xref: /openbmc/linux/kernel/signal.c (revision 0936cdfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 	    !klp_patch_pending(current))
186 		clear_thread_flag(TIF_SIGPENDING);
187 
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190 
191 void calculate_sigpending(void)
192 {
193 	/* Have any signals or users of TIF_SIGPENDING been delayed
194 	 * until after fork?
195 	 */
196 	spin_lock_irq(&current->sighand->siglock);
197 	set_tsk_thread_flag(current, TIF_SIGPENDING);
198 	recalc_sigpending();
199 	spin_unlock_irq(&current->sighand->siglock);
200 }
201 
202 /* Given the mask, find the first available signal that should be serviced. */
203 
204 #define SYNCHRONOUS_MASK \
205 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207 
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 	unsigned long i, *s, *m, x;
211 	int sig = 0;
212 
213 	s = pending->signal.sig;
214 	m = mask->sig;
215 
216 	/*
217 	 * Handle the first word specially: it contains the
218 	 * synchronous signals that need to be dequeued first.
219 	 */
220 	x = *s &~ *m;
221 	if (x) {
222 		if (x & SYNCHRONOUS_MASK)
223 			x &= SYNCHRONOUS_MASK;
224 		sig = ffz(~x) + 1;
225 		return sig;
226 	}
227 
228 	switch (_NSIG_WORDS) {
229 	default:
230 		for (i = 1; i < _NSIG_WORDS; ++i) {
231 			x = *++s &~ *++m;
232 			if (!x)
233 				continue;
234 			sig = ffz(~x) + i*_NSIG_BPW + 1;
235 			break;
236 		}
237 		break;
238 
239 	case 2:
240 		x = s[1] &~ m[1];
241 		if (!x)
242 			break;
243 		sig = ffz(~x) + _NSIG_BPW + 1;
244 		break;
245 
246 	case 1:
247 		/* Nothing to do */
248 		break;
249 	}
250 
251 	return sig;
252 }
253 
254 static inline void print_dropped_signal(int sig)
255 {
256 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257 
258 	if (!print_fatal_signals)
259 		return;
260 
261 	if (!__ratelimit(&ratelimit_state))
262 		return;
263 
264 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 				current->comm, current->pid, sig);
266 }
267 
268 /**
269  * task_set_jobctl_pending - set jobctl pending bits
270  * @task: target task
271  * @mask: pending bits to set
272  *
273  * Clear @mask from @task->jobctl.  @mask must be subset of
274  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276  * cleared.  If @task is already being killed or exiting, this function
277  * becomes noop.
278  *
279  * CONTEXT:
280  * Must be called with @task->sighand->siglock held.
281  *
282  * RETURNS:
283  * %true if @mask is set, %false if made noop because @task was dying.
284  */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290 
291 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 		return false;
293 
294 	if (mask & JOBCTL_STOP_SIGMASK)
295 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296 
297 	task->jobctl |= mask;
298 	return true;
299 }
300 
301 /**
302  * task_clear_jobctl_trapping - clear jobctl trapping bit
303  * @task: target task
304  *
305  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306  * Clear it and wake up the ptracer.  Note that we don't need any further
307  * locking.  @task->siglock guarantees that @task->parent points to the
308  * ptracer.
309  *
310  * CONTEXT:
311  * Must be called with @task->sighand->siglock held.
312  */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 		task->jobctl &= ~JOBCTL_TRAPPING;
317 		smp_mb();	/* advised by wake_up_bit() */
318 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 	}
320 }
321 
322 /**
323  * task_clear_jobctl_pending - clear jobctl pending bits
324  * @task: target task
325  * @mask: pending bits to clear
326  *
327  * Clear @mask from @task->jobctl.  @mask must be subset of
328  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
329  * STOP bits are cleared together.
330  *
331  * If clearing of @mask leaves no stop or trap pending, this function calls
332  * task_clear_jobctl_trapping().
333  *
334  * CONTEXT:
335  * Must be called with @task->sighand->siglock held.
336  */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340 
341 	if (mask & JOBCTL_STOP_PENDING)
342 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343 
344 	task->jobctl &= ~mask;
345 
346 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 		task_clear_jobctl_trapping(task);
348 }
349 
350 /**
351  * task_participate_group_stop - participate in a group stop
352  * @task: task participating in a group stop
353  *
354  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355  * Group stop states are cleared and the group stop count is consumed if
356  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
357  * stop, the appropriate `SIGNAL_*` flags are set.
358  *
359  * CONTEXT:
360  * Must be called with @task->sighand->siglock held.
361  *
362  * RETURNS:
363  * %true if group stop completion should be notified to the parent, %false
364  * otherwise.
365  */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 	struct signal_struct *sig = task->signal;
369 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370 
371 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372 
373 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374 
375 	if (!consume)
376 		return false;
377 
378 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 		sig->group_stop_count--;
380 
381 	/*
382 	 * Tell the caller to notify completion iff we are entering into a
383 	 * fresh group stop.  Read comment in do_signal_stop() for details.
384 	 */
385 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 		return true;
388 	}
389 	return false;
390 }
391 
392 void task_join_group_stop(struct task_struct *task)
393 {
394 	/* Have the new thread join an on-going signal group stop */
395 	unsigned long jobctl = current->jobctl;
396 	if (jobctl & JOBCTL_STOP_PENDING) {
397 		struct signal_struct *sig = current->signal;
398 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400 		if (task_set_jobctl_pending(task, signr | gstop)) {
401 			sig->group_stop_count++;
402 		}
403 	}
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413 {
414 	struct sigqueue *q = NULL;
415 	struct user_struct *user;
416 	int sigpending;
417 
418 	/*
419 	 * Protect access to @t credentials. This can go away when all
420 	 * callers hold rcu read lock.
421 	 *
422 	 * NOTE! A pending signal will hold on to the user refcount,
423 	 * and we get/put the refcount only when the sigpending count
424 	 * changes from/to zero.
425 	 */
426 	rcu_read_lock();
427 	user = __task_cred(t)->user;
428 	sigpending = atomic_inc_return(&user->sigpending);
429 	if (sigpending == 1)
430 		get_uid(user);
431 	rcu_read_unlock();
432 
433 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
434 		q = kmem_cache_alloc(sigqueue_cachep, flags);
435 	} else {
436 		print_dropped_signal(sig);
437 	}
438 
439 	if (unlikely(q == NULL)) {
440 		if (atomic_dec_and_test(&user->sigpending))
441 			free_uid(user);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = 0;
445 		q->user = user;
446 	}
447 
448 	return q;
449 }
450 
451 static void __sigqueue_free(struct sigqueue *q)
452 {
453 	if (q->flags & SIGQUEUE_PREALLOC)
454 		return;
455 	if (atomic_dec_and_test(&q->user->sigpending))
456 		free_uid(q->user);
457 	kmem_cache_free(sigqueue_cachep, q);
458 }
459 
460 void flush_sigqueue(struct sigpending *queue)
461 {
462 	struct sigqueue *q;
463 
464 	sigemptyset(&queue->signal);
465 	while (!list_empty(&queue->list)) {
466 		q = list_entry(queue->list.next, struct sigqueue , list);
467 		list_del_init(&q->list);
468 		__sigqueue_free(q);
469 	}
470 }
471 
472 /*
473  * Flush all pending signals for this kthread.
474  */
475 void flush_signals(struct task_struct *t)
476 {
477 	unsigned long flags;
478 
479 	spin_lock_irqsave(&t->sighand->siglock, flags);
480 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
481 	flush_sigqueue(&t->pending);
482 	flush_sigqueue(&t->signal->shared_pending);
483 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
484 }
485 EXPORT_SYMBOL(flush_signals);
486 
487 #ifdef CONFIG_POSIX_TIMERS
488 static void __flush_itimer_signals(struct sigpending *pending)
489 {
490 	sigset_t signal, retain;
491 	struct sigqueue *q, *n;
492 
493 	signal = pending->signal;
494 	sigemptyset(&retain);
495 
496 	list_for_each_entry_safe(q, n, &pending->list, list) {
497 		int sig = q->info.si_signo;
498 
499 		if (likely(q->info.si_code != SI_TIMER)) {
500 			sigaddset(&retain, sig);
501 		} else {
502 			sigdelset(&signal, sig);
503 			list_del_init(&q->list);
504 			__sigqueue_free(q);
505 		}
506 	}
507 
508 	sigorsets(&pending->signal, &signal, &retain);
509 }
510 
511 void flush_itimer_signals(void)
512 {
513 	struct task_struct *tsk = current;
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
517 	__flush_itimer_signals(&tsk->pending);
518 	__flush_itimer_signals(&tsk->signal->shared_pending);
519 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
520 }
521 #endif
522 
523 void ignore_signals(struct task_struct *t)
524 {
525 	int i;
526 
527 	for (i = 0; i < _NSIG; ++i)
528 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
529 
530 	flush_signals(t);
531 }
532 
533 /*
534  * Flush all handlers for a task.
535  */
536 
537 void
538 flush_signal_handlers(struct task_struct *t, int force_default)
539 {
540 	int i;
541 	struct k_sigaction *ka = &t->sighand->action[0];
542 	for (i = _NSIG ; i != 0 ; i--) {
543 		if (force_default || ka->sa.sa_handler != SIG_IGN)
544 			ka->sa.sa_handler = SIG_DFL;
545 		ka->sa.sa_flags = 0;
546 #ifdef __ARCH_HAS_SA_RESTORER
547 		ka->sa.sa_restorer = NULL;
548 #endif
549 		sigemptyset(&ka->sa.sa_mask);
550 		ka++;
551 	}
552 }
553 
554 bool unhandled_signal(struct task_struct *tsk, int sig)
555 {
556 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
557 	if (is_global_init(tsk))
558 		return true;
559 
560 	if (handler != SIG_IGN && handler != SIG_DFL)
561 		return false;
562 
563 	/* if ptraced, let the tracer determine */
564 	return !tsk->ptrace;
565 }
566 
567 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568 			   bool *resched_timer)
569 {
570 	struct sigqueue *q, *first = NULL;
571 
572 	/*
573 	 * Collect the siginfo appropriate to this signal.  Check if
574 	 * there is another siginfo for the same signal.
575 	*/
576 	list_for_each_entry(q, &list->list, list) {
577 		if (q->info.si_signo == sig) {
578 			if (first)
579 				goto still_pending;
580 			first = q;
581 		}
582 	}
583 
584 	sigdelset(&list->signal, sig);
585 
586 	if (first) {
587 still_pending:
588 		list_del_init(&first->list);
589 		copy_siginfo(info, &first->info);
590 
591 		*resched_timer =
592 			(first->flags & SIGQUEUE_PREALLOC) &&
593 			(info->si_code == SI_TIMER) &&
594 			(info->si_sys_private);
595 
596 		__sigqueue_free(first);
597 	} else {
598 		/*
599 		 * Ok, it wasn't in the queue.  This must be
600 		 * a fast-pathed signal or we must have been
601 		 * out of queue space.  So zero out the info.
602 		 */
603 		clear_siginfo(info);
604 		info->si_signo = sig;
605 		info->si_errno = 0;
606 		info->si_code = SI_USER;
607 		info->si_pid = 0;
608 		info->si_uid = 0;
609 	}
610 }
611 
612 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
613 			kernel_siginfo_t *info, bool *resched_timer)
614 {
615 	int sig = next_signal(pending, mask);
616 
617 	if (sig)
618 		collect_signal(sig, pending, info, resched_timer);
619 	return sig;
620 }
621 
622 /*
623  * Dequeue a signal and return the element to the caller, which is
624  * expected to free it.
625  *
626  * All callers have to hold the siglock.
627  */
628 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
629 {
630 	bool resched_timer = false;
631 	int signr;
632 
633 	/* We only dequeue private signals from ourselves, we don't let
634 	 * signalfd steal them
635 	 */
636 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 	if (!signr) {
638 		signr = __dequeue_signal(&tsk->signal->shared_pending,
639 					 mask, info, &resched_timer);
640 #ifdef CONFIG_POSIX_TIMERS
641 		/*
642 		 * itimer signal ?
643 		 *
644 		 * itimers are process shared and we restart periodic
645 		 * itimers in the signal delivery path to prevent DoS
646 		 * attacks in the high resolution timer case. This is
647 		 * compliant with the old way of self-restarting
648 		 * itimers, as the SIGALRM is a legacy signal and only
649 		 * queued once. Changing the restart behaviour to
650 		 * restart the timer in the signal dequeue path is
651 		 * reducing the timer noise on heavy loaded !highres
652 		 * systems too.
653 		 */
654 		if (unlikely(signr == SIGALRM)) {
655 			struct hrtimer *tmr = &tsk->signal->real_timer;
656 
657 			if (!hrtimer_is_queued(tmr) &&
658 			    tsk->signal->it_real_incr != 0) {
659 				hrtimer_forward(tmr, tmr->base->get_time(),
660 						tsk->signal->it_real_incr);
661 				hrtimer_restart(tmr);
662 			}
663 		}
664 #endif
665 	}
666 
667 	recalc_sigpending();
668 	if (!signr)
669 		return 0;
670 
671 	if (unlikely(sig_kernel_stop(signr))) {
672 		/*
673 		 * Set a marker that we have dequeued a stop signal.  Our
674 		 * caller might release the siglock and then the pending
675 		 * stop signal it is about to process is no longer in the
676 		 * pending bitmasks, but must still be cleared by a SIGCONT
677 		 * (and overruled by a SIGKILL).  So those cases clear this
678 		 * shared flag after we've set it.  Note that this flag may
679 		 * remain set after the signal we return is ignored or
680 		 * handled.  That doesn't matter because its only purpose
681 		 * is to alert stop-signal processing code when another
682 		 * processor has come along and cleared the flag.
683 		 */
684 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
685 	}
686 #ifdef CONFIG_POSIX_TIMERS
687 	if (resched_timer) {
688 		/*
689 		 * Release the siglock to ensure proper locking order
690 		 * of timer locks outside of siglocks.  Note, we leave
691 		 * irqs disabled here, since the posix-timers code is
692 		 * about to disable them again anyway.
693 		 */
694 		spin_unlock(&tsk->sighand->siglock);
695 		posixtimer_rearm(info);
696 		spin_lock(&tsk->sighand->siglock);
697 
698 		/* Don't expose the si_sys_private value to userspace */
699 		info->si_sys_private = 0;
700 	}
701 #endif
702 	return signr;
703 }
704 EXPORT_SYMBOL_GPL(dequeue_signal);
705 
706 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707 {
708 	struct task_struct *tsk = current;
709 	struct sigpending *pending = &tsk->pending;
710 	struct sigqueue *q, *sync = NULL;
711 
712 	/*
713 	 * Might a synchronous signal be in the queue?
714 	 */
715 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716 		return 0;
717 
718 	/*
719 	 * Return the first synchronous signal in the queue.
720 	 */
721 	list_for_each_entry(q, &pending->list, list) {
722 		/* Synchronous signals have a postive si_code */
723 		if ((q->info.si_code > SI_USER) &&
724 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725 			sync = q;
726 			goto next;
727 		}
728 	}
729 	return 0;
730 next:
731 	/*
732 	 * Check if there is another siginfo for the same signal.
733 	 */
734 	list_for_each_entry_continue(q, &pending->list, list) {
735 		if (q->info.si_signo == sync->info.si_signo)
736 			goto still_pending;
737 	}
738 
739 	sigdelset(&pending->signal, sync->info.si_signo);
740 	recalc_sigpending();
741 still_pending:
742 	list_del_init(&sync->list);
743 	copy_siginfo(info, &sync->info);
744 	__sigqueue_free(sync);
745 	return info->si_signo;
746 }
747 
748 /*
749  * Tell a process that it has a new active signal..
750  *
751  * NOTE! we rely on the previous spin_lock to
752  * lock interrupts for us! We can only be called with
753  * "siglock" held, and the local interrupt must
754  * have been disabled when that got acquired!
755  *
756  * No need to set need_resched since signal event passing
757  * goes through ->blocked
758  */
759 void signal_wake_up_state(struct task_struct *t, unsigned int state)
760 {
761 	set_tsk_thread_flag(t, TIF_SIGPENDING);
762 	/*
763 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
764 	 * case. We don't check t->state here because there is a race with it
765 	 * executing another processor and just now entering stopped state.
766 	 * By using wake_up_state, we ensure the process will wake up and
767 	 * handle its death signal.
768 	 */
769 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
770 		kick_process(t);
771 }
772 
773 /*
774  * Remove signals in mask from the pending set and queue.
775  * Returns 1 if any signals were found.
776  *
777  * All callers must be holding the siglock.
778  */
779 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
780 {
781 	struct sigqueue *q, *n;
782 	sigset_t m;
783 
784 	sigandsets(&m, mask, &s->signal);
785 	if (sigisemptyset(&m))
786 		return;
787 
788 	sigandnsets(&s->signal, &s->signal, mask);
789 	list_for_each_entry_safe(q, n, &s->list, list) {
790 		if (sigismember(mask, q->info.si_signo)) {
791 			list_del_init(&q->list);
792 			__sigqueue_free(q);
793 		}
794 	}
795 }
796 
797 static inline int is_si_special(const struct kernel_siginfo *info)
798 {
799 	return info <= SEND_SIG_PRIV;
800 }
801 
802 static inline bool si_fromuser(const struct kernel_siginfo *info)
803 {
804 	return info == SEND_SIG_NOINFO ||
805 		(!is_si_special(info) && SI_FROMUSER(info));
806 }
807 
808 /*
809  * called with RCU read lock from check_kill_permission()
810  */
811 static bool kill_ok_by_cred(struct task_struct *t)
812 {
813 	const struct cred *cred = current_cred();
814 	const struct cred *tcred = __task_cred(t);
815 
816 	return uid_eq(cred->euid, tcred->suid) ||
817 	       uid_eq(cred->euid, tcred->uid) ||
818 	       uid_eq(cred->uid, tcred->suid) ||
819 	       uid_eq(cred->uid, tcred->uid) ||
820 	       ns_capable(tcred->user_ns, CAP_KILL);
821 }
822 
823 /*
824  * Bad permissions for sending the signal
825  * - the caller must hold the RCU read lock
826  */
827 static int check_kill_permission(int sig, struct kernel_siginfo *info,
828 				 struct task_struct *t)
829 {
830 	struct pid *sid;
831 	int error;
832 
833 	if (!valid_signal(sig))
834 		return -EINVAL;
835 
836 	if (!si_fromuser(info))
837 		return 0;
838 
839 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
840 	if (error)
841 		return error;
842 
843 	if (!same_thread_group(current, t) &&
844 	    !kill_ok_by_cred(t)) {
845 		switch (sig) {
846 		case SIGCONT:
847 			sid = task_session(t);
848 			/*
849 			 * We don't return the error if sid == NULL. The
850 			 * task was unhashed, the caller must notice this.
851 			 */
852 			if (!sid || sid == task_session(current))
853 				break;
854 			/* fall through */
855 		default:
856 			return -EPERM;
857 		}
858 	}
859 
860 	return security_task_kill(t, info, sig, NULL);
861 }
862 
863 /**
864  * ptrace_trap_notify - schedule trap to notify ptracer
865  * @t: tracee wanting to notify tracer
866  *
867  * This function schedules sticky ptrace trap which is cleared on the next
868  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
869  * ptracer.
870  *
871  * If @t is running, STOP trap will be taken.  If trapped for STOP and
872  * ptracer is listening for events, tracee is woken up so that it can
873  * re-trap for the new event.  If trapped otherwise, STOP trap will be
874  * eventually taken without returning to userland after the existing traps
875  * are finished by PTRACE_CONT.
876  *
877  * CONTEXT:
878  * Must be called with @task->sighand->siglock held.
879  */
880 static void ptrace_trap_notify(struct task_struct *t)
881 {
882 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
883 	assert_spin_locked(&t->sighand->siglock);
884 
885 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
886 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
887 }
888 
889 /*
890  * Handle magic process-wide effects of stop/continue signals. Unlike
891  * the signal actions, these happen immediately at signal-generation
892  * time regardless of blocking, ignoring, or handling.  This does the
893  * actual continuing for SIGCONT, but not the actual stopping for stop
894  * signals. The process stop is done as a signal action for SIG_DFL.
895  *
896  * Returns true if the signal should be actually delivered, otherwise
897  * it should be dropped.
898  */
899 static bool prepare_signal(int sig, struct task_struct *p, bool force)
900 {
901 	struct signal_struct *signal = p->signal;
902 	struct task_struct *t;
903 	sigset_t flush;
904 
905 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
906 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
907 			return sig == SIGKILL;
908 		/*
909 		 * The process is in the middle of dying, nothing to do.
910 		 */
911 	} else if (sig_kernel_stop(sig)) {
912 		/*
913 		 * This is a stop signal.  Remove SIGCONT from all queues.
914 		 */
915 		siginitset(&flush, sigmask(SIGCONT));
916 		flush_sigqueue_mask(&flush, &signal->shared_pending);
917 		for_each_thread(p, t)
918 			flush_sigqueue_mask(&flush, &t->pending);
919 	} else if (sig == SIGCONT) {
920 		unsigned int why;
921 		/*
922 		 * Remove all stop signals from all queues, wake all threads.
923 		 */
924 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
925 		flush_sigqueue_mask(&flush, &signal->shared_pending);
926 		for_each_thread(p, t) {
927 			flush_sigqueue_mask(&flush, &t->pending);
928 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
929 			if (likely(!(t->ptrace & PT_SEIZED)))
930 				wake_up_state(t, __TASK_STOPPED);
931 			else
932 				ptrace_trap_notify(t);
933 		}
934 
935 		/*
936 		 * Notify the parent with CLD_CONTINUED if we were stopped.
937 		 *
938 		 * If we were in the middle of a group stop, we pretend it
939 		 * was already finished, and then continued. Since SIGCHLD
940 		 * doesn't queue we report only CLD_STOPPED, as if the next
941 		 * CLD_CONTINUED was dropped.
942 		 */
943 		why = 0;
944 		if (signal->flags & SIGNAL_STOP_STOPPED)
945 			why |= SIGNAL_CLD_CONTINUED;
946 		else if (signal->group_stop_count)
947 			why |= SIGNAL_CLD_STOPPED;
948 
949 		if (why) {
950 			/*
951 			 * The first thread which returns from do_signal_stop()
952 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
953 			 * notify its parent. See get_signal().
954 			 */
955 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
956 			signal->group_stop_count = 0;
957 			signal->group_exit_code = 0;
958 		}
959 	}
960 
961 	return !sig_ignored(p, sig, force);
962 }
963 
964 /*
965  * Test if P wants to take SIG.  After we've checked all threads with this,
966  * it's equivalent to finding no threads not blocking SIG.  Any threads not
967  * blocking SIG were ruled out because they are not running and already
968  * have pending signals.  Such threads will dequeue from the shared queue
969  * as soon as they're available, so putting the signal on the shared queue
970  * will be equivalent to sending it to one such thread.
971  */
972 static inline bool wants_signal(int sig, struct task_struct *p)
973 {
974 	if (sigismember(&p->blocked, sig))
975 		return false;
976 
977 	if (p->flags & PF_EXITING)
978 		return false;
979 
980 	if (sig == SIGKILL)
981 		return true;
982 
983 	if (task_is_stopped_or_traced(p))
984 		return false;
985 
986 	return task_curr(p) || !signal_pending(p);
987 }
988 
989 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
990 {
991 	struct signal_struct *signal = p->signal;
992 	struct task_struct *t;
993 
994 	/*
995 	 * Now find a thread we can wake up to take the signal off the queue.
996 	 *
997 	 * If the main thread wants the signal, it gets first crack.
998 	 * Probably the least surprising to the average bear.
999 	 */
1000 	if (wants_signal(sig, p))
1001 		t = p;
1002 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003 		/*
1004 		 * There is just one thread and it does not need to be woken.
1005 		 * It will dequeue unblocked signals before it runs again.
1006 		 */
1007 		return;
1008 	else {
1009 		/*
1010 		 * Otherwise try to find a suitable thread.
1011 		 */
1012 		t = signal->curr_target;
1013 		while (!wants_signal(sig, t)) {
1014 			t = next_thread(t);
1015 			if (t == signal->curr_target)
1016 				/*
1017 				 * No thread needs to be woken.
1018 				 * Any eligible threads will see
1019 				 * the signal in the queue soon.
1020 				 */
1021 				return;
1022 		}
1023 		signal->curr_target = t;
1024 	}
1025 
1026 	/*
1027 	 * Found a killable thread.  If the signal will be fatal,
1028 	 * then start taking the whole group down immediately.
1029 	 */
1030 	if (sig_fatal(p, sig) &&
1031 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032 	    !sigismember(&t->real_blocked, sig) &&
1033 	    (sig == SIGKILL || !p->ptrace)) {
1034 		/*
1035 		 * This signal will be fatal to the whole group.
1036 		 */
1037 		if (!sig_kernel_coredump(sig)) {
1038 			/*
1039 			 * Start a group exit and wake everybody up.
1040 			 * This way we don't have other threads
1041 			 * running and doing things after a slower
1042 			 * thread has the fatal signal pending.
1043 			 */
1044 			signal->flags = SIGNAL_GROUP_EXIT;
1045 			signal->group_exit_code = sig;
1046 			signal->group_stop_count = 0;
1047 			t = p;
1048 			do {
1049 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050 				sigaddset(&t->pending.signal, SIGKILL);
1051 				signal_wake_up(t, 1);
1052 			} while_each_thread(p, t);
1053 			return;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * The signal is already in the shared-pending queue.
1059 	 * Tell the chosen thread to wake up and dequeue it.
1060 	 */
1061 	signal_wake_up(t, sig == SIGKILL);
1062 	return;
1063 }
1064 
1065 static inline bool legacy_queue(struct sigpending *signals, int sig)
1066 {
1067 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068 }
1069 
1070 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071 			enum pid_type type, bool force)
1072 {
1073 	struct sigpending *pending;
1074 	struct sigqueue *q;
1075 	int override_rlimit;
1076 	int ret = 0, result;
1077 
1078 	assert_spin_locked(&t->sighand->siglock);
1079 
1080 	result = TRACE_SIGNAL_IGNORED;
1081 	if (!prepare_signal(sig, t, force))
1082 		goto ret;
1083 
1084 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085 	/*
1086 	 * Short-circuit ignored signals and support queuing
1087 	 * exactly one non-rt signal, so that we can get more
1088 	 * detailed information about the cause of the signal.
1089 	 */
1090 	result = TRACE_SIGNAL_ALREADY_PENDING;
1091 	if (legacy_queue(pending, sig))
1092 		goto ret;
1093 
1094 	result = TRACE_SIGNAL_DELIVERED;
1095 	/*
1096 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097 	 */
1098 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099 		goto out_set;
1100 
1101 	/*
1102 	 * Real-time signals must be queued if sent by sigqueue, or
1103 	 * some other real-time mechanism.  It is implementation
1104 	 * defined whether kill() does so.  We attempt to do so, on
1105 	 * the principle of least surprise, but since kill is not
1106 	 * allowed to fail with EAGAIN when low on memory we just
1107 	 * make sure at least one signal gets delivered and don't
1108 	 * pass on the info struct.
1109 	 */
1110 	if (sig < SIGRTMIN)
1111 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112 	else
1113 		override_rlimit = 0;
1114 
1115 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1116 	if (q) {
1117 		list_add_tail(&q->list, &pending->list);
1118 		switch ((unsigned long) info) {
1119 		case (unsigned long) SEND_SIG_NOINFO:
1120 			clear_siginfo(&q->info);
1121 			q->info.si_signo = sig;
1122 			q->info.si_errno = 0;
1123 			q->info.si_code = SI_USER;
1124 			q->info.si_pid = task_tgid_nr_ns(current,
1125 							task_active_pid_ns(t));
1126 			rcu_read_lock();
1127 			q->info.si_uid =
1128 				from_kuid_munged(task_cred_xxx(t, user_ns),
1129 						 current_uid());
1130 			rcu_read_unlock();
1131 			break;
1132 		case (unsigned long) SEND_SIG_PRIV:
1133 			clear_siginfo(&q->info);
1134 			q->info.si_signo = sig;
1135 			q->info.si_errno = 0;
1136 			q->info.si_code = SI_KERNEL;
1137 			q->info.si_pid = 0;
1138 			q->info.si_uid = 0;
1139 			break;
1140 		default:
1141 			copy_siginfo(&q->info, info);
1142 			break;
1143 		}
1144 	} else if (!is_si_special(info) &&
1145 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1146 		/*
1147 		 * Queue overflow, abort.  We may abort if the
1148 		 * signal was rt and sent by user using something
1149 		 * other than kill().
1150 		 */
1151 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152 		ret = -EAGAIN;
1153 		goto ret;
1154 	} else {
1155 		/*
1156 		 * This is a silent loss of information.  We still
1157 		 * send the signal, but the *info bits are lost.
1158 		 */
1159 		result = TRACE_SIGNAL_LOSE_INFO;
1160 	}
1161 
1162 out_set:
1163 	signalfd_notify(t, sig);
1164 	sigaddset(&pending->signal, sig);
1165 
1166 	/* Let multiprocess signals appear after on-going forks */
1167 	if (type > PIDTYPE_TGID) {
1168 		struct multiprocess_signals *delayed;
1169 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170 			sigset_t *signal = &delayed->signal;
1171 			/* Can't queue both a stop and a continue signal */
1172 			if (sig == SIGCONT)
1173 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174 			else if (sig_kernel_stop(sig))
1175 				sigdelset(signal, SIGCONT);
1176 			sigaddset(signal, sig);
1177 		}
1178 	}
1179 
1180 	complete_signal(sig, t, type);
1181 ret:
1182 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183 	return ret;
1184 }
1185 
1186 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187 {
1188 	bool ret = false;
1189 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1190 	case SIL_KILL:
1191 	case SIL_CHLD:
1192 	case SIL_RT:
1193 		ret = true;
1194 		break;
1195 	case SIL_TIMER:
1196 	case SIL_POLL:
1197 	case SIL_FAULT:
1198 	case SIL_FAULT_MCEERR:
1199 	case SIL_FAULT_BNDERR:
1200 	case SIL_FAULT_PKUERR:
1201 	case SIL_SYS:
1202 		ret = false;
1203 		break;
1204 	}
1205 	return ret;
1206 }
1207 
1208 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209 			enum pid_type type)
1210 {
1211 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212 	bool force = false;
1213 
1214 	if (info == SEND_SIG_NOINFO) {
1215 		/* Force if sent from an ancestor pid namespace */
1216 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217 	} else if (info == SEND_SIG_PRIV) {
1218 		/* Don't ignore kernel generated signals */
1219 		force = true;
1220 	} else if (has_si_pid_and_uid(info)) {
1221 		/* SIGKILL and SIGSTOP is special or has ids */
1222 		struct user_namespace *t_user_ns;
1223 
1224 		rcu_read_lock();
1225 		t_user_ns = task_cred_xxx(t, user_ns);
1226 		if (current_user_ns() != t_user_ns) {
1227 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1229 		}
1230 		rcu_read_unlock();
1231 
1232 		/* A kernel generated signal? */
1233 		force = (info->si_code == SI_KERNEL);
1234 
1235 		/* From an ancestor pid namespace? */
1236 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237 			info->si_pid = 0;
1238 			force = true;
1239 		}
1240 	}
1241 	return __send_signal(sig, info, t, type, force);
1242 }
1243 
1244 static void print_fatal_signal(int signr)
1245 {
1246 	struct pt_regs *regs = signal_pt_regs();
1247 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1248 
1249 #if defined(__i386__) && !defined(__arch_um__)
1250 	pr_info("code at %08lx: ", regs->ip);
1251 	{
1252 		int i;
1253 		for (i = 0; i < 16; i++) {
1254 			unsigned char insn;
1255 
1256 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257 				break;
1258 			pr_cont("%02x ", insn);
1259 		}
1260 	}
1261 	pr_cont("\n");
1262 #endif
1263 	preempt_disable();
1264 	show_regs(regs);
1265 	preempt_enable();
1266 }
1267 
1268 static int __init setup_print_fatal_signals(char *str)
1269 {
1270 	get_option (&str, &print_fatal_signals);
1271 
1272 	return 1;
1273 }
1274 
1275 __setup("print-fatal-signals=", setup_print_fatal_signals);
1276 
1277 int
1278 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279 {
1280 	return send_signal(sig, info, p, PIDTYPE_TGID);
1281 }
1282 
1283 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284 			enum pid_type type)
1285 {
1286 	unsigned long flags;
1287 	int ret = -ESRCH;
1288 
1289 	if (lock_task_sighand(p, &flags)) {
1290 		ret = send_signal(sig, info, p, type);
1291 		unlock_task_sighand(p, &flags);
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 /*
1298  * Force a signal that the process can't ignore: if necessary
1299  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300  *
1301  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302  * since we do not want to have a signal handler that was blocked
1303  * be invoked when user space had explicitly blocked it.
1304  *
1305  * We don't want to have recursive SIGSEGV's etc, for example,
1306  * that is why we also clear SIGNAL_UNKILLABLE.
1307  */
1308 static int
1309 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1310 {
1311 	unsigned long int flags;
1312 	int ret, blocked, ignored;
1313 	struct k_sigaction *action;
1314 	int sig = info->si_signo;
1315 
1316 	spin_lock_irqsave(&t->sighand->siglock, flags);
1317 	action = &t->sighand->action[sig-1];
1318 	ignored = action->sa.sa_handler == SIG_IGN;
1319 	blocked = sigismember(&t->blocked, sig);
1320 	if (blocked || ignored) {
1321 		action->sa.sa_handler = SIG_DFL;
1322 		if (blocked) {
1323 			sigdelset(&t->blocked, sig);
1324 			recalc_sigpending_and_wake(t);
1325 		}
1326 	}
1327 	/*
1328 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329 	 * debugging to leave init killable.
1330 	 */
1331 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1332 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1334 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335 
1336 	return ret;
1337 }
1338 
1339 int force_sig_info(struct kernel_siginfo *info)
1340 {
1341 	return force_sig_info_to_task(info, current);
1342 }
1343 
1344 /*
1345  * Nuke all other threads in the group.
1346  */
1347 int zap_other_threads(struct task_struct *p)
1348 {
1349 	struct task_struct *t = p;
1350 	int count = 0;
1351 
1352 	p->signal->group_stop_count = 0;
1353 
1354 	while_each_thread(p, t) {
1355 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356 		count++;
1357 
1358 		/* Don't bother with already dead threads */
1359 		if (t->exit_state)
1360 			continue;
1361 		sigaddset(&t->pending.signal, SIGKILL);
1362 		signal_wake_up(t, 1);
1363 	}
1364 
1365 	return count;
1366 }
1367 
1368 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369 					   unsigned long *flags)
1370 {
1371 	struct sighand_struct *sighand;
1372 
1373 	rcu_read_lock();
1374 	for (;;) {
1375 		sighand = rcu_dereference(tsk->sighand);
1376 		if (unlikely(sighand == NULL))
1377 			break;
1378 
1379 		/*
1380 		 * This sighand can be already freed and even reused, but
1381 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382 		 * initializes ->siglock: this slab can't go away, it has
1383 		 * the same object type, ->siglock can't be reinitialized.
1384 		 *
1385 		 * We need to ensure that tsk->sighand is still the same
1386 		 * after we take the lock, we can race with de_thread() or
1387 		 * __exit_signal(). In the latter case the next iteration
1388 		 * must see ->sighand == NULL.
1389 		 */
1390 		spin_lock_irqsave(&sighand->siglock, *flags);
1391 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1392 			break;
1393 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1394 	}
1395 	rcu_read_unlock();
1396 
1397 	return sighand;
1398 }
1399 
1400 /*
1401  * send signal info to all the members of a group
1402  */
1403 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404 			struct task_struct *p, enum pid_type type)
1405 {
1406 	int ret;
1407 
1408 	rcu_read_lock();
1409 	ret = check_kill_permission(sig, info, p);
1410 	rcu_read_unlock();
1411 
1412 	if (!ret && sig)
1413 		ret = do_send_sig_info(sig, info, p, type);
1414 
1415 	return ret;
1416 }
1417 
1418 /*
1419  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420  * control characters do (^C, ^Z etc)
1421  * - the caller must hold at least a readlock on tasklist_lock
1422  */
1423 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424 {
1425 	struct task_struct *p = NULL;
1426 	int retval, success;
1427 
1428 	success = 0;
1429 	retval = -ESRCH;
1430 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432 		success |= !err;
1433 		retval = err;
1434 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435 	return success ? 0 : retval;
1436 }
1437 
1438 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1439 {
1440 	int error = -ESRCH;
1441 	struct task_struct *p;
1442 
1443 	for (;;) {
1444 		rcu_read_lock();
1445 		p = pid_task(pid, PIDTYPE_PID);
1446 		if (p)
1447 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448 		rcu_read_unlock();
1449 		if (likely(!p || error != -ESRCH))
1450 			return error;
1451 
1452 		/*
1453 		 * The task was unhashed in between, try again.  If it
1454 		 * is dead, pid_task() will return NULL, if we race with
1455 		 * de_thread() it will find the new leader.
1456 		 */
1457 	}
1458 }
1459 
1460 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461 {
1462 	int error;
1463 	rcu_read_lock();
1464 	error = kill_pid_info(sig, info, find_vpid(pid));
1465 	rcu_read_unlock();
1466 	return error;
1467 }
1468 
1469 static inline bool kill_as_cred_perm(const struct cred *cred,
1470 				     struct task_struct *target)
1471 {
1472 	const struct cred *pcred = __task_cred(target);
1473 
1474 	return uid_eq(cred->euid, pcred->suid) ||
1475 	       uid_eq(cred->euid, pcred->uid) ||
1476 	       uid_eq(cred->uid, pcred->suid) ||
1477 	       uid_eq(cred->uid, pcred->uid);
1478 }
1479 
1480 /*
1481  * The usb asyncio usage of siginfo is wrong.  The glibc support
1482  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483  * AKA after the generic fields:
1484  *	kernel_pid_t	si_pid;
1485  *	kernel_uid32_t	si_uid;
1486  *	sigval_t	si_value;
1487  *
1488  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489  * after the generic fields is:
1490  *	void __user 	*si_addr;
1491  *
1492  * This is a practical problem when there is a 64bit big endian kernel
1493  * and a 32bit userspace.  As the 32bit address will encoded in the low
1494  * 32bits of the pointer.  Those low 32bits will be stored at higher
1495  * address than appear in a 32 bit pointer.  So userspace will not
1496  * see the address it was expecting for it's completions.
1497  *
1498  * There is nothing in the encoding that can allow
1499  * copy_siginfo_to_user32 to detect this confusion of formats, so
1500  * handle this by requiring the caller of kill_pid_usb_asyncio to
1501  * notice when this situration takes place and to store the 32bit
1502  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503  * parameter.
1504  */
1505 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506 			 struct pid *pid, const struct cred *cred)
1507 {
1508 	struct kernel_siginfo info;
1509 	struct task_struct *p;
1510 	unsigned long flags;
1511 	int ret = -EINVAL;
1512 
1513 	if (!valid_signal(sig))
1514 		return ret;
1515 
1516 	clear_siginfo(&info);
1517 	info.si_signo = sig;
1518 	info.si_errno = errno;
1519 	info.si_code = SI_ASYNCIO;
1520 	*((sigval_t *)&info.si_pid) = addr;
1521 
1522 	rcu_read_lock();
1523 	p = pid_task(pid, PIDTYPE_PID);
1524 	if (!p) {
1525 		ret = -ESRCH;
1526 		goto out_unlock;
1527 	}
1528 	if (!kill_as_cred_perm(cred, p)) {
1529 		ret = -EPERM;
1530 		goto out_unlock;
1531 	}
1532 	ret = security_task_kill(p, &info, sig, cred);
1533 	if (ret)
1534 		goto out_unlock;
1535 
1536 	if (sig) {
1537 		if (lock_task_sighand(p, &flags)) {
1538 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539 			unlock_task_sighand(p, &flags);
1540 		} else
1541 			ret = -ESRCH;
1542 	}
1543 out_unlock:
1544 	rcu_read_unlock();
1545 	return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548 
1549 /*
1550  * kill_something_info() interprets pid in interesting ways just like kill(2).
1551  *
1552  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553  * is probably wrong.  Should make it like BSD or SYSV.
1554  */
1555 
1556 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557 {
1558 	int ret;
1559 
1560 	if (pid > 0)
1561 		return kill_proc_info(sig, info, pid);
1562 
1563 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1564 	if (pid == INT_MIN)
1565 		return -ESRCH;
1566 
1567 	read_lock(&tasklist_lock);
1568 	if (pid != -1) {
1569 		ret = __kill_pgrp_info(sig, info,
1570 				pid ? find_vpid(-pid) : task_pgrp(current));
1571 	} else {
1572 		int retval = 0, count = 0;
1573 		struct task_struct * p;
1574 
1575 		for_each_process(p) {
1576 			if (task_pid_vnr(p) > 1 &&
1577 					!same_thread_group(p, current)) {
1578 				int err = group_send_sig_info(sig, info, p,
1579 							      PIDTYPE_MAX);
1580 				++count;
1581 				if (err != -EPERM)
1582 					retval = err;
1583 			}
1584 		}
1585 		ret = count ? retval : -ESRCH;
1586 	}
1587 	read_unlock(&tasklist_lock);
1588 
1589 	return ret;
1590 }
1591 
1592 /*
1593  * These are for backward compatibility with the rest of the kernel source.
1594  */
1595 
1596 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1597 {
1598 	/*
1599 	 * Make sure legacy kernel users don't send in bad values
1600 	 * (normal paths check this in check_kill_permission).
1601 	 */
1602 	if (!valid_signal(sig))
1603 		return -EINVAL;
1604 
1605 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1606 }
1607 EXPORT_SYMBOL(send_sig_info);
1608 
1609 #define __si_special(priv) \
1610 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1611 
1612 int
1613 send_sig(int sig, struct task_struct *p, int priv)
1614 {
1615 	return send_sig_info(sig, __si_special(priv), p);
1616 }
1617 EXPORT_SYMBOL(send_sig);
1618 
1619 void force_sig(int sig)
1620 {
1621 	struct kernel_siginfo info;
1622 
1623 	clear_siginfo(&info);
1624 	info.si_signo = sig;
1625 	info.si_errno = 0;
1626 	info.si_code = SI_KERNEL;
1627 	info.si_pid = 0;
1628 	info.si_uid = 0;
1629 	force_sig_info(&info);
1630 }
1631 EXPORT_SYMBOL(force_sig);
1632 
1633 /*
1634  * When things go south during signal handling, we
1635  * will force a SIGSEGV. And if the signal that caused
1636  * the problem was already a SIGSEGV, we'll want to
1637  * make sure we don't even try to deliver the signal..
1638  */
1639 void force_sigsegv(int sig)
1640 {
1641 	struct task_struct *p = current;
1642 
1643 	if (sig == SIGSEGV) {
1644 		unsigned long flags;
1645 		spin_lock_irqsave(&p->sighand->siglock, flags);
1646 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1647 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648 	}
1649 	force_sig(SIGSEGV);
1650 }
1651 
1652 int force_sig_fault_to_task(int sig, int code, void __user *addr
1653 	___ARCH_SI_TRAPNO(int trapno)
1654 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1655 	, struct task_struct *t)
1656 {
1657 	struct kernel_siginfo info;
1658 
1659 	clear_siginfo(&info);
1660 	info.si_signo = sig;
1661 	info.si_errno = 0;
1662 	info.si_code  = code;
1663 	info.si_addr  = addr;
1664 #ifdef __ARCH_SI_TRAPNO
1665 	info.si_trapno = trapno;
1666 #endif
1667 #ifdef __ia64__
1668 	info.si_imm = imm;
1669 	info.si_flags = flags;
1670 	info.si_isr = isr;
1671 #endif
1672 	return force_sig_info_to_task(&info, t);
1673 }
1674 
1675 int force_sig_fault(int sig, int code, void __user *addr
1676 	___ARCH_SI_TRAPNO(int trapno)
1677 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1678 {
1679 	return force_sig_fault_to_task(sig, code, addr
1680 				       ___ARCH_SI_TRAPNO(trapno)
1681 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1682 }
1683 
1684 int send_sig_fault(int sig, int code, void __user *addr
1685 	___ARCH_SI_TRAPNO(int trapno)
1686 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1687 	, struct task_struct *t)
1688 {
1689 	struct kernel_siginfo info;
1690 
1691 	clear_siginfo(&info);
1692 	info.si_signo = sig;
1693 	info.si_errno = 0;
1694 	info.si_code  = code;
1695 	info.si_addr  = addr;
1696 #ifdef __ARCH_SI_TRAPNO
1697 	info.si_trapno = trapno;
1698 #endif
1699 #ifdef __ia64__
1700 	info.si_imm = imm;
1701 	info.si_flags = flags;
1702 	info.si_isr = isr;
1703 #endif
1704 	return send_sig_info(info.si_signo, &info, t);
1705 }
1706 
1707 int force_sig_mceerr(int code, void __user *addr, short lsb)
1708 {
1709 	struct kernel_siginfo info;
1710 
1711 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1712 	clear_siginfo(&info);
1713 	info.si_signo = SIGBUS;
1714 	info.si_errno = 0;
1715 	info.si_code = code;
1716 	info.si_addr = addr;
1717 	info.si_addr_lsb = lsb;
1718 	return force_sig_info(&info);
1719 }
1720 
1721 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1722 {
1723 	struct kernel_siginfo info;
1724 
1725 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1726 	clear_siginfo(&info);
1727 	info.si_signo = SIGBUS;
1728 	info.si_errno = 0;
1729 	info.si_code = code;
1730 	info.si_addr = addr;
1731 	info.si_addr_lsb = lsb;
1732 	return send_sig_info(info.si_signo, &info, t);
1733 }
1734 EXPORT_SYMBOL(send_sig_mceerr);
1735 
1736 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1737 {
1738 	struct kernel_siginfo info;
1739 
1740 	clear_siginfo(&info);
1741 	info.si_signo = SIGSEGV;
1742 	info.si_errno = 0;
1743 	info.si_code  = SEGV_BNDERR;
1744 	info.si_addr  = addr;
1745 	info.si_lower = lower;
1746 	info.si_upper = upper;
1747 	return force_sig_info(&info);
1748 }
1749 
1750 #ifdef SEGV_PKUERR
1751 int force_sig_pkuerr(void __user *addr, u32 pkey)
1752 {
1753 	struct kernel_siginfo info;
1754 
1755 	clear_siginfo(&info);
1756 	info.si_signo = SIGSEGV;
1757 	info.si_errno = 0;
1758 	info.si_code  = SEGV_PKUERR;
1759 	info.si_addr  = addr;
1760 	info.si_pkey  = pkey;
1761 	return force_sig_info(&info);
1762 }
1763 #endif
1764 
1765 /* For the crazy architectures that include trap information in
1766  * the errno field, instead of an actual errno value.
1767  */
1768 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1769 {
1770 	struct kernel_siginfo info;
1771 
1772 	clear_siginfo(&info);
1773 	info.si_signo = SIGTRAP;
1774 	info.si_errno = errno;
1775 	info.si_code  = TRAP_HWBKPT;
1776 	info.si_addr  = addr;
1777 	return force_sig_info(&info);
1778 }
1779 
1780 int kill_pgrp(struct pid *pid, int sig, int priv)
1781 {
1782 	int ret;
1783 
1784 	read_lock(&tasklist_lock);
1785 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1786 	read_unlock(&tasklist_lock);
1787 
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL(kill_pgrp);
1791 
1792 int kill_pid(struct pid *pid, int sig, int priv)
1793 {
1794 	return kill_pid_info(sig, __si_special(priv), pid);
1795 }
1796 EXPORT_SYMBOL(kill_pid);
1797 
1798 /*
1799  * These functions support sending signals using preallocated sigqueue
1800  * structures.  This is needed "because realtime applications cannot
1801  * afford to lose notifications of asynchronous events, like timer
1802  * expirations or I/O completions".  In the case of POSIX Timers
1803  * we allocate the sigqueue structure from the timer_create.  If this
1804  * allocation fails we are able to report the failure to the application
1805  * with an EAGAIN error.
1806  */
1807 struct sigqueue *sigqueue_alloc(void)
1808 {
1809 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1810 
1811 	if (q)
1812 		q->flags |= SIGQUEUE_PREALLOC;
1813 
1814 	return q;
1815 }
1816 
1817 void sigqueue_free(struct sigqueue *q)
1818 {
1819 	unsigned long flags;
1820 	spinlock_t *lock = &current->sighand->siglock;
1821 
1822 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1823 	/*
1824 	 * We must hold ->siglock while testing q->list
1825 	 * to serialize with collect_signal() or with
1826 	 * __exit_signal()->flush_sigqueue().
1827 	 */
1828 	spin_lock_irqsave(lock, flags);
1829 	q->flags &= ~SIGQUEUE_PREALLOC;
1830 	/*
1831 	 * If it is queued it will be freed when dequeued,
1832 	 * like the "regular" sigqueue.
1833 	 */
1834 	if (!list_empty(&q->list))
1835 		q = NULL;
1836 	spin_unlock_irqrestore(lock, flags);
1837 
1838 	if (q)
1839 		__sigqueue_free(q);
1840 }
1841 
1842 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1843 {
1844 	int sig = q->info.si_signo;
1845 	struct sigpending *pending;
1846 	struct task_struct *t;
1847 	unsigned long flags;
1848 	int ret, result;
1849 
1850 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1851 
1852 	ret = -1;
1853 	rcu_read_lock();
1854 	t = pid_task(pid, type);
1855 	if (!t || !likely(lock_task_sighand(t, &flags)))
1856 		goto ret;
1857 
1858 	ret = 1; /* the signal is ignored */
1859 	result = TRACE_SIGNAL_IGNORED;
1860 	if (!prepare_signal(sig, t, false))
1861 		goto out;
1862 
1863 	ret = 0;
1864 	if (unlikely(!list_empty(&q->list))) {
1865 		/*
1866 		 * If an SI_TIMER entry is already queue just increment
1867 		 * the overrun count.
1868 		 */
1869 		BUG_ON(q->info.si_code != SI_TIMER);
1870 		q->info.si_overrun++;
1871 		result = TRACE_SIGNAL_ALREADY_PENDING;
1872 		goto out;
1873 	}
1874 	q->info.si_overrun = 0;
1875 
1876 	signalfd_notify(t, sig);
1877 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1878 	list_add_tail(&q->list, &pending->list);
1879 	sigaddset(&pending->signal, sig);
1880 	complete_signal(sig, t, type);
1881 	result = TRACE_SIGNAL_DELIVERED;
1882 out:
1883 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1884 	unlock_task_sighand(t, &flags);
1885 ret:
1886 	rcu_read_unlock();
1887 	return ret;
1888 }
1889 
1890 static void do_notify_pidfd(struct task_struct *task)
1891 {
1892 	struct pid *pid;
1893 
1894 	WARN_ON(task->exit_state == 0);
1895 	pid = task_pid(task);
1896 	wake_up_all(&pid->wait_pidfd);
1897 }
1898 
1899 /*
1900  * Let a parent know about the death of a child.
1901  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1902  *
1903  * Returns true if our parent ignored us and so we've switched to
1904  * self-reaping.
1905  */
1906 bool do_notify_parent(struct task_struct *tsk, int sig)
1907 {
1908 	struct kernel_siginfo info;
1909 	unsigned long flags;
1910 	struct sighand_struct *psig;
1911 	bool autoreap = false;
1912 	u64 utime, stime;
1913 
1914 	BUG_ON(sig == -1);
1915 
1916  	/* do_notify_parent_cldstop should have been called instead.  */
1917  	BUG_ON(task_is_stopped_or_traced(tsk));
1918 
1919 	BUG_ON(!tsk->ptrace &&
1920 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1921 
1922 	/* Wake up all pidfd waiters */
1923 	do_notify_pidfd(tsk);
1924 
1925 	if (sig != SIGCHLD) {
1926 		/*
1927 		 * This is only possible if parent == real_parent.
1928 		 * Check if it has changed security domain.
1929 		 */
1930 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1931 			sig = SIGCHLD;
1932 	}
1933 
1934 	clear_siginfo(&info);
1935 	info.si_signo = sig;
1936 	info.si_errno = 0;
1937 	/*
1938 	 * We are under tasklist_lock here so our parent is tied to
1939 	 * us and cannot change.
1940 	 *
1941 	 * task_active_pid_ns will always return the same pid namespace
1942 	 * until a task passes through release_task.
1943 	 *
1944 	 * write_lock() currently calls preempt_disable() which is the
1945 	 * same as rcu_read_lock(), but according to Oleg, this is not
1946 	 * correct to rely on this
1947 	 */
1948 	rcu_read_lock();
1949 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1950 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1951 				       task_uid(tsk));
1952 	rcu_read_unlock();
1953 
1954 	task_cputime(tsk, &utime, &stime);
1955 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1956 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1957 
1958 	info.si_status = tsk->exit_code & 0x7f;
1959 	if (tsk->exit_code & 0x80)
1960 		info.si_code = CLD_DUMPED;
1961 	else if (tsk->exit_code & 0x7f)
1962 		info.si_code = CLD_KILLED;
1963 	else {
1964 		info.si_code = CLD_EXITED;
1965 		info.si_status = tsk->exit_code >> 8;
1966 	}
1967 
1968 	psig = tsk->parent->sighand;
1969 	spin_lock_irqsave(&psig->siglock, flags);
1970 	if (!tsk->ptrace && sig == SIGCHLD &&
1971 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1972 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1973 		/*
1974 		 * We are exiting and our parent doesn't care.  POSIX.1
1975 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1976 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1977 		 * automatically and not left for our parent's wait4 call.
1978 		 * Rather than having the parent do it as a magic kind of
1979 		 * signal handler, we just set this to tell do_exit that we
1980 		 * can be cleaned up without becoming a zombie.  Note that
1981 		 * we still call __wake_up_parent in this case, because a
1982 		 * blocked sys_wait4 might now return -ECHILD.
1983 		 *
1984 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1985 		 * is implementation-defined: we do (if you don't want
1986 		 * it, just use SIG_IGN instead).
1987 		 */
1988 		autoreap = true;
1989 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1990 			sig = 0;
1991 	}
1992 	/*
1993 	 * Send with __send_signal as si_pid and si_uid are in the
1994 	 * parent's namespaces.
1995 	 */
1996 	if (valid_signal(sig) && sig)
1997 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1998 	__wake_up_parent(tsk, tsk->parent);
1999 	spin_unlock_irqrestore(&psig->siglock, flags);
2000 
2001 	return autoreap;
2002 }
2003 
2004 /**
2005  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2006  * @tsk: task reporting the state change
2007  * @for_ptracer: the notification is for ptracer
2008  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2009  *
2010  * Notify @tsk's parent that the stopped/continued state has changed.  If
2011  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2012  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2013  *
2014  * CONTEXT:
2015  * Must be called with tasklist_lock at least read locked.
2016  */
2017 static void do_notify_parent_cldstop(struct task_struct *tsk,
2018 				     bool for_ptracer, int why)
2019 {
2020 	struct kernel_siginfo info;
2021 	unsigned long flags;
2022 	struct task_struct *parent;
2023 	struct sighand_struct *sighand;
2024 	u64 utime, stime;
2025 
2026 	if (for_ptracer) {
2027 		parent = tsk->parent;
2028 	} else {
2029 		tsk = tsk->group_leader;
2030 		parent = tsk->real_parent;
2031 	}
2032 
2033 	clear_siginfo(&info);
2034 	info.si_signo = SIGCHLD;
2035 	info.si_errno = 0;
2036 	/*
2037 	 * see comment in do_notify_parent() about the following 4 lines
2038 	 */
2039 	rcu_read_lock();
2040 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2041 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2042 	rcu_read_unlock();
2043 
2044 	task_cputime(tsk, &utime, &stime);
2045 	info.si_utime = nsec_to_clock_t(utime);
2046 	info.si_stime = nsec_to_clock_t(stime);
2047 
2048  	info.si_code = why;
2049  	switch (why) {
2050  	case CLD_CONTINUED:
2051  		info.si_status = SIGCONT;
2052  		break;
2053  	case CLD_STOPPED:
2054  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2055  		break;
2056  	case CLD_TRAPPED:
2057  		info.si_status = tsk->exit_code & 0x7f;
2058  		break;
2059  	default:
2060  		BUG();
2061  	}
2062 
2063 	sighand = parent->sighand;
2064 	spin_lock_irqsave(&sighand->siglock, flags);
2065 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2066 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2067 		__group_send_sig_info(SIGCHLD, &info, parent);
2068 	/*
2069 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2070 	 */
2071 	__wake_up_parent(tsk, parent);
2072 	spin_unlock_irqrestore(&sighand->siglock, flags);
2073 }
2074 
2075 static inline bool may_ptrace_stop(void)
2076 {
2077 	if (!likely(current->ptrace))
2078 		return false;
2079 	/*
2080 	 * Are we in the middle of do_coredump?
2081 	 * If so and our tracer is also part of the coredump stopping
2082 	 * is a deadlock situation, and pointless because our tracer
2083 	 * is dead so don't allow us to stop.
2084 	 * If SIGKILL was already sent before the caller unlocked
2085 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2086 	 * is safe to enter schedule().
2087 	 *
2088 	 * This is almost outdated, a task with the pending SIGKILL can't
2089 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2090 	 * after SIGKILL was already dequeued.
2091 	 */
2092 	if (unlikely(current->mm->core_state) &&
2093 	    unlikely(current->mm == current->parent->mm))
2094 		return false;
2095 
2096 	return true;
2097 }
2098 
2099 /*
2100  * Return non-zero if there is a SIGKILL that should be waking us up.
2101  * Called with the siglock held.
2102  */
2103 static bool sigkill_pending(struct task_struct *tsk)
2104 {
2105 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2106 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2107 }
2108 
2109 /*
2110  * This must be called with current->sighand->siglock held.
2111  *
2112  * This should be the path for all ptrace stops.
2113  * We always set current->last_siginfo while stopped here.
2114  * That makes it a way to test a stopped process for
2115  * being ptrace-stopped vs being job-control-stopped.
2116  *
2117  * If we actually decide not to stop at all because the tracer
2118  * is gone, we keep current->exit_code unless clear_code.
2119  */
2120 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2121 	__releases(&current->sighand->siglock)
2122 	__acquires(&current->sighand->siglock)
2123 {
2124 	bool gstop_done = false;
2125 
2126 	if (arch_ptrace_stop_needed(exit_code, info)) {
2127 		/*
2128 		 * The arch code has something special to do before a
2129 		 * ptrace stop.  This is allowed to block, e.g. for faults
2130 		 * on user stack pages.  We can't keep the siglock while
2131 		 * calling arch_ptrace_stop, so we must release it now.
2132 		 * To preserve proper semantics, we must do this before
2133 		 * any signal bookkeeping like checking group_stop_count.
2134 		 * Meanwhile, a SIGKILL could come in before we retake the
2135 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2136 		 * So after regaining the lock, we must check for SIGKILL.
2137 		 */
2138 		spin_unlock_irq(&current->sighand->siglock);
2139 		arch_ptrace_stop(exit_code, info);
2140 		spin_lock_irq(&current->sighand->siglock);
2141 		if (sigkill_pending(current))
2142 			return;
2143 	}
2144 
2145 	set_special_state(TASK_TRACED);
2146 
2147 	/*
2148 	 * We're committing to trapping.  TRACED should be visible before
2149 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2150 	 * Also, transition to TRACED and updates to ->jobctl should be
2151 	 * atomic with respect to siglock and should be done after the arch
2152 	 * hook as siglock is released and regrabbed across it.
2153 	 *
2154 	 *     TRACER				    TRACEE
2155 	 *
2156 	 *     ptrace_attach()
2157 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2158 	 *     do_wait()
2159 	 *       set_current_state()                smp_wmb();
2160 	 *       ptrace_do_wait()
2161 	 *         wait_task_stopped()
2162 	 *           task_stopped_code()
2163 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2164 	 */
2165 	smp_wmb();
2166 
2167 	current->last_siginfo = info;
2168 	current->exit_code = exit_code;
2169 
2170 	/*
2171 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2172 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2173 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2174 	 * could be clear now.  We act as if SIGCONT is received after
2175 	 * TASK_TRACED is entered - ignore it.
2176 	 */
2177 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2178 		gstop_done = task_participate_group_stop(current);
2179 
2180 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2181 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2182 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2183 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2184 
2185 	/* entering a trap, clear TRAPPING */
2186 	task_clear_jobctl_trapping(current);
2187 
2188 	spin_unlock_irq(&current->sighand->siglock);
2189 	read_lock(&tasklist_lock);
2190 	if (may_ptrace_stop()) {
2191 		/*
2192 		 * Notify parents of the stop.
2193 		 *
2194 		 * While ptraced, there are two parents - the ptracer and
2195 		 * the real_parent of the group_leader.  The ptracer should
2196 		 * know about every stop while the real parent is only
2197 		 * interested in the completion of group stop.  The states
2198 		 * for the two don't interact with each other.  Notify
2199 		 * separately unless they're gonna be duplicates.
2200 		 */
2201 		do_notify_parent_cldstop(current, true, why);
2202 		if (gstop_done && ptrace_reparented(current))
2203 			do_notify_parent_cldstop(current, false, why);
2204 
2205 		/*
2206 		 * Don't want to allow preemption here, because
2207 		 * sys_ptrace() needs this task to be inactive.
2208 		 *
2209 		 * XXX: implement read_unlock_no_resched().
2210 		 */
2211 		preempt_disable();
2212 		read_unlock(&tasklist_lock);
2213 		cgroup_enter_frozen();
2214 		preempt_enable_no_resched();
2215 		freezable_schedule();
2216 		cgroup_leave_frozen(true);
2217 	} else {
2218 		/*
2219 		 * By the time we got the lock, our tracer went away.
2220 		 * Don't drop the lock yet, another tracer may come.
2221 		 *
2222 		 * If @gstop_done, the ptracer went away between group stop
2223 		 * completion and here.  During detach, it would have set
2224 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2225 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2226 		 * the real parent of the group stop completion is enough.
2227 		 */
2228 		if (gstop_done)
2229 			do_notify_parent_cldstop(current, false, why);
2230 
2231 		/* tasklist protects us from ptrace_freeze_traced() */
2232 		__set_current_state(TASK_RUNNING);
2233 		if (clear_code)
2234 			current->exit_code = 0;
2235 		read_unlock(&tasklist_lock);
2236 	}
2237 
2238 	/*
2239 	 * We are back.  Now reacquire the siglock before touching
2240 	 * last_siginfo, so that we are sure to have synchronized with
2241 	 * any signal-sending on another CPU that wants to examine it.
2242 	 */
2243 	spin_lock_irq(&current->sighand->siglock);
2244 	current->last_siginfo = NULL;
2245 
2246 	/* LISTENING can be set only during STOP traps, clear it */
2247 	current->jobctl &= ~JOBCTL_LISTENING;
2248 
2249 	/*
2250 	 * Queued signals ignored us while we were stopped for tracing.
2251 	 * So check for any that we should take before resuming user mode.
2252 	 * This sets TIF_SIGPENDING, but never clears it.
2253 	 */
2254 	recalc_sigpending_tsk(current);
2255 }
2256 
2257 static void ptrace_do_notify(int signr, int exit_code, int why)
2258 {
2259 	kernel_siginfo_t info;
2260 
2261 	clear_siginfo(&info);
2262 	info.si_signo = signr;
2263 	info.si_code = exit_code;
2264 	info.si_pid = task_pid_vnr(current);
2265 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2266 
2267 	/* Let the debugger run.  */
2268 	ptrace_stop(exit_code, why, 1, &info);
2269 }
2270 
2271 void ptrace_notify(int exit_code)
2272 {
2273 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2274 	if (unlikely(current->task_works))
2275 		task_work_run();
2276 
2277 	spin_lock_irq(&current->sighand->siglock);
2278 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2279 	spin_unlock_irq(&current->sighand->siglock);
2280 }
2281 
2282 /**
2283  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2284  * @signr: signr causing group stop if initiating
2285  *
2286  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2287  * and participate in it.  If already set, participate in the existing
2288  * group stop.  If participated in a group stop (and thus slept), %true is
2289  * returned with siglock released.
2290  *
2291  * If ptraced, this function doesn't handle stop itself.  Instead,
2292  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2293  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2294  * places afterwards.
2295  *
2296  * CONTEXT:
2297  * Must be called with @current->sighand->siglock held, which is released
2298  * on %true return.
2299  *
2300  * RETURNS:
2301  * %false if group stop is already cancelled or ptrace trap is scheduled.
2302  * %true if participated in group stop.
2303  */
2304 static bool do_signal_stop(int signr)
2305 	__releases(&current->sighand->siglock)
2306 {
2307 	struct signal_struct *sig = current->signal;
2308 
2309 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2310 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2311 		struct task_struct *t;
2312 
2313 		/* signr will be recorded in task->jobctl for retries */
2314 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2315 
2316 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2317 		    unlikely(signal_group_exit(sig)))
2318 			return false;
2319 		/*
2320 		 * There is no group stop already in progress.  We must
2321 		 * initiate one now.
2322 		 *
2323 		 * While ptraced, a task may be resumed while group stop is
2324 		 * still in effect and then receive a stop signal and
2325 		 * initiate another group stop.  This deviates from the
2326 		 * usual behavior as two consecutive stop signals can't
2327 		 * cause two group stops when !ptraced.  That is why we
2328 		 * also check !task_is_stopped(t) below.
2329 		 *
2330 		 * The condition can be distinguished by testing whether
2331 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2332 		 * group_exit_code in such case.
2333 		 *
2334 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2335 		 * an intervening stop signal is required to cause two
2336 		 * continued events regardless of ptrace.
2337 		 */
2338 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2339 			sig->group_exit_code = signr;
2340 
2341 		sig->group_stop_count = 0;
2342 
2343 		if (task_set_jobctl_pending(current, signr | gstop))
2344 			sig->group_stop_count++;
2345 
2346 		t = current;
2347 		while_each_thread(current, t) {
2348 			/*
2349 			 * Setting state to TASK_STOPPED for a group
2350 			 * stop is always done with the siglock held,
2351 			 * so this check has no races.
2352 			 */
2353 			if (!task_is_stopped(t) &&
2354 			    task_set_jobctl_pending(t, signr | gstop)) {
2355 				sig->group_stop_count++;
2356 				if (likely(!(t->ptrace & PT_SEIZED)))
2357 					signal_wake_up(t, 0);
2358 				else
2359 					ptrace_trap_notify(t);
2360 			}
2361 		}
2362 	}
2363 
2364 	if (likely(!current->ptrace)) {
2365 		int notify = 0;
2366 
2367 		/*
2368 		 * If there are no other threads in the group, or if there
2369 		 * is a group stop in progress and we are the last to stop,
2370 		 * report to the parent.
2371 		 */
2372 		if (task_participate_group_stop(current))
2373 			notify = CLD_STOPPED;
2374 
2375 		set_special_state(TASK_STOPPED);
2376 		spin_unlock_irq(&current->sighand->siglock);
2377 
2378 		/*
2379 		 * Notify the parent of the group stop completion.  Because
2380 		 * we're not holding either the siglock or tasklist_lock
2381 		 * here, ptracer may attach inbetween; however, this is for
2382 		 * group stop and should always be delivered to the real
2383 		 * parent of the group leader.  The new ptracer will get
2384 		 * its notification when this task transitions into
2385 		 * TASK_TRACED.
2386 		 */
2387 		if (notify) {
2388 			read_lock(&tasklist_lock);
2389 			do_notify_parent_cldstop(current, false, notify);
2390 			read_unlock(&tasklist_lock);
2391 		}
2392 
2393 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2394 		cgroup_enter_frozen();
2395 		freezable_schedule();
2396 		return true;
2397 	} else {
2398 		/*
2399 		 * While ptraced, group stop is handled by STOP trap.
2400 		 * Schedule it and let the caller deal with it.
2401 		 */
2402 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2403 		return false;
2404 	}
2405 }
2406 
2407 /**
2408  * do_jobctl_trap - take care of ptrace jobctl traps
2409  *
2410  * When PT_SEIZED, it's used for both group stop and explicit
2411  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2412  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2413  * the stop signal; otherwise, %SIGTRAP.
2414  *
2415  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2416  * number as exit_code and no siginfo.
2417  *
2418  * CONTEXT:
2419  * Must be called with @current->sighand->siglock held, which may be
2420  * released and re-acquired before returning with intervening sleep.
2421  */
2422 static void do_jobctl_trap(void)
2423 {
2424 	struct signal_struct *signal = current->signal;
2425 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2426 
2427 	if (current->ptrace & PT_SEIZED) {
2428 		if (!signal->group_stop_count &&
2429 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2430 			signr = SIGTRAP;
2431 		WARN_ON_ONCE(!signr);
2432 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2433 				 CLD_STOPPED);
2434 	} else {
2435 		WARN_ON_ONCE(!signr);
2436 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2437 		current->exit_code = 0;
2438 	}
2439 }
2440 
2441 /**
2442  * do_freezer_trap - handle the freezer jobctl trap
2443  *
2444  * Puts the task into frozen state, if only the task is not about to quit.
2445  * In this case it drops JOBCTL_TRAP_FREEZE.
2446  *
2447  * CONTEXT:
2448  * Must be called with @current->sighand->siglock held,
2449  * which is always released before returning.
2450  */
2451 static void do_freezer_trap(void)
2452 	__releases(&current->sighand->siglock)
2453 {
2454 	/*
2455 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2456 	 * let's make another loop to give it a chance to be handled.
2457 	 * In any case, we'll return back.
2458 	 */
2459 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2460 	     JOBCTL_TRAP_FREEZE) {
2461 		spin_unlock_irq(&current->sighand->siglock);
2462 		return;
2463 	}
2464 
2465 	/*
2466 	 * Now we're sure that there is no pending fatal signal and no
2467 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2468 	 * immediately (if there is a non-fatal signal pending), and
2469 	 * put the task into sleep.
2470 	 */
2471 	__set_current_state(TASK_INTERRUPTIBLE);
2472 	clear_thread_flag(TIF_SIGPENDING);
2473 	spin_unlock_irq(&current->sighand->siglock);
2474 	cgroup_enter_frozen();
2475 	freezable_schedule();
2476 }
2477 
2478 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2479 {
2480 	/*
2481 	 * We do not check sig_kernel_stop(signr) but set this marker
2482 	 * unconditionally because we do not know whether debugger will
2483 	 * change signr. This flag has no meaning unless we are going
2484 	 * to stop after return from ptrace_stop(). In this case it will
2485 	 * be checked in do_signal_stop(), we should only stop if it was
2486 	 * not cleared by SIGCONT while we were sleeping. See also the
2487 	 * comment in dequeue_signal().
2488 	 */
2489 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2490 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2491 
2492 	/* We're back.  Did the debugger cancel the sig?  */
2493 	signr = current->exit_code;
2494 	if (signr == 0)
2495 		return signr;
2496 
2497 	current->exit_code = 0;
2498 
2499 	/*
2500 	 * Update the siginfo structure if the signal has
2501 	 * changed.  If the debugger wanted something
2502 	 * specific in the siginfo structure then it should
2503 	 * have updated *info via PTRACE_SETSIGINFO.
2504 	 */
2505 	if (signr != info->si_signo) {
2506 		clear_siginfo(info);
2507 		info->si_signo = signr;
2508 		info->si_errno = 0;
2509 		info->si_code = SI_USER;
2510 		rcu_read_lock();
2511 		info->si_pid = task_pid_vnr(current->parent);
2512 		info->si_uid = from_kuid_munged(current_user_ns(),
2513 						task_uid(current->parent));
2514 		rcu_read_unlock();
2515 	}
2516 
2517 	/* If the (new) signal is now blocked, requeue it.  */
2518 	if (sigismember(&current->blocked, signr)) {
2519 		send_signal(signr, info, current, PIDTYPE_PID);
2520 		signr = 0;
2521 	}
2522 
2523 	return signr;
2524 }
2525 
2526 bool get_signal(struct ksignal *ksig)
2527 {
2528 	struct sighand_struct *sighand = current->sighand;
2529 	struct signal_struct *signal = current->signal;
2530 	int signr;
2531 
2532 	if (unlikely(uprobe_deny_signal()))
2533 		return false;
2534 
2535 	/*
2536 	 * Do this once, we can't return to user-mode if freezing() == T.
2537 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2538 	 * thus do not need another check after return.
2539 	 */
2540 	try_to_freeze();
2541 
2542 relock:
2543 	spin_lock_irq(&sighand->siglock);
2544 	current->jobctl &= ~JOBCTL_TASK_WORK;
2545 	if (unlikely(current->task_works)) {
2546 		spin_unlock_irq(&sighand->siglock);
2547 		task_work_run();
2548 		goto relock;
2549 	}
2550 
2551 	/*
2552 	 * Every stopped thread goes here after wakeup. Check to see if
2553 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2554 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2555 	 */
2556 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2557 		int why;
2558 
2559 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2560 			why = CLD_CONTINUED;
2561 		else
2562 			why = CLD_STOPPED;
2563 
2564 		signal->flags &= ~SIGNAL_CLD_MASK;
2565 
2566 		spin_unlock_irq(&sighand->siglock);
2567 
2568 		/*
2569 		 * Notify the parent that we're continuing.  This event is
2570 		 * always per-process and doesn't make whole lot of sense
2571 		 * for ptracers, who shouldn't consume the state via
2572 		 * wait(2) either, but, for backward compatibility, notify
2573 		 * the ptracer of the group leader too unless it's gonna be
2574 		 * a duplicate.
2575 		 */
2576 		read_lock(&tasklist_lock);
2577 		do_notify_parent_cldstop(current, false, why);
2578 
2579 		if (ptrace_reparented(current->group_leader))
2580 			do_notify_parent_cldstop(current->group_leader,
2581 						true, why);
2582 		read_unlock(&tasklist_lock);
2583 
2584 		goto relock;
2585 	}
2586 
2587 	/* Has this task already been marked for death? */
2588 	if (signal_group_exit(signal)) {
2589 		ksig->info.si_signo = signr = SIGKILL;
2590 		sigdelset(&current->pending.signal, SIGKILL);
2591 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2592 				&sighand->action[SIGKILL - 1]);
2593 		recalc_sigpending();
2594 		goto fatal;
2595 	}
2596 
2597 	for (;;) {
2598 		struct k_sigaction *ka;
2599 
2600 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2601 		    do_signal_stop(0))
2602 			goto relock;
2603 
2604 		if (unlikely(current->jobctl &
2605 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2606 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2607 				do_jobctl_trap();
2608 				spin_unlock_irq(&sighand->siglock);
2609 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2610 				do_freezer_trap();
2611 
2612 			goto relock;
2613 		}
2614 
2615 		/*
2616 		 * If the task is leaving the frozen state, let's update
2617 		 * cgroup counters and reset the frozen bit.
2618 		 */
2619 		if (unlikely(cgroup_task_frozen(current))) {
2620 			spin_unlock_irq(&sighand->siglock);
2621 			cgroup_leave_frozen(false);
2622 			goto relock;
2623 		}
2624 
2625 		/*
2626 		 * Signals generated by the execution of an instruction
2627 		 * need to be delivered before any other pending signals
2628 		 * so that the instruction pointer in the signal stack
2629 		 * frame points to the faulting instruction.
2630 		 */
2631 		signr = dequeue_synchronous_signal(&ksig->info);
2632 		if (!signr)
2633 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2634 
2635 		if (!signr)
2636 			break; /* will return 0 */
2637 
2638 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2639 			signr = ptrace_signal(signr, &ksig->info);
2640 			if (!signr)
2641 				continue;
2642 		}
2643 
2644 		ka = &sighand->action[signr-1];
2645 
2646 		/* Trace actually delivered signals. */
2647 		trace_signal_deliver(signr, &ksig->info, ka);
2648 
2649 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2650 			continue;
2651 		if (ka->sa.sa_handler != SIG_DFL) {
2652 			/* Run the handler.  */
2653 			ksig->ka = *ka;
2654 
2655 			if (ka->sa.sa_flags & SA_ONESHOT)
2656 				ka->sa.sa_handler = SIG_DFL;
2657 
2658 			break; /* will return non-zero "signr" value */
2659 		}
2660 
2661 		/*
2662 		 * Now we are doing the default action for this signal.
2663 		 */
2664 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2665 			continue;
2666 
2667 		/*
2668 		 * Global init gets no signals it doesn't want.
2669 		 * Container-init gets no signals it doesn't want from same
2670 		 * container.
2671 		 *
2672 		 * Note that if global/container-init sees a sig_kernel_only()
2673 		 * signal here, the signal must have been generated internally
2674 		 * or must have come from an ancestor namespace. In either
2675 		 * case, the signal cannot be dropped.
2676 		 */
2677 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2678 				!sig_kernel_only(signr))
2679 			continue;
2680 
2681 		if (sig_kernel_stop(signr)) {
2682 			/*
2683 			 * The default action is to stop all threads in
2684 			 * the thread group.  The job control signals
2685 			 * do nothing in an orphaned pgrp, but SIGSTOP
2686 			 * always works.  Note that siglock needs to be
2687 			 * dropped during the call to is_orphaned_pgrp()
2688 			 * because of lock ordering with tasklist_lock.
2689 			 * This allows an intervening SIGCONT to be posted.
2690 			 * We need to check for that and bail out if necessary.
2691 			 */
2692 			if (signr != SIGSTOP) {
2693 				spin_unlock_irq(&sighand->siglock);
2694 
2695 				/* signals can be posted during this window */
2696 
2697 				if (is_current_pgrp_orphaned())
2698 					goto relock;
2699 
2700 				spin_lock_irq(&sighand->siglock);
2701 			}
2702 
2703 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2704 				/* It released the siglock.  */
2705 				goto relock;
2706 			}
2707 
2708 			/*
2709 			 * We didn't actually stop, due to a race
2710 			 * with SIGCONT or something like that.
2711 			 */
2712 			continue;
2713 		}
2714 
2715 	fatal:
2716 		spin_unlock_irq(&sighand->siglock);
2717 		if (unlikely(cgroup_task_frozen(current)))
2718 			cgroup_leave_frozen(true);
2719 
2720 		/*
2721 		 * Anything else is fatal, maybe with a core dump.
2722 		 */
2723 		current->flags |= PF_SIGNALED;
2724 
2725 		if (sig_kernel_coredump(signr)) {
2726 			if (print_fatal_signals)
2727 				print_fatal_signal(ksig->info.si_signo);
2728 			proc_coredump_connector(current);
2729 			/*
2730 			 * If it was able to dump core, this kills all
2731 			 * other threads in the group and synchronizes with
2732 			 * their demise.  If we lost the race with another
2733 			 * thread getting here, it set group_exit_code
2734 			 * first and our do_group_exit call below will use
2735 			 * that value and ignore the one we pass it.
2736 			 */
2737 			do_coredump(&ksig->info);
2738 		}
2739 
2740 		/*
2741 		 * Death signals, no core dump.
2742 		 */
2743 		do_group_exit(ksig->info.si_signo);
2744 		/* NOTREACHED */
2745 	}
2746 	spin_unlock_irq(&sighand->siglock);
2747 
2748 	ksig->sig = signr;
2749 	return ksig->sig > 0;
2750 }
2751 
2752 /**
2753  * signal_delivered -
2754  * @ksig:		kernel signal struct
2755  * @stepping:		nonzero if debugger single-step or block-step in use
2756  *
2757  * This function should be called when a signal has successfully been
2758  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2759  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2760  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2761  */
2762 static void signal_delivered(struct ksignal *ksig, int stepping)
2763 {
2764 	sigset_t blocked;
2765 
2766 	/* A signal was successfully delivered, and the
2767 	   saved sigmask was stored on the signal frame,
2768 	   and will be restored by sigreturn.  So we can
2769 	   simply clear the restore sigmask flag.  */
2770 	clear_restore_sigmask();
2771 
2772 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2773 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2774 		sigaddset(&blocked, ksig->sig);
2775 	set_current_blocked(&blocked);
2776 	tracehook_signal_handler(stepping);
2777 }
2778 
2779 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2780 {
2781 	if (failed)
2782 		force_sigsegv(ksig->sig);
2783 	else
2784 		signal_delivered(ksig, stepping);
2785 }
2786 
2787 /*
2788  * It could be that complete_signal() picked us to notify about the
2789  * group-wide signal. Other threads should be notified now to take
2790  * the shared signals in @which since we will not.
2791  */
2792 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2793 {
2794 	sigset_t retarget;
2795 	struct task_struct *t;
2796 
2797 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2798 	if (sigisemptyset(&retarget))
2799 		return;
2800 
2801 	t = tsk;
2802 	while_each_thread(tsk, t) {
2803 		if (t->flags & PF_EXITING)
2804 			continue;
2805 
2806 		if (!has_pending_signals(&retarget, &t->blocked))
2807 			continue;
2808 		/* Remove the signals this thread can handle. */
2809 		sigandsets(&retarget, &retarget, &t->blocked);
2810 
2811 		if (!signal_pending(t))
2812 			signal_wake_up(t, 0);
2813 
2814 		if (sigisemptyset(&retarget))
2815 			break;
2816 	}
2817 }
2818 
2819 void exit_signals(struct task_struct *tsk)
2820 {
2821 	int group_stop = 0;
2822 	sigset_t unblocked;
2823 
2824 	/*
2825 	 * @tsk is about to have PF_EXITING set - lock out users which
2826 	 * expect stable threadgroup.
2827 	 */
2828 	cgroup_threadgroup_change_begin(tsk);
2829 
2830 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2831 		tsk->flags |= PF_EXITING;
2832 		cgroup_threadgroup_change_end(tsk);
2833 		return;
2834 	}
2835 
2836 	spin_lock_irq(&tsk->sighand->siglock);
2837 	/*
2838 	 * From now this task is not visible for group-wide signals,
2839 	 * see wants_signal(), do_signal_stop().
2840 	 */
2841 	tsk->flags |= PF_EXITING;
2842 
2843 	cgroup_threadgroup_change_end(tsk);
2844 
2845 	if (!signal_pending(tsk))
2846 		goto out;
2847 
2848 	unblocked = tsk->blocked;
2849 	signotset(&unblocked);
2850 	retarget_shared_pending(tsk, &unblocked);
2851 
2852 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2853 	    task_participate_group_stop(tsk))
2854 		group_stop = CLD_STOPPED;
2855 out:
2856 	spin_unlock_irq(&tsk->sighand->siglock);
2857 
2858 	/*
2859 	 * If group stop has completed, deliver the notification.  This
2860 	 * should always go to the real parent of the group leader.
2861 	 */
2862 	if (unlikely(group_stop)) {
2863 		read_lock(&tasklist_lock);
2864 		do_notify_parent_cldstop(tsk, false, group_stop);
2865 		read_unlock(&tasklist_lock);
2866 	}
2867 }
2868 
2869 /*
2870  * System call entry points.
2871  */
2872 
2873 /**
2874  *  sys_restart_syscall - restart a system call
2875  */
2876 SYSCALL_DEFINE0(restart_syscall)
2877 {
2878 	struct restart_block *restart = &current->restart_block;
2879 	return restart->fn(restart);
2880 }
2881 
2882 long do_no_restart_syscall(struct restart_block *param)
2883 {
2884 	return -EINTR;
2885 }
2886 
2887 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2888 {
2889 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2890 		sigset_t newblocked;
2891 		/* A set of now blocked but previously unblocked signals. */
2892 		sigandnsets(&newblocked, newset, &current->blocked);
2893 		retarget_shared_pending(tsk, &newblocked);
2894 	}
2895 	tsk->blocked = *newset;
2896 	recalc_sigpending();
2897 }
2898 
2899 /**
2900  * set_current_blocked - change current->blocked mask
2901  * @newset: new mask
2902  *
2903  * It is wrong to change ->blocked directly, this helper should be used
2904  * to ensure the process can't miss a shared signal we are going to block.
2905  */
2906 void set_current_blocked(sigset_t *newset)
2907 {
2908 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2909 	__set_current_blocked(newset);
2910 }
2911 
2912 void __set_current_blocked(const sigset_t *newset)
2913 {
2914 	struct task_struct *tsk = current;
2915 
2916 	/*
2917 	 * In case the signal mask hasn't changed, there is nothing we need
2918 	 * to do. The current->blocked shouldn't be modified by other task.
2919 	 */
2920 	if (sigequalsets(&tsk->blocked, newset))
2921 		return;
2922 
2923 	spin_lock_irq(&tsk->sighand->siglock);
2924 	__set_task_blocked(tsk, newset);
2925 	spin_unlock_irq(&tsk->sighand->siglock);
2926 }
2927 
2928 /*
2929  * This is also useful for kernel threads that want to temporarily
2930  * (or permanently) block certain signals.
2931  *
2932  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2933  * interface happily blocks "unblockable" signals like SIGKILL
2934  * and friends.
2935  */
2936 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2937 {
2938 	struct task_struct *tsk = current;
2939 	sigset_t newset;
2940 
2941 	/* Lockless, only current can change ->blocked, never from irq */
2942 	if (oldset)
2943 		*oldset = tsk->blocked;
2944 
2945 	switch (how) {
2946 	case SIG_BLOCK:
2947 		sigorsets(&newset, &tsk->blocked, set);
2948 		break;
2949 	case SIG_UNBLOCK:
2950 		sigandnsets(&newset, &tsk->blocked, set);
2951 		break;
2952 	case SIG_SETMASK:
2953 		newset = *set;
2954 		break;
2955 	default:
2956 		return -EINVAL;
2957 	}
2958 
2959 	__set_current_blocked(&newset);
2960 	return 0;
2961 }
2962 EXPORT_SYMBOL(sigprocmask);
2963 
2964 /*
2965  * The api helps set app-provided sigmasks.
2966  *
2967  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2968  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2969  *
2970  * Note that it does set_restore_sigmask() in advance, so it must be always
2971  * paired with restore_saved_sigmask_unless() before return from syscall.
2972  */
2973 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2974 {
2975 	sigset_t kmask;
2976 
2977 	if (!umask)
2978 		return 0;
2979 	if (sigsetsize != sizeof(sigset_t))
2980 		return -EINVAL;
2981 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2982 		return -EFAULT;
2983 
2984 	set_restore_sigmask();
2985 	current->saved_sigmask = current->blocked;
2986 	set_current_blocked(&kmask);
2987 
2988 	return 0;
2989 }
2990 
2991 #ifdef CONFIG_COMPAT
2992 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2993 			    size_t sigsetsize)
2994 {
2995 	sigset_t kmask;
2996 
2997 	if (!umask)
2998 		return 0;
2999 	if (sigsetsize != sizeof(compat_sigset_t))
3000 		return -EINVAL;
3001 	if (get_compat_sigset(&kmask, umask))
3002 		return -EFAULT;
3003 
3004 	set_restore_sigmask();
3005 	current->saved_sigmask = current->blocked;
3006 	set_current_blocked(&kmask);
3007 
3008 	return 0;
3009 }
3010 #endif
3011 
3012 /**
3013  *  sys_rt_sigprocmask - change the list of currently blocked signals
3014  *  @how: whether to add, remove, or set signals
3015  *  @nset: stores pending signals
3016  *  @oset: previous value of signal mask if non-null
3017  *  @sigsetsize: size of sigset_t type
3018  */
3019 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3020 		sigset_t __user *, oset, size_t, sigsetsize)
3021 {
3022 	sigset_t old_set, new_set;
3023 	int error;
3024 
3025 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3026 	if (sigsetsize != sizeof(sigset_t))
3027 		return -EINVAL;
3028 
3029 	old_set = current->blocked;
3030 
3031 	if (nset) {
3032 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3033 			return -EFAULT;
3034 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3035 
3036 		error = sigprocmask(how, &new_set, NULL);
3037 		if (error)
3038 			return error;
3039 	}
3040 
3041 	if (oset) {
3042 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3043 			return -EFAULT;
3044 	}
3045 
3046 	return 0;
3047 }
3048 
3049 #ifdef CONFIG_COMPAT
3050 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3051 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3052 {
3053 	sigset_t old_set = current->blocked;
3054 
3055 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3056 	if (sigsetsize != sizeof(sigset_t))
3057 		return -EINVAL;
3058 
3059 	if (nset) {
3060 		sigset_t new_set;
3061 		int error;
3062 		if (get_compat_sigset(&new_set, nset))
3063 			return -EFAULT;
3064 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3065 
3066 		error = sigprocmask(how, &new_set, NULL);
3067 		if (error)
3068 			return error;
3069 	}
3070 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3071 }
3072 #endif
3073 
3074 static void do_sigpending(sigset_t *set)
3075 {
3076 	spin_lock_irq(&current->sighand->siglock);
3077 	sigorsets(set, &current->pending.signal,
3078 		  &current->signal->shared_pending.signal);
3079 	spin_unlock_irq(&current->sighand->siglock);
3080 
3081 	/* Outside the lock because only this thread touches it.  */
3082 	sigandsets(set, &current->blocked, set);
3083 }
3084 
3085 /**
3086  *  sys_rt_sigpending - examine a pending signal that has been raised
3087  *			while blocked
3088  *  @uset: stores pending signals
3089  *  @sigsetsize: size of sigset_t type or larger
3090  */
3091 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3092 {
3093 	sigset_t set;
3094 
3095 	if (sigsetsize > sizeof(*uset))
3096 		return -EINVAL;
3097 
3098 	do_sigpending(&set);
3099 
3100 	if (copy_to_user(uset, &set, sigsetsize))
3101 		return -EFAULT;
3102 
3103 	return 0;
3104 }
3105 
3106 #ifdef CONFIG_COMPAT
3107 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3108 		compat_size_t, sigsetsize)
3109 {
3110 	sigset_t set;
3111 
3112 	if (sigsetsize > sizeof(*uset))
3113 		return -EINVAL;
3114 
3115 	do_sigpending(&set);
3116 
3117 	return put_compat_sigset(uset, &set, sigsetsize);
3118 }
3119 #endif
3120 
3121 static const struct {
3122 	unsigned char limit, layout;
3123 } sig_sicodes[] = {
3124 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3125 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3126 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3127 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3128 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3129 #if defined(SIGEMT)
3130 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3131 #endif
3132 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3133 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3134 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3135 };
3136 
3137 static bool known_siginfo_layout(unsigned sig, int si_code)
3138 {
3139 	if (si_code == SI_KERNEL)
3140 		return true;
3141 	else if ((si_code > SI_USER)) {
3142 		if (sig_specific_sicodes(sig)) {
3143 			if (si_code <= sig_sicodes[sig].limit)
3144 				return true;
3145 		}
3146 		else if (si_code <= NSIGPOLL)
3147 			return true;
3148 	}
3149 	else if (si_code >= SI_DETHREAD)
3150 		return true;
3151 	else if (si_code == SI_ASYNCNL)
3152 		return true;
3153 	return false;
3154 }
3155 
3156 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3157 {
3158 	enum siginfo_layout layout = SIL_KILL;
3159 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3160 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3161 		    (si_code <= sig_sicodes[sig].limit)) {
3162 			layout = sig_sicodes[sig].layout;
3163 			/* Handle the exceptions */
3164 			if ((sig == SIGBUS) &&
3165 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3166 				layout = SIL_FAULT_MCEERR;
3167 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3168 				layout = SIL_FAULT_BNDERR;
3169 #ifdef SEGV_PKUERR
3170 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3171 				layout = SIL_FAULT_PKUERR;
3172 #endif
3173 		}
3174 		else if (si_code <= NSIGPOLL)
3175 			layout = SIL_POLL;
3176 	} else {
3177 		if (si_code == SI_TIMER)
3178 			layout = SIL_TIMER;
3179 		else if (si_code == SI_SIGIO)
3180 			layout = SIL_POLL;
3181 		else if (si_code < 0)
3182 			layout = SIL_RT;
3183 	}
3184 	return layout;
3185 }
3186 
3187 static inline char __user *si_expansion(const siginfo_t __user *info)
3188 {
3189 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3190 }
3191 
3192 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3193 {
3194 	char __user *expansion = si_expansion(to);
3195 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3196 		return -EFAULT;
3197 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3198 		return -EFAULT;
3199 	return 0;
3200 }
3201 
3202 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3203 				       const siginfo_t __user *from)
3204 {
3205 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3206 		char __user *expansion = si_expansion(from);
3207 		char buf[SI_EXPANSION_SIZE];
3208 		int i;
3209 		/*
3210 		 * An unknown si_code might need more than
3211 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3212 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3213 		 * will return this data to userspace exactly.
3214 		 */
3215 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3216 			return -EFAULT;
3217 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3218 			if (buf[i] != 0)
3219 				return -E2BIG;
3220 		}
3221 	}
3222 	return 0;
3223 }
3224 
3225 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3226 				    const siginfo_t __user *from)
3227 {
3228 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3229 		return -EFAULT;
3230 	to->si_signo = signo;
3231 	return post_copy_siginfo_from_user(to, from);
3232 }
3233 
3234 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3235 {
3236 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3237 		return -EFAULT;
3238 	return post_copy_siginfo_from_user(to, from);
3239 }
3240 
3241 #ifdef CONFIG_COMPAT
3242 /**
3243  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3244  * @to: compat siginfo destination
3245  * @from: kernel siginfo source
3246  *
3247  * Note: This function does not work properly for the SIGCHLD on x32, but
3248  * fortunately it doesn't have to.  The only valid callers for this function are
3249  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3250  * The latter does not care because SIGCHLD will never cause a coredump.
3251  */
3252 void copy_siginfo_to_external32(struct compat_siginfo *to,
3253 		const struct kernel_siginfo *from)
3254 {
3255 	memset(to, 0, sizeof(*to));
3256 
3257 	to->si_signo = from->si_signo;
3258 	to->si_errno = from->si_errno;
3259 	to->si_code  = from->si_code;
3260 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3261 	case SIL_KILL:
3262 		to->si_pid = from->si_pid;
3263 		to->si_uid = from->si_uid;
3264 		break;
3265 	case SIL_TIMER:
3266 		to->si_tid     = from->si_tid;
3267 		to->si_overrun = from->si_overrun;
3268 		to->si_int     = from->si_int;
3269 		break;
3270 	case SIL_POLL:
3271 		to->si_band = from->si_band;
3272 		to->si_fd   = from->si_fd;
3273 		break;
3274 	case SIL_FAULT:
3275 		to->si_addr = ptr_to_compat(from->si_addr);
3276 #ifdef __ARCH_SI_TRAPNO
3277 		to->si_trapno = from->si_trapno;
3278 #endif
3279 		break;
3280 	case SIL_FAULT_MCEERR:
3281 		to->si_addr = ptr_to_compat(from->si_addr);
3282 #ifdef __ARCH_SI_TRAPNO
3283 		to->si_trapno = from->si_trapno;
3284 #endif
3285 		to->si_addr_lsb = from->si_addr_lsb;
3286 		break;
3287 	case SIL_FAULT_BNDERR:
3288 		to->si_addr = ptr_to_compat(from->si_addr);
3289 #ifdef __ARCH_SI_TRAPNO
3290 		to->si_trapno = from->si_trapno;
3291 #endif
3292 		to->si_lower = ptr_to_compat(from->si_lower);
3293 		to->si_upper = ptr_to_compat(from->si_upper);
3294 		break;
3295 	case SIL_FAULT_PKUERR:
3296 		to->si_addr = ptr_to_compat(from->si_addr);
3297 #ifdef __ARCH_SI_TRAPNO
3298 		to->si_trapno = from->si_trapno;
3299 #endif
3300 		to->si_pkey = from->si_pkey;
3301 		break;
3302 	case SIL_CHLD:
3303 		to->si_pid = from->si_pid;
3304 		to->si_uid = from->si_uid;
3305 		to->si_status = from->si_status;
3306 		to->si_utime = from->si_utime;
3307 		to->si_stime = from->si_stime;
3308 		break;
3309 	case SIL_RT:
3310 		to->si_pid = from->si_pid;
3311 		to->si_uid = from->si_uid;
3312 		to->si_int = from->si_int;
3313 		break;
3314 	case SIL_SYS:
3315 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3316 		to->si_syscall   = from->si_syscall;
3317 		to->si_arch      = from->si_arch;
3318 		break;
3319 	}
3320 }
3321 
3322 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3323 			   const struct kernel_siginfo *from)
3324 {
3325 	struct compat_siginfo new;
3326 
3327 	copy_siginfo_to_external32(&new, from);
3328 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3329 		return -EFAULT;
3330 	return 0;
3331 }
3332 
3333 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3334 					 const struct compat_siginfo *from)
3335 {
3336 	clear_siginfo(to);
3337 	to->si_signo = from->si_signo;
3338 	to->si_errno = from->si_errno;
3339 	to->si_code  = from->si_code;
3340 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3341 	case SIL_KILL:
3342 		to->si_pid = from->si_pid;
3343 		to->si_uid = from->si_uid;
3344 		break;
3345 	case SIL_TIMER:
3346 		to->si_tid     = from->si_tid;
3347 		to->si_overrun = from->si_overrun;
3348 		to->si_int     = from->si_int;
3349 		break;
3350 	case SIL_POLL:
3351 		to->si_band = from->si_band;
3352 		to->si_fd   = from->si_fd;
3353 		break;
3354 	case SIL_FAULT:
3355 		to->si_addr = compat_ptr(from->si_addr);
3356 #ifdef __ARCH_SI_TRAPNO
3357 		to->si_trapno = from->si_trapno;
3358 #endif
3359 		break;
3360 	case SIL_FAULT_MCEERR:
3361 		to->si_addr = compat_ptr(from->si_addr);
3362 #ifdef __ARCH_SI_TRAPNO
3363 		to->si_trapno = from->si_trapno;
3364 #endif
3365 		to->si_addr_lsb = from->si_addr_lsb;
3366 		break;
3367 	case SIL_FAULT_BNDERR:
3368 		to->si_addr = compat_ptr(from->si_addr);
3369 #ifdef __ARCH_SI_TRAPNO
3370 		to->si_trapno = from->si_trapno;
3371 #endif
3372 		to->si_lower = compat_ptr(from->si_lower);
3373 		to->si_upper = compat_ptr(from->si_upper);
3374 		break;
3375 	case SIL_FAULT_PKUERR:
3376 		to->si_addr = compat_ptr(from->si_addr);
3377 #ifdef __ARCH_SI_TRAPNO
3378 		to->si_trapno = from->si_trapno;
3379 #endif
3380 		to->si_pkey = from->si_pkey;
3381 		break;
3382 	case SIL_CHLD:
3383 		to->si_pid    = from->si_pid;
3384 		to->si_uid    = from->si_uid;
3385 		to->si_status = from->si_status;
3386 #ifdef CONFIG_X86_X32_ABI
3387 		if (in_x32_syscall()) {
3388 			to->si_utime = from->_sifields._sigchld_x32._utime;
3389 			to->si_stime = from->_sifields._sigchld_x32._stime;
3390 		} else
3391 #endif
3392 		{
3393 			to->si_utime = from->si_utime;
3394 			to->si_stime = from->si_stime;
3395 		}
3396 		break;
3397 	case SIL_RT:
3398 		to->si_pid = from->si_pid;
3399 		to->si_uid = from->si_uid;
3400 		to->si_int = from->si_int;
3401 		break;
3402 	case SIL_SYS:
3403 		to->si_call_addr = compat_ptr(from->si_call_addr);
3404 		to->si_syscall   = from->si_syscall;
3405 		to->si_arch      = from->si_arch;
3406 		break;
3407 	}
3408 	return 0;
3409 }
3410 
3411 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3412 				      const struct compat_siginfo __user *ufrom)
3413 {
3414 	struct compat_siginfo from;
3415 
3416 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3417 		return -EFAULT;
3418 
3419 	from.si_signo = signo;
3420 	return post_copy_siginfo_from_user32(to, &from);
3421 }
3422 
3423 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3424 			     const struct compat_siginfo __user *ufrom)
3425 {
3426 	struct compat_siginfo from;
3427 
3428 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3429 		return -EFAULT;
3430 
3431 	return post_copy_siginfo_from_user32(to, &from);
3432 }
3433 #endif /* CONFIG_COMPAT */
3434 
3435 /**
3436  *  do_sigtimedwait - wait for queued signals specified in @which
3437  *  @which: queued signals to wait for
3438  *  @info: if non-null, the signal's siginfo is returned here
3439  *  @ts: upper bound on process time suspension
3440  */
3441 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3442 		    const struct timespec64 *ts)
3443 {
3444 	ktime_t *to = NULL, timeout = KTIME_MAX;
3445 	struct task_struct *tsk = current;
3446 	sigset_t mask = *which;
3447 	int sig, ret = 0;
3448 
3449 	if (ts) {
3450 		if (!timespec64_valid(ts))
3451 			return -EINVAL;
3452 		timeout = timespec64_to_ktime(*ts);
3453 		to = &timeout;
3454 	}
3455 
3456 	/*
3457 	 * Invert the set of allowed signals to get those we want to block.
3458 	 */
3459 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3460 	signotset(&mask);
3461 
3462 	spin_lock_irq(&tsk->sighand->siglock);
3463 	sig = dequeue_signal(tsk, &mask, info);
3464 	if (!sig && timeout) {
3465 		/*
3466 		 * None ready, temporarily unblock those we're interested
3467 		 * while we are sleeping in so that we'll be awakened when
3468 		 * they arrive. Unblocking is always fine, we can avoid
3469 		 * set_current_blocked().
3470 		 */
3471 		tsk->real_blocked = tsk->blocked;
3472 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3473 		recalc_sigpending();
3474 		spin_unlock_irq(&tsk->sighand->siglock);
3475 
3476 		__set_current_state(TASK_INTERRUPTIBLE);
3477 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3478 							 HRTIMER_MODE_REL);
3479 		spin_lock_irq(&tsk->sighand->siglock);
3480 		__set_task_blocked(tsk, &tsk->real_blocked);
3481 		sigemptyset(&tsk->real_blocked);
3482 		sig = dequeue_signal(tsk, &mask, info);
3483 	}
3484 	spin_unlock_irq(&tsk->sighand->siglock);
3485 
3486 	if (sig)
3487 		return sig;
3488 	return ret ? -EINTR : -EAGAIN;
3489 }
3490 
3491 /**
3492  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3493  *			in @uthese
3494  *  @uthese: queued signals to wait for
3495  *  @uinfo: if non-null, the signal's siginfo is returned here
3496  *  @uts: upper bound on process time suspension
3497  *  @sigsetsize: size of sigset_t type
3498  */
3499 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3500 		siginfo_t __user *, uinfo,
3501 		const struct __kernel_timespec __user *, uts,
3502 		size_t, sigsetsize)
3503 {
3504 	sigset_t these;
3505 	struct timespec64 ts;
3506 	kernel_siginfo_t info;
3507 	int ret;
3508 
3509 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3510 	if (sigsetsize != sizeof(sigset_t))
3511 		return -EINVAL;
3512 
3513 	if (copy_from_user(&these, uthese, sizeof(these)))
3514 		return -EFAULT;
3515 
3516 	if (uts) {
3517 		if (get_timespec64(&ts, uts))
3518 			return -EFAULT;
3519 	}
3520 
3521 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3522 
3523 	if (ret > 0 && uinfo) {
3524 		if (copy_siginfo_to_user(uinfo, &info))
3525 			ret = -EFAULT;
3526 	}
3527 
3528 	return ret;
3529 }
3530 
3531 #ifdef CONFIG_COMPAT_32BIT_TIME
3532 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3533 		siginfo_t __user *, uinfo,
3534 		const struct old_timespec32 __user *, uts,
3535 		size_t, sigsetsize)
3536 {
3537 	sigset_t these;
3538 	struct timespec64 ts;
3539 	kernel_siginfo_t info;
3540 	int ret;
3541 
3542 	if (sigsetsize != sizeof(sigset_t))
3543 		return -EINVAL;
3544 
3545 	if (copy_from_user(&these, uthese, sizeof(these)))
3546 		return -EFAULT;
3547 
3548 	if (uts) {
3549 		if (get_old_timespec32(&ts, uts))
3550 			return -EFAULT;
3551 	}
3552 
3553 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3554 
3555 	if (ret > 0 && uinfo) {
3556 		if (copy_siginfo_to_user(uinfo, &info))
3557 			ret = -EFAULT;
3558 	}
3559 
3560 	return ret;
3561 }
3562 #endif
3563 
3564 #ifdef CONFIG_COMPAT
3565 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3566 		struct compat_siginfo __user *, uinfo,
3567 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3568 {
3569 	sigset_t s;
3570 	struct timespec64 t;
3571 	kernel_siginfo_t info;
3572 	long ret;
3573 
3574 	if (sigsetsize != sizeof(sigset_t))
3575 		return -EINVAL;
3576 
3577 	if (get_compat_sigset(&s, uthese))
3578 		return -EFAULT;
3579 
3580 	if (uts) {
3581 		if (get_timespec64(&t, uts))
3582 			return -EFAULT;
3583 	}
3584 
3585 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3586 
3587 	if (ret > 0 && uinfo) {
3588 		if (copy_siginfo_to_user32(uinfo, &info))
3589 			ret = -EFAULT;
3590 	}
3591 
3592 	return ret;
3593 }
3594 
3595 #ifdef CONFIG_COMPAT_32BIT_TIME
3596 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3597 		struct compat_siginfo __user *, uinfo,
3598 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3599 {
3600 	sigset_t s;
3601 	struct timespec64 t;
3602 	kernel_siginfo_t info;
3603 	long ret;
3604 
3605 	if (sigsetsize != sizeof(sigset_t))
3606 		return -EINVAL;
3607 
3608 	if (get_compat_sigset(&s, uthese))
3609 		return -EFAULT;
3610 
3611 	if (uts) {
3612 		if (get_old_timespec32(&t, uts))
3613 			return -EFAULT;
3614 	}
3615 
3616 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3617 
3618 	if (ret > 0 && uinfo) {
3619 		if (copy_siginfo_to_user32(uinfo, &info))
3620 			ret = -EFAULT;
3621 	}
3622 
3623 	return ret;
3624 }
3625 #endif
3626 #endif
3627 
3628 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3629 {
3630 	clear_siginfo(info);
3631 	info->si_signo = sig;
3632 	info->si_errno = 0;
3633 	info->si_code = SI_USER;
3634 	info->si_pid = task_tgid_vnr(current);
3635 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3636 }
3637 
3638 /**
3639  *  sys_kill - send a signal to a process
3640  *  @pid: the PID of the process
3641  *  @sig: signal to be sent
3642  */
3643 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3644 {
3645 	struct kernel_siginfo info;
3646 
3647 	prepare_kill_siginfo(sig, &info);
3648 
3649 	return kill_something_info(sig, &info, pid);
3650 }
3651 
3652 /*
3653  * Verify that the signaler and signalee either are in the same pid namespace
3654  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3655  * namespace.
3656  */
3657 static bool access_pidfd_pidns(struct pid *pid)
3658 {
3659 	struct pid_namespace *active = task_active_pid_ns(current);
3660 	struct pid_namespace *p = ns_of_pid(pid);
3661 
3662 	for (;;) {
3663 		if (!p)
3664 			return false;
3665 		if (p == active)
3666 			break;
3667 		p = p->parent;
3668 	}
3669 
3670 	return true;
3671 }
3672 
3673 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3674 {
3675 #ifdef CONFIG_COMPAT
3676 	/*
3677 	 * Avoid hooking up compat syscalls and instead handle necessary
3678 	 * conversions here. Note, this is a stop-gap measure and should not be
3679 	 * considered a generic solution.
3680 	 */
3681 	if (in_compat_syscall())
3682 		return copy_siginfo_from_user32(
3683 			kinfo, (struct compat_siginfo __user *)info);
3684 #endif
3685 	return copy_siginfo_from_user(kinfo, info);
3686 }
3687 
3688 static struct pid *pidfd_to_pid(const struct file *file)
3689 {
3690 	struct pid *pid;
3691 
3692 	pid = pidfd_pid(file);
3693 	if (!IS_ERR(pid))
3694 		return pid;
3695 
3696 	return tgid_pidfd_to_pid(file);
3697 }
3698 
3699 /**
3700  * sys_pidfd_send_signal - Signal a process through a pidfd
3701  * @pidfd:  file descriptor of the process
3702  * @sig:    signal to send
3703  * @info:   signal info
3704  * @flags:  future flags
3705  *
3706  * The syscall currently only signals via PIDTYPE_PID which covers
3707  * kill(<positive-pid>, <signal>. It does not signal threads or process
3708  * groups.
3709  * In order to extend the syscall to threads and process groups the @flags
3710  * argument should be used. In essence, the @flags argument will determine
3711  * what is signaled and not the file descriptor itself. Put in other words,
3712  * grouping is a property of the flags argument not a property of the file
3713  * descriptor.
3714  *
3715  * Return: 0 on success, negative errno on failure
3716  */
3717 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3718 		siginfo_t __user *, info, unsigned int, flags)
3719 {
3720 	int ret;
3721 	struct fd f;
3722 	struct pid *pid;
3723 	kernel_siginfo_t kinfo;
3724 
3725 	/* Enforce flags be set to 0 until we add an extension. */
3726 	if (flags)
3727 		return -EINVAL;
3728 
3729 	f = fdget(pidfd);
3730 	if (!f.file)
3731 		return -EBADF;
3732 
3733 	/* Is this a pidfd? */
3734 	pid = pidfd_to_pid(f.file);
3735 	if (IS_ERR(pid)) {
3736 		ret = PTR_ERR(pid);
3737 		goto err;
3738 	}
3739 
3740 	ret = -EINVAL;
3741 	if (!access_pidfd_pidns(pid))
3742 		goto err;
3743 
3744 	if (info) {
3745 		ret = copy_siginfo_from_user_any(&kinfo, info);
3746 		if (unlikely(ret))
3747 			goto err;
3748 
3749 		ret = -EINVAL;
3750 		if (unlikely(sig != kinfo.si_signo))
3751 			goto err;
3752 
3753 		/* Only allow sending arbitrary signals to yourself. */
3754 		ret = -EPERM;
3755 		if ((task_pid(current) != pid) &&
3756 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3757 			goto err;
3758 	} else {
3759 		prepare_kill_siginfo(sig, &kinfo);
3760 	}
3761 
3762 	ret = kill_pid_info(sig, &kinfo, pid);
3763 
3764 err:
3765 	fdput(f);
3766 	return ret;
3767 }
3768 
3769 static int
3770 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3771 {
3772 	struct task_struct *p;
3773 	int error = -ESRCH;
3774 
3775 	rcu_read_lock();
3776 	p = find_task_by_vpid(pid);
3777 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3778 		error = check_kill_permission(sig, info, p);
3779 		/*
3780 		 * The null signal is a permissions and process existence
3781 		 * probe.  No signal is actually delivered.
3782 		 */
3783 		if (!error && sig) {
3784 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3785 			/*
3786 			 * If lock_task_sighand() failed we pretend the task
3787 			 * dies after receiving the signal. The window is tiny,
3788 			 * and the signal is private anyway.
3789 			 */
3790 			if (unlikely(error == -ESRCH))
3791 				error = 0;
3792 		}
3793 	}
3794 	rcu_read_unlock();
3795 
3796 	return error;
3797 }
3798 
3799 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3800 {
3801 	struct kernel_siginfo info;
3802 
3803 	clear_siginfo(&info);
3804 	info.si_signo = sig;
3805 	info.si_errno = 0;
3806 	info.si_code = SI_TKILL;
3807 	info.si_pid = task_tgid_vnr(current);
3808 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3809 
3810 	return do_send_specific(tgid, pid, sig, &info);
3811 }
3812 
3813 /**
3814  *  sys_tgkill - send signal to one specific thread
3815  *  @tgid: the thread group ID of the thread
3816  *  @pid: the PID of the thread
3817  *  @sig: signal to be sent
3818  *
3819  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3820  *  exists but it's not belonging to the target process anymore. This
3821  *  method solves the problem of threads exiting and PIDs getting reused.
3822  */
3823 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3824 {
3825 	/* This is only valid for single tasks */
3826 	if (pid <= 0 || tgid <= 0)
3827 		return -EINVAL;
3828 
3829 	return do_tkill(tgid, pid, sig);
3830 }
3831 
3832 /**
3833  *  sys_tkill - send signal to one specific task
3834  *  @pid: the PID of the task
3835  *  @sig: signal to be sent
3836  *
3837  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3838  */
3839 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3840 {
3841 	/* This is only valid for single tasks */
3842 	if (pid <= 0)
3843 		return -EINVAL;
3844 
3845 	return do_tkill(0, pid, sig);
3846 }
3847 
3848 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3849 {
3850 	/* Not even root can pretend to send signals from the kernel.
3851 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3852 	 */
3853 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3854 	    (task_pid_vnr(current) != pid))
3855 		return -EPERM;
3856 
3857 	/* POSIX.1b doesn't mention process groups.  */
3858 	return kill_proc_info(sig, info, pid);
3859 }
3860 
3861 /**
3862  *  sys_rt_sigqueueinfo - send signal information to a signal
3863  *  @pid: the PID of the thread
3864  *  @sig: signal to be sent
3865  *  @uinfo: signal info to be sent
3866  */
3867 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3868 		siginfo_t __user *, uinfo)
3869 {
3870 	kernel_siginfo_t info;
3871 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3872 	if (unlikely(ret))
3873 		return ret;
3874 	return do_rt_sigqueueinfo(pid, sig, &info);
3875 }
3876 
3877 #ifdef CONFIG_COMPAT
3878 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3879 			compat_pid_t, pid,
3880 			int, sig,
3881 			struct compat_siginfo __user *, uinfo)
3882 {
3883 	kernel_siginfo_t info;
3884 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3885 	if (unlikely(ret))
3886 		return ret;
3887 	return do_rt_sigqueueinfo(pid, sig, &info);
3888 }
3889 #endif
3890 
3891 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3892 {
3893 	/* This is only valid for single tasks */
3894 	if (pid <= 0 || tgid <= 0)
3895 		return -EINVAL;
3896 
3897 	/* Not even root can pretend to send signals from the kernel.
3898 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3899 	 */
3900 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3901 	    (task_pid_vnr(current) != pid))
3902 		return -EPERM;
3903 
3904 	return do_send_specific(tgid, pid, sig, info);
3905 }
3906 
3907 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3908 		siginfo_t __user *, uinfo)
3909 {
3910 	kernel_siginfo_t info;
3911 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3912 	if (unlikely(ret))
3913 		return ret;
3914 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3915 }
3916 
3917 #ifdef CONFIG_COMPAT
3918 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3919 			compat_pid_t, tgid,
3920 			compat_pid_t, pid,
3921 			int, sig,
3922 			struct compat_siginfo __user *, uinfo)
3923 {
3924 	kernel_siginfo_t info;
3925 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3926 	if (unlikely(ret))
3927 		return ret;
3928 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3929 }
3930 #endif
3931 
3932 /*
3933  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3934  */
3935 void kernel_sigaction(int sig, __sighandler_t action)
3936 {
3937 	spin_lock_irq(&current->sighand->siglock);
3938 	current->sighand->action[sig - 1].sa.sa_handler = action;
3939 	if (action == SIG_IGN) {
3940 		sigset_t mask;
3941 
3942 		sigemptyset(&mask);
3943 		sigaddset(&mask, sig);
3944 
3945 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3946 		flush_sigqueue_mask(&mask, &current->pending);
3947 		recalc_sigpending();
3948 	}
3949 	spin_unlock_irq(&current->sighand->siglock);
3950 }
3951 EXPORT_SYMBOL(kernel_sigaction);
3952 
3953 void __weak sigaction_compat_abi(struct k_sigaction *act,
3954 		struct k_sigaction *oact)
3955 {
3956 }
3957 
3958 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3959 {
3960 	struct task_struct *p = current, *t;
3961 	struct k_sigaction *k;
3962 	sigset_t mask;
3963 
3964 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3965 		return -EINVAL;
3966 
3967 	k = &p->sighand->action[sig-1];
3968 
3969 	spin_lock_irq(&p->sighand->siglock);
3970 	if (oact)
3971 		*oact = *k;
3972 
3973 	sigaction_compat_abi(act, oact);
3974 
3975 	if (act) {
3976 		sigdelsetmask(&act->sa.sa_mask,
3977 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3978 		*k = *act;
3979 		/*
3980 		 * POSIX 3.3.1.3:
3981 		 *  "Setting a signal action to SIG_IGN for a signal that is
3982 		 *   pending shall cause the pending signal to be discarded,
3983 		 *   whether or not it is blocked."
3984 		 *
3985 		 *  "Setting a signal action to SIG_DFL for a signal that is
3986 		 *   pending and whose default action is to ignore the signal
3987 		 *   (for example, SIGCHLD), shall cause the pending signal to
3988 		 *   be discarded, whether or not it is blocked"
3989 		 */
3990 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3991 			sigemptyset(&mask);
3992 			sigaddset(&mask, sig);
3993 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3994 			for_each_thread(p, t)
3995 				flush_sigqueue_mask(&mask, &t->pending);
3996 		}
3997 	}
3998 
3999 	spin_unlock_irq(&p->sighand->siglock);
4000 	return 0;
4001 }
4002 
4003 static int
4004 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4005 		size_t min_ss_size)
4006 {
4007 	struct task_struct *t = current;
4008 
4009 	if (oss) {
4010 		memset(oss, 0, sizeof(stack_t));
4011 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4012 		oss->ss_size = t->sas_ss_size;
4013 		oss->ss_flags = sas_ss_flags(sp) |
4014 			(current->sas_ss_flags & SS_FLAG_BITS);
4015 	}
4016 
4017 	if (ss) {
4018 		void __user *ss_sp = ss->ss_sp;
4019 		size_t ss_size = ss->ss_size;
4020 		unsigned ss_flags = ss->ss_flags;
4021 		int ss_mode;
4022 
4023 		if (unlikely(on_sig_stack(sp)))
4024 			return -EPERM;
4025 
4026 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4027 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4028 				ss_mode != 0))
4029 			return -EINVAL;
4030 
4031 		if (ss_mode == SS_DISABLE) {
4032 			ss_size = 0;
4033 			ss_sp = NULL;
4034 		} else {
4035 			if (unlikely(ss_size < min_ss_size))
4036 				return -ENOMEM;
4037 		}
4038 
4039 		t->sas_ss_sp = (unsigned long) ss_sp;
4040 		t->sas_ss_size = ss_size;
4041 		t->sas_ss_flags = ss_flags;
4042 	}
4043 	return 0;
4044 }
4045 
4046 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4047 {
4048 	stack_t new, old;
4049 	int err;
4050 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4051 		return -EFAULT;
4052 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4053 			      current_user_stack_pointer(),
4054 			      MINSIGSTKSZ);
4055 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4056 		err = -EFAULT;
4057 	return err;
4058 }
4059 
4060 int restore_altstack(const stack_t __user *uss)
4061 {
4062 	stack_t new;
4063 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4064 		return -EFAULT;
4065 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4066 			     MINSIGSTKSZ);
4067 	/* squash all but EFAULT for now */
4068 	return 0;
4069 }
4070 
4071 int __save_altstack(stack_t __user *uss, unsigned long sp)
4072 {
4073 	struct task_struct *t = current;
4074 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4075 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4076 		__put_user(t->sas_ss_size, &uss->ss_size);
4077 	if (err)
4078 		return err;
4079 	if (t->sas_ss_flags & SS_AUTODISARM)
4080 		sas_ss_reset(t);
4081 	return 0;
4082 }
4083 
4084 #ifdef CONFIG_COMPAT
4085 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4086 				 compat_stack_t __user *uoss_ptr)
4087 {
4088 	stack_t uss, uoss;
4089 	int ret;
4090 
4091 	if (uss_ptr) {
4092 		compat_stack_t uss32;
4093 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4094 			return -EFAULT;
4095 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4096 		uss.ss_flags = uss32.ss_flags;
4097 		uss.ss_size = uss32.ss_size;
4098 	}
4099 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4100 			     compat_user_stack_pointer(),
4101 			     COMPAT_MINSIGSTKSZ);
4102 	if (ret >= 0 && uoss_ptr)  {
4103 		compat_stack_t old;
4104 		memset(&old, 0, sizeof(old));
4105 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4106 		old.ss_flags = uoss.ss_flags;
4107 		old.ss_size = uoss.ss_size;
4108 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4109 			ret = -EFAULT;
4110 	}
4111 	return ret;
4112 }
4113 
4114 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4115 			const compat_stack_t __user *, uss_ptr,
4116 			compat_stack_t __user *, uoss_ptr)
4117 {
4118 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4119 }
4120 
4121 int compat_restore_altstack(const compat_stack_t __user *uss)
4122 {
4123 	int err = do_compat_sigaltstack(uss, NULL);
4124 	/* squash all but -EFAULT for now */
4125 	return err == -EFAULT ? err : 0;
4126 }
4127 
4128 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4129 {
4130 	int err;
4131 	struct task_struct *t = current;
4132 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4133 			 &uss->ss_sp) |
4134 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4135 		__put_user(t->sas_ss_size, &uss->ss_size);
4136 	if (err)
4137 		return err;
4138 	if (t->sas_ss_flags & SS_AUTODISARM)
4139 		sas_ss_reset(t);
4140 	return 0;
4141 }
4142 #endif
4143 
4144 #ifdef __ARCH_WANT_SYS_SIGPENDING
4145 
4146 /**
4147  *  sys_sigpending - examine pending signals
4148  *  @uset: where mask of pending signal is returned
4149  */
4150 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4151 {
4152 	sigset_t set;
4153 
4154 	if (sizeof(old_sigset_t) > sizeof(*uset))
4155 		return -EINVAL;
4156 
4157 	do_sigpending(&set);
4158 
4159 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4160 		return -EFAULT;
4161 
4162 	return 0;
4163 }
4164 
4165 #ifdef CONFIG_COMPAT
4166 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4167 {
4168 	sigset_t set;
4169 
4170 	do_sigpending(&set);
4171 
4172 	return put_user(set.sig[0], set32);
4173 }
4174 #endif
4175 
4176 #endif
4177 
4178 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4179 /**
4180  *  sys_sigprocmask - examine and change blocked signals
4181  *  @how: whether to add, remove, or set signals
4182  *  @nset: signals to add or remove (if non-null)
4183  *  @oset: previous value of signal mask if non-null
4184  *
4185  * Some platforms have their own version with special arguments;
4186  * others support only sys_rt_sigprocmask.
4187  */
4188 
4189 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4190 		old_sigset_t __user *, oset)
4191 {
4192 	old_sigset_t old_set, new_set;
4193 	sigset_t new_blocked;
4194 
4195 	old_set = current->blocked.sig[0];
4196 
4197 	if (nset) {
4198 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4199 			return -EFAULT;
4200 
4201 		new_blocked = current->blocked;
4202 
4203 		switch (how) {
4204 		case SIG_BLOCK:
4205 			sigaddsetmask(&new_blocked, new_set);
4206 			break;
4207 		case SIG_UNBLOCK:
4208 			sigdelsetmask(&new_blocked, new_set);
4209 			break;
4210 		case SIG_SETMASK:
4211 			new_blocked.sig[0] = new_set;
4212 			break;
4213 		default:
4214 			return -EINVAL;
4215 		}
4216 
4217 		set_current_blocked(&new_blocked);
4218 	}
4219 
4220 	if (oset) {
4221 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4222 			return -EFAULT;
4223 	}
4224 
4225 	return 0;
4226 }
4227 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4228 
4229 #ifndef CONFIG_ODD_RT_SIGACTION
4230 /**
4231  *  sys_rt_sigaction - alter an action taken by a process
4232  *  @sig: signal to be sent
4233  *  @act: new sigaction
4234  *  @oact: used to save the previous sigaction
4235  *  @sigsetsize: size of sigset_t type
4236  */
4237 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4238 		const struct sigaction __user *, act,
4239 		struct sigaction __user *, oact,
4240 		size_t, sigsetsize)
4241 {
4242 	struct k_sigaction new_sa, old_sa;
4243 	int ret;
4244 
4245 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4246 	if (sigsetsize != sizeof(sigset_t))
4247 		return -EINVAL;
4248 
4249 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4250 		return -EFAULT;
4251 
4252 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4253 	if (ret)
4254 		return ret;
4255 
4256 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4257 		return -EFAULT;
4258 
4259 	return 0;
4260 }
4261 #ifdef CONFIG_COMPAT
4262 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4263 		const struct compat_sigaction __user *, act,
4264 		struct compat_sigaction __user *, oact,
4265 		compat_size_t, sigsetsize)
4266 {
4267 	struct k_sigaction new_ka, old_ka;
4268 #ifdef __ARCH_HAS_SA_RESTORER
4269 	compat_uptr_t restorer;
4270 #endif
4271 	int ret;
4272 
4273 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4274 	if (sigsetsize != sizeof(compat_sigset_t))
4275 		return -EINVAL;
4276 
4277 	if (act) {
4278 		compat_uptr_t handler;
4279 		ret = get_user(handler, &act->sa_handler);
4280 		new_ka.sa.sa_handler = compat_ptr(handler);
4281 #ifdef __ARCH_HAS_SA_RESTORER
4282 		ret |= get_user(restorer, &act->sa_restorer);
4283 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4284 #endif
4285 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4286 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4287 		if (ret)
4288 			return -EFAULT;
4289 	}
4290 
4291 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4292 	if (!ret && oact) {
4293 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4294 			       &oact->sa_handler);
4295 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4296 					 sizeof(oact->sa_mask));
4297 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4298 #ifdef __ARCH_HAS_SA_RESTORER
4299 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4300 				&oact->sa_restorer);
4301 #endif
4302 	}
4303 	return ret;
4304 }
4305 #endif
4306 #endif /* !CONFIG_ODD_RT_SIGACTION */
4307 
4308 #ifdef CONFIG_OLD_SIGACTION
4309 SYSCALL_DEFINE3(sigaction, int, sig,
4310 		const struct old_sigaction __user *, act,
4311 	        struct old_sigaction __user *, oact)
4312 {
4313 	struct k_sigaction new_ka, old_ka;
4314 	int ret;
4315 
4316 	if (act) {
4317 		old_sigset_t mask;
4318 		if (!access_ok(act, sizeof(*act)) ||
4319 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4320 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4321 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4322 		    __get_user(mask, &act->sa_mask))
4323 			return -EFAULT;
4324 #ifdef __ARCH_HAS_KA_RESTORER
4325 		new_ka.ka_restorer = NULL;
4326 #endif
4327 		siginitset(&new_ka.sa.sa_mask, mask);
4328 	}
4329 
4330 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4331 
4332 	if (!ret && oact) {
4333 		if (!access_ok(oact, sizeof(*oact)) ||
4334 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4335 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4336 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4337 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4338 			return -EFAULT;
4339 	}
4340 
4341 	return ret;
4342 }
4343 #endif
4344 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4345 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4346 		const struct compat_old_sigaction __user *, act,
4347 	        struct compat_old_sigaction __user *, oact)
4348 {
4349 	struct k_sigaction new_ka, old_ka;
4350 	int ret;
4351 	compat_old_sigset_t mask;
4352 	compat_uptr_t handler, restorer;
4353 
4354 	if (act) {
4355 		if (!access_ok(act, sizeof(*act)) ||
4356 		    __get_user(handler, &act->sa_handler) ||
4357 		    __get_user(restorer, &act->sa_restorer) ||
4358 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4359 		    __get_user(mask, &act->sa_mask))
4360 			return -EFAULT;
4361 
4362 #ifdef __ARCH_HAS_KA_RESTORER
4363 		new_ka.ka_restorer = NULL;
4364 #endif
4365 		new_ka.sa.sa_handler = compat_ptr(handler);
4366 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4367 		siginitset(&new_ka.sa.sa_mask, mask);
4368 	}
4369 
4370 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4371 
4372 	if (!ret && oact) {
4373 		if (!access_ok(oact, sizeof(*oact)) ||
4374 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4375 			       &oact->sa_handler) ||
4376 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4377 			       &oact->sa_restorer) ||
4378 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4379 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4380 			return -EFAULT;
4381 	}
4382 	return ret;
4383 }
4384 #endif
4385 
4386 #ifdef CONFIG_SGETMASK_SYSCALL
4387 
4388 /*
4389  * For backwards compatibility.  Functionality superseded by sigprocmask.
4390  */
4391 SYSCALL_DEFINE0(sgetmask)
4392 {
4393 	/* SMP safe */
4394 	return current->blocked.sig[0];
4395 }
4396 
4397 SYSCALL_DEFINE1(ssetmask, int, newmask)
4398 {
4399 	int old = current->blocked.sig[0];
4400 	sigset_t newset;
4401 
4402 	siginitset(&newset, newmask);
4403 	set_current_blocked(&newset);
4404 
4405 	return old;
4406 }
4407 #endif /* CONFIG_SGETMASK_SYSCALL */
4408 
4409 #ifdef __ARCH_WANT_SYS_SIGNAL
4410 /*
4411  * For backwards compatibility.  Functionality superseded by sigaction.
4412  */
4413 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4414 {
4415 	struct k_sigaction new_sa, old_sa;
4416 	int ret;
4417 
4418 	new_sa.sa.sa_handler = handler;
4419 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4420 	sigemptyset(&new_sa.sa.sa_mask);
4421 
4422 	ret = do_sigaction(sig, &new_sa, &old_sa);
4423 
4424 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4425 }
4426 #endif /* __ARCH_WANT_SYS_SIGNAL */
4427 
4428 #ifdef __ARCH_WANT_SYS_PAUSE
4429 
4430 SYSCALL_DEFINE0(pause)
4431 {
4432 	while (!signal_pending(current)) {
4433 		__set_current_state(TASK_INTERRUPTIBLE);
4434 		schedule();
4435 	}
4436 	return -ERESTARTNOHAND;
4437 }
4438 
4439 #endif
4440 
4441 static int sigsuspend(sigset_t *set)
4442 {
4443 	current->saved_sigmask = current->blocked;
4444 	set_current_blocked(set);
4445 
4446 	while (!signal_pending(current)) {
4447 		__set_current_state(TASK_INTERRUPTIBLE);
4448 		schedule();
4449 	}
4450 	set_restore_sigmask();
4451 	return -ERESTARTNOHAND;
4452 }
4453 
4454 /**
4455  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4456  *	@unewset value until a signal is received
4457  *  @unewset: new signal mask value
4458  *  @sigsetsize: size of sigset_t type
4459  */
4460 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4461 {
4462 	sigset_t newset;
4463 
4464 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4465 	if (sigsetsize != sizeof(sigset_t))
4466 		return -EINVAL;
4467 
4468 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4469 		return -EFAULT;
4470 	return sigsuspend(&newset);
4471 }
4472 
4473 #ifdef CONFIG_COMPAT
4474 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4475 {
4476 	sigset_t newset;
4477 
4478 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4479 	if (sigsetsize != sizeof(sigset_t))
4480 		return -EINVAL;
4481 
4482 	if (get_compat_sigset(&newset, unewset))
4483 		return -EFAULT;
4484 	return sigsuspend(&newset);
4485 }
4486 #endif
4487 
4488 #ifdef CONFIG_OLD_SIGSUSPEND
4489 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4490 {
4491 	sigset_t blocked;
4492 	siginitset(&blocked, mask);
4493 	return sigsuspend(&blocked);
4494 }
4495 #endif
4496 #ifdef CONFIG_OLD_SIGSUSPEND3
4497 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4498 {
4499 	sigset_t blocked;
4500 	siginitset(&blocked, mask);
4501 	return sigsuspend(&blocked);
4502 }
4503 #endif
4504 
4505 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4506 {
4507 	return NULL;
4508 }
4509 
4510 static inline void siginfo_buildtime_checks(void)
4511 {
4512 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4513 
4514 	/* Verify the offsets in the two siginfos match */
4515 #define CHECK_OFFSET(field) \
4516 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4517 
4518 	/* kill */
4519 	CHECK_OFFSET(si_pid);
4520 	CHECK_OFFSET(si_uid);
4521 
4522 	/* timer */
4523 	CHECK_OFFSET(si_tid);
4524 	CHECK_OFFSET(si_overrun);
4525 	CHECK_OFFSET(si_value);
4526 
4527 	/* rt */
4528 	CHECK_OFFSET(si_pid);
4529 	CHECK_OFFSET(si_uid);
4530 	CHECK_OFFSET(si_value);
4531 
4532 	/* sigchld */
4533 	CHECK_OFFSET(si_pid);
4534 	CHECK_OFFSET(si_uid);
4535 	CHECK_OFFSET(si_status);
4536 	CHECK_OFFSET(si_utime);
4537 	CHECK_OFFSET(si_stime);
4538 
4539 	/* sigfault */
4540 	CHECK_OFFSET(si_addr);
4541 	CHECK_OFFSET(si_addr_lsb);
4542 	CHECK_OFFSET(si_lower);
4543 	CHECK_OFFSET(si_upper);
4544 	CHECK_OFFSET(si_pkey);
4545 
4546 	/* sigpoll */
4547 	CHECK_OFFSET(si_band);
4548 	CHECK_OFFSET(si_fd);
4549 
4550 	/* sigsys */
4551 	CHECK_OFFSET(si_call_addr);
4552 	CHECK_OFFSET(si_syscall);
4553 	CHECK_OFFSET(si_arch);
4554 #undef CHECK_OFFSET
4555 
4556 	/* usb asyncio */
4557 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4558 		     offsetof(struct siginfo, si_addr));
4559 	if (sizeof(int) == sizeof(void __user *)) {
4560 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4561 			     sizeof(void __user *));
4562 	} else {
4563 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4564 			      sizeof_field(struct siginfo, si_uid)) !=
4565 			     sizeof(void __user *));
4566 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4567 			     offsetof(struct siginfo, si_uid));
4568 	}
4569 #ifdef CONFIG_COMPAT
4570 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4571 		     offsetof(struct compat_siginfo, si_addr));
4572 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4573 		     sizeof(compat_uptr_t));
4574 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4575 		     sizeof_field(struct siginfo, si_pid));
4576 #endif
4577 }
4578 
4579 void __init signals_init(void)
4580 {
4581 	siginfo_buildtime_checks();
4582 
4583 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4584 }
4585 
4586 #ifdef CONFIG_KGDB_KDB
4587 #include <linux/kdb.h>
4588 /*
4589  * kdb_send_sig - Allows kdb to send signals without exposing
4590  * signal internals.  This function checks if the required locks are
4591  * available before calling the main signal code, to avoid kdb
4592  * deadlocks.
4593  */
4594 void kdb_send_sig(struct task_struct *t, int sig)
4595 {
4596 	static struct task_struct *kdb_prev_t;
4597 	int new_t, ret;
4598 	if (!spin_trylock(&t->sighand->siglock)) {
4599 		kdb_printf("Can't do kill command now.\n"
4600 			   "The sigmask lock is held somewhere else in "
4601 			   "kernel, try again later\n");
4602 		return;
4603 	}
4604 	new_t = kdb_prev_t != t;
4605 	kdb_prev_t = t;
4606 	if (t->state != TASK_RUNNING && new_t) {
4607 		spin_unlock(&t->sighand->siglock);
4608 		kdb_printf("Process is not RUNNING, sending a signal from "
4609 			   "kdb risks deadlock\n"
4610 			   "on the run queue locks. "
4611 			   "The signal has _not_ been sent.\n"
4612 			   "Reissue the kill command if you want to risk "
4613 			   "the deadlock.\n");
4614 		return;
4615 	}
4616 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4617 	spin_unlock(&t->sighand->siglock);
4618 	if (ret)
4619 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4620 			   sig, t->pid);
4621 	else
4622 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4623 }
4624 #endif	/* CONFIG_KGDB_KDB */
4625