xref: /openbmc/linux/kernel/signal.c (revision 05bcf503)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/signal.h>
36 
37 #include <asm/param.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/siginfo.h>
41 #include <asm/cacheflush.h>
42 #include "audit.h"	/* audit_signal_info() */
43 
44 /*
45  * SLAB caches for signal bits.
46  */
47 
48 static struct kmem_cache *sigqueue_cachep;
49 
50 int print_fatal_signals __read_mostly;
51 
52 static void __user *sig_handler(struct task_struct *t, int sig)
53 {
54 	return t->sighand->action[sig - 1].sa.sa_handler;
55 }
56 
57 static int sig_handler_ignored(void __user *handler, int sig)
58 {
59 	/* Is it explicitly or implicitly ignored? */
60 	return handler == SIG_IGN ||
61 		(handler == SIG_DFL && sig_kernel_ignore(sig));
62 }
63 
64 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
65 {
66 	void __user *handler;
67 
68 	handler = sig_handler(t, sig);
69 
70 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
71 			handler == SIG_DFL && !force)
72 		return 1;
73 
74 	return sig_handler_ignored(handler, sig);
75 }
76 
77 static int sig_ignored(struct task_struct *t, int sig, bool force)
78 {
79 	/*
80 	 * Blocked signals are never ignored, since the
81 	 * signal handler may change by the time it is
82 	 * unblocked.
83 	 */
84 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
85 		return 0;
86 
87 	if (!sig_task_ignored(t, sig, force))
88 		return 0;
89 
90 	/*
91 	 * Tracers may want to know about even ignored signals.
92 	 */
93 	return !t->ptrace;
94 }
95 
96 /*
97  * Re-calculate pending state from the set of locally pending
98  * signals, globally pending signals, and blocked signals.
99  */
100 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
101 {
102 	unsigned long ready;
103 	long i;
104 
105 	switch (_NSIG_WORDS) {
106 	default:
107 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
108 			ready |= signal->sig[i] &~ blocked->sig[i];
109 		break;
110 
111 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
112 		ready |= signal->sig[2] &~ blocked->sig[2];
113 		ready |= signal->sig[1] &~ blocked->sig[1];
114 		ready |= signal->sig[0] &~ blocked->sig[0];
115 		break;
116 
117 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
118 		ready |= signal->sig[0] &~ blocked->sig[0];
119 		break;
120 
121 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
122 	}
123 	return ready !=	0;
124 }
125 
126 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
127 
128 static int recalc_sigpending_tsk(struct task_struct *t)
129 {
130 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
131 	    PENDING(&t->pending, &t->blocked) ||
132 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
133 		set_tsk_thread_flag(t, TIF_SIGPENDING);
134 		return 1;
135 	}
136 	/*
137 	 * We must never clear the flag in another thread, or in current
138 	 * when it's possible the current syscall is returning -ERESTART*.
139 	 * So we don't clear it here, and only callers who know they should do.
140 	 */
141 	return 0;
142 }
143 
144 /*
145  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
146  * This is superfluous when called on current, the wakeup is a harmless no-op.
147  */
148 void recalc_sigpending_and_wake(struct task_struct *t)
149 {
150 	if (recalc_sigpending_tsk(t))
151 		signal_wake_up(t, 0);
152 }
153 
154 void recalc_sigpending(void)
155 {
156 	if (!recalc_sigpending_tsk(current) && !freezing(current))
157 		clear_thread_flag(TIF_SIGPENDING);
158 
159 }
160 
161 /* Given the mask, find the first available signal that should be serviced. */
162 
163 #define SYNCHRONOUS_MASK \
164 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
165 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
166 
167 int next_signal(struct sigpending *pending, sigset_t *mask)
168 {
169 	unsigned long i, *s, *m, x;
170 	int sig = 0;
171 
172 	s = pending->signal.sig;
173 	m = mask->sig;
174 
175 	/*
176 	 * Handle the first word specially: it contains the
177 	 * synchronous signals that need to be dequeued first.
178 	 */
179 	x = *s &~ *m;
180 	if (x) {
181 		if (x & SYNCHRONOUS_MASK)
182 			x &= SYNCHRONOUS_MASK;
183 		sig = ffz(~x) + 1;
184 		return sig;
185 	}
186 
187 	switch (_NSIG_WORDS) {
188 	default:
189 		for (i = 1; i < _NSIG_WORDS; ++i) {
190 			x = *++s &~ *++m;
191 			if (!x)
192 				continue;
193 			sig = ffz(~x) + i*_NSIG_BPW + 1;
194 			break;
195 		}
196 		break;
197 
198 	case 2:
199 		x = s[1] &~ m[1];
200 		if (!x)
201 			break;
202 		sig = ffz(~x) + _NSIG_BPW + 1;
203 		break;
204 
205 	case 1:
206 		/* Nothing to do */
207 		break;
208 	}
209 
210 	return sig;
211 }
212 
213 static inline void print_dropped_signal(int sig)
214 {
215 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
216 
217 	if (!print_fatal_signals)
218 		return;
219 
220 	if (!__ratelimit(&ratelimit_state))
221 		return;
222 
223 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
224 				current->comm, current->pid, sig);
225 }
226 
227 /**
228  * task_set_jobctl_pending - set jobctl pending bits
229  * @task: target task
230  * @mask: pending bits to set
231  *
232  * Clear @mask from @task->jobctl.  @mask must be subset of
233  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
234  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
235  * cleared.  If @task is already being killed or exiting, this function
236  * becomes noop.
237  *
238  * CONTEXT:
239  * Must be called with @task->sighand->siglock held.
240  *
241  * RETURNS:
242  * %true if @mask is set, %false if made noop because @task was dying.
243  */
244 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
245 {
246 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
247 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
248 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
249 
250 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
251 		return false;
252 
253 	if (mask & JOBCTL_STOP_SIGMASK)
254 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
255 
256 	task->jobctl |= mask;
257 	return true;
258 }
259 
260 /**
261  * task_clear_jobctl_trapping - clear jobctl trapping bit
262  * @task: target task
263  *
264  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
265  * Clear it and wake up the ptracer.  Note that we don't need any further
266  * locking.  @task->siglock guarantees that @task->parent points to the
267  * ptracer.
268  *
269  * CONTEXT:
270  * Must be called with @task->sighand->siglock held.
271  */
272 void task_clear_jobctl_trapping(struct task_struct *task)
273 {
274 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
275 		task->jobctl &= ~JOBCTL_TRAPPING;
276 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
277 	}
278 }
279 
280 /**
281  * task_clear_jobctl_pending - clear jobctl pending bits
282  * @task: target task
283  * @mask: pending bits to clear
284  *
285  * Clear @mask from @task->jobctl.  @mask must be subset of
286  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
287  * STOP bits are cleared together.
288  *
289  * If clearing of @mask leaves no stop or trap pending, this function calls
290  * task_clear_jobctl_trapping().
291  *
292  * CONTEXT:
293  * Must be called with @task->sighand->siglock held.
294  */
295 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
296 {
297 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
298 
299 	if (mask & JOBCTL_STOP_PENDING)
300 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
301 
302 	task->jobctl &= ~mask;
303 
304 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
305 		task_clear_jobctl_trapping(task);
306 }
307 
308 /**
309  * task_participate_group_stop - participate in a group stop
310  * @task: task participating in a group stop
311  *
312  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
313  * Group stop states are cleared and the group stop count is consumed if
314  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
315  * stop, the appropriate %SIGNAL_* flags are set.
316  *
317  * CONTEXT:
318  * Must be called with @task->sighand->siglock held.
319  *
320  * RETURNS:
321  * %true if group stop completion should be notified to the parent, %false
322  * otherwise.
323  */
324 static bool task_participate_group_stop(struct task_struct *task)
325 {
326 	struct signal_struct *sig = task->signal;
327 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
328 
329 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
330 
331 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
332 
333 	if (!consume)
334 		return false;
335 
336 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
337 		sig->group_stop_count--;
338 
339 	/*
340 	 * Tell the caller to notify completion iff we are entering into a
341 	 * fresh group stop.  Read comment in do_signal_stop() for details.
342 	 */
343 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
344 		sig->flags = SIGNAL_STOP_STOPPED;
345 		return true;
346 	}
347 	return false;
348 }
349 
350 /*
351  * allocate a new signal queue record
352  * - this may be called without locks if and only if t == current, otherwise an
353  *   appropriate lock must be held to stop the target task from exiting
354  */
355 static struct sigqueue *
356 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
357 {
358 	struct sigqueue *q = NULL;
359 	struct user_struct *user;
360 
361 	/*
362 	 * Protect access to @t credentials. This can go away when all
363 	 * callers hold rcu read lock.
364 	 */
365 	rcu_read_lock();
366 	user = get_uid(__task_cred(t)->user);
367 	atomic_inc(&user->sigpending);
368 	rcu_read_unlock();
369 
370 	if (override_rlimit ||
371 	    atomic_read(&user->sigpending) <=
372 			task_rlimit(t, RLIMIT_SIGPENDING)) {
373 		q = kmem_cache_alloc(sigqueue_cachep, flags);
374 	} else {
375 		print_dropped_signal(sig);
376 	}
377 
378 	if (unlikely(q == NULL)) {
379 		atomic_dec(&user->sigpending);
380 		free_uid(user);
381 	} else {
382 		INIT_LIST_HEAD(&q->list);
383 		q->flags = 0;
384 		q->user = user;
385 	}
386 
387 	return q;
388 }
389 
390 static void __sigqueue_free(struct sigqueue *q)
391 {
392 	if (q->flags & SIGQUEUE_PREALLOC)
393 		return;
394 	atomic_dec(&q->user->sigpending);
395 	free_uid(q->user);
396 	kmem_cache_free(sigqueue_cachep, q);
397 }
398 
399 void flush_sigqueue(struct sigpending *queue)
400 {
401 	struct sigqueue *q;
402 
403 	sigemptyset(&queue->signal);
404 	while (!list_empty(&queue->list)) {
405 		q = list_entry(queue->list.next, struct sigqueue , list);
406 		list_del_init(&q->list);
407 		__sigqueue_free(q);
408 	}
409 }
410 
411 /*
412  * Flush all pending signals for a task.
413  */
414 void __flush_signals(struct task_struct *t)
415 {
416 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
417 	flush_sigqueue(&t->pending);
418 	flush_sigqueue(&t->signal->shared_pending);
419 }
420 
421 void flush_signals(struct task_struct *t)
422 {
423 	unsigned long flags;
424 
425 	spin_lock_irqsave(&t->sighand->siglock, flags);
426 	__flush_signals(t);
427 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
428 }
429 
430 static void __flush_itimer_signals(struct sigpending *pending)
431 {
432 	sigset_t signal, retain;
433 	struct sigqueue *q, *n;
434 
435 	signal = pending->signal;
436 	sigemptyset(&retain);
437 
438 	list_for_each_entry_safe(q, n, &pending->list, list) {
439 		int sig = q->info.si_signo;
440 
441 		if (likely(q->info.si_code != SI_TIMER)) {
442 			sigaddset(&retain, sig);
443 		} else {
444 			sigdelset(&signal, sig);
445 			list_del_init(&q->list);
446 			__sigqueue_free(q);
447 		}
448 	}
449 
450 	sigorsets(&pending->signal, &signal, &retain);
451 }
452 
453 void flush_itimer_signals(void)
454 {
455 	struct task_struct *tsk = current;
456 	unsigned long flags;
457 
458 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
459 	__flush_itimer_signals(&tsk->pending);
460 	__flush_itimer_signals(&tsk->signal->shared_pending);
461 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
462 }
463 
464 void ignore_signals(struct task_struct *t)
465 {
466 	int i;
467 
468 	for (i = 0; i < _NSIG; ++i)
469 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
470 
471 	flush_signals(t);
472 }
473 
474 /*
475  * Flush all handlers for a task.
476  */
477 
478 void
479 flush_signal_handlers(struct task_struct *t, int force_default)
480 {
481 	int i;
482 	struct k_sigaction *ka = &t->sighand->action[0];
483 	for (i = _NSIG ; i != 0 ; i--) {
484 		if (force_default || ka->sa.sa_handler != SIG_IGN)
485 			ka->sa.sa_handler = SIG_DFL;
486 		ka->sa.sa_flags = 0;
487 		sigemptyset(&ka->sa.sa_mask);
488 		ka++;
489 	}
490 }
491 
492 int unhandled_signal(struct task_struct *tsk, int sig)
493 {
494 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
495 	if (is_global_init(tsk))
496 		return 1;
497 	if (handler != SIG_IGN && handler != SIG_DFL)
498 		return 0;
499 	/* if ptraced, let the tracer determine */
500 	return !tsk->ptrace;
501 }
502 
503 /*
504  * Notify the system that a driver wants to block all signals for this
505  * process, and wants to be notified if any signals at all were to be
506  * sent/acted upon.  If the notifier routine returns non-zero, then the
507  * signal will be acted upon after all.  If the notifier routine returns 0,
508  * then then signal will be blocked.  Only one block per process is
509  * allowed.  priv is a pointer to private data that the notifier routine
510  * can use to determine if the signal should be blocked or not.
511  */
512 void
513 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
514 {
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&current->sighand->siglock, flags);
518 	current->notifier_mask = mask;
519 	current->notifier_data = priv;
520 	current->notifier = notifier;
521 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
522 }
523 
524 /* Notify the system that blocking has ended. */
525 
526 void
527 unblock_all_signals(void)
528 {
529 	unsigned long flags;
530 
531 	spin_lock_irqsave(&current->sighand->siglock, flags);
532 	current->notifier = NULL;
533 	current->notifier_data = NULL;
534 	recalc_sigpending();
535 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
536 }
537 
538 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
539 {
540 	struct sigqueue *q, *first = NULL;
541 
542 	/*
543 	 * Collect the siginfo appropriate to this signal.  Check if
544 	 * there is another siginfo for the same signal.
545 	*/
546 	list_for_each_entry(q, &list->list, list) {
547 		if (q->info.si_signo == sig) {
548 			if (first)
549 				goto still_pending;
550 			first = q;
551 		}
552 	}
553 
554 	sigdelset(&list->signal, sig);
555 
556 	if (first) {
557 still_pending:
558 		list_del_init(&first->list);
559 		copy_siginfo(info, &first->info);
560 		__sigqueue_free(first);
561 	} else {
562 		/*
563 		 * Ok, it wasn't in the queue.  This must be
564 		 * a fast-pathed signal or we must have been
565 		 * out of queue space.  So zero out the info.
566 		 */
567 		info->si_signo = sig;
568 		info->si_errno = 0;
569 		info->si_code = SI_USER;
570 		info->si_pid = 0;
571 		info->si_uid = 0;
572 	}
573 }
574 
575 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
576 			siginfo_t *info)
577 {
578 	int sig = next_signal(pending, mask);
579 
580 	if (sig) {
581 		if (current->notifier) {
582 			if (sigismember(current->notifier_mask, sig)) {
583 				if (!(current->notifier)(current->notifier_data)) {
584 					clear_thread_flag(TIF_SIGPENDING);
585 					return 0;
586 				}
587 			}
588 		}
589 
590 		collect_signal(sig, pending, info);
591 	}
592 
593 	return sig;
594 }
595 
596 /*
597  * Dequeue a signal and return the element to the caller, which is
598  * expected to free it.
599  *
600  * All callers have to hold the siglock.
601  */
602 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
603 {
604 	int signr;
605 
606 	/* We only dequeue private signals from ourselves, we don't let
607 	 * signalfd steal them
608 	 */
609 	signr = __dequeue_signal(&tsk->pending, mask, info);
610 	if (!signr) {
611 		signr = __dequeue_signal(&tsk->signal->shared_pending,
612 					 mask, info);
613 		/*
614 		 * itimer signal ?
615 		 *
616 		 * itimers are process shared and we restart periodic
617 		 * itimers in the signal delivery path to prevent DoS
618 		 * attacks in the high resolution timer case. This is
619 		 * compliant with the old way of self-restarting
620 		 * itimers, as the SIGALRM is a legacy signal and only
621 		 * queued once. Changing the restart behaviour to
622 		 * restart the timer in the signal dequeue path is
623 		 * reducing the timer noise on heavy loaded !highres
624 		 * systems too.
625 		 */
626 		if (unlikely(signr == SIGALRM)) {
627 			struct hrtimer *tmr = &tsk->signal->real_timer;
628 
629 			if (!hrtimer_is_queued(tmr) &&
630 			    tsk->signal->it_real_incr.tv64 != 0) {
631 				hrtimer_forward(tmr, tmr->base->get_time(),
632 						tsk->signal->it_real_incr);
633 				hrtimer_restart(tmr);
634 			}
635 		}
636 	}
637 
638 	recalc_sigpending();
639 	if (!signr)
640 		return 0;
641 
642 	if (unlikely(sig_kernel_stop(signr))) {
643 		/*
644 		 * Set a marker that we have dequeued a stop signal.  Our
645 		 * caller might release the siglock and then the pending
646 		 * stop signal it is about to process is no longer in the
647 		 * pending bitmasks, but must still be cleared by a SIGCONT
648 		 * (and overruled by a SIGKILL).  So those cases clear this
649 		 * shared flag after we've set it.  Note that this flag may
650 		 * remain set after the signal we return is ignored or
651 		 * handled.  That doesn't matter because its only purpose
652 		 * is to alert stop-signal processing code when another
653 		 * processor has come along and cleared the flag.
654 		 */
655 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 	}
657 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
658 		/*
659 		 * Release the siglock to ensure proper locking order
660 		 * of timer locks outside of siglocks.  Note, we leave
661 		 * irqs disabled here, since the posix-timers code is
662 		 * about to disable them again anyway.
663 		 */
664 		spin_unlock(&tsk->sighand->siglock);
665 		do_schedule_next_timer(info);
666 		spin_lock(&tsk->sighand->siglock);
667 	}
668 	return signr;
669 }
670 
671 /*
672  * Tell a process that it has a new active signal..
673  *
674  * NOTE! we rely on the previous spin_lock to
675  * lock interrupts for us! We can only be called with
676  * "siglock" held, and the local interrupt must
677  * have been disabled when that got acquired!
678  *
679  * No need to set need_resched since signal event passing
680  * goes through ->blocked
681  */
682 void signal_wake_up(struct task_struct *t, int resume)
683 {
684 	unsigned int mask;
685 
686 	set_tsk_thread_flag(t, TIF_SIGPENDING);
687 
688 	/*
689 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
690 	 * case. We don't check t->state here because there is a race with it
691 	 * executing another processor and just now entering stopped state.
692 	 * By using wake_up_state, we ensure the process will wake up and
693 	 * handle its death signal.
694 	 */
695 	mask = TASK_INTERRUPTIBLE;
696 	if (resume)
697 		mask |= TASK_WAKEKILL;
698 	if (!wake_up_state(t, mask))
699 		kick_process(t);
700 }
701 
702 /*
703  * Remove signals in mask from the pending set and queue.
704  * Returns 1 if any signals were found.
705  *
706  * All callers must be holding the siglock.
707  *
708  * This version takes a sigset mask and looks at all signals,
709  * not just those in the first mask word.
710  */
711 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
712 {
713 	struct sigqueue *q, *n;
714 	sigset_t m;
715 
716 	sigandsets(&m, mask, &s->signal);
717 	if (sigisemptyset(&m))
718 		return 0;
719 
720 	sigandnsets(&s->signal, &s->signal, mask);
721 	list_for_each_entry_safe(q, n, &s->list, list) {
722 		if (sigismember(mask, q->info.si_signo)) {
723 			list_del_init(&q->list);
724 			__sigqueue_free(q);
725 		}
726 	}
727 	return 1;
728 }
729 /*
730  * Remove signals in mask from the pending set and queue.
731  * Returns 1 if any signals were found.
732  *
733  * All callers must be holding the siglock.
734  */
735 static int rm_from_queue(unsigned long mask, struct sigpending *s)
736 {
737 	struct sigqueue *q, *n;
738 
739 	if (!sigtestsetmask(&s->signal, mask))
740 		return 0;
741 
742 	sigdelsetmask(&s->signal, mask);
743 	list_for_each_entry_safe(q, n, &s->list, list) {
744 		if (q->info.si_signo < SIGRTMIN &&
745 		    (mask & sigmask(q->info.si_signo))) {
746 			list_del_init(&q->list);
747 			__sigqueue_free(q);
748 		}
749 	}
750 	return 1;
751 }
752 
753 static inline int is_si_special(const struct siginfo *info)
754 {
755 	return info <= SEND_SIG_FORCED;
756 }
757 
758 static inline bool si_fromuser(const struct siginfo *info)
759 {
760 	return info == SEND_SIG_NOINFO ||
761 		(!is_si_special(info) && SI_FROMUSER(info));
762 }
763 
764 /*
765  * called with RCU read lock from check_kill_permission()
766  */
767 static int kill_ok_by_cred(struct task_struct *t)
768 {
769 	const struct cred *cred = current_cred();
770 	const struct cred *tcred = __task_cred(t);
771 
772 	if (uid_eq(cred->euid, tcred->suid) ||
773 	    uid_eq(cred->euid, tcred->uid)  ||
774 	    uid_eq(cred->uid,  tcred->suid) ||
775 	    uid_eq(cred->uid,  tcred->uid))
776 		return 1;
777 
778 	if (ns_capable(tcred->user_ns, CAP_KILL))
779 		return 1;
780 
781 	return 0;
782 }
783 
784 /*
785  * Bad permissions for sending the signal
786  * - the caller must hold the RCU read lock
787  */
788 static int check_kill_permission(int sig, struct siginfo *info,
789 				 struct task_struct *t)
790 {
791 	struct pid *sid;
792 	int error;
793 
794 	if (!valid_signal(sig))
795 		return -EINVAL;
796 
797 	if (!si_fromuser(info))
798 		return 0;
799 
800 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
801 	if (error)
802 		return error;
803 
804 	if (!same_thread_group(current, t) &&
805 	    !kill_ok_by_cred(t)) {
806 		switch (sig) {
807 		case SIGCONT:
808 			sid = task_session(t);
809 			/*
810 			 * We don't return the error if sid == NULL. The
811 			 * task was unhashed, the caller must notice this.
812 			 */
813 			if (!sid || sid == task_session(current))
814 				break;
815 		default:
816 			return -EPERM;
817 		}
818 	}
819 
820 	return security_task_kill(t, info, sig, 0);
821 }
822 
823 /**
824  * ptrace_trap_notify - schedule trap to notify ptracer
825  * @t: tracee wanting to notify tracer
826  *
827  * This function schedules sticky ptrace trap which is cleared on the next
828  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
829  * ptracer.
830  *
831  * If @t is running, STOP trap will be taken.  If trapped for STOP and
832  * ptracer is listening for events, tracee is woken up so that it can
833  * re-trap for the new event.  If trapped otherwise, STOP trap will be
834  * eventually taken without returning to userland after the existing traps
835  * are finished by PTRACE_CONT.
836  *
837  * CONTEXT:
838  * Must be called with @task->sighand->siglock held.
839  */
840 static void ptrace_trap_notify(struct task_struct *t)
841 {
842 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
843 	assert_spin_locked(&t->sighand->siglock);
844 
845 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
846 	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
847 }
848 
849 /*
850  * Handle magic process-wide effects of stop/continue signals. Unlike
851  * the signal actions, these happen immediately at signal-generation
852  * time regardless of blocking, ignoring, or handling.  This does the
853  * actual continuing for SIGCONT, but not the actual stopping for stop
854  * signals. The process stop is done as a signal action for SIG_DFL.
855  *
856  * Returns true if the signal should be actually delivered, otherwise
857  * it should be dropped.
858  */
859 static int prepare_signal(int sig, struct task_struct *p, bool force)
860 {
861 	struct signal_struct *signal = p->signal;
862 	struct task_struct *t;
863 
864 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
865 		/*
866 		 * The process is in the middle of dying, nothing to do.
867 		 */
868 	} else if (sig_kernel_stop(sig)) {
869 		/*
870 		 * This is a stop signal.  Remove SIGCONT from all queues.
871 		 */
872 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
873 		t = p;
874 		do {
875 			rm_from_queue(sigmask(SIGCONT), &t->pending);
876 		} while_each_thread(p, t);
877 	} else if (sig == SIGCONT) {
878 		unsigned int why;
879 		/*
880 		 * Remove all stop signals from all queues, wake all threads.
881 		 */
882 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
883 		t = p;
884 		do {
885 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
886 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
887 			if (likely(!(t->ptrace & PT_SEIZED)))
888 				wake_up_state(t, __TASK_STOPPED);
889 			else
890 				ptrace_trap_notify(t);
891 		} while_each_thread(p, t);
892 
893 		/*
894 		 * Notify the parent with CLD_CONTINUED if we were stopped.
895 		 *
896 		 * If we were in the middle of a group stop, we pretend it
897 		 * was already finished, and then continued. Since SIGCHLD
898 		 * doesn't queue we report only CLD_STOPPED, as if the next
899 		 * CLD_CONTINUED was dropped.
900 		 */
901 		why = 0;
902 		if (signal->flags & SIGNAL_STOP_STOPPED)
903 			why |= SIGNAL_CLD_CONTINUED;
904 		else if (signal->group_stop_count)
905 			why |= SIGNAL_CLD_STOPPED;
906 
907 		if (why) {
908 			/*
909 			 * The first thread which returns from do_signal_stop()
910 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
911 			 * notify its parent. See get_signal_to_deliver().
912 			 */
913 			signal->flags = why | SIGNAL_STOP_CONTINUED;
914 			signal->group_stop_count = 0;
915 			signal->group_exit_code = 0;
916 		}
917 	}
918 
919 	return !sig_ignored(p, sig, force);
920 }
921 
922 /*
923  * Test if P wants to take SIG.  After we've checked all threads with this,
924  * it's equivalent to finding no threads not blocking SIG.  Any threads not
925  * blocking SIG were ruled out because they are not running and already
926  * have pending signals.  Such threads will dequeue from the shared queue
927  * as soon as they're available, so putting the signal on the shared queue
928  * will be equivalent to sending it to one such thread.
929  */
930 static inline int wants_signal(int sig, struct task_struct *p)
931 {
932 	if (sigismember(&p->blocked, sig))
933 		return 0;
934 	if (p->flags & PF_EXITING)
935 		return 0;
936 	if (sig == SIGKILL)
937 		return 1;
938 	if (task_is_stopped_or_traced(p))
939 		return 0;
940 	return task_curr(p) || !signal_pending(p);
941 }
942 
943 static void complete_signal(int sig, struct task_struct *p, int group)
944 {
945 	struct signal_struct *signal = p->signal;
946 	struct task_struct *t;
947 
948 	/*
949 	 * Now find a thread we can wake up to take the signal off the queue.
950 	 *
951 	 * If the main thread wants the signal, it gets first crack.
952 	 * Probably the least surprising to the average bear.
953 	 */
954 	if (wants_signal(sig, p))
955 		t = p;
956 	else if (!group || thread_group_empty(p))
957 		/*
958 		 * There is just one thread and it does not need to be woken.
959 		 * It will dequeue unblocked signals before it runs again.
960 		 */
961 		return;
962 	else {
963 		/*
964 		 * Otherwise try to find a suitable thread.
965 		 */
966 		t = signal->curr_target;
967 		while (!wants_signal(sig, t)) {
968 			t = next_thread(t);
969 			if (t == signal->curr_target)
970 				/*
971 				 * No thread needs to be woken.
972 				 * Any eligible threads will see
973 				 * the signal in the queue soon.
974 				 */
975 				return;
976 		}
977 		signal->curr_target = t;
978 	}
979 
980 	/*
981 	 * Found a killable thread.  If the signal will be fatal,
982 	 * then start taking the whole group down immediately.
983 	 */
984 	if (sig_fatal(p, sig) &&
985 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
986 	    !sigismember(&t->real_blocked, sig) &&
987 	    (sig == SIGKILL || !t->ptrace)) {
988 		/*
989 		 * This signal will be fatal to the whole group.
990 		 */
991 		if (!sig_kernel_coredump(sig)) {
992 			/*
993 			 * Start a group exit and wake everybody up.
994 			 * This way we don't have other threads
995 			 * running and doing things after a slower
996 			 * thread has the fatal signal pending.
997 			 */
998 			signal->flags = SIGNAL_GROUP_EXIT;
999 			signal->group_exit_code = sig;
1000 			signal->group_stop_count = 0;
1001 			t = p;
1002 			do {
1003 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1004 				sigaddset(&t->pending.signal, SIGKILL);
1005 				signal_wake_up(t, 1);
1006 			} while_each_thread(p, t);
1007 			return;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * The signal is already in the shared-pending queue.
1013 	 * Tell the chosen thread to wake up and dequeue it.
1014 	 */
1015 	signal_wake_up(t, sig == SIGKILL);
1016 	return;
1017 }
1018 
1019 static inline int legacy_queue(struct sigpending *signals, int sig)
1020 {
1021 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1022 }
1023 
1024 #ifdef CONFIG_USER_NS
1025 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1026 {
1027 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1028 		return;
1029 
1030 	if (SI_FROMKERNEL(info))
1031 		return;
1032 
1033 	rcu_read_lock();
1034 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1035 					make_kuid(current_user_ns(), info->si_uid));
1036 	rcu_read_unlock();
1037 }
1038 #else
1039 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1040 {
1041 	return;
1042 }
1043 #endif
1044 
1045 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1046 			int group, int from_ancestor_ns)
1047 {
1048 	struct sigpending *pending;
1049 	struct sigqueue *q;
1050 	int override_rlimit;
1051 	int ret = 0, result;
1052 
1053 	assert_spin_locked(&t->sighand->siglock);
1054 
1055 	result = TRACE_SIGNAL_IGNORED;
1056 	if (!prepare_signal(sig, t,
1057 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1058 		goto ret;
1059 
1060 	pending = group ? &t->signal->shared_pending : &t->pending;
1061 	/*
1062 	 * Short-circuit ignored signals and support queuing
1063 	 * exactly one non-rt signal, so that we can get more
1064 	 * detailed information about the cause of the signal.
1065 	 */
1066 	result = TRACE_SIGNAL_ALREADY_PENDING;
1067 	if (legacy_queue(pending, sig))
1068 		goto ret;
1069 
1070 	result = TRACE_SIGNAL_DELIVERED;
1071 	/*
1072 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1073 	 * or SIGKILL.
1074 	 */
1075 	if (info == SEND_SIG_FORCED)
1076 		goto out_set;
1077 
1078 	/*
1079 	 * Real-time signals must be queued if sent by sigqueue, or
1080 	 * some other real-time mechanism.  It is implementation
1081 	 * defined whether kill() does so.  We attempt to do so, on
1082 	 * the principle of least surprise, but since kill is not
1083 	 * allowed to fail with EAGAIN when low on memory we just
1084 	 * make sure at least one signal gets delivered and don't
1085 	 * pass on the info struct.
1086 	 */
1087 	if (sig < SIGRTMIN)
1088 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1089 	else
1090 		override_rlimit = 0;
1091 
1092 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1093 		override_rlimit);
1094 	if (q) {
1095 		list_add_tail(&q->list, &pending->list);
1096 		switch ((unsigned long) info) {
1097 		case (unsigned long) SEND_SIG_NOINFO:
1098 			q->info.si_signo = sig;
1099 			q->info.si_errno = 0;
1100 			q->info.si_code = SI_USER;
1101 			q->info.si_pid = task_tgid_nr_ns(current,
1102 							task_active_pid_ns(t));
1103 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1104 			break;
1105 		case (unsigned long) SEND_SIG_PRIV:
1106 			q->info.si_signo = sig;
1107 			q->info.si_errno = 0;
1108 			q->info.si_code = SI_KERNEL;
1109 			q->info.si_pid = 0;
1110 			q->info.si_uid = 0;
1111 			break;
1112 		default:
1113 			copy_siginfo(&q->info, info);
1114 			if (from_ancestor_ns)
1115 				q->info.si_pid = 0;
1116 			break;
1117 		}
1118 
1119 		userns_fixup_signal_uid(&q->info, t);
1120 
1121 	} else if (!is_si_special(info)) {
1122 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1123 			/*
1124 			 * Queue overflow, abort.  We may abort if the
1125 			 * signal was rt and sent by user using something
1126 			 * other than kill().
1127 			 */
1128 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1129 			ret = -EAGAIN;
1130 			goto ret;
1131 		} else {
1132 			/*
1133 			 * This is a silent loss of information.  We still
1134 			 * send the signal, but the *info bits are lost.
1135 			 */
1136 			result = TRACE_SIGNAL_LOSE_INFO;
1137 		}
1138 	}
1139 
1140 out_set:
1141 	signalfd_notify(t, sig);
1142 	sigaddset(&pending->signal, sig);
1143 	complete_signal(sig, t, group);
1144 ret:
1145 	trace_signal_generate(sig, info, t, group, result);
1146 	return ret;
1147 }
1148 
1149 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1150 			int group)
1151 {
1152 	int from_ancestor_ns = 0;
1153 
1154 #ifdef CONFIG_PID_NS
1155 	from_ancestor_ns = si_fromuser(info) &&
1156 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1157 #endif
1158 
1159 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1160 }
1161 
1162 static void print_fatal_signal(struct pt_regs *regs, int signr)
1163 {
1164 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1165 		current->comm, task_pid_nr(current), signr);
1166 
1167 #if defined(__i386__) && !defined(__arch_um__)
1168 	printk("code at %08lx: ", regs->ip);
1169 	{
1170 		int i;
1171 		for (i = 0; i < 16; i++) {
1172 			unsigned char insn;
1173 
1174 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1175 				break;
1176 			printk("%02x ", insn);
1177 		}
1178 	}
1179 #endif
1180 	printk("\n");
1181 	preempt_disable();
1182 	show_regs(regs);
1183 	preempt_enable();
1184 }
1185 
1186 static int __init setup_print_fatal_signals(char *str)
1187 {
1188 	get_option (&str, &print_fatal_signals);
1189 
1190 	return 1;
1191 }
1192 
1193 __setup("print-fatal-signals=", setup_print_fatal_signals);
1194 
1195 int
1196 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1197 {
1198 	return send_signal(sig, info, p, 1);
1199 }
1200 
1201 static int
1202 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1203 {
1204 	return send_signal(sig, info, t, 0);
1205 }
1206 
1207 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1208 			bool group)
1209 {
1210 	unsigned long flags;
1211 	int ret = -ESRCH;
1212 
1213 	if (lock_task_sighand(p, &flags)) {
1214 		ret = send_signal(sig, info, p, group);
1215 		unlock_task_sighand(p, &flags);
1216 	}
1217 
1218 	return ret;
1219 }
1220 
1221 /*
1222  * Force a signal that the process can't ignore: if necessary
1223  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1224  *
1225  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1226  * since we do not want to have a signal handler that was blocked
1227  * be invoked when user space had explicitly blocked it.
1228  *
1229  * We don't want to have recursive SIGSEGV's etc, for example,
1230  * that is why we also clear SIGNAL_UNKILLABLE.
1231  */
1232 int
1233 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1234 {
1235 	unsigned long int flags;
1236 	int ret, blocked, ignored;
1237 	struct k_sigaction *action;
1238 
1239 	spin_lock_irqsave(&t->sighand->siglock, flags);
1240 	action = &t->sighand->action[sig-1];
1241 	ignored = action->sa.sa_handler == SIG_IGN;
1242 	blocked = sigismember(&t->blocked, sig);
1243 	if (blocked || ignored) {
1244 		action->sa.sa_handler = SIG_DFL;
1245 		if (blocked) {
1246 			sigdelset(&t->blocked, sig);
1247 			recalc_sigpending_and_wake(t);
1248 		}
1249 	}
1250 	if (action->sa.sa_handler == SIG_DFL)
1251 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1252 	ret = specific_send_sig_info(sig, info, t);
1253 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1254 
1255 	return ret;
1256 }
1257 
1258 /*
1259  * Nuke all other threads in the group.
1260  */
1261 int zap_other_threads(struct task_struct *p)
1262 {
1263 	struct task_struct *t = p;
1264 	int count = 0;
1265 
1266 	p->signal->group_stop_count = 0;
1267 
1268 	while_each_thread(p, t) {
1269 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1270 		count++;
1271 
1272 		/* Don't bother with already dead threads */
1273 		if (t->exit_state)
1274 			continue;
1275 		sigaddset(&t->pending.signal, SIGKILL);
1276 		signal_wake_up(t, 1);
1277 	}
1278 
1279 	return count;
1280 }
1281 
1282 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1283 					   unsigned long *flags)
1284 {
1285 	struct sighand_struct *sighand;
1286 
1287 	for (;;) {
1288 		local_irq_save(*flags);
1289 		rcu_read_lock();
1290 		sighand = rcu_dereference(tsk->sighand);
1291 		if (unlikely(sighand == NULL)) {
1292 			rcu_read_unlock();
1293 			local_irq_restore(*flags);
1294 			break;
1295 		}
1296 
1297 		spin_lock(&sighand->siglock);
1298 		if (likely(sighand == tsk->sighand)) {
1299 			rcu_read_unlock();
1300 			break;
1301 		}
1302 		spin_unlock(&sighand->siglock);
1303 		rcu_read_unlock();
1304 		local_irq_restore(*flags);
1305 	}
1306 
1307 	return sighand;
1308 }
1309 
1310 /*
1311  * send signal info to all the members of a group
1312  */
1313 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1314 {
1315 	int ret;
1316 
1317 	rcu_read_lock();
1318 	ret = check_kill_permission(sig, info, p);
1319 	rcu_read_unlock();
1320 
1321 	if (!ret && sig)
1322 		ret = do_send_sig_info(sig, info, p, true);
1323 
1324 	return ret;
1325 }
1326 
1327 /*
1328  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1329  * control characters do (^C, ^Z etc)
1330  * - the caller must hold at least a readlock on tasklist_lock
1331  */
1332 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1333 {
1334 	struct task_struct *p = NULL;
1335 	int retval, success;
1336 
1337 	success = 0;
1338 	retval = -ESRCH;
1339 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1340 		int err = group_send_sig_info(sig, info, p);
1341 		success |= !err;
1342 		retval = err;
1343 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1344 	return success ? 0 : retval;
1345 }
1346 
1347 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1348 {
1349 	int error = -ESRCH;
1350 	struct task_struct *p;
1351 
1352 	rcu_read_lock();
1353 retry:
1354 	p = pid_task(pid, PIDTYPE_PID);
1355 	if (p) {
1356 		error = group_send_sig_info(sig, info, p);
1357 		if (unlikely(error == -ESRCH))
1358 			/*
1359 			 * The task was unhashed in between, try again.
1360 			 * If it is dead, pid_task() will return NULL,
1361 			 * if we race with de_thread() it will find the
1362 			 * new leader.
1363 			 */
1364 			goto retry;
1365 	}
1366 	rcu_read_unlock();
1367 
1368 	return error;
1369 }
1370 
1371 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1372 {
1373 	int error;
1374 	rcu_read_lock();
1375 	error = kill_pid_info(sig, info, find_vpid(pid));
1376 	rcu_read_unlock();
1377 	return error;
1378 }
1379 
1380 static int kill_as_cred_perm(const struct cred *cred,
1381 			     struct task_struct *target)
1382 {
1383 	const struct cred *pcred = __task_cred(target);
1384 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1385 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1386 		return 0;
1387 	return 1;
1388 }
1389 
1390 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1391 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1392 			 const struct cred *cred, u32 secid)
1393 {
1394 	int ret = -EINVAL;
1395 	struct task_struct *p;
1396 	unsigned long flags;
1397 
1398 	if (!valid_signal(sig))
1399 		return ret;
1400 
1401 	rcu_read_lock();
1402 	p = pid_task(pid, PIDTYPE_PID);
1403 	if (!p) {
1404 		ret = -ESRCH;
1405 		goto out_unlock;
1406 	}
1407 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1408 		ret = -EPERM;
1409 		goto out_unlock;
1410 	}
1411 	ret = security_task_kill(p, info, sig, secid);
1412 	if (ret)
1413 		goto out_unlock;
1414 
1415 	if (sig) {
1416 		if (lock_task_sighand(p, &flags)) {
1417 			ret = __send_signal(sig, info, p, 1, 0);
1418 			unlock_task_sighand(p, &flags);
1419 		} else
1420 			ret = -ESRCH;
1421 	}
1422 out_unlock:
1423 	rcu_read_unlock();
1424 	return ret;
1425 }
1426 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1427 
1428 /*
1429  * kill_something_info() interprets pid in interesting ways just like kill(2).
1430  *
1431  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1432  * is probably wrong.  Should make it like BSD or SYSV.
1433  */
1434 
1435 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1436 {
1437 	int ret;
1438 
1439 	if (pid > 0) {
1440 		rcu_read_lock();
1441 		ret = kill_pid_info(sig, info, find_vpid(pid));
1442 		rcu_read_unlock();
1443 		return ret;
1444 	}
1445 
1446 	read_lock(&tasklist_lock);
1447 	if (pid != -1) {
1448 		ret = __kill_pgrp_info(sig, info,
1449 				pid ? find_vpid(-pid) : task_pgrp(current));
1450 	} else {
1451 		int retval = 0, count = 0;
1452 		struct task_struct * p;
1453 
1454 		for_each_process(p) {
1455 			if (task_pid_vnr(p) > 1 &&
1456 					!same_thread_group(p, current)) {
1457 				int err = group_send_sig_info(sig, info, p);
1458 				++count;
1459 				if (err != -EPERM)
1460 					retval = err;
1461 			}
1462 		}
1463 		ret = count ? retval : -ESRCH;
1464 	}
1465 	read_unlock(&tasklist_lock);
1466 
1467 	return ret;
1468 }
1469 
1470 /*
1471  * These are for backward compatibility with the rest of the kernel source.
1472  */
1473 
1474 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1475 {
1476 	/*
1477 	 * Make sure legacy kernel users don't send in bad values
1478 	 * (normal paths check this in check_kill_permission).
1479 	 */
1480 	if (!valid_signal(sig))
1481 		return -EINVAL;
1482 
1483 	return do_send_sig_info(sig, info, p, false);
1484 }
1485 
1486 #define __si_special(priv) \
1487 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1488 
1489 int
1490 send_sig(int sig, struct task_struct *p, int priv)
1491 {
1492 	return send_sig_info(sig, __si_special(priv), p);
1493 }
1494 
1495 void
1496 force_sig(int sig, struct task_struct *p)
1497 {
1498 	force_sig_info(sig, SEND_SIG_PRIV, p);
1499 }
1500 
1501 /*
1502  * When things go south during signal handling, we
1503  * will force a SIGSEGV. And if the signal that caused
1504  * the problem was already a SIGSEGV, we'll want to
1505  * make sure we don't even try to deliver the signal..
1506  */
1507 int
1508 force_sigsegv(int sig, struct task_struct *p)
1509 {
1510 	if (sig == SIGSEGV) {
1511 		unsigned long flags;
1512 		spin_lock_irqsave(&p->sighand->siglock, flags);
1513 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1514 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1515 	}
1516 	force_sig(SIGSEGV, p);
1517 	return 0;
1518 }
1519 
1520 int kill_pgrp(struct pid *pid, int sig, int priv)
1521 {
1522 	int ret;
1523 
1524 	read_lock(&tasklist_lock);
1525 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1526 	read_unlock(&tasklist_lock);
1527 
1528 	return ret;
1529 }
1530 EXPORT_SYMBOL(kill_pgrp);
1531 
1532 int kill_pid(struct pid *pid, int sig, int priv)
1533 {
1534 	return kill_pid_info(sig, __si_special(priv), pid);
1535 }
1536 EXPORT_SYMBOL(kill_pid);
1537 
1538 /*
1539  * These functions support sending signals using preallocated sigqueue
1540  * structures.  This is needed "because realtime applications cannot
1541  * afford to lose notifications of asynchronous events, like timer
1542  * expirations or I/O completions".  In the case of POSIX Timers
1543  * we allocate the sigqueue structure from the timer_create.  If this
1544  * allocation fails we are able to report the failure to the application
1545  * with an EAGAIN error.
1546  */
1547 struct sigqueue *sigqueue_alloc(void)
1548 {
1549 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1550 
1551 	if (q)
1552 		q->flags |= SIGQUEUE_PREALLOC;
1553 
1554 	return q;
1555 }
1556 
1557 void sigqueue_free(struct sigqueue *q)
1558 {
1559 	unsigned long flags;
1560 	spinlock_t *lock = &current->sighand->siglock;
1561 
1562 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1563 	/*
1564 	 * We must hold ->siglock while testing q->list
1565 	 * to serialize with collect_signal() or with
1566 	 * __exit_signal()->flush_sigqueue().
1567 	 */
1568 	spin_lock_irqsave(lock, flags);
1569 	q->flags &= ~SIGQUEUE_PREALLOC;
1570 	/*
1571 	 * If it is queued it will be freed when dequeued,
1572 	 * like the "regular" sigqueue.
1573 	 */
1574 	if (!list_empty(&q->list))
1575 		q = NULL;
1576 	spin_unlock_irqrestore(lock, flags);
1577 
1578 	if (q)
1579 		__sigqueue_free(q);
1580 }
1581 
1582 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1583 {
1584 	int sig = q->info.si_signo;
1585 	struct sigpending *pending;
1586 	unsigned long flags;
1587 	int ret, result;
1588 
1589 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1590 
1591 	ret = -1;
1592 	if (!likely(lock_task_sighand(t, &flags)))
1593 		goto ret;
1594 
1595 	ret = 1; /* the signal is ignored */
1596 	result = TRACE_SIGNAL_IGNORED;
1597 	if (!prepare_signal(sig, t, false))
1598 		goto out;
1599 
1600 	ret = 0;
1601 	if (unlikely(!list_empty(&q->list))) {
1602 		/*
1603 		 * If an SI_TIMER entry is already queue just increment
1604 		 * the overrun count.
1605 		 */
1606 		BUG_ON(q->info.si_code != SI_TIMER);
1607 		q->info.si_overrun++;
1608 		result = TRACE_SIGNAL_ALREADY_PENDING;
1609 		goto out;
1610 	}
1611 	q->info.si_overrun = 0;
1612 
1613 	signalfd_notify(t, sig);
1614 	pending = group ? &t->signal->shared_pending : &t->pending;
1615 	list_add_tail(&q->list, &pending->list);
1616 	sigaddset(&pending->signal, sig);
1617 	complete_signal(sig, t, group);
1618 	result = TRACE_SIGNAL_DELIVERED;
1619 out:
1620 	trace_signal_generate(sig, &q->info, t, group, result);
1621 	unlock_task_sighand(t, &flags);
1622 ret:
1623 	return ret;
1624 }
1625 
1626 /*
1627  * Let a parent know about the death of a child.
1628  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1629  *
1630  * Returns true if our parent ignored us and so we've switched to
1631  * self-reaping.
1632  */
1633 bool do_notify_parent(struct task_struct *tsk, int sig)
1634 {
1635 	struct siginfo info;
1636 	unsigned long flags;
1637 	struct sighand_struct *psig;
1638 	bool autoreap = false;
1639 
1640 	BUG_ON(sig == -1);
1641 
1642  	/* do_notify_parent_cldstop should have been called instead.  */
1643  	BUG_ON(task_is_stopped_or_traced(tsk));
1644 
1645 	BUG_ON(!tsk->ptrace &&
1646 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1647 
1648 	if (sig != SIGCHLD) {
1649 		/*
1650 		 * This is only possible if parent == real_parent.
1651 		 * Check if it has changed security domain.
1652 		 */
1653 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1654 			sig = SIGCHLD;
1655 	}
1656 
1657 	info.si_signo = sig;
1658 	info.si_errno = 0;
1659 	/*
1660 	 * We are under tasklist_lock here so our parent is tied to
1661 	 * us and cannot change.
1662 	 *
1663 	 * task_active_pid_ns will always return the same pid namespace
1664 	 * until a task passes through release_task.
1665 	 *
1666 	 * write_lock() currently calls preempt_disable() which is the
1667 	 * same as rcu_read_lock(), but according to Oleg, this is not
1668 	 * correct to rely on this
1669 	 */
1670 	rcu_read_lock();
1671 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1672 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1673 				       task_uid(tsk));
1674 	rcu_read_unlock();
1675 
1676 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1677 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1678 
1679 	info.si_status = tsk->exit_code & 0x7f;
1680 	if (tsk->exit_code & 0x80)
1681 		info.si_code = CLD_DUMPED;
1682 	else if (tsk->exit_code & 0x7f)
1683 		info.si_code = CLD_KILLED;
1684 	else {
1685 		info.si_code = CLD_EXITED;
1686 		info.si_status = tsk->exit_code >> 8;
1687 	}
1688 
1689 	psig = tsk->parent->sighand;
1690 	spin_lock_irqsave(&psig->siglock, flags);
1691 	if (!tsk->ptrace && sig == SIGCHLD &&
1692 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1693 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1694 		/*
1695 		 * We are exiting and our parent doesn't care.  POSIX.1
1696 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1697 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1698 		 * automatically and not left for our parent's wait4 call.
1699 		 * Rather than having the parent do it as a magic kind of
1700 		 * signal handler, we just set this to tell do_exit that we
1701 		 * can be cleaned up without becoming a zombie.  Note that
1702 		 * we still call __wake_up_parent in this case, because a
1703 		 * blocked sys_wait4 might now return -ECHILD.
1704 		 *
1705 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1706 		 * is implementation-defined: we do (if you don't want
1707 		 * it, just use SIG_IGN instead).
1708 		 */
1709 		autoreap = true;
1710 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1711 			sig = 0;
1712 	}
1713 	if (valid_signal(sig) && sig)
1714 		__group_send_sig_info(sig, &info, tsk->parent);
1715 	__wake_up_parent(tsk, tsk->parent);
1716 	spin_unlock_irqrestore(&psig->siglock, flags);
1717 
1718 	return autoreap;
1719 }
1720 
1721 /**
1722  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1723  * @tsk: task reporting the state change
1724  * @for_ptracer: the notification is for ptracer
1725  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1726  *
1727  * Notify @tsk's parent that the stopped/continued state has changed.  If
1728  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1729  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1730  *
1731  * CONTEXT:
1732  * Must be called with tasklist_lock at least read locked.
1733  */
1734 static void do_notify_parent_cldstop(struct task_struct *tsk,
1735 				     bool for_ptracer, int why)
1736 {
1737 	struct siginfo info;
1738 	unsigned long flags;
1739 	struct task_struct *parent;
1740 	struct sighand_struct *sighand;
1741 
1742 	if (for_ptracer) {
1743 		parent = tsk->parent;
1744 	} else {
1745 		tsk = tsk->group_leader;
1746 		parent = tsk->real_parent;
1747 	}
1748 
1749 	info.si_signo = SIGCHLD;
1750 	info.si_errno = 0;
1751 	/*
1752 	 * see comment in do_notify_parent() about the following 4 lines
1753 	 */
1754 	rcu_read_lock();
1755 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1756 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1757 	rcu_read_unlock();
1758 
1759 	info.si_utime = cputime_to_clock_t(tsk->utime);
1760 	info.si_stime = cputime_to_clock_t(tsk->stime);
1761 
1762  	info.si_code = why;
1763  	switch (why) {
1764  	case CLD_CONTINUED:
1765  		info.si_status = SIGCONT;
1766  		break;
1767  	case CLD_STOPPED:
1768  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1769  		break;
1770  	case CLD_TRAPPED:
1771  		info.si_status = tsk->exit_code & 0x7f;
1772  		break;
1773  	default:
1774  		BUG();
1775  	}
1776 
1777 	sighand = parent->sighand;
1778 	spin_lock_irqsave(&sighand->siglock, flags);
1779 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1780 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1781 		__group_send_sig_info(SIGCHLD, &info, parent);
1782 	/*
1783 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1784 	 */
1785 	__wake_up_parent(tsk, parent);
1786 	spin_unlock_irqrestore(&sighand->siglock, flags);
1787 }
1788 
1789 static inline int may_ptrace_stop(void)
1790 {
1791 	if (!likely(current->ptrace))
1792 		return 0;
1793 	/*
1794 	 * Are we in the middle of do_coredump?
1795 	 * If so and our tracer is also part of the coredump stopping
1796 	 * is a deadlock situation, and pointless because our tracer
1797 	 * is dead so don't allow us to stop.
1798 	 * If SIGKILL was already sent before the caller unlocked
1799 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1800 	 * is safe to enter schedule().
1801 	 */
1802 	if (unlikely(current->mm->core_state) &&
1803 	    unlikely(current->mm == current->parent->mm))
1804 		return 0;
1805 
1806 	return 1;
1807 }
1808 
1809 /*
1810  * Return non-zero if there is a SIGKILL that should be waking us up.
1811  * Called with the siglock held.
1812  */
1813 static int sigkill_pending(struct task_struct *tsk)
1814 {
1815 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1816 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1817 }
1818 
1819 /*
1820  * This must be called with current->sighand->siglock held.
1821  *
1822  * This should be the path for all ptrace stops.
1823  * We always set current->last_siginfo while stopped here.
1824  * That makes it a way to test a stopped process for
1825  * being ptrace-stopped vs being job-control-stopped.
1826  *
1827  * If we actually decide not to stop at all because the tracer
1828  * is gone, we keep current->exit_code unless clear_code.
1829  */
1830 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1831 	__releases(&current->sighand->siglock)
1832 	__acquires(&current->sighand->siglock)
1833 {
1834 	bool gstop_done = false;
1835 
1836 	if (arch_ptrace_stop_needed(exit_code, info)) {
1837 		/*
1838 		 * The arch code has something special to do before a
1839 		 * ptrace stop.  This is allowed to block, e.g. for faults
1840 		 * on user stack pages.  We can't keep the siglock while
1841 		 * calling arch_ptrace_stop, so we must release it now.
1842 		 * To preserve proper semantics, we must do this before
1843 		 * any signal bookkeeping like checking group_stop_count.
1844 		 * Meanwhile, a SIGKILL could come in before we retake the
1845 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1846 		 * So after regaining the lock, we must check for SIGKILL.
1847 		 */
1848 		spin_unlock_irq(&current->sighand->siglock);
1849 		arch_ptrace_stop(exit_code, info);
1850 		spin_lock_irq(&current->sighand->siglock);
1851 		if (sigkill_pending(current))
1852 			return;
1853 	}
1854 
1855 	/*
1856 	 * We're committing to trapping.  TRACED should be visible before
1857 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1858 	 * Also, transition to TRACED and updates to ->jobctl should be
1859 	 * atomic with respect to siglock and should be done after the arch
1860 	 * hook as siglock is released and regrabbed across it.
1861 	 */
1862 	set_current_state(TASK_TRACED);
1863 
1864 	current->last_siginfo = info;
1865 	current->exit_code = exit_code;
1866 
1867 	/*
1868 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1869 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1870 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1871 	 * could be clear now.  We act as if SIGCONT is received after
1872 	 * TASK_TRACED is entered - ignore it.
1873 	 */
1874 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1875 		gstop_done = task_participate_group_stop(current);
1876 
1877 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1878 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1879 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1880 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1881 
1882 	/* entering a trap, clear TRAPPING */
1883 	task_clear_jobctl_trapping(current);
1884 
1885 	spin_unlock_irq(&current->sighand->siglock);
1886 	read_lock(&tasklist_lock);
1887 	if (may_ptrace_stop()) {
1888 		/*
1889 		 * Notify parents of the stop.
1890 		 *
1891 		 * While ptraced, there are two parents - the ptracer and
1892 		 * the real_parent of the group_leader.  The ptracer should
1893 		 * know about every stop while the real parent is only
1894 		 * interested in the completion of group stop.  The states
1895 		 * for the two don't interact with each other.  Notify
1896 		 * separately unless they're gonna be duplicates.
1897 		 */
1898 		do_notify_parent_cldstop(current, true, why);
1899 		if (gstop_done && ptrace_reparented(current))
1900 			do_notify_parent_cldstop(current, false, why);
1901 
1902 		/*
1903 		 * Don't want to allow preemption here, because
1904 		 * sys_ptrace() needs this task to be inactive.
1905 		 *
1906 		 * XXX: implement read_unlock_no_resched().
1907 		 */
1908 		preempt_disable();
1909 		read_unlock(&tasklist_lock);
1910 		preempt_enable_no_resched();
1911 		schedule();
1912 	} else {
1913 		/*
1914 		 * By the time we got the lock, our tracer went away.
1915 		 * Don't drop the lock yet, another tracer may come.
1916 		 *
1917 		 * If @gstop_done, the ptracer went away between group stop
1918 		 * completion and here.  During detach, it would have set
1919 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1920 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1921 		 * the real parent of the group stop completion is enough.
1922 		 */
1923 		if (gstop_done)
1924 			do_notify_parent_cldstop(current, false, why);
1925 
1926 		__set_current_state(TASK_RUNNING);
1927 		if (clear_code)
1928 			current->exit_code = 0;
1929 		read_unlock(&tasklist_lock);
1930 	}
1931 
1932 	/*
1933 	 * While in TASK_TRACED, we were considered "frozen enough".
1934 	 * Now that we woke up, it's crucial if we're supposed to be
1935 	 * frozen that we freeze now before running anything substantial.
1936 	 */
1937 	try_to_freeze();
1938 
1939 	/*
1940 	 * We are back.  Now reacquire the siglock before touching
1941 	 * last_siginfo, so that we are sure to have synchronized with
1942 	 * any signal-sending on another CPU that wants to examine it.
1943 	 */
1944 	spin_lock_irq(&current->sighand->siglock);
1945 	current->last_siginfo = NULL;
1946 
1947 	/* LISTENING can be set only during STOP traps, clear it */
1948 	current->jobctl &= ~JOBCTL_LISTENING;
1949 
1950 	/*
1951 	 * Queued signals ignored us while we were stopped for tracing.
1952 	 * So check for any that we should take before resuming user mode.
1953 	 * This sets TIF_SIGPENDING, but never clears it.
1954 	 */
1955 	recalc_sigpending_tsk(current);
1956 }
1957 
1958 static void ptrace_do_notify(int signr, int exit_code, int why)
1959 {
1960 	siginfo_t info;
1961 
1962 	memset(&info, 0, sizeof info);
1963 	info.si_signo = signr;
1964 	info.si_code = exit_code;
1965 	info.si_pid = task_pid_vnr(current);
1966 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1967 
1968 	/* Let the debugger run.  */
1969 	ptrace_stop(exit_code, why, 1, &info);
1970 }
1971 
1972 void ptrace_notify(int exit_code)
1973 {
1974 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1975 	if (unlikely(current->task_works))
1976 		task_work_run();
1977 
1978 	spin_lock_irq(&current->sighand->siglock);
1979 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1980 	spin_unlock_irq(&current->sighand->siglock);
1981 }
1982 
1983 /**
1984  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1985  * @signr: signr causing group stop if initiating
1986  *
1987  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1988  * and participate in it.  If already set, participate in the existing
1989  * group stop.  If participated in a group stop (and thus slept), %true is
1990  * returned with siglock released.
1991  *
1992  * If ptraced, this function doesn't handle stop itself.  Instead,
1993  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1994  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1995  * places afterwards.
1996  *
1997  * CONTEXT:
1998  * Must be called with @current->sighand->siglock held, which is released
1999  * on %true return.
2000  *
2001  * RETURNS:
2002  * %false if group stop is already cancelled or ptrace trap is scheduled.
2003  * %true if participated in group stop.
2004  */
2005 static bool do_signal_stop(int signr)
2006 	__releases(&current->sighand->siglock)
2007 {
2008 	struct signal_struct *sig = current->signal;
2009 
2010 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2011 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2012 		struct task_struct *t;
2013 
2014 		/* signr will be recorded in task->jobctl for retries */
2015 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2016 
2017 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2018 		    unlikely(signal_group_exit(sig)))
2019 			return false;
2020 		/*
2021 		 * There is no group stop already in progress.  We must
2022 		 * initiate one now.
2023 		 *
2024 		 * While ptraced, a task may be resumed while group stop is
2025 		 * still in effect and then receive a stop signal and
2026 		 * initiate another group stop.  This deviates from the
2027 		 * usual behavior as two consecutive stop signals can't
2028 		 * cause two group stops when !ptraced.  That is why we
2029 		 * also check !task_is_stopped(t) below.
2030 		 *
2031 		 * The condition can be distinguished by testing whether
2032 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2033 		 * group_exit_code in such case.
2034 		 *
2035 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2036 		 * an intervening stop signal is required to cause two
2037 		 * continued events regardless of ptrace.
2038 		 */
2039 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2040 			sig->group_exit_code = signr;
2041 
2042 		sig->group_stop_count = 0;
2043 
2044 		if (task_set_jobctl_pending(current, signr | gstop))
2045 			sig->group_stop_count++;
2046 
2047 		for (t = next_thread(current); t != current;
2048 		     t = next_thread(t)) {
2049 			/*
2050 			 * Setting state to TASK_STOPPED for a group
2051 			 * stop is always done with the siglock held,
2052 			 * so this check has no races.
2053 			 */
2054 			if (!task_is_stopped(t) &&
2055 			    task_set_jobctl_pending(t, signr | gstop)) {
2056 				sig->group_stop_count++;
2057 				if (likely(!(t->ptrace & PT_SEIZED)))
2058 					signal_wake_up(t, 0);
2059 				else
2060 					ptrace_trap_notify(t);
2061 			}
2062 		}
2063 	}
2064 
2065 	if (likely(!current->ptrace)) {
2066 		int notify = 0;
2067 
2068 		/*
2069 		 * If there are no other threads in the group, or if there
2070 		 * is a group stop in progress and we are the last to stop,
2071 		 * report to the parent.
2072 		 */
2073 		if (task_participate_group_stop(current))
2074 			notify = CLD_STOPPED;
2075 
2076 		__set_current_state(TASK_STOPPED);
2077 		spin_unlock_irq(&current->sighand->siglock);
2078 
2079 		/*
2080 		 * Notify the parent of the group stop completion.  Because
2081 		 * we're not holding either the siglock or tasklist_lock
2082 		 * here, ptracer may attach inbetween; however, this is for
2083 		 * group stop and should always be delivered to the real
2084 		 * parent of the group leader.  The new ptracer will get
2085 		 * its notification when this task transitions into
2086 		 * TASK_TRACED.
2087 		 */
2088 		if (notify) {
2089 			read_lock(&tasklist_lock);
2090 			do_notify_parent_cldstop(current, false, notify);
2091 			read_unlock(&tasklist_lock);
2092 		}
2093 
2094 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2095 		schedule();
2096 		return true;
2097 	} else {
2098 		/*
2099 		 * While ptraced, group stop is handled by STOP trap.
2100 		 * Schedule it and let the caller deal with it.
2101 		 */
2102 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2103 		return false;
2104 	}
2105 }
2106 
2107 /**
2108  * do_jobctl_trap - take care of ptrace jobctl traps
2109  *
2110  * When PT_SEIZED, it's used for both group stop and explicit
2111  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2112  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2113  * the stop signal; otherwise, %SIGTRAP.
2114  *
2115  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2116  * number as exit_code and no siginfo.
2117  *
2118  * CONTEXT:
2119  * Must be called with @current->sighand->siglock held, which may be
2120  * released and re-acquired before returning with intervening sleep.
2121  */
2122 static void do_jobctl_trap(void)
2123 {
2124 	struct signal_struct *signal = current->signal;
2125 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2126 
2127 	if (current->ptrace & PT_SEIZED) {
2128 		if (!signal->group_stop_count &&
2129 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2130 			signr = SIGTRAP;
2131 		WARN_ON_ONCE(!signr);
2132 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2133 				 CLD_STOPPED);
2134 	} else {
2135 		WARN_ON_ONCE(!signr);
2136 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2137 		current->exit_code = 0;
2138 	}
2139 }
2140 
2141 static int ptrace_signal(int signr, siginfo_t *info,
2142 			 struct pt_regs *regs, void *cookie)
2143 {
2144 	ptrace_signal_deliver(regs, cookie);
2145 	/*
2146 	 * We do not check sig_kernel_stop(signr) but set this marker
2147 	 * unconditionally because we do not know whether debugger will
2148 	 * change signr. This flag has no meaning unless we are going
2149 	 * to stop after return from ptrace_stop(). In this case it will
2150 	 * be checked in do_signal_stop(), we should only stop if it was
2151 	 * not cleared by SIGCONT while we were sleeping. See also the
2152 	 * comment in dequeue_signal().
2153 	 */
2154 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2155 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2156 
2157 	/* We're back.  Did the debugger cancel the sig?  */
2158 	signr = current->exit_code;
2159 	if (signr == 0)
2160 		return signr;
2161 
2162 	current->exit_code = 0;
2163 
2164 	/*
2165 	 * Update the siginfo structure if the signal has
2166 	 * changed.  If the debugger wanted something
2167 	 * specific in the siginfo structure then it should
2168 	 * have updated *info via PTRACE_SETSIGINFO.
2169 	 */
2170 	if (signr != info->si_signo) {
2171 		info->si_signo = signr;
2172 		info->si_errno = 0;
2173 		info->si_code = SI_USER;
2174 		rcu_read_lock();
2175 		info->si_pid = task_pid_vnr(current->parent);
2176 		info->si_uid = from_kuid_munged(current_user_ns(),
2177 						task_uid(current->parent));
2178 		rcu_read_unlock();
2179 	}
2180 
2181 	/* If the (new) signal is now blocked, requeue it.  */
2182 	if (sigismember(&current->blocked, signr)) {
2183 		specific_send_sig_info(signr, info, current);
2184 		signr = 0;
2185 	}
2186 
2187 	return signr;
2188 }
2189 
2190 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2191 			  struct pt_regs *regs, void *cookie)
2192 {
2193 	struct sighand_struct *sighand = current->sighand;
2194 	struct signal_struct *signal = current->signal;
2195 	int signr;
2196 
2197 	if (unlikely(current->task_works))
2198 		task_work_run();
2199 
2200 	if (unlikely(uprobe_deny_signal()))
2201 		return 0;
2202 
2203 relock:
2204 	/*
2205 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2206 	 * While in TASK_STOPPED, we were considered "frozen enough".
2207 	 * Now that we woke up, it's crucial if we're supposed to be
2208 	 * frozen that we freeze now before running anything substantial.
2209 	 */
2210 	try_to_freeze();
2211 
2212 	spin_lock_irq(&sighand->siglock);
2213 	/*
2214 	 * Every stopped thread goes here after wakeup. Check to see if
2215 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2216 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2217 	 */
2218 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2219 		int why;
2220 
2221 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2222 			why = CLD_CONTINUED;
2223 		else
2224 			why = CLD_STOPPED;
2225 
2226 		signal->flags &= ~SIGNAL_CLD_MASK;
2227 
2228 		spin_unlock_irq(&sighand->siglock);
2229 
2230 		/*
2231 		 * Notify the parent that we're continuing.  This event is
2232 		 * always per-process and doesn't make whole lot of sense
2233 		 * for ptracers, who shouldn't consume the state via
2234 		 * wait(2) either, but, for backward compatibility, notify
2235 		 * the ptracer of the group leader too unless it's gonna be
2236 		 * a duplicate.
2237 		 */
2238 		read_lock(&tasklist_lock);
2239 		do_notify_parent_cldstop(current, false, why);
2240 
2241 		if (ptrace_reparented(current->group_leader))
2242 			do_notify_parent_cldstop(current->group_leader,
2243 						true, why);
2244 		read_unlock(&tasklist_lock);
2245 
2246 		goto relock;
2247 	}
2248 
2249 	for (;;) {
2250 		struct k_sigaction *ka;
2251 
2252 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2253 		    do_signal_stop(0))
2254 			goto relock;
2255 
2256 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2257 			do_jobctl_trap();
2258 			spin_unlock_irq(&sighand->siglock);
2259 			goto relock;
2260 		}
2261 
2262 		signr = dequeue_signal(current, &current->blocked, info);
2263 
2264 		if (!signr)
2265 			break; /* will return 0 */
2266 
2267 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2268 			signr = ptrace_signal(signr, info,
2269 					      regs, cookie);
2270 			if (!signr)
2271 				continue;
2272 		}
2273 
2274 		ka = &sighand->action[signr-1];
2275 
2276 		/* Trace actually delivered signals. */
2277 		trace_signal_deliver(signr, info, ka);
2278 
2279 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2280 			continue;
2281 		if (ka->sa.sa_handler != SIG_DFL) {
2282 			/* Run the handler.  */
2283 			*return_ka = *ka;
2284 
2285 			if (ka->sa.sa_flags & SA_ONESHOT)
2286 				ka->sa.sa_handler = SIG_DFL;
2287 
2288 			break; /* will return non-zero "signr" value */
2289 		}
2290 
2291 		/*
2292 		 * Now we are doing the default action for this signal.
2293 		 */
2294 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2295 			continue;
2296 
2297 		/*
2298 		 * Global init gets no signals it doesn't want.
2299 		 * Container-init gets no signals it doesn't want from same
2300 		 * container.
2301 		 *
2302 		 * Note that if global/container-init sees a sig_kernel_only()
2303 		 * signal here, the signal must have been generated internally
2304 		 * or must have come from an ancestor namespace. In either
2305 		 * case, the signal cannot be dropped.
2306 		 */
2307 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2308 				!sig_kernel_only(signr))
2309 			continue;
2310 
2311 		if (sig_kernel_stop(signr)) {
2312 			/*
2313 			 * The default action is to stop all threads in
2314 			 * the thread group.  The job control signals
2315 			 * do nothing in an orphaned pgrp, but SIGSTOP
2316 			 * always works.  Note that siglock needs to be
2317 			 * dropped during the call to is_orphaned_pgrp()
2318 			 * because of lock ordering with tasklist_lock.
2319 			 * This allows an intervening SIGCONT to be posted.
2320 			 * We need to check for that and bail out if necessary.
2321 			 */
2322 			if (signr != SIGSTOP) {
2323 				spin_unlock_irq(&sighand->siglock);
2324 
2325 				/* signals can be posted during this window */
2326 
2327 				if (is_current_pgrp_orphaned())
2328 					goto relock;
2329 
2330 				spin_lock_irq(&sighand->siglock);
2331 			}
2332 
2333 			if (likely(do_signal_stop(info->si_signo))) {
2334 				/* It released the siglock.  */
2335 				goto relock;
2336 			}
2337 
2338 			/*
2339 			 * We didn't actually stop, due to a race
2340 			 * with SIGCONT or something like that.
2341 			 */
2342 			continue;
2343 		}
2344 
2345 		spin_unlock_irq(&sighand->siglock);
2346 
2347 		/*
2348 		 * Anything else is fatal, maybe with a core dump.
2349 		 */
2350 		current->flags |= PF_SIGNALED;
2351 
2352 		if (sig_kernel_coredump(signr)) {
2353 			if (print_fatal_signals)
2354 				print_fatal_signal(regs, info->si_signo);
2355 			/*
2356 			 * If it was able to dump core, this kills all
2357 			 * other threads in the group and synchronizes with
2358 			 * their demise.  If we lost the race with another
2359 			 * thread getting here, it set group_exit_code
2360 			 * first and our do_group_exit call below will use
2361 			 * that value and ignore the one we pass it.
2362 			 */
2363 			do_coredump(info, regs);
2364 		}
2365 
2366 		/*
2367 		 * Death signals, no core dump.
2368 		 */
2369 		do_group_exit(info->si_signo);
2370 		/* NOTREACHED */
2371 	}
2372 	spin_unlock_irq(&sighand->siglock);
2373 	return signr;
2374 }
2375 
2376 /**
2377  * signal_delivered -
2378  * @sig:		number of signal being delivered
2379  * @info:		siginfo_t of signal being delivered
2380  * @ka:			sigaction setting that chose the handler
2381  * @regs:		user register state
2382  * @stepping:		nonzero if debugger single-step or block-step in use
2383  *
2384  * This function should be called when a signal has succesfully been
2385  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2386  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2387  * is set in @ka->sa.sa_flags.  Tracing is notified.
2388  */
2389 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2390 			struct pt_regs *regs, int stepping)
2391 {
2392 	sigset_t blocked;
2393 
2394 	/* A signal was successfully delivered, and the
2395 	   saved sigmask was stored on the signal frame,
2396 	   and will be restored by sigreturn.  So we can
2397 	   simply clear the restore sigmask flag.  */
2398 	clear_restore_sigmask();
2399 
2400 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2401 	if (!(ka->sa.sa_flags & SA_NODEFER))
2402 		sigaddset(&blocked, sig);
2403 	set_current_blocked(&blocked);
2404 	tracehook_signal_handler(sig, info, ka, regs, stepping);
2405 }
2406 
2407 /*
2408  * It could be that complete_signal() picked us to notify about the
2409  * group-wide signal. Other threads should be notified now to take
2410  * the shared signals in @which since we will not.
2411  */
2412 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2413 {
2414 	sigset_t retarget;
2415 	struct task_struct *t;
2416 
2417 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2418 	if (sigisemptyset(&retarget))
2419 		return;
2420 
2421 	t = tsk;
2422 	while_each_thread(tsk, t) {
2423 		if (t->flags & PF_EXITING)
2424 			continue;
2425 
2426 		if (!has_pending_signals(&retarget, &t->blocked))
2427 			continue;
2428 		/* Remove the signals this thread can handle. */
2429 		sigandsets(&retarget, &retarget, &t->blocked);
2430 
2431 		if (!signal_pending(t))
2432 			signal_wake_up(t, 0);
2433 
2434 		if (sigisemptyset(&retarget))
2435 			break;
2436 	}
2437 }
2438 
2439 void exit_signals(struct task_struct *tsk)
2440 {
2441 	int group_stop = 0;
2442 	sigset_t unblocked;
2443 
2444 	/*
2445 	 * @tsk is about to have PF_EXITING set - lock out users which
2446 	 * expect stable threadgroup.
2447 	 */
2448 	threadgroup_change_begin(tsk);
2449 
2450 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2451 		tsk->flags |= PF_EXITING;
2452 		threadgroup_change_end(tsk);
2453 		return;
2454 	}
2455 
2456 	spin_lock_irq(&tsk->sighand->siglock);
2457 	/*
2458 	 * From now this task is not visible for group-wide signals,
2459 	 * see wants_signal(), do_signal_stop().
2460 	 */
2461 	tsk->flags |= PF_EXITING;
2462 
2463 	threadgroup_change_end(tsk);
2464 
2465 	if (!signal_pending(tsk))
2466 		goto out;
2467 
2468 	unblocked = tsk->blocked;
2469 	signotset(&unblocked);
2470 	retarget_shared_pending(tsk, &unblocked);
2471 
2472 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2473 	    task_participate_group_stop(tsk))
2474 		group_stop = CLD_STOPPED;
2475 out:
2476 	spin_unlock_irq(&tsk->sighand->siglock);
2477 
2478 	/*
2479 	 * If group stop has completed, deliver the notification.  This
2480 	 * should always go to the real parent of the group leader.
2481 	 */
2482 	if (unlikely(group_stop)) {
2483 		read_lock(&tasklist_lock);
2484 		do_notify_parent_cldstop(tsk, false, group_stop);
2485 		read_unlock(&tasklist_lock);
2486 	}
2487 }
2488 
2489 EXPORT_SYMBOL(recalc_sigpending);
2490 EXPORT_SYMBOL_GPL(dequeue_signal);
2491 EXPORT_SYMBOL(flush_signals);
2492 EXPORT_SYMBOL(force_sig);
2493 EXPORT_SYMBOL(send_sig);
2494 EXPORT_SYMBOL(send_sig_info);
2495 EXPORT_SYMBOL(sigprocmask);
2496 EXPORT_SYMBOL(block_all_signals);
2497 EXPORT_SYMBOL(unblock_all_signals);
2498 
2499 
2500 /*
2501  * System call entry points.
2502  */
2503 
2504 /**
2505  *  sys_restart_syscall - restart a system call
2506  */
2507 SYSCALL_DEFINE0(restart_syscall)
2508 {
2509 	struct restart_block *restart = &current_thread_info()->restart_block;
2510 	return restart->fn(restart);
2511 }
2512 
2513 long do_no_restart_syscall(struct restart_block *param)
2514 {
2515 	return -EINTR;
2516 }
2517 
2518 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2519 {
2520 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2521 		sigset_t newblocked;
2522 		/* A set of now blocked but previously unblocked signals. */
2523 		sigandnsets(&newblocked, newset, &current->blocked);
2524 		retarget_shared_pending(tsk, &newblocked);
2525 	}
2526 	tsk->blocked = *newset;
2527 	recalc_sigpending();
2528 }
2529 
2530 /**
2531  * set_current_blocked - change current->blocked mask
2532  * @newset: new mask
2533  *
2534  * It is wrong to change ->blocked directly, this helper should be used
2535  * to ensure the process can't miss a shared signal we are going to block.
2536  */
2537 void set_current_blocked(sigset_t *newset)
2538 {
2539 	struct task_struct *tsk = current;
2540 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2541 	spin_lock_irq(&tsk->sighand->siglock);
2542 	__set_task_blocked(tsk, newset);
2543 	spin_unlock_irq(&tsk->sighand->siglock);
2544 }
2545 
2546 void __set_current_blocked(const sigset_t *newset)
2547 {
2548 	struct task_struct *tsk = current;
2549 
2550 	spin_lock_irq(&tsk->sighand->siglock);
2551 	__set_task_blocked(tsk, newset);
2552 	spin_unlock_irq(&tsk->sighand->siglock);
2553 }
2554 
2555 /*
2556  * This is also useful for kernel threads that want to temporarily
2557  * (or permanently) block certain signals.
2558  *
2559  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2560  * interface happily blocks "unblockable" signals like SIGKILL
2561  * and friends.
2562  */
2563 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2564 {
2565 	struct task_struct *tsk = current;
2566 	sigset_t newset;
2567 
2568 	/* Lockless, only current can change ->blocked, never from irq */
2569 	if (oldset)
2570 		*oldset = tsk->blocked;
2571 
2572 	switch (how) {
2573 	case SIG_BLOCK:
2574 		sigorsets(&newset, &tsk->blocked, set);
2575 		break;
2576 	case SIG_UNBLOCK:
2577 		sigandnsets(&newset, &tsk->blocked, set);
2578 		break;
2579 	case SIG_SETMASK:
2580 		newset = *set;
2581 		break;
2582 	default:
2583 		return -EINVAL;
2584 	}
2585 
2586 	__set_current_blocked(&newset);
2587 	return 0;
2588 }
2589 
2590 /**
2591  *  sys_rt_sigprocmask - change the list of currently blocked signals
2592  *  @how: whether to add, remove, or set signals
2593  *  @nset: stores pending signals
2594  *  @oset: previous value of signal mask if non-null
2595  *  @sigsetsize: size of sigset_t type
2596  */
2597 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2598 		sigset_t __user *, oset, size_t, sigsetsize)
2599 {
2600 	sigset_t old_set, new_set;
2601 	int error;
2602 
2603 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2604 	if (sigsetsize != sizeof(sigset_t))
2605 		return -EINVAL;
2606 
2607 	old_set = current->blocked;
2608 
2609 	if (nset) {
2610 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2611 			return -EFAULT;
2612 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2613 
2614 		error = sigprocmask(how, &new_set, NULL);
2615 		if (error)
2616 			return error;
2617 	}
2618 
2619 	if (oset) {
2620 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2621 			return -EFAULT;
2622 	}
2623 
2624 	return 0;
2625 }
2626 
2627 long do_sigpending(void __user *set, unsigned long sigsetsize)
2628 {
2629 	long error = -EINVAL;
2630 	sigset_t pending;
2631 
2632 	if (sigsetsize > sizeof(sigset_t))
2633 		goto out;
2634 
2635 	spin_lock_irq(&current->sighand->siglock);
2636 	sigorsets(&pending, &current->pending.signal,
2637 		  &current->signal->shared_pending.signal);
2638 	spin_unlock_irq(&current->sighand->siglock);
2639 
2640 	/* Outside the lock because only this thread touches it.  */
2641 	sigandsets(&pending, &current->blocked, &pending);
2642 
2643 	error = -EFAULT;
2644 	if (!copy_to_user(set, &pending, sigsetsize))
2645 		error = 0;
2646 
2647 out:
2648 	return error;
2649 }
2650 
2651 /**
2652  *  sys_rt_sigpending - examine a pending signal that has been raised
2653  *			while blocked
2654  *  @set: stores pending signals
2655  *  @sigsetsize: size of sigset_t type or larger
2656  */
2657 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2658 {
2659 	return do_sigpending(set, sigsetsize);
2660 }
2661 
2662 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2663 
2664 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2665 {
2666 	int err;
2667 
2668 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2669 		return -EFAULT;
2670 	if (from->si_code < 0)
2671 		return __copy_to_user(to, from, sizeof(siginfo_t))
2672 			? -EFAULT : 0;
2673 	/*
2674 	 * If you change siginfo_t structure, please be sure
2675 	 * this code is fixed accordingly.
2676 	 * Please remember to update the signalfd_copyinfo() function
2677 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2678 	 * It should never copy any pad contained in the structure
2679 	 * to avoid security leaks, but must copy the generic
2680 	 * 3 ints plus the relevant union member.
2681 	 */
2682 	err = __put_user(from->si_signo, &to->si_signo);
2683 	err |= __put_user(from->si_errno, &to->si_errno);
2684 	err |= __put_user((short)from->si_code, &to->si_code);
2685 	switch (from->si_code & __SI_MASK) {
2686 	case __SI_KILL:
2687 		err |= __put_user(from->si_pid, &to->si_pid);
2688 		err |= __put_user(from->si_uid, &to->si_uid);
2689 		break;
2690 	case __SI_TIMER:
2691 		 err |= __put_user(from->si_tid, &to->si_tid);
2692 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2693 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2694 		break;
2695 	case __SI_POLL:
2696 		err |= __put_user(from->si_band, &to->si_band);
2697 		err |= __put_user(from->si_fd, &to->si_fd);
2698 		break;
2699 	case __SI_FAULT:
2700 		err |= __put_user(from->si_addr, &to->si_addr);
2701 #ifdef __ARCH_SI_TRAPNO
2702 		err |= __put_user(from->si_trapno, &to->si_trapno);
2703 #endif
2704 #ifdef BUS_MCEERR_AO
2705 		/*
2706 		 * Other callers might not initialize the si_lsb field,
2707 		 * so check explicitly for the right codes here.
2708 		 */
2709 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2710 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2711 #endif
2712 		break;
2713 	case __SI_CHLD:
2714 		err |= __put_user(from->si_pid, &to->si_pid);
2715 		err |= __put_user(from->si_uid, &to->si_uid);
2716 		err |= __put_user(from->si_status, &to->si_status);
2717 		err |= __put_user(from->si_utime, &to->si_utime);
2718 		err |= __put_user(from->si_stime, &to->si_stime);
2719 		break;
2720 	case __SI_RT: /* This is not generated by the kernel as of now. */
2721 	case __SI_MESGQ: /* But this is */
2722 		err |= __put_user(from->si_pid, &to->si_pid);
2723 		err |= __put_user(from->si_uid, &to->si_uid);
2724 		err |= __put_user(from->si_ptr, &to->si_ptr);
2725 		break;
2726 #ifdef __ARCH_SIGSYS
2727 	case __SI_SYS:
2728 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2729 		err |= __put_user(from->si_syscall, &to->si_syscall);
2730 		err |= __put_user(from->si_arch, &to->si_arch);
2731 		break;
2732 #endif
2733 	default: /* this is just in case for now ... */
2734 		err |= __put_user(from->si_pid, &to->si_pid);
2735 		err |= __put_user(from->si_uid, &to->si_uid);
2736 		break;
2737 	}
2738 	return err;
2739 }
2740 
2741 #endif
2742 
2743 /**
2744  *  do_sigtimedwait - wait for queued signals specified in @which
2745  *  @which: queued signals to wait for
2746  *  @info: if non-null, the signal's siginfo is returned here
2747  *  @ts: upper bound on process time suspension
2748  */
2749 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2750 			const struct timespec *ts)
2751 {
2752 	struct task_struct *tsk = current;
2753 	long timeout = MAX_SCHEDULE_TIMEOUT;
2754 	sigset_t mask = *which;
2755 	int sig;
2756 
2757 	if (ts) {
2758 		if (!timespec_valid(ts))
2759 			return -EINVAL;
2760 		timeout = timespec_to_jiffies(ts);
2761 		/*
2762 		 * We can be close to the next tick, add another one
2763 		 * to ensure we will wait at least the time asked for.
2764 		 */
2765 		if (ts->tv_sec || ts->tv_nsec)
2766 			timeout++;
2767 	}
2768 
2769 	/*
2770 	 * Invert the set of allowed signals to get those we want to block.
2771 	 */
2772 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2773 	signotset(&mask);
2774 
2775 	spin_lock_irq(&tsk->sighand->siglock);
2776 	sig = dequeue_signal(tsk, &mask, info);
2777 	if (!sig && timeout) {
2778 		/*
2779 		 * None ready, temporarily unblock those we're interested
2780 		 * while we are sleeping in so that we'll be awakened when
2781 		 * they arrive. Unblocking is always fine, we can avoid
2782 		 * set_current_blocked().
2783 		 */
2784 		tsk->real_blocked = tsk->blocked;
2785 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2786 		recalc_sigpending();
2787 		spin_unlock_irq(&tsk->sighand->siglock);
2788 
2789 		timeout = schedule_timeout_interruptible(timeout);
2790 
2791 		spin_lock_irq(&tsk->sighand->siglock);
2792 		__set_task_blocked(tsk, &tsk->real_blocked);
2793 		siginitset(&tsk->real_blocked, 0);
2794 		sig = dequeue_signal(tsk, &mask, info);
2795 	}
2796 	spin_unlock_irq(&tsk->sighand->siglock);
2797 
2798 	if (sig)
2799 		return sig;
2800 	return timeout ? -EINTR : -EAGAIN;
2801 }
2802 
2803 /**
2804  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2805  *			in @uthese
2806  *  @uthese: queued signals to wait for
2807  *  @uinfo: if non-null, the signal's siginfo is returned here
2808  *  @uts: upper bound on process time suspension
2809  *  @sigsetsize: size of sigset_t type
2810  */
2811 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2812 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2813 		size_t, sigsetsize)
2814 {
2815 	sigset_t these;
2816 	struct timespec ts;
2817 	siginfo_t info;
2818 	int ret;
2819 
2820 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2821 	if (sigsetsize != sizeof(sigset_t))
2822 		return -EINVAL;
2823 
2824 	if (copy_from_user(&these, uthese, sizeof(these)))
2825 		return -EFAULT;
2826 
2827 	if (uts) {
2828 		if (copy_from_user(&ts, uts, sizeof(ts)))
2829 			return -EFAULT;
2830 	}
2831 
2832 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2833 
2834 	if (ret > 0 && uinfo) {
2835 		if (copy_siginfo_to_user(uinfo, &info))
2836 			ret = -EFAULT;
2837 	}
2838 
2839 	return ret;
2840 }
2841 
2842 /**
2843  *  sys_kill - send a signal to a process
2844  *  @pid: the PID of the process
2845  *  @sig: signal to be sent
2846  */
2847 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2848 {
2849 	struct siginfo info;
2850 
2851 	info.si_signo = sig;
2852 	info.si_errno = 0;
2853 	info.si_code = SI_USER;
2854 	info.si_pid = task_tgid_vnr(current);
2855 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2856 
2857 	return kill_something_info(sig, &info, pid);
2858 }
2859 
2860 static int
2861 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2862 {
2863 	struct task_struct *p;
2864 	int error = -ESRCH;
2865 
2866 	rcu_read_lock();
2867 	p = find_task_by_vpid(pid);
2868 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2869 		error = check_kill_permission(sig, info, p);
2870 		/*
2871 		 * The null signal is a permissions and process existence
2872 		 * probe.  No signal is actually delivered.
2873 		 */
2874 		if (!error && sig) {
2875 			error = do_send_sig_info(sig, info, p, false);
2876 			/*
2877 			 * If lock_task_sighand() failed we pretend the task
2878 			 * dies after receiving the signal. The window is tiny,
2879 			 * and the signal is private anyway.
2880 			 */
2881 			if (unlikely(error == -ESRCH))
2882 				error = 0;
2883 		}
2884 	}
2885 	rcu_read_unlock();
2886 
2887 	return error;
2888 }
2889 
2890 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2891 {
2892 	struct siginfo info;
2893 
2894 	info.si_signo = sig;
2895 	info.si_errno = 0;
2896 	info.si_code = SI_TKILL;
2897 	info.si_pid = task_tgid_vnr(current);
2898 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2899 
2900 	return do_send_specific(tgid, pid, sig, &info);
2901 }
2902 
2903 /**
2904  *  sys_tgkill - send signal to one specific thread
2905  *  @tgid: the thread group ID of the thread
2906  *  @pid: the PID of the thread
2907  *  @sig: signal to be sent
2908  *
2909  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2910  *  exists but it's not belonging to the target process anymore. This
2911  *  method solves the problem of threads exiting and PIDs getting reused.
2912  */
2913 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2914 {
2915 	/* This is only valid for single tasks */
2916 	if (pid <= 0 || tgid <= 0)
2917 		return -EINVAL;
2918 
2919 	return do_tkill(tgid, pid, sig);
2920 }
2921 
2922 /**
2923  *  sys_tkill - send signal to one specific task
2924  *  @pid: the PID of the task
2925  *  @sig: signal to be sent
2926  *
2927  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2928  */
2929 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2930 {
2931 	/* This is only valid for single tasks */
2932 	if (pid <= 0)
2933 		return -EINVAL;
2934 
2935 	return do_tkill(0, pid, sig);
2936 }
2937 
2938 /**
2939  *  sys_rt_sigqueueinfo - send signal information to a signal
2940  *  @pid: the PID of the thread
2941  *  @sig: signal to be sent
2942  *  @uinfo: signal info to be sent
2943  */
2944 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2945 		siginfo_t __user *, uinfo)
2946 {
2947 	siginfo_t info;
2948 
2949 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2950 		return -EFAULT;
2951 
2952 	/* Not even root can pretend to send signals from the kernel.
2953 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2954 	 */
2955 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2956 		/* We used to allow any < 0 si_code */
2957 		WARN_ON_ONCE(info.si_code < 0);
2958 		return -EPERM;
2959 	}
2960 	info.si_signo = sig;
2961 
2962 	/* POSIX.1b doesn't mention process groups.  */
2963 	return kill_proc_info(sig, &info, pid);
2964 }
2965 
2966 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2967 {
2968 	/* This is only valid for single tasks */
2969 	if (pid <= 0 || tgid <= 0)
2970 		return -EINVAL;
2971 
2972 	/* Not even root can pretend to send signals from the kernel.
2973 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2974 	 */
2975 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2976 		/* We used to allow any < 0 si_code */
2977 		WARN_ON_ONCE(info->si_code < 0);
2978 		return -EPERM;
2979 	}
2980 	info->si_signo = sig;
2981 
2982 	return do_send_specific(tgid, pid, sig, info);
2983 }
2984 
2985 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2986 		siginfo_t __user *, uinfo)
2987 {
2988 	siginfo_t info;
2989 
2990 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2991 		return -EFAULT;
2992 
2993 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2994 }
2995 
2996 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2997 {
2998 	struct task_struct *t = current;
2999 	struct k_sigaction *k;
3000 	sigset_t mask;
3001 
3002 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3003 		return -EINVAL;
3004 
3005 	k = &t->sighand->action[sig-1];
3006 
3007 	spin_lock_irq(&current->sighand->siglock);
3008 	if (oact)
3009 		*oact = *k;
3010 
3011 	if (act) {
3012 		sigdelsetmask(&act->sa.sa_mask,
3013 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3014 		*k = *act;
3015 		/*
3016 		 * POSIX 3.3.1.3:
3017 		 *  "Setting a signal action to SIG_IGN for a signal that is
3018 		 *   pending shall cause the pending signal to be discarded,
3019 		 *   whether or not it is blocked."
3020 		 *
3021 		 *  "Setting a signal action to SIG_DFL for a signal that is
3022 		 *   pending and whose default action is to ignore the signal
3023 		 *   (for example, SIGCHLD), shall cause the pending signal to
3024 		 *   be discarded, whether or not it is blocked"
3025 		 */
3026 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3027 			sigemptyset(&mask);
3028 			sigaddset(&mask, sig);
3029 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3030 			do {
3031 				rm_from_queue_full(&mask, &t->pending);
3032 				t = next_thread(t);
3033 			} while (t != current);
3034 		}
3035 	}
3036 
3037 	spin_unlock_irq(&current->sighand->siglock);
3038 	return 0;
3039 }
3040 
3041 int
3042 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3043 {
3044 	stack_t oss;
3045 	int error;
3046 
3047 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3048 	oss.ss_size = current->sas_ss_size;
3049 	oss.ss_flags = sas_ss_flags(sp);
3050 
3051 	if (uss) {
3052 		void __user *ss_sp;
3053 		size_t ss_size;
3054 		int ss_flags;
3055 
3056 		error = -EFAULT;
3057 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3058 			goto out;
3059 		error = __get_user(ss_sp, &uss->ss_sp) |
3060 			__get_user(ss_flags, &uss->ss_flags) |
3061 			__get_user(ss_size, &uss->ss_size);
3062 		if (error)
3063 			goto out;
3064 
3065 		error = -EPERM;
3066 		if (on_sig_stack(sp))
3067 			goto out;
3068 
3069 		error = -EINVAL;
3070 		/*
3071 		 * Note - this code used to test ss_flags incorrectly:
3072 		 *  	  old code may have been written using ss_flags==0
3073 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3074 		 *	  way that worked) - this fix preserves that older
3075 		 *	  mechanism.
3076 		 */
3077 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3078 			goto out;
3079 
3080 		if (ss_flags == SS_DISABLE) {
3081 			ss_size = 0;
3082 			ss_sp = NULL;
3083 		} else {
3084 			error = -ENOMEM;
3085 			if (ss_size < MINSIGSTKSZ)
3086 				goto out;
3087 		}
3088 
3089 		current->sas_ss_sp = (unsigned long) ss_sp;
3090 		current->sas_ss_size = ss_size;
3091 	}
3092 
3093 	error = 0;
3094 	if (uoss) {
3095 		error = -EFAULT;
3096 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3097 			goto out;
3098 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3099 			__put_user(oss.ss_size, &uoss->ss_size) |
3100 			__put_user(oss.ss_flags, &uoss->ss_flags);
3101 	}
3102 
3103 out:
3104 	return error;
3105 }
3106 
3107 #ifdef __ARCH_WANT_SYS_SIGPENDING
3108 
3109 /**
3110  *  sys_sigpending - examine pending signals
3111  *  @set: where mask of pending signal is returned
3112  */
3113 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3114 {
3115 	return do_sigpending(set, sizeof(*set));
3116 }
3117 
3118 #endif
3119 
3120 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3121 /**
3122  *  sys_sigprocmask - examine and change blocked signals
3123  *  @how: whether to add, remove, or set signals
3124  *  @nset: signals to add or remove (if non-null)
3125  *  @oset: previous value of signal mask if non-null
3126  *
3127  * Some platforms have their own version with special arguments;
3128  * others support only sys_rt_sigprocmask.
3129  */
3130 
3131 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3132 		old_sigset_t __user *, oset)
3133 {
3134 	old_sigset_t old_set, new_set;
3135 	sigset_t new_blocked;
3136 
3137 	old_set = current->blocked.sig[0];
3138 
3139 	if (nset) {
3140 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3141 			return -EFAULT;
3142 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3143 
3144 		new_blocked = current->blocked;
3145 
3146 		switch (how) {
3147 		case SIG_BLOCK:
3148 			sigaddsetmask(&new_blocked, new_set);
3149 			break;
3150 		case SIG_UNBLOCK:
3151 			sigdelsetmask(&new_blocked, new_set);
3152 			break;
3153 		case SIG_SETMASK:
3154 			new_blocked.sig[0] = new_set;
3155 			break;
3156 		default:
3157 			return -EINVAL;
3158 		}
3159 
3160 		__set_current_blocked(&new_blocked);
3161 	}
3162 
3163 	if (oset) {
3164 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3165 			return -EFAULT;
3166 	}
3167 
3168 	return 0;
3169 }
3170 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3171 
3172 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3173 /**
3174  *  sys_rt_sigaction - alter an action taken by a process
3175  *  @sig: signal to be sent
3176  *  @act: new sigaction
3177  *  @oact: used to save the previous sigaction
3178  *  @sigsetsize: size of sigset_t type
3179  */
3180 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3181 		const struct sigaction __user *, act,
3182 		struct sigaction __user *, oact,
3183 		size_t, sigsetsize)
3184 {
3185 	struct k_sigaction new_sa, old_sa;
3186 	int ret = -EINVAL;
3187 
3188 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3189 	if (sigsetsize != sizeof(sigset_t))
3190 		goto out;
3191 
3192 	if (act) {
3193 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3194 			return -EFAULT;
3195 	}
3196 
3197 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3198 
3199 	if (!ret && oact) {
3200 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3201 			return -EFAULT;
3202 	}
3203 out:
3204 	return ret;
3205 }
3206 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3207 
3208 #ifdef __ARCH_WANT_SYS_SGETMASK
3209 
3210 /*
3211  * For backwards compatibility.  Functionality superseded by sigprocmask.
3212  */
3213 SYSCALL_DEFINE0(sgetmask)
3214 {
3215 	/* SMP safe */
3216 	return current->blocked.sig[0];
3217 }
3218 
3219 SYSCALL_DEFINE1(ssetmask, int, newmask)
3220 {
3221 	int old = current->blocked.sig[0];
3222 	sigset_t newset;
3223 
3224 	set_current_blocked(&newset);
3225 
3226 	return old;
3227 }
3228 #endif /* __ARCH_WANT_SGETMASK */
3229 
3230 #ifdef __ARCH_WANT_SYS_SIGNAL
3231 /*
3232  * For backwards compatibility.  Functionality superseded by sigaction.
3233  */
3234 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3235 {
3236 	struct k_sigaction new_sa, old_sa;
3237 	int ret;
3238 
3239 	new_sa.sa.sa_handler = handler;
3240 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3241 	sigemptyset(&new_sa.sa.sa_mask);
3242 
3243 	ret = do_sigaction(sig, &new_sa, &old_sa);
3244 
3245 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3246 }
3247 #endif /* __ARCH_WANT_SYS_SIGNAL */
3248 
3249 #ifdef __ARCH_WANT_SYS_PAUSE
3250 
3251 SYSCALL_DEFINE0(pause)
3252 {
3253 	while (!signal_pending(current)) {
3254 		current->state = TASK_INTERRUPTIBLE;
3255 		schedule();
3256 	}
3257 	return -ERESTARTNOHAND;
3258 }
3259 
3260 #endif
3261 
3262 int sigsuspend(sigset_t *set)
3263 {
3264 	current->saved_sigmask = current->blocked;
3265 	set_current_blocked(set);
3266 
3267 	current->state = TASK_INTERRUPTIBLE;
3268 	schedule();
3269 	set_restore_sigmask();
3270 	return -ERESTARTNOHAND;
3271 }
3272 
3273 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3274 /**
3275  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3276  *	@unewset value until a signal is received
3277  *  @unewset: new signal mask value
3278  *  @sigsetsize: size of sigset_t type
3279  */
3280 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3281 {
3282 	sigset_t newset;
3283 
3284 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3285 	if (sigsetsize != sizeof(sigset_t))
3286 		return -EINVAL;
3287 
3288 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3289 		return -EFAULT;
3290 	return sigsuspend(&newset);
3291 }
3292 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3293 
3294 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3295 {
3296 	return NULL;
3297 }
3298 
3299 void __init signals_init(void)
3300 {
3301 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3302 }
3303 
3304 #ifdef CONFIG_KGDB_KDB
3305 #include <linux/kdb.h>
3306 /*
3307  * kdb_send_sig_info - Allows kdb to send signals without exposing
3308  * signal internals.  This function checks if the required locks are
3309  * available before calling the main signal code, to avoid kdb
3310  * deadlocks.
3311  */
3312 void
3313 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3314 {
3315 	static struct task_struct *kdb_prev_t;
3316 	int sig, new_t;
3317 	if (!spin_trylock(&t->sighand->siglock)) {
3318 		kdb_printf("Can't do kill command now.\n"
3319 			   "The sigmask lock is held somewhere else in "
3320 			   "kernel, try again later\n");
3321 		return;
3322 	}
3323 	spin_unlock(&t->sighand->siglock);
3324 	new_t = kdb_prev_t != t;
3325 	kdb_prev_t = t;
3326 	if (t->state != TASK_RUNNING && new_t) {
3327 		kdb_printf("Process is not RUNNING, sending a signal from "
3328 			   "kdb risks deadlock\n"
3329 			   "on the run queue locks. "
3330 			   "The signal has _not_ been sent.\n"
3331 			   "Reissue the kill command if you want to risk "
3332 			   "the deadlock.\n");
3333 		return;
3334 	}
3335 	sig = info->si_signo;
3336 	if (send_sig_info(sig, info, t))
3337 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3338 			   sig, t->pid);
3339 	else
3340 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3341 }
3342 #endif	/* CONFIG_KGDB_KDB */
3343