1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/task_work.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 630 kernel_siginfo_t *info, enum pid_type *type) 631 { 632 bool resched_timer = false; 633 int signr; 634 635 /* We only dequeue private signals from ourselves, we don't let 636 * signalfd steal them 637 */ 638 *type = PIDTYPE_PID; 639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 640 if (!signr) { 641 *type = PIDTYPE_TGID; 642 signr = __dequeue_signal(&tsk->signal->shared_pending, 643 mask, info, &resched_timer); 644 #ifdef CONFIG_POSIX_TIMERS 645 /* 646 * itimer signal ? 647 * 648 * itimers are process shared and we restart periodic 649 * itimers in the signal delivery path to prevent DoS 650 * attacks in the high resolution timer case. This is 651 * compliant with the old way of self-restarting 652 * itimers, as the SIGALRM is a legacy signal and only 653 * queued once. Changing the restart behaviour to 654 * restart the timer in the signal dequeue path is 655 * reducing the timer noise on heavy loaded !highres 656 * systems too. 657 */ 658 if (unlikely(signr == SIGALRM)) { 659 struct hrtimer *tmr = &tsk->signal->real_timer; 660 661 if (!hrtimer_is_queued(tmr) && 662 tsk->signal->it_real_incr != 0) { 663 hrtimer_forward(tmr, tmr->base->get_time(), 664 tsk->signal->it_real_incr); 665 hrtimer_restart(tmr); 666 } 667 } 668 #endif 669 } 670 671 recalc_sigpending(); 672 if (!signr) 673 return 0; 674 675 if (unlikely(sig_kernel_stop(signr))) { 676 /* 677 * Set a marker that we have dequeued a stop signal. Our 678 * caller might release the siglock and then the pending 679 * stop signal it is about to process is no longer in the 680 * pending bitmasks, but must still be cleared by a SIGCONT 681 * (and overruled by a SIGKILL). So those cases clear this 682 * shared flag after we've set it. Note that this flag may 683 * remain set after the signal we return is ignored or 684 * handled. That doesn't matter because its only purpose 685 * is to alert stop-signal processing code when another 686 * processor has come along and cleared the flag. 687 */ 688 current->jobctl |= JOBCTL_STOP_DEQUEUED; 689 } 690 #ifdef CONFIG_POSIX_TIMERS 691 if (resched_timer) { 692 /* 693 * Release the siglock to ensure proper locking order 694 * of timer locks outside of siglocks. Note, we leave 695 * irqs disabled here, since the posix-timers code is 696 * about to disable them again anyway. 697 */ 698 spin_unlock(&tsk->sighand->siglock); 699 posixtimer_rearm(info); 700 spin_lock(&tsk->sighand->siglock); 701 702 /* Don't expose the si_sys_private value to userspace */ 703 info->si_sys_private = 0; 704 } 705 #endif 706 return signr; 707 } 708 EXPORT_SYMBOL_GPL(dequeue_signal); 709 710 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 711 { 712 struct task_struct *tsk = current; 713 struct sigpending *pending = &tsk->pending; 714 struct sigqueue *q, *sync = NULL; 715 716 /* 717 * Might a synchronous signal be in the queue? 718 */ 719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 720 return 0; 721 722 /* 723 * Return the first synchronous signal in the queue. 724 */ 725 list_for_each_entry(q, &pending->list, list) { 726 /* Synchronous signals have a positive si_code */ 727 if ((q->info.si_code > SI_USER) && 728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 729 sync = q; 730 goto next; 731 } 732 } 733 return 0; 734 next: 735 /* 736 * Check if there is another siginfo for the same signal. 737 */ 738 list_for_each_entry_continue(q, &pending->list, list) { 739 if (q->info.si_signo == sync->info.si_signo) 740 goto still_pending; 741 } 742 743 sigdelset(&pending->signal, sync->info.si_signo); 744 recalc_sigpending(); 745 still_pending: 746 list_del_init(&sync->list); 747 copy_siginfo(info, &sync->info); 748 __sigqueue_free(sync); 749 return info->si_signo; 750 } 751 752 /* 753 * Tell a process that it has a new active signal.. 754 * 755 * NOTE! we rely on the previous spin_lock to 756 * lock interrupts for us! We can only be called with 757 * "siglock" held, and the local interrupt must 758 * have been disabled when that got acquired! 759 * 760 * No need to set need_resched since signal event passing 761 * goes through ->blocked 762 */ 763 void signal_wake_up_state(struct task_struct *t, unsigned int state) 764 { 765 lockdep_assert_held(&t->sighand->siglock); 766 767 set_tsk_thread_flag(t, TIF_SIGPENDING); 768 769 /* 770 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 771 * case. We don't check t->state here because there is a race with it 772 * executing another processor and just now entering stopped state. 773 * By using wake_up_state, we ensure the process will wake up and 774 * handle its death signal. 775 */ 776 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 777 kick_process(t); 778 } 779 780 /* 781 * Remove signals in mask from the pending set and queue. 782 * Returns 1 if any signals were found. 783 * 784 * All callers must be holding the siglock. 785 */ 786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 787 { 788 struct sigqueue *q, *n; 789 sigset_t m; 790 791 sigandsets(&m, mask, &s->signal); 792 if (sigisemptyset(&m)) 793 return; 794 795 sigandnsets(&s->signal, &s->signal, mask); 796 list_for_each_entry_safe(q, n, &s->list, list) { 797 if (sigismember(mask, q->info.si_signo)) { 798 list_del_init(&q->list); 799 __sigqueue_free(q); 800 } 801 } 802 } 803 804 static inline int is_si_special(const struct kernel_siginfo *info) 805 { 806 return info <= SEND_SIG_PRIV; 807 } 808 809 static inline bool si_fromuser(const struct kernel_siginfo *info) 810 { 811 return info == SEND_SIG_NOINFO || 812 (!is_si_special(info) && SI_FROMUSER(info)); 813 } 814 815 /* 816 * called with RCU read lock from check_kill_permission() 817 */ 818 static bool kill_ok_by_cred(struct task_struct *t) 819 { 820 const struct cred *cred = current_cred(); 821 const struct cred *tcred = __task_cred(t); 822 823 return uid_eq(cred->euid, tcred->suid) || 824 uid_eq(cred->euid, tcred->uid) || 825 uid_eq(cred->uid, tcred->suid) || 826 uid_eq(cred->uid, tcred->uid) || 827 ns_capable(tcred->user_ns, CAP_KILL); 828 } 829 830 /* 831 * Bad permissions for sending the signal 832 * - the caller must hold the RCU read lock 833 */ 834 static int check_kill_permission(int sig, struct kernel_siginfo *info, 835 struct task_struct *t) 836 { 837 struct pid *sid; 838 int error; 839 840 if (!valid_signal(sig)) 841 return -EINVAL; 842 843 if (!si_fromuser(info)) 844 return 0; 845 846 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 847 if (error) 848 return error; 849 850 if (!same_thread_group(current, t) && 851 !kill_ok_by_cred(t)) { 852 switch (sig) { 853 case SIGCONT: 854 sid = task_session(t); 855 /* 856 * We don't return the error if sid == NULL. The 857 * task was unhashed, the caller must notice this. 858 */ 859 if (!sid || sid == task_session(current)) 860 break; 861 fallthrough; 862 default: 863 return -EPERM; 864 } 865 } 866 867 return security_task_kill(t, info, sig, NULL); 868 } 869 870 /** 871 * ptrace_trap_notify - schedule trap to notify ptracer 872 * @t: tracee wanting to notify tracer 873 * 874 * This function schedules sticky ptrace trap which is cleared on the next 875 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 876 * ptracer. 877 * 878 * If @t is running, STOP trap will be taken. If trapped for STOP and 879 * ptracer is listening for events, tracee is woken up so that it can 880 * re-trap for the new event. If trapped otherwise, STOP trap will be 881 * eventually taken without returning to userland after the existing traps 882 * are finished by PTRACE_CONT. 883 * 884 * CONTEXT: 885 * Must be called with @task->sighand->siglock held. 886 */ 887 static void ptrace_trap_notify(struct task_struct *t) 888 { 889 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 890 lockdep_assert_held(&t->sighand->siglock); 891 892 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 893 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 894 } 895 896 /* 897 * Handle magic process-wide effects of stop/continue signals. Unlike 898 * the signal actions, these happen immediately at signal-generation 899 * time regardless of blocking, ignoring, or handling. This does the 900 * actual continuing for SIGCONT, but not the actual stopping for stop 901 * signals. The process stop is done as a signal action for SIG_DFL. 902 * 903 * Returns true if the signal should be actually delivered, otherwise 904 * it should be dropped. 905 */ 906 static bool prepare_signal(int sig, struct task_struct *p, bool force) 907 { 908 struct signal_struct *signal = p->signal; 909 struct task_struct *t; 910 sigset_t flush; 911 912 if (signal->flags & SIGNAL_GROUP_EXIT) { 913 if (signal->core_state) 914 return sig == SIGKILL; 915 /* 916 * The process is in the middle of dying, drop the signal. 917 */ 918 return false; 919 } else if (sig_kernel_stop(sig)) { 920 /* 921 * This is a stop signal. Remove SIGCONT from all queues. 922 */ 923 siginitset(&flush, sigmask(SIGCONT)); 924 flush_sigqueue_mask(&flush, &signal->shared_pending); 925 for_each_thread(p, t) 926 flush_sigqueue_mask(&flush, &t->pending); 927 } else if (sig == SIGCONT) { 928 unsigned int why; 929 /* 930 * Remove all stop signals from all queues, wake all threads. 931 */ 932 siginitset(&flush, SIG_KERNEL_STOP_MASK); 933 flush_sigqueue_mask(&flush, &signal->shared_pending); 934 for_each_thread(p, t) { 935 flush_sigqueue_mask(&flush, &t->pending); 936 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 937 if (likely(!(t->ptrace & PT_SEIZED))) { 938 t->jobctl &= ~JOBCTL_STOPPED; 939 wake_up_state(t, __TASK_STOPPED); 940 } else 941 ptrace_trap_notify(t); 942 } 943 944 /* 945 * Notify the parent with CLD_CONTINUED if we were stopped. 946 * 947 * If we were in the middle of a group stop, we pretend it 948 * was already finished, and then continued. Since SIGCHLD 949 * doesn't queue we report only CLD_STOPPED, as if the next 950 * CLD_CONTINUED was dropped. 951 */ 952 why = 0; 953 if (signal->flags & SIGNAL_STOP_STOPPED) 954 why |= SIGNAL_CLD_CONTINUED; 955 else if (signal->group_stop_count) 956 why |= SIGNAL_CLD_STOPPED; 957 958 if (why) { 959 /* 960 * The first thread which returns from do_signal_stop() 961 * will take ->siglock, notice SIGNAL_CLD_MASK, and 962 * notify its parent. See get_signal(). 963 */ 964 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 965 signal->group_stop_count = 0; 966 signal->group_exit_code = 0; 967 } 968 } 969 970 return !sig_ignored(p, sig, force); 971 } 972 973 /* 974 * Test if P wants to take SIG. After we've checked all threads with this, 975 * it's equivalent to finding no threads not blocking SIG. Any threads not 976 * blocking SIG were ruled out because they are not running and already 977 * have pending signals. Such threads will dequeue from the shared queue 978 * as soon as they're available, so putting the signal on the shared queue 979 * will be equivalent to sending it to one such thread. 980 */ 981 static inline bool wants_signal(int sig, struct task_struct *p) 982 { 983 if (sigismember(&p->blocked, sig)) 984 return false; 985 986 if (p->flags & PF_EXITING) 987 return false; 988 989 if (sig == SIGKILL) 990 return true; 991 992 if (task_is_stopped_or_traced(p)) 993 return false; 994 995 return task_curr(p) || !task_sigpending(p); 996 } 997 998 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 999 { 1000 struct signal_struct *signal = p->signal; 1001 struct task_struct *t; 1002 1003 /* 1004 * Now find a thread we can wake up to take the signal off the queue. 1005 * 1006 * Try the suggested task first (may or may not be the main thread). 1007 */ 1008 if (wants_signal(sig, p)) 1009 t = p; 1010 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1011 /* 1012 * There is just one thread and it does not need to be woken. 1013 * It will dequeue unblocked signals before it runs again. 1014 */ 1015 return; 1016 else { 1017 /* 1018 * Otherwise try to find a suitable thread. 1019 */ 1020 t = signal->curr_target; 1021 while (!wants_signal(sig, t)) { 1022 t = next_thread(t); 1023 if (t == signal->curr_target) 1024 /* 1025 * No thread needs to be woken. 1026 * Any eligible threads will see 1027 * the signal in the queue soon. 1028 */ 1029 return; 1030 } 1031 signal->curr_target = t; 1032 } 1033 1034 /* 1035 * Found a killable thread. If the signal will be fatal, 1036 * then start taking the whole group down immediately. 1037 */ 1038 if (sig_fatal(p, sig) && 1039 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1040 !sigismember(&t->real_blocked, sig) && 1041 (sig == SIGKILL || !p->ptrace)) { 1042 /* 1043 * This signal will be fatal to the whole group. 1044 */ 1045 if (!sig_kernel_coredump(sig)) { 1046 /* 1047 * Start a group exit and wake everybody up. 1048 * This way we don't have other threads 1049 * running and doing things after a slower 1050 * thread has the fatal signal pending. 1051 */ 1052 signal->flags = SIGNAL_GROUP_EXIT; 1053 signal->group_exit_code = sig; 1054 signal->group_stop_count = 0; 1055 t = p; 1056 do { 1057 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1058 sigaddset(&t->pending.signal, SIGKILL); 1059 signal_wake_up(t, 1); 1060 } while_each_thread(p, t); 1061 return; 1062 } 1063 } 1064 1065 /* 1066 * The signal is already in the shared-pending queue. 1067 * Tell the chosen thread to wake up and dequeue it. 1068 */ 1069 signal_wake_up(t, sig == SIGKILL); 1070 return; 1071 } 1072 1073 static inline bool legacy_queue(struct sigpending *signals, int sig) 1074 { 1075 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1076 } 1077 1078 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1079 struct task_struct *t, enum pid_type type, bool force) 1080 { 1081 struct sigpending *pending; 1082 struct sigqueue *q; 1083 int override_rlimit; 1084 int ret = 0, result; 1085 1086 lockdep_assert_held(&t->sighand->siglock); 1087 1088 result = TRACE_SIGNAL_IGNORED; 1089 if (!prepare_signal(sig, t, force)) 1090 goto ret; 1091 1092 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1093 /* 1094 * Short-circuit ignored signals and support queuing 1095 * exactly one non-rt signal, so that we can get more 1096 * detailed information about the cause of the signal. 1097 */ 1098 result = TRACE_SIGNAL_ALREADY_PENDING; 1099 if (legacy_queue(pending, sig)) 1100 goto ret; 1101 1102 result = TRACE_SIGNAL_DELIVERED; 1103 /* 1104 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1105 */ 1106 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1107 goto out_set; 1108 1109 /* 1110 * Real-time signals must be queued if sent by sigqueue, or 1111 * some other real-time mechanism. It is implementation 1112 * defined whether kill() does so. We attempt to do so, on 1113 * the principle of least surprise, but since kill is not 1114 * allowed to fail with EAGAIN when low on memory we just 1115 * make sure at least one signal gets delivered and don't 1116 * pass on the info struct. 1117 */ 1118 if (sig < SIGRTMIN) 1119 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1120 else 1121 override_rlimit = 0; 1122 1123 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1124 1125 if (q) { 1126 list_add_tail(&q->list, &pending->list); 1127 switch ((unsigned long) info) { 1128 case (unsigned long) SEND_SIG_NOINFO: 1129 clear_siginfo(&q->info); 1130 q->info.si_signo = sig; 1131 q->info.si_errno = 0; 1132 q->info.si_code = SI_USER; 1133 q->info.si_pid = task_tgid_nr_ns(current, 1134 task_active_pid_ns(t)); 1135 rcu_read_lock(); 1136 q->info.si_uid = 1137 from_kuid_munged(task_cred_xxx(t, user_ns), 1138 current_uid()); 1139 rcu_read_unlock(); 1140 break; 1141 case (unsigned long) SEND_SIG_PRIV: 1142 clear_siginfo(&q->info); 1143 q->info.si_signo = sig; 1144 q->info.si_errno = 0; 1145 q->info.si_code = SI_KERNEL; 1146 q->info.si_pid = 0; 1147 q->info.si_uid = 0; 1148 break; 1149 default: 1150 copy_siginfo(&q->info, info); 1151 break; 1152 } 1153 } else if (!is_si_special(info) && 1154 sig >= SIGRTMIN && info->si_code != SI_USER) { 1155 /* 1156 * Queue overflow, abort. We may abort if the 1157 * signal was rt and sent by user using something 1158 * other than kill(). 1159 */ 1160 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1161 ret = -EAGAIN; 1162 goto ret; 1163 } else { 1164 /* 1165 * This is a silent loss of information. We still 1166 * send the signal, but the *info bits are lost. 1167 */ 1168 result = TRACE_SIGNAL_LOSE_INFO; 1169 } 1170 1171 out_set: 1172 signalfd_notify(t, sig); 1173 sigaddset(&pending->signal, sig); 1174 1175 /* Let multiprocess signals appear after on-going forks */ 1176 if (type > PIDTYPE_TGID) { 1177 struct multiprocess_signals *delayed; 1178 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1179 sigset_t *signal = &delayed->signal; 1180 /* Can't queue both a stop and a continue signal */ 1181 if (sig == SIGCONT) 1182 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1183 else if (sig_kernel_stop(sig)) 1184 sigdelset(signal, SIGCONT); 1185 sigaddset(signal, sig); 1186 } 1187 } 1188 1189 complete_signal(sig, t, type); 1190 ret: 1191 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1192 return ret; 1193 } 1194 1195 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1196 { 1197 bool ret = false; 1198 switch (siginfo_layout(info->si_signo, info->si_code)) { 1199 case SIL_KILL: 1200 case SIL_CHLD: 1201 case SIL_RT: 1202 ret = true; 1203 break; 1204 case SIL_TIMER: 1205 case SIL_POLL: 1206 case SIL_FAULT: 1207 case SIL_FAULT_TRAPNO: 1208 case SIL_FAULT_MCEERR: 1209 case SIL_FAULT_BNDERR: 1210 case SIL_FAULT_PKUERR: 1211 case SIL_FAULT_PERF_EVENT: 1212 case SIL_SYS: 1213 ret = false; 1214 break; 1215 } 1216 return ret; 1217 } 1218 1219 int send_signal_locked(int sig, struct kernel_siginfo *info, 1220 struct task_struct *t, enum pid_type type) 1221 { 1222 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1223 bool force = false; 1224 1225 if (info == SEND_SIG_NOINFO) { 1226 /* Force if sent from an ancestor pid namespace */ 1227 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1228 } else if (info == SEND_SIG_PRIV) { 1229 /* Don't ignore kernel generated signals */ 1230 force = true; 1231 } else if (has_si_pid_and_uid(info)) { 1232 /* SIGKILL and SIGSTOP is special or has ids */ 1233 struct user_namespace *t_user_ns; 1234 1235 rcu_read_lock(); 1236 t_user_ns = task_cred_xxx(t, user_ns); 1237 if (current_user_ns() != t_user_ns) { 1238 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1239 info->si_uid = from_kuid_munged(t_user_ns, uid); 1240 } 1241 rcu_read_unlock(); 1242 1243 /* A kernel generated signal? */ 1244 force = (info->si_code == SI_KERNEL); 1245 1246 /* From an ancestor pid namespace? */ 1247 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1248 info->si_pid = 0; 1249 force = true; 1250 } 1251 } 1252 return __send_signal_locked(sig, info, t, type, force); 1253 } 1254 1255 static void print_fatal_signal(int signr) 1256 { 1257 struct pt_regs *regs = task_pt_regs(current); 1258 pr_info("potentially unexpected fatal signal %d.\n", signr); 1259 1260 #if defined(__i386__) && !defined(__arch_um__) 1261 pr_info("code at %08lx: ", regs->ip); 1262 { 1263 int i; 1264 for (i = 0; i < 16; i++) { 1265 unsigned char insn; 1266 1267 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1268 break; 1269 pr_cont("%02x ", insn); 1270 } 1271 } 1272 pr_cont("\n"); 1273 #endif 1274 preempt_disable(); 1275 show_regs(regs); 1276 preempt_enable(); 1277 } 1278 1279 static int __init setup_print_fatal_signals(char *str) 1280 { 1281 get_option (&str, &print_fatal_signals); 1282 1283 return 1; 1284 } 1285 1286 __setup("print-fatal-signals=", setup_print_fatal_signals); 1287 1288 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1289 enum pid_type type) 1290 { 1291 unsigned long flags; 1292 int ret = -ESRCH; 1293 1294 if (lock_task_sighand(p, &flags)) { 1295 ret = send_signal_locked(sig, info, p, type); 1296 unlock_task_sighand(p, &flags); 1297 } 1298 1299 return ret; 1300 } 1301 1302 enum sig_handler { 1303 HANDLER_CURRENT, /* If reachable use the current handler */ 1304 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1305 HANDLER_EXIT, /* Only visible as the process exit code */ 1306 }; 1307 1308 /* 1309 * Force a signal that the process can't ignore: if necessary 1310 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1311 * 1312 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1313 * since we do not want to have a signal handler that was blocked 1314 * be invoked when user space had explicitly blocked it. 1315 * 1316 * We don't want to have recursive SIGSEGV's etc, for example, 1317 * that is why we also clear SIGNAL_UNKILLABLE. 1318 */ 1319 static int 1320 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1321 enum sig_handler handler) 1322 { 1323 unsigned long int flags; 1324 int ret, blocked, ignored; 1325 struct k_sigaction *action; 1326 int sig = info->si_signo; 1327 1328 spin_lock_irqsave(&t->sighand->siglock, flags); 1329 action = &t->sighand->action[sig-1]; 1330 ignored = action->sa.sa_handler == SIG_IGN; 1331 blocked = sigismember(&t->blocked, sig); 1332 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1333 action->sa.sa_handler = SIG_DFL; 1334 if (handler == HANDLER_EXIT) 1335 action->sa.sa_flags |= SA_IMMUTABLE; 1336 if (blocked) { 1337 sigdelset(&t->blocked, sig); 1338 recalc_sigpending_and_wake(t); 1339 } 1340 } 1341 /* 1342 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1343 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1344 */ 1345 if (action->sa.sa_handler == SIG_DFL && 1346 (!t->ptrace || (handler == HANDLER_EXIT))) 1347 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1348 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1349 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1350 1351 return ret; 1352 } 1353 1354 int force_sig_info(struct kernel_siginfo *info) 1355 { 1356 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1357 } 1358 1359 /* 1360 * Nuke all other threads in the group. 1361 */ 1362 int zap_other_threads(struct task_struct *p) 1363 { 1364 struct task_struct *t = p; 1365 int count = 0; 1366 1367 p->signal->group_stop_count = 0; 1368 1369 while_each_thread(p, t) { 1370 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1371 count++; 1372 1373 /* Don't bother with already dead threads */ 1374 if (t->exit_state) 1375 continue; 1376 sigaddset(&t->pending.signal, SIGKILL); 1377 signal_wake_up(t, 1); 1378 } 1379 1380 return count; 1381 } 1382 1383 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1384 unsigned long *flags) 1385 { 1386 struct sighand_struct *sighand; 1387 1388 rcu_read_lock(); 1389 for (;;) { 1390 sighand = rcu_dereference(tsk->sighand); 1391 if (unlikely(sighand == NULL)) 1392 break; 1393 1394 /* 1395 * This sighand can be already freed and even reused, but 1396 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1397 * initializes ->siglock: this slab can't go away, it has 1398 * the same object type, ->siglock can't be reinitialized. 1399 * 1400 * We need to ensure that tsk->sighand is still the same 1401 * after we take the lock, we can race with de_thread() or 1402 * __exit_signal(). In the latter case the next iteration 1403 * must see ->sighand == NULL. 1404 */ 1405 spin_lock_irqsave(&sighand->siglock, *flags); 1406 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1407 break; 1408 spin_unlock_irqrestore(&sighand->siglock, *flags); 1409 } 1410 rcu_read_unlock(); 1411 1412 return sighand; 1413 } 1414 1415 #ifdef CONFIG_LOCKDEP 1416 void lockdep_assert_task_sighand_held(struct task_struct *task) 1417 { 1418 struct sighand_struct *sighand; 1419 1420 rcu_read_lock(); 1421 sighand = rcu_dereference(task->sighand); 1422 if (sighand) 1423 lockdep_assert_held(&sighand->siglock); 1424 else 1425 WARN_ON_ONCE(1); 1426 rcu_read_unlock(); 1427 } 1428 #endif 1429 1430 /* 1431 * send signal info to all the members of a group 1432 */ 1433 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1434 struct task_struct *p, enum pid_type type) 1435 { 1436 int ret; 1437 1438 rcu_read_lock(); 1439 ret = check_kill_permission(sig, info, p); 1440 rcu_read_unlock(); 1441 1442 if (!ret && sig) 1443 ret = do_send_sig_info(sig, info, p, type); 1444 1445 return ret; 1446 } 1447 1448 /* 1449 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1450 * control characters do (^C, ^Z etc) 1451 * - the caller must hold at least a readlock on tasklist_lock 1452 */ 1453 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1454 { 1455 struct task_struct *p = NULL; 1456 int retval, success; 1457 1458 success = 0; 1459 retval = -ESRCH; 1460 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1461 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1462 success |= !err; 1463 retval = err; 1464 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1465 return success ? 0 : retval; 1466 } 1467 1468 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1469 { 1470 int error = -ESRCH; 1471 struct task_struct *p; 1472 1473 for (;;) { 1474 rcu_read_lock(); 1475 p = pid_task(pid, PIDTYPE_PID); 1476 if (p) 1477 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1478 rcu_read_unlock(); 1479 if (likely(!p || error != -ESRCH)) 1480 return error; 1481 1482 /* 1483 * The task was unhashed in between, try again. If it 1484 * is dead, pid_task() will return NULL, if we race with 1485 * de_thread() it will find the new leader. 1486 */ 1487 } 1488 } 1489 1490 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1491 { 1492 int error; 1493 rcu_read_lock(); 1494 error = kill_pid_info(sig, info, find_vpid(pid)); 1495 rcu_read_unlock(); 1496 return error; 1497 } 1498 1499 static inline bool kill_as_cred_perm(const struct cred *cred, 1500 struct task_struct *target) 1501 { 1502 const struct cred *pcred = __task_cred(target); 1503 1504 return uid_eq(cred->euid, pcred->suid) || 1505 uid_eq(cred->euid, pcred->uid) || 1506 uid_eq(cred->uid, pcred->suid) || 1507 uid_eq(cred->uid, pcred->uid); 1508 } 1509 1510 /* 1511 * The usb asyncio usage of siginfo is wrong. The glibc support 1512 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1513 * AKA after the generic fields: 1514 * kernel_pid_t si_pid; 1515 * kernel_uid32_t si_uid; 1516 * sigval_t si_value; 1517 * 1518 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1519 * after the generic fields is: 1520 * void __user *si_addr; 1521 * 1522 * This is a practical problem when there is a 64bit big endian kernel 1523 * and a 32bit userspace. As the 32bit address will encoded in the low 1524 * 32bits of the pointer. Those low 32bits will be stored at higher 1525 * address than appear in a 32 bit pointer. So userspace will not 1526 * see the address it was expecting for it's completions. 1527 * 1528 * There is nothing in the encoding that can allow 1529 * copy_siginfo_to_user32 to detect this confusion of formats, so 1530 * handle this by requiring the caller of kill_pid_usb_asyncio to 1531 * notice when this situration takes place and to store the 32bit 1532 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1533 * parameter. 1534 */ 1535 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1536 struct pid *pid, const struct cred *cred) 1537 { 1538 struct kernel_siginfo info; 1539 struct task_struct *p; 1540 unsigned long flags; 1541 int ret = -EINVAL; 1542 1543 if (!valid_signal(sig)) 1544 return ret; 1545 1546 clear_siginfo(&info); 1547 info.si_signo = sig; 1548 info.si_errno = errno; 1549 info.si_code = SI_ASYNCIO; 1550 *((sigval_t *)&info.si_pid) = addr; 1551 1552 rcu_read_lock(); 1553 p = pid_task(pid, PIDTYPE_PID); 1554 if (!p) { 1555 ret = -ESRCH; 1556 goto out_unlock; 1557 } 1558 if (!kill_as_cred_perm(cred, p)) { 1559 ret = -EPERM; 1560 goto out_unlock; 1561 } 1562 ret = security_task_kill(p, &info, sig, cred); 1563 if (ret) 1564 goto out_unlock; 1565 1566 if (sig) { 1567 if (lock_task_sighand(p, &flags)) { 1568 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1569 unlock_task_sighand(p, &flags); 1570 } else 1571 ret = -ESRCH; 1572 } 1573 out_unlock: 1574 rcu_read_unlock(); 1575 return ret; 1576 } 1577 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1578 1579 /* 1580 * kill_something_info() interprets pid in interesting ways just like kill(2). 1581 * 1582 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1583 * is probably wrong. Should make it like BSD or SYSV. 1584 */ 1585 1586 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1587 { 1588 int ret; 1589 1590 if (pid > 0) 1591 return kill_proc_info(sig, info, pid); 1592 1593 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1594 if (pid == INT_MIN) 1595 return -ESRCH; 1596 1597 read_lock(&tasklist_lock); 1598 if (pid != -1) { 1599 ret = __kill_pgrp_info(sig, info, 1600 pid ? find_vpid(-pid) : task_pgrp(current)); 1601 } else { 1602 int retval = 0, count = 0; 1603 struct task_struct * p; 1604 1605 for_each_process(p) { 1606 if (task_pid_vnr(p) > 1 && 1607 !same_thread_group(p, current)) { 1608 int err = group_send_sig_info(sig, info, p, 1609 PIDTYPE_MAX); 1610 ++count; 1611 if (err != -EPERM) 1612 retval = err; 1613 } 1614 } 1615 ret = count ? retval : -ESRCH; 1616 } 1617 read_unlock(&tasklist_lock); 1618 1619 return ret; 1620 } 1621 1622 /* 1623 * These are for backward compatibility with the rest of the kernel source. 1624 */ 1625 1626 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1627 { 1628 /* 1629 * Make sure legacy kernel users don't send in bad values 1630 * (normal paths check this in check_kill_permission). 1631 */ 1632 if (!valid_signal(sig)) 1633 return -EINVAL; 1634 1635 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1636 } 1637 EXPORT_SYMBOL(send_sig_info); 1638 1639 #define __si_special(priv) \ 1640 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1641 1642 int 1643 send_sig(int sig, struct task_struct *p, int priv) 1644 { 1645 return send_sig_info(sig, __si_special(priv), p); 1646 } 1647 EXPORT_SYMBOL(send_sig); 1648 1649 void force_sig(int sig) 1650 { 1651 struct kernel_siginfo info; 1652 1653 clear_siginfo(&info); 1654 info.si_signo = sig; 1655 info.si_errno = 0; 1656 info.si_code = SI_KERNEL; 1657 info.si_pid = 0; 1658 info.si_uid = 0; 1659 force_sig_info(&info); 1660 } 1661 EXPORT_SYMBOL(force_sig); 1662 1663 void force_fatal_sig(int sig) 1664 { 1665 struct kernel_siginfo info; 1666 1667 clear_siginfo(&info); 1668 info.si_signo = sig; 1669 info.si_errno = 0; 1670 info.si_code = SI_KERNEL; 1671 info.si_pid = 0; 1672 info.si_uid = 0; 1673 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1674 } 1675 1676 void force_exit_sig(int sig) 1677 { 1678 struct kernel_siginfo info; 1679 1680 clear_siginfo(&info); 1681 info.si_signo = sig; 1682 info.si_errno = 0; 1683 info.si_code = SI_KERNEL; 1684 info.si_pid = 0; 1685 info.si_uid = 0; 1686 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1687 } 1688 1689 /* 1690 * When things go south during signal handling, we 1691 * will force a SIGSEGV. And if the signal that caused 1692 * the problem was already a SIGSEGV, we'll want to 1693 * make sure we don't even try to deliver the signal.. 1694 */ 1695 void force_sigsegv(int sig) 1696 { 1697 if (sig == SIGSEGV) 1698 force_fatal_sig(SIGSEGV); 1699 else 1700 force_sig(SIGSEGV); 1701 } 1702 1703 int force_sig_fault_to_task(int sig, int code, void __user *addr 1704 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1705 , struct task_struct *t) 1706 { 1707 struct kernel_siginfo info; 1708 1709 clear_siginfo(&info); 1710 info.si_signo = sig; 1711 info.si_errno = 0; 1712 info.si_code = code; 1713 info.si_addr = addr; 1714 #ifdef __ia64__ 1715 info.si_imm = imm; 1716 info.si_flags = flags; 1717 info.si_isr = isr; 1718 #endif 1719 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1720 } 1721 1722 int force_sig_fault(int sig, int code, void __user *addr 1723 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1724 { 1725 return force_sig_fault_to_task(sig, code, addr 1726 ___ARCH_SI_IA64(imm, flags, isr), current); 1727 } 1728 1729 int send_sig_fault(int sig, int code, void __user *addr 1730 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1731 , struct task_struct *t) 1732 { 1733 struct kernel_siginfo info; 1734 1735 clear_siginfo(&info); 1736 info.si_signo = sig; 1737 info.si_errno = 0; 1738 info.si_code = code; 1739 info.si_addr = addr; 1740 #ifdef __ia64__ 1741 info.si_imm = imm; 1742 info.si_flags = flags; 1743 info.si_isr = isr; 1744 #endif 1745 return send_sig_info(info.si_signo, &info, t); 1746 } 1747 1748 int force_sig_mceerr(int code, void __user *addr, short lsb) 1749 { 1750 struct kernel_siginfo info; 1751 1752 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1753 clear_siginfo(&info); 1754 info.si_signo = SIGBUS; 1755 info.si_errno = 0; 1756 info.si_code = code; 1757 info.si_addr = addr; 1758 info.si_addr_lsb = lsb; 1759 return force_sig_info(&info); 1760 } 1761 1762 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1763 { 1764 struct kernel_siginfo info; 1765 1766 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1767 clear_siginfo(&info); 1768 info.si_signo = SIGBUS; 1769 info.si_errno = 0; 1770 info.si_code = code; 1771 info.si_addr = addr; 1772 info.si_addr_lsb = lsb; 1773 return send_sig_info(info.si_signo, &info, t); 1774 } 1775 EXPORT_SYMBOL(send_sig_mceerr); 1776 1777 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1778 { 1779 struct kernel_siginfo info; 1780 1781 clear_siginfo(&info); 1782 info.si_signo = SIGSEGV; 1783 info.si_errno = 0; 1784 info.si_code = SEGV_BNDERR; 1785 info.si_addr = addr; 1786 info.si_lower = lower; 1787 info.si_upper = upper; 1788 return force_sig_info(&info); 1789 } 1790 1791 #ifdef SEGV_PKUERR 1792 int force_sig_pkuerr(void __user *addr, u32 pkey) 1793 { 1794 struct kernel_siginfo info; 1795 1796 clear_siginfo(&info); 1797 info.si_signo = SIGSEGV; 1798 info.si_errno = 0; 1799 info.si_code = SEGV_PKUERR; 1800 info.si_addr = addr; 1801 info.si_pkey = pkey; 1802 return force_sig_info(&info); 1803 } 1804 #endif 1805 1806 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1807 { 1808 struct kernel_siginfo info; 1809 1810 clear_siginfo(&info); 1811 info.si_signo = SIGTRAP; 1812 info.si_errno = 0; 1813 info.si_code = TRAP_PERF; 1814 info.si_addr = addr; 1815 info.si_perf_data = sig_data; 1816 info.si_perf_type = type; 1817 1818 /* 1819 * Signals generated by perf events should not terminate the whole 1820 * process if SIGTRAP is blocked, however, delivering the signal 1821 * asynchronously is better than not delivering at all. But tell user 1822 * space if the signal was asynchronous, so it can clearly be 1823 * distinguished from normal synchronous ones. 1824 */ 1825 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1826 TRAP_PERF_FLAG_ASYNC : 1827 0; 1828 1829 return send_sig_info(info.si_signo, &info, current); 1830 } 1831 1832 /** 1833 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1834 * @syscall: syscall number to send to userland 1835 * @reason: filter-supplied reason code to send to userland (via si_errno) 1836 * @force_coredump: true to trigger a coredump 1837 * 1838 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1839 */ 1840 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1841 { 1842 struct kernel_siginfo info; 1843 1844 clear_siginfo(&info); 1845 info.si_signo = SIGSYS; 1846 info.si_code = SYS_SECCOMP; 1847 info.si_call_addr = (void __user *)KSTK_EIP(current); 1848 info.si_errno = reason; 1849 info.si_arch = syscall_get_arch(current); 1850 info.si_syscall = syscall; 1851 return force_sig_info_to_task(&info, current, 1852 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1853 } 1854 1855 /* For the crazy architectures that include trap information in 1856 * the errno field, instead of an actual errno value. 1857 */ 1858 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1859 { 1860 struct kernel_siginfo info; 1861 1862 clear_siginfo(&info); 1863 info.si_signo = SIGTRAP; 1864 info.si_errno = errno; 1865 info.si_code = TRAP_HWBKPT; 1866 info.si_addr = addr; 1867 return force_sig_info(&info); 1868 } 1869 1870 /* For the rare architectures that include trap information using 1871 * si_trapno. 1872 */ 1873 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1874 { 1875 struct kernel_siginfo info; 1876 1877 clear_siginfo(&info); 1878 info.si_signo = sig; 1879 info.si_errno = 0; 1880 info.si_code = code; 1881 info.si_addr = addr; 1882 info.si_trapno = trapno; 1883 return force_sig_info(&info); 1884 } 1885 1886 /* For the rare architectures that include trap information using 1887 * si_trapno. 1888 */ 1889 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1890 struct task_struct *t) 1891 { 1892 struct kernel_siginfo info; 1893 1894 clear_siginfo(&info); 1895 info.si_signo = sig; 1896 info.si_errno = 0; 1897 info.si_code = code; 1898 info.si_addr = addr; 1899 info.si_trapno = trapno; 1900 return send_sig_info(info.si_signo, &info, t); 1901 } 1902 1903 int kill_pgrp(struct pid *pid, int sig, int priv) 1904 { 1905 int ret; 1906 1907 read_lock(&tasklist_lock); 1908 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1909 read_unlock(&tasklist_lock); 1910 1911 return ret; 1912 } 1913 EXPORT_SYMBOL(kill_pgrp); 1914 1915 int kill_pid(struct pid *pid, int sig, int priv) 1916 { 1917 return kill_pid_info(sig, __si_special(priv), pid); 1918 } 1919 EXPORT_SYMBOL(kill_pid); 1920 1921 /* 1922 * These functions support sending signals using preallocated sigqueue 1923 * structures. This is needed "because realtime applications cannot 1924 * afford to lose notifications of asynchronous events, like timer 1925 * expirations or I/O completions". In the case of POSIX Timers 1926 * we allocate the sigqueue structure from the timer_create. If this 1927 * allocation fails we are able to report the failure to the application 1928 * with an EAGAIN error. 1929 */ 1930 struct sigqueue *sigqueue_alloc(void) 1931 { 1932 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1933 } 1934 1935 void sigqueue_free(struct sigqueue *q) 1936 { 1937 unsigned long flags; 1938 spinlock_t *lock = ¤t->sighand->siglock; 1939 1940 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1941 /* 1942 * We must hold ->siglock while testing q->list 1943 * to serialize with collect_signal() or with 1944 * __exit_signal()->flush_sigqueue(). 1945 */ 1946 spin_lock_irqsave(lock, flags); 1947 q->flags &= ~SIGQUEUE_PREALLOC; 1948 /* 1949 * If it is queued it will be freed when dequeued, 1950 * like the "regular" sigqueue. 1951 */ 1952 if (!list_empty(&q->list)) 1953 q = NULL; 1954 spin_unlock_irqrestore(lock, flags); 1955 1956 if (q) 1957 __sigqueue_free(q); 1958 } 1959 1960 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1961 { 1962 int sig = q->info.si_signo; 1963 struct sigpending *pending; 1964 struct task_struct *t; 1965 unsigned long flags; 1966 int ret, result; 1967 1968 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1969 1970 ret = -1; 1971 rcu_read_lock(); 1972 1973 /* 1974 * This function is used by POSIX timers to deliver a timer signal. 1975 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1976 * set), the signal must be delivered to the specific thread (queues 1977 * into t->pending). 1978 * 1979 * Where type is not PIDTYPE_PID, signals must be delivered to the 1980 * process. In this case, prefer to deliver to current if it is in 1981 * the same thread group as the target process, which avoids 1982 * unnecessarily waking up a potentially idle task. 1983 */ 1984 t = pid_task(pid, type); 1985 if (!t) 1986 goto ret; 1987 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1988 t = current; 1989 if (!likely(lock_task_sighand(t, &flags))) 1990 goto ret; 1991 1992 ret = 1; /* the signal is ignored */ 1993 result = TRACE_SIGNAL_IGNORED; 1994 if (!prepare_signal(sig, t, false)) 1995 goto out; 1996 1997 ret = 0; 1998 if (unlikely(!list_empty(&q->list))) { 1999 /* 2000 * If an SI_TIMER entry is already queue just increment 2001 * the overrun count. 2002 */ 2003 BUG_ON(q->info.si_code != SI_TIMER); 2004 q->info.si_overrun++; 2005 result = TRACE_SIGNAL_ALREADY_PENDING; 2006 goto out; 2007 } 2008 q->info.si_overrun = 0; 2009 2010 signalfd_notify(t, sig); 2011 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2012 list_add_tail(&q->list, &pending->list); 2013 sigaddset(&pending->signal, sig); 2014 complete_signal(sig, t, type); 2015 result = TRACE_SIGNAL_DELIVERED; 2016 out: 2017 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2018 unlock_task_sighand(t, &flags); 2019 ret: 2020 rcu_read_unlock(); 2021 return ret; 2022 } 2023 2024 static void do_notify_pidfd(struct task_struct *task) 2025 { 2026 struct pid *pid; 2027 2028 WARN_ON(task->exit_state == 0); 2029 pid = task_pid(task); 2030 wake_up_all(&pid->wait_pidfd); 2031 } 2032 2033 /* 2034 * Let a parent know about the death of a child. 2035 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2036 * 2037 * Returns true if our parent ignored us and so we've switched to 2038 * self-reaping. 2039 */ 2040 bool do_notify_parent(struct task_struct *tsk, int sig) 2041 { 2042 struct kernel_siginfo info; 2043 unsigned long flags; 2044 struct sighand_struct *psig; 2045 bool autoreap = false; 2046 u64 utime, stime; 2047 2048 WARN_ON_ONCE(sig == -1); 2049 2050 /* do_notify_parent_cldstop should have been called instead. */ 2051 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2052 2053 WARN_ON_ONCE(!tsk->ptrace && 2054 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2055 2056 /* Wake up all pidfd waiters */ 2057 do_notify_pidfd(tsk); 2058 2059 if (sig != SIGCHLD) { 2060 /* 2061 * This is only possible if parent == real_parent. 2062 * Check if it has changed security domain. 2063 */ 2064 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2065 sig = SIGCHLD; 2066 } 2067 2068 clear_siginfo(&info); 2069 info.si_signo = sig; 2070 info.si_errno = 0; 2071 /* 2072 * We are under tasklist_lock here so our parent is tied to 2073 * us and cannot change. 2074 * 2075 * task_active_pid_ns will always return the same pid namespace 2076 * until a task passes through release_task. 2077 * 2078 * write_lock() currently calls preempt_disable() which is the 2079 * same as rcu_read_lock(), but according to Oleg, this is not 2080 * correct to rely on this 2081 */ 2082 rcu_read_lock(); 2083 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2084 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2085 task_uid(tsk)); 2086 rcu_read_unlock(); 2087 2088 task_cputime(tsk, &utime, &stime); 2089 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2090 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2091 2092 info.si_status = tsk->exit_code & 0x7f; 2093 if (tsk->exit_code & 0x80) 2094 info.si_code = CLD_DUMPED; 2095 else if (tsk->exit_code & 0x7f) 2096 info.si_code = CLD_KILLED; 2097 else { 2098 info.si_code = CLD_EXITED; 2099 info.si_status = tsk->exit_code >> 8; 2100 } 2101 2102 psig = tsk->parent->sighand; 2103 spin_lock_irqsave(&psig->siglock, flags); 2104 if (!tsk->ptrace && sig == SIGCHLD && 2105 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2106 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2107 /* 2108 * We are exiting and our parent doesn't care. POSIX.1 2109 * defines special semantics for setting SIGCHLD to SIG_IGN 2110 * or setting the SA_NOCLDWAIT flag: we should be reaped 2111 * automatically and not left for our parent's wait4 call. 2112 * Rather than having the parent do it as a magic kind of 2113 * signal handler, we just set this to tell do_exit that we 2114 * can be cleaned up without becoming a zombie. Note that 2115 * we still call __wake_up_parent in this case, because a 2116 * blocked sys_wait4 might now return -ECHILD. 2117 * 2118 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2119 * is implementation-defined: we do (if you don't want 2120 * it, just use SIG_IGN instead). 2121 */ 2122 autoreap = true; 2123 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2124 sig = 0; 2125 } 2126 /* 2127 * Send with __send_signal as si_pid and si_uid are in the 2128 * parent's namespaces. 2129 */ 2130 if (valid_signal(sig) && sig) 2131 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2132 __wake_up_parent(tsk, tsk->parent); 2133 spin_unlock_irqrestore(&psig->siglock, flags); 2134 2135 return autoreap; 2136 } 2137 2138 /** 2139 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2140 * @tsk: task reporting the state change 2141 * @for_ptracer: the notification is for ptracer 2142 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2143 * 2144 * Notify @tsk's parent that the stopped/continued state has changed. If 2145 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2146 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2147 * 2148 * CONTEXT: 2149 * Must be called with tasklist_lock at least read locked. 2150 */ 2151 static void do_notify_parent_cldstop(struct task_struct *tsk, 2152 bool for_ptracer, int why) 2153 { 2154 struct kernel_siginfo info; 2155 unsigned long flags; 2156 struct task_struct *parent; 2157 struct sighand_struct *sighand; 2158 u64 utime, stime; 2159 2160 if (for_ptracer) { 2161 parent = tsk->parent; 2162 } else { 2163 tsk = tsk->group_leader; 2164 parent = tsk->real_parent; 2165 } 2166 2167 clear_siginfo(&info); 2168 info.si_signo = SIGCHLD; 2169 info.si_errno = 0; 2170 /* 2171 * see comment in do_notify_parent() about the following 4 lines 2172 */ 2173 rcu_read_lock(); 2174 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2175 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2176 rcu_read_unlock(); 2177 2178 task_cputime(tsk, &utime, &stime); 2179 info.si_utime = nsec_to_clock_t(utime); 2180 info.si_stime = nsec_to_clock_t(stime); 2181 2182 info.si_code = why; 2183 switch (why) { 2184 case CLD_CONTINUED: 2185 info.si_status = SIGCONT; 2186 break; 2187 case CLD_STOPPED: 2188 info.si_status = tsk->signal->group_exit_code & 0x7f; 2189 break; 2190 case CLD_TRAPPED: 2191 info.si_status = tsk->exit_code & 0x7f; 2192 break; 2193 default: 2194 BUG(); 2195 } 2196 2197 sighand = parent->sighand; 2198 spin_lock_irqsave(&sighand->siglock, flags); 2199 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2200 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2201 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2202 /* 2203 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2204 */ 2205 __wake_up_parent(tsk, parent); 2206 spin_unlock_irqrestore(&sighand->siglock, flags); 2207 } 2208 2209 /* 2210 * This must be called with current->sighand->siglock held. 2211 * 2212 * This should be the path for all ptrace stops. 2213 * We always set current->last_siginfo while stopped here. 2214 * That makes it a way to test a stopped process for 2215 * being ptrace-stopped vs being job-control-stopped. 2216 * 2217 * Returns the signal the ptracer requested the code resume 2218 * with. If the code did not stop because the tracer is gone, 2219 * the stop signal remains unchanged unless clear_code. 2220 */ 2221 static int ptrace_stop(int exit_code, int why, unsigned long message, 2222 kernel_siginfo_t *info) 2223 __releases(¤t->sighand->siglock) 2224 __acquires(¤t->sighand->siglock) 2225 { 2226 bool gstop_done = false; 2227 2228 if (arch_ptrace_stop_needed()) { 2229 /* 2230 * The arch code has something special to do before a 2231 * ptrace stop. This is allowed to block, e.g. for faults 2232 * on user stack pages. We can't keep the siglock while 2233 * calling arch_ptrace_stop, so we must release it now. 2234 * To preserve proper semantics, we must do this before 2235 * any signal bookkeeping like checking group_stop_count. 2236 */ 2237 spin_unlock_irq(¤t->sighand->siglock); 2238 arch_ptrace_stop(); 2239 spin_lock_irq(¤t->sighand->siglock); 2240 } 2241 2242 /* 2243 * After this point ptrace_signal_wake_up or signal_wake_up 2244 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2245 * signal comes in. Handle previous ptrace_unlinks and fatal 2246 * signals here to prevent ptrace_stop sleeping in schedule. 2247 */ 2248 if (!current->ptrace || __fatal_signal_pending(current)) 2249 return exit_code; 2250 2251 set_special_state(TASK_TRACED); 2252 current->jobctl |= JOBCTL_TRACED; 2253 2254 /* 2255 * We're committing to trapping. TRACED should be visible before 2256 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2257 * Also, transition to TRACED and updates to ->jobctl should be 2258 * atomic with respect to siglock and should be done after the arch 2259 * hook as siglock is released and regrabbed across it. 2260 * 2261 * TRACER TRACEE 2262 * 2263 * ptrace_attach() 2264 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2265 * do_wait() 2266 * set_current_state() smp_wmb(); 2267 * ptrace_do_wait() 2268 * wait_task_stopped() 2269 * task_stopped_code() 2270 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2271 */ 2272 smp_wmb(); 2273 2274 current->ptrace_message = message; 2275 current->last_siginfo = info; 2276 current->exit_code = exit_code; 2277 2278 /* 2279 * If @why is CLD_STOPPED, we're trapping to participate in a group 2280 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2281 * across siglock relocks since INTERRUPT was scheduled, PENDING 2282 * could be clear now. We act as if SIGCONT is received after 2283 * TASK_TRACED is entered - ignore it. 2284 */ 2285 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2286 gstop_done = task_participate_group_stop(current); 2287 2288 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2289 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2290 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2291 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2292 2293 /* entering a trap, clear TRAPPING */ 2294 task_clear_jobctl_trapping(current); 2295 2296 spin_unlock_irq(¤t->sighand->siglock); 2297 read_lock(&tasklist_lock); 2298 /* 2299 * Notify parents of the stop. 2300 * 2301 * While ptraced, there are two parents - the ptracer and 2302 * the real_parent of the group_leader. The ptracer should 2303 * know about every stop while the real parent is only 2304 * interested in the completion of group stop. The states 2305 * for the two don't interact with each other. Notify 2306 * separately unless they're gonna be duplicates. 2307 */ 2308 if (current->ptrace) 2309 do_notify_parent_cldstop(current, true, why); 2310 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2311 do_notify_parent_cldstop(current, false, why); 2312 2313 /* 2314 * Don't want to allow preemption here, because 2315 * sys_ptrace() needs this task to be inactive. 2316 * 2317 * XXX: implement read_unlock_no_resched(). 2318 */ 2319 preempt_disable(); 2320 read_unlock(&tasklist_lock); 2321 cgroup_enter_frozen(); 2322 preempt_enable_no_resched(); 2323 schedule(); 2324 cgroup_leave_frozen(true); 2325 2326 /* 2327 * We are back. Now reacquire the siglock before touching 2328 * last_siginfo, so that we are sure to have synchronized with 2329 * any signal-sending on another CPU that wants to examine it. 2330 */ 2331 spin_lock_irq(¤t->sighand->siglock); 2332 exit_code = current->exit_code; 2333 current->last_siginfo = NULL; 2334 current->ptrace_message = 0; 2335 current->exit_code = 0; 2336 2337 /* LISTENING can be set only during STOP traps, clear it */ 2338 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2339 2340 /* 2341 * Queued signals ignored us while we were stopped for tracing. 2342 * So check for any that we should take before resuming user mode. 2343 * This sets TIF_SIGPENDING, but never clears it. 2344 */ 2345 recalc_sigpending_tsk(current); 2346 return exit_code; 2347 } 2348 2349 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2350 { 2351 kernel_siginfo_t info; 2352 2353 clear_siginfo(&info); 2354 info.si_signo = signr; 2355 info.si_code = exit_code; 2356 info.si_pid = task_pid_vnr(current); 2357 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2358 2359 /* Let the debugger run. */ 2360 return ptrace_stop(exit_code, why, message, &info); 2361 } 2362 2363 int ptrace_notify(int exit_code, unsigned long message) 2364 { 2365 int signr; 2366 2367 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2368 if (unlikely(task_work_pending(current))) 2369 task_work_run(); 2370 2371 spin_lock_irq(¤t->sighand->siglock); 2372 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2373 spin_unlock_irq(¤t->sighand->siglock); 2374 return signr; 2375 } 2376 2377 /** 2378 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2379 * @signr: signr causing group stop if initiating 2380 * 2381 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2382 * and participate in it. If already set, participate in the existing 2383 * group stop. If participated in a group stop (and thus slept), %true is 2384 * returned with siglock released. 2385 * 2386 * If ptraced, this function doesn't handle stop itself. Instead, 2387 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2388 * untouched. The caller must ensure that INTERRUPT trap handling takes 2389 * places afterwards. 2390 * 2391 * CONTEXT: 2392 * Must be called with @current->sighand->siglock held, which is released 2393 * on %true return. 2394 * 2395 * RETURNS: 2396 * %false if group stop is already cancelled or ptrace trap is scheduled. 2397 * %true if participated in group stop. 2398 */ 2399 static bool do_signal_stop(int signr) 2400 __releases(¤t->sighand->siglock) 2401 { 2402 struct signal_struct *sig = current->signal; 2403 2404 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2405 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2406 struct task_struct *t; 2407 2408 /* signr will be recorded in task->jobctl for retries */ 2409 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2410 2411 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2412 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2413 unlikely(sig->group_exec_task)) 2414 return false; 2415 /* 2416 * There is no group stop already in progress. We must 2417 * initiate one now. 2418 * 2419 * While ptraced, a task may be resumed while group stop is 2420 * still in effect and then receive a stop signal and 2421 * initiate another group stop. This deviates from the 2422 * usual behavior as two consecutive stop signals can't 2423 * cause two group stops when !ptraced. That is why we 2424 * also check !task_is_stopped(t) below. 2425 * 2426 * The condition can be distinguished by testing whether 2427 * SIGNAL_STOP_STOPPED is already set. Don't generate 2428 * group_exit_code in such case. 2429 * 2430 * This is not necessary for SIGNAL_STOP_CONTINUED because 2431 * an intervening stop signal is required to cause two 2432 * continued events regardless of ptrace. 2433 */ 2434 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2435 sig->group_exit_code = signr; 2436 2437 sig->group_stop_count = 0; 2438 2439 if (task_set_jobctl_pending(current, signr | gstop)) 2440 sig->group_stop_count++; 2441 2442 t = current; 2443 while_each_thread(current, t) { 2444 /* 2445 * Setting state to TASK_STOPPED for a group 2446 * stop is always done with the siglock held, 2447 * so this check has no races. 2448 */ 2449 if (!task_is_stopped(t) && 2450 task_set_jobctl_pending(t, signr | gstop)) { 2451 sig->group_stop_count++; 2452 if (likely(!(t->ptrace & PT_SEIZED))) 2453 signal_wake_up(t, 0); 2454 else 2455 ptrace_trap_notify(t); 2456 } 2457 } 2458 } 2459 2460 if (likely(!current->ptrace)) { 2461 int notify = 0; 2462 2463 /* 2464 * If there are no other threads in the group, or if there 2465 * is a group stop in progress and we are the last to stop, 2466 * report to the parent. 2467 */ 2468 if (task_participate_group_stop(current)) 2469 notify = CLD_STOPPED; 2470 2471 current->jobctl |= JOBCTL_STOPPED; 2472 set_special_state(TASK_STOPPED); 2473 spin_unlock_irq(¤t->sighand->siglock); 2474 2475 /* 2476 * Notify the parent of the group stop completion. Because 2477 * we're not holding either the siglock or tasklist_lock 2478 * here, ptracer may attach inbetween; however, this is for 2479 * group stop and should always be delivered to the real 2480 * parent of the group leader. The new ptracer will get 2481 * its notification when this task transitions into 2482 * TASK_TRACED. 2483 */ 2484 if (notify) { 2485 read_lock(&tasklist_lock); 2486 do_notify_parent_cldstop(current, false, notify); 2487 read_unlock(&tasklist_lock); 2488 } 2489 2490 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2491 cgroup_enter_frozen(); 2492 schedule(); 2493 return true; 2494 } else { 2495 /* 2496 * While ptraced, group stop is handled by STOP trap. 2497 * Schedule it and let the caller deal with it. 2498 */ 2499 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2500 return false; 2501 } 2502 } 2503 2504 /** 2505 * do_jobctl_trap - take care of ptrace jobctl traps 2506 * 2507 * When PT_SEIZED, it's used for both group stop and explicit 2508 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2509 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2510 * the stop signal; otherwise, %SIGTRAP. 2511 * 2512 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2513 * number as exit_code and no siginfo. 2514 * 2515 * CONTEXT: 2516 * Must be called with @current->sighand->siglock held, which may be 2517 * released and re-acquired before returning with intervening sleep. 2518 */ 2519 static void do_jobctl_trap(void) 2520 { 2521 struct signal_struct *signal = current->signal; 2522 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2523 2524 if (current->ptrace & PT_SEIZED) { 2525 if (!signal->group_stop_count && 2526 !(signal->flags & SIGNAL_STOP_STOPPED)) 2527 signr = SIGTRAP; 2528 WARN_ON_ONCE(!signr); 2529 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2530 CLD_STOPPED, 0); 2531 } else { 2532 WARN_ON_ONCE(!signr); 2533 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2534 } 2535 } 2536 2537 /** 2538 * do_freezer_trap - handle the freezer jobctl trap 2539 * 2540 * Puts the task into frozen state, if only the task is not about to quit. 2541 * In this case it drops JOBCTL_TRAP_FREEZE. 2542 * 2543 * CONTEXT: 2544 * Must be called with @current->sighand->siglock held, 2545 * which is always released before returning. 2546 */ 2547 static void do_freezer_trap(void) 2548 __releases(¤t->sighand->siglock) 2549 { 2550 /* 2551 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2552 * let's make another loop to give it a chance to be handled. 2553 * In any case, we'll return back. 2554 */ 2555 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2556 JOBCTL_TRAP_FREEZE) { 2557 spin_unlock_irq(¤t->sighand->siglock); 2558 return; 2559 } 2560 2561 /* 2562 * Now we're sure that there is no pending fatal signal and no 2563 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2564 * immediately (if there is a non-fatal signal pending), and 2565 * put the task into sleep. 2566 */ 2567 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2568 clear_thread_flag(TIF_SIGPENDING); 2569 spin_unlock_irq(¤t->sighand->siglock); 2570 cgroup_enter_frozen(); 2571 schedule(); 2572 } 2573 2574 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2575 { 2576 /* 2577 * We do not check sig_kernel_stop(signr) but set this marker 2578 * unconditionally because we do not know whether debugger will 2579 * change signr. This flag has no meaning unless we are going 2580 * to stop after return from ptrace_stop(). In this case it will 2581 * be checked in do_signal_stop(), we should only stop if it was 2582 * not cleared by SIGCONT while we were sleeping. See also the 2583 * comment in dequeue_signal(). 2584 */ 2585 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2586 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2587 2588 /* We're back. Did the debugger cancel the sig? */ 2589 if (signr == 0) 2590 return signr; 2591 2592 /* 2593 * Update the siginfo structure if the signal has 2594 * changed. If the debugger wanted something 2595 * specific in the siginfo structure then it should 2596 * have updated *info via PTRACE_SETSIGINFO. 2597 */ 2598 if (signr != info->si_signo) { 2599 clear_siginfo(info); 2600 info->si_signo = signr; 2601 info->si_errno = 0; 2602 info->si_code = SI_USER; 2603 rcu_read_lock(); 2604 info->si_pid = task_pid_vnr(current->parent); 2605 info->si_uid = from_kuid_munged(current_user_ns(), 2606 task_uid(current->parent)); 2607 rcu_read_unlock(); 2608 } 2609 2610 /* If the (new) signal is now blocked, requeue it. */ 2611 if (sigismember(¤t->blocked, signr) || 2612 fatal_signal_pending(current)) { 2613 send_signal_locked(signr, info, current, type); 2614 signr = 0; 2615 } 2616 2617 return signr; 2618 } 2619 2620 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2621 { 2622 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2623 case SIL_FAULT: 2624 case SIL_FAULT_TRAPNO: 2625 case SIL_FAULT_MCEERR: 2626 case SIL_FAULT_BNDERR: 2627 case SIL_FAULT_PKUERR: 2628 case SIL_FAULT_PERF_EVENT: 2629 ksig->info.si_addr = arch_untagged_si_addr( 2630 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2631 break; 2632 case SIL_KILL: 2633 case SIL_TIMER: 2634 case SIL_POLL: 2635 case SIL_CHLD: 2636 case SIL_RT: 2637 case SIL_SYS: 2638 break; 2639 } 2640 } 2641 2642 bool get_signal(struct ksignal *ksig) 2643 { 2644 struct sighand_struct *sighand = current->sighand; 2645 struct signal_struct *signal = current->signal; 2646 int signr; 2647 2648 clear_notify_signal(); 2649 if (unlikely(task_work_pending(current))) 2650 task_work_run(); 2651 2652 if (!task_sigpending(current)) 2653 return false; 2654 2655 if (unlikely(uprobe_deny_signal())) 2656 return false; 2657 2658 /* 2659 * Do this once, we can't return to user-mode if freezing() == T. 2660 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2661 * thus do not need another check after return. 2662 */ 2663 try_to_freeze(); 2664 2665 relock: 2666 spin_lock_irq(&sighand->siglock); 2667 2668 /* 2669 * Every stopped thread goes here after wakeup. Check to see if 2670 * we should notify the parent, prepare_signal(SIGCONT) encodes 2671 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2672 */ 2673 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2674 int why; 2675 2676 if (signal->flags & SIGNAL_CLD_CONTINUED) 2677 why = CLD_CONTINUED; 2678 else 2679 why = CLD_STOPPED; 2680 2681 signal->flags &= ~SIGNAL_CLD_MASK; 2682 2683 spin_unlock_irq(&sighand->siglock); 2684 2685 /* 2686 * Notify the parent that we're continuing. This event is 2687 * always per-process and doesn't make whole lot of sense 2688 * for ptracers, who shouldn't consume the state via 2689 * wait(2) either, but, for backward compatibility, notify 2690 * the ptracer of the group leader too unless it's gonna be 2691 * a duplicate. 2692 */ 2693 read_lock(&tasklist_lock); 2694 do_notify_parent_cldstop(current, false, why); 2695 2696 if (ptrace_reparented(current->group_leader)) 2697 do_notify_parent_cldstop(current->group_leader, 2698 true, why); 2699 read_unlock(&tasklist_lock); 2700 2701 goto relock; 2702 } 2703 2704 for (;;) { 2705 struct k_sigaction *ka; 2706 enum pid_type type; 2707 2708 /* Has this task already been marked for death? */ 2709 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2710 signal->group_exec_task) { 2711 clear_siginfo(&ksig->info); 2712 ksig->info.si_signo = signr = SIGKILL; 2713 sigdelset(¤t->pending.signal, SIGKILL); 2714 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2715 &sighand->action[SIGKILL - 1]); 2716 recalc_sigpending(); 2717 goto fatal; 2718 } 2719 2720 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2721 do_signal_stop(0)) 2722 goto relock; 2723 2724 if (unlikely(current->jobctl & 2725 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2726 if (current->jobctl & JOBCTL_TRAP_MASK) { 2727 do_jobctl_trap(); 2728 spin_unlock_irq(&sighand->siglock); 2729 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2730 do_freezer_trap(); 2731 2732 goto relock; 2733 } 2734 2735 /* 2736 * If the task is leaving the frozen state, let's update 2737 * cgroup counters and reset the frozen bit. 2738 */ 2739 if (unlikely(cgroup_task_frozen(current))) { 2740 spin_unlock_irq(&sighand->siglock); 2741 cgroup_leave_frozen(false); 2742 goto relock; 2743 } 2744 2745 /* 2746 * Signals generated by the execution of an instruction 2747 * need to be delivered before any other pending signals 2748 * so that the instruction pointer in the signal stack 2749 * frame points to the faulting instruction. 2750 */ 2751 type = PIDTYPE_PID; 2752 signr = dequeue_synchronous_signal(&ksig->info); 2753 if (!signr) 2754 signr = dequeue_signal(current, ¤t->blocked, 2755 &ksig->info, &type); 2756 2757 if (!signr) 2758 break; /* will return 0 */ 2759 2760 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2761 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2762 signr = ptrace_signal(signr, &ksig->info, type); 2763 if (!signr) 2764 continue; 2765 } 2766 2767 ka = &sighand->action[signr-1]; 2768 2769 /* Trace actually delivered signals. */ 2770 trace_signal_deliver(signr, &ksig->info, ka); 2771 2772 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2773 continue; 2774 if (ka->sa.sa_handler != SIG_DFL) { 2775 /* Run the handler. */ 2776 ksig->ka = *ka; 2777 2778 if (ka->sa.sa_flags & SA_ONESHOT) 2779 ka->sa.sa_handler = SIG_DFL; 2780 2781 break; /* will return non-zero "signr" value */ 2782 } 2783 2784 /* 2785 * Now we are doing the default action for this signal. 2786 */ 2787 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2788 continue; 2789 2790 /* 2791 * Global init gets no signals it doesn't want. 2792 * Container-init gets no signals it doesn't want from same 2793 * container. 2794 * 2795 * Note that if global/container-init sees a sig_kernel_only() 2796 * signal here, the signal must have been generated internally 2797 * or must have come from an ancestor namespace. In either 2798 * case, the signal cannot be dropped. 2799 */ 2800 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2801 !sig_kernel_only(signr)) 2802 continue; 2803 2804 if (sig_kernel_stop(signr)) { 2805 /* 2806 * The default action is to stop all threads in 2807 * the thread group. The job control signals 2808 * do nothing in an orphaned pgrp, but SIGSTOP 2809 * always works. Note that siglock needs to be 2810 * dropped during the call to is_orphaned_pgrp() 2811 * because of lock ordering with tasklist_lock. 2812 * This allows an intervening SIGCONT to be posted. 2813 * We need to check for that and bail out if necessary. 2814 */ 2815 if (signr != SIGSTOP) { 2816 spin_unlock_irq(&sighand->siglock); 2817 2818 /* signals can be posted during this window */ 2819 2820 if (is_current_pgrp_orphaned()) 2821 goto relock; 2822 2823 spin_lock_irq(&sighand->siglock); 2824 } 2825 2826 if (likely(do_signal_stop(ksig->info.si_signo))) { 2827 /* It released the siglock. */ 2828 goto relock; 2829 } 2830 2831 /* 2832 * We didn't actually stop, due to a race 2833 * with SIGCONT or something like that. 2834 */ 2835 continue; 2836 } 2837 2838 fatal: 2839 spin_unlock_irq(&sighand->siglock); 2840 if (unlikely(cgroup_task_frozen(current))) 2841 cgroup_leave_frozen(true); 2842 2843 /* 2844 * Anything else is fatal, maybe with a core dump. 2845 */ 2846 current->flags |= PF_SIGNALED; 2847 2848 if (sig_kernel_coredump(signr)) { 2849 if (print_fatal_signals) 2850 print_fatal_signal(ksig->info.si_signo); 2851 proc_coredump_connector(current); 2852 /* 2853 * If it was able to dump core, this kills all 2854 * other threads in the group and synchronizes with 2855 * their demise. If we lost the race with another 2856 * thread getting here, it set group_exit_code 2857 * first and our do_group_exit call below will use 2858 * that value and ignore the one we pass it. 2859 */ 2860 do_coredump(&ksig->info); 2861 } 2862 2863 /* 2864 * PF_IO_WORKER threads will catch and exit on fatal signals 2865 * themselves. They have cleanup that must be performed, so 2866 * we cannot call do_exit() on their behalf. 2867 */ 2868 if (current->flags & PF_IO_WORKER) 2869 goto out; 2870 2871 /* 2872 * Death signals, no core dump. 2873 */ 2874 do_group_exit(ksig->info.si_signo); 2875 /* NOTREACHED */ 2876 } 2877 spin_unlock_irq(&sighand->siglock); 2878 out: 2879 ksig->sig = signr; 2880 2881 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2882 hide_si_addr_tag_bits(ksig); 2883 2884 return ksig->sig > 0; 2885 } 2886 2887 /** 2888 * signal_delivered - called after signal delivery to update blocked signals 2889 * @ksig: kernel signal struct 2890 * @stepping: nonzero if debugger single-step or block-step in use 2891 * 2892 * This function should be called when a signal has successfully been 2893 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2894 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2895 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2896 */ 2897 static void signal_delivered(struct ksignal *ksig, int stepping) 2898 { 2899 sigset_t blocked; 2900 2901 /* A signal was successfully delivered, and the 2902 saved sigmask was stored on the signal frame, 2903 and will be restored by sigreturn. So we can 2904 simply clear the restore sigmask flag. */ 2905 clear_restore_sigmask(); 2906 2907 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2908 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2909 sigaddset(&blocked, ksig->sig); 2910 set_current_blocked(&blocked); 2911 if (current->sas_ss_flags & SS_AUTODISARM) 2912 sas_ss_reset(current); 2913 if (stepping) 2914 ptrace_notify(SIGTRAP, 0); 2915 } 2916 2917 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2918 { 2919 if (failed) 2920 force_sigsegv(ksig->sig); 2921 else 2922 signal_delivered(ksig, stepping); 2923 } 2924 2925 /* 2926 * It could be that complete_signal() picked us to notify about the 2927 * group-wide signal. Other threads should be notified now to take 2928 * the shared signals in @which since we will not. 2929 */ 2930 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2931 { 2932 sigset_t retarget; 2933 struct task_struct *t; 2934 2935 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2936 if (sigisemptyset(&retarget)) 2937 return; 2938 2939 t = tsk; 2940 while_each_thread(tsk, t) { 2941 if (t->flags & PF_EXITING) 2942 continue; 2943 2944 if (!has_pending_signals(&retarget, &t->blocked)) 2945 continue; 2946 /* Remove the signals this thread can handle. */ 2947 sigandsets(&retarget, &retarget, &t->blocked); 2948 2949 if (!task_sigpending(t)) 2950 signal_wake_up(t, 0); 2951 2952 if (sigisemptyset(&retarget)) 2953 break; 2954 } 2955 } 2956 2957 void exit_signals(struct task_struct *tsk) 2958 { 2959 int group_stop = 0; 2960 sigset_t unblocked; 2961 2962 /* 2963 * @tsk is about to have PF_EXITING set - lock out users which 2964 * expect stable threadgroup. 2965 */ 2966 cgroup_threadgroup_change_begin(tsk); 2967 2968 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2969 sched_mm_cid_exit_signals(tsk); 2970 tsk->flags |= PF_EXITING; 2971 cgroup_threadgroup_change_end(tsk); 2972 return; 2973 } 2974 2975 spin_lock_irq(&tsk->sighand->siglock); 2976 /* 2977 * From now this task is not visible for group-wide signals, 2978 * see wants_signal(), do_signal_stop(). 2979 */ 2980 sched_mm_cid_exit_signals(tsk); 2981 tsk->flags |= PF_EXITING; 2982 2983 cgroup_threadgroup_change_end(tsk); 2984 2985 if (!task_sigpending(tsk)) 2986 goto out; 2987 2988 unblocked = tsk->blocked; 2989 signotset(&unblocked); 2990 retarget_shared_pending(tsk, &unblocked); 2991 2992 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2993 task_participate_group_stop(tsk)) 2994 group_stop = CLD_STOPPED; 2995 out: 2996 spin_unlock_irq(&tsk->sighand->siglock); 2997 2998 /* 2999 * If group stop has completed, deliver the notification. This 3000 * should always go to the real parent of the group leader. 3001 */ 3002 if (unlikely(group_stop)) { 3003 read_lock(&tasklist_lock); 3004 do_notify_parent_cldstop(tsk, false, group_stop); 3005 read_unlock(&tasklist_lock); 3006 } 3007 } 3008 3009 /* 3010 * System call entry points. 3011 */ 3012 3013 /** 3014 * sys_restart_syscall - restart a system call 3015 */ 3016 SYSCALL_DEFINE0(restart_syscall) 3017 { 3018 struct restart_block *restart = ¤t->restart_block; 3019 return restart->fn(restart); 3020 } 3021 3022 long do_no_restart_syscall(struct restart_block *param) 3023 { 3024 return -EINTR; 3025 } 3026 3027 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3028 { 3029 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3030 sigset_t newblocked; 3031 /* A set of now blocked but previously unblocked signals. */ 3032 sigandnsets(&newblocked, newset, ¤t->blocked); 3033 retarget_shared_pending(tsk, &newblocked); 3034 } 3035 tsk->blocked = *newset; 3036 recalc_sigpending(); 3037 } 3038 3039 /** 3040 * set_current_blocked - change current->blocked mask 3041 * @newset: new mask 3042 * 3043 * It is wrong to change ->blocked directly, this helper should be used 3044 * to ensure the process can't miss a shared signal we are going to block. 3045 */ 3046 void set_current_blocked(sigset_t *newset) 3047 { 3048 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3049 __set_current_blocked(newset); 3050 } 3051 3052 void __set_current_blocked(const sigset_t *newset) 3053 { 3054 struct task_struct *tsk = current; 3055 3056 /* 3057 * In case the signal mask hasn't changed, there is nothing we need 3058 * to do. The current->blocked shouldn't be modified by other task. 3059 */ 3060 if (sigequalsets(&tsk->blocked, newset)) 3061 return; 3062 3063 spin_lock_irq(&tsk->sighand->siglock); 3064 __set_task_blocked(tsk, newset); 3065 spin_unlock_irq(&tsk->sighand->siglock); 3066 } 3067 3068 /* 3069 * This is also useful for kernel threads that want to temporarily 3070 * (or permanently) block certain signals. 3071 * 3072 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3073 * interface happily blocks "unblockable" signals like SIGKILL 3074 * and friends. 3075 */ 3076 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3077 { 3078 struct task_struct *tsk = current; 3079 sigset_t newset; 3080 3081 /* Lockless, only current can change ->blocked, never from irq */ 3082 if (oldset) 3083 *oldset = tsk->blocked; 3084 3085 switch (how) { 3086 case SIG_BLOCK: 3087 sigorsets(&newset, &tsk->blocked, set); 3088 break; 3089 case SIG_UNBLOCK: 3090 sigandnsets(&newset, &tsk->blocked, set); 3091 break; 3092 case SIG_SETMASK: 3093 newset = *set; 3094 break; 3095 default: 3096 return -EINVAL; 3097 } 3098 3099 __set_current_blocked(&newset); 3100 return 0; 3101 } 3102 EXPORT_SYMBOL(sigprocmask); 3103 3104 /* 3105 * The api helps set app-provided sigmasks. 3106 * 3107 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3108 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3109 * 3110 * Note that it does set_restore_sigmask() in advance, so it must be always 3111 * paired with restore_saved_sigmask_unless() before return from syscall. 3112 */ 3113 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3114 { 3115 sigset_t kmask; 3116 3117 if (!umask) 3118 return 0; 3119 if (sigsetsize != sizeof(sigset_t)) 3120 return -EINVAL; 3121 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3122 return -EFAULT; 3123 3124 set_restore_sigmask(); 3125 current->saved_sigmask = current->blocked; 3126 set_current_blocked(&kmask); 3127 3128 return 0; 3129 } 3130 3131 #ifdef CONFIG_COMPAT 3132 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3133 size_t sigsetsize) 3134 { 3135 sigset_t kmask; 3136 3137 if (!umask) 3138 return 0; 3139 if (sigsetsize != sizeof(compat_sigset_t)) 3140 return -EINVAL; 3141 if (get_compat_sigset(&kmask, umask)) 3142 return -EFAULT; 3143 3144 set_restore_sigmask(); 3145 current->saved_sigmask = current->blocked; 3146 set_current_blocked(&kmask); 3147 3148 return 0; 3149 } 3150 #endif 3151 3152 /** 3153 * sys_rt_sigprocmask - change the list of currently blocked signals 3154 * @how: whether to add, remove, or set signals 3155 * @nset: stores pending signals 3156 * @oset: previous value of signal mask if non-null 3157 * @sigsetsize: size of sigset_t type 3158 */ 3159 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3160 sigset_t __user *, oset, size_t, sigsetsize) 3161 { 3162 sigset_t old_set, new_set; 3163 int error; 3164 3165 /* XXX: Don't preclude handling different sized sigset_t's. */ 3166 if (sigsetsize != sizeof(sigset_t)) 3167 return -EINVAL; 3168 3169 old_set = current->blocked; 3170 3171 if (nset) { 3172 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3173 return -EFAULT; 3174 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3175 3176 error = sigprocmask(how, &new_set, NULL); 3177 if (error) 3178 return error; 3179 } 3180 3181 if (oset) { 3182 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3183 return -EFAULT; 3184 } 3185 3186 return 0; 3187 } 3188 3189 #ifdef CONFIG_COMPAT 3190 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3191 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3192 { 3193 sigset_t old_set = current->blocked; 3194 3195 /* XXX: Don't preclude handling different sized sigset_t's. */ 3196 if (sigsetsize != sizeof(sigset_t)) 3197 return -EINVAL; 3198 3199 if (nset) { 3200 sigset_t new_set; 3201 int error; 3202 if (get_compat_sigset(&new_set, nset)) 3203 return -EFAULT; 3204 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3205 3206 error = sigprocmask(how, &new_set, NULL); 3207 if (error) 3208 return error; 3209 } 3210 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3211 } 3212 #endif 3213 3214 static void do_sigpending(sigset_t *set) 3215 { 3216 spin_lock_irq(¤t->sighand->siglock); 3217 sigorsets(set, ¤t->pending.signal, 3218 ¤t->signal->shared_pending.signal); 3219 spin_unlock_irq(¤t->sighand->siglock); 3220 3221 /* Outside the lock because only this thread touches it. */ 3222 sigandsets(set, ¤t->blocked, set); 3223 } 3224 3225 /** 3226 * sys_rt_sigpending - examine a pending signal that has been raised 3227 * while blocked 3228 * @uset: stores pending signals 3229 * @sigsetsize: size of sigset_t type or larger 3230 */ 3231 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3232 { 3233 sigset_t set; 3234 3235 if (sigsetsize > sizeof(*uset)) 3236 return -EINVAL; 3237 3238 do_sigpending(&set); 3239 3240 if (copy_to_user(uset, &set, sigsetsize)) 3241 return -EFAULT; 3242 3243 return 0; 3244 } 3245 3246 #ifdef CONFIG_COMPAT 3247 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3248 compat_size_t, sigsetsize) 3249 { 3250 sigset_t set; 3251 3252 if (sigsetsize > sizeof(*uset)) 3253 return -EINVAL; 3254 3255 do_sigpending(&set); 3256 3257 return put_compat_sigset(uset, &set, sigsetsize); 3258 } 3259 #endif 3260 3261 static const struct { 3262 unsigned char limit, layout; 3263 } sig_sicodes[] = { 3264 [SIGILL] = { NSIGILL, SIL_FAULT }, 3265 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3266 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3267 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3268 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3269 #if defined(SIGEMT) 3270 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3271 #endif 3272 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3273 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3274 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3275 }; 3276 3277 static bool known_siginfo_layout(unsigned sig, int si_code) 3278 { 3279 if (si_code == SI_KERNEL) 3280 return true; 3281 else if ((si_code > SI_USER)) { 3282 if (sig_specific_sicodes(sig)) { 3283 if (si_code <= sig_sicodes[sig].limit) 3284 return true; 3285 } 3286 else if (si_code <= NSIGPOLL) 3287 return true; 3288 } 3289 else if (si_code >= SI_DETHREAD) 3290 return true; 3291 else if (si_code == SI_ASYNCNL) 3292 return true; 3293 return false; 3294 } 3295 3296 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3297 { 3298 enum siginfo_layout layout = SIL_KILL; 3299 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3300 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3301 (si_code <= sig_sicodes[sig].limit)) { 3302 layout = sig_sicodes[sig].layout; 3303 /* Handle the exceptions */ 3304 if ((sig == SIGBUS) && 3305 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3306 layout = SIL_FAULT_MCEERR; 3307 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3308 layout = SIL_FAULT_BNDERR; 3309 #ifdef SEGV_PKUERR 3310 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3311 layout = SIL_FAULT_PKUERR; 3312 #endif 3313 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3314 layout = SIL_FAULT_PERF_EVENT; 3315 else if (IS_ENABLED(CONFIG_SPARC) && 3316 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3317 layout = SIL_FAULT_TRAPNO; 3318 else if (IS_ENABLED(CONFIG_ALPHA) && 3319 ((sig == SIGFPE) || 3320 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3321 layout = SIL_FAULT_TRAPNO; 3322 } 3323 else if (si_code <= NSIGPOLL) 3324 layout = SIL_POLL; 3325 } else { 3326 if (si_code == SI_TIMER) 3327 layout = SIL_TIMER; 3328 else if (si_code == SI_SIGIO) 3329 layout = SIL_POLL; 3330 else if (si_code < 0) 3331 layout = SIL_RT; 3332 } 3333 return layout; 3334 } 3335 3336 static inline char __user *si_expansion(const siginfo_t __user *info) 3337 { 3338 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3339 } 3340 3341 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3342 { 3343 char __user *expansion = si_expansion(to); 3344 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3345 return -EFAULT; 3346 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3347 return -EFAULT; 3348 return 0; 3349 } 3350 3351 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3352 const siginfo_t __user *from) 3353 { 3354 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3355 char __user *expansion = si_expansion(from); 3356 char buf[SI_EXPANSION_SIZE]; 3357 int i; 3358 /* 3359 * An unknown si_code might need more than 3360 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3361 * extra bytes are 0. This guarantees copy_siginfo_to_user 3362 * will return this data to userspace exactly. 3363 */ 3364 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3365 return -EFAULT; 3366 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3367 if (buf[i] != 0) 3368 return -E2BIG; 3369 } 3370 } 3371 return 0; 3372 } 3373 3374 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3375 const siginfo_t __user *from) 3376 { 3377 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3378 return -EFAULT; 3379 to->si_signo = signo; 3380 return post_copy_siginfo_from_user(to, from); 3381 } 3382 3383 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3384 { 3385 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3386 return -EFAULT; 3387 return post_copy_siginfo_from_user(to, from); 3388 } 3389 3390 #ifdef CONFIG_COMPAT 3391 /** 3392 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3393 * @to: compat siginfo destination 3394 * @from: kernel siginfo source 3395 * 3396 * Note: This function does not work properly for the SIGCHLD on x32, but 3397 * fortunately it doesn't have to. The only valid callers for this function are 3398 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3399 * The latter does not care because SIGCHLD will never cause a coredump. 3400 */ 3401 void copy_siginfo_to_external32(struct compat_siginfo *to, 3402 const struct kernel_siginfo *from) 3403 { 3404 memset(to, 0, sizeof(*to)); 3405 3406 to->si_signo = from->si_signo; 3407 to->si_errno = from->si_errno; 3408 to->si_code = from->si_code; 3409 switch(siginfo_layout(from->si_signo, from->si_code)) { 3410 case SIL_KILL: 3411 to->si_pid = from->si_pid; 3412 to->si_uid = from->si_uid; 3413 break; 3414 case SIL_TIMER: 3415 to->si_tid = from->si_tid; 3416 to->si_overrun = from->si_overrun; 3417 to->si_int = from->si_int; 3418 break; 3419 case SIL_POLL: 3420 to->si_band = from->si_band; 3421 to->si_fd = from->si_fd; 3422 break; 3423 case SIL_FAULT: 3424 to->si_addr = ptr_to_compat(from->si_addr); 3425 break; 3426 case SIL_FAULT_TRAPNO: 3427 to->si_addr = ptr_to_compat(from->si_addr); 3428 to->si_trapno = from->si_trapno; 3429 break; 3430 case SIL_FAULT_MCEERR: 3431 to->si_addr = ptr_to_compat(from->si_addr); 3432 to->si_addr_lsb = from->si_addr_lsb; 3433 break; 3434 case SIL_FAULT_BNDERR: 3435 to->si_addr = ptr_to_compat(from->si_addr); 3436 to->si_lower = ptr_to_compat(from->si_lower); 3437 to->si_upper = ptr_to_compat(from->si_upper); 3438 break; 3439 case SIL_FAULT_PKUERR: 3440 to->si_addr = ptr_to_compat(from->si_addr); 3441 to->si_pkey = from->si_pkey; 3442 break; 3443 case SIL_FAULT_PERF_EVENT: 3444 to->si_addr = ptr_to_compat(from->si_addr); 3445 to->si_perf_data = from->si_perf_data; 3446 to->si_perf_type = from->si_perf_type; 3447 to->si_perf_flags = from->si_perf_flags; 3448 break; 3449 case SIL_CHLD: 3450 to->si_pid = from->si_pid; 3451 to->si_uid = from->si_uid; 3452 to->si_status = from->si_status; 3453 to->si_utime = from->si_utime; 3454 to->si_stime = from->si_stime; 3455 break; 3456 case SIL_RT: 3457 to->si_pid = from->si_pid; 3458 to->si_uid = from->si_uid; 3459 to->si_int = from->si_int; 3460 break; 3461 case SIL_SYS: 3462 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3463 to->si_syscall = from->si_syscall; 3464 to->si_arch = from->si_arch; 3465 break; 3466 } 3467 } 3468 3469 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3470 const struct kernel_siginfo *from) 3471 { 3472 struct compat_siginfo new; 3473 3474 copy_siginfo_to_external32(&new, from); 3475 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3476 return -EFAULT; 3477 return 0; 3478 } 3479 3480 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3481 const struct compat_siginfo *from) 3482 { 3483 clear_siginfo(to); 3484 to->si_signo = from->si_signo; 3485 to->si_errno = from->si_errno; 3486 to->si_code = from->si_code; 3487 switch(siginfo_layout(from->si_signo, from->si_code)) { 3488 case SIL_KILL: 3489 to->si_pid = from->si_pid; 3490 to->si_uid = from->si_uid; 3491 break; 3492 case SIL_TIMER: 3493 to->si_tid = from->si_tid; 3494 to->si_overrun = from->si_overrun; 3495 to->si_int = from->si_int; 3496 break; 3497 case SIL_POLL: 3498 to->si_band = from->si_band; 3499 to->si_fd = from->si_fd; 3500 break; 3501 case SIL_FAULT: 3502 to->si_addr = compat_ptr(from->si_addr); 3503 break; 3504 case SIL_FAULT_TRAPNO: 3505 to->si_addr = compat_ptr(from->si_addr); 3506 to->si_trapno = from->si_trapno; 3507 break; 3508 case SIL_FAULT_MCEERR: 3509 to->si_addr = compat_ptr(from->si_addr); 3510 to->si_addr_lsb = from->si_addr_lsb; 3511 break; 3512 case SIL_FAULT_BNDERR: 3513 to->si_addr = compat_ptr(from->si_addr); 3514 to->si_lower = compat_ptr(from->si_lower); 3515 to->si_upper = compat_ptr(from->si_upper); 3516 break; 3517 case SIL_FAULT_PKUERR: 3518 to->si_addr = compat_ptr(from->si_addr); 3519 to->si_pkey = from->si_pkey; 3520 break; 3521 case SIL_FAULT_PERF_EVENT: 3522 to->si_addr = compat_ptr(from->si_addr); 3523 to->si_perf_data = from->si_perf_data; 3524 to->si_perf_type = from->si_perf_type; 3525 to->si_perf_flags = from->si_perf_flags; 3526 break; 3527 case SIL_CHLD: 3528 to->si_pid = from->si_pid; 3529 to->si_uid = from->si_uid; 3530 to->si_status = from->si_status; 3531 #ifdef CONFIG_X86_X32_ABI 3532 if (in_x32_syscall()) { 3533 to->si_utime = from->_sifields._sigchld_x32._utime; 3534 to->si_stime = from->_sifields._sigchld_x32._stime; 3535 } else 3536 #endif 3537 { 3538 to->si_utime = from->si_utime; 3539 to->si_stime = from->si_stime; 3540 } 3541 break; 3542 case SIL_RT: 3543 to->si_pid = from->si_pid; 3544 to->si_uid = from->si_uid; 3545 to->si_int = from->si_int; 3546 break; 3547 case SIL_SYS: 3548 to->si_call_addr = compat_ptr(from->si_call_addr); 3549 to->si_syscall = from->si_syscall; 3550 to->si_arch = from->si_arch; 3551 break; 3552 } 3553 return 0; 3554 } 3555 3556 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3557 const struct compat_siginfo __user *ufrom) 3558 { 3559 struct compat_siginfo from; 3560 3561 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3562 return -EFAULT; 3563 3564 from.si_signo = signo; 3565 return post_copy_siginfo_from_user32(to, &from); 3566 } 3567 3568 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3569 const struct compat_siginfo __user *ufrom) 3570 { 3571 struct compat_siginfo from; 3572 3573 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3574 return -EFAULT; 3575 3576 return post_copy_siginfo_from_user32(to, &from); 3577 } 3578 #endif /* CONFIG_COMPAT */ 3579 3580 /** 3581 * do_sigtimedwait - wait for queued signals specified in @which 3582 * @which: queued signals to wait for 3583 * @info: if non-null, the signal's siginfo is returned here 3584 * @ts: upper bound on process time suspension 3585 */ 3586 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3587 const struct timespec64 *ts) 3588 { 3589 ktime_t *to = NULL, timeout = KTIME_MAX; 3590 struct task_struct *tsk = current; 3591 sigset_t mask = *which; 3592 enum pid_type type; 3593 int sig, ret = 0; 3594 3595 if (ts) { 3596 if (!timespec64_valid(ts)) 3597 return -EINVAL; 3598 timeout = timespec64_to_ktime(*ts); 3599 to = &timeout; 3600 } 3601 3602 /* 3603 * Invert the set of allowed signals to get those we want to block. 3604 */ 3605 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3606 signotset(&mask); 3607 3608 spin_lock_irq(&tsk->sighand->siglock); 3609 sig = dequeue_signal(tsk, &mask, info, &type); 3610 if (!sig && timeout) { 3611 /* 3612 * None ready, temporarily unblock those we're interested 3613 * while we are sleeping in so that we'll be awakened when 3614 * they arrive. Unblocking is always fine, we can avoid 3615 * set_current_blocked(). 3616 */ 3617 tsk->real_blocked = tsk->blocked; 3618 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3619 recalc_sigpending(); 3620 spin_unlock_irq(&tsk->sighand->siglock); 3621 3622 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3623 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3624 HRTIMER_MODE_REL); 3625 spin_lock_irq(&tsk->sighand->siglock); 3626 __set_task_blocked(tsk, &tsk->real_blocked); 3627 sigemptyset(&tsk->real_blocked); 3628 sig = dequeue_signal(tsk, &mask, info, &type); 3629 } 3630 spin_unlock_irq(&tsk->sighand->siglock); 3631 3632 if (sig) 3633 return sig; 3634 return ret ? -EINTR : -EAGAIN; 3635 } 3636 3637 /** 3638 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3639 * in @uthese 3640 * @uthese: queued signals to wait for 3641 * @uinfo: if non-null, the signal's siginfo is returned here 3642 * @uts: upper bound on process time suspension 3643 * @sigsetsize: size of sigset_t type 3644 */ 3645 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3646 siginfo_t __user *, uinfo, 3647 const struct __kernel_timespec __user *, uts, 3648 size_t, sigsetsize) 3649 { 3650 sigset_t these; 3651 struct timespec64 ts; 3652 kernel_siginfo_t info; 3653 int ret; 3654 3655 /* XXX: Don't preclude handling different sized sigset_t's. */ 3656 if (sigsetsize != sizeof(sigset_t)) 3657 return -EINVAL; 3658 3659 if (copy_from_user(&these, uthese, sizeof(these))) 3660 return -EFAULT; 3661 3662 if (uts) { 3663 if (get_timespec64(&ts, uts)) 3664 return -EFAULT; 3665 } 3666 3667 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3668 3669 if (ret > 0 && uinfo) { 3670 if (copy_siginfo_to_user(uinfo, &info)) 3671 ret = -EFAULT; 3672 } 3673 3674 return ret; 3675 } 3676 3677 #ifdef CONFIG_COMPAT_32BIT_TIME 3678 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3679 siginfo_t __user *, uinfo, 3680 const struct old_timespec32 __user *, uts, 3681 size_t, sigsetsize) 3682 { 3683 sigset_t these; 3684 struct timespec64 ts; 3685 kernel_siginfo_t info; 3686 int ret; 3687 3688 if (sigsetsize != sizeof(sigset_t)) 3689 return -EINVAL; 3690 3691 if (copy_from_user(&these, uthese, sizeof(these))) 3692 return -EFAULT; 3693 3694 if (uts) { 3695 if (get_old_timespec32(&ts, uts)) 3696 return -EFAULT; 3697 } 3698 3699 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3700 3701 if (ret > 0 && uinfo) { 3702 if (copy_siginfo_to_user(uinfo, &info)) 3703 ret = -EFAULT; 3704 } 3705 3706 return ret; 3707 } 3708 #endif 3709 3710 #ifdef CONFIG_COMPAT 3711 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3712 struct compat_siginfo __user *, uinfo, 3713 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3714 { 3715 sigset_t s; 3716 struct timespec64 t; 3717 kernel_siginfo_t info; 3718 long ret; 3719 3720 if (sigsetsize != sizeof(sigset_t)) 3721 return -EINVAL; 3722 3723 if (get_compat_sigset(&s, uthese)) 3724 return -EFAULT; 3725 3726 if (uts) { 3727 if (get_timespec64(&t, uts)) 3728 return -EFAULT; 3729 } 3730 3731 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3732 3733 if (ret > 0 && uinfo) { 3734 if (copy_siginfo_to_user32(uinfo, &info)) 3735 ret = -EFAULT; 3736 } 3737 3738 return ret; 3739 } 3740 3741 #ifdef CONFIG_COMPAT_32BIT_TIME 3742 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3743 struct compat_siginfo __user *, uinfo, 3744 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3745 { 3746 sigset_t s; 3747 struct timespec64 t; 3748 kernel_siginfo_t info; 3749 long ret; 3750 3751 if (sigsetsize != sizeof(sigset_t)) 3752 return -EINVAL; 3753 3754 if (get_compat_sigset(&s, uthese)) 3755 return -EFAULT; 3756 3757 if (uts) { 3758 if (get_old_timespec32(&t, uts)) 3759 return -EFAULT; 3760 } 3761 3762 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3763 3764 if (ret > 0 && uinfo) { 3765 if (copy_siginfo_to_user32(uinfo, &info)) 3766 ret = -EFAULT; 3767 } 3768 3769 return ret; 3770 } 3771 #endif 3772 #endif 3773 3774 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3775 { 3776 clear_siginfo(info); 3777 info->si_signo = sig; 3778 info->si_errno = 0; 3779 info->si_code = SI_USER; 3780 info->si_pid = task_tgid_vnr(current); 3781 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3782 } 3783 3784 /** 3785 * sys_kill - send a signal to a process 3786 * @pid: the PID of the process 3787 * @sig: signal to be sent 3788 */ 3789 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3790 { 3791 struct kernel_siginfo info; 3792 3793 prepare_kill_siginfo(sig, &info); 3794 3795 return kill_something_info(sig, &info, pid); 3796 } 3797 3798 /* 3799 * Verify that the signaler and signalee either are in the same pid namespace 3800 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3801 * namespace. 3802 */ 3803 static bool access_pidfd_pidns(struct pid *pid) 3804 { 3805 struct pid_namespace *active = task_active_pid_ns(current); 3806 struct pid_namespace *p = ns_of_pid(pid); 3807 3808 for (;;) { 3809 if (!p) 3810 return false; 3811 if (p == active) 3812 break; 3813 p = p->parent; 3814 } 3815 3816 return true; 3817 } 3818 3819 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3820 siginfo_t __user *info) 3821 { 3822 #ifdef CONFIG_COMPAT 3823 /* 3824 * Avoid hooking up compat syscalls and instead handle necessary 3825 * conversions here. Note, this is a stop-gap measure and should not be 3826 * considered a generic solution. 3827 */ 3828 if (in_compat_syscall()) 3829 return copy_siginfo_from_user32( 3830 kinfo, (struct compat_siginfo __user *)info); 3831 #endif 3832 return copy_siginfo_from_user(kinfo, info); 3833 } 3834 3835 static struct pid *pidfd_to_pid(const struct file *file) 3836 { 3837 struct pid *pid; 3838 3839 pid = pidfd_pid(file); 3840 if (!IS_ERR(pid)) 3841 return pid; 3842 3843 return tgid_pidfd_to_pid(file); 3844 } 3845 3846 /** 3847 * sys_pidfd_send_signal - Signal a process through a pidfd 3848 * @pidfd: file descriptor of the process 3849 * @sig: signal to send 3850 * @info: signal info 3851 * @flags: future flags 3852 * 3853 * The syscall currently only signals via PIDTYPE_PID which covers 3854 * kill(<positive-pid>, <signal>. It does not signal threads or process 3855 * groups. 3856 * In order to extend the syscall to threads and process groups the @flags 3857 * argument should be used. In essence, the @flags argument will determine 3858 * what is signaled and not the file descriptor itself. Put in other words, 3859 * grouping is a property of the flags argument not a property of the file 3860 * descriptor. 3861 * 3862 * Return: 0 on success, negative errno on failure 3863 */ 3864 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3865 siginfo_t __user *, info, unsigned int, flags) 3866 { 3867 int ret; 3868 struct fd f; 3869 struct pid *pid; 3870 kernel_siginfo_t kinfo; 3871 3872 /* Enforce flags be set to 0 until we add an extension. */ 3873 if (flags) 3874 return -EINVAL; 3875 3876 f = fdget(pidfd); 3877 if (!f.file) 3878 return -EBADF; 3879 3880 /* Is this a pidfd? */ 3881 pid = pidfd_to_pid(f.file); 3882 if (IS_ERR(pid)) { 3883 ret = PTR_ERR(pid); 3884 goto err; 3885 } 3886 3887 ret = -EINVAL; 3888 if (!access_pidfd_pidns(pid)) 3889 goto err; 3890 3891 if (info) { 3892 ret = copy_siginfo_from_user_any(&kinfo, info); 3893 if (unlikely(ret)) 3894 goto err; 3895 3896 ret = -EINVAL; 3897 if (unlikely(sig != kinfo.si_signo)) 3898 goto err; 3899 3900 /* Only allow sending arbitrary signals to yourself. */ 3901 ret = -EPERM; 3902 if ((task_pid(current) != pid) && 3903 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3904 goto err; 3905 } else { 3906 prepare_kill_siginfo(sig, &kinfo); 3907 } 3908 3909 ret = kill_pid_info(sig, &kinfo, pid); 3910 3911 err: 3912 fdput(f); 3913 return ret; 3914 } 3915 3916 static int 3917 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3918 { 3919 struct task_struct *p; 3920 int error = -ESRCH; 3921 3922 rcu_read_lock(); 3923 p = find_task_by_vpid(pid); 3924 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3925 error = check_kill_permission(sig, info, p); 3926 /* 3927 * The null signal is a permissions and process existence 3928 * probe. No signal is actually delivered. 3929 */ 3930 if (!error && sig) { 3931 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3932 /* 3933 * If lock_task_sighand() failed we pretend the task 3934 * dies after receiving the signal. The window is tiny, 3935 * and the signal is private anyway. 3936 */ 3937 if (unlikely(error == -ESRCH)) 3938 error = 0; 3939 } 3940 } 3941 rcu_read_unlock(); 3942 3943 return error; 3944 } 3945 3946 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3947 { 3948 struct kernel_siginfo info; 3949 3950 clear_siginfo(&info); 3951 info.si_signo = sig; 3952 info.si_errno = 0; 3953 info.si_code = SI_TKILL; 3954 info.si_pid = task_tgid_vnr(current); 3955 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3956 3957 return do_send_specific(tgid, pid, sig, &info); 3958 } 3959 3960 /** 3961 * sys_tgkill - send signal to one specific thread 3962 * @tgid: the thread group ID of the thread 3963 * @pid: the PID of the thread 3964 * @sig: signal to be sent 3965 * 3966 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3967 * exists but it's not belonging to the target process anymore. This 3968 * method solves the problem of threads exiting and PIDs getting reused. 3969 */ 3970 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3971 { 3972 /* This is only valid for single tasks */ 3973 if (pid <= 0 || tgid <= 0) 3974 return -EINVAL; 3975 3976 return do_tkill(tgid, pid, sig); 3977 } 3978 3979 /** 3980 * sys_tkill - send signal to one specific task 3981 * @pid: the PID of the task 3982 * @sig: signal to be sent 3983 * 3984 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3985 */ 3986 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3987 { 3988 /* This is only valid for single tasks */ 3989 if (pid <= 0) 3990 return -EINVAL; 3991 3992 return do_tkill(0, pid, sig); 3993 } 3994 3995 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3996 { 3997 /* Not even root can pretend to send signals from the kernel. 3998 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3999 */ 4000 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4001 (task_pid_vnr(current) != pid)) 4002 return -EPERM; 4003 4004 /* POSIX.1b doesn't mention process groups. */ 4005 return kill_proc_info(sig, info, pid); 4006 } 4007 4008 /** 4009 * sys_rt_sigqueueinfo - send signal information to a signal 4010 * @pid: the PID of the thread 4011 * @sig: signal to be sent 4012 * @uinfo: signal info to be sent 4013 */ 4014 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4015 siginfo_t __user *, uinfo) 4016 { 4017 kernel_siginfo_t info; 4018 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4019 if (unlikely(ret)) 4020 return ret; 4021 return do_rt_sigqueueinfo(pid, sig, &info); 4022 } 4023 4024 #ifdef CONFIG_COMPAT 4025 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4026 compat_pid_t, pid, 4027 int, sig, 4028 struct compat_siginfo __user *, uinfo) 4029 { 4030 kernel_siginfo_t info; 4031 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4032 if (unlikely(ret)) 4033 return ret; 4034 return do_rt_sigqueueinfo(pid, sig, &info); 4035 } 4036 #endif 4037 4038 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4039 { 4040 /* This is only valid for single tasks */ 4041 if (pid <= 0 || tgid <= 0) 4042 return -EINVAL; 4043 4044 /* Not even root can pretend to send signals from the kernel. 4045 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4046 */ 4047 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4048 (task_pid_vnr(current) != pid)) 4049 return -EPERM; 4050 4051 return do_send_specific(tgid, pid, sig, info); 4052 } 4053 4054 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4055 siginfo_t __user *, uinfo) 4056 { 4057 kernel_siginfo_t info; 4058 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4059 if (unlikely(ret)) 4060 return ret; 4061 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4062 } 4063 4064 #ifdef CONFIG_COMPAT 4065 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4066 compat_pid_t, tgid, 4067 compat_pid_t, pid, 4068 int, sig, 4069 struct compat_siginfo __user *, uinfo) 4070 { 4071 kernel_siginfo_t info; 4072 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4073 if (unlikely(ret)) 4074 return ret; 4075 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4076 } 4077 #endif 4078 4079 /* 4080 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4081 */ 4082 void kernel_sigaction(int sig, __sighandler_t action) 4083 { 4084 spin_lock_irq(¤t->sighand->siglock); 4085 current->sighand->action[sig - 1].sa.sa_handler = action; 4086 if (action == SIG_IGN) { 4087 sigset_t mask; 4088 4089 sigemptyset(&mask); 4090 sigaddset(&mask, sig); 4091 4092 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4093 flush_sigqueue_mask(&mask, ¤t->pending); 4094 recalc_sigpending(); 4095 } 4096 spin_unlock_irq(¤t->sighand->siglock); 4097 } 4098 EXPORT_SYMBOL(kernel_sigaction); 4099 4100 void __weak sigaction_compat_abi(struct k_sigaction *act, 4101 struct k_sigaction *oact) 4102 { 4103 } 4104 4105 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4106 { 4107 struct task_struct *p = current, *t; 4108 struct k_sigaction *k; 4109 sigset_t mask; 4110 4111 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4112 return -EINVAL; 4113 4114 k = &p->sighand->action[sig-1]; 4115 4116 spin_lock_irq(&p->sighand->siglock); 4117 if (k->sa.sa_flags & SA_IMMUTABLE) { 4118 spin_unlock_irq(&p->sighand->siglock); 4119 return -EINVAL; 4120 } 4121 if (oact) 4122 *oact = *k; 4123 4124 /* 4125 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4126 * e.g. by having an architecture use the bit in their uapi. 4127 */ 4128 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4129 4130 /* 4131 * Clear unknown flag bits in order to allow userspace to detect missing 4132 * support for flag bits and to allow the kernel to use non-uapi bits 4133 * internally. 4134 */ 4135 if (act) 4136 act->sa.sa_flags &= UAPI_SA_FLAGS; 4137 if (oact) 4138 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4139 4140 sigaction_compat_abi(act, oact); 4141 4142 if (act) { 4143 sigdelsetmask(&act->sa.sa_mask, 4144 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4145 *k = *act; 4146 /* 4147 * POSIX 3.3.1.3: 4148 * "Setting a signal action to SIG_IGN for a signal that is 4149 * pending shall cause the pending signal to be discarded, 4150 * whether or not it is blocked." 4151 * 4152 * "Setting a signal action to SIG_DFL for a signal that is 4153 * pending and whose default action is to ignore the signal 4154 * (for example, SIGCHLD), shall cause the pending signal to 4155 * be discarded, whether or not it is blocked" 4156 */ 4157 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4158 sigemptyset(&mask); 4159 sigaddset(&mask, sig); 4160 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4161 for_each_thread(p, t) 4162 flush_sigqueue_mask(&mask, &t->pending); 4163 } 4164 } 4165 4166 spin_unlock_irq(&p->sighand->siglock); 4167 return 0; 4168 } 4169 4170 #ifdef CONFIG_DYNAMIC_SIGFRAME 4171 static inline void sigaltstack_lock(void) 4172 __acquires(¤t->sighand->siglock) 4173 { 4174 spin_lock_irq(¤t->sighand->siglock); 4175 } 4176 4177 static inline void sigaltstack_unlock(void) 4178 __releases(¤t->sighand->siglock) 4179 { 4180 spin_unlock_irq(¤t->sighand->siglock); 4181 } 4182 #else 4183 static inline void sigaltstack_lock(void) { } 4184 static inline void sigaltstack_unlock(void) { } 4185 #endif 4186 4187 static int 4188 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4189 size_t min_ss_size) 4190 { 4191 struct task_struct *t = current; 4192 int ret = 0; 4193 4194 if (oss) { 4195 memset(oss, 0, sizeof(stack_t)); 4196 oss->ss_sp = (void __user *) t->sas_ss_sp; 4197 oss->ss_size = t->sas_ss_size; 4198 oss->ss_flags = sas_ss_flags(sp) | 4199 (current->sas_ss_flags & SS_FLAG_BITS); 4200 } 4201 4202 if (ss) { 4203 void __user *ss_sp = ss->ss_sp; 4204 size_t ss_size = ss->ss_size; 4205 unsigned ss_flags = ss->ss_flags; 4206 int ss_mode; 4207 4208 if (unlikely(on_sig_stack(sp))) 4209 return -EPERM; 4210 4211 ss_mode = ss_flags & ~SS_FLAG_BITS; 4212 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4213 ss_mode != 0)) 4214 return -EINVAL; 4215 4216 /* 4217 * Return before taking any locks if no actual 4218 * sigaltstack changes were requested. 4219 */ 4220 if (t->sas_ss_sp == (unsigned long)ss_sp && 4221 t->sas_ss_size == ss_size && 4222 t->sas_ss_flags == ss_flags) 4223 return 0; 4224 4225 sigaltstack_lock(); 4226 if (ss_mode == SS_DISABLE) { 4227 ss_size = 0; 4228 ss_sp = NULL; 4229 } else { 4230 if (unlikely(ss_size < min_ss_size)) 4231 ret = -ENOMEM; 4232 if (!sigaltstack_size_valid(ss_size)) 4233 ret = -ENOMEM; 4234 } 4235 if (!ret) { 4236 t->sas_ss_sp = (unsigned long) ss_sp; 4237 t->sas_ss_size = ss_size; 4238 t->sas_ss_flags = ss_flags; 4239 } 4240 sigaltstack_unlock(); 4241 } 4242 return ret; 4243 } 4244 4245 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4246 { 4247 stack_t new, old; 4248 int err; 4249 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4250 return -EFAULT; 4251 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4252 current_user_stack_pointer(), 4253 MINSIGSTKSZ); 4254 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4255 err = -EFAULT; 4256 return err; 4257 } 4258 4259 int restore_altstack(const stack_t __user *uss) 4260 { 4261 stack_t new; 4262 if (copy_from_user(&new, uss, sizeof(stack_t))) 4263 return -EFAULT; 4264 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4265 MINSIGSTKSZ); 4266 /* squash all but EFAULT for now */ 4267 return 0; 4268 } 4269 4270 int __save_altstack(stack_t __user *uss, unsigned long sp) 4271 { 4272 struct task_struct *t = current; 4273 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4274 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4275 __put_user(t->sas_ss_size, &uss->ss_size); 4276 return err; 4277 } 4278 4279 #ifdef CONFIG_COMPAT 4280 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4281 compat_stack_t __user *uoss_ptr) 4282 { 4283 stack_t uss, uoss; 4284 int ret; 4285 4286 if (uss_ptr) { 4287 compat_stack_t uss32; 4288 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4289 return -EFAULT; 4290 uss.ss_sp = compat_ptr(uss32.ss_sp); 4291 uss.ss_flags = uss32.ss_flags; 4292 uss.ss_size = uss32.ss_size; 4293 } 4294 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4295 compat_user_stack_pointer(), 4296 COMPAT_MINSIGSTKSZ); 4297 if (ret >= 0 && uoss_ptr) { 4298 compat_stack_t old; 4299 memset(&old, 0, sizeof(old)); 4300 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4301 old.ss_flags = uoss.ss_flags; 4302 old.ss_size = uoss.ss_size; 4303 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4304 ret = -EFAULT; 4305 } 4306 return ret; 4307 } 4308 4309 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4310 const compat_stack_t __user *, uss_ptr, 4311 compat_stack_t __user *, uoss_ptr) 4312 { 4313 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4314 } 4315 4316 int compat_restore_altstack(const compat_stack_t __user *uss) 4317 { 4318 int err = do_compat_sigaltstack(uss, NULL); 4319 /* squash all but -EFAULT for now */ 4320 return err == -EFAULT ? err : 0; 4321 } 4322 4323 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4324 { 4325 int err; 4326 struct task_struct *t = current; 4327 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4328 &uss->ss_sp) | 4329 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4330 __put_user(t->sas_ss_size, &uss->ss_size); 4331 return err; 4332 } 4333 #endif 4334 4335 #ifdef __ARCH_WANT_SYS_SIGPENDING 4336 4337 /** 4338 * sys_sigpending - examine pending signals 4339 * @uset: where mask of pending signal is returned 4340 */ 4341 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4342 { 4343 sigset_t set; 4344 4345 if (sizeof(old_sigset_t) > sizeof(*uset)) 4346 return -EINVAL; 4347 4348 do_sigpending(&set); 4349 4350 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4351 return -EFAULT; 4352 4353 return 0; 4354 } 4355 4356 #ifdef CONFIG_COMPAT 4357 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4358 { 4359 sigset_t set; 4360 4361 do_sigpending(&set); 4362 4363 return put_user(set.sig[0], set32); 4364 } 4365 #endif 4366 4367 #endif 4368 4369 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4370 /** 4371 * sys_sigprocmask - examine and change blocked signals 4372 * @how: whether to add, remove, or set signals 4373 * @nset: signals to add or remove (if non-null) 4374 * @oset: previous value of signal mask if non-null 4375 * 4376 * Some platforms have their own version with special arguments; 4377 * others support only sys_rt_sigprocmask. 4378 */ 4379 4380 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4381 old_sigset_t __user *, oset) 4382 { 4383 old_sigset_t old_set, new_set; 4384 sigset_t new_blocked; 4385 4386 old_set = current->blocked.sig[0]; 4387 4388 if (nset) { 4389 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4390 return -EFAULT; 4391 4392 new_blocked = current->blocked; 4393 4394 switch (how) { 4395 case SIG_BLOCK: 4396 sigaddsetmask(&new_blocked, new_set); 4397 break; 4398 case SIG_UNBLOCK: 4399 sigdelsetmask(&new_blocked, new_set); 4400 break; 4401 case SIG_SETMASK: 4402 new_blocked.sig[0] = new_set; 4403 break; 4404 default: 4405 return -EINVAL; 4406 } 4407 4408 set_current_blocked(&new_blocked); 4409 } 4410 4411 if (oset) { 4412 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4413 return -EFAULT; 4414 } 4415 4416 return 0; 4417 } 4418 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4419 4420 #ifndef CONFIG_ODD_RT_SIGACTION 4421 /** 4422 * sys_rt_sigaction - alter an action taken by a process 4423 * @sig: signal to be sent 4424 * @act: new sigaction 4425 * @oact: used to save the previous sigaction 4426 * @sigsetsize: size of sigset_t type 4427 */ 4428 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4429 const struct sigaction __user *, act, 4430 struct sigaction __user *, oact, 4431 size_t, sigsetsize) 4432 { 4433 struct k_sigaction new_sa, old_sa; 4434 int ret; 4435 4436 /* XXX: Don't preclude handling different sized sigset_t's. */ 4437 if (sigsetsize != sizeof(sigset_t)) 4438 return -EINVAL; 4439 4440 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4441 return -EFAULT; 4442 4443 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4444 if (ret) 4445 return ret; 4446 4447 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4448 return -EFAULT; 4449 4450 return 0; 4451 } 4452 #ifdef CONFIG_COMPAT 4453 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4454 const struct compat_sigaction __user *, act, 4455 struct compat_sigaction __user *, oact, 4456 compat_size_t, sigsetsize) 4457 { 4458 struct k_sigaction new_ka, old_ka; 4459 #ifdef __ARCH_HAS_SA_RESTORER 4460 compat_uptr_t restorer; 4461 #endif 4462 int ret; 4463 4464 /* XXX: Don't preclude handling different sized sigset_t's. */ 4465 if (sigsetsize != sizeof(compat_sigset_t)) 4466 return -EINVAL; 4467 4468 if (act) { 4469 compat_uptr_t handler; 4470 ret = get_user(handler, &act->sa_handler); 4471 new_ka.sa.sa_handler = compat_ptr(handler); 4472 #ifdef __ARCH_HAS_SA_RESTORER 4473 ret |= get_user(restorer, &act->sa_restorer); 4474 new_ka.sa.sa_restorer = compat_ptr(restorer); 4475 #endif 4476 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4477 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4478 if (ret) 4479 return -EFAULT; 4480 } 4481 4482 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4483 if (!ret && oact) { 4484 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4485 &oact->sa_handler); 4486 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4487 sizeof(oact->sa_mask)); 4488 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4489 #ifdef __ARCH_HAS_SA_RESTORER 4490 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4491 &oact->sa_restorer); 4492 #endif 4493 } 4494 return ret; 4495 } 4496 #endif 4497 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4498 4499 #ifdef CONFIG_OLD_SIGACTION 4500 SYSCALL_DEFINE3(sigaction, int, sig, 4501 const struct old_sigaction __user *, act, 4502 struct old_sigaction __user *, oact) 4503 { 4504 struct k_sigaction new_ka, old_ka; 4505 int ret; 4506 4507 if (act) { 4508 old_sigset_t mask; 4509 if (!access_ok(act, sizeof(*act)) || 4510 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4511 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4512 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4513 __get_user(mask, &act->sa_mask)) 4514 return -EFAULT; 4515 #ifdef __ARCH_HAS_KA_RESTORER 4516 new_ka.ka_restorer = NULL; 4517 #endif 4518 siginitset(&new_ka.sa.sa_mask, mask); 4519 } 4520 4521 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4522 4523 if (!ret && oact) { 4524 if (!access_ok(oact, sizeof(*oact)) || 4525 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4526 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4527 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4528 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4529 return -EFAULT; 4530 } 4531 4532 return ret; 4533 } 4534 #endif 4535 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4536 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4537 const struct compat_old_sigaction __user *, act, 4538 struct compat_old_sigaction __user *, oact) 4539 { 4540 struct k_sigaction new_ka, old_ka; 4541 int ret; 4542 compat_old_sigset_t mask; 4543 compat_uptr_t handler, restorer; 4544 4545 if (act) { 4546 if (!access_ok(act, sizeof(*act)) || 4547 __get_user(handler, &act->sa_handler) || 4548 __get_user(restorer, &act->sa_restorer) || 4549 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4550 __get_user(mask, &act->sa_mask)) 4551 return -EFAULT; 4552 4553 #ifdef __ARCH_HAS_KA_RESTORER 4554 new_ka.ka_restorer = NULL; 4555 #endif 4556 new_ka.sa.sa_handler = compat_ptr(handler); 4557 new_ka.sa.sa_restorer = compat_ptr(restorer); 4558 siginitset(&new_ka.sa.sa_mask, mask); 4559 } 4560 4561 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4562 4563 if (!ret && oact) { 4564 if (!access_ok(oact, sizeof(*oact)) || 4565 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4566 &oact->sa_handler) || 4567 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4568 &oact->sa_restorer) || 4569 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4570 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4571 return -EFAULT; 4572 } 4573 return ret; 4574 } 4575 #endif 4576 4577 #ifdef CONFIG_SGETMASK_SYSCALL 4578 4579 /* 4580 * For backwards compatibility. Functionality superseded by sigprocmask. 4581 */ 4582 SYSCALL_DEFINE0(sgetmask) 4583 { 4584 /* SMP safe */ 4585 return current->blocked.sig[0]; 4586 } 4587 4588 SYSCALL_DEFINE1(ssetmask, int, newmask) 4589 { 4590 int old = current->blocked.sig[0]; 4591 sigset_t newset; 4592 4593 siginitset(&newset, newmask); 4594 set_current_blocked(&newset); 4595 4596 return old; 4597 } 4598 #endif /* CONFIG_SGETMASK_SYSCALL */ 4599 4600 #ifdef __ARCH_WANT_SYS_SIGNAL 4601 /* 4602 * For backwards compatibility. Functionality superseded by sigaction. 4603 */ 4604 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4605 { 4606 struct k_sigaction new_sa, old_sa; 4607 int ret; 4608 4609 new_sa.sa.sa_handler = handler; 4610 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4611 sigemptyset(&new_sa.sa.sa_mask); 4612 4613 ret = do_sigaction(sig, &new_sa, &old_sa); 4614 4615 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4616 } 4617 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4618 4619 #ifdef __ARCH_WANT_SYS_PAUSE 4620 4621 SYSCALL_DEFINE0(pause) 4622 { 4623 while (!signal_pending(current)) { 4624 __set_current_state(TASK_INTERRUPTIBLE); 4625 schedule(); 4626 } 4627 return -ERESTARTNOHAND; 4628 } 4629 4630 #endif 4631 4632 static int sigsuspend(sigset_t *set) 4633 { 4634 current->saved_sigmask = current->blocked; 4635 set_current_blocked(set); 4636 4637 while (!signal_pending(current)) { 4638 __set_current_state(TASK_INTERRUPTIBLE); 4639 schedule(); 4640 } 4641 set_restore_sigmask(); 4642 return -ERESTARTNOHAND; 4643 } 4644 4645 /** 4646 * sys_rt_sigsuspend - replace the signal mask for a value with the 4647 * @unewset value until a signal is received 4648 * @unewset: new signal mask value 4649 * @sigsetsize: size of sigset_t type 4650 */ 4651 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4652 { 4653 sigset_t newset; 4654 4655 /* XXX: Don't preclude handling different sized sigset_t's. */ 4656 if (sigsetsize != sizeof(sigset_t)) 4657 return -EINVAL; 4658 4659 if (copy_from_user(&newset, unewset, sizeof(newset))) 4660 return -EFAULT; 4661 return sigsuspend(&newset); 4662 } 4663 4664 #ifdef CONFIG_COMPAT 4665 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4666 { 4667 sigset_t newset; 4668 4669 /* XXX: Don't preclude handling different sized sigset_t's. */ 4670 if (sigsetsize != sizeof(sigset_t)) 4671 return -EINVAL; 4672 4673 if (get_compat_sigset(&newset, unewset)) 4674 return -EFAULT; 4675 return sigsuspend(&newset); 4676 } 4677 #endif 4678 4679 #ifdef CONFIG_OLD_SIGSUSPEND 4680 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4681 { 4682 sigset_t blocked; 4683 siginitset(&blocked, mask); 4684 return sigsuspend(&blocked); 4685 } 4686 #endif 4687 #ifdef CONFIG_OLD_SIGSUSPEND3 4688 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4689 { 4690 sigset_t blocked; 4691 siginitset(&blocked, mask); 4692 return sigsuspend(&blocked); 4693 } 4694 #endif 4695 4696 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4697 { 4698 return NULL; 4699 } 4700 4701 static inline void siginfo_buildtime_checks(void) 4702 { 4703 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4704 4705 /* Verify the offsets in the two siginfos match */ 4706 #define CHECK_OFFSET(field) \ 4707 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4708 4709 /* kill */ 4710 CHECK_OFFSET(si_pid); 4711 CHECK_OFFSET(si_uid); 4712 4713 /* timer */ 4714 CHECK_OFFSET(si_tid); 4715 CHECK_OFFSET(si_overrun); 4716 CHECK_OFFSET(si_value); 4717 4718 /* rt */ 4719 CHECK_OFFSET(si_pid); 4720 CHECK_OFFSET(si_uid); 4721 CHECK_OFFSET(si_value); 4722 4723 /* sigchld */ 4724 CHECK_OFFSET(si_pid); 4725 CHECK_OFFSET(si_uid); 4726 CHECK_OFFSET(si_status); 4727 CHECK_OFFSET(si_utime); 4728 CHECK_OFFSET(si_stime); 4729 4730 /* sigfault */ 4731 CHECK_OFFSET(si_addr); 4732 CHECK_OFFSET(si_trapno); 4733 CHECK_OFFSET(si_addr_lsb); 4734 CHECK_OFFSET(si_lower); 4735 CHECK_OFFSET(si_upper); 4736 CHECK_OFFSET(si_pkey); 4737 CHECK_OFFSET(si_perf_data); 4738 CHECK_OFFSET(si_perf_type); 4739 CHECK_OFFSET(si_perf_flags); 4740 4741 /* sigpoll */ 4742 CHECK_OFFSET(si_band); 4743 CHECK_OFFSET(si_fd); 4744 4745 /* sigsys */ 4746 CHECK_OFFSET(si_call_addr); 4747 CHECK_OFFSET(si_syscall); 4748 CHECK_OFFSET(si_arch); 4749 #undef CHECK_OFFSET 4750 4751 /* usb asyncio */ 4752 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4753 offsetof(struct siginfo, si_addr)); 4754 if (sizeof(int) == sizeof(void __user *)) { 4755 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4756 sizeof(void __user *)); 4757 } else { 4758 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4759 sizeof_field(struct siginfo, si_uid)) != 4760 sizeof(void __user *)); 4761 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4762 offsetof(struct siginfo, si_uid)); 4763 } 4764 #ifdef CONFIG_COMPAT 4765 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4766 offsetof(struct compat_siginfo, si_addr)); 4767 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4768 sizeof(compat_uptr_t)); 4769 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4770 sizeof_field(struct siginfo, si_pid)); 4771 #endif 4772 } 4773 4774 void __init signals_init(void) 4775 { 4776 siginfo_buildtime_checks(); 4777 4778 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4779 } 4780 4781 #ifdef CONFIG_KGDB_KDB 4782 #include <linux/kdb.h> 4783 /* 4784 * kdb_send_sig - Allows kdb to send signals without exposing 4785 * signal internals. This function checks if the required locks are 4786 * available before calling the main signal code, to avoid kdb 4787 * deadlocks. 4788 */ 4789 void kdb_send_sig(struct task_struct *t, int sig) 4790 { 4791 static struct task_struct *kdb_prev_t; 4792 int new_t, ret; 4793 if (!spin_trylock(&t->sighand->siglock)) { 4794 kdb_printf("Can't do kill command now.\n" 4795 "The sigmask lock is held somewhere else in " 4796 "kernel, try again later\n"); 4797 return; 4798 } 4799 new_t = kdb_prev_t != t; 4800 kdb_prev_t = t; 4801 if (!task_is_running(t) && new_t) { 4802 spin_unlock(&t->sighand->siglock); 4803 kdb_printf("Process is not RUNNING, sending a signal from " 4804 "kdb risks deadlock\n" 4805 "on the run queue locks. " 4806 "The signal has _not_ been sent.\n" 4807 "Reissue the kill command if you want to risk " 4808 "the deadlock.\n"); 4809 return; 4810 } 4811 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4812 spin_unlock(&t->sighand->siglock); 4813 if (ret) 4814 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4815 sig, t->pid); 4816 else 4817 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4818 } 4819 #endif /* CONFIG_KGDB_KDB */ 4820