals *delayed;
1171 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1172 			sigset_t *signal = &delayed->signal;
1173 			/* Can't queue both a stop and a continue signal */
1174 			if (sig == SIGCONT)
1175 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1176 			else if (sig_kernel_stop(sig))
1177 				sigdelset(signal, SIGCONT);
1178 			sigaddset(signal, sig);
1179 		}
1180 	}
1181 
1182 	complete_signal(sig, t, type);
1183 ret:
1184 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1185 	return ret;
1186 }
1187 
1188 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1189 {
1190 	bool ret = false;
1191 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1192 	case SIL_KILL:
1193 	case SIL_CHLD:
1194 	case SIL_RT:
1195 		ret = true;
1196 		break;
1197 	case SIL_TIMER:
1198 	case SIL_POLL:
1199 	case SIL_FAULT:
1200 	case SIL_FAULT_TRAPNO:
1201 	case SIL_FAULT_MCEERR:
1202 	case SIL_FAULT_BNDERR:
1203 	case SIL_FAULT_PKUERR:
1204 	case SIL_FAULT_PERF_EVENT:
1205 	case SIL_SYS:
1206 		ret = false;
1207 		break;
1208 	}
1209 	return ret;
1210 }
1211 
1212 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1213 			enum pid_type type)
1214 {
1215 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1216 	bool force = false;
1217 
1218 	if (info == SEND_SIG_NOINFO) {
1219 		/* Force if sent from an ancestor pid namespace */
1220 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1221 	} else if (info == SEND_SIG_PRIV) {
1222 		/* Don't ignore kernel generated signals */
1223 		force = true;
1224 	} else if (has_si_pid_and_uid(info)) {
1225 		/* SIGKILL and SIGSTOP is special or has ids */
1226 		struct user_namespace *t_user_ns;
1227 
1228 		rcu_read_lock();
1229 		t_user_ns = task_cred_xxx(t, user_ns);
1230 		if (current_user_ns() != t_user_ns) {
1231 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1232 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1233 		}
1234 		rcu_read_unlock();
1235 
1236 		/* A kernel generated signal? */
1237 		force = (info->si_code == SI_KERNEL);
1238 
1239 		/* From an ancestor pid namespace? */
1240 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1241 			info->si_pid = 0;
1242 			force = true;
1243 		}
1244 	}
1245 	return __send_signal(sig, info, t, type, force);
1246 }
1247 
1248 static void print_fatal_signal(int signr)
1249 {
1250 	struct pt_regs *regs = signal_pt_regs();
1251 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1252 
1253 #if defined(__i386__) && !defined(__arch_um__)
1254 	pr_info("code at %08lx: ", regs->ip);
1255 	{
1256 		int i;
1257 		for (i = 0; i < 16; i++) {
1258 			unsigned char insn;
1259 
1260 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1261 				break;
1262 			pr_cont("%02x ", insn);
1263 		}
1264 	}
1265 	pr_cont("\n");
1266 #endif
1267 	preempt_disable();
1268 	show_regs(regs);
1269 	preempt_enable();
1270 }
1271 
1272 static int __init setup_print_fatal_signals(char *str)
1273 {
1274 	get_option (&str, &print_fatal_signals);
1275 
1276 	return 1;
1277 }
1278 
1279 __setup("print-fatal-signals=", setup_print_fatal_signals);
1280 
1281 int
1282 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1283 {
1284 	return send_signal(sig, info, p, PIDTYPE_TGID);
1285 }
1286 
1287 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1288 			enum pid_type type)
1289 {
1290 	unsigned long flags;
1291 	int ret = -ESRCH;
1292 
1293 	if (lock_task_sighand(p, &flags)) {
1294 		ret = send_signal(sig, info, p, type);
1295 		unlock_task_sighand(p, &flags);
1296 	}
1297 
1298 	return ret;
1299 }
1300 
1301 /*
1302  * Force a signal that the process can't ignore: if necessary
1303  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1304  *
1305  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1306  * since we do not want to have a signal handler that was blocked
1307  * be invoked when user space had explicitly blocked it.
1308  *
1309  * We don't want to have recursive SIGSEGV's etc, for example,
1310  * that is why we also clear SIGNAL_UNKILLABLE.
1311  */
1312 static int
1313 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, bool sigdfl)
1314 {
1315 	unsigned long int flags;
1316 	int ret, blocked, ignored;
1317 	struct k_sigaction *action;
1318 	int sig = info->si_signo;
1319 
1320 	spin_lock_irqsave(&t->sighand->siglock, flags);
1321 	action = &t->sighand->action[sig-1];
1322 	ignored = action->sa.sa_handler == SIG_IGN;
1323 	blocked = sigismember(&t->blocked, sig);
1324 	if (blocked || ignored || sigdfl) {
1325 		action->sa.sa_handler = SIG_DFL;
1326 		if (blocked) {
1327 			sigdelset(&t->blocked, sig);
1328 			recalc_sigpending_and_wake(t);
1329 		}
1330 	}
1331 	/*
1332 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1333 	 * debugging to leave init killable.
1334 	 */
1335 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1336 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1337 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1338 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1339 
1340 	return ret;
1341 }
1342 
1343 int force_sig_info(struct kernel_siginfo *info)
1344 {
1345 	return force_sig_info_to_task(info, current, false);
1346 }
1347 
1348 /*
1349  * Nuke all other threads in the group.
1350  */
1351 int zap_other_threads(struct task_struct *p)
1352 {
1353 	struct task_struct *t = p;
1354 	int count = 0;
1355 
1356 	p->signal->group_stop_count = 0;
1357 
1358 	while_each_thread(p, t) {
1359 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1360 		count++;
1361 
1362 		/* Don't bother with already dead threads */
1363 		if (t->exit_state)
1364 			continue;
1365 		sigaddset(&t->pending.signal, SIGKILL);
1366 		signal_wake_up(t, 1);
1367 	}
1368 
1369 	return count;
1370 }
1371 
1372 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1373 					   unsigned long *flags)
1374 {
1375 	struct sighand_struct *sighand;
1376 
1377 	rcu_read_lock();
1378 	for (;;) {
1379 		sighand = rcu_dereference(tsk->sighand);
1380 		if (unlikely(sighand == NULL))
1381 			break;
1382 
1383 		/*
1384 		 * This sighand can be already freed and even reused, but
1385 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1386 		 * initializes ->siglock: this slab can't go away, it has
1387 		 * the same object type, ->siglock can't be reinitialized.
1388 		 *
1389 		 * We need to ensure that tsk->sighand is still the same
1390 		 * after we take the lock, we can race with de_thread() or
1391 		 * __exit_signal(). In the latter case the next iteration
1392 		 * must see ->sighand == NULL.
1393 		 */
1394 		spin_lock_irqsave(&sighand->siglock, *flags);
1395 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1396 			break;
1397 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1398 	}
1399 	rcu_read_unlock();
1400 
1401 	return sighand;
1402 }
1403 
1404 #ifdef CONFIG_LOCKDEP
1405 void lockdep_assert_task_sighand_held(struct task_struct *task)
1406 {
1407 	struct sighand_struct *sighand;
1408 
1409 	rcu_read_lock();
1410 	sighand = rcu_dereference(task->sighand);
1411 	if (sighand)
1412 		lockdep_assert_held(&sighand->siglock);
1413 	else
1414 		WARN_ON_ONCE(1);
1415 	rcu_read_unlock();
1416 }
1417 #endif
1418 
1419 /*
1420  * send signal info to all the members of a group
1421  */
1422 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1423 			struct task_struct *p, enum pid_type type)
1424 {
1425 	int ret;
1426 
1427 	rcu_read_lock();
1428 	ret = check_kill_permission(sig, info, p);
1429 	rcu_read_unlock();
1430 
1431 	if (!ret && sig)
1432 		ret = do_send_sig_info(sig, info, p, type);
1433 
1434 	return ret;
1435 }
1436 
1437 /*
1438  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1439  * control characters do (^C, ^Z etc)
1440  * - the caller must hold at least a readlock on tasklist_lock
1441  */
1442 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1443 {
1444 	struct task_struct *p = NULL;
1445 	int retval, success;
1446 
1447 	success = 0;
1448 	retval = -ESRCH;
1449 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1450 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1451 		success |= !err;
1452 		retval = err;
1453 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1454 	return success ? 0 : retval;
1455 }
1456 
1457 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1458 {
1459 	int error = -ESRCH;
1460 	struct task_struct *p;
1461 
1462 	for (;;) {
1463 		rcu_read_lock();
1464 		p = pid_task(pid, PIDTYPE_PID);
1465 		if (p)
1466 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1467 		rcu_read_unlock();
1468 		if (likely(!p || error != -ESRCH))
1469 			return error;
1470 
1471 		/*
1472 		 * The task was unhashed in between, try again.  If it
1473 		 * is dead, pid_task() will return NULL, if we race with
1474 		 * de_thread() it will find the new leader.
1475 		 */
1476 	}
1477 }
1478 
1479 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1480 {
1481 	int error;
1482 	rcu_read_lock();
1483 	error = kill_pid_info(sig, info, find_vpid(pid));
1484 	rcu_read_unlock();
1485 	return error;
1486 }
1487 
1488 static inline bool kill_as_cred_perm(const struct cred *cred,
1489 				     struct task_struct *target)
1490 {
1491 	const struct cred *pcred = __task_cred(target);
1492 
1493 	return uid_eq(cred->euid, pcred->suid) ||
1494 	       uid_eq(cred->euid, pcred->uid) ||
1495 	       uid_eq(cred->uid, pcred->suid) ||
1496 	       uid_eq(cred->uid, pcred->uid);
1497 }
1498 
1499 /*
1500  * The usb asyncio usage of siginfo is wrong.  The glibc support
1501  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1502  * AKA after the generic fields:
1503  *	kernel_pid_t	si_pid;
1504  *	kernel_uid32_t	si_uid;
1505  *	sigval_t	si_value;
1506  *
1507  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1508  * after the generic fields is:
1509  *	void __user 	*si_addr;
1510  *
1511  * This is a practical problem when there is a 64bit big endian kernel
1512  * and a 32bit userspace.  As the 32bit address will encoded in the low
1513  * 32bits of the pointer.  Those low 32bits will be stored at higher
1514  * address than appear in a 32 bit pointer.  So userspace will not
1515  * see the address it was expecting for it's completions.
1516  *
1517  * There is nothing in the encoding that can allow
1518  * copy_siginfo_to_user32 to detect this confusion of formats, so
1519  * handle this by requiring the caller of kill_pid_usb_asyncio to
1520  * notice when this situration takes place and to store the 32bit
1521  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1522  * parameter.
1523  */
1524 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1525 			 struct pid *pid, const struct cred *cred)
1526 {
1527 	struct kernel_siginfo info;
1528 	struct task_struct *p;
1529 	unsigned long flags;
1530 	int ret = -EINVAL;
1531 
1532 	if (!valid_signal(sig))
1533 		return ret;
1534 
1535 	clear_siginfo(&info);
1536 	info.si_signo = sig;
1537 	info.si_errno = errno;
1538 	info.si_code = SI_ASYNCIO;
1539 	*((sigval_t *)&info.si_pid) = addr;
1540 
1541 	rcu_read_lock();
1542 	p = pid_task(pid, PIDTYPE_PID);
1543 	if (!p) {
1544 		ret = -ESRCH;
1545 		goto out_unlock;
1546 	}
1547 	if (!kill_as_cred_perm(cred, p)) {
1548 		ret = -EPERM;
1549 		goto out_unlock;
1550 	}
1551 	ret = security_task_kill(p, &info, sig, cred);
1552 	if (ret)
1553 		goto out_unlock;
1554 
1555 	if (sig) {
1556 		if (lock_task_sighand(p, &flags)) {
1557 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1558 			unlock_task_sighand(p, &flags);
1559 		} else
1560 			ret = -ESRCH;
1561 	}
1562 out_unlock:
1563 	rcu_read_unlock();
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1567 
1568 /*
1569  * kill_something_info() interprets pid in interesting ways just like kill(2).
1570  *
1571  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1572  * is probably wrong.  Should make it like BSD or SYSV.
1573  */
1574 
1575 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1576 {
1577 	int ret;
1578 
1579 	if (pid > 0)
1580 		return kill_proc_info(sig, info, pid);
1581 
1582 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1583 	if (pid == INT_MIN)
1584 		return -ESRCH;
1585 
1586 	read_lock(&tasklist_lock);
1587 	if (pid != -1) {
1588 		ret = __kill_pgrp_info(sig, info,
1589 				pid ? find_vpid(-pid) : task_pgrp(current));
1590 	} else {
1591 		int retval = 0, count = 0;
1592 		struct task_struct * p;
1593 
1594 		for_each_process(p) {
1595 			if (task_pid_vnr(p) > 1 &&
1596 					!same_thread_group(p, current)) {
1597 				int err = group_send_sig_info(sig, info, p,
1598 							      PIDTYPE_MAX);
1599 				++count;
1600 				if (err != -EPERM)
1601 					retval = err;
1602 			}
1603 		}
1604 		ret = count ? retval : -ESRCH;
1605 	}
1606 	read_unlock(&tasklist_lock);
1607 
1608 	return ret;
1609 }
1610 
1611 /*
1612  * These are for backward compatibility with the rest of the kernel source.
1613  */
1614 
1615 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1616 {
1617 	/*
1618 	 * Make sure legacy kernel users don't send in bad values
1619 	 * (normal paths check this in check_kill_permission).
1620 	 */
1621 	if (!valid_signal(sig))
1622 		return -EINVAL;
1623 
1624 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1625 }
1626 EXPORT_SYMBOL(send_sig_info);
1627 
1628 #define __si_special(priv) \
1629 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1630 
1631 int
1632 send_sig(int sig, struct task_struct *p, int priv)
1633 {
1634 	return send_sig_info(sig, __si_special(priv), p);
1635 }
1636 EXPORT_SYMBOL(send_sig);
1637 
1638 void force_sig(int sig)
1639 {
1640 	struct kernel_siginfo info;
1641 
1642 	clear_siginfo(&info);
1643 	info.si_signo = sig;
1644 	info.si_errno = 0;
1645 	info.si_code = SI_KERNEL;
1646 	info.si_pid = 0;
1647 	info.si_uid = 0;
1648 	force_sig_info(&info);
1649 }
1650 EXPORT_SYMBOL(force_sig);
1651 
1652 /*
1653  * When things go south during signal handling, we
1654  * will force a SIGSEGV. And if the signal that caused
1655  * the problem was already a SIGSEGV, we'll want to
1656  * make sure we don't even try to deliver the signal..
1657  */
1658 void force_sigsegv(int sig)
1659 {
1660 	struct task_struct *p = current;
1661 
1662 	if (sig == SIGSEGV) {
1663 		unsigned long flags;
1664 		spin_lock_irqsave(&p->sighand->siglock, flags);
1665 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1666 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1667 	}
1668 	force_sig(SIGSEGV);
1669 }
1670 
1671 int force_sig_fault_to_task(int sig, int code, void __user *addr
1672 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1673 	, struct task_struct *t)
1674 {
1675 	struct kernel_siginfo info;
1676 
1677 	clear_siginfo(&info);
1678 	info.si_signo = sig;
1679 	info.si_errno = 0;
1680 	info.si_code  = code;
1681 	info.si_addr  = addr;
1682 #ifdef __ia64__
1683 	info.si_imm = imm;
1684 	info.si_flags = flags;
1685 	info.si_isr = isr;
1686 #endif
1687 	return force_sig_info_to_task(&info, t, false);
1688 }
1689 
1690 int force_sig_fault(int sig, int code, void __user *addr
1691 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1692 {
1693 	return force_sig_fault_to_task(sig, code, addr
1694 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1695 }
1696 
1697 int send_sig_fault(int sig, int code, void __user *addr
1698 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1699 	, struct task_struct *t)
1700 {
1701 	struct kernel_siginfo info;
1702 
1703 	clear_siginfo(&info);
1704 	info.si_signo = sig;
1705 	info.si_errno = 0;
1706 	info.si_code  = code;
1707 	info.si_addr  = addr;
1708 #ifdef __ia64__
1709 	info.si_imm = imm;
1710 	info.si_flags = flags;
1711 	info.si_isr = isr;
1712 #endif
1713 	return send_sig_info(info.si_signo, &info, t);
1714 }
1715 
1716 int force_sig_mceerr(int code, void __user *addr, short lsb)
1717 {
1718 	struct kernel_siginfo info;
1719 
1720 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1721 	clear_siginfo(&info);
1722 	info.si_signo = SIGBUS;
1723 	info.si_errno = 0;
1724 	info.si_code = code;
1725 	info.si_addr = addr;
1726 	info.si_addr_lsb = lsb;
1727 	return force_sig_info(&info);
1728 }
1729 
1730 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1731 {
1732 	struct kernel_siginfo info;
1733 
1734 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1735 	clear_siginfo(&info);
1736 	info.si_signo = SIGBUS;
1737 	info.si_errno = 0;
1738 	info.si_code = code;
1739 	info.si_addr = addr;
1740 	info.si_addr_lsb = lsb;
1741 	return send_sig_info(info.si_signo, &info, t);
1742 }
1743 EXPORT_SYMBOL(send_sig_mceerr);
1744 
1745 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1746 {
1747 	struct kernel_siginfo info;
1748 
1749 	clear_siginfo(&info);
1750 	info.si_signo = SIGSEGV;
1751 	info.si_errno = 0;
1752 	info.si_code  = SEGV_BNDERR;
1753 	info.si_addr  = addr;
1754 	info.si_lower = lower;
1755 	info.si_upper = upper;
1756 	return force_sig_info(&info);
1757 }
1758 
1759 #ifdef SEGV_PKUERR
1760 int force_sig_pkuerr(void __user *addr, u32 pkey)
1761 {
1762 	struct kernel_siginfo info;
1763 
1764 	clear_siginfo(&info);
1765 	info.si_signo = SIGSEGV;
1766 	info.si_errno = 0;
1767 	info.si_code  = SEGV_PKUERR;
1768 	info.si_addr  = addr;
1769 	info.si_pkey  = pkey;
1770 	return force_sig_info(&info);
1771 }
1772 #endif
1773 
1774 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1775 {
1776 	struct kernel_siginfo info;
1777 
1778 	clear_siginfo(&info);
1779 	info.si_signo     = SIGTRAP;
1780 	info.si_errno     = 0;
1781 	info.si_code      = TRAP_PERF;
1782 	info.si_addr      = addr;
1783 	info.si_perf_data = sig_data;
1784 	info.si_perf_type = type;
1785 
1786 	return force_sig_info(&info);
1787 }
1788 
1789 /**
1790  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1791  * @syscall: syscall number to send to userland
1792  * @reason: filter-supplied reason code to send to userland (via si_errno)
1793  *
1794  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1795  */
1796 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1797 {
1798 	struct kernel_siginfo info;
1799 
1800 	clear_siginfo(&info);
1801 	info.si_signo = SIGSYS;
1802 	info.si_code = SYS_SECCOMP;
1803 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1804 	info.si_errno = reason;
1805 	info.si_arch = syscall_get_arch(current);
1806 	info.si_syscall = syscall;
1807 	return force_sig_info_to_task(&info, current, force_coredump);
1808 }
1809 
1810 /* For the crazy architectures that include trap information in
1811  * the errno field, instead of an actual errno value.
1812  */
1813 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1814 {
1815 	struct kernel_siginfo info;
1816 
1817 	clear_siginfo(&info);
1818 	info.si_signo = SIGTRAP;
1819 	info.si_errno = errno;
1820 	info.si_code  = TRAP_HWBKPT;
1821 	info.si_addr  = addr;
1822 	return force_sig_info(&info);
1823 }
1824 
1825 /* For the rare architectures that include trap information using
1826  * si_trapno.
1827  */
1828 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1829 {
1830 	struct kernel_siginfo info;
1831 
1832 	clear_siginfo(&info);
1833 	info.si_signo = sig;
1834 	info.si_errno = 0;
1835 	info.si_code  = code;
1836 	info.si_addr  = addr;
1837 	info.si_trapno = trapno;
1838 	return force_sig_info(&info);
1839 }
1840 
1841 /* For the rare architectures that include trap information using
1842  * si_trapno.
1843  */
1844 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1845 			  struct task_struct *t)
1846 {
1847 	struct kernel_siginfo info;
1848 
1849 	clear_siginfo(&info);
1850 	info.si_signo = sig;
1851 	info.si_errno = 0;
1852 	info.si_code  = code;
1853 	info.si_addr  = addr;
1854 	info.si_trapno = trapno;
1855 	return send_sig_info(info.si_signo, &info, t);
1856 }
1857 
1858 int kill_pgrp(struct pid *pid, int sig, int priv)
1859 {
1860 	int ret;
1861 
1862 	read_lock(&tasklist_lock);
1863 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1864 	read_unlock(&tasklist_lock);
1865 
1866 	return ret;
1867 }
1868 EXPORT_SYMBOL(kill_pgrp);
1869 
1870 int kill_pid(struct pid *pid, int sig, int priv)
1871 {
1872 	return kill_pid_info(sig, __si_special(priv), pid);
1873 }
1874 EXPORT_SYMBOL(kill_pid);
1875 
1876 /*
1877  * These functions support sending signals using preallocated sigqueue
1878  * structures.  This is needed "because realtime applications cannot
1879  * afford to lose notifications of asynchronous events, like timer
1880  * expirations or I/O completions".  In the case of POSIX Timers
1881  * we allocate the sigqueue structure from the timer_create.  If this
1882  * allocation fails we are able to report the failure to the application
1883  * with an EAGAIN error.
1884  */
1885 struct sigqueue *sigqueue_alloc(void)
1886 {
1887 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1888 }
1889 
1890 void sigqueue_free(struct sigqueue *q)
1891 {
1892 	unsigned long flags;
1893 	spinlock_t *lock = &current->sighand->siglock;
1894 
1895 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1896 	/*
1897 	 * We must hold ->siglock while testing q->list
1898 	 * to serialize with collect_signal() or with
1899 	 * __exit_signal()->flush_sigqueue().
1900 	 */
1901 	spin_lock_irqsave(lock, flags);
1902 	q->flags &= ~SIGQUEUE_PREALLOC;
1903 	/*
1904 	 * If it is queued it will be freed when dequeued,
1905 	 * like the "regular" sigqueue.
1906 	 */
1907 	if (!list_empty(&q->list))
1908 		q = NULL;
1909 	spin_unlock_irqrestore(lock, flags);
1910 
1911 	if (q)
1912 		__sigqueue_free(q);
1913 }
1914 
1915 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1916 {
1917 	int sig = q->info.si_signo;
1918 	struct sigpending *pending;
1919 	struct task_struct *t;
1920 	unsigned long flags;
1921 	int ret, result;
1922 
1923 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1924 
1925 	ret = -1;
1926 	rcu_read_lock();
1927 	t = pid_task(pid, type);
1928 	if (!t || !likely(lock_task_sighand(t, &flags)))
1929 		goto ret;
1930 
1931 	ret = 1; /* the signal is ignored */
1932 	result = TRACE_SIGNAL_IGNORED;
1933 	if (!prepare_signal(sig, t, false))
1934 		goto out;
1935 
1936 	ret = 0;
1937 	if (unlikely(!list_empty(&q->list))) {
1938 		/*
1939 		 * If an SI_TIMER entry is already queue just increment
1940 		 * the overrun count.
1941 		 */
1942 		BUG_ON(q->info.si_code != SI_TIMER);
1943 		q->info.si_overrun++;
1944 		result = TRACE_SIGNAL_ALREADY_PENDING;
1945 		goto out;
1946 	}
1947 	q->info.si_overrun = 0;
1948 
1949 	signalfd_notify(t, sig);
1950 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1951 	list_add_tail(&q->list, &pending->list);
1952 	sigaddset(&pending->signal, sig);
1953 	complete_signal(sig, t, type);
1954 	result = TRACE_SIGNAL_DELIVERED;
1955 out:
1956 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1957 	unlock_task_sighand(t, &flags);
1958 ret:
1959 	rcu_read_unlock();
1960 	return ret;
1961 }
1962 
1963 static void do_notify_pidfd(struct task_struct *task)
1964 {
1965 	struct pid *pid;
1966 
1967 	WARN_ON(task->exit_state == 0);
1968 	pid = task_pid(task);
1969 	wake_up_all(&pid->wait_pidfd);
1970 }
1971 
1972 /*
1973  * Let a parent know about the death of a child.
1974  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1975  *
1976  * Returns true if our parent ignored us and so we've switched to
1977  * self-reaping.
1978  */
1979 bool do_notify_parent(struct task_struct *tsk, int sig)
1980 {
1981 	struct kernel_siginfo info;
1982 	unsigned long flags;
1983 	struct sighand_struct *psig;
1984 	bool autoreap = false;
1985 	u64 utime, stime;
1986 
1987 	BUG_ON(sig == -1);
1988 
1989  	/* do_notify_parent_cldstop should have been called instead.  */
1990  	BUG_ON(task_is_stopped_or_traced(tsk));
1991 
1992 	BUG_ON(!tsk->ptrace &&
1993 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1994 
1995 	/* Wake up all pidfd waiters */
1996 	do_notify_pidfd(tsk);
1997 
1998 	if (sig != SIGCHLD) {
1999 		/*
2000 		 * This is only possible if parent == real_parent.
2001 		 * Check if it has changed security domain.
2002 		 */
2003 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2004 			sig = SIGCHLD;
2005 	}
2006 
2007 	clear_siginfo(&info);
2008 	info.si_signo = sig;
2009 	info.si_errno = 0;
2010 	/*
2011 	 * We are under tasklist_lock here so our parent is tied to
2012 	 * us and cannot change.
2013 	 *
2014 	 * task_active_pid_ns will always return the same pid namespace
2015 	 * until a task passes through release_task.
2016 	 *
2017 	 * write_lock() currently calls preempt_disable() which is the
2018 	 * same as rcu_read_lock(), but according to Oleg, this is not
2019 	 * correct to rely on this
2020 	 */
2021 	rcu_read_lock();
2022 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2023 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2024 				       task_uid(tsk));
2025 	rcu_read_unlock();
2026 
2027 	task_cputime(tsk, &utime, &stime);
2028 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2029 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2030 
2031 	info.si_status = tsk->exit_code & 0x7f;
2032 	if (tsk->exit_code & 0x80)
2033 		info.si_code = CLD_DUMPED;
2034 	else if (tsk->exit_code & 0x7f)
2035 		info.si_code = CLD_KILLED;
2036 	else {
2037 		info.si_code = CLD_EXITED;
2038 		info.si_status = tsk->exit_code >> 8;
2039 	}
2040 
2041 	psig = tsk->parent->sighand;
2042 	spin_lock_irqsave(&psig->siglock, flags);
2043 	if (!tsk->ptrace && sig == SIGCHLD &&
2044 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2045 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2046 		/*
2047 		 * We are exiting and our parent doesn't care.  POSIX.1
2048 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2049 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2050 		 * automatically and not left for our parent's wait4 call.
2051 		 * Rather than having the parent do it as a magic kind of
2052 		 * signal handler, we just set this to tell do_exit that we
2053 		 * can be cleaned up without becoming a zombie.  Note that
2054 		 * we still call __wake_up_parent in this case, because a
2055 		 * blocked sys_wait4 might now return -ECHILD.
2056 		 *
2057 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2058 		 * is implementation-defined: we do (if you don't want
2059 		 * it, just use SIG_IGN instead).
2060 		 */
2061 		autoreap = true;
2062 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2063 			sig = 0;
2064 	}
2065 	/*
2066 	 * Send with __send_signal as si_pid and si_uid are in the
2067 	 * parent's namespaces.
2068 	 */
2069 	if (valid_signal(sig) && sig)
2070 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2071 	__wake_up_parent(tsk, tsk->parent);
2072 	spin_unlock_irqrestore(&psig->siglock, flags);
2073 
2074 	return autoreap;
2075 }
2076 
2077 /**
2078  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2079  * @tsk: task reporting the state change
2080  * @for_ptracer: the notification is for ptracer
2081  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2082  *
2083  * Notify @tsk's parent that the stopped/continued state has changed.  If
2084  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2085  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2086  *
2087  * CONTEXT:
2088  * Must be called with tasklist_lock at least read locked.
2089  */
2090 static void do_notify_parent_cldstop(struct task_struct *tsk,
2091 				     bool for_ptracer, int why)
2092 {
2093 	struct kernel_siginfo info;
2094 	unsigned long flags;
2095 	struct task_struct *parent;
2096 	struct sighand_struct *sighand;
2097 	u64 utime, stime;
2098 
2099 	if (for_ptracer) {
2100 		parent = tsk->parent;
2101 	} else {
2102 		tsk = tsk->group_leader;
2103 		parent = tsk->real_parent;
2104 	}
2105 
2106 	clear_siginfo(&info);
2107 	info.si_signo = SIGCHLD;
2108 	info.si_errno = 0;
2109 	/*
2110 	 * see comment in do_notify_parent() about the following 4 lines
2111 	 */
2112 	rcu_read_lock();
2113 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2114 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2115 	rcu_read_unlock();
2116 
2117 	task_cputime(tsk, &utime, &stime);
2118 	info.si_utime = nsec_to_clock_t(utime);
2119 	info.si_stime = nsec_to_clock_t(stime);
2120 
2121  	info.si_code = why;
2122  	switch (why) {
2123  	case CLD_CONTINUED:
2124  		info.si_status = SIGCONT;
2125  		break;
2126  	case CLD_STOPPED:
2127  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2128  		break;
2129  	case CLD_TRAPPED:
2130  		info.si_status = tsk->exit_code & 0x7f;
2131  		break;
2132  	default:
2133  		BUG();
2134  	}
2135 
2136 	sighand = parent->sighand;
2137 	spin_lock_irqsave(&sighand->siglock, flags);
2138 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2139 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2140 		__group_send_sig_info(SIGCHLD, &info, parent);
2141 	/*
2142 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2143 	 */
2144 	__wake_up_parent(tsk, parent);
2145 	spin_unlock_irqrestore(&sighand->siglock, flags);
2146 }
2147 
2148 /*
2149  * This must be called with current->sighand->siglock held.
2150  *
2151  * This should be the path for all ptrace stops.
2152  * We always set current->last_siginfo while stopped here.
2153  * That makes it a way to test a stopped process for
2154  * being ptrace-stopped vs being job-control-stopped.
2155  *
2156  * If we actually decide not to stop at all because the tracer
2157  * is gone, we keep current->exit_code unless clear_code.
2158  */
2159 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2160 	__releases(&current->sighand->siglock)
2161 	__acquires(&current->sighand->siglock)
2162 {
2163 	bool gstop_done = false;
2164 
2165 	if (arch_ptrace_stop_needed()) {
2166 		/*
2167 		 * The arch code has something special to do before a
2168 		 * ptrace stop.  This is allowed to block, e.g. for faults
2169 		 * on user stack pages.  We can't keep the siglock while
2170 		 * calling arch_ptrace_stop, so we must release it now.
2171 		 * To preserve proper semantics, we must do this before
2172 		 * any signal bookkeeping like checking group_stop_count.
2173 		 */
2174 		spin_unlock_irq(&current->sighand->siglock);
2175 		arch_ptrace_stop();
2176 		spin_lock_irq(&current->sighand->siglock);
2177 	}
2178 
2179 	/*
2180 	 * schedule() will not sleep if there is a pending signal that
2181 	 * can awaken the task.
2182 	 */
2183 	set_special_state(TASK_TRACED);
2184 
2185 	/*
2186 	 * We're committing to trapping.  TRACED should be visible before
2187 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2188 	 * Also, transition to TRACED and updates to ->jobctl should be
2189 	 * atomic with respect to siglock and should be done after the arch
2190 	 * hook as siglock is released and regrabbed across it.
2191 	 *
2192 	 *     TRACER				    TRACEE
2193 	 *
2194 	 *     ptrace_attach()
2195 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2196 	 *     do_wait()
2197 	 *       set_current_state()                smp_wmb();
2198 	 *       ptrace_do_wait()
2199 	 *         wait_task_stopped()
2200 	 *           task_stopped_code()
2201 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2202 	 */
2203 	smp_wmb();
2204 
2205 	current->last_siginfo = info;
2206 	current->exit_code = exit_code;
2207 
2208 	/*
2209 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2210 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2211 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2212 	 * could be clear now.  We act as if SIGCONT is received after
2213 	 * TASK_TRACED is entered - ignore it.
2214 	 */
2215 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2216 		gstop_done = task_participate_group_stop(current);
2217 
2218 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2219 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2220 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2221 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2222 
2223 	/* entering a trap, clear TRAPPING */
2224 	task_clear_jobctl_trapping(current);
2225 
2226 	spin_unlock_irq(&current->sighand->siglock);
2227 	read_lock(&tasklist_lock);
2228 	if (likely(current->ptrace)) {
2229 		/*
2230 		 * Notify parents of the stop.
2231 		 *
2232 		 * While ptraced, there are two parents - the ptracer and
2233 		 * the real_parent of the group_leader.  The ptracer should
2234 		 * know about every stop while the real parent is only
2235 		 * interested in the completion of group stop.  The states
2236 		 * for the two don't interact with each other.  Notify
2237 		 * separately unless they're gonna be duplicates.
2238 		 */
2239 		do_notify_parent_cldstop(current, true, why);
2240 		if (gstop_done && ptrace_reparented(current))
2241 			do_notify_parent_cldstop(current, false, why);
2242 
2243 		/*
2244 		 * Don't want to allow preemption here, because
2245 		 * sys_ptrace() needs this task to be inactive.
2246 		 *
2247 		 * XXX: implement read_unlock_no_resched().
2248 		 */
2249 		preempt_disable();
2250 		read_unlock(&tasklist_lock);
2251 		cgroup_enter_frozen();
2252 		preempt_enable_no_resched();
2253 		freezable_schedule();
2254 		cgroup_leave_frozen(true);
2255 	} else {
2256 		/*
2257 		 * By the time we got the lock, our tracer went away.
2258 		 * Don't drop the lock yet, another tracer may come.
2259 		 *
2260 		 * If @gstop_done, the ptracer went away between group stop
2261 		 * completion and here.  During detach, it would have set
2262 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2263 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2264 		 * the real parent of the group stop completion is enough.
2265 		 */
2266 		if (gstop_done)
2267 			do_notify_parent_cldstop(current, false, why);
2268 
2269 		/* tasklist protects us from ptrace_freeze_traced() */
2270 		__set_current_state(TASK_RUNNING);
2271 		if (clear_code)
2272 			current->exit_code = 0;
2273 		read_unlock(&tasklist_lock);
2274 	}
2275 
2276 	/*
2277 	 * We are back.  Now reacquire the siglock before touching
2278 	 * last_siginfo, so that we are sure to have synchronized with
2279 	 * any signal-sending on another CPU that wants to examine it.
2280 	 */
2281 	spin_lock_irq(&current->sighand->siglock);
2282 	current->last_siginfo = NULL;
2283 
2284 	/* LISTENING can be set only during STOP traps, clear it */
2285 	current->jobctl &= ~JOBCTL_LISTENING;
2286 
2287 	/*
2288 	 * Queued signals ignored us while we were stopped for tracing.
2289 	 * So check for any that we should take before resuming user mode.
2290 	 * This sets TIF_SIGPENDING, but never clears it.
2291 	 */
2292 	recalc_sigpending_tsk(current);
2293 }
2294 
2295 static void ptrace_do_notify(int signr, int exit_code, int why)
2296 {
2297 	kernel_siginfo_t info;
2298 
2299 	clear_siginfo(&info);
2300 	info.si_signo = signr;
2301 	info.si_code = exit_code;
2302 	info.si_pid = task_pid_vnr(current);
2303 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2304 
2305 	/* Let the debugger run.  */
2306 	ptrace_stop(exit_code, why, 1, &info);
2307 }
2308 
2309 void ptrace_notify(int exit_code)
2310 {
2311 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2312 	if (unlikely(current->task_works))
2313 		task_work_run();
2314 
2315 	spin_lock_irq(&current->sighand->siglock);
2316 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2317 	spin_unlock_irq(&current->sighand->siglock);
2318 }
2319 
2320 /**
2321  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2322  * @signr: signr causing group stop if initiating
2323  *
2324  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2325  * and participate in it.  If already set, participate in the existing
2326  * group stop.  If participated in a group stop (and thus slept), %true is
2327  * returned with siglock released.
2328  *
2329  * If ptraced, this function doesn't handle stop itself.  Instead,
2330  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2331  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2332  * places afterwards.
2333  *
2334  * CONTEXT:
2335  * Must be called with @current->sighand->siglock held, which is released
2336  * on %true return.
2337  *
2338  * RETURNS:
2339  * %false if group stop is already cancelled or ptrace trap is scheduled.
2340  * %true if participated in group stop.
2341  */
2342 static bool do_signal_stop(int signr)
2343 	__releases(&current->sighand->siglock)
2344 {
2345 	struct signal_struct *sig = current->signal;
2346 
2347 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2348 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2349 		struct task_struct *t;
2350 
2351 		/* signr will be recorded in task->jobctl for retries */
2352 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2353 
2354 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2355 		    unlikely(signal_group_exit(sig)))
2356 			return false;
2357 		/*
2358 		 * There is no group stop already in progress.  We must
2359 		 * initiate one now.
2360 		 *
2361 		 * While ptraced, a task may be resumed while group stop is
2362 		 * still in effect and then receive a stop signal and
2363 		 * initiate another group stop.  This deviates from the
2364 		 * usual behavior as two consecutive stop signals can't
2365 		 * cause two group stops when !ptraced.  That is why we
2366 		 * also check !task_is_stopped(t) below.
2367 		 *
2368 		 * The condition can be distinguished by testing whether
2369 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2370 		 * group_exit_code in such case.
2371 		 *
2372 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2373 		 * an intervening stop signal is required to cause two
2374 		 * continued events regardless of ptrace.
2375 		 */
2376 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2377 			sig->group_exit_code = signr;
2378 
2379 		sig->group_stop_count = 0;
2380 
2381 		if (task_set_jobctl_pending(current, signr | gstop))
2382 			sig->group_stop_count++;
2383 
2384 		t = current;
2385 		while_each_thread(current, t) {
2386 			/*
2387 			 * Setting state to TASK_STOPPED for a group
2388 			 * stop is always done with the siglock held,
2389 			 * so this check has no races.
2390 			 */
2391 			if (!task_is_stopped(t) &&
2392 			    task_set_jobctl_pending(t, signr | gstop)) {
2393 				sig->group_stop_count++;
2394 				if (likely(!(t->ptrace & PT_SEIZED)))
2395 					signal_wake_up(t, 0);
2396 				else
2397 					ptrace_trap_notify(t);
2398 			}
2399 		}
2400 	}
2401 
2402 	if (likely(!current->ptrace)) {
2403 		int notify = 0;
2404 
2405 		/*
2406 		 * If there are no other threads in the group, or if there
2407 		 * is a group stop in progress and we are the last to stop,
2408 		 * report to the parent.
2409 		 */
2410 		if (task_participate_group_stop(current))
2411 			notify = CLD_STOPPED;
2412 
2413 		set_special_state(TASK_STOPPED);
2414 		spin_unlock_irq(&current->sighand->siglock);
2415 
2416 		/*
2417 		 * Notify the parent of the group stop completion.  Because
2418 		 * we're not holding either the siglock or tasklist_lock
2419 		 * here, ptracer may attach inbetween; however, this is for
2420 		 * group stop and should always be delivered to the real
2421 		 * parent of the group leader.  The new ptracer will get
2422 		 * its notification when this task transitions into
2423 		 * TASK_TRACED.
2424 		 */
2425 		if (notify) {
2426 			read_lock(&tasklist_lock);
2427 			do_notify_parent_cldstop(current, false, notify);
2428 			read_unlock(&tasklist_lock);
2429 		}
2430 
2431 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2432 		cgroup_enter_frozen();
2433 		freezable_schedule();
2434 		return true;
2435 	} else {
2436 		/*
2437 		 * While ptraced, group stop is handled by STOP trap.
2438 		 * Schedule it and let the caller deal with it.
2439 		 */
2440 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2441 		return false;
2442 	}
2443 }
2444 
2445 /**
2446  * do_jobctl_trap - take care of ptrace jobctl traps
2447  *
2448  * When PT_SEIZED, it's used for both group stop and explicit
2449  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2450  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2451  * the stop signal; otherwise, %SIGTRAP.
2452  *
2453  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2454  * number as exit_code and no siginfo.
2455  *
2456  * CONTEXT:
2457  * Must be called with @current->sighand->siglock held, which may be
2458  * released and re-acquired before returning with intervening sleep.
2459  */
2460 static void do_jobctl_trap(void)
2461 {
2462 	struct signal_struct *signal = current->signal;
2463 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2464 
2465 	if (current->ptrace & PT_SEIZED) {
2466 		if (!signal->group_stop_count &&
2467 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2468 			signr = SIGTRAP;
2469 		WARN_ON_ONCE(!signr);
2470 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2471 				 CLD_STOPPED);
2472 	} else {
2473 		WARN_ON_ONCE(!signr);
2474 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2475 		current->exit_code = 0;
2476 	}
2477 }
2478 
2479 /**
2480  * do_freezer_trap - handle the freezer jobctl trap
2481  *
2482  * Puts the task into frozen state, if only the task is not about to quit.
2483  * In this case it drops JOBCTL_TRAP_FREEZE.
2484  *
2485  * CONTEXT:
2486  * Must be called with @current->sighand->siglock held,
2487  * which is always released before returning.
2488  */
2489 static void do_freezer_trap(void)
2490 	__releases(&current->sighand->siglock)
2491 {
2492 	/*
2493 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2494 	 * let's make another loop to give it a chance to be handled.
2495 	 * In any case, we'll return back.
2496 	 */
2497 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2498 	     JOBCTL_TRAP_FREEZE) {
2499 		spin_unlock_irq(&current->sighand->siglock);
2500 		return;
2501 	}
2502 
2503 	/*
2504 	 * Now we're sure that there is no pending fatal signal and no
2505 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2506 	 * immediately (if there is a non-fatal signal pending), and
2507 	 * put the task into sleep.
2508 	 */
2509 	__set_current_state(TASK_INTERRUPTIBLE);
2510 	clear_thread_flag(TIF_SIGPENDING);
2511 	spin_unlock_irq(&current->sighand->siglock);
2512 	cgroup_enter_frozen();
2513 	freezable_schedule();
2514 }
2515 
2516 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2517 {
2518 	/*
2519 	 * We do not check sig_kernel_stop(signr) but set this marker
2520 	 * unconditionally because we do not know whether debugger will
2521 	 * change signr. This flag has no meaning unless we are going
2522 	 * to stop after return from ptrace_stop(). In this case it will
2523 	 * be checked in do_signal_stop(), we should only stop if it was
2524 	 * not cleared by SIGCONT while we were sleeping. See also the
2525 	 * comment in dequeue_signal().
2526 	 */
2527 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2528 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2529 
2530 	/* We're back.  Did the debugger cancel the sig?  */
2531 	signr = current->exit_code;
2532 	if (signr == 0)
2533 		return signr;
2534 
2535 	current->exit_code = 0;
2536 
2537 	/*
2538 	 * Update the siginfo structure if the signal has
2539 	 * changed.  If the debugger wanted something
2540 	 * specific in the siginfo structure then it should
2541 	 * have updated *info via PTRACE_SETSIGINFO.
2542 	 */
2543 	if (signr != info->si_signo) {
2544 		clear_siginfo(info);
2545 		info->si_signo = signr;
2546 		info->si_errno = 0;
2547 		info->si_code = SI_USER;
2548 		rcu_read_lock();
2549 		info->si_pid = task_pid_vnr(current->parent);
2550 		info->si_uid = from_kuid_munged(current_user_ns(),
2551 						task_uid(current->parent));
2552 		rcu_read_unlock();
2553 	}
2554 
2555 	/* If the (new) signal is now blocked, requeue it.  */
2556 	if (sigismember(&current->blocked, signr)) {
2557 		send_signal(signr, info, current, PIDTYPE_PID);
2558 		signr = 0;
2559 	}
2560 
2561 	return signr;
2562 }
2563 
2564 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2565 {
2566 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2567 	case SIL_FAULT:
2568 	case SIL_FAULT_TRAPNO:
2569 	case SIL_FAULT_MCEERR:
2570 	case SIL_FAULT_BNDERR:
2571 	case SIL_FAULT_PKUERR:
2572 	case SIL_FAULT_PERF_EVENT:
2573 		ksig->info.si_addr = arch_untagged_si_addr(
2574 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2575 		break;
2576 	case SIL_KILL:
2577 	case SIL_TIMER:
2578 	case SIL_POLL:
2579 	case SIL_CHLD:
2580 	case SIL_RT:
2581 	case SIL_SYS:
2582 		break;
2583 	}
2584 }
2585 
2586 bool get_signal(struct ksignal *ksig)
2587 {
2588 	struct sighand_struct *sighand = current->sighand;
2589 	struct signal_struct *signal = current->signal;
2590 	int signr;
2591 
2592 	if (unlikely(current->task_works))
2593 		task_work_run();
2594 
2595 	/*
2596 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2597 	 * that the arch handlers don't all have to do it. If we get here
2598 	 * without TIF_SIGPENDING, just exit after running signal work.
2599 	 */
2600 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2601 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2602 			tracehook_notify_signal();
2603 		if (!task_sigpending(current))
2604 			return false;
2605 	}
2606 
2607 	if (unlikely(uprobe_deny_signal()))
2608 		return false;
2609 
2610 	/*
2611 	 * Do this once, we can't return to user-mode if freezing() == T.
2612 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2613 	 * thus do not need another check after return.
2614 	 */
2615 	try_to_freeze();
2616 
2617 relock:
2618 	spin_lock_irq(&sighand->siglock);
2619 
2620 	/*
2621 	 * Every stopped thread goes here after wakeup. Check to see if
2622 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2623 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2624 	 */
2625 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2626 		int why;
2627 
2628 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2629 			why = CLD_CONTINUED;
2630 		else
2631 			why = CLD_STOPPED;
2632 
2633 		signal->flags &= ~SIGNAL_CLD_MASK;
2634 
2635 		spin_unlock_irq(&sighand->siglock);
2636 
2637 		/*
2638 		 * Notify the parent that we're continuing.  This event is
2639 		 * always per-process and doesn't make whole lot of sense
2640 		 * for ptracers, who shouldn't consume the state via
2641 		 * wait(2) either, but, for backward compatibility, notify
2642 		 * the ptracer of the group leader too unless it's gonna be
2643 		 * a duplicate.
2644 		 */
2645 		read_lock(&tasklist_lock);
2646 		do_notify_parent_cldstop(current, false, why);
2647 
2648 		if (ptrace_reparented(current->group_leader))
2649 			do_notify_parent_cldstop(current->group_leader,
2650 						true, why);
2651 		read_unlock(&tasklist_lock);
2652 
2653 		goto relock;
2654 	}
2655 
2656 	/* Has this task already been marked for death? */
2657 	if (signal_group_exit(signal)) {
2658 		ksig->info.si_signo = signr = SIGKILL;
2659 		sigdelset(&current->pending.signal, SIGKILL);
2660 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2661 				&sighand->action[SIGKILL - 1]);
2662 		recalc_sigpending();
2663 		goto fatal;
2664 	}
2665 
2666 	for (;;) {
2667 		struct k_sigaction *ka;
2668 
2669 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2670 		    do_signal_stop(0))
2671 			goto relock;
2672 
2673 		if (unlikely(current->jobctl &
2674 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2675 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2676 				do_jobctl_trap();
2677 				spin_unlock_irq(&sighand->siglock);
2678 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2679 				do_freezer_trap();
2680 
2681 			goto relock;
2682 		}
2683 
2684 		/*
2685 		 * If the task is leaving the frozen state, let's update
2686 		 * cgroup counters and reset the frozen bit.
2687 		 */
2688 		if (unlikely(cgroup_task_frozen(current))) {
2689 			spin_unlock_irq(&sighand->siglock);
2690 			cgroup_leave_frozen(false);
2691 			goto relock;
2692 		}
2693 
2694 		/*
2695 		 * Signals generated by the execution of an instruction
2696 		 * need to be delivered before any other pending signals
2697 		 * so that the instruction pointer in the signal stack
2698 		 * frame points to the faulting instruction.
2699 		 */
2700 		signr = dequeue_synchronous_signal(&ksig->info);
2701 		if (!signr)
2702 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2703 
2704 		if (!signr)
2705 			break; /* will return 0 */
2706 
2707 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2708 			signr = ptrace_signal(signr, &ksig->info);
2709 			if (!signr)
2710 				continue;
2711 		}
2712 
2713 		ka = &sighand->action[signr-1];
2714 
2715 		/* Trace actually delivered signals. */
2716 		trace_signal_deliver(signr, &ksig->info, ka);
2717 
2718 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2719 			continue;
2720 		if (ka->sa.sa_handler != SIG_DFL) {
2721 			/* Run the handler.  */
2722 			ksig->ka = *ka;
2723 
2724 			if (ka->sa.sa_flags & SA_ONESHOT)
2725 				ka->sa.sa_handler = SIG_DFL;
2726 
2727 			break; /* will return non-zero "signr" value */
2728 		}
2729 
2730 		/*
2731 		 * Now we are doing the default action for this signal.
2732 		 */
2733 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2734 			continue;
2735 
2736 		/*
2737 		 * Global init gets no signals it doesn't want.
2738 		 * Container-init gets no signals it doesn't want from same
2739 		 * container.
2740 		 *
2741 		 * Note that if global/container-init sees a sig_kernel_only()
2742 		 * signal here, the signal must have been generated internally
2743 		 * or must have come from an ancestor namespace. In either
2744 		 * case, the signal cannot be dropped.
2745 		 */
2746 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2747 				!sig_kernel_only(signr))
2748 			continue;
2749 
2750 		if (sig_kernel_stop(signr)) {
2751 			/*
2752 			 * The default action is to stop all threads in
2753 			 * the thread group.  The job control signals
2754 			 * do nothing in an orphaned pgrp, but SIGSTOP
2755 			 * always works.  Note that siglock needs to be
2756 			 * dropped during the call to is_orphaned_pgrp()
2757 			 * because of lock ordering with tasklist_lock.
2758 			 * This allows an intervening SIGCONT to be posted.
2759 			 * We need to check for that and bail out if necessary.
2760 			 */
2761 			if (signr != SIGSTOP) {
2762 				spin_unlock_irq(&sighand->siglock);
2763 
2764 				/* signals can be posted during this window */
2765 
2766 				if (is_current_pgrp_orphaned())
2767 					goto relock;
2768 
2769 				spin_lock_irq(&sighand->siglock);
2770 			}
2771 
2772 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2773 				/* It released the siglock.  */
2774 				goto relock;
2775 			}
2776 
2777 			/*
2778 			 * We didn't actually stop, due to a race
2779 			 * with SIGCONT or something like that.
2780 			 */
2781 			continue;
2782 		}
2783 
2784 	fatal:
2785 		spin_unlock_irq(&sighand->siglock);
2786 		if (unlikely(cgroup_task_frozen(current)))
2787 			cgroup_leave_frozen(true);
2788 
2789 		/*
2790 		 * Anything else is fatal, maybe with a core dump.
2791 		 */
2792 		current->flags |= PF_SIGNALED;
2793 
2794 		if (sig_kernel_coredump(signr)) {
2795 			if (print_fatal_signals)
2796 				print_fatal_signal(ksig->info.si_signo);
2797 			proc_coredump_connector(current);
2798 			/*
2799 			 * If it was able to dump core, this kills all
2800 			 * other threads in the group and synchronizes with
2801 			 * their demise.  If we lost the race with another
2802 			 * thread getting here, it set group_exit_code
2803 			 * first and our do_group_exit call below will use
2804 			 * that value and ignore the one we pass it.
2805 			 */
2806 			do_coredump(&ksig->info);
2807 		}
2808 
2809 		/*
2810 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2811 		 * themselves. They have cleanup that must be performed, so
2812 		 * we cannot call do_exit() on their behalf.
2813 		 */
2814 		if (current->flags & PF_IO_WORKER)
2815 			goto out;
2816 
2817 		/*
2818 		 * Death signals, no core dump.
2819 		 */
2820 		do_group_exit(ksig->info.si_signo);
2821 		/* NOTREACHED */
2822 	}
2823 	spin_unlock_irq(&sighand->siglock);
2824 out:
2825 	ksig->sig = signr;
2826 
2827 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2828 		hide_si_addr_tag_bits(ksig);
2829 
2830 	return ksig->sig > 0;
2831 }
2832 
2833 /**
2834  * signal_delivered -
2835  * @ksig:		kernel signal struct
2836  * @stepping:		nonzero if debugger single-step or block-step in use
2837  *
2838  * This function should be called when a signal has successfully been
2839  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2840  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2841  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2842  */
2843 static void signal_delivered(struct ksignal *ksig, int stepping)
2844 {
2845 	sigset_t blocked;
2846 
2847 	/* A signal was successfully delivered, and the
2848 	   saved sigmask was stored on the signal frame,
2849 	   and will be restored by sigreturn.  So we can
2850 	   simply clear the restore sigmask flag.  */
2851 	clear_restore_sigmask();
2852 
2853 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2854 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2855 		sigaddset(&blocked, ksig->sig);
2856 	set_current_blocked(&blocked);
2857 	if (current->sas_ss_flags & SS_AUTODISARM)
2858 		sas_ss_reset(current);
2859 	tracehook_signal_handler(stepping);
2860 }
2861 
2862 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2863 {
2864 	if (failed)
2865 		force_sigsegv(ksig->sig);
2866 	else
2867 		signal_delivered(ksig, stepping);
2868 }
2869 
2870 /*
2871  * It could be that complete_signal() picked us to notify about the
2872  * group-wide signal. Other threads should be notified now to take
2873  * the shared signals in @which since we will not.
2874  */
2875 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2876 {
2877 	sigset_t retarget;
2878 	struct task_struct *t;
2879 
2880 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2881 	if (sigisemptyset(&retarget))
2882 		return;
2883 
2884 	t = tsk;
2885 	while_each_thread(tsk, t) {
2886 		if (t->flags & PF_EXITING)
2887 			continue;
2888 
2889 		if (!has_pending_signals(&retarget, &t->blocked))
2890 			continue;
2891 		/* Remove the signals this thread can handle. */
2892 		sigandsets(&retarget, &retarget, &t->blocked);
2893 
2894 		if (!task_sigpending(t))
2895 			signal_wake_up(t, 0);
2896 
2897 		if (sigisemptyset(&retarget))
2898 			break;
2899 	}
2900 }
2901 
2902 void exit_signals(struct task_struct *tsk)
2903 {
2904 	int group_stop = 0;
2905 	sigset_t unblocked;
2906 
2907 	/*
2908 	 * @tsk is about to have PF_EXITING set - lock out users which
2909 	 * expect stable threadgroup.
2910 	 */
2911 	cgroup_threadgroup_change_begin(tsk);
2912 
2913 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2914 		tsk->flags |= PF_EXITING;
2915 		cgroup_threadgroup_change_end(tsk);
2916 		return;
2917 	}
2918 
2919 	spin_lock_irq(&tsk->sighand->siglock);
2920 	/*
2921 	 * From now this task is not visible for group-wide signals,
2922 	 * see wants_signal(), do_signal_stop().
2923 	 */
2924 	tsk->flags |= PF_EXITING;
2925 
2926 	cgroup_threadgroup_change_end(tsk);
2927 
2928 	if (!task_sigpending(tsk))
2929 		goto out;
2930 
2931 	unblocked = tsk->blocked;
2932 	signotset(&unblocked);
2933 	retarget_shared_pending(tsk, &unblocked);
2934 
2935 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2936 	    task_participate_group_stop(tsk))
2937 		group_stop = CLD_STOPPED;
2938 out:
2939 	spin_unlock_irq(&tsk->sighand->siglock);
2940 
2941 	/*
2942 	 * If group stop has completed, deliver the notification.  This
2943 	 * should always go to the real parent of the group leader.
2944 	 */
2945 	if (unlikely(group_stop)) {
2946 		read_lock(&tasklist_lock);
2947 		do_notify_parent_cldstop(tsk, false, group_stop);
2948 		read_unlock(&tasklist_lock);
2949 	}
2950 }
2951 
2952 /*
2953  * System call entry points.
2954  */
2955 
2956 /**
2957  *  sys_restart_syscall - restart a system call
2958  */
2959 SYSCALL_DEFINE0(restart_syscall)
2960 {
2961 	struct restart_block *restart = &current->restart_block;
2962 	return restart->fn(restart);
2963 }
2964 
2965 long do_no_restart_syscall(struct restart_block *param)
2966 {
2967 	return -EINTR;
2968 }
2969 
2970 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2971 {
2972 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2973 		sigset_t newblocked;
2974 		/* A set of now blocked but previously unblocked signals. */
2975 		sigandnsets(&newblocked, newset, &current->blocked);
2976 		retarget_shared_pending(tsk, &newblocked);
2977 	}
2978 	tsk->blocked = *newset;
2979 	recalc_sigpending();
2980 }
2981 
2982 /**
2983  * set_current_blocked - change current->blocked mask
2984  * @newset: new mask
2985  *
2986  * It is wrong to change ->blocked directly, this helper should be used
2987  * to ensure the process can't miss a shared signal we are going to block.
2988  */
2989 void set_current_blocked(sigset_t *newset)
2990 {
2991 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2992 	__set_current_blocked(newset);
2993 }
2994 
2995 void __set_current_blocked(const sigset_t *newset)
2996 {
2997 	struct task_struct *tsk = current;
2998 
2999 	/*
3000 	 * In case the signal mask hasn't changed, there is nothing we need
3001 	 * to do. The current->blocked shouldn't be modified by other task.
3002 	 */
3003 	if (sigequalsets(&tsk->blocked, newset))
3004 		return;
3005 
3006 	spin_lock_irq(&tsk->sighand->siglock);
3007 	__set_task_blocked(tsk, newset);
3008 	spin_unlock_irq(&tsk->sighand->siglock);
3009 }
3010 
3011 /*
3012  * This is also useful for kernel threads that want to temporarily
3013  * (or permanently) block certain signals.
3014  *
3015  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3016  * interface happily blocks "unblockable" signals like SIGKILL
3017  * and friends.
3018  */
3019 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3020 {
3021 	struct task_struct *tsk = current;
3022 	sigset_t newset;
3023 
3024 	/* Lockless, only current can change ->blocked, never from irq */
3025 	if (oldset)
3026 		*oldset = tsk->blocked;
3027 
3028 	switch (how) {
3029 	case SIG_BLOCK:
3030 		sigorsets(&newset, &tsk->blocked, set);
3031 		break;
3032 	case SIG_UNBLOCK:
3033 		sigandnsets(&newset, &tsk->blocked, set);
3034 		break;
3035 	case SIG_SETMASK:
3036 		newset = *set;
3037 		break;
3038 	default:
3039 		return -EINVAL;
3040 	}
3041 
3042 	__set_current_blocked(&newset);
3043 	return 0;
3044 }
3045 EXPORT_SYMBOL(sigprocmask);
3046 
3047 /*
3048  * The api helps set app-provided sigmasks.
3049  *
3050  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3051  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3052  *
3053  * Note that it does set_restore_sigmask() in advance, so it must be always
3054  * paired with restore_saved_sigmask_unless() before return from syscall.
3055  */
3056 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3057 {
3058 	sigset_t kmask;
3059 
3060 	if (!umask)
3061 		return 0;
3062 	if (sigsetsize != sizeof(sigset_t))
3063 		return -EINVAL;
3064 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3065 		return -EFAULT;
3066 
3067 	set_restore_sigmask();
3068 	current->saved_sigmask = current->blocked;
3069 	set_current_blocked(&kmask);
3070 
3071 	return 0;
3072 }
3073 
3074 #ifdef CONFIG_COMPAT
3075 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3076 			    size_t sigsetsize)
3077 {
3078 	sigset_t kmask;
3079 
3080 	if (!umask)
3081 		return 0;
3082 	if (sigsetsize != sizeof(compat_sigset_t))
3083 		return -EINVAL;
3084 	if (get_compat_sigset(&kmask, umask))
3085 		return -EFAULT;
3086 
3087 	set_restore_sigmask();
3088 	current->saved_sigmask = current->blocked;
3089 	set_current_blocked(&kmask);
3090 
3091 	return 0;
3092 }
3093 #endif
3094 
3095 /**
3096  *  sys_rt_sigprocmask - change the list of currently blocked signals
3097  *  @how: whether to add, remove, or set signals
3098  *  @nset: stores pending signals
3099  *  @oset: previous value of signal mask if non-null
3100  *  @sigsetsize: size of sigset_t type
3101  */
3102 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3103 		sigset_t __user *, oset, size_t, sigsetsize)
3104 {
3105 	sigset_t old_set, new_set;
3106 	int error;
3107 
3108 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3109 	if (sigsetsize != sizeof(sigset_t))
3110 		return -EINVAL;
3111 
3112 	old_set = current->blocked;
3113 
3114 	if (nset) {
3115 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3116 			return -EFAULT;
3117 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3118 
3119 		error = sigprocmask(how, &new_set, NULL);
3120 		if (error)
3121 			return error;
3122 	}
3123 
3124 	if (oset) {
3125 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3126 			return -EFAULT;
3127 	}
3128 
3129 	return 0;
3130 }
3131 
3132 #ifdef CONFIG_COMPAT
3133 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3134 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3135 {
3136 	sigset_t old_set = current->blocked;
3137 
3138 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3139 	if (sigsetsize != sizeof(sigset_t))
3140 		return -EINVAL;
3141 
3142 	if (nset) {
3143 		sigset_t new_set;
3144 		int error;
3145 		if (get_compat_sigset(&new_set, nset))
3146 			return -EFAULT;
3147 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3148 
3149 		error = sigprocmask(how, &new_set, NULL);
3150 		if (error)
3151 			return error;
3152 	}
3153 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3154 }
3155 #endif
3156 
3157 static void do_sigpending(sigset_t *set)
3158 {
3159 	spin_lock_irq(&current->sighand->siglock);
3160 	sigorsets(set, &current->pending.signal,
3161 		  &current->signal->shared_pending.signal);
3162 	spin_unlock_irq(&current->sighand->siglock);
3163 
3164 	/* Outside the lock because only this thread touches it.  */
3165 	sigandsets(set, &current->blocked, set);
3166 }
3167 
3168 /**
3169  *  sys_rt_sigpending - examine a pending signal that has been raised
3170  *			while blocked
3171  *  @uset: stores pending signals
3172  *  @sigsetsize: size of sigset_t type or larger
3173  */
3174 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3175 {
3176 	sigset_t set;
3177 
3178 	if (sigsetsize > sizeof(*uset))
3179 		return -EINVAL;
3180 
3181 	do_sigpending(&set);
3182 
3183 	if (copy_to_user(uset, &set, sigsetsize))
3184 		return -EFAULT;
3185 
3186 	return 0;
3187 }
3188 
3189 #ifdef CONFIG_COMPAT
3190 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3191 		compat_size_t, sigsetsize)
3192 {
3193 	sigset_t set;
3194 
3195 	if (sigsetsize > sizeof(*uset))
3196 		return -EINVAL;
3197 
3198 	do_sigpending(&set);
3199 
3200 	return put_compat_sigset(uset, &set, sigsetsize);
3201 }
3202 #endif
3203 
3204 static const struct {
3205 	unsigned char limit, layout;
3206 } sig_sicodes[] = {
3207 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3208 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3209 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3210 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3211 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3212 #if defined(SIGEMT)
3213 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3214 #endif
3215 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3216 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3217 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3218 };
3219 
3220 static bool known_siginfo_layout(unsigned sig, int si_code)
3221 {
3222 	if (si_code == SI_KERNEL)
3223 		return true;
3224 	else if ((si_code > SI_USER)) {
3225 		if (sig_specific_sicodes(sig)) {
3226 			if (si_code <= sig_sicodes[sig].limit)
3227 				return true;
3228 		}
3229 		else if (si_code <= NSIGPOLL)
3230 			return true;
3231 	}
3232 	else if (si_code >= SI_DETHREAD)
3233 		return true;
3234 	else if (si_code == SI_ASYNCNL)
3235 		return true;
3236 	return false;
3237 }
3238 
3239 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3240 {
3241 	enum siginfo_layout layout = SIL_KILL;
3242 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3243 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3244 		    (si_code <= sig_sicodes[sig].limit)) {
3245 			layout = sig_sicodes[sig].layout;
3246 			/* Handle the exceptions */
3247 			if ((sig == SIGBUS) &&
3248 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3249 				layout = SIL_FAULT_MCEERR;
3250 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3251 				layout = SIL_FAULT_BNDERR;
3252 #ifdef SEGV_PKUERR
3253 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3254 				layout = SIL_FAULT_PKUERR;
3255 #endif
3256 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3257 				layout = SIL_FAULT_PERF_EVENT;
3258 			else if (IS_ENABLED(CONFIG_SPARC) &&
3259 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3260 				layout = SIL_FAULT_TRAPNO;
3261 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3262 				 ((sig == SIGFPE) ||
3263 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3264 				layout = SIL_FAULT_TRAPNO;
3265 		}
3266 		else if (si_code <= NSIGPOLL)
3267 			layout = SIL_POLL;
3268 	} else {
3269 		if (si_code == SI_TIMER)
3270 			layout = SIL_TIMER;
3271 		else if (si_code == SI_SIGIO)
3272 			layout = SIL_POLL;
3273 		else if (si_code < 0)
3274 			layout = SIL_RT;
3275 	}
3276 	return layout;
3277 }
3278 
3279 static inline char __user *si_expansion(const siginfo_t __user *info)
3280 {
3281 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3282 }
3283 
3284 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3285 {
3286 	char __user *expansion = si_expansion(to);
3287 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3288 		return -EFAULT;
3289 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3290 		return -EFAULT;
3291 	return 0;
3292 }
3293 
3294 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3295 				       const siginfo_t __user *from)
3296 {
3297 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3298 		char __user *expansion = si_expansion(from);
3299 		char buf[SI_EXPANSION_SIZE];
3300 		int i;
3301 		/*
3302 		 * An unknown si_code might need more than
3303 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3304 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3305 		 * will return this data to userspace exactly.
3306 		 */
3307 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3308 			return -EFAULT;
3309 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3310 			if (buf[i] != 0)
3311 				return -E2BIG;
3312 		}
3313 	}
3314 	return 0;
3315 }
3316 
3317 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3318 				    const siginfo_t __user *from)
3319 {
3320 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3321 		return -EFAULT;
3322 	to->si_signo = signo;
3323 	return post_copy_siginfo_from_user(to, from);
3324 }
3325 
3326 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3327 {
3328 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3329 		return -EFAULT;
3330 	return post_copy_siginfo_from_user(to, from);
3331 }
3332 
3333 #ifdef CONFIG_COMPAT
3334 /**
3335  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3336  * @to: compat siginfo destination
3337  * @from: kernel siginfo source
3338  *
3339  * Note: This function does not work properly for the SIGCHLD on x32, but
3340  * fortunately it doesn't have to.  The only valid callers for this function are
3341  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3342  * The latter does not care because SIGCHLD will never cause a coredump.
3343  */
3344 void copy_siginfo_to_external32(struct compat_siginfo *to,
3345 		const struct kernel_siginfo *from)
3346 {
3347 	memset(to, 0, sizeof(*to));
3348 
3349 	to->si_signo = from->si_signo;
3350 	to->si_errno = from->si_errno;
3351 	to->si_code  = from->si_code;
3352 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3353 	case SIL_KILL:
3354 		to->si_pid = from->si_pid;
3355 		to->si_uid = from->si_uid;
3356 		break;
3357 	case SIL_TIMER:
3358 		to->si_tid     = from->si_tid;
3359 		to->si_overrun = from->si_overrun;
3360 		to->si_int     = from->si_int;
3361 		break;
3362 	case SIL_POLL:
3363 		to->si_band = from->si_band;
3364 		to->si_fd   = from->si_fd;
3365 		break;
3366 	case SIL_FAULT:
3367 		to->si_addr = ptr_to_compat(from->si_addr);
3368 		break;
3369 	case SIL_FAULT_TRAPNO:
3370 		to->si_addr = ptr_to_compat(from->si_addr);
3371 		to->si_trapno = from->si_trapno;
3372 		break;
3373 	case SIL_FAULT_MCEERR:
3374 		to->si_addr = ptr_to_compat(from->si_addr);
3375 		to->si_addr_lsb = from->si_addr_lsb;
3376 		break;
3377 	case SIL_FAULT_BNDERR:
3378 		to->si_addr = ptr_to_compat(from->si_addr);
3379 		to->si_lower = ptr_to_compat(from->si_lower);
3380 		to->si_upper = ptr_to_compat(from->si_upper);
3381 		break;
3382 	case SIL_FAULT_PKUERR:
3383 		to->si_addr = ptr_to_compat(from->si_addr);
3384 		to->si_pkey = from->si_pkey;
3385 		break;
3386 	case SIL_FAULT_PERF_EVENT:
3387 		to->si_addr = ptr_to_compat(from->si_addr);
3388 		to->si_perf_data = from->si_perf_data;
3389 		to->si_perf_type = from->si_perf_type;
3390 		break;
3391 	case SIL_CHLD:
3392 		to->si_pid = from->si_pid;
3393 		to->si_uid = from->si_uid;
3394 		to->si_status = from->si_status;
3395 		to->si_utime = from->si_utime;
3396 		to->si_stime = from->si_stime;
3397 		break;
3398 	case SIL_RT:
3399 		to->si_pid = from->si_pid;
3400 		to->si_uid = from->si_uid;
3401 		to->si_int = from->si_int;
3402 		break;
3403 	case SIL_SYS:
3404 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3405 		to->si_syscall   = from->si_syscall;
3406 		to->si_arch      = from->si_arch;
3407 		break;
3408 	}
3409 }
3410 
3411 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3412 			   const struct kernel_siginfo *from)
3413 {
3414 	struct compat_siginfo new;
3415 
3416 	copy_siginfo_to_external32(&new, from);
3417 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3418 		return -EFAULT;
3419 	return 0;
3420 }
3421 
3422 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3423 					 const struct compat_siginfo *from)
3424 {
3425 	clear_siginfo(to);
3426 	to->si_signo = from->si_signo;
3427 	to->si_errno = from->si_errno;
3428 	to->si_code  = from->si_code;
3429 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3430 	case SIL_KILL:
3431 		to->si_pid = from->si_pid;
3432 		to->si_uid = from->si_uid;
3433 		break;
3434 	case SIL_TIMER:
3435 		to->si_tid     = from->si_tid;
3436 		to->si_overrun = from->si_overrun;
3437 		to->si_int     = from->si_int;
3438 		break;
3439 	case SIL_POLL:
3440 		to->si_band = from->si_band;
3441 		to->si_fd   = from->si_fd;
3442 		break;
3443 	case SIL_FAULT:
3444 		to->si_addr = compat_ptr(from->si_addr);
3445 		break;
3446 	case SIL_FAULT_TRAPNO:
3447 		to->si_addr = compat_ptr(from->si_addr);
3448 		to->si_trapno = from->si_trapno;
3449 		break;
3450 	case SIL_FAULT_MCEERR:
3451 		to->si_addr = compat_ptr(from->si_addr);
3452 		to->si_addr_lsb = from->si_addr_lsb;
3453 		break;
3454 	case SIL_FAULT_BNDERR:
3455 		to->si_addr = compat_ptr(from->si_addr);
3456 		to->si_lower = compat_ptr(from->si_lower);
3457 		to->si_upper = compat_ptr(from->si_upper);
3458 		break;
3459 	case SIL_FAULT_PKUERR:
3460 		to->si_addr = compat_ptr(from->si_addr);
3461 		to->si_pkey = from->si_pkey;
3462 		break;
3463 	case SIL_FAULT_PERF_EVENT:
3464 		to->si_addr = compat_ptr(from->si_addr);
3465 		to->si_perf_data = from->si_perf_data;
3466 		to->si_perf_type = from->si_perf_type;
3467 		break;
3468 	case SIL_CHLD:
3469 		to->si_pid    = from->si_pid;
3470 		to->si_uid    = from->si_uid;
3471 		to->si_status = from->si_status;
3472 #ifdef CONFIG_X86_X32_ABI
3473 		if (in_x32_syscall()) {
3474 			to->si_utime = from->_sifields._sigchld_x32._utime;
3475 			to->si_stime = from->_sifields._sigchld_x32._stime;
3476 		} else
3477 #endif
3478 		{
3479 			to->si_utime = from->si_utime;
3480 			to->si_stime = from->si_stime;
3481 		}
3482 		break;
3483 	case SIL_RT:
3484 		to->si_pid = from->si_pid;
3485 		to->si_uid = from->si_uid;
3486 		to->si_int = from->si_int;
3487 		break;
3488 	case SIL_SYS:
3489 		to->si_call_addr = compat_ptr(from->si_call_addr);
3490 		to->si_syscall   = from->si_syscall;
3491 		to->si_arch      = from->si_arch;
3492 		break;
3493 	}
3494 	return 0;
3495 }
3496 
3497 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3498 				      const struct compat_siginfo __user *ufrom)
3499 {
3500 	struct compat_siginfo from;
3501 
3502 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3503 		return -EFAULT;
3504 
3505 	from.si_signo = signo;
3506 	return post_copy_siginfo_from_user32(to, &from);
3507 }
3508 
3509 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3510 			     const struct compat_siginfo __user *ufrom)
3511 {
3512 	struct compat_siginfo from;
3513 
3514 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3515 		return -EFAULT;
3516 
3517 	return post_copy_siginfo_from_user32(to, &from);
3518 }
3519 #endif /* CONFIG_COMPAT */
3520 
3521 /**
3522  *  do_sigtimedwait - wait for queued signals specified in @which
3523  *  @which: queued signals to wait for
3524  *  @info: if non-null, the signal's siginfo is returned here
3525  *  @ts: upper bound on process time suspension
3526  */
3527 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3528 		    const struct timespec64 *ts)
3529 {
3530 	ktime_t *to = NULL, timeout = KTIME_MAX;
3531 	struct task_struct *tsk = current;
3532 	sigset_t mask = *which;
3533 	int sig, ret = 0;
3534 
3535 	if (ts) {
3536 		if (!timespec64_valid(ts))
3537 			return -EINVAL;
3538 		timeout = timespec64_to_ktime(*ts);
3539 		to = &timeout;
3540 	}
3541 
3542 	/*
3543 	 * Invert the set of allowed signals to get those we want to block.
3544 	 */
3545 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3546 	signotset(&mask);
3547 
3548 	spin_lock_irq(&tsk->sighand->siglock);
3549 	sig = dequeue_signal(tsk, &mask, info);
3550 	if (!sig && timeout) {
3551 		/*
3552 		 * None ready, temporarily unblock those we're interested
3553 		 * while we are sleeping in so that we'll be awakened when
3554 		 * they arrive. Unblocking is always fine, we can avoid
3555 		 * set_current_blocked().
3556 		 */
3557 		tsk->real_blocked = tsk->blocked;
3558 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3559 		recalc_sigpending();
3560 		spin_unlock_irq(&tsk->sighand->siglock);
3561 
3562 		__set_current_state(TASK_INTERRUPTIBLE);
3563 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3564 							 HRTIMER_MODE_REL);
3565 		spin_lock_irq(&tsk->sighand->siglock);
3566 		__set_task_blocked(tsk, &tsk->real_blocked);
3567 		sigemptyset(&tsk->real_blocked);
3568 		sig = dequeue_signal(tsk, &mask, info);
3569 	}
3570 	spin_unlock_irq(&tsk->sighand->siglock);
3571 
3572 	if (sig)
3573 		return sig;
3574 	return ret ? -EINTR : -EAGAIN;
3575 }
3576 
3577 /**
3578  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3579  *			in @uthese
3580  *  @uthese: queued signals to wait for
3581  *  @uinfo: if non-null, the signal's siginfo is returned here
3582  *  @uts: upper bound on process time suspension
3583  *  @sigsetsize: size of sigset_t type
3584  */
3585 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3586 		siginfo_t __user *, uinfo,
3587 		const struct __kernel_timespec __user *, uts,
3588 		size_t, sigsetsize)
3589 {
3590 	sigset_t these;
3591 	struct timespec64 ts;
3592 	kernel_siginfo_t info;
3593 	int ret;
3594 
3595 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3596 	if (sigsetsize != sizeof(sigset_t))
3597 		return -EINVAL;
3598 
3599 	if (copy_from_user(&these, uthese, sizeof(these)))
3600 		return -EFAULT;
3601 
3602 	if (uts) {
3603 		if (get_timespec64(&ts, uts))
3604 			return -EFAULT;
3605 	}
3606 
3607 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3608 
3609 	if (ret > 0 && uinfo) {
3610 		if (copy_siginfo_to_user(uinfo, &info))
3611 			ret = -EFAULT;
3612 	}
3613 
3614 	return ret;
3615 }
3616 
3617 #ifdef CONFIG_COMPAT_32BIT_TIME
3618 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3619 		siginfo_t __user *, uinfo,
3620 		const struct old_timespec32 __user *, uts,
3621 		size_t, sigsetsize)
3622 {
3623 	sigset_t these;
3624 	struct timespec64 ts;
3625 	kernel_siginfo_t info;
3626 	int ret;
3627 
3628 	if (sigsetsize != sizeof(sigset_t))
3629 		return -EINVAL;
3630 
3631 	if (copy_from_user(&these, uthese, sizeof(these)))
3632 		return -EFAULT;
3633 
3634 	if (uts) {
3635 		if (get_old_timespec32(&ts, uts))
3636 			return -EFAULT;
3637 	}
3638 
3639 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3640 
3641 	if (ret > 0 && uinfo) {
3642 		if (copy_siginfo_to_user(uinfo, &info))
3643 			ret = -EFAULT;
3644 	}
3645 
3646 	return ret;
3647 }
3648 #endif
3649 
3650 #ifdef CONFIG_COMPAT
3651 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3652 		struct compat_siginfo __user *, uinfo,
3653 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3654 {
3655 	sigset_t s;
3656 	struct timespec64 t;
3657 	kernel_siginfo_t info;
3658 	long ret;
3659 
3660 	if (sigsetsize != sizeof(sigset_t))
3661 		return -EINVAL;
3662 
3663 	if (get_compat_sigset(&s, uthese))
3664 		return -EFAULT;
3665 
3666 	if (uts) {
3667 		if (get_timespec64(&t, uts))
3668 			return -EFAULT;
3669 	}
3670 
3671 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3672 
3673 	if (ret > 0 && uinfo) {
3674 		if (copy_siginfo_to_user32(uinfo, &info))
3675 			ret = -EFAULT;
3676 	}
3677 
3678 	return ret;
3679 }
3680 
3681 #ifdef CONFIG_COMPAT_32BIT_TIME
3682 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3683 		struct compat_siginfo __user *, uinfo,
3684 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3685 {
3686 	sigset_t s;
3687 	struct timespec64 t;
3688 	kernel_siginfo_t info;
3689 	long ret;
3690 
3691 	if (sigsetsize != sizeof(sigset_t))
3692 		return -EINVAL;
3693 
3694 	if (get_compat_sigset(&s, uthese))
3695 		return -EFAULT;
3696 
3697 	if (uts) {
3698 		if (get_old_timespec32(&t, uts))
3699 			return -EFAULT;
3700 	}
3701 
3702 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3703 
3704 	if (ret > 0 && uinfo) {
3705 		if (copy_siginfo_to_user32(uinfo, &info))
3706 			ret = -EFAULT;
3707 	}
3708 
3709 	return ret;
3710 }
3711 #endif
3712 #endif
3713 
3714 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3715 {
3716 	clear_siginfo(info);
3717 	info->si_signo = sig;
3718 	info->si_errno = 0;
3719 	info->si_code = SI_USER;
3720 	info->si_pid = task_tgid_vnr(current);
3721 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3722 }
3723 
3724 /**
3725  *  sys_kill - send a signal to a process
3726  *  @pid: the PID of the process
3727  *  @sig: signal to be sent
3728  */
3729 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3730 {
3731 	struct kernel_siginfo info;
3732 
3733 	prepare_kill_siginfo(sig, &info);
3734 
3735 	return kill_something_info(sig, &info, pid);
3736 }
3737 
3738 /*
3739  * Verify that the signaler and signalee either are in the same pid namespace
3740  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3741  * namespace.
3742  */
3743 static bool access_pidfd_pidns(struct pid *pid)
3744 {
3745 	struct pid_namespace *active = task_active_pid_ns(current);
3746 	struct pid_namespace *p = ns_of_pid(pid);
3747 
3748 	for (;;) {
3749 		if (!p)
3750 			return false;
3751 		if (p == active)
3752 			break;
3753 		p = p->parent;
3754 	}
3755 
3756 	return true;
3757 }
3758 
3759 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3760 		siginfo_t __user *info)
3761 {
3762 #ifdef CONFIG_COMPAT
3763 	/*
3764 	 * Avoid hooking up compat syscalls and instead handle necessary
3765 	 * conversions here. Note, this is a stop-gap measure and should not be
3766 	 * considered a generic solution.
3767 	 */
3768 	if (in_compat_syscall())
3769 		return copy_siginfo_from_user32(
3770 			kinfo, (struct compat_siginfo __user *)info);
3771 #endif
3772 	return copy_siginfo_from_user(kinfo, info);
3773 }
3774 
3775 static struct pid *pidfd_to_pid(const struct file *file)
3776 {
3777 	struct pid *pid;
3778 
3779 	pid = pidfd_pid(file);
3780 	if (!IS_ERR(pid))
3781 		return pid;
3782 
3783 	return tgid_pidfd_to_pid(file);
3784 }
3785 
3786 /**
3787  * sys_pidfd_send_signal - Signal a process through a pidfd
3788  * @pidfd:  file descriptor of the process
3789  * @sig:    signal to send
3790  * @info:   signal info
3791  * @flags:  future flags
3792  *
3793  * The syscall currently only signals via PIDTYPE_PID which covers
3794  * kill(<positive-pid>, <signal>. It does not signal threads or process
3795  * groups.
3796  * In order to extend the syscall to threads and process groups the @flags
3797  * argument should be used. In essence, the @flags argument will determine
3798  * what is signaled and not the file descriptor itself. Put in other words,
3799  * grouping is a property of the flags argument not a property of the file
3800  * descriptor.
3801  *
3802  * Return: 0 on success, negative errno on failure
3803  */
3804 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3805 		siginfo_t __user *, info, unsigned int, flags)
3806 {
3807 	int ret;
3808 	struct fd f;
3809 	struct pid *pid;
3810 	kernel_siginfo_t kinfo;
3811 
3812 	/* Enforce flags be set to 0 until we add an extension. */
3813 	if (flags)
3814 		return -EINVAL;
3815 
3816 	f = fdget(pidfd);
3817 	if (!f.file)
3818 		return -EBADF;
3819 
3820 	/* Is this a pidfd? */
3821 	pid = pidfd_to_pid(f.file);
3822 	if (IS_ERR(pid)) {
3823 		ret = PTR_ERR(pid);
3824 		goto err;
3825 	}
3826 
3827 	ret = -EINVAL;
3828 	if (!access_pidfd_pidns(pid))
3829 		goto err;
3830 
3831 	if (info) {
3832 		ret = copy_siginfo_from_user_any(&kinfo, info);
3833 		if (unlikely(ret))
3834 			goto err;
3835 
3836 		ret = -EINVAL;
3837 		if (unlikely(sig != kinfo.si_signo))
3838 			goto err;
3839 
3840 		/* Only allow sending arbitrary signals to yourself. */
3841 		ret = -EPERM;
3842 		if ((task_pid(current) != pid) &&
3843 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3844 			goto err;
3845 	} else {
3846 		prepare_kill_siginfo(sig, &kinfo);
3847 	}
3848 
3849 	ret = kill_pid_info(sig, &kinfo, pid);
3850 
3851 err:
3852 	fdput(f);
3853 	return ret;
3854 }
3855 
3856 static int
3857 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3858 {
3859 	struct task_struct *p;
3860 	int error = -ESRCH;
3861 
3862 	rcu_read_lock();
3863 	p = find_task_by_vpid(pid);
3864 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3865 		error = check_kill_permission(sig, info, p);
3866 		/*
3867 		 * The null signal is a permissions and process existence
3868 		 * probe.  No signal is actually delivered.
3869 		 */
3870 		if (!error && sig) {
3871 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3872 			/*
3873 			 * If lock_task_sighand() failed we pretend the task
3874 			 * dies after receiving the signal. The window is tiny,
3875 			 * and the signal is private anyway.
3876 			 */
3877 			if (unlikely(error == -ESRCH))
3878 				error = 0;
3879 		}
3880 	}
3881 	rcu_read_unlock();
3882 
3883 	return error;
3884 }
3885 
3886 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3887 {
3888 	struct kernel_siginfo info;
3889 
3890 	clear_siginfo(&info);
3891 	info.si_signo = sig;
3892 	info.si_errno = 0;
3893 	info.si_code = SI_TKILL;
3894 	info.si_pid = task_tgid_vnr(current);
3895 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3896 
3897 	return do_send_specific(tgid, pid, sig, &info);
3898 }
3899 
3900 /**
3901  *  sys_tgkill - send signal to one specific thread
3902  *  @tgid: the thread group ID of the thread
3903  *  @pid: the PID of the thread
3904  *  @sig: signal to be sent
3905  *
3906  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3907  *  exists but it's not belonging to the target process anymore. This
3908  *  method solves the problem of threads exiting and PIDs getting reused.
3909  */
3910 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3911 {
3912 	/* This is only valid for single tasks */
3913 	if (pid <= 0 || tgid <= 0)
3914 		return -EINVAL;
3915 
3916 	return do_tkill(tgid, pid, sig);
3917 }
3918 
3919 /**
3920  *  sys_tkill - send signal to one specific task
3921  *  @pid: the PID of the task
3922  *  @sig: signal to be sent
3923  *
3924  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3925  */
3926 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3927 {
3928 	/* This is only valid for single tasks */
3929 	if (pid <= 0)
3930 		return -EINVAL;
3931 
3932 	return do_tkill(0, pid, sig);
3933 }
3934 
3935 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3936 {
3937 	/* Not even root can pretend to send signals from the kernel.
3938 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3939 	 */
3940 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3941 	    (task_pid_vnr(current) != pid))
3942 		return -EPERM;
3943 
3944 	/* POSIX.1b doesn't mention process groups.  */
3945 	return kill_proc_info(sig, info, pid);
3946 }
3947 
3948 /**
3949  *  sys_rt_sigqueueinfo - send signal information to a signal
3950  *  @pid: the PID of the thread
3951  *  @sig: signal to be sent
3952  *  @uinfo: signal info to be sent
3953  */
3954 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3955 		siginfo_t __user *, uinfo)
3956 {
3957 	kernel_siginfo_t info;
3958 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3959 	if (unlikely(ret))
3960 		return ret;
3961 	return do_rt_sigqueueinfo(pid, sig, &info);
3962 }
3963 
3964 #ifdef CONFIG_COMPAT
3965 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3966 			compat_pid_t, pid,
3967 			int, sig,
3968 			struct compat_siginfo __user *, uinfo)
3969 {
3970 	kernel_siginfo_t info;
3971 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3972 	if (unlikely(ret))
3973 		return ret;
3974 	return do_rt_sigqueueinfo(pid, sig, &info);
3975 }
3976 #endif
3977 
3978 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3979 {
3980 	/* This is only valid for single tasks */
3981 	if (pid <= 0 || tgid <= 0)
3982 		return -EINVAL;
3983 
3984 	/* Not even root can pretend to send signals from the kernel.
3985 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3986 	 */
3987 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3988 	    (task_pid_vnr(current) != pid))
3989 		return -EPERM;
3990 
3991 	return do_send_specific(tgid, pid, sig, info);
3992 }
3993 
3994 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3995 		siginfo_t __user *, uinfo)
3996 {
3997 	kernel_siginfo_t info;
3998 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3999 	if (unlikely(ret))
4000 		return ret;
4001 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4002 }
4003 
4004 #ifdef CONFIG_COMPAT
4005 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4006 			compat_pid_t, tgid,
4007 			compat_pid_t, pid,
4008 			int, sig,
4009 			struct compat_siginfo __user *, uinfo)
4010 {
4011 	kernel_siginfo_t info;
4012 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4013 	if (unlikely(ret))
4014 		return ret;
4015 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4016 }
4017 #endif
4018 
4019 /*
4020  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4021  */
4022 void kernel_sigaction(int sig, __sighandler_t action)
4023 {
4024 	spin_lock_irq(&current->sighand->siglock);
4025 	current->sighand->action[sig - 1].sa.sa_handler = action;
4026 	if (action == SIG_IGN) {
4027 		sigset_t mask;
4028 
4029 		sigemptyset(&mask);
4030 		sigaddset(&mask, sig);
4031 
4032 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4033 		flush_sigqueue_mask(&mask, &current->pending);
4034 		recalc_sigpending();
4035 	}
4036 	spin_unlock_irq(&current->sighand->siglock);
4037 }
4038 EXPORT_SYMBOL(kernel_sigaction);
4039 
4040 void __weak sigaction_compat_abi(struct k_sigaction *act,
4041 		struct k_sigaction *oact)
4042 {
4043 }
4044 
4045 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4046 {
4047 	struct task_struct *p = current, *t;
4048 	struct k_sigaction *k;
4049 	sigset_t mask;
4050 
4051 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4052 		return -EINVAL;
4053 
4054 	k = &p->sighand->action[sig-1];
4055 
4056 	spin_lock_irq(&p->sighand->siglock);
4057 	if (oact)
4058 		*oact = *k;
4059 
4060 	/*
4061 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4062 	 * e.g. by having an architecture use the bit in their uapi.
4063 	 */
4064 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4065 
4066 	/*
4067 	 * Clear unknown flag bits in order to allow userspace to detect missing
4068 	 * support for flag bits and to allow the kernel to use non-uapi bits
4069 	 * internally.
4070 	 */
4071 	if (act)
4072 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4073 	if (oact)
4074 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4075 
4076 	sigaction_compat_abi(act, oact);
4077 
4078 	if (act) {
4079 		sigdelsetmask(&act->sa.sa_mask,
4080 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4081 		*k = *act;
4082 		/*
4083 		 * POSIX 3.3.1.3:
4084 		 *  "Setting a signal action to SIG_IGN for a signal that is
4085 		 *   pending shall cause the pending signal to be discarded,
4086 		 *   whether or not it is blocked."
4087 		 *
4088 		 *  "Setting a signal action to SIG_DFL for a signal that is
4089 		 *   pending and whose default action is to ignore the signal
4090 		 *   (for example, SIGCHLD), shall cause the pending signal to
4091 		 *   be discarded, whether or not it is blocked"
4092 		 */
4093 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4094 			sigemptyset(&mask);
4095 			sigaddset(&mask, sig);
4096 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4097 			for_each_thread(p, t)
4098 				flush_sigqueue_mask(&mask, &t->pending);
4099 		}
4100 	}
4101 
4102 	spin_unlock_irq(&p->sighand->siglock);
4103 	return 0;
4104 }
4105 
4106 #ifdef CONFIG_DYNAMIC_SIGFRAME
4107 static inline void sigaltstack_lock(void)
4108 	__acquires(&current->sighand->siglock)
4109 {
4110 	spin_lock_irq(&current->sighand->siglock);
4111 }
4112 
4113 static inline void sigaltstack_unlock(void)
4114 	__releases(&current->sighand->siglock)
4115 {
4116 	spin_unlock_irq(&current->sighand->siglock);
4117 }
4118 #else
4119 static inline void sigaltstack_lock(void) { }
4120 static inline void sigaltstack_unlock(void) { }
4121 #endif
4122 
4123 static int
4124 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4125 		size_t min_ss_size)
4126 {
4127 	struct task_struct *t = current;
4128 	int ret = 0;
4129 
4130 	if (oss) {
4131 		memset(oss, 0, sizeof(stack_t));
4132 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4133 		oss->ss_size = t->sas_ss_size;
4134 		oss->ss_flags = sas_ss_flags(sp) |
4135 			(current->sas_ss_flags & SS_FLAG_BITS);
4136 	}
4137 
4138 	if (ss) {
4139 		void __user *ss_sp = ss->ss_sp;
4140 		size_t ss_size = ss->ss_size;
4141 		unsigned ss_flags = ss->ss_flags;
4142 		int ss_mode;
4143 
4144 		if (unlikely(on_sig_stack(sp)))
4145 			return -EPERM;
4146 
4147 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4148 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4149 				ss_mode != 0))
4150 			return -EINVAL;
4151 
4152 		sigaltstack_lock();
4153 		if (ss_mode == SS_DISABLE) {
4154 			ss_size = 0;
4155 			ss_sp = NULL;
4156 		} else {
4157 			if (unlikely(ss_size < min_ss_size))
4158 				ret = -ENOMEM;
4159 			if (!sigaltstack_size_valid(ss_size))
4160 				ret = -ENOMEM;
4161 		}
4162 		if (!ret) {
4163 			t->sas_ss_sp = (unsigned long) ss_sp;
4164 			t->sas_ss_size = ss_size;
4165 			t->sas_ss_flags = ss_flags;
4166 		}
4167 		sigaltstack_unlock();
4168 	}
4169 	return ret;
4170 }
4171 
4172 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4173 {
4174 	stack_t new, old;
4175 	int err;
4176 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4177 		return -EFAULT;
4178 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4179 			      current_user_stack_pointer(),
4180 			      MINSIGSTKSZ);
4181 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4182 		err = -EFAULT;
4183 	return err;
4184 }
4185 
4186 int restore_altstack(const stack_t __user *uss)
4187 {
4188 	stack_t new;
4189 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4190 		return -EFAULT;
4191 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4192 			     MINSIGSTKSZ);
4193 	/* squash all but EFAULT for now */
4194 	return 0;
4195 }
4196 
4197 int __save_altstack(stack_t __user *uss, unsigned long sp)
4198 {
4199 	struct task_struct *t = current;
4200 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4201 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4202 		__put_user(t->sas_ss_size, &uss->ss_size);
4203 	return err;
4204 }
4205 
4206 #ifdef CONFIG_COMPAT
4207 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4208 				 compat_stack_t __user *uoss_ptr)
4209 {
4210 	stack_t uss, uoss;
4211 	int ret;
4212 
4213 	if (uss_ptr) {
4214 		compat_stack_t uss32;
4215 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4216 			return -EFAULT;
4217 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4218 		uss.ss_flags = uss32.ss_flags;
4219 		uss.ss_size = uss32.ss_size;
4220 	}
4221 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4222 			     compat_user_stack_pointer(),
4223 			     COMPAT_MINSIGSTKSZ);
4224 	if (ret >= 0 && uoss_ptr)  {
4225 		compat_stack_t old;
4226 		memset(&old, 0, sizeof(old));
4227 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4228 		old.ss_flags = uoss.ss_flags;
4229 		old.ss_size = uoss.ss_size;
4230 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4231 			ret = -EFAULT;
4232 	}
4233 	return ret;
4234 }
4235 
4236 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4237 			const compat_stack_t __user *, uss_ptr,
4238 			compat_stack_t __user *, uoss_ptr)
4239 {
4240 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4241 }
4242 
4243 int compat_restore_altstack(const compat_stack_t __user *uss)
4244 {
4245 	int err = do_compat_sigaltstack(uss, NULL);
4246 	/* squash all but -EFAULT for now */
4247 	return err == -EFAULT ? err : 0;
4248 }
4249 
4250 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4251 {
4252 	int err;
4253 	struct task_struct *t = current;
4254 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4255 			 &uss->ss_sp) |
4256 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4257 		__put_user(t->sas_ss_size, &uss->ss_size);
4258 	return err;
4259 }
4260 #endif
4261 
4262 #ifdef __ARCH_WANT_SYS_SIGPENDING
4263 
4264 /**
4265  *  sys_sigpending - examine pending signals
4266  *  @uset: where mask of pending signal is returned
4267  */
4268 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4269 {
4270 	sigset_t set;
4271 
4272 	if (sizeof(old_sigset_t) > sizeof(*uset))
4273 		return -EINVAL;
4274 
4275 	do_sigpending(&set);
4276 
4277 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4278 		return -EFAULT;
4279 
4280 	return 0;
4281 }
4282 
4283 #ifdef CONFIG_COMPAT
4284 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4285 {
4286 	sigset_t set;
4287 
4288 	do_sigpending(&set);
4289 
4290 	return put_user(set.sig[0], set32);
4291 }
4292 #endif
4293 
4294 #endif
4295 
4296 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4297 /**
4298  *  sys_sigprocmask - examine and change blocked signals
4299  *  @how: whether to add, remove, or set signals
4300  *  @nset: signals to add or remove (if non-null)
4301  *  @oset: previous value of signal mask if non-null
4302  *
4303  * Some platforms have their own version with special arguments;
4304  * others support only sys_rt_sigprocmask.
4305  */
4306 
4307 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4308 		old_sigset_t __user *, oset)
4309 {
4310 	old_sigset_t old_set, new_set;
4311 	sigset_t new_blocked;
4312 
4313 	old_set = current->blocked.sig[0];
4314 
4315 	if (nset) {
4316 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4317 			return -EFAULT;
4318 
4319 		new_blocked = current->blocked;
4320 
4321 		switch (how) {
4322 		case SIG_BLOCK:
4323 			sigaddsetmask(&new_blocked, new_set);
4324 			break;
4325 		case SIG_UNBLOCK:
4326 			sigdelsetmask(&new_blocked, new_set);
4327 			break;
4328 		case SIG_SETMASK:
4329 			new_blocked.sig[0] = new_set;
4330 			break;
4331 		default:
4332 			return -EINVAL;
4333 		}
4334 
4335 		set_current_blocked(&new_blocked);
4336 	}
4337 
4338 	if (oset) {
4339 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4340 			return -EFAULT;
4341 	}
4342 
4343 	return 0;
4344 }
4345 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4346 
4347 #ifndef CONFIG_ODD_RT_SIGACTION
4348 /**
4349  *  sys_rt_sigaction - alter an action taken by a process
4350  *  @sig: signal to be sent
4351  *  @act: new sigaction
4352  *  @oact: used to save the previous sigaction
4353  *  @sigsetsize: size of sigset_t type
4354  */
4355 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4356 		const struct sigaction __user *, act,
4357 		struct sigaction __user *, oact,
4358 		size_t, sigsetsize)
4359 {
4360 	struct k_sigaction new_sa, old_sa;
4361 	int ret;
4362 
4363 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4364 	if (sigsetsize != sizeof(sigset_t))
4365 		return -EINVAL;
4366 
4367 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4368 		return -EFAULT;
4369 
4370 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4371 	if (ret)
4372 		return ret;
4373 
4374 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4375 		return -EFAULT;
4376 
4377 	return 0;
4378 }
4379 #ifdef CONFIG_COMPAT
4380 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4381 		const struct compat_sigaction __user *, act,
4382 		struct compat_sigaction __user *, oact,
4383 		compat_size_t, sigsetsize)
4384 {
4385 	struct k_sigaction new_ka, old_ka;
4386 #ifdef __ARCH_HAS_SA_RESTORER
4387 	compat_uptr_t restorer;
4388 #endif
4389 	int ret;
4390 
4391 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4392 	if (sigsetsize != sizeof(compat_sigset_t))
4393 		return -EINVAL;
4394 
4395 	if (act) {
4396 		compat_uptr_t handler;
4397 		ret = get_user(handler, &act->sa_handler);
4398 		new_ka.sa.sa_handler = compat_ptr(handler);
4399 #ifdef __ARCH_HAS_SA_RESTORER
4400 		ret |= get_user(restorer, &act->sa_restorer);
4401 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4402 #endif
4403 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4404 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4405 		if (ret)
4406 			return -EFAULT;
4407 	}
4408 
4409 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4410 	if (!ret && oact) {
4411 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4412 			       &oact->sa_handler);
4413 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4414 					 sizeof(oact->sa_mask));
4415 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4416 #ifdef __ARCH_HAS_SA_RESTORER
4417 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4418 				&oact->sa_restorer);
4419 #endif
4420 	}
4421 	return ret;
4422 }
4423 #endif
4424 #endif /* !CONFIG_ODD_RT_SIGACTION */
4425 
4426 #ifdef CONFIG_OLD_SIGACTION
4427 SYSCALL_DEFINE3(sigaction, int, sig,
4428 		const struct old_sigaction __user *, act,
4429 	        struct old_sigaction __user *, oact)
4430 {
4431 	struct k_sigaction new_ka, old_ka;
4432 	int ret;
4433 
4434 	if (act) {
4435 		old_sigset_t mask;
4436 		if (!access_ok(act, sizeof(*act)) ||
4437 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4438 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4439 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4440 		    __get_user(mask, &act->sa_mask))
4441 			return -EFAULT;
4442 #ifdef __ARCH_HAS_KA_RESTORER
4443 		new_ka.ka_restorer = NULL;
4444 #endif
4445 		siginitset(&new_ka.sa.sa_mask, mask);
4446 	}
4447 
4448 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4449 
4450 	if (!ret && oact) {
4451 		if (!access_ok(oact, sizeof(*oact)) ||
4452 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4453 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4454 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4455 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4456 			return -EFAULT;
4457 	}
4458 
4459 	return ret;
4460 }
4461 #endif
4462 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4463 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4464 		const struct compat_old_sigaction __user *, act,
4465 	        struct compat_old_sigaction __user *, oact)
4466 {
4467 	struct k_sigaction new_ka, old_ka;
4468 	int ret;
4469 	compat_old_sigset_t mask;
4470 	compat_uptr_t handler, restorer;
4471 
4472 	if (act) {
4473 		if (!access_ok(act, sizeof(*act)) ||
4474 		    __get_user(handler, &act->sa_handler) ||
4475 		    __get_user(restorer, &act->sa_restorer) ||
4476 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4477 		    __get_user(mask, &act->sa_mask))
4478 			return -EFAULT;
4479 
4480 #ifdef __ARCH_HAS_KA_RESTORER
4481 		new_ka.ka_restorer = NULL;
4482 #endif
4483 		new_ka.sa.sa_handler = compat_ptr(handler);
4484 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4485 		siginitset(&new_ka.sa.sa_mask, mask);
4486 	}
4487 
4488 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4489 
4490 	if (!ret && oact) {
4491 		if (!access_ok(oact, sizeof(*oact)) ||
4492 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4493 			       &oact->sa_handler) ||
4494 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4495 			       &oact->sa_restorer) ||
4496 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4497 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4498 			return -EFAULT;
4499 	}
4500 	return ret;
4501 }
4502 #endif
4503 
4504 #ifdef CONFIG_SGETMASK_SYSCALL
4505 
4506 /*
4507  * For backwards compatibility.  Functionality superseded by sigprocmask.
4508  */
4509 SYSCALL_DEFINE0(sgetmask)
4510 {
4511 	/* SMP safe */
4512 	return current->blocked.sig[0];
4513 }
4514 
4515 SYSCALL_DEFINE1(ssetmask, int, newmask)
4516 {
4517 	int old = current->blocked.sig[0];
4518 	sigset_t newset;
4519 
4520 	siginitset(&newset, newmask);
4521 	set_current_blocked(&newset);
4522 
4523 	return old;
4524 }
4525 #endif /* CONFIG_SGETMASK_SYSCALL */
4526 
4527 #ifdef __ARCH_WANT_SYS_SIGNAL
4528 /*
4529  * For backwards compatibility.  Functionality superseded by sigaction.
4530  */
4531 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4532 {
4533 	struct k_sigaction new_sa, old_sa;
4534 	int ret;
4535 
4536 	new_sa.sa.sa_handler = handler;
4537 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4538 	sigemptyset(&new_sa.sa.sa_mask);
4539 
4540 	ret = do_sigaction(sig, &new_sa, &old_sa);
4541 
4542 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4543 }
4544 #endif /* __ARCH_WANT_SYS_SIGNAL */
4545 
4546 #ifdef __ARCH_WANT_SYS_PAUSE
4547 
4548 SYSCALL_DEFINE0(pause)
4549 {
4550 	while (!signal_pending(current)) {
4551 		__set_current_state(TASK_INTERRUPTIBLE);
4552 		schedule();
4553 	}
4554 	return -ERESTARTNOHAND;
4555 }
4556 
4557 #endif
4558 
4559 static int sigsuspend(sigset_t *set)
4560 {
4561 	current->saved_sigmask = current->blocked;
4562 	set_current_blocked(set);
4563 
4564 	while (!signal_pending(current)) {
4565 		__set_current_state(TASK_INTERRUPTIBLE);
4566 		schedule();
4567 	}
4568 	set_restore_sigmask();
4569 	return -ERESTARTNOHAND;
4570 }
4571 
4572 /**
4573  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4574  *	@unewset value until a signal is received
4575  *  @unewset: new signal mask value
4576  *  @sigsetsize: size of sigset_t type
4577  */
4578 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4579 {
4580 	sigset_t newset;
4581 
4582 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4583 	if (sigsetsize != sizeof(sigset_t))
4584 		return -EINVAL;
4585 
4586 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4587 		return -EFAULT;
4588 	return sigsuspend(&newset);
4589 }
4590 
4591 #ifdef CONFIG_COMPAT
4592 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4593 {
4594 	sigset_t newset;
4595 
4596 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4597 	if (sigsetsize != sizeof(sigset_t))
4598 		return -EINVAL;
4599 
4600 	if (get_compat_sigset(&newset, unewset))
4601 		return -EFAULT;
4602 	return sigsuspend(&newset);
4603 }
4604 #endif
4605 
4606 #ifdef CONFIG_OLD_SIGSUSPEND
4607 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4608 {
4609 	sigset_t blocked;
4610 	siginitset(&blocked, mask);
4611 	return sigsuspend(&blocked);
4612 }
4613 #endif
4614 #ifdef CONFIG_OLD_SIGSUSPEND3
4615 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4616 {
4617 	sigset_t blocked;
4618 	siginitset(&blocked, mask);
4619 	return sigsuspend(&blocked);
4620 }
4621 #endif
4622 
4623 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4624 {
4625 	return NULL;
4626 }
4627 
4628 static inline void siginfo_buildtime_checks(void)
4629 {
4630 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4631 
4632 	/* Verify the offsets in the two siginfos match */
4633 #define CHECK_OFFSET(field) \
4634 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4635 
4636 	/* kill */
4637 	CHECK_OFFSET(si_pid);
4638 	CHECK_OFFSET(si_uid);
4639 
4640 	/* timer */
4641 	CHECK_OFFSET(si_tid);
4642 	CHECK_OFFSET(si_overrun);
4643 	CHECK_OFFSET(si_value);
4644 
4645 	/* rt */
4646 	CHECK_OFFSET(si_pid);
4647 	CHECK_OFFSET(si_uid);
4648 	CHECK_OFFSET(si_value);
4649 
4650 	/* sigchld */
4651 	CHECK_OFFSET(si_pid);
4652 	CHECK_OFFSET(si_uid);
4653 	CHECK_OFFSET(si_status);
4654 	CHECK_OFFSET(si_utime);
4655 	CHECK_OFFSET(si_stime);
4656 
4657 	/* sigfault */
4658 	CHECK_OFFSET(si_addr);
4659 	CHECK_OFFSET(si_trapno);
4660 	CHECK_OFFSET(si_addr_lsb);
4661 	CHECK_OFFSET(si_lower);
4662 	CHECK_OFFSET(si_upper);
4663 	CHECK_OFFSET(si_pkey);
4664 	CHECK_OFFSET(si_perf_data);
4665 	CHECK_OFFSET(si_perf_type);
4666 
4667 	/* sigpoll */
4668 	CHECK_OFFSET(si_band);
4669 	CHECK_OFFSET(si_fd);
4670 
4671 	/* sigsys */
4672 	CHECK_OFFSET(si_call_addr);
4673 	CHECK_OFFSET(si_syscall);
4674 	CHECK_OFFSET(si_arch);
4675 #undef CHECK_OFFSET
4676 
4677 	/* usb asyncio */
4678 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4679 		     offsetof(struct siginfo, si_addr));
4680 	if (sizeof(int) == sizeof(void __user *)) {
4681 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4682 			     sizeof(void __user *));
4683 	} else {
4684 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4685 			      sizeof_field(struct siginfo, si_uid)) !=
4686 			     sizeof(void __user *));
4687 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4688 			     offsetof(struct siginfo, si_uid));
4689 	}
4690 #ifdef CONFIG_COMPAT
4691 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4692 		     offsetof(struct compat_siginfo, si_addr));
4693 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4694 		     sizeof(compat_uptr_t));
4695 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4696 		     sizeof_field(struct siginfo, si_pid));
4697 #endif
4698 }
4699 
4700 void __init signals_init(void)
4701 {
4702 	siginfo_buildtime_checks();
4703 
4704 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4705 }
4706 
4707 #ifdef CONFIG_KGDB_KDB
4708 #include <linux/kdb.h>
4709 /*
4710  * kdb_send_sig - Allows kdb to send signals without exposing
4711  * signal internals.  This function checks if the required locks are
4712  * available before calling the main signal code, to avoid kdb
4713  * deadlocks.
4714  */
4715 void kdb_send_sig(struct task_struct *t, int sig)
4716 {
4717 	static struct task_struct *kdb_prev_t;
4718 	int new_t, ret;
4719 	if (!spin_trylock(&t->sighand->siglock)) {
4720 		kdb_printf("Can't do kill command now.\n"
4721 			   "The sigmask lock is held somewhere else in "
4722 			   "kernel, try again later\n");
4723 		return;
4724 	}
4725 	new_t = kdb_prev_t != t;
4726 	kdb_prev_t = t;
4727 	if (!task_is_running(t) && new_t) {
4728 		spin_unlock(&t->sighand->siglock);
4729 		kdb_printf("Process is not RUNNING, sending a signal from "
4730 			   "kdb risks deadlock\n"
4731 			   "on the run queue locks. "
4732 			   "The signal has _not_ been sent.\n"
4733 			   "Reissue the kill command if you want to risk "
4734 			   "the deadlock.\n");
4735 		return;
4736 	}
4737 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4738 	spin_unlock(&t->sighand->siglock);
4739 	if (ret)
4740 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4741 			   sig, t->pid);
4742 	else
4743 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4744 }
4745 #endif	/* CONFIG_KGDB_KDB */
4746