1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 630 { 631 bool resched_timer = false; 632 int signr; 633 634 /* We only dequeue private signals from ourselves, we don't let 635 * signalfd steal them 636 */ 637 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 638 if (!signr) { 639 signr = __dequeue_signal(&tsk->signal->shared_pending, 640 mask, info, &resched_timer); 641 #ifdef CONFIG_POSIX_TIMERS 642 /* 643 * itimer signal ? 644 * 645 * itimers are process shared and we restart periodic 646 * itimers in the signal delivery path to prevent DoS 647 * attacks in the high resolution timer case. This is 648 * compliant with the old way of self-restarting 649 * itimers, as the SIGALRM is a legacy signal and only 650 * queued once. Changing the restart behaviour to 651 * restart the timer in the signal dequeue path is 652 * reducing the timer noise on heavy loaded !highres 653 * systems too. 654 */ 655 if (unlikely(signr == SIGALRM)) { 656 struct hrtimer *tmr = &tsk->signal->real_timer; 657 658 if (!hrtimer_is_queued(tmr) && 659 tsk->signal->it_real_incr != 0) { 660 hrtimer_forward(tmr, tmr->base->get_time(), 661 tsk->signal->it_real_incr); 662 hrtimer_restart(tmr); 663 } 664 } 665 #endif 666 } 667 668 recalc_sigpending(); 669 if (!signr) 670 return 0; 671 672 if (unlikely(sig_kernel_stop(signr))) { 673 /* 674 * Set a marker that we have dequeued a stop signal. Our 675 * caller might release the siglock and then the pending 676 * stop signal it is about to process is no longer in the 677 * pending bitmasks, but must still be cleared by a SIGCONT 678 * (and overruled by a SIGKILL). So those cases clear this 679 * shared flag after we've set it. Note that this flag may 680 * remain set after the signal we return is ignored or 681 * handled. That doesn't matter because its only purpose 682 * is to alert stop-signal processing code when another 683 * processor has come along and cleared the flag. 684 */ 685 current->jobctl |= JOBCTL_STOP_DEQUEUED; 686 } 687 #ifdef CONFIG_POSIX_TIMERS 688 if (resched_timer) { 689 /* 690 * Release the siglock to ensure proper locking order 691 * of timer locks outside of siglocks. Note, we leave 692 * irqs disabled here, since the posix-timers code is 693 * about to disable them again anyway. 694 */ 695 spin_unlock(&tsk->sighand->siglock); 696 posixtimer_rearm(info); 697 spin_lock(&tsk->sighand->siglock); 698 699 /* Don't expose the si_sys_private value to userspace */ 700 info->si_sys_private = 0; 701 } 702 #endif 703 return signr; 704 } 705 EXPORT_SYMBOL_GPL(dequeue_signal); 706 707 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 708 { 709 struct task_struct *tsk = current; 710 struct sigpending *pending = &tsk->pending; 711 struct sigqueue *q, *sync = NULL; 712 713 /* 714 * Might a synchronous signal be in the queue? 715 */ 716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 717 return 0; 718 719 /* 720 * Return the first synchronous signal in the queue. 721 */ 722 list_for_each_entry(q, &pending->list, list) { 723 /* Synchronous signals have a positive si_code */ 724 if ((q->info.si_code > SI_USER) && 725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 726 sync = q; 727 goto next; 728 } 729 } 730 return 0; 731 next: 732 /* 733 * Check if there is another siginfo for the same signal. 734 */ 735 list_for_each_entry_continue(q, &pending->list, list) { 736 if (q->info.si_signo == sync->info.si_signo) 737 goto still_pending; 738 } 739 740 sigdelset(&pending->signal, sync->info.si_signo); 741 recalc_sigpending(); 742 still_pending: 743 list_del_init(&sync->list); 744 copy_siginfo(info, &sync->info); 745 __sigqueue_free(sync); 746 return info->si_signo; 747 } 748 749 /* 750 * Tell a process that it has a new active signal.. 751 * 752 * NOTE! we rely on the previous spin_lock to 753 * lock interrupts for us! We can only be called with 754 * "siglock" held, and the local interrupt must 755 * have been disabled when that got acquired! 756 * 757 * No need to set need_resched since signal event passing 758 * goes through ->blocked 759 */ 760 void signal_wake_up_state(struct task_struct *t, unsigned int state) 761 { 762 set_tsk_thread_flag(t, TIF_SIGPENDING); 763 /* 764 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 765 * case. We don't check t->state here because there is a race with it 766 * executing another processor and just now entering stopped state. 767 * By using wake_up_state, we ensure the process will wake up and 768 * handle its death signal. 769 */ 770 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 771 kick_process(t); 772 } 773 774 /* 775 * Remove signals in mask from the pending set and queue. 776 * Returns 1 if any signals were found. 777 * 778 * All callers must be holding the siglock. 779 */ 780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 781 { 782 struct sigqueue *q, *n; 783 sigset_t m; 784 785 sigandsets(&m, mask, &s->signal); 786 if (sigisemptyset(&m)) 787 return; 788 789 sigandnsets(&s->signal, &s->signal, mask); 790 list_for_each_entry_safe(q, n, &s->list, list) { 791 if (sigismember(mask, q->info.si_signo)) { 792 list_del_init(&q->list); 793 __sigqueue_free(q); 794 } 795 } 796 } 797 798 static inline int is_si_special(const struct kernel_siginfo *info) 799 { 800 return info <= SEND_SIG_PRIV; 801 } 802 803 static inline bool si_fromuser(const struct kernel_siginfo *info) 804 { 805 return info == SEND_SIG_NOINFO || 806 (!is_si_special(info) && SI_FROMUSER(info)); 807 } 808 809 /* 810 * called with RCU read lock from check_kill_permission() 811 */ 812 static bool kill_ok_by_cred(struct task_struct *t) 813 { 814 const struct cred *cred = current_cred(); 815 const struct cred *tcred = __task_cred(t); 816 817 return uid_eq(cred->euid, tcred->suid) || 818 uid_eq(cred->euid, tcred->uid) || 819 uid_eq(cred->uid, tcred->suid) || 820 uid_eq(cred->uid, tcred->uid) || 821 ns_capable(tcred->user_ns, CAP_KILL); 822 } 823 824 /* 825 * Bad permissions for sending the signal 826 * - the caller must hold the RCU read lock 827 */ 828 static int check_kill_permission(int sig, struct kernel_siginfo *info, 829 struct task_struct *t) 830 { 831 struct pid *sid; 832 int error; 833 834 if (!valid_signal(sig)) 835 return -EINVAL; 836 837 if (!si_fromuser(info)) 838 return 0; 839 840 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 841 if (error) 842 return error; 843 844 if (!same_thread_group(current, t) && 845 !kill_ok_by_cred(t)) { 846 switch (sig) { 847 case SIGCONT: 848 sid = task_session(t); 849 /* 850 * We don't return the error if sid == NULL. The 851 * task was unhashed, the caller must notice this. 852 */ 853 if (!sid || sid == task_session(current)) 854 break; 855 fallthrough; 856 default: 857 return -EPERM; 858 } 859 } 860 861 return security_task_kill(t, info, sig, NULL); 862 } 863 864 /** 865 * ptrace_trap_notify - schedule trap to notify ptracer 866 * @t: tracee wanting to notify tracer 867 * 868 * This function schedules sticky ptrace trap which is cleared on the next 869 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 870 * ptracer. 871 * 872 * If @t is running, STOP trap will be taken. If trapped for STOP and 873 * ptracer is listening for events, tracee is woken up so that it can 874 * re-trap for the new event. If trapped otherwise, STOP trap will be 875 * eventually taken without returning to userland after the existing traps 876 * are finished by PTRACE_CONT. 877 * 878 * CONTEXT: 879 * Must be called with @task->sighand->siglock held. 880 */ 881 static void ptrace_trap_notify(struct task_struct *t) 882 { 883 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 884 assert_spin_locked(&t->sighand->siglock); 885 886 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 887 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 888 } 889 890 /* 891 * Handle magic process-wide effects of stop/continue signals. Unlike 892 * the signal actions, these happen immediately at signal-generation 893 * time regardless of blocking, ignoring, or handling. This does the 894 * actual continuing for SIGCONT, but not the actual stopping for stop 895 * signals. The process stop is done as a signal action for SIG_DFL. 896 * 897 * Returns true if the signal should be actually delivered, otherwise 898 * it should be dropped. 899 */ 900 static bool prepare_signal(int sig, struct task_struct *p, bool force) 901 { 902 struct signal_struct *signal = p->signal; 903 struct task_struct *t; 904 sigset_t flush; 905 906 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 907 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 908 return sig == SIGKILL; 909 /* 910 * The process is in the middle of dying, nothing to do. 911 */ 912 } else if (sig_kernel_stop(sig)) { 913 /* 914 * This is a stop signal. Remove SIGCONT from all queues. 915 */ 916 siginitset(&flush, sigmask(SIGCONT)); 917 flush_sigqueue_mask(&flush, &signal->shared_pending); 918 for_each_thread(p, t) 919 flush_sigqueue_mask(&flush, &t->pending); 920 } else if (sig == SIGCONT) { 921 unsigned int why; 922 /* 923 * Remove all stop signals from all queues, wake all threads. 924 */ 925 siginitset(&flush, SIG_KERNEL_STOP_MASK); 926 flush_sigqueue_mask(&flush, &signal->shared_pending); 927 for_each_thread(p, t) { 928 flush_sigqueue_mask(&flush, &t->pending); 929 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 930 if (likely(!(t->ptrace & PT_SEIZED))) 931 wake_up_state(t, __TASK_STOPPED); 932 else 933 ptrace_trap_notify(t); 934 } 935 936 /* 937 * Notify the parent with CLD_CONTINUED if we were stopped. 938 * 939 * If we were in the middle of a group stop, we pretend it 940 * was already finished, and then continued. Since SIGCHLD 941 * doesn't queue we report only CLD_STOPPED, as if the next 942 * CLD_CONTINUED was dropped. 943 */ 944 why = 0; 945 if (signal->flags & SIGNAL_STOP_STOPPED) 946 why |= SIGNAL_CLD_CONTINUED; 947 else if (signal->group_stop_count) 948 why |= SIGNAL_CLD_STOPPED; 949 950 if (why) { 951 /* 952 * The first thread which returns from do_signal_stop() 953 * will take ->siglock, notice SIGNAL_CLD_MASK, and 954 * notify its parent. See get_signal(). 955 */ 956 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 957 signal->group_stop_count = 0; 958 signal->group_exit_code = 0; 959 } 960 } 961 962 return !sig_ignored(p, sig, force); 963 } 964 965 /* 966 * Test if P wants to take SIG. After we've checked all threads with this, 967 * it's equivalent to finding no threads not blocking SIG. Any threads not 968 * blocking SIG were ruled out because they are not running and already 969 * have pending signals. Such threads will dequeue from the shared queue 970 * as soon as they're available, so putting the signal on the shared queue 971 * will be equivalent to sending it to one such thread. 972 */ 973 static inline bool wants_signal(int sig, struct task_struct *p) 974 { 975 if (sigismember(&p->blocked, sig)) 976 return false; 977 978 if (p->flags & PF_EXITING) 979 return false; 980 981 if (sig == SIGKILL) 982 return true; 983 984 if (task_is_stopped_or_traced(p)) 985 return false; 986 987 return task_curr(p) || !task_sigpending(p); 988 } 989 990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 991 { 992 struct signal_struct *signal = p->signal; 993 struct task_struct *t; 994 995 /* 996 * Now find a thread we can wake up to take the signal off the queue. 997 * 998 * If the main thread wants the signal, it gets first crack. 999 * Probably the least surprising to the average bear. 1000 */ 1001 if (wants_signal(sig, p)) 1002 t = p; 1003 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1004 /* 1005 * There is just one thread and it does not need to be woken. 1006 * It will dequeue unblocked signals before it runs again. 1007 */ 1008 return; 1009 else { 1010 /* 1011 * Otherwise try to find a suitable thread. 1012 */ 1013 t = signal->curr_target; 1014 while (!wants_signal(sig, t)) { 1015 t = next_thread(t); 1016 if (t == signal->curr_target) 1017 /* 1018 * No thread needs to be woken. 1019 * Any eligible threads will see 1020 * the signal in the queue soon. 1021 */ 1022 return; 1023 } 1024 signal->curr_target = t; 1025 } 1026 1027 /* 1028 * Found a killable thread. If the signal will be fatal, 1029 * then start taking the whole group down immediately. 1030 */ 1031 if (sig_fatal(p, sig) && 1032 !(signal->flags & SIGNAL_GROUP_EXIT) && 1033 !sigismember(&t->real_blocked, sig) && 1034 (sig == SIGKILL || !p->ptrace)) { 1035 /* 1036 * This signal will be fatal to the whole group. 1037 */ 1038 if (!sig_kernel_coredump(sig)) { 1039 /* 1040 * Start a group exit and wake everybody up. 1041 * This way we don't have other threads 1042 * running and doing things after a slower 1043 * thread has the fatal signal pending. 1044 */ 1045 signal->flags = SIGNAL_GROUP_EXIT; 1046 signal->group_exit_code = sig; 1047 signal->group_stop_count = 0; 1048 t = p; 1049 do { 1050 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1051 sigaddset(&t->pending.signal, SIGKILL); 1052 signal_wake_up(t, 1); 1053 } while_each_thread(p, t); 1054 return; 1055 } 1056 } 1057 1058 /* 1059 * The signal is already in the shared-pending queue. 1060 * Tell the chosen thread to wake up and dequeue it. 1061 */ 1062 signal_wake_up(t, sig == SIGKILL); 1063 return; 1064 } 1065 1066 static inline bool legacy_queue(struct sigpending *signals, int sig) 1067 { 1068 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1069 } 1070 1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1072 enum pid_type type, bool force) 1073 { 1074 struct sigpending *pending; 1075 struct sigqueue *q; 1076 int override_rlimit; 1077 int ret = 0, result; 1078 1079 assert_spin_locked(&t->sighand->siglock); 1080 1081 result = TRACE_SIGNAL_IGNORED; 1082 if (!prepare_signal(sig, t, force)) 1083 goto ret; 1084 1085 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1086 /* 1087 * Short-circuit ignored signals and support queuing 1088 * exactly one non-rt signal, so that we can get more 1089 * detailed information about the cause of the signal. 1090 */ 1091 result = TRACE_SIGNAL_ALREADY_PENDING; 1092 if (legacy_queue(pending, sig)) 1093 goto ret; 1094 1095 result = TRACE_SIGNAL_DELIVERED; 1096 /* 1097 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1098 */ 1099 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1100 goto out_set; 1101 1102 /* 1103 * Real-time signals must be queued if sent by sigqueue, or 1104 * some other real-time mechanism. It is implementation 1105 * defined whether kill() does so. We attempt to do so, on 1106 * the principle of least surprise, but since kill is not 1107 * allowed to fail with EAGAIN when low on memory we just 1108 * make sure at least one signal gets delivered and don't 1109 * pass on the info struct. 1110 */ 1111 if (sig < SIGRTMIN) 1112 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1113 else 1114 override_rlimit = 0; 1115 1116 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1117 1118 if (q) { 1119 list_add_tail(&q->list, &pending->list); 1120 switch ((unsigned long) info) { 1121 case (unsigned long) SEND_SIG_NOINFO: 1122 clear_siginfo(&q->info); 1123 q->info.si_signo = sig; 1124 q->info.si_errno = 0; 1125 q->info.si_code = SI_USER; 1126 q->info.si_pid = task_tgid_nr_ns(current, 1127 task_active_pid_ns(t)); 1128 rcu_read_lock(); 1129 q->info.si_uid = 1130 from_kuid_munged(task_cred_xxx(t, user_ns), 1131 current_uid()); 1132 rcu_read_unlock(); 1133 break; 1134 case (unsigned long) SEND_SIG_PRIV: 1135 clear_siginfo(&q->info); 1136 q->info.si_signo = sig; 1137 q->info.si_errno = 0; 1138 q->info.si_code = SI_KERNEL; 1139 q->info.si_pid = 0; 1140 q->info.si_uid = 0; 1141 break; 1142 default: 1143 copy_siginfo(&q->info, info); 1144 break; 1145 } 1146 } else if (!is_si_special(info) && 1147 sig >= SIGRTMIN && info->si_code != SI_USER) { 1148 /* 1149 * Queue overflow, abort. We may abort if the 1150 * signal was rt and sent by user using something 1151 * other than kill(). 1152 */ 1153 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1154 ret = -EAGAIN; 1155 goto ret; 1156 } else { 1157 /* 1158 * This is a silent loss of information. We still 1159 * send the signal, but the *info bits are lost. 1160 */ 1161 result = TRACE_SIGNAL_LOSE_INFO; 1162 } 1163 1164 out_set: 1165 signalfd_notify(t, sig); 1166 sigaddset(&pending->signal, sig); 1167 1168 /* Let multiprocess signals appear after on-going forks */ 1169 if (type > PIDTYPE_TGID) { 1170 struct multiprocess_signals *delayed; 1171 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1172 sigset_t *signal = &delayed->signal; 1173 /* Can't queue both a stop and a continue signal */ 1174 if (sig == SIGCONT) 1175 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1176 else if (sig_kernel_stop(sig)) 1177 sigdelset(signal, SIGCONT); 1178 sigaddset(signal, sig); 1179 } 1180 } 1181 1182 complete_signal(sig, t, type); 1183 ret: 1184 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1185 return ret; 1186 } 1187 1188 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1189 { 1190 bool ret = false; 1191 switch (siginfo_layout(info->si_signo, info->si_code)) { 1192 case SIL_KILL: 1193 case SIL_CHLD: 1194 case SIL_RT: 1195 ret = true; 1196 break; 1197 case SIL_TIMER: 1198 case SIL_POLL: 1199 case SIL_FAULT: 1200 case SIL_FAULT_TRAPNO: 1201 case SIL_FAULT_MCEERR: 1202 case SIL_FAULT_BNDERR: 1203 case SIL_FAULT_PKUERR: 1204 case SIL_FAULT_PERF_EVENT: 1205 case SIL_SYS: 1206 ret = false; 1207 break; 1208 } 1209 return ret; 1210 } 1211 1212 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1213 enum pid_type type) 1214 { 1215 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1216 bool force = false; 1217 1218 if (info == SEND_SIG_NOINFO) { 1219 /* Force if sent from an ancestor pid namespace */ 1220 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1221 } else if (info == SEND_SIG_PRIV) { 1222 /* Don't ignore kernel generated signals */ 1223 force = true; 1224 } else if (has_si_pid_and_uid(info)) { 1225 /* SIGKILL and SIGSTOP is special or has ids */ 1226 struct user_namespace *t_user_ns; 1227 1228 rcu_read_lock(); 1229 t_user_ns = task_cred_xxx(t, user_ns); 1230 if (current_user_ns() != t_user_ns) { 1231 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1232 info->si_uid = from_kuid_munged(t_user_ns, uid); 1233 } 1234 rcu_read_unlock(); 1235 1236 /* A kernel generated signal? */ 1237 force = (info->si_code == SI_KERNEL); 1238 1239 /* From an ancestor pid namespace? */ 1240 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1241 info->si_pid = 0; 1242 force = true; 1243 } 1244 } 1245 return __send_signal(sig, info, t, type, force); 1246 } 1247 1248 static void print_fatal_signal(int signr) 1249 { 1250 struct pt_regs *regs = signal_pt_regs(); 1251 pr_info("potentially unexpected fatal signal %d.\n", signr); 1252 1253 #if defined(__i386__) && !defined(__arch_um__) 1254 pr_info("code at %08lx: ", regs->ip); 1255 { 1256 int i; 1257 for (i = 0; i < 16; i++) { 1258 unsigned char insn; 1259 1260 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1261 break; 1262 pr_cont("%02x ", insn); 1263 } 1264 } 1265 pr_cont("\n"); 1266 #endif 1267 preempt_disable(); 1268 show_regs(regs); 1269 preempt_enable(); 1270 } 1271 1272 static int __init setup_print_fatal_signals(char *str) 1273 { 1274 get_option (&str, &print_fatal_signals); 1275 1276 return 1; 1277 } 1278 1279 __setup("print-fatal-signals=", setup_print_fatal_signals); 1280 1281 int 1282 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1283 { 1284 return send_signal(sig, info, p, PIDTYPE_TGID); 1285 } 1286 1287 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1288 enum pid_type type) 1289 { 1290 unsigned long flags; 1291 int ret = -ESRCH; 1292 1293 if (lock_task_sighand(p, &flags)) { 1294 ret = send_signal(sig, info, p, type); 1295 unlock_task_sighand(p, &flags); 1296 } 1297 1298 return ret; 1299 } 1300 1301 /* 1302 * Force a signal that the process can't ignore: if necessary 1303 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1304 * 1305 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1306 * since we do not want to have a signal handler that was blocked 1307 * be invoked when user space had explicitly blocked it. 1308 * 1309 * We don't want to have recursive SIGSEGV's etc, for example, 1310 * that is why we also clear SIGNAL_UNKILLABLE. 1311 */ 1312 static int 1313 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, bool sigdfl) 1314 { 1315 unsigned long int flags; 1316 int ret, blocked, ignored; 1317 struct k_sigaction *action; 1318 int sig = info->si_signo; 1319 1320 spin_lock_irqsave(&t->sighand->siglock, flags); 1321 action = &t->sighand->action[sig-1]; 1322 ignored = action->sa.sa_handler == SIG_IGN; 1323 blocked = sigismember(&t->blocked, sig); 1324 if (blocked || ignored || sigdfl) { 1325 action->sa.sa_handler = SIG_DFL; 1326 if (blocked) { 1327 sigdelset(&t->blocked, sig); 1328 recalc_sigpending_and_wake(t); 1329 } 1330 } 1331 /* 1332 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1333 * debugging to leave init killable. 1334 */ 1335 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1336 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1337 ret = send_signal(sig, info, t, PIDTYPE_PID); 1338 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1339 1340 return ret; 1341 } 1342 1343 int force_sig_info(struct kernel_siginfo *info) 1344 { 1345 return force_sig_info_to_task(info, current, false); 1346 } 1347 1348 /* 1349 * Nuke all other threads in the group. 1350 */ 1351 int zap_other_threads(struct task_struct *p) 1352 { 1353 struct task_struct *t = p; 1354 int count = 0; 1355 1356 p->signal->group_stop_count = 0; 1357 1358 while_each_thread(p, t) { 1359 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1360 count++; 1361 1362 /* Don't bother with already dead threads */ 1363 if (t->exit_state) 1364 continue; 1365 sigaddset(&t->pending.signal, SIGKILL); 1366 signal_wake_up(t, 1); 1367 } 1368 1369 return count; 1370 } 1371 1372 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1373 unsigned long *flags) 1374 { 1375 struct sighand_struct *sighand; 1376 1377 rcu_read_lock(); 1378 for (;;) { 1379 sighand = rcu_dereference(tsk->sighand); 1380 if (unlikely(sighand == NULL)) 1381 break; 1382 1383 /* 1384 * This sighand can be already freed and even reused, but 1385 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1386 * initializes ->siglock: this slab can't go away, it has 1387 * the same object type, ->siglock can't be reinitialized. 1388 * 1389 * We need to ensure that tsk->sighand is still the same 1390 * after we take the lock, we can race with de_thread() or 1391 * __exit_signal(). In the latter case the next iteration 1392 * must see ->sighand == NULL. 1393 */ 1394 spin_lock_irqsave(&sighand->siglock, *flags); 1395 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1396 break; 1397 spin_unlock_irqrestore(&sighand->siglock, *flags); 1398 } 1399 rcu_read_unlock(); 1400 1401 return sighand; 1402 } 1403 1404 #ifdef CONFIG_LOCKDEP 1405 void lockdep_assert_task_sighand_held(struct task_struct *task) 1406 { 1407 struct sighand_struct *sighand; 1408 1409 rcu_read_lock(); 1410 sighand = rcu_dereference(task->sighand); 1411 if (sighand) 1412 lockdep_assert_held(&sighand->siglock); 1413 else 1414 WARN_ON_ONCE(1); 1415 rcu_read_unlock(); 1416 } 1417 #endif 1418 1419 /* 1420 * send signal info to all the members of a group 1421 */ 1422 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1423 struct task_struct *p, enum pid_type type) 1424 { 1425 int ret; 1426 1427 rcu_read_lock(); 1428 ret = check_kill_permission(sig, info, p); 1429 rcu_read_unlock(); 1430 1431 if (!ret && sig) 1432 ret = do_send_sig_info(sig, info, p, type); 1433 1434 return ret; 1435 } 1436 1437 /* 1438 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1439 * control characters do (^C, ^Z etc) 1440 * - the caller must hold at least a readlock on tasklist_lock 1441 */ 1442 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1443 { 1444 struct task_struct *p = NULL; 1445 int retval, success; 1446 1447 success = 0; 1448 retval = -ESRCH; 1449 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1450 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1451 success |= !err; 1452 retval = err; 1453 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1454 return success ? 0 : retval; 1455 } 1456 1457 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1458 { 1459 int error = -ESRCH; 1460 struct task_struct *p; 1461 1462 for (;;) { 1463 rcu_read_lock(); 1464 p = pid_task(pid, PIDTYPE_PID); 1465 if (p) 1466 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1467 rcu_read_unlock(); 1468 if (likely(!p || error != -ESRCH)) 1469 return error; 1470 1471 /* 1472 * The task was unhashed in between, try again. If it 1473 * is dead, pid_task() will return NULL, if we race with 1474 * de_thread() it will find the new leader. 1475 */ 1476 } 1477 } 1478 1479 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1480 { 1481 int error; 1482 rcu_read_lock(); 1483 error = kill_pid_info(sig, info, find_vpid(pid)); 1484 rcu_read_unlock(); 1485 return error; 1486 } 1487 1488 static inline bool kill_as_cred_perm(const struct cred *cred, 1489 struct task_struct *target) 1490 { 1491 const struct cred *pcred = __task_cred(target); 1492 1493 return uid_eq(cred->euid, pcred->suid) || 1494 uid_eq(cred->euid, pcred->uid) || 1495 uid_eq(cred->uid, pcred->suid) || 1496 uid_eq(cred->uid, pcred->uid); 1497 } 1498 1499 /* 1500 * The usb asyncio usage of siginfo is wrong. The glibc support 1501 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1502 * AKA after the generic fields: 1503 * kernel_pid_t si_pid; 1504 * kernel_uid32_t si_uid; 1505 * sigval_t si_value; 1506 * 1507 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1508 * after the generic fields is: 1509 * void __user *si_addr; 1510 * 1511 * This is a practical problem when there is a 64bit big endian kernel 1512 * and a 32bit userspace. As the 32bit address will encoded in the low 1513 * 32bits of the pointer. Those low 32bits will be stored at higher 1514 * address than appear in a 32 bit pointer. So userspace will not 1515 * see the address it was expecting for it's completions. 1516 * 1517 * There is nothing in the encoding that can allow 1518 * copy_siginfo_to_user32 to detect this confusion of formats, so 1519 * handle this by requiring the caller of kill_pid_usb_asyncio to 1520 * notice when this situration takes place and to store the 32bit 1521 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1522 * parameter. 1523 */ 1524 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1525 struct pid *pid, const struct cred *cred) 1526 { 1527 struct kernel_siginfo info; 1528 struct task_struct *p; 1529 unsigned long flags; 1530 int ret = -EINVAL; 1531 1532 if (!valid_signal(sig)) 1533 return ret; 1534 1535 clear_siginfo(&info); 1536 info.si_signo = sig; 1537 info.si_errno = errno; 1538 info.si_code = SI_ASYNCIO; 1539 *((sigval_t *)&info.si_pid) = addr; 1540 1541 rcu_read_lock(); 1542 p = pid_task(pid, PIDTYPE_PID); 1543 if (!p) { 1544 ret = -ESRCH; 1545 goto out_unlock; 1546 } 1547 if (!kill_as_cred_perm(cred, p)) { 1548 ret = -EPERM; 1549 goto out_unlock; 1550 } 1551 ret = security_task_kill(p, &info, sig, cred); 1552 if (ret) 1553 goto out_unlock; 1554 1555 if (sig) { 1556 if (lock_task_sighand(p, &flags)) { 1557 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1558 unlock_task_sighand(p, &flags); 1559 } else 1560 ret = -ESRCH; 1561 } 1562 out_unlock: 1563 rcu_read_unlock(); 1564 return ret; 1565 } 1566 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1567 1568 /* 1569 * kill_something_info() interprets pid in interesting ways just like kill(2). 1570 * 1571 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1572 * is probably wrong. Should make it like BSD or SYSV. 1573 */ 1574 1575 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1576 { 1577 int ret; 1578 1579 if (pid > 0) 1580 return kill_proc_info(sig, info, pid); 1581 1582 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1583 if (pid == INT_MIN) 1584 return -ESRCH; 1585 1586 read_lock(&tasklist_lock); 1587 if (pid != -1) { 1588 ret = __kill_pgrp_info(sig, info, 1589 pid ? find_vpid(-pid) : task_pgrp(current)); 1590 } else { 1591 int retval = 0, count = 0; 1592 struct task_struct * p; 1593 1594 for_each_process(p) { 1595 if (task_pid_vnr(p) > 1 && 1596 !same_thread_group(p, current)) { 1597 int err = group_send_sig_info(sig, info, p, 1598 PIDTYPE_MAX); 1599 ++count; 1600 if (err != -EPERM) 1601 retval = err; 1602 } 1603 } 1604 ret = count ? retval : -ESRCH; 1605 } 1606 read_unlock(&tasklist_lock); 1607 1608 return ret; 1609 } 1610 1611 /* 1612 * These are for backward compatibility with the rest of the kernel source. 1613 */ 1614 1615 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1616 { 1617 /* 1618 * Make sure legacy kernel users don't send in bad values 1619 * (normal paths check this in check_kill_permission). 1620 */ 1621 if (!valid_signal(sig)) 1622 return -EINVAL; 1623 1624 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1625 } 1626 EXPORT_SYMBOL(send_sig_info); 1627 1628 #define __si_special(priv) \ 1629 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1630 1631 int 1632 send_sig(int sig, struct task_struct *p, int priv) 1633 { 1634 return send_sig_info(sig, __si_special(priv), p); 1635 } 1636 EXPORT_SYMBOL(send_sig); 1637 1638 void force_sig(int sig) 1639 { 1640 struct kernel_siginfo info; 1641 1642 clear_siginfo(&info); 1643 info.si_signo = sig; 1644 info.si_errno = 0; 1645 info.si_code = SI_KERNEL; 1646 info.si_pid = 0; 1647 info.si_uid = 0; 1648 force_sig_info(&info); 1649 } 1650 EXPORT_SYMBOL(force_sig); 1651 1652 /* 1653 * When things go south during signal handling, we 1654 * will force a SIGSEGV. And if the signal that caused 1655 * the problem was already a SIGSEGV, we'll want to 1656 * make sure we don't even try to deliver the signal.. 1657 */ 1658 void force_sigsegv(int sig) 1659 { 1660 struct task_struct *p = current; 1661 1662 if (sig == SIGSEGV) { 1663 unsigned long flags; 1664 spin_lock_irqsave(&p->sighand->siglock, flags); 1665 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1666 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1667 } 1668 force_sig(SIGSEGV); 1669 } 1670 1671 int force_sig_fault_to_task(int sig, int code, void __user *addr 1672 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1673 , struct task_struct *t) 1674 { 1675 struct kernel_siginfo info; 1676 1677 clear_siginfo(&info); 1678 info.si_signo = sig; 1679 info.si_errno = 0; 1680 info.si_code = code; 1681 info.si_addr = addr; 1682 #ifdef __ia64__ 1683 info.si_imm = imm; 1684 info.si_flags = flags; 1685 info.si_isr = isr; 1686 #endif 1687 return force_sig_info_to_task(&info, t, false); 1688 } 1689 1690 int force_sig_fault(int sig, int code, void __user *addr 1691 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1692 { 1693 return force_sig_fault_to_task(sig, code, addr 1694 ___ARCH_SI_IA64(imm, flags, isr), current); 1695 } 1696 1697 int send_sig_fault(int sig, int code, void __user *addr 1698 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1699 , struct task_struct *t) 1700 { 1701 struct kernel_siginfo info; 1702 1703 clear_siginfo(&info); 1704 info.si_signo = sig; 1705 info.si_errno = 0; 1706 info.si_code = code; 1707 info.si_addr = addr; 1708 #ifdef __ia64__ 1709 info.si_imm = imm; 1710 info.si_flags = flags; 1711 info.si_isr = isr; 1712 #endif 1713 return send_sig_info(info.si_signo, &info, t); 1714 } 1715 1716 int force_sig_mceerr(int code, void __user *addr, short lsb) 1717 { 1718 struct kernel_siginfo info; 1719 1720 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1721 clear_siginfo(&info); 1722 info.si_signo = SIGBUS; 1723 info.si_errno = 0; 1724 info.si_code = code; 1725 info.si_addr = addr; 1726 info.si_addr_lsb = lsb; 1727 return force_sig_info(&info); 1728 } 1729 1730 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1731 { 1732 struct kernel_siginfo info; 1733 1734 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1735 clear_siginfo(&info); 1736 info.si_signo = SIGBUS; 1737 info.si_errno = 0; 1738 info.si_code = code; 1739 info.si_addr = addr; 1740 info.si_addr_lsb = lsb; 1741 return send_sig_info(info.si_signo, &info, t); 1742 } 1743 EXPORT_SYMBOL(send_sig_mceerr); 1744 1745 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1746 { 1747 struct kernel_siginfo info; 1748 1749 clear_siginfo(&info); 1750 info.si_signo = SIGSEGV; 1751 info.si_errno = 0; 1752 info.si_code = SEGV_BNDERR; 1753 info.si_addr = addr; 1754 info.si_lower = lower; 1755 info.si_upper = upper; 1756 return force_sig_info(&info); 1757 } 1758 1759 #ifdef SEGV_PKUERR 1760 int force_sig_pkuerr(void __user *addr, u32 pkey) 1761 { 1762 struct kernel_siginfo info; 1763 1764 clear_siginfo(&info); 1765 info.si_signo = SIGSEGV; 1766 info.si_errno = 0; 1767 info.si_code = SEGV_PKUERR; 1768 info.si_addr = addr; 1769 info.si_pkey = pkey; 1770 return force_sig_info(&info); 1771 } 1772 #endif 1773 1774 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1775 { 1776 struct kernel_siginfo info; 1777 1778 clear_siginfo(&info); 1779 info.si_signo = SIGTRAP; 1780 info.si_errno = 0; 1781 info.si_code = TRAP_PERF; 1782 info.si_addr = addr; 1783 info.si_perf_data = sig_data; 1784 info.si_perf_type = type; 1785 1786 return force_sig_info(&info); 1787 } 1788 1789 /** 1790 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1791 * @syscall: syscall number to send to userland 1792 * @reason: filter-supplied reason code to send to userland (via si_errno) 1793 * 1794 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1795 */ 1796 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1797 { 1798 struct kernel_siginfo info; 1799 1800 clear_siginfo(&info); 1801 info.si_signo = SIGSYS; 1802 info.si_code = SYS_SECCOMP; 1803 info.si_call_addr = (void __user *)KSTK_EIP(current); 1804 info.si_errno = reason; 1805 info.si_arch = syscall_get_arch(current); 1806 info.si_syscall = syscall; 1807 return force_sig_info_to_task(&info, current, force_coredump); 1808 } 1809 1810 /* For the crazy architectures that include trap information in 1811 * the errno field, instead of an actual errno value. 1812 */ 1813 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1814 { 1815 struct kernel_siginfo info; 1816 1817 clear_siginfo(&info); 1818 info.si_signo = SIGTRAP; 1819 info.si_errno = errno; 1820 info.si_code = TRAP_HWBKPT; 1821 info.si_addr = addr; 1822 return force_sig_info(&info); 1823 } 1824 1825 /* For the rare architectures that include trap information using 1826 * si_trapno. 1827 */ 1828 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1829 { 1830 struct kernel_siginfo info; 1831 1832 clear_siginfo(&info); 1833 info.si_signo = sig; 1834 info.si_errno = 0; 1835 info.si_code = code; 1836 info.si_addr = addr; 1837 info.si_trapno = trapno; 1838 return force_sig_info(&info); 1839 } 1840 1841 /* For the rare architectures that include trap information using 1842 * si_trapno. 1843 */ 1844 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1845 struct task_struct *t) 1846 { 1847 struct kernel_siginfo info; 1848 1849 clear_siginfo(&info); 1850 info.si_signo = sig; 1851 info.si_errno = 0; 1852 info.si_code = code; 1853 info.si_addr = addr; 1854 info.si_trapno = trapno; 1855 return send_sig_info(info.si_signo, &info, t); 1856 } 1857 1858 int kill_pgrp(struct pid *pid, int sig, int priv) 1859 { 1860 int ret; 1861 1862 read_lock(&tasklist_lock); 1863 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1864 read_unlock(&tasklist_lock); 1865 1866 return ret; 1867 } 1868 EXPORT_SYMBOL(kill_pgrp); 1869 1870 int kill_pid(struct pid *pid, int sig, int priv) 1871 { 1872 return kill_pid_info(sig, __si_special(priv), pid); 1873 } 1874 EXPORT_SYMBOL(kill_pid); 1875 1876 /* 1877 * These functions support sending signals using preallocated sigqueue 1878 * structures. This is needed "because realtime applications cannot 1879 * afford to lose notifications of asynchronous events, like timer 1880 * expirations or I/O completions". In the case of POSIX Timers 1881 * we allocate the sigqueue structure from the timer_create. If this 1882 * allocation fails we are able to report the failure to the application 1883 * with an EAGAIN error. 1884 */ 1885 struct sigqueue *sigqueue_alloc(void) 1886 { 1887 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1888 } 1889 1890 void sigqueue_free(struct sigqueue *q) 1891 { 1892 unsigned long flags; 1893 spinlock_t *lock = ¤t->sighand->siglock; 1894 1895 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1896 /* 1897 * We must hold ->siglock while testing q->list 1898 * to serialize with collect_signal() or with 1899 * __exit_signal()->flush_sigqueue(). 1900 */ 1901 spin_lock_irqsave(lock, flags); 1902 q->flags &= ~SIGQUEUE_PREALLOC; 1903 /* 1904 * If it is queued it will be freed when dequeued, 1905 * like the "regular" sigqueue. 1906 */ 1907 if (!list_empty(&q->list)) 1908 q = NULL; 1909 spin_unlock_irqrestore(lock, flags); 1910 1911 if (q) 1912 __sigqueue_free(q); 1913 } 1914 1915 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1916 { 1917 int sig = q->info.si_signo; 1918 struct sigpending *pending; 1919 struct task_struct *t; 1920 unsigned long flags; 1921 int ret, result; 1922 1923 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1924 1925 ret = -1; 1926 rcu_read_lock(); 1927 t = pid_task(pid, type); 1928 if (!t || !likely(lock_task_sighand(t, &flags))) 1929 goto ret; 1930 1931 ret = 1; /* the signal is ignored */ 1932 result = TRACE_SIGNAL_IGNORED; 1933 if (!prepare_signal(sig, t, false)) 1934 goto out; 1935 1936 ret = 0; 1937 if (unlikely(!list_empty(&q->list))) { 1938 /* 1939 * If an SI_TIMER entry is already queue just increment 1940 * the overrun count. 1941 */ 1942 BUG_ON(q->info.si_code != SI_TIMER); 1943 q->info.si_overrun++; 1944 result = TRACE_SIGNAL_ALREADY_PENDING; 1945 goto out; 1946 } 1947 q->info.si_overrun = 0; 1948 1949 signalfd_notify(t, sig); 1950 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1951 list_add_tail(&q->list, &pending->list); 1952 sigaddset(&pending->signal, sig); 1953 complete_signal(sig, t, type); 1954 result = TRACE_SIGNAL_DELIVERED; 1955 out: 1956 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1957 unlock_task_sighand(t, &flags); 1958 ret: 1959 rcu_read_unlock(); 1960 return ret; 1961 } 1962 1963 static void do_notify_pidfd(struct task_struct *task) 1964 { 1965 struct pid *pid; 1966 1967 WARN_ON(task->exit_state == 0); 1968 pid = task_pid(task); 1969 wake_up_all(&pid->wait_pidfd); 1970 } 1971 1972 /* 1973 * Let a parent know about the death of a child. 1974 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1975 * 1976 * Returns true if our parent ignored us and so we've switched to 1977 * self-reaping. 1978 */ 1979 bool do_notify_parent(struct task_struct *tsk, int sig) 1980 { 1981 struct kernel_siginfo info; 1982 unsigned long flags; 1983 struct sighand_struct *psig; 1984 bool autoreap = false; 1985 u64 utime, stime; 1986 1987 BUG_ON(sig == -1); 1988 1989 /* do_notify_parent_cldstop should have been called instead. */ 1990 BUG_ON(task_is_stopped_or_traced(tsk)); 1991 1992 BUG_ON(!tsk->ptrace && 1993 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1994 1995 /* Wake up all pidfd waiters */ 1996 do_notify_pidfd(tsk); 1997 1998 if (sig != SIGCHLD) { 1999 /* 2000 * This is only possible if parent == real_parent. 2001 * Check if it has changed security domain. 2002 */ 2003 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2004 sig = SIGCHLD; 2005 } 2006 2007 clear_siginfo(&info); 2008 info.si_signo = sig; 2009 info.si_errno = 0; 2010 /* 2011 * We are under tasklist_lock here so our parent is tied to 2012 * us and cannot change. 2013 * 2014 * task_active_pid_ns will always return the same pid namespace 2015 * until a task passes through release_task. 2016 * 2017 * write_lock() currently calls preempt_disable() which is the 2018 * same as rcu_read_lock(), but according to Oleg, this is not 2019 * correct to rely on this 2020 */ 2021 rcu_read_lock(); 2022 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2023 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2024 task_uid(tsk)); 2025 rcu_read_unlock(); 2026 2027 task_cputime(tsk, &utime, &stime); 2028 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2029 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2030 2031 info.si_status = tsk->exit_code & 0x7f; 2032 if (tsk->exit_code & 0x80) 2033 info.si_code = CLD_DUMPED; 2034 else if (tsk->exit_code & 0x7f) 2035 info.si_code = CLD_KILLED; 2036 else { 2037 info.si_code = CLD_EXITED; 2038 info.si_status = tsk->exit_code >> 8; 2039 } 2040 2041 psig = tsk->parent->sighand; 2042 spin_lock_irqsave(&psig->siglock, flags); 2043 if (!tsk->ptrace && sig == SIGCHLD && 2044 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2045 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2046 /* 2047 * We are exiting and our parent doesn't care. POSIX.1 2048 * defines special semantics for setting SIGCHLD to SIG_IGN 2049 * or setting the SA_NOCLDWAIT flag: we should be reaped 2050 * automatically and not left for our parent's wait4 call. 2051 * Rather than having the parent do it as a magic kind of 2052 * signal handler, we just set this to tell do_exit that we 2053 * can be cleaned up without becoming a zombie. Note that 2054 * we still call __wake_up_parent in this case, because a 2055 * blocked sys_wait4 might now return -ECHILD. 2056 * 2057 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2058 * is implementation-defined: we do (if you don't want 2059 * it, just use SIG_IGN instead). 2060 */ 2061 autoreap = true; 2062 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2063 sig = 0; 2064 } 2065 /* 2066 * Send with __send_signal as si_pid and si_uid are in the 2067 * parent's namespaces. 2068 */ 2069 if (valid_signal(sig) && sig) 2070 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2071 __wake_up_parent(tsk, tsk->parent); 2072 spin_unlock_irqrestore(&psig->siglock, flags); 2073 2074 return autoreap; 2075 } 2076 2077 /** 2078 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2079 * @tsk: task reporting the state change 2080 * @for_ptracer: the notification is for ptracer 2081 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2082 * 2083 * Notify @tsk's parent that the stopped/continued state has changed. If 2084 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2085 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2086 * 2087 * CONTEXT: 2088 * Must be called with tasklist_lock at least read locked. 2089 */ 2090 static void do_notify_parent_cldstop(struct task_struct *tsk, 2091 bool for_ptracer, int why) 2092 { 2093 struct kernel_siginfo info; 2094 unsigned long flags; 2095 struct task_struct *parent; 2096 struct sighand_struct *sighand; 2097 u64 utime, stime; 2098 2099 if (for_ptracer) { 2100 parent = tsk->parent; 2101 } else { 2102 tsk = tsk->group_leader; 2103 parent = tsk->real_parent; 2104 } 2105 2106 clear_siginfo(&info); 2107 info.si_signo = SIGCHLD; 2108 info.si_errno = 0; 2109 /* 2110 * see comment in do_notify_parent() about the following 4 lines 2111 */ 2112 rcu_read_lock(); 2113 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2114 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2115 rcu_read_unlock(); 2116 2117 task_cputime(tsk, &utime, &stime); 2118 info.si_utime = nsec_to_clock_t(utime); 2119 info.si_stime = nsec_to_clock_t(stime); 2120 2121 info.si_code = why; 2122 switch (why) { 2123 case CLD_CONTINUED: 2124 info.si_status = SIGCONT; 2125 break; 2126 case CLD_STOPPED: 2127 info.si_status = tsk->signal->group_exit_code & 0x7f; 2128 break; 2129 case CLD_TRAPPED: 2130 info.si_status = tsk->exit_code & 0x7f; 2131 break; 2132 default: 2133 BUG(); 2134 } 2135 2136 sighand = parent->sighand; 2137 spin_lock_irqsave(&sighand->siglock, flags); 2138 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2139 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2140 __group_send_sig_info(SIGCHLD, &info, parent); 2141 /* 2142 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2143 */ 2144 __wake_up_parent(tsk, parent); 2145 spin_unlock_irqrestore(&sighand->siglock, flags); 2146 } 2147 2148 /* 2149 * This must be called with current->sighand->siglock held. 2150 * 2151 * This should be the path for all ptrace stops. 2152 * We always set current->last_siginfo while stopped here. 2153 * That makes it a way to test a stopped process for 2154 * being ptrace-stopped vs being job-control-stopped. 2155 * 2156 * If we actually decide not to stop at all because the tracer 2157 * is gone, we keep current->exit_code unless clear_code. 2158 */ 2159 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2160 __releases(¤t->sighand->siglock) 2161 __acquires(¤t->sighand->siglock) 2162 { 2163 bool gstop_done = false; 2164 2165 if (arch_ptrace_stop_needed()) { 2166 /* 2167 * The arch code has something special to do before a 2168 * ptrace stop. This is allowed to block, e.g. for faults 2169 * on user stack pages. We can't keep the siglock while 2170 * calling arch_ptrace_stop, so we must release it now. 2171 * To preserve proper semantics, we must do this before 2172 * any signal bookkeeping like checking group_stop_count. 2173 */ 2174 spin_unlock_irq(¤t->sighand->siglock); 2175 arch_ptrace_stop(); 2176 spin_lock_irq(¤t->sighand->siglock); 2177 } 2178 2179 /* 2180 * schedule() will not sleep if there is a pending signal that 2181 * can awaken the task. 2182 */ 2183 set_special_state(TASK_TRACED); 2184 2185 /* 2186 * We're committing to trapping. TRACED should be visible before 2187 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2188 * Also, transition to TRACED and updates to ->jobctl should be 2189 * atomic with respect to siglock and should be done after the arch 2190 * hook as siglock is released and regrabbed across it. 2191 * 2192 * TRACER TRACEE 2193 * 2194 * ptrace_attach() 2195 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2196 * do_wait() 2197 * set_current_state() smp_wmb(); 2198 * ptrace_do_wait() 2199 * wait_task_stopped() 2200 * task_stopped_code() 2201 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2202 */ 2203 smp_wmb(); 2204 2205 current->last_siginfo = info; 2206 current->exit_code = exit_code; 2207 2208 /* 2209 * If @why is CLD_STOPPED, we're trapping to participate in a group 2210 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2211 * across siglock relocks since INTERRUPT was scheduled, PENDING 2212 * could be clear now. We act as if SIGCONT is received after 2213 * TASK_TRACED is entered - ignore it. 2214 */ 2215 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2216 gstop_done = task_participate_group_stop(current); 2217 2218 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2219 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2220 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2221 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2222 2223 /* entering a trap, clear TRAPPING */ 2224 task_clear_jobctl_trapping(current); 2225 2226 spin_unlock_irq(¤t->sighand->siglock); 2227 read_lock(&tasklist_lock); 2228 if (likely(current->ptrace)) { 2229 /* 2230 * Notify parents of the stop. 2231 * 2232 * While ptraced, there are two parents - the ptracer and 2233 * the real_parent of the group_leader. The ptracer should 2234 * know about every stop while the real parent is only 2235 * interested in the completion of group stop. The states 2236 * for the two don't interact with each other. Notify 2237 * separately unless they're gonna be duplicates. 2238 */ 2239 do_notify_parent_cldstop(current, true, why); 2240 if (gstop_done && ptrace_reparented(current)) 2241 do_notify_parent_cldstop(current, false, why); 2242 2243 /* 2244 * Don't want to allow preemption here, because 2245 * sys_ptrace() needs this task to be inactive. 2246 * 2247 * XXX: implement read_unlock_no_resched(). 2248 */ 2249 preempt_disable(); 2250 read_unlock(&tasklist_lock); 2251 cgroup_enter_frozen(); 2252 preempt_enable_no_resched(); 2253 freezable_schedule(); 2254 cgroup_leave_frozen(true); 2255 } else { 2256 /* 2257 * By the time we got the lock, our tracer went away. 2258 * Don't drop the lock yet, another tracer may come. 2259 * 2260 * If @gstop_done, the ptracer went away between group stop 2261 * completion and here. During detach, it would have set 2262 * JOBCTL_STOP_PENDING on us and we'll re-enter 2263 * TASK_STOPPED in do_signal_stop() on return, so notifying 2264 * the real parent of the group stop completion is enough. 2265 */ 2266 if (gstop_done) 2267 do_notify_parent_cldstop(current, false, why); 2268 2269 /* tasklist protects us from ptrace_freeze_traced() */ 2270 __set_current_state(TASK_RUNNING); 2271 if (clear_code) 2272 current->exit_code = 0; 2273 read_unlock(&tasklist_lock); 2274 } 2275 2276 /* 2277 * We are back. Now reacquire the siglock before touching 2278 * last_siginfo, so that we are sure to have synchronized with 2279 * any signal-sending on another CPU that wants to examine it. 2280 */ 2281 spin_lock_irq(¤t->sighand->siglock); 2282 current->last_siginfo = NULL; 2283 2284 /* LISTENING can be set only during STOP traps, clear it */ 2285 current->jobctl &= ~JOBCTL_LISTENING; 2286 2287 /* 2288 * Queued signals ignored us while we were stopped for tracing. 2289 * So check for any that we should take before resuming user mode. 2290 * This sets TIF_SIGPENDING, but never clears it. 2291 */ 2292 recalc_sigpending_tsk(current); 2293 } 2294 2295 static void ptrace_do_notify(int signr, int exit_code, int why) 2296 { 2297 kernel_siginfo_t info; 2298 2299 clear_siginfo(&info); 2300 info.si_signo = signr; 2301 info.si_code = exit_code; 2302 info.si_pid = task_pid_vnr(current); 2303 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2304 2305 /* Let the debugger run. */ 2306 ptrace_stop(exit_code, why, 1, &info); 2307 } 2308 2309 void ptrace_notify(int exit_code) 2310 { 2311 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2312 if (unlikely(current->task_works)) 2313 task_work_run(); 2314 2315 spin_lock_irq(¤t->sighand->siglock); 2316 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2317 spin_unlock_irq(¤t->sighand->siglock); 2318 } 2319 2320 /** 2321 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2322 * @signr: signr causing group stop if initiating 2323 * 2324 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2325 * and participate in it. If already set, participate in the existing 2326 * group stop. If participated in a group stop (and thus slept), %true is 2327 * returned with siglock released. 2328 * 2329 * If ptraced, this function doesn't handle stop itself. Instead, 2330 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2331 * untouched. The caller must ensure that INTERRUPT trap handling takes 2332 * places afterwards. 2333 * 2334 * CONTEXT: 2335 * Must be called with @current->sighand->siglock held, which is released 2336 * on %true return. 2337 * 2338 * RETURNS: 2339 * %false if group stop is already cancelled or ptrace trap is scheduled. 2340 * %true if participated in group stop. 2341 */ 2342 static bool do_signal_stop(int signr) 2343 __releases(¤t->sighand->siglock) 2344 { 2345 struct signal_struct *sig = current->signal; 2346 2347 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2348 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2349 struct task_struct *t; 2350 2351 /* signr will be recorded in task->jobctl for retries */ 2352 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2353 2354 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2355 unlikely(signal_group_exit(sig))) 2356 return false; 2357 /* 2358 * There is no group stop already in progress. We must 2359 * initiate one now. 2360 * 2361 * While ptraced, a task may be resumed while group stop is 2362 * still in effect and then receive a stop signal and 2363 * initiate another group stop. This deviates from the 2364 * usual behavior as two consecutive stop signals can't 2365 * cause two group stops when !ptraced. That is why we 2366 * also check !task_is_stopped(t) below. 2367 * 2368 * The condition can be distinguished by testing whether 2369 * SIGNAL_STOP_STOPPED is already set. Don't generate 2370 * group_exit_code in such case. 2371 * 2372 * This is not necessary for SIGNAL_STOP_CONTINUED because 2373 * an intervening stop signal is required to cause two 2374 * continued events regardless of ptrace. 2375 */ 2376 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2377 sig->group_exit_code = signr; 2378 2379 sig->group_stop_count = 0; 2380 2381 if (task_set_jobctl_pending(current, signr | gstop)) 2382 sig->group_stop_count++; 2383 2384 t = current; 2385 while_each_thread(current, t) { 2386 /* 2387 * Setting state to TASK_STOPPED for a group 2388 * stop is always done with the siglock held, 2389 * so this check has no races. 2390 */ 2391 if (!task_is_stopped(t) && 2392 task_set_jobctl_pending(t, signr | gstop)) { 2393 sig->group_stop_count++; 2394 if (likely(!(t->ptrace & PT_SEIZED))) 2395 signal_wake_up(t, 0); 2396 else 2397 ptrace_trap_notify(t); 2398 } 2399 } 2400 } 2401 2402 if (likely(!current->ptrace)) { 2403 int notify = 0; 2404 2405 /* 2406 * If there are no other threads in the group, or if there 2407 * is a group stop in progress and we are the last to stop, 2408 * report to the parent. 2409 */ 2410 if (task_participate_group_stop(current)) 2411 notify = CLD_STOPPED; 2412 2413 set_special_state(TASK_STOPPED); 2414 spin_unlock_irq(¤t->sighand->siglock); 2415 2416 /* 2417 * Notify the parent of the group stop completion. Because 2418 * we're not holding either the siglock or tasklist_lock 2419 * here, ptracer may attach inbetween; however, this is for 2420 * group stop and should always be delivered to the real 2421 * parent of the group leader. The new ptracer will get 2422 * its notification when this task transitions into 2423 * TASK_TRACED. 2424 */ 2425 if (notify) { 2426 read_lock(&tasklist_lock); 2427 do_notify_parent_cldstop(current, false, notify); 2428 read_unlock(&tasklist_lock); 2429 } 2430 2431 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2432 cgroup_enter_frozen(); 2433 freezable_schedule(); 2434 return true; 2435 } else { 2436 /* 2437 * While ptraced, group stop is handled by STOP trap. 2438 * Schedule it and let the caller deal with it. 2439 */ 2440 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2441 return false; 2442 } 2443 } 2444 2445 /** 2446 * do_jobctl_trap - take care of ptrace jobctl traps 2447 * 2448 * When PT_SEIZED, it's used for both group stop and explicit 2449 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2450 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2451 * the stop signal; otherwise, %SIGTRAP. 2452 * 2453 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2454 * number as exit_code and no siginfo. 2455 * 2456 * CONTEXT: 2457 * Must be called with @current->sighand->siglock held, which may be 2458 * released and re-acquired before returning with intervening sleep. 2459 */ 2460 static void do_jobctl_trap(void) 2461 { 2462 struct signal_struct *signal = current->signal; 2463 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2464 2465 if (current->ptrace & PT_SEIZED) { 2466 if (!signal->group_stop_count && 2467 !(signal->flags & SIGNAL_STOP_STOPPED)) 2468 signr = SIGTRAP; 2469 WARN_ON_ONCE(!signr); 2470 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2471 CLD_STOPPED); 2472 } else { 2473 WARN_ON_ONCE(!signr); 2474 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2475 current->exit_code = 0; 2476 } 2477 } 2478 2479 /** 2480 * do_freezer_trap - handle the freezer jobctl trap 2481 * 2482 * Puts the task into frozen state, if only the task is not about to quit. 2483 * In this case it drops JOBCTL_TRAP_FREEZE. 2484 * 2485 * CONTEXT: 2486 * Must be called with @current->sighand->siglock held, 2487 * which is always released before returning. 2488 */ 2489 static void do_freezer_trap(void) 2490 __releases(¤t->sighand->siglock) 2491 { 2492 /* 2493 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2494 * let's make another loop to give it a chance to be handled. 2495 * In any case, we'll return back. 2496 */ 2497 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2498 JOBCTL_TRAP_FREEZE) { 2499 spin_unlock_irq(¤t->sighand->siglock); 2500 return; 2501 } 2502 2503 /* 2504 * Now we're sure that there is no pending fatal signal and no 2505 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2506 * immediately (if there is a non-fatal signal pending), and 2507 * put the task into sleep. 2508 */ 2509 __set_current_state(TASK_INTERRUPTIBLE); 2510 clear_thread_flag(TIF_SIGPENDING); 2511 spin_unlock_irq(¤t->sighand->siglock); 2512 cgroup_enter_frozen(); 2513 freezable_schedule(); 2514 } 2515 2516 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2517 { 2518 /* 2519 * We do not check sig_kernel_stop(signr) but set this marker 2520 * unconditionally because we do not know whether debugger will 2521 * change signr. This flag has no meaning unless we are going 2522 * to stop after return from ptrace_stop(). In this case it will 2523 * be checked in do_signal_stop(), we should only stop if it was 2524 * not cleared by SIGCONT while we were sleeping. See also the 2525 * comment in dequeue_signal(). 2526 */ 2527 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2528 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2529 2530 /* We're back. Did the debugger cancel the sig? */ 2531 signr = current->exit_code; 2532 if (signr == 0) 2533 return signr; 2534 2535 current->exit_code = 0; 2536 2537 /* 2538 * Update the siginfo structure if the signal has 2539 * changed. If the debugger wanted something 2540 * specific in the siginfo structure then it should 2541 * have updated *info via PTRACE_SETSIGINFO. 2542 */ 2543 if (signr != info->si_signo) { 2544 clear_siginfo(info); 2545 info->si_signo = signr; 2546 info->si_errno = 0; 2547 info->si_code = SI_USER; 2548 rcu_read_lock(); 2549 info->si_pid = task_pid_vnr(current->parent); 2550 info->si_uid = from_kuid_munged(current_user_ns(), 2551 task_uid(current->parent)); 2552 rcu_read_unlock(); 2553 } 2554 2555 /* If the (new) signal is now blocked, requeue it. */ 2556 if (sigismember(¤t->blocked, signr)) { 2557 send_signal(signr, info, current, PIDTYPE_PID); 2558 signr = 0; 2559 } 2560 2561 return signr; 2562 } 2563 2564 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2565 { 2566 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2567 case SIL_FAULT: 2568 case SIL_FAULT_TRAPNO: 2569 case SIL_FAULT_MCEERR: 2570 case SIL_FAULT_BNDERR: 2571 case SIL_FAULT_PKUERR: 2572 case SIL_FAULT_PERF_EVENT: 2573 ksig->info.si_addr = arch_untagged_si_addr( 2574 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2575 break; 2576 case SIL_KILL: 2577 case SIL_TIMER: 2578 case SIL_POLL: 2579 case SIL_CHLD: 2580 case SIL_RT: 2581 case SIL_SYS: 2582 break; 2583 } 2584 } 2585 2586 bool get_signal(struct ksignal *ksig) 2587 { 2588 struct sighand_struct *sighand = current->sighand; 2589 struct signal_struct *signal = current->signal; 2590 int signr; 2591 2592 if (unlikely(current->task_works)) 2593 task_work_run(); 2594 2595 /* 2596 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2597 * that the arch handlers don't all have to do it. If we get here 2598 * without TIF_SIGPENDING, just exit after running signal work. 2599 */ 2600 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2601 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2602 tracehook_notify_signal(); 2603 if (!task_sigpending(current)) 2604 return false; 2605 } 2606 2607 if (unlikely(uprobe_deny_signal())) 2608 return false; 2609 2610 /* 2611 * Do this once, we can't return to user-mode if freezing() == T. 2612 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2613 * thus do not need another check after return. 2614 */ 2615 try_to_freeze(); 2616 2617 relock: 2618 spin_lock_irq(&sighand->siglock); 2619 2620 /* 2621 * Every stopped thread goes here after wakeup. Check to see if 2622 * we should notify the parent, prepare_signal(SIGCONT) encodes 2623 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2624 */ 2625 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2626 int why; 2627 2628 if (signal->flags & SIGNAL_CLD_CONTINUED) 2629 why = CLD_CONTINUED; 2630 else 2631 why = CLD_STOPPED; 2632 2633 signal->flags &= ~SIGNAL_CLD_MASK; 2634 2635 spin_unlock_irq(&sighand->siglock); 2636 2637 /* 2638 * Notify the parent that we're continuing. This event is 2639 * always per-process and doesn't make whole lot of sense 2640 * for ptracers, who shouldn't consume the state via 2641 * wait(2) either, but, for backward compatibility, notify 2642 * the ptracer of the group leader too unless it's gonna be 2643 * a duplicate. 2644 */ 2645 read_lock(&tasklist_lock); 2646 do_notify_parent_cldstop(current, false, why); 2647 2648 if (ptrace_reparented(current->group_leader)) 2649 do_notify_parent_cldstop(current->group_leader, 2650 true, why); 2651 read_unlock(&tasklist_lock); 2652 2653 goto relock; 2654 } 2655 2656 /* Has this task already been marked for death? */ 2657 if (signal_group_exit(signal)) { 2658 ksig->info.si_signo = signr = SIGKILL; 2659 sigdelset(¤t->pending.signal, SIGKILL); 2660 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2661 &sighand->action[SIGKILL - 1]); 2662 recalc_sigpending(); 2663 goto fatal; 2664 } 2665 2666 for (;;) { 2667 struct k_sigaction *ka; 2668 2669 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2670 do_signal_stop(0)) 2671 goto relock; 2672 2673 if (unlikely(current->jobctl & 2674 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2675 if (current->jobctl & JOBCTL_TRAP_MASK) { 2676 do_jobctl_trap(); 2677 spin_unlock_irq(&sighand->siglock); 2678 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2679 do_freezer_trap(); 2680 2681 goto relock; 2682 } 2683 2684 /* 2685 * If the task is leaving the frozen state, let's update 2686 * cgroup counters and reset the frozen bit. 2687 */ 2688 if (unlikely(cgroup_task_frozen(current))) { 2689 spin_unlock_irq(&sighand->siglock); 2690 cgroup_leave_frozen(false); 2691 goto relock; 2692 } 2693 2694 /* 2695 * Signals generated by the execution of an instruction 2696 * need to be delivered before any other pending signals 2697 * so that the instruction pointer in the signal stack 2698 * frame points to the faulting instruction. 2699 */ 2700 signr = dequeue_synchronous_signal(&ksig->info); 2701 if (!signr) 2702 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2703 2704 if (!signr) 2705 break; /* will return 0 */ 2706 2707 if (unlikely(current->ptrace) && signr != SIGKILL) { 2708 signr = ptrace_signal(signr, &ksig->info); 2709 if (!signr) 2710 continue; 2711 } 2712 2713 ka = &sighand->action[signr-1]; 2714 2715 /* Trace actually delivered signals. */ 2716 trace_signal_deliver(signr, &ksig->info, ka); 2717 2718 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2719 continue; 2720 if (ka->sa.sa_handler != SIG_DFL) { 2721 /* Run the handler. */ 2722 ksig->ka = *ka; 2723 2724 if (ka->sa.sa_flags & SA_ONESHOT) 2725 ka->sa.sa_handler = SIG_DFL; 2726 2727 break; /* will return non-zero "signr" value */ 2728 } 2729 2730 /* 2731 * Now we are doing the default action for this signal. 2732 */ 2733 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2734 continue; 2735 2736 /* 2737 * Global init gets no signals it doesn't want. 2738 * Container-init gets no signals it doesn't want from same 2739 * container. 2740 * 2741 * Note that if global/container-init sees a sig_kernel_only() 2742 * signal here, the signal must have been generated internally 2743 * or must have come from an ancestor namespace. In either 2744 * case, the signal cannot be dropped. 2745 */ 2746 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2747 !sig_kernel_only(signr)) 2748 continue; 2749 2750 if (sig_kernel_stop(signr)) { 2751 /* 2752 * The default action is to stop all threads in 2753 * the thread group. The job control signals 2754 * do nothing in an orphaned pgrp, but SIGSTOP 2755 * always works. Note that siglock needs to be 2756 * dropped during the call to is_orphaned_pgrp() 2757 * because of lock ordering with tasklist_lock. 2758 * This allows an intervening SIGCONT to be posted. 2759 * We need to check for that and bail out if necessary. 2760 */ 2761 if (signr != SIGSTOP) { 2762 spin_unlock_irq(&sighand->siglock); 2763 2764 /* signals can be posted during this window */ 2765 2766 if (is_current_pgrp_orphaned()) 2767 goto relock; 2768 2769 spin_lock_irq(&sighand->siglock); 2770 } 2771 2772 if (likely(do_signal_stop(ksig->info.si_signo))) { 2773 /* It released the siglock. */ 2774 goto relock; 2775 } 2776 2777 /* 2778 * We didn't actually stop, due to a race 2779 * with SIGCONT or something like that. 2780 */ 2781 continue; 2782 } 2783 2784 fatal: 2785 spin_unlock_irq(&sighand->siglock); 2786 if (unlikely(cgroup_task_frozen(current))) 2787 cgroup_leave_frozen(true); 2788 2789 /* 2790 * Anything else is fatal, maybe with a core dump. 2791 */ 2792 current->flags |= PF_SIGNALED; 2793 2794 if (sig_kernel_coredump(signr)) { 2795 if (print_fatal_signals) 2796 print_fatal_signal(ksig->info.si_signo); 2797 proc_coredump_connector(current); 2798 /* 2799 * If it was able to dump core, this kills all 2800 * other threads in the group and synchronizes with 2801 * their demise. If we lost the race with another 2802 * thread getting here, it set group_exit_code 2803 * first and our do_group_exit call below will use 2804 * that value and ignore the one we pass it. 2805 */ 2806 do_coredump(&ksig->info); 2807 } 2808 2809 /* 2810 * PF_IO_WORKER threads will catch and exit on fatal signals 2811 * themselves. They have cleanup that must be performed, so 2812 * we cannot call do_exit() on their behalf. 2813 */ 2814 if (current->flags & PF_IO_WORKER) 2815 goto out; 2816 2817 /* 2818 * Death signals, no core dump. 2819 */ 2820 do_group_exit(ksig->info.si_signo); 2821 /* NOTREACHED */ 2822 } 2823 spin_unlock_irq(&sighand->siglock); 2824 out: 2825 ksig->sig = signr; 2826 2827 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2828 hide_si_addr_tag_bits(ksig); 2829 2830 return ksig->sig > 0; 2831 } 2832 2833 /** 2834 * signal_delivered - 2835 * @ksig: kernel signal struct 2836 * @stepping: nonzero if debugger single-step or block-step in use 2837 * 2838 * This function should be called when a signal has successfully been 2839 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2840 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2841 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2842 */ 2843 static void signal_delivered(struct ksignal *ksig, int stepping) 2844 { 2845 sigset_t blocked; 2846 2847 /* A signal was successfully delivered, and the 2848 saved sigmask was stored on the signal frame, 2849 and will be restored by sigreturn. So we can 2850 simply clear the restore sigmask flag. */ 2851 clear_restore_sigmask(); 2852 2853 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2854 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2855 sigaddset(&blocked, ksig->sig); 2856 set_current_blocked(&blocked); 2857 if (current->sas_ss_flags & SS_AUTODISARM) 2858 sas_ss_reset(current); 2859 tracehook_signal_handler(stepping); 2860 } 2861 2862 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2863 { 2864 if (failed) 2865 force_sigsegv(ksig->sig); 2866 else 2867 signal_delivered(ksig, stepping); 2868 } 2869 2870 /* 2871 * It could be that complete_signal() picked us to notify about the 2872 * group-wide signal. Other threads should be notified now to take 2873 * the shared signals in @which since we will not. 2874 */ 2875 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2876 { 2877 sigset_t retarget; 2878 struct task_struct *t; 2879 2880 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2881 if (sigisemptyset(&retarget)) 2882 return; 2883 2884 t = tsk; 2885 while_each_thread(tsk, t) { 2886 if (t->flags & PF_EXITING) 2887 continue; 2888 2889 if (!has_pending_signals(&retarget, &t->blocked)) 2890 continue; 2891 /* Remove the signals this thread can handle. */ 2892 sigandsets(&retarget, &retarget, &t->blocked); 2893 2894 if (!task_sigpending(t)) 2895 signal_wake_up(t, 0); 2896 2897 if (sigisemptyset(&retarget)) 2898 break; 2899 } 2900 } 2901 2902 void exit_signals(struct task_struct *tsk) 2903 { 2904 int group_stop = 0; 2905 sigset_t unblocked; 2906 2907 /* 2908 * @tsk is about to have PF_EXITING set - lock out users which 2909 * expect stable threadgroup. 2910 */ 2911 cgroup_threadgroup_change_begin(tsk); 2912 2913 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2914 tsk->flags |= PF_EXITING; 2915 cgroup_threadgroup_change_end(tsk); 2916 return; 2917 } 2918 2919 spin_lock_irq(&tsk->sighand->siglock); 2920 /* 2921 * From now this task is not visible for group-wide signals, 2922 * see wants_signal(), do_signal_stop(). 2923 */ 2924 tsk->flags |= PF_EXITING; 2925 2926 cgroup_threadgroup_change_end(tsk); 2927 2928 if (!task_sigpending(tsk)) 2929 goto out; 2930 2931 unblocked = tsk->blocked; 2932 signotset(&unblocked); 2933 retarget_shared_pending(tsk, &unblocked); 2934 2935 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2936 task_participate_group_stop(tsk)) 2937 group_stop = CLD_STOPPED; 2938 out: 2939 spin_unlock_irq(&tsk->sighand->siglock); 2940 2941 /* 2942 * If group stop has completed, deliver the notification. This 2943 * should always go to the real parent of the group leader. 2944 */ 2945 if (unlikely(group_stop)) { 2946 read_lock(&tasklist_lock); 2947 do_notify_parent_cldstop(tsk, false, group_stop); 2948 read_unlock(&tasklist_lock); 2949 } 2950 } 2951 2952 /* 2953 * System call entry points. 2954 */ 2955 2956 /** 2957 * sys_restart_syscall - restart a system call 2958 */ 2959 SYSCALL_DEFINE0(restart_syscall) 2960 { 2961 struct restart_block *restart = ¤t->restart_block; 2962 return restart->fn(restart); 2963 } 2964 2965 long do_no_restart_syscall(struct restart_block *param) 2966 { 2967 return -EINTR; 2968 } 2969 2970 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2971 { 2972 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 2973 sigset_t newblocked; 2974 /* A set of now blocked but previously unblocked signals. */ 2975 sigandnsets(&newblocked, newset, ¤t->blocked); 2976 retarget_shared_pending(tsk, &newblocked); 2977 } 2978 tsk->blocked = *newset; 2979 recalc_sigpending(); 2980 } 2981 2982 /** 2983 * set_current_blocked - change current->blocked mask 2984 * @newset: new mask 2985 * 2986 * It is wrong to change ->blocked directly, this helper should be used 2987 * to ensure the process can't miss a shared signal we are going to block. 2988 */ 2989 void set_current_blocked(sigset_t *newset) 2990 { 2991 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2992 __set_current_blocked(newset); 2993 } 2994 2995 void __set_current_blocked(const sigset_t *newset) 2996 { 2997 struct task_struct *tsk = current; 2998 2999 /* 3000 * In case the signal mask hasn't changed, there is nothing we need 3001 * to do. The current->blocked shouldn't be modified by other task. 3002 */ 3003 if (sigequalsets(&tsk->blocked, newset)) 3004 return; 3005 3006 spin_lock_irq(&tsk->sighand->siglock); 3007 __set_task_blocked(tsk, newset); 3008 spin_unlock_irq(&tsk->sighand->siglock); 3009 } 3010 3011 /* 3012 * This is also useful for kernel threads that want to temporarily 3013 * (or permanently) block certain signals. 3014 * 3015 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3016 * interface happily blocks "unblockable" signals like SIGKILL 3017 * and friends. 3018 */ 3019 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3020 { 3021 struct task_struct *tsk = current; 3022 sigset_t newset; 3023 3024 /* Lockless, only current can change ->blocked, never from irq */ 3025 if (oldset) 3026 *oldset = tsk->blocked; 3027 3028 switch (how) { 3029 case SIG_BLOCK: 3030 sigorsets(&newset, &tsk->blocked, set); 3031 break; 3032 case SIG_UNBLOCK: 3033 sigandnsets(&newset, &tsk->blocked, set); 3034 break; 3035 case SIG_SETMASK: 3036 newset = *set; 3037 break; 3038 default: 3039 return -EINVAL; 3040 } 3041 3042 __set_current_blocked(&newset); 3043 return 0; 3044 } 3045 EXPORT_SYMBOL(sigprocmask); 3046 3047 /* 3048 * The api helps set app-provided sigmasks. 3049 * 3050 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3051 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3052 * 3053 * Note that it does set_restore_sigmask() in advance, so it must be always 3054 * paired with restore_saved_sigmask_unless() before return from syscall. 3055 */ 3056 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3057 { 3058 sigset_t kmask; 3059 3060 if (!umask) 3061 return 0; 3062 if (sigsetsize != sizeof(sigset_t)) 3063 return -EINVAL; 3064 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3065 return -EFAULT; 3066 3067 set_restore_sigmask(); 3068 current->saved_sigmask = current->blocked; 3069 set_current_blocked(&kmask); 3070 3071 return 0; 3072 } 3073 3074 #ifdef CONFIG_COMPAT 3075 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3076 size_t sigsetsize) 3077 { 3078 sigset_t kmask; 3079 3080 if (!umask) 3081 return 0; 3082 if (sigsetsize != sizeof(compat_sigset_t)) 3083 return -EINVAL; 3084 if (get_compat_sigset(&kmask, umask)) 3085 return -EFAULT; 3086 3087 set_restore_sigmask(); 3088 current->saved_sigmask = current->blocked; 3089 set_current_blocked(&kmask); 3090 3091 return 0; 3092 } 3093 #endif 3094 3095 /** 3096 * sys_rt_sigprocmask - change the list of currently blocked signals 3097 * @how: whether to add, remove, or set signals 3098 * @nset: stores pending signals 3099 * @oset: previous value of signal mask if non-null 3100 * @sigsetsize: size of sigset_t type 3101 */ 3102 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3103 sigset_t __user *, oset, size_t, sigsetsize) 3104 { 3105 sigset_t old_set, new_set; 3106 int error; 3107 3108 /* XXX: Don't preclude handling different sized sigset_t's. */ 3109 if (sigsetsize != sizeof(sigset_t)) 3110 return -EINVAL; 3111 3112 old_set = current->blocked; 3113 3114 if (nset) { 3115 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3116 return -EFAULT; 3117 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3118 3119 error = sigprocmask(how, &new_set, NULL); 3120 if (error) 3121 return error; 3122 } 3123 3124 if (oset) { 3125 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3126 return -EFAULT; 3127 } 3128 3129 return 0; 3130 } 3131 3132 #ifdef CONFIG_COMPAT 3133 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3134 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3135 { 3136 sigset_t old_set = current->blocked; 3137 3138 /* XXX: Don't preclude handling different sized sigset_t's. */ 3139 if (sigsetsize != sizeof(sigset_t)) 3140 return -EINVAL; 3141 3142 if (nset) { 3143 sigset_t new_set; 3144 int error; 3145 if (get_compat_sigset(&new_set, nset)) 3146 return -EFAULT; 3147 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3148 3149 error = sigprocmask(how, &new_set, NULL); 3150 if (error) 3151 return error; 3152 } 3153 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3154 } 3155 #endif 3156 3157 static void do_sigpending(sigset_t *set) 3158 { 3159 spin_lock_irq(¤t->sighand->siglock); 3160 sigorsets(set, ¤t->pending.signal, 3161 ¤t->signal->shared_pending.signal); 3162 spin_unlock_irq(¤t->sighand->siglock); 3163 3164 /* Outside the lock because only this thread touches it. */ 3165 sigandsets(set, ¤t->blocked, set); 3166 } 3167 3168 /** 3169 * sys_rt_sigpending - examine a pending signal that has been raised 3170 * while blocked 3171 * @uset: stores pending signals 3172 * @sigsetsize: size of sigset_t type or larger 3173 */ 3174 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3175 { 3176 sigset_t set; 3177 3178 if (sigsetsize > sizeof(*uset)) 3179 return -EINVAL; 3180 3181 do_sigpending(&set); 3182 3183 if (copy_to_user(uset, &set, sigsetsize)) 3184 return -EFAULT; 3185 3186 return 0; 3187 } 3188 3189 #ifdef CONFIG_COMPAT 3190 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3191 compat_size_t, sigsetsize) 3192 { 3193 sigset_t set; 3194 3195 if (sigsetsize > sizeof(*uset)) 3196 return -EINVAL; 3197 3198 do_sigpending(&set); 3199 3200 return put_compat_sigset(uset, &set, sigsetsize); 3201 } 3202 #endif 3203 3204 static const struct { 3205 unsigned char limit, layout; 3206 } sig_sicodes[] = { 3207 [SIGILL] = { NSIGILL, SIL_FAULT }, 3208 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3209 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3210 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3211 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3212 #if defined(SIGEMT) 3213 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3214 #endif 3215 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3216 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3217 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3218 }; 3219 3220 static bool known_siginfo_layout(unsigned sig, int si_code) 3221 { 3222 if (si_code == SI_KERNEL) 3223 return true; 3224 else if ((si_code > SI_USER)) { 3225 if (sig_specific_sicodes(sig)) { 3226 if (si_code <= sig_sicodes[sig].limit) 3227 return true; 3228 } 3229 else if (si_code <= NSIGPOLL) 3230 return true; 3231 } 3232 else if (si_code >= SI_DETHREAD) 3233 return true; 3234 else if (si_code == SI_ASYNCNL) 3235 return true; 3236 return false; 3237 } 3238 3239 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3240 { 3241 enum siginfo_layout layout = SIL_KILL; 3242 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3243 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3244 (si_code <= sig_sicodes[sig].limit)) { 3245 layout = sig_sicodes[sig].layout; 3246 /* Handle the exceptions */ 3247 if ((sig == SIGBUS) && 3248 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3249 layout = SIL_FAULT_MCEERR; 3250 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3251 layout = SIL_FAULT_BNDERR; 3252 #ifdef SEGV_PKUERR 3253 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3254 layout = SIL_FAULT_PKUERR; 3255 #endif 3256 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3257 layout = SIL_FAULT_PERF_EVENT; 3258 else if (IS_ENABLED(CONFIG_SPARC) && 3259 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3260 layout = SIL_FAULT_TRAPNO; 3261 else if (IS_ENABLED(CONFIG_ALPHA) && 3262 ((sig == SIGFPE) || 3263 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3264 layout = SIL_FAULT_TRAPNO; 3265 } 3266 else if (si_code <= NSIGPOLL) 3267 layout = SIL_POLL; 3268 } else { 3269 if (si_code == SI_TIMER) 3270 layout = SIL_TIMER; 3271 else if (si_code == SI_SIGIO) 3272 layout = SIL_POLL; 3273 else if (si_code < 0) 3274 layout = SIL_RT; 3275 } 3276 return layout; 3277 } 3278 3279 static inline char __user *si_expansion(const siginfo_t __user *info) 3280 { 3281 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3282 } 3283 3284 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3285 { 3286 char __user *expansion = si_expansion(to); 3287 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3288 return -EFAULT; 3289 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3290 return -EFAULT; 3291 return 0; 3292 } 3293 3294 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3295 const siginfo_t __user *from) 3296 { 3297 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3298 char __user *expansion = si_expansion(from); 3299 char buf[SI_EXPANSION_SIZE]; 3300 int i; 3301 /* 3302 * An unknown si_code might need more than 3303 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3304 * extra bytes are 0. This guarantees copy_siginfo_to_user 3305 * will return this data to userspace exactly. 3306 */ 3307 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3308 return -EFAULT; 3309 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3310 if (buf[i] != 0) 3311 return -E2BIG; 3312 } 3313 } 3314 return 0; 3315 } 3316 3317 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3318 const siginfo_t __user *from) 3319 { 3320 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3321 return -EFAULT; 3322 to->si_signo = signo; 3323 return post_copy_siginfo_from_user(to, from); 3324 } 3325 3326 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3327 { 3328 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3329 return -EFAULT; 3330 return post_copy_siginfo_from_user(to, from); 3331 } 3332 3333 #ifdef CONFIG_COMPAT 3334 /** 3335 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3336 * @to: compat siginfo destination 3337 * @from: kernel siginfo source 3338 * 3339 * Note: This function does not work properly for the SIGCHLD on x32, but 3340 * fortunately it doesn't have to. The only valid callers for this function are 3341 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3342 * The latter does not care because SIGCHLD will never cause a coredump. 3343 */ 3344 void copy_siginfo_to_external32(struct compat_siginfo *to, 3345 const struct kernel_siginfo *from) 3346 { 3347 memset(to, 0, sizeof(*to)); 3348 3349 to->si_signo = from->si_signo; 3350 to->si_errno = from->si_errno; 3351 to->si_code = from->si_code; 3352 switch(siginfo_layout(from->si_signo, from->si_code)) { 3353 case SIL_KILL: 3354 to->si_pid = from->si_pid; 3355 to->si_uid = from->si_uid; 3356 break; 3357 case SIL_TIMER: 3358 to->si_tid = from->si_tid; 3359 to->si_overrun = from->si_overrun; 3360 to->si_int = from->si_int; 3361 break; 3362 case SIL_POLL: 3363 to->si_band = from->si_band; 3364 to->si_fd = from->si_fd; 3365 break; 3366 case SIL_FAULT: 3367 to->si_addr = ptr_to_compat(from->si_addr); 3368 break; 3369 case SIL_FAULT_TRAPNO: 3370 to->si_addr = ptr_to_compat(from->si_addr); 3371 to->si_trapno = from->si_trapno; 3372 break; 3373 case SIL_FAULT_MCEERR: 3374 to->si_addr = ptr_to_compat(from->si_addr); 3375 to->si_addr_lsb = from->si_addr_lsb; 3376 break; 3377 case SIL_FAULT_BNDERR: 3378 to->si_addr = ptr_to_compat(from->si_addr); 3379 to->si_lower = ptr_to_compat(from->si_lower); 3380 to->si_upper = ptr_to_compat(from->si_upper); 3381 break; 3382 case SIL_FAULT_PKUERR: 3383 to->si_addr = ptr_to_compat(from->si_addr); 3384 to->si_pkey = from->si_pkey; 3385 break; 3386 case SIL_FAULT_PERF_EVENT: 3387 to->si_addr = ptr_to_compat(from->si_addr); 3388 to->si_perf_data = from->si_perf_data; 3389 to->si_perf_type = from->si_perf_type; 3390 break; 3391 case SIL_CHLD: 3392 to->si_pid = from->si_pid; 3393 to->si_uid = from->si_uid; 3394 to->si_status = from->si_status; 3395 to->si_utime = from->si_utime; 3396 to->si_stime = from->si_stime; 3397 break; 3398 case SIL_RT: 3399 to->si_pid = from->si_pid; 3400 to->si_uid = from->si_uid; 3401 to->si_int = from->si_int; 3402 break; 3403 case SIL_SYS: 3404 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3405 to->si_syscall = from->si_syscall; 3406 to->si_arch = from->si_arch; 3407 break; 3408 } 3409 } 3410 3411 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3412 const struct kernel_siginfo *from) 3413 { 3414 struct compat_siginfo new; 3415 3416 copy_siginfo_to_external32(&new, from); 3417 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3418 return -EFAULT; 3419 return 0; 3420 } 3421 3422 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3423 const struct compat_siginfo *from) 3424 { 3425 clear_siginfo(to); 3426 to->si_signo = from->si_signo; 3427 to->si_errno = from->si_errno; 3428 to->si_code = from->si_code; 3429 switch(siginfo_layout(from->si_signo, from->si_code)) { 3430 case SIL_KILL: 3431 to->si_pid = from->si_pid; 3432 to->si_uid = from->si_uid; 3433 break; 3434 case SIL_TIMER: 3435 to->si_tid = from->si_tid; 3436 to->si_overrun = from->si_overrun; 3437 to->si_int = from->si_int; 3438 break; 3439 case SIL_POLL: 3440 to->si_band = from->si_band; 3441 to->si_fd = from->si_fd; 3442 break; 3443 case SIL_FAULT: 3444 to->si_addr = compat_ptr(from->si_addr); 3445 break; 3446 case SIL_FAULT_TRAPNO: 3447 to->si_addr = compat_ptr(from->si_addr); 3448 to->si_trapno = from->si_trapno; 3449 break; 3450 case SIL_FAULT_MCEERR: 3451 to->si_addr = compat_ptr(from->si_addr); 3452 to->si_addr_lsb = from->si_addr_lsb; 3453 break; 3454 case SIL_FAULT_BNDERR: 3455 to->si_addr = compat_ptr(from->si_addr); 3456 to->si_lower = compat_ptr(from->si_lower); 3457 to->si_upper = compat_ptr(from->si_upper); 3458 break; 3459 case SIL_FAULT_PKUERR: 3460 to->si_addr = compat_ptr(from->si_addr); 3461 to->si_pkey = from->si_pkey; 3462 break; 3463 case SIL_FAULT_PERF_EVENT: 3464 to->si_addr = compat_ptr(from->si_addr); 3465 to->si_perf_data = from->si_perf_data; 3466 to->si_perf_type = from->si_perf_type; 3467 break; 3468 case SIL_CHLD: 3469 to->si_pid = from->si_pid; 3470 to->si_uid = from->si_uid; 3471 to->si_status = from->si_status; 3472 #ifdef CONFIG_X86_X32_ABI 3473 if (in_x32_syscall()) { 3474 to->si_utime = from->_sifields._sigchld_x32._utime; 3475 to->si_stime = from->_sifields._sigchld_x32._stime; 3476 } else 3477 #endif 3478 { 3479 to->si_utime = from->si_utime; 3480 to->si_stime = from->si_stime; 3481 } 3482 break; 3483 case SIL_RT: 3484 to->si_pid = from->si_pid; 3485 to->si_uid = from->si_uid; 3486 to->si_int = from->si_int; 3487 break; 3488 case SIL_SYS: 3489 to->si_call_addr = compat_ptr(from->si_call_addr); 3490 to->si_syscall = from->si_syscall; 3491 to->si_arch = from->si_arch; 3492 break; 3493 } 3494 return 0; 3495 } 3496 3497 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3498 const struct compat_siginfo __user *ufrom) 3499 { 3500 struct compat_siginfo from; 3501 3502 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3503 return -EFAULT; 3504 3505 from.si_signo = signo; 3506 return post_copy_siginfo_from_user32(to, &from); 3507 } 3508 3509 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3510 const struct compat_siginfo __user *ufrom) 3511 { 3512 struct compat_siginfo from; 3513 3514 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3515 return -EFAULT; 3516 3517 return post_copy_siginfo_from_user32(to, &from); 3518 } 3519 #endif /* CONFIG_COMPAT */ 3520 3521 /** 3522 * do_sigtimedwait - wait for queued signals specified in @which 3523 * @which: queued signals to wait for 3524 * @info: if non-null, the signal's siginfo is returned here 3525 * @ts: upper bound on process time suspension 3526 */ 3527 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3528 const struct timespec64 *ts) 3529 { 3530 ktime_t *to = NULL, timeout = KTIME_MAX; 3531 struct task_struct *tsk = current; 3532 sigset_t mask = *which; 3533 int sig, ret = 0; 3534 3535 if (ts) { 3536 if (!timespec64_valid(ts)) 3537 return -EINVAL; 3538 timeout = timespec64_to_ktime(*ts); 3539 to = &timeout; 3540 } 3541 3542 /* 3543 * Invert the set of allowed signals to get those we want to block. 3544 */ 3545 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3546 signotset(&mask); 3547 3548 spin_lock_irq(&tsk->sighand->siglock); 3549 sig = dequeue_signal(tsk, &mask, info); 3550 if (!sig && timeout) { 3551 /* 3552 * None ready, temporarily unblock those we're interested 3553 * while we are sleeping in so that we'll be awakened when 3554 * they arrive. Unblocking is always fine, we can avoid 3555 * set_current_blocked(). 3556 */ 3557 tsk->real_blocked = tsk->blocked; 3558 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3559 recalc_sigpending(); 3560 spin_unlock_irq(&tsk->sighand->siglock); 3561 3562 __set_current_state(TASK_INTERRUPTIBLE); 3563 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3564 HRTIMER_MODE_REL); 3565 spin_lock_irq(&tsk->sighand->siglock); 3566 __set_task_blocked(tsk, &tsk->real_blocked); 3567 sigemptyset(&tsk->real_blocked); 3568 sig = dequeue_signal(tsk, &mask, info); 3569 } 3570 spin_unlock_irq(&tsk->sighand->siglock); 3571 3572 if (sig) 3573 return sig; 3574 return ret ? -EINTR : -EAGAIN; 3575 } 3576 3577 /** 3578 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3579 * in @uthese 3580 * @uthese: queued signals to wait for 3581 * @uinfo: if non-null, the signal's siginfo is returned here 3582 * @uts: upper bound on process time suspension 3583 * @sigsetsize: size of sigset_t type 3584 */ 3585 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3586 siginfo_t __user *, uinfo, 3587 const struct __kernel_timespec __user *, uts, 3588 size_t, sigsetsize) 3589 { 3590 sigset_t these; 3591 struct timespec64 ts; 3592 kernel_siginfo_t info; 3593 int ret; 3594 3595 /* XXX: Don't preclude handling different sized sigset_t's. */ 3596 if (sigsetsize != sizeof(sigset_t)) 3597 return -EINVAL; 3598 3599 if (copy_from_user(&these, uthese, sizeof(these))) 3600 return -EFAULT; 3601 3602 if (uts) { 3603 if (get_timespec64(&ts, uts)) 3604 return -EFAULT; 3605 } 3606 3607 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3608 3609 if (ret > 0 && uinfo) { 3610 if (copy_siginfo_to_user(uinfo, &info)) 3611 ret = -EFAULT; 3612 } 3613 3614 return ret; 3615 } 3616 3617 #ifdef CONFIG_COMPAT_32BIT_TIME 3618 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3619 siginfo_t __user *, uinfo, 3620 const struct old_timespec32 __user *, uts, 3621 size_t, sigsetsize) 3622 { 3623 sigset_t these; 3624 struct timespec64 ts; 3625 kernel_siginfo_t info; 3626 int ret; 3627 3628 if (sigsetsize != sizeof(sigset_t)) 3629 return -EINVAL; 3630 3631 if (copy_from_user(&these, uthese, sizeof(these))) 3632 return -EFAULT; 3633 3634 if (uts) { 3635 if (get_old_timespec32(&ts, uts)) 3636 return -EFAULT; 3637 } 3638 3639 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3640 3641 if (ret > 0 && uinfo) { 3642 if (copy_siginfo_to_user(uinfo, &info)) 3643 ret = -EFAULT; 3644 } 3645 3646 return ret; 3647 } 3648 #endif 3649 3650 #ifdef CONFIG_COMPAT 3651 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3652 struct compat_siginfo __user *, uinfo, 3653 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3654 { 3655 sigset_t s; 3656 struct timespec64 t; 3657 kernel_siginfo_t info; 3658 long ret; 3659 3660 if (sigsetsize != sizeof(sigset_t)) 3661 return -EINVAL; 3662 3663 if (get_compat_sigset(&s, uthese)) 3664 return -EFAULT; 3665 3666 if (uts) { 3667 if (get_timespec64(&t, uts)) 3668 return -EFAULT; 3669 } 3670 3671 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3672 3673 if (ret > 0 && uinfo) { 3674 if (copy_siginfo_to_user32(uinfo, &info)) 3675 ret = -EFAULT; 3676 } 3677 3678 return ret; 3679 } 3680 3681 #ifdef CONFIG_COMPAT_32BIT_TIME 3682 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3683 struct compat_siginfo __user *, uinfo, 3684 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3685 { 3686 sigset_t s; 3687 struct timespec64 t; 3688 kernel_siginfo_t info; 3689 long ret; 3690 3691 if (sigsetsize != sizeof(sigset_t)) 3692 return -EINVAL; 3693 3694 if (get_compat_sigset(&s, uthese)) 3695 return -EFAULT; 3696 3697 if (uts) { 3698 if (get_old_timespec32(&t, uts)) 3699 return -EFAULT; 3700 } 3701 3702 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3703 3704 if (ret > 0 && uinfo) { 3705 if (copy_siginfo_to_user32(uinfo, &info)) 3706 ret = -EFAULT; 3707 } 3708 3709 return ret; 3710 } 3711 #endif 3712 #endif 3713 3714 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3715 { 3716 clear_siginfo(info); 3717 info->si_signo = sig; 3718 info->si_errno = 0; 3719 info->si_code = SI_USER; 3720 info->si_pid = task_tgid_vnr(current); 3721 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3722 } 3723 3724 /** 3725 * sys_kill - send a signal to a process 3726 * @pid: the PID of the process 3727 * @sig: signal to be sent 3728 */ 3729 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3730 { 3731 struct kernel_siginfo info; 3732 3733 prepare_kill_siginfo(sig, &info); 3734 3735 return kill_something_info(sig, &info, pid); 3736 } 3737 3738 /* 3739 * Verify that the signaler and signalee either are in the same pid namespace 3740 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3741 * namespace. 3742 */ 3743 static bool access_pidfd_pidns(struct pid *pid) 3744 { 3745 struct pid_namespace *active = task_active_pid_ns(current); 3746 struct pid_namespace *p = ns_of_pid(pid); 3747 3748 for (;;) { 3749 if (!p) 3750 return false; 3751 if (p == active) 3752 break; 3753 p = p->parent; 3754 } 3755 3756 return true; 3757 } 3758 3759 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3760 siginfo_t __user *info) 3761 { 3762 #ifdef CONFIG_COMPAT 3763 /* 3764 * Avoid hooking up compat syscalls and instead handle necessary 3765 * conversions here. Note, this is a stop-gap measure and should not be 3766 * considered a generic solution. 3767 */ 3768 if (in_compat_syscall()) 3769 return copy_siginfo_from_user32( 3770 kinfo, (struct compat_siginfo __user *)info); 3771 #endif 3772 return copy_siginfo_from_user(kinfo, info); 3773 } 3774 3775 static struct pid *pidfd_to_pid(const struct file *file) 3776 { 3777 struct pid *pid; 3778 3779 pid = pidfd_pid(file); 3780 if (!IS_ERR(pid)) 3781 return pid; 3782 3783 return tgid_pidfd_to_pid(file); 3784 } 3785 3786 /** 3787 * sys_pidfd_send_signal - Signal a process through a pidfd 3788 * @pidfd: file descriptor of the process 3789 * @sig: signal to send 3790 * @info: signal info 3791 * @flags: future flags 3792 * 3793 * The syscall currently only signals via PIDTYPE_PID which covers 3794 * kill(<positive-pid>, <signal>. It does not signal threads or process 3795 * groups. 3796 * In order to extend the syscall to threads and process groups the @flags 3797 * argument should be used. In essence, the @flags argument will determine 3798 * what is signaled and not the file descriptor itself. Put in other words, 3799 * grouping is a property of the flags argument not a property of the file 3800 * descriptor. 3801 * 3802 * Return: 0 on success, negative errno on failure 3803 */ 3804 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3805 siginfo_t __user *, info, unsigned int, flags) 3806 { 3807 int ret; 3808 struct fd f; 3809 struct pid *pid; 3810 kernel_siginfo_t kinfo; 3811 3812 /* Enforce flags be set to 0 until we add an extension. */ 3813 if (flags) 3814 return -EINVAL; 3815 3816 f = fdget(pidfd); 3817 if (!f.file) 3818 return -EBADF; 3819 3820 /* Is this a pidfd? */ 3821 pid = pidfd_to_pid(f.file); 3822 if (IS_ERR(pid)) { 3823 ret = PTR_ERR(pid); 3824 goto err; 3825 } 3826 3827 ret = -EINVAL; 3828 if (!access_pidfd_pidns(pid)) 3829 goto err; 3830 3831 if (info) { 3832 ret = copy_siginfo_from_user_any(&kinfo, info); 3833 if (unlikely(ret)) 3834 goto err; 3835 3836 ret = -EINVAL; 3837 if (unlikely(sig != kinfo.si_signo)) 3838 goto err; 3839 3840 /* Only allow sending arbitrary signals to yourself. */ 3841 ret = -EPERM; 3842 if ((task_pid(current) != pid) && 3843 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3844 goto err; 3845 } else { 3846 prepare_kill_siginfo(sig, &kinfo); 3847 } 3848 3849 ret = kill_pid_info(sig, &kinfo, pid); 3850 3851 err: 3852 fdput(f); 3853 return ret; 3854 } 3855 3856 static int 3857 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3858 { 3859 struct task_struct *p; 3860 int error = -ESRCH; 3861 3862 rcu_read_lock(); 3863 p = find_task_by_vpid(pid); 3864 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3865 error = check_kill_permission(sig, info, p); 3866 /* 3867 * The null signal is a permissions and process existence 3868 * probe. No signal is actually delivered. 3869 */ 3870 if (!error && sig) { 3871 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3872 /* 3873 * If lock_task_sighand() failed we pretend the task 3874 * dies after receiving the signal. The window is tiny, 3875 * and the signal is private anyway. 3876 */ 3877 if (unlikely(error == -ESRCH)) 3878 error = 0; 3879 } 3880 } 3881 rcu_read_unlock(); 3882 3883 return error; 3884 } 3885 3886 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3887 { 3888 struct kernel_siginfo info; 3889 3890 clear_siginfo(&info); 3891 info.si_signo = sig; 3892 info.si_errno = 0; 3893 info.si_code = SI_TKILL; 3894 info.si_pid = task_tgid_vnr(current); 3895 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3896 3897 return do_send_specific(tgid, pid, sig, &info); 3898 } 3899 3900 /** 3901 * sys_tgkill - send signal to one specific thread 3902 * @tgid: the thread group ID of the thread 3903 * @pid: the PID of the thread 3904 * @sig: signal to be sent 3905 * 3906 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3907 * exists but it's not belonging to the target process anymore. This 3908 * method solves the problem of threads exiting and PIDs getting reused. 3909 */ 3910 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3911 { 3912 /* This is only valid for single tasks */ 3913 if (pid <= 0 || tgid <= 0) 3914 return -EINVAL; 3915 3916 return do_tkill(tgid, pid, sig); 3917 } 3918 3919 /** 3920 * sys_tkill - send signal to one specific task 3921 * @pid: the PID of the task 3922 * @sig: signal to be sent 3923 * 3924 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3925 */ 3926 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3927 { 3928 /* This is only valid for single tasks */ 3929 if (pid <= 0) 3930 return -EINVAL; 3931 3932 return do_tkill(0, pid, sig); 3933 } 3934 3935 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3936 { 3937 /* Not even root can pretend to send signals from the kernel. 3938 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3939 */ 3940 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3941 (task_pid_vnr(current) != pid)) 3942 return -EPERM; 3943 3944 /* POSIX.1b doesn't mention process groups. */ 3945 return kill_proc_info(sig, info, pid); 3946 } 3947 3948 /** 3949 * sys_rt_sigqueueinfo - send signal information to a signal 3950 * @pid: the PID of the thread 3951 * @sig: signal to be sent 3952 * @uinfo: signal info to be sent 3953 */ 3954 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3955 siginfo_t __user *, uinfo) 3956 { 3957 kernel_siginfo_t info; 3958 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3959 if (unlikely(ret)) 3960 return ret; 3961 return do_rt_sigqueueinfo(pid, sig, &info); 3962 } 3963 3964 #ifdef CONFIG_COMPAT 3965 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3966 compat_pid_t, pid, 3967 int, sig, 3968 struct compat_siginfo __user *, uinfo) 3969 { 3970 kernel_siginfo_t info; 3971 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3972 if (unlikely(ret)) 3973 return ret; 3974 return do_rt_sigqueueinfo(pid, sig, &info); 3975 } 3976 #endif 3977 3978 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3979 { 3980 /* This is only valid for single tasks */ 3981 if (pid <= 0 || tgid <= 0) 3982 return -EINVAL; 3983 3984 /* Not even root can pretend to send signals from the kernel. 3985 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3986 */ 3987 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3988 (task_pid_vnr(current) != pid)) 3989 return -EPERM; 3990 3991 return do_send_specific(tgid, pid, sig, info); 3992 } 3993 3994 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3995 siginfo_t __user *, uinfo) 3996 { 3997 kernel_siginfo_t info; 3998 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3999 if (unlikely(ret)) 4000 return ret; 4001 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4002 } 4003 4004 #ifdef CONFIG_COMPAT 4005 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4006 compat_pid_t, tgid, 4007 compat_pid_t, pid, 4008 int, sig, 4009 struct compat_siginfo __user *, uinfo) 4010 { 4011 kernel_siginfo_t info; 4012 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4013 if (unlikely(ret)) 4014 return ret; 4015 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4016 } 4017 #endif 4018 4019 /* 4020 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4021 */ 4022 void kernel_sigaction(int sig, __sighandler_t action) 4023 { 4024 spin_lock_irq(¤t->sighand->siglock); 4025 current->sighand->action[sig - 1].sa.sa_handler = action; 4026 if (action == SIG_IGN) { 4027 sigset_t mask; 4028 4029 sigemptyset(&mask); 4030 sigaddset(&mask, sig); 4031 4032 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4033 flush_sigqueue_mask(&mask, ¤t->pending); 4034 recalc_sigpending(); 4035 } 4036 spin_unlock_irq(¤t->sighand->siglock); 4037 } 4038 EXPORT_SYMBOL(kernel_sigaction); 4039 4040 void __weak sigaction_compat_abi(struct k_sigaction *act, 4041 struct k_sigaction *oact) 4042 { 4043 } 4044 4045 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4046 { 4047 struct task_struct *p = current, *t; 4048 struct k_sigaction *k; 4049 sigset_t mask; 4050 4051 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4052 return -EINVAL; 4053 4054 k = &p->sighand->action[sig-1]; 4055 4056 spin_lock_irq(&p->sighand->siglock); 4057 if (oact) 4058 *oact = *k; 4059 4060 /* 4061 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4062 * e.g. by having an architecture use the bit in their uapi. 4063 */ 4064 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4065 4066 /* 4067 * Clear unknown flag bits in order to allow userspace to detect missing 4068 * support for flag bits and to allow the kernel to use non-uapi bits 4069 * internally. 4070 */ 4071 if (act) 4072 act->sa.sa_flags &= UAPI_SA_FLAGS; 4073 if (oact) 4074 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4075 4076 sigaction_compat_abi(act, oact); 4077 4078 if (act) { 4079 sigdelsetmask(&act->sa.sa_mask, 4080 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4081 *k = *act; 4082 /* 4083 * POSIX 3.3.1.3: 4084 * "Setting a signal action to SIG_IGN for a signal that is 4085 * pending shall cause the pending signal to be discarded, 4086 * whether or not it is blocked." 4087 * 4088 * "Setting a signal action to SIG_DFL for a signal that is 4089 * pending and whose default action is to ignore the signal 4090 * (for example, SIGCHLD), shall cause the pending signal to 4091 * be discarded, whether or not it is blocked" 4092 */ 4093 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4094 sigemptyset(&mask); 4095 sigaddset(&mask, sig); 4096 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4097 for_each_thread(p, t) 4098 flush_sigqueue_mask(&mask, &t->pending); 4099 } 4100 } 4101 4102 spin_unlock_irq(&p->sighand->siglock); 4103 return 0; 4104 } 4105 4106 #ifdef CONFIG_DYNAMIC_SIGFRAME 4107 static inline void sigaltstack_lock(void) 4108 __acquires(¤t->sighand->siglock) 4109 { 4110 spin_lock_irq(¤t->sighand->siglock); 4111 } 4112 4113 static inline void sigaltstack_unlock(void) 4114 __releases(¤t->sighand->siglock) 4115 { 4116 spin_unlock_irq(¤t->sighand->siglock); 4117 } 4118 #else 4119 static inline void sigaltstack_lock(void) { } 4120 static inline void sigaltstack_unlock(void) { } 4121 #endif 4122 4123 static int 4124 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4125 size_t min_ss_size) 4126 { 4127 struct task_struct *t = current; 4128 int ret = 0; 4129 4130 if (oss) { 4131 memset(oss, 0, sizeof(stack_t)); 4132 oss->ss_sp = (void __user *) t->sas_ss_sp; 4133 oss->ss_size = t->sas_ss_size; 4134 oss->ss_flags = sas_ss_flags(sp) | 4135 (current->sas_ss_flags & SS_FLAG_BITS); 4136 } 4137 4138 if (ss) { 4139 void __user *ss_sp = ss->ss_sp; 4140 size_t ss_size = ss->ss_size; 4141 unsigned ss_flags = ss->ss_flags; 4142 int ss_mode; 4143 4144 if (unlikely(on_sig_stack(sp))) 4145 return -EPERM; 4146 4147 ss_mode = ss_flags & ~SS_FLAG_BITS; 4148 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4149 ss_mode != 0)) 4150 return -EINVAL; 4151 4152 sigaltstack_lock(); 4153 if (ss_mode == SS_DISABLE) { 4154 ss_size = 0; 4155 ss_sp = NULL; 4156 } else { 4157 if (unlikely(ss_size < min_ss_size)) 4158 ret = -ENOMEM; 4159 if (!sigaltstack_size_valid(ss_size)) 4160 ret = -ENOMEM; 4161 } 4162 if (!ret) { 4163 t->sas_ss_sp = (unsigned long) ss_sp; 4164 t->sas_ss_size = ss_size; 4165 t->sas_ss_flags = ss_flags; 4166 } 4167 sigaltstack_unlock(); 4168 } 4169 return ret; 4170 } 4171 4172 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4173 { 4174 stack_t new, old; 4175 int err; 4176 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4177 return -EFAULT; 4178 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4179 current_user_stack_pointer(), 4180 MINSIGSTKSZ); 4181 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4182 err = -EFAULT; 4183 return err; 4184 } 4185 4186 int restore_altstack(const stack_t __user *uss) 4187 { 4188 stack_t new; 4189 if (copy_from_user(&new, uss, sizeof(stack_t))) 4190 return -EFAULT; 4191 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4192 MINSIGSTKSZ); 4193 /* squash all but EFAULT for now */ 4194 return 0; 4195 } 4196 4197 int __save_altstack(stack_t __user *uss, unsigned long sp) 4198 { 4199 struct task_struct *t = current; 4200 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4201 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4202 __put_user(t->sas_ss_size, &uss->ss_size); 4203 return err; 4204 } 4205 4206 #ifdef CONFIG_COMPAT 4207 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4208 compat_stack_t __user *uoss_ptr) 4209 { 4210 stack_t uss, uoss; 4211 int ret; 4212 4213 if (uss_ptr) { 4214 compat_stack_t uss32; 4215 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4216 return -EFAULT; 4217 uss.ss_sp = compat_ptr(uss32.ss_sp); 4218 uss.ss_flags = uss32.ss_flags; 4219 uss.ss_size = uss32.ss_size; 4220 } 4221 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4222 compat_user_stack_pointer(), 4223 COMPAT_MINSIGSTKSZ); 4224 if (ret >= 0 && uoss_ptr) { 4225 compat_stack_t old; 4226 memset(&old, 0, sizeof(old)); 4227 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4228 old.ss_flags = uoss.ss_flags; 4229 old.ss_size = uoss.ss_size; 4230 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4231 ret = -EFAULT; 4232 } 4233 return ret; 4234 } 4235 4236 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4237 const compat_stack_t __user *, uss_ptr, 4238 compat_stack_t __user *, uoss_ptr) 4239 { 4240 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4241 } 4242 4243 int compat_restore_altstack(const compat_stack_t __user *uss) 4244 { 4245 int err = do_compat_sigaltstack(uss, NULL); 4246 /* squash all but -EFAULT for now */ 4247 return err == -EFAULT ? err : 0; 4248 } 4249 4250 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4251 { 4252 int err; 4253 struct task_struct *t = current; 4254 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4255 &uss->ss_sp) | 4256 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4257 __put_user(t->sas_ss_size, &uss->ss_size); 4258 return err; 4259 } 4260 #endif 4261 4262 #ifdef __ARCH_WANT_SYS_SIGPENDING 4263 4264 /** 4265 * sys_sigpending - examine pending signals 4266 * @uset: where mask of pending signal is returned 4267 */ 4268 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4269 { 4270 sigset_t set; 4271 4272 if (sizeof(old_sigset_t) > sizeof(*uset)) 4273 return -EINVAL; 4274 4275 do_sigpending(&set); 4276 4277 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4278 return -EFAULT; 4279 4280 return 0; 4281 } 4282 4283 #ifdef CONFIG_COMPAT 4284 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4285 { 4286 sigset_t set; 4287 4288 do_sigpending(&set); 4289 4290 return put_user(set.sig[0], set32); 4291 } 4292 #endif 4293 4294 #endif 4295 4296 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4297 /** 4298 * sys_sigprocmask - examine and change blocked signals 4299 * @how: whether to add, remove, or set signals 4300 * @nset: signals to add or remove (if non-null) 4301 * @oset: previous value of signal mask if non-null 4302 * 4303 * Some platforms have their own version with special arguments; 4304 * others support only sys_rt_sigprocmask. 4305 */ 4306 4307 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4308 old_sigset_t __user *, oset) 4309 { 4310 old_sigset_t old_set, new_set; 4311 sigset_t new_blocked; 4312 4313 old_set = current->blocked.sig[0]; 4314 4315 if (nset) { 4316 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4317 return -EFAULT; 4318 4319 new_blocked = current->blocked; 4320 4321 switch (how) { 4322 case SIG_BLOCK: 4323 sigaddsetmask(&new_blocked, new_set); 4324 break; 4325 case SIG_UNBLOCK: 4326 sigdelsetmask(&new_blocked, new_set); 4327 break; 4328 case SIG_SETMASK: 4329 new_blocked.sig[0] = new_set; 4330 break; 4331 default: 4332 return -EINVAL; 4333 } 4334 4335 set_current_blocked(&new_blocked); 4336 } 4337 4338 if (oset) { 4339 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4340 return -EFAULT; 4341 } 4342 4343 return 0; 4344 } 4345 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4346 4347 #ifndef CONFIG_ODD_RT_SIGACTION 4348 /** 4349 * sys_rt_sigaction - alter an action taken by a process 4350 * @sig: signal to be sent 4351 * @act: new sigaction 4352 * @oact: used to save the previous sigaction 4353 * @sigsetsize: size of sigset_t type 4354 */ 4355 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4356 const struct sigaction __user *, act, 4357 struct sigaction __user *, oact, 4358 size_t, sigsetsize) 4359 { 4360 struct k_sigaction new_sa, old_sa; 4361 int ret; 4362 4363 /* XXX: Don't preclude handling different sized sigset_t's. */ 4364 if (sigsetsize != sizeof(sigset_t)) 4365 return -EINVAL; 4366 4367 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4368 return -EFAULT; 4369 4370 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4371 if (ret) 4372 return ret; 4373 4374 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4375 return -EFAULT; 4376 4377 return 0; 4378 } 4379 #ifdef CONFIG_COMPAT 4380 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4381 const struct compat_sigaction __user *, act, 4382 struct compat_sigaction __user *, oact, 4383 compat_size_t, sigsetsize) 4384 { 4385 struct k_sigaction new_ka, old_ka; 4386 #ifdef __ARCH_HAS_SA_RESTORER 4387 compat_uptr_t restorer; 4388 #endif 4389 int ret; 4390 4391 /* XXX: Don't preclude handling different sized sigset_t's. */ 4392 if (sigsetsize != sizeof(compat_sigset_t)) 4393 return -EINVAL; 4394 4395 if (act) { 4396 compat_uptr_t handler; 4397 ret = get_user(handler, &act->sa_handler); 4398 new_ka.sa.sa_handler = compat_ptr(handler); 4399 #ifdef __ARCH_HAS_SA_RESTORER 4400 ret |= get_user(restorer, &act->sa_restorer); 4401 new_ka.sa.sa_restorer = compat_ptr(restorer); 4402 #endif 4403 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4404 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4405 if (ret) 4406 return -EFAULT; 4407 } 4408 4409 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4410 if (!ret && oact) { 4411 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4412 &oact->sa_handler); 4413 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4414 sizeof(oact->sa_mask)); 4415 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4416 #ifdef __ARCH_HAS_SA_RESTORER 4417 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4418 &oact->sa_restorer); 4419 #endif 4420 } 4421 return ret; 4422 } 4423 #endif 4424 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4425 4426 #ifdef CONFIG_OLD_SIGACTION 4427 SYSCALL_DEFINE3(sigaction, int, sig, 4428 const struct old_sigaction __user *, act, 4429 struct old_sigaction __user *, oact) 4430 { 4431 struct k_sigaction new_ka, old_ka; 4432 int ret; 4433 4434 if (act) { 4435 old_sigset_t mask; 4436 if (!access_ok(act, sizeof(*act)) || 4437 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4438 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4439 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4440 __get_user(mask, &act->sa_mask)) 4441 return -EFAULT; 4442 #ifdef __ARCH_HAS_KA_RESTORER 4443 new_ka.ka_restorer = NULL; 4444 #endif 4445 siginitset(&new_ka.sa.sa_mask, mask); 4446 } 4447 4448 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4449 4450 if (!ret && oact) { 4451 if (!access_ok(oact, sizeof(*oact)) || 4452 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4453 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4454 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4455 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4456 return -EFAULT; 4457 } 4458 4459 return ret; 4460 } 4461 #endif 4462 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4463 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4464 const struct compat_old_sigaction __user *, act, 4465 struct compat_old_sigaction __user *, oact) 4466 { 4467 struct k_sigaction new_ka, old_ka; 4468 int ret; 4469 compat_old_sigset_t mask; 4470 compat_uptr_t handler, restorer; 4471 4472 if (act) { 4473 if (!access_ok(act, sizeof(*act)) || 4474 __get_user(handler, &act->sa_handler) || 4475 __get_user(restorer, &act->sa_restorer) || 4476 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4477 __get_user(mask, &act->sa_mask)) 4478 return -EFAULT; 4479 4480 #ifdef __ARCH_HAS_KA_RESTORER 4481 new_ka.ka_restorer = NULL; 4482 #endif 4483 new_ka.sa.sa_handler = compat_ptr(handler); 4484 new_ka.sa.sa_restorer = compat_ptr(restorer); 4485 siginitset(&new_ka.sa.sa_mask, mask); 4486 } 4487 4488 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4489 4490 if (!ret && oact) { 4491 if (!access_ok(oact, sizeof(*oact)) || 4492 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4493 &oact->sa_handler) || 4494 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4495 &oact->sa_restorer) || 4496 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4497 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4498 return -EFAULT; 4499 } 4500 return ret; 4501 } 4502 #endif 4503 4504 #ifdef CONFIG_SGETMASK_SYSCALL 4505 4506 /* 4507 * For backwards compatibility. Functionality superseded by sigprocmask. 4508 */ 4509 SYSCALL_DEFINE0(sgetmask) 4510 { 4511 /* SMP safe */ 4512 return current->blocked.sig[0]; 4513 } 4514 4515 SYSCALL_DEFINE1(ssetmask, int, newmask) 4516 { 4517 int old = current->blocked.sig[0]; 4518 sigset_t newset; 4519 4520 siginitset(&newset, newmask); 4521 set_current_blocked(&newset); 4522 4523 return old; 4524 } 4525 #endif /* CONFIG_SGETMASK_SYSCALL */ 4526 4527 #ifdef __ARCH_WANT_SYS_SIGNAL 4528 /* 4529 * For backwards compatibility. Functionality superseded by sigaction. 4530 */ 4531 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4532 { 4533 struct k_sigaction new_sa, old_sa; 4534 int ret; 4535 4536 new_sa.sa.sa_handler = handler; 4537 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4538 sigemptyset(&new_sa.sa.sa_mask); 4539 4540 ret = do_sigaction(sig, &new_sa, &old_sa); 4541 4542 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4543 } 4544 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4545 4546 #ifdef __ARCH_WANT_SYS_PAUSE 4547 4548 SYSCALL_DEFINE0(pause) 4549 { 4550 while (!signal_pending(current)) { 4551 __set_current_state(TASK_INTERRUPTIBLE); 4552 schedule(); 4553 } 4554 return -ERESTARTNOHAND; 4555 } 4556 4557 #endif 4558 4559 static int sigsuspend(sigset_t *set) 4560 { 4561 current->saved_sigmask = current->blocked; 4562 set_current_blocked(set); 4563 4564 while (!signal_pending(current)) { 4565 __set_current_state(TASK_INTERRUPTIBLE); 4566 schedule(); 4567 } 4568 set_restore_sigmask(); 4569 return -ERESTARTNOHAND; 4570 } 4571 4572 /** 4573 * sys_rt_sigsuspend - replace the signal mask for a value with the 4574 * @unewset value until a signal is received 4575 * @unewset: new signal mask value 4576 * @sigsetsize: size of sigset_t type 4577 */ 4578 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4579 { 4580 sigset_t newset; 4581 4582 /* XXX: Don't preclude handling different sized sigset_t's. */ 4583 if (sigsetsize != sizeof(sigset_t)) 4584 return -EINVAL; 4585 4586 if (copy_from_user(&newset, unewset, sizeof(newset))) 4587 return -EFAULT; 4588 return sigsuspend(&newset); 4589 } 4590 4591 #ifdef CONFIG_COMPAT 4592 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4593 { 4594 sigset_t newset; 4595 4596 /* XXX: Don't preclude handling different sized sigset_t's. */ 4597 if (sigsetsize != sizeof(sigset_t)) 4598 return -EINVAL; 4599 4600 if (get_compat_sigset(&newset, unewset)) 4601 return -EFAULT; 4602 return sigsuspend(&newset); 4603 } 4604 #endif 4605 4606 #ifdef CONFIG_OLD_SIGSUSPEND 4607 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4608 { 4609 sigset_t blocked; 4610 siginitset(&blocked, mask); 4611 return sigsuspend(&blocked); 4612 } 4613 #endif 4614 #ifdef CONFIG_OLD_SIGSUSPEND3 4615 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4616 { 4617 sigset_t blocked; 4618 siginitset(&blocked, mask); 4619 return sigsuspend(&blocked); 4620 } 4621 #endif 4622 4623 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4624 { 4625 return NULL; 4626 } 4627 4628 static inline void siginfo_buildtime_checks(void) 4629 { 4630 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4631 4632 /* Verify the offsets in the two siginfos match */ 4633 #define CHECK_OFFSET(field) \ 4634 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4635 4636 /* kill */ 4637 CHECK_OFFSET(si_pid); 4638 CHECK_OFFSET(si_uid); 4639 4640 /* timer */ 4641 CHECK_OFFSET(si_tid); 4642 CHECK_OFFSET(si_overrun); 4643 CHECK_OFFSET(si_value); 4644 4645 /* rt */ 4646 CHECK_OFFSET(si_pid); 4647 CHECK_OFFSET(si_uid); 4648 CHECK_OFFSET(si_value); 4649 4650 /* sigchld */ 4651 CHECK_OFFSET(si_pid); 4652 CHECK_OFFSET(si_uid); 4653 CHECK_OFFSET(si_status); 4654 CHECK_OFFSET(si_utime); 4655 CHECK_OFFSET(si_stime); 4656 4657 /* sigfault */ 4658 CHECK_OFFSET(si_addr); 4659 CHECK_OFFSET(si_trapno); 4660 CHECK_OFFSET(si_addr_lsb); 4661 CHECK_OFFSET(si_lower); 4662 CHECK_OFFSET(si_upper); 4663 CHECK_OFFSET(si_pkey); 4664 CHECK_OFFSET(si_perf_data); 4665 CHECK_OFFSET(si_perf_type); 4666 4667 /* sigpoll */ 4668 CHECK_OFFSET(si_band); 4669 CHECK_OFFSET(si_fd); 4670 4671 /* sigsys */ 4672 CHECK_OFFSET(si_call_addr); 4673 CHECK_OFFSET(si_syscall); 4674 CHECK_OFFSET(si_arch); 4675 #undef CHECK_OFFSET 4676 4677 /* usb asyncio */ 4678 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4679 offsetof(struct siginfo, si_addr)); 4680 if (sizeof(int) == sizeof(void __user *)) { 4681 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4682 sizeof(void __user *)); 4683 } else { 4684 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4685 sizeof_field(struct siginfo, si_uid)) != 4686 sizeof(void __user *)); 4687 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4688 offsetof(struct siginfo, si_uid)); 4689 } 4690 #ifdef CONFIG_COMPAT 4691 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4692 offsetof(struct compat_siginfo, si_addr)); 4693 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4694 sizeof(compat_uptr_t)); 4695 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4696 sizeof_field(struct siginfo, si_pid)); 4697 #endif 4698 } 4699 4700 void __init signals_init(void) 4701 { 4702 siginfo_buildtime_checks(); 4703 4704 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4705 } 4706 4707 #ifdef CONFIG_KGDB_KDB 4708 #include <linux/kdb.h> 4709 /* 4710 * kdb_send_sig - Allows kdb to send signals without exposing 4711 * signal internals. This function checks if the required locks are 4712 * available before calling the main signal code, to avoid kdb 4713 * deadlocks. 4714 */ 4715 void kdb_send_sig(struct task_struct *t, int sig) 4716 { 4717 static struct task_struct *kdb_prev_t; 4718 int new_t, ret; 4719 if (!spin_trylock(&t->sighand->siglock)) { 4720 kdb_printf("Can't do kill command now.\n" 4721 "The sigmask lock is held somewhere else in " 4722 "kernel, try again later\n"); 4723 return; 4724 } 4725 new_t = kdb_prev_t != t; 4726 kdb_prev_t = t; 4727 if (!task_is_running(t) && new_t) { 4728 spin_unlock(&t->sighand->siglock); 4729 kdb_printf("Process is not RUNNING, sending a signal from " 4730 "kdb risks deadlock\n" 4731 "on the run queue locks. " 4732 "The signal has _not_ been sent.\n" 4733 "Reissue the kill command if you want to risk " 4734 "the deadlock.\n"); 4735 return; 4736 } 4737 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4738 spin_unlock(&t->sighand->siglock); 4739 if (ret) 4740 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4741 sig, t->pid); 4742 else 4743 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4744 } 4745 #endif /* CONFIG_KGDB_KDB */ 4746