1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/signal.h> 53 54 #include <asm/param.h> 55 #include <linux/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/siginfo.h> 58 #include <asm/cacheflush.h> 59 #include <asm/syscall.h> /* for syscall_get_* */ 60 61 /* 62 * SLAB caches for signal bits. 63 */ 64 65 static struct kmem_cache *sigqueue_cachep; 66 67 int print_fatal_signals __read_mostly; 68 69 static void __user *sig_handler(struct task_struct *t, int sig) 70 { 71 return t->sighand->action[sig - 1].sa.sa_handler; 72 } 73 74 static inline bool sig_handler_ignored(void __user *handler, int sig) 75 { 76 /* Is it explicitly or implicitly ignored? */ 77 return handler == SIG_IGN || 78 (handler == SIG_DFL && sig_kernel_ignore(sig)); 79 } 80 81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 82 { 83 void __user *handler; 84 85 handler = sig_handler(t, sig); 86 87 /* SIGKILL and SIGSTOP may not be sent to the global init */ 88 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 89 return true; 90 91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 92 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 93 return true; 94 95 /* Only allow kernel generated signals to this kthread */ 96 if (unlikely((t->flags & PF_KTHREAD) && 97 (handler == SIG_KTHREAD_KERNEL) && !force)) 98 return true; 99 100 return sig_handler_ignored(handler, sig); 101 } 102 103 static bool sig_ignored(struct task_struct *t, int sig, bool force) 104 { 105 /* 106 * Blocked signals are never ignored, since the 107 * signal handler may change by the time it is 108 * unblocked. 109 */ 110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 111 return false; 112 113 /* 114 * Tracers may want to know about even ignored signal unless it 115 * is SIGKILL which can't be reported anyway but can be ignored 116 * by SIGNAL_UNKILLABLE task. 117 */ 118 if (t->ptrace && sig != SIGKILL) 119 return false; 120 121 return sig_task_ignored(t, sig, force); 122 } 123 124 /* 125 * Re-calculate pending state from the set of locally pending 126 * signals, globally pending signals, and blocked signals. 127 */ 128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 129 { 130 unsigned long ready; 131 long i; 132 133 switch (_NSIG_WORDS) { 134 default: 135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 136 ready |= signal->sig[i] &~ blocked->sig[i]; 137 break; 138 139 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 140 ready |= signal->sig[2] &~ blocked->sig[2]; 141 ready |= signal->sig[1] &~ blocked->sig[1]; 142 ready |= signal->sig[0] &~ blocked->sig[0]; 143 break; 144 145 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 146 ready |= signal->sig[0] &~ blocked->sig[0]; 147 break; 148 149 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 150 } 151 return ready != 0; 152 } 153 154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 155 156 static bool recalc_sigpending_tsk(struct task_struct *t) 157 { 158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 159 PENDING(&t->pending, &t->blocked) || 160 PENDING(&t->signal->shared_pending, &t->blocked) || 161 cgroup_task_frozen(t)) { 162 set_tsk_thread_flag(t, TIF_SIGPENDING); 163 return true; 164 } 165 166 /* 167 * We must never clear the flag in another thread, or in current 168 * when it's possible the current syscall is returning -ERESTART*. 169 * So we don't clear it here, and only callers who know they should do. 170 */ 171 return false; 172 } 173 174 /* 175 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 176 * This is superfluous when called on current, the wakeup is a harmless no-op. 177 */ 178 void recalc_sigpending_and_wake(struct task_struct *t) 179 { 180 if (recalc_sigpending_tsk(t)) 181 signal_wake_up(t, 0); 182 } 183 184 void recalc_sigpending(void) 185 { 186 if (!recalc_sigpending_tsk(current) && !freezing(current)) 187 clear_thread_flag(TIF_SIGPENDING); 188 189 } 190 EXPORT_SYMBOL(recalc_sigpending); 191 192 void calculate_sigpending(void) 193 { 194 /* Have any signals or users of TIF_SIGPENDING been delayed 195 * until after fork? 196 */ 197 spin_lock_irq(¤t->sighand->siglock); 198 set_tsk_thread_flag(current, TIF_SIGPENDING); 199 recalc_sigpending(); 200 spin_unlock_irq(¤t->sighand->siglock); 201 } 202 203 /* Given the mask, find the first available signal that should be serviced. */ 204 205 #define SYNCHRONOUS_MASK \ 206 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 207 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 208 209 int next_signal(struct sigpending *pending, sigset_t *mask) 210 { 211 unsigned long i, *s, *m, x; 212 int sig = 0; 213 214 s = pending->signal.sig; 215 m = mask->sig; 216 217 /* 218 * Handle the first word specially: it contains the 219 * synchronous signals that need to be dequeued first. 220 */ 221 x = *s &~ *m; 222 if (x) { 223 if (x & SYNCHRONOUS_MASK) 224 x &= SYNCHRONOUS_MASK; 225 sig = ffz(~x) + 1; 226 return sig; 227 } 228 229 switch (_NSIG_WORDS) { 230 default: 231 for (i = 1; i < _NSIG_WORDS; ++i) { 232 x = *++s &~ *++m; 233 if (!x) 234 continue; 235 sig = ffz(~x) + i*_NSIG_BPW + 1; 236 break; 237 } 238 break; 239 240 case 2: 241 x = s[1] &~ m[1]; 242 if (!x) 243 break; 244 sig = ffz(~x) + _NSIG_BPW + 1; 245 break; 246 247 case 1: 248 /* Nothing to do */ 249 break; 250 } 251 252 return sig; 253 } 254 255 static inline void print_dropped_signal(int sig) 256 { 257 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 258 259 if (!print_fatal_signals) 260 return; 261 262 if (!__ratelimit(&ratelimit_state)) 263 return; 264 265 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 266 current->comm, current->pid, sig); 267 } 268 269 /** 270 * task_set_jobctl_pending - set jobctl pending bits 271 * @task: target task 272 * @mask: pending bits to set 273 * 274 * Clear @mask from @task->jobctl. @mask must be subset of 275 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 276 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 277 * cleared. If @task is already being killed or exiting, this function 278 * becomes noop. 279 * 280 * CONTEXT: 281 * Must be called with @task->sighand->siglock held. 282 * 283 * RETURNS: 284 * %true if @mask is set, %false if made noop because @task was dying. 285 */ 286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 287 { 288 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 289 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 290 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 291 292 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 293 return false; 294 295 if (mask & JOBCTL_STOP_SIGMASK) 296 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 297 298 task->jobctl |= mask; 299 return true; 300 } 301 302 /** 303 * task_clear_jobctl_trapping - clear jobctl trapping bit 304 * @task: target task 305 * 306 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 307 * Clear it and wake up the ptracer. Note that we don't need any further 308 * locking. @task->siglock guarantees that @task->parent points to the 309 * ptracer. 310 * 311 * CONTEXT: 312 * Must be called with @task->sighand->siglock held. 313 */ 314 void task_clear_jobctl_trapping(struct task_struct *task) 315 { 316 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 317 task->jobctl &= ~JOBCTL_TRAPPING; 318 smp_mb(); /* advised by wake_up_bit() */ 319 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 320 } 321 } 322 323 /** 324 * task_clear_jobctl_pending - clear jobctl pending bits 325 * @task: target task 326 * @mask: pending bits to clear 327 * 328 * Clear @mask from @task->jobctl. @mask must be subset of 329 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 330 * STOP bits are cleared together. 331 * 332 * If clearing of @mask leaves no stop or trap pending, this function calls 333 * task_clear_jobctl_trapping(). 334 * 335 * CONTEXT: 336 * Must be called with @task->sighand->siglock held. 337 */ 338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 339 { 340 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 341 342 if (mask & JOBCTL_STOP_PENDING) 343 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 344 345 task->jobctl &= ~mask; 346 347 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 348 task_clear_jobctl_trapping(task); 349 } 350 351 /** 352 * task_participate_group_stop - participate in a group stop 353 * @task: task participating in a group stop 354 * 355 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 356 * Group stop states are cleared and the group stop count is consumed if 357 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 358 * stop, the appropriate `SIGNAL_*` flags are set. 359 * 360 * CONTEXT: 361 * Must be called with @task->sighand->siglock held. 362 * 363 * RETURNS: 364 * %true if group stop completion should be notified to the parent, %false 365 * otherwise. 366 */ 367 static bool task_participate_group_stop(struct task_struct *task) 368 { 369 struct signal_struct *sig = task->signal; 370 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 371 372 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 373 374 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 375 376 if (!consume) 377 return false; 378 379 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 380 sig->group_stop_count--; 381 382 /* 383 * Tell the caller to notify completion iff we are entering into a 384 * fresh group stop. Read comment in do_signal_stop() for details. 385 */ 386 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 387 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 388 return true; 389 } 390 return false; 391 } 392 393 void task_join_group_stop(struct task_struct *task) 394 { 395 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 396 struct signal_struct *sig = current->signal; 397 398 if (sig->group_stop_count) { 399 sig->group_stop_count++; 400 mask |= JOBCTL_STOP_CONSUME; 401 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 402 return; 403 404 /* Have the new thread join an on-going signal group stop */ 405 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 406 } 407 408 /* 409 * allocate a new signal queue record 410 * - this may be called without locks if and only if t == current, otherwise an 411 * appropriate lock must be held to stop the target task from exiting 412 */ 413 static struct sigqueue * 414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 415 int override_rlimit, const unsigned int sigqueue_flags) 416 { 417 struct sigqueue *q = NULL; 418 struct ucounts *ucounts = NULL; 419 long sigpending; 420 421 /* 422 * Protect access to @t credentials. This can go away when all 423 * callers hold rcu read lock. 424 * 425 * NOTE! A pending signal will hold on to the user refcount, 426 * and we get/put the refcount only when the sigpending count 427 * changes from/to zero. 428 */ 429 rcu_read_lock(); 430 ucounts = task_ucounts(t); 431 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 432 override_rlimit); 433 rcu_read_unlock(); 434 if (!sigpending) 435 return NULL; 436 437 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 438 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 439 } else { 440 print_dropped_signal(sig); 441 } 442 443 if (unlikely(q == NULL)) { 444 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 445 } else { 446 INIT_LIST_HEAD(&q->list); 447 q->flags = sigqueue_flags; 448 q->ucounts = ucounts; 449 } 450 return q; 451 } 452 453 static void __sigqueue_free(struct sigqueue *q) 454 { 455 if (q->flags & SIGQUEUE_PREALLOC) 456 return; 457 if (q->ucounts) { 458 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 459 q->ucounts = NULL; 460 } 461 kmem_cache_free(sigqueue_cachep, q); 462 } 463 464 void flush_sigqueue(struct sigpending *queue) 465 { 466 struct sigqueue *q; 467 468 sigemptyset(&queue->signal); 469 while (!list_empty(&queue->list)) { 470 q = list_entry(queue->list.next, struct sigqueue , list); 471 list_del_init(&q->list); 472 __sigqueue_free(q); 473 } 474 } 475 476 /* 477 * Flush all pending signals for this kthread. 478 */ 479 void flush_signals(struct task_struct *t) 480 { 481 unsigned long flags; 482 483 spin_lock_irqsave(&t->sighand->siglock, flags); 484 clear_tsk_thread_flag(t, TIF_SIGPENDING); 485 flush_sigqueue(&t->pending); 486 flush_sigqueue(&t->signal->shared_pending); 487 spin_unlock_irqrestore(&t->sighand->siglock, flags); 488 } 489 EXPORT_SYMBOL(flush_signals); 490 491 #ifdef CONFIG_POSIX_TIMERS 492 static void __flush_itimer_signals(struct sigpending *pending) 493 { 494 sigset_t signal, retain; 495 struct sigqueue *q, *n; 496 497 signal = pending->signal; 498 sigemptyset(&retain); 499 500 list_for_each_entry_safe(q, n, &pending->list, list) { 501 int sig = q->info.si_signo; 502 503 if (likely(q->info.si_code != SI_TIMER)) { 504 sigaddset(&retain, sig); 505 } else { 506 sigdelset(&signal, sig); 507 list_del_init(&q->list); 508 __sigqueue_free(q); 509 } 510 } 511 512 sigorsets(&pending->signal, &signal, &retain); 513 } 514 515 void flush_itimer_signals(void) 516 { 517 struct task_struct *tsk = current; 518 unsigned long flags; 519 520 spin_lock_irqsave(&tsk->sighand->siglock, flags); 521 __flush_itimer_signals(&tsk->pending); 522 __flush_itimer_signals(&tsk->signal->shared_pending); 523 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 524 } 525 #endif 526 527 void ignore_signals(struct task_struct *t) 528 { 529 int i; 530 531 for (i = 0; i < _NSIG; ++i) 532 t->sighand->action[i].sa.sa_handler = SIG_IGN; 533 534 flush_signals(t); 535 } 536 537 /* 538 * Flush all handlers for a task. 539 */ 540 541 void 542 flush_signal_handlers(struct task_struct *t, int force_default) 543 { 544 int i; 545 struct k_sigaction *ka = &t->sighand->action[0]; 546 for (i = _NSIG ; i != 0 ; i--) { 547 if (force_default || ka->sa.sa_handler != SIG_IGN) 548 ka->sa.sa_handler = SIG_DFL; 549 ka->sa.sa_flags = 0; 550 #ifdef __ARCH_HAS_SA_RESTORER 551 ka->sa.sa_restorer = NULL; 552 #endif 553 sigemptyset(&ka->sa.sa_mask); 554 ka++; 555 } 556 } 557 558 bool unhandled_signal(struct task_struct *tsk, int sig) 559 { 560 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 561 if (is_global_init(tsk)) 562 return true; 563 564 if (handler != SIG_IGN && handler != SIG_DFL) 565 return false; 566 567 /* If dying, we handle all new signals by ignoring them */ 568 if (fatal_signal_pending(tsk)) 569 return false; 570 571 /* if ptraced, let the tracer determine */ 572 return !tsk->ptrace; 573 } 574 575 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 576 bool *resched_timer) 577 { 578 struct sigqueue *q, *first = NULL; 579 580 /* 581 * Collect the siginfo appropriate to this signal. Check if 582 * there is another siginfo for the same signal. 583 */ 584 list_for_each_entry(q, &list->list, list) { 585 if (q->info.si_signo == sig) { 586 if (first) 587 goto still_pending; 588 first = q; 589 } 590 } 591 592 sigdelset(&list->signal, sig); 593 594 if (first) { 595 still_pending: 596 list_del_init(&first->list); 597 copy_siginfo(info, &first->info); 598 599 *resched_timer = 600 (first->flags & SIGQUEUE_PREALLOC) && 601 (info->si_code == SI_TIMER) && 602 (info->si_sys_private); 603 604 __sigqueue_free(first); 605 } else { 606 /* 607 * Ok, it wasn't in the queue. This must be 608 * a fast-pathed signal or we must have been 609 * out of queue space. So zero out the info. 610 */ 611 clear_siginfo(info); 612 info->si_signo = sig; 613 info->si_errno = 0; 614 info->si_code = SI_USER; 615 info->si_pid = 0; 616 info->si_uid = 0; 617 } 618 } 619 620 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 621 kernel_siginfo_t *info, bool *resched_timer) 622 { 623 int sig = next_signal(pending, mask); 624 625 if (sig) 626 collect_signal(sig, pending, info, resched_timer); 627 return sig; 628 } 629 630 /* 631 * Dequeue a signal and return the element to the caller, which is 632 * expected to free it. 633 * 634 * All callers have to hold the siglock. 635 */ 636 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 637 kernel_siginfo_t *info, enum pid_type *type) 638 { 639 bool resched_timer = false; 640 int signr; 641 642 /* We only dequeue private signals from ourselves, we don't let 643 * signalfd steal them 644 */ 645 *type = PIDTYPE_PID; 646 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 647 if (!signr) { 648 *type = PIDTYPE_TGID; 649 signr = __dequeue_signal(&tsk->signal->shared_pending, 650 mask, info, &resched_timer); 651 #ifdef CONFIG_POSIX_TIMERS 652 /* 653 * itimer signal ? 654 * 655 * itimers are process shared and we restart periodic 656 * itimers in the signal delivery path to prevent DoS 657 * attacks in the high resolution timer case. This is 658 * compliant with the old way of self-restarting 659 * itimers, as the SIGALRM is a legacy signal and only 660 * queued once. Changing the restart behaviour to 661 * restart the timer in the signal dequeue path is 662 * reducing the timer noise on heavy loaded !highres 663 * systems too. 664 */ 665 if (unlikely(signr == SIGALRM)) { 666 struct hrtimer *tmr = &tsk->signal->real_timer; 667 668 if (!hrtimer_is_queued(tmr) && 669 tsk->signal->it_real_incr != 0) { 670 hrtimer_forward(tmr, tmr->base->get_time(), 671 tsk->signal->it_real_incr); 672 hrtimer_restart(tmr); 673 } 674 } 675 #endif 676 } 677 678 recalc_sigpending(); 679 if (!signr) 680 return 0; 681 682 if (unlikely(sig_kernel_stop(signr))) { 683 /* 684 * Set a marker that we have dequeued a stop signal. Our 685 * caller might release the siglock and then the pending 686 * stop signal it is about to process is no longer in the 687 * pending bitmasks, but must still be cleared by a SIGCONT 688 * (and overruled by a SIGKILL). So those cases clear this 689 * shared flag after we've set it. Note that this flag may 690 * remain set after the signal we return is ignored or 691 * handled. That doesn't matter because its only purpose 692 * is to alert stop-signal processing code when another 693 * processor has come along and cleared the flag. 694 */ 695 current->jobctl |= JOBCTL_STOP_DEQUEUED; 696 } 697 #ifdef CONFIG_POSIX_TIMERS 698 if (resched_timer) { 699 /* 700 * Release the siglock to ensure proper locking order 701 * of timer locks outside of siglocks. Note, we leave 702 * irqs disabled here, since the posix-timers code is 703 * about to disable them again anyway. 704 */ 705 spin_unlock(&tsk->sighand->siglock); 706 posixtimer_rearm(info); 707 spin_lock(&tsk->sighand->siglock); 708 709 /* Don't expose the si_sys_private value to userspace */ 710 info->si_sys_private = 0; 711 } 712 #endif 713 return signr; 714 } 715 EXPORT_SYMBOL_GPL(dequeue_signal); 716 717 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 718 { 719 struct task_struct *tsk = current; 720 struct sigpending *pending = &tsk->pending; 721 struct sigqueue *q, *sync = NULL; 722 723 /* 724 * Might a synchronous signal be in the queue? 725 */ 726 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 727 return 0; 728 729 /* 730 * Return the first synchronous signal in the queue. 731 */ 732 list_for_each_entry(q, &pending->list, list) { 733 /* Synchronous signals have a positive si_code */ 734 if ((q->info.si_code > SI_USER) && 735 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 736 sync = q; 737 goto next; 738 } 739 } 740 return 0; 741 next: 742 /* 743 * Check if there is another siginfo for the same signal. 744 */ 745 list_for_each_entry_continue(q, &pending->list, list) { 746 if (q->info.si_signo == sync->info.si_signo) 747 goto still_pending; 748 } 749 750 sigdelset(&pending->signal, sync->info.si_signo); 751 recalc_sigpending(); 752 still_pending: 753 list_del_init(&sync->list); 754 copy_siginfo(info, &sync->info); 755 __sigqueue_free(sync); 756 return info->si_signo; 757 } 758 759 /* 760 * Tell a process that it has a new active signal.. 761 * 762 * NOTE! we rely on the previous spin_lock to 763 * lock interrupts for us! We can only be called with 764 * "siglock" held, and the local interrupt must 765 * have been disabled when that got acquired! 766 * 767 * No need to set need_resched since signal event passing 768 * goes through ->blocked 769 */ 770 void signal_wake_up_state(struct task_struct *t, unsigned int state) 771 { 772 lockdep_assert_held(&t->sighand->siglock); 773 774 set_tsk_thread_flag(t, TIF_SIGPENDING); 775 776 /* 777 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 778 * case. We don't check t->state here because there is a race with it 779 * executing another processor and just now entering stopped state. 780 * By using wake_up_state, we ensure the process will wake up and 781 * handle its death signal. 782 */ 783 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 784 kick_process(t); 785 } 786 787 /* 788 * Remove signals in mask from the pending set and queue. 789 * Returns 1 if any signals were found. 790 * 791 * All callers must be holding the siglock. 792 */ 793 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 794 { 795 struct sigqueue *q, *n; 796 sigset_t m; 797 798 sigandsets(&m, mask, &s->signal); 799 if (sigisemptyset(&m)) 800 return; 801 802 sigandnsets(&s->signal, &s->signal, mask); 803 list_for_each_entry_safe(q, n, &s->list, list) { 804 if (sigismember(mask, q->info.si_signo)) { 805 list_del_init(&q->list); 806 __sigqueue_free(q); 807 } 808 } 809 } 810 811 static inline int is_si_special(const struct kernel_siginfo *info) 812 { 813 return info <= SEND_SIG_PRIV; 814 } 815 816 static inline bool si_fromuser(const struct kernel_siginfo *info) 817 { 818 return info == SEND_SIG_NOINFO || 819 (!is_si_special(info) && SI_FROMUSER(info)); 820 } 821 822 /* 823 * called with RCU read lock from check_kill_permission() 824 */ 825 static bool kill_ok_by_cred(struct task_struct *t) 826 { 827 const struct cred *cred = current_cred(); 828 const struct cred *tcred = __task_cred(t); 829 830 return uid_eq(cred->euid, tcred->suid) || 831 uid_eq(cred->euid, tcred->uid) || 832 uid_eq(cred->uid, tcred->suid) || 833 uid_eq(cred->uid, tcred->uid) || 834 ns_capable(tcred->user_ns, CAP_KILL); 835 } 836 837 /* 838 * Bad permissions for sending the signal 839 * - the caller must hold the RCU read lock 840 */ 841 static int check_kill_permission(int sig, struct kernel_siginfo *info, 842 struct task_struct *t) 843 { 844 struct pid *sid; 845 int error; 846 847 if (!valid_signal(sig)) 848 return -EINVAL; 849 850 if (!si_fromuser(info)) 851 return 0; 852 853 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 854 if (error) 855 return error; 856 857 if (!same_thread_group(current, t) && 858 !kill_ok_by_cred(t)) { 859 switch (sig) { 860 case SIGCONT: 861 sid = task_session(t); 862 /* 863 * We don't return the error if sid == NULL. The 864 * task was unhashed, the caller must notice this. 865 */ 866 if (!sid || sid == task_session(current)) 867 break; 868 fallthrough; 869 default: 870 return -EPERM; 871 } 872 } 873 874 return security_task_kill(t, info, sig, NULL); 875 } 876 877 /** 878 * ptrace_trap_notify - schedule trap to notify ptracer 879 * @t: tracee wanting to notify tracer 880 * 881 * This function schedules sticky ptrace trap which is cleared on the next 882 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 883 * ptracer. 884 * 885 * If @t is running, STOP trap will be taken. If trapped for STOP and 886 * ptracer is listening for events, tracee is woken up so that it can 887 * re-trap for the new event. If trapped otherwise, STOP trap will be 888 * eventually taken without returning to userland after the existing traps 889 * are finished by PTRACE_CONT. 890 * 891 * CONTEXT: 892 * Must be called with @task->sighand->siglock held. 893 */ 894 static void ptrace_trap_notify(struct task_struct *t) 895 { 896 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 897 lockdep_assert_held(&t->sighand->siglock); 898 899 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 900 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 901 } 902 903 /* 904 * Handle magic process-wide effects of stop/continue signals. Unlike 905 * the signal actions, these happen immediately at signal-generation 906 * time regardless of blocking, ignoring, or handling. This does the 907 * actual continuing for SIGCONT, but not the actual stopping for stop 908 * signals. The process stop is done as a signal action for SIG_DFL. 909 * 910 * Returns true if the signal should be actually delivered, otherwise 911 * it should be dropped. 912 */ 913 static bool prepare_signal(int sig, struct task_struct *p, bool force) 914 { 915 struct signal_struct *signal = p->signal; 916 struct task_struct *t; 917 sigset_t flush; 918 919 if (signal->flags & SIGNAL_GROUP_EXIT) { 920 if (signal->core_state) 921 return sig == SIGKILL; 922 /* 923 * The process is in the middle of dying, drop the signal. 924 */ 925 return false; 926 } else if (sig_kernel_stop(sig)) { 927 /* 928 * This is a stop signal. Remove SIGCONT from all queues. 929 */ 930 siginitset(&flush, sigmask(SIGCONT)); 931 flush_sigqueue_mask(&flush, &signal->shared_pending); 932 for_each_thread(p, t) 933 flush_sigqueue_mask(&flush, &t->pending); 934 } else if (sig == SIGCONT) { 935 unsigned int why; 936 /* 937 * Remove all stop signals from all queues, wake all threads. 938 */ 939 siginitset(&flush, SIG_KERNEL_STOP_MASK); 940 flush_sigqueue_mask(&flush, &signal->shared_pending); 941 for_each_thread(p, t) { 942 flush_sigqueue_mask(&flush, &t->pending); 943 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 944 if (likely(!(t->ptrace & PT_SEIZED))) { 945 t->jobctl &= ~JOBCTL_STOPPED; 946 wake_up_state(t, __TASK_STOPPED); 947 } else 948 ptrace_trap_notify(t); 949 } 950 951 /* 952 * Notify the parent with CLD_CONTINUED if we were stopped. 953 * 954 * If we were in the middle of a group stop, we pretend it 955 * was already finished, and then continued. Since SIGCHLD 956 * doesn't queue we report only CLD_STOPPED, as if the next 957 * CLD_CONTINUED was dropped. 958 */ 959 why = 0; 960 if (signal->flags & SIGNAL_STOP_STOPPED) 961 why |= SIGNAL_CLD_CONTINUED; 962 else if (signal->group_stop_count) 963 why |= SIGNAL_CLD_STOPPED; 964 965 if (why) { 966 /* 967 * The first thread which returns from do_signal_stop() 968 * will take ->siglock, notice SIGNAL_CLD_MASK, and 969 * notify its parent. See get_signal(). 970 */ 971 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 972 signal->group_stop_count = 0; 973 signal->group_exit_code = 0; 974 } 975 } 976 977 return !sig_ignored(p, sig, force); 978 } 979 980 /* 981 * Test if P wants to take SIG. After we've checked all threads with this, 982 * it's equivalent to finding no threads not blocking SIG. Any threads not 983 * blocking SIG were ruled out because they are not running and already 984 * have pending signals. Such threads will dequeue from the shared queue 985 * as soon as they're available, so putting the signal on the shared queue 986 * will be equivalent to sending it to one such thread. 987 */ 988 static inline bool wants_signal(int sig, struct task_struct *p) 989 { 990 if (sigismember(&p->blocked, sig)) 991 return false; 992 993 if (p->flags & PF_EXITING) 994 return false; 995 996 if (sig == SIGKILL) 997 return true; 998 999 if (task_is_stopped_or_traced(p)) 1000 return false; 1001 1002 return task_curr(p) || !task_sigpending(p); 1003 } 1004 1005 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 1006 { 1007 struct signal_struct *signal = p->signal; 1008 struct task_struct *t; 1009 1010 /* 1011 * Now find a thread we can wake up to take the signal off the queue. 1012 * 1013 * Try the suggested task first (may or may not be the main thread). 1014 */ 1015 if (wants_signal(sig, p)) 1016 t = p; 1017 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1018 /* 1019 * There is just one thread and it does not need to be woken. 1020 * It will dequeue unblocked signals before it runs again. 1021 */ 1022 return; 1023 else { 1024 /* 1025 * Otherwise try to find a suitable thread. 1026 */ 1027 t = signal->curr_target; 1028 while (!wants_signal(sig, t)) { 1029 t = next_thread(t); 1030 if (t == signal->curr_target) 1031 /* 1032 * No thread needs to be woken. 1033 * Any eligible threads will see 1034 * the signal in the queue soon. 1035 */ 1036 return; 1037 } 1038 signal->curr_target = t; 1039 } 1040 1041 /* 1042 * Found a killable thread. If the signal will be fatal, 1043 * then start taking the whole group down immediately. 1044 */ 1045 if (sig_fatal(p, sig) && 1046 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1047 !sigismember(&t->real_blocked, sig) && 1048 (sig == SIGKILL || !p->ptrace)) { 1049 /* 1050 * This signal will be fatal to the whole group. 1051 */ 1052 if (!sig_kernel_coredump(sig)) { 1053 /* 1054 * Start a group exit and wake everybody up. 1055 * This way we don't have other threads 1056 * running and doing things after a slower 1057 * thread has the fatal signal pending. 1058 */ 1059 signal->flags = SIGNAL_GROUP_EXIT; 1060 signal->group_exit_code = sig; 1061 signal->group_stop_count = 0; 1062 t = p; 1063 do { 1064 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1065 sigaddset(&t->pending.signal, SIGKILL); 1066 signal_wake_up(t, 1); 1067 } while_each_thread(p, t); 1068 return; 1069 } 1070 } 1071 1072 /* 1073 * The signal is already in the shared-pending queue. 1074 * Tell the chosen thread to wake up and dequeue it. 1075 */ 1076 signal_wake_up(t, sig == SIGKILL); 1077 return; 1078 } 1079 1080 static inline bool legacy_queue(struct sigpending *signals, int sig) 1081 { 1082 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1083 } 1084 1085 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1086 struct task_struct *t, enum pid_type type, bool force) 1087 { 1088 struct sigpending *pending; 1089 struct sigqueue *q; 1090 int override_rlimit; 1091 int ret = 0, result; 1092 1093 lockdep_assert_held(&t->sighand->siglock); 1094 1095 result = TRACE_SIGNAL_IGNORED; 1096 if (!prepare_signal(sig, t, force)) 1097 goto ret; 1098 1099 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1100 /* 1101 * Short-circuit ignored signals and support queuing 1102 * exactly one non-rt signal, so that we can get more 1103 * detailed information about the cause of the signal. 1104 */ 1105 result = TRACE_SIGNAL_ALREADY_PENDING; 1106 if (legacy_queue(pending, sig)) 1107 goto ret; 1108 1109 result = TRACE_SIGNAL_DELIVERED; 1110 /* 1111 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1112 */ 1113 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1114 goto out_set; 1115 1116 /* 1117 * Real-time signals must be queued if sent by sigqueue, or 1118 * some other real-time mechanism. It is implementation 1119 * defined whether kill() does so. We attempt to do so, on 1120 * the principle of least surprise, but since kill is not 1121 * allowed to fail with EAGAIN when low on memory we just 1122 * make sure at least one signal gets delivered and don't 1123 * pass on the info struct. 1124 */ 1125 if (sig < SIGRTMIN) 1126 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1127 else 1128 override_rlimit = 0; 1129 1130 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1131 1132 if (q) { 1133 list_add_tail(&q->list, &pending->list); 1134 switch ((unsigned long) info) { 1135 case (unsigned long) SEND_SIG_NOINFO: 1136 clear_siginfo(&q->info); 1137 q->info.si_signo = sig; 1138 q->info.si_errno = 0; 1139 q->info.si_code = SI_USER; 1140 q->info.si_pid = task_tgid_nr_ns(current, 1141 task_active_pid_ns(t)); 1142 rcu_read_lock(); 1143 q->info.si_uid = 1144 from_kuid_munged(task_cred_xxx(t, user_ns), 1145 current_uid()); 1146 rcu_read_unlock(); 1147 break; 1148 case (unsigned long) SEND_SIG_PRIV: 1149 clear_siginfo(&q->info); 1150 q->info.si_signo = sig; 1151 q->info.si_errno = 0; 1152 q->info.si_code = SI_KERNEL; 1153 q->info.si_pid = 0; 1154 q->info.si_uid = 0; 1155 break; 1156 default: 1157 copy_siginfo(&q->info, info); 1158 break; 1159 } 1160 } else if (!is_si_special(info) && 1161 sig >= SIGRTMIN && info->si_code != SI_USER) { 1162 /* 1163 * Queue overflow, abort. We may abort if the 1164 * signal was rt and sent by user using something 1165 * other than kill(). 1166 */ 1167 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1168 ret = -EAGAIN; 1169 goto ret; 1170 } else { 1171 /* 1172 * This is a silent loss of information. We still 1173 * send the signal, but the *info bits are lost. 1174 */ 1175 result = TRACE_SIGNAL_LOSE_INFO; 1176 } 1177 1178 out_set: 1179 signalfd_notify(t, sig); 1180 sigaddset(&pending->signal, sig); 1181 1182 /* Let multiprocess signals appear after on-going forks */ 1183 if (type > PIDTYPE_TGID) { 1184 struct multiprocess_signals *delayed; 1185 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1186 sigset_t *signal = &delayed->signal; 1187 /* Can't queue both a stop and a continue signal */ 1188 if (sig == SIGCONT) 1189 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1190 else if (sig_kernel_stop(sig)) 1191 sigdelset(signal, SIGCONT); 1192 sigaddset(signal, sig); 1193 } 1194 } 1195 1196 complete_signal(sig, t, type); 1197 ret: 1198 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1199 return ret; 1200 } 1201 1202 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1203 { 1204 bool ret = false; 1205 switch (siginfo_layout(info->si_signo, info->si_code)) { 1206 case SIL_KILL: 1207 case SIL_CHLD: 1208 case SIL_RT: 1209 ret = true; 1210 break; 1211 case SIL_TIMER: 1212 case SIL_POLL: 1213 case SIL_FAULT: 1214 case SIL_FAULT_TRAPNO: 1215 case SIL_FAULT_MCEERR: 1216 case SIL_FAULT_BNDERR: 1217 case SIL_FAULT_PKUERR: 1218 case SIL_FAULT_PERF_EVENT: 1219 case SIL_SYS: 1220 ret = false; 1221 break; 1222 } 1223 return ret; 1224 } 1225 1226 int send_signal_locked(int sig, struct kernel_siginfo *info, 1227 struct task_struct *t, enum pid_type type) 1228 { 1229 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1230 bool force = false; 1231 1232 if (info == SEND_SIG_NOINFO) { 1233 /* Force if sent from an ancestor pid namespace */ 1234 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1235 } else if (info == SEND_SIG_PRIV) { 1236 /* Don't ignore kernel generated signals */ 1237 force = true; 1238 } else if (has_si_pid_and_uid(info)) { 1239 /* SIGKILL and SIGSTOP is special or has ids */ 1240 struct user_namespace *t_user_ns; 1241 1242 rcu_read_lock(); 1243 t_user_ns = task_cred_xxx(t, user_ns); 1244 if (current_user_ns() != t_user_ns) { 1245 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1246 info->si_uid = from_kuid_munged(t_user_ns, uid); 1247 } 1248 rcu_read_unlock(); 1249 1250 /* A kernel generated signal? */ 1251 force = (info->si_code == SI_KERNEL); 1252 1253 /* From an ancestor pid namespace? */ 1254 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1255 info->si_pid = 0; 1256 force = true; 1257 } 1258 } 1259 return __send_signal_locked(sig, info, t, type, force); 1260 } 1261 1262 static void print_fatal_signal(int signr) 1263 { 1264 struct pt_regs *regs = task_pt_regs(current); 1265 struct file *exe_file; 1266 1267 exe_file = get_task_exe_file(current); 1268 if (exe_file) { 1269 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1270 exe_file, current->comm, signr); 1271 fput(exe_file); 1272 } else { 1273 pr_info("%s: potentially unexpected fatal signal %d.\n", 1274 current->comm, signr); 1275 } 1276 1277 #if defined(__i386__) && !defined(__arch_um__) 1278 pr_info("code at %08lx: ", regs->ip); 1279 { 1280 int i; 1281 for (i = 0; i < 16; i++) { 1282 unsigned char insn; 1283 1284 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1285 break; 1286 pr_cont("%02x ", insn); 1287 } 1288 } 1289 pr_cont("\n"); 1290 #endif 1291 preempt_disable(); 1292 show_regs(regs); 1293 preempt_enable(); 1294 } 1295 1296 static int __init setup_print_fatal_signals(char *str) 1297 { 1298 get_option (&str, &print_fatal_signals); 1299 1300 return 1; 1301 } 1302 1303 __setup("print-fatal-signals=", setup_print_fatal_signals); 1304 1305 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1306 enum pid_type type) 1307 { 1308 unsigned long flags; 1309 int ret = -ESRCH; 1310 1311 if (lock_task_sighand(p, &flags)) { 1312 ret = send_signal_locked(sig, info, p, type); 1313 unlock_task_sighand(p, &flags); 1314 } 1315 1316 return ret; 1317 } 1318 1319 enum sig_handler { 1320 HANDLER_CURRENT, /* If reachable use the current handler */ 1321 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1322 HANDLER_EXIT, /* Only visible as the process exit code */ 1323 }; 1324 1325 /* 1326 * Force a signal that the process can't ignore: if necessary 1327 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1328 * 1329 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1330 * since we do not want to have a signal handler that was blocked 1331 * be invoked when user space had explicitly blocked it. 1332 * 1333 * We don't want to have recursive SIGSEGV's etc, for example, 1334 * that is why we also clear SIGNAL_UNKILLABLE. 1335 */ 1336 static int 1337 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1338 enum sig_handler handler) 1339 { 1340 unsigned long int flags; 1341 int ret, blocked, ignored; 1342 struct k_sigaction *action; 1343 int sig = info->si_signo; 1344 1345 spin_lock_irqsave(&t->sighand->siglock, flags); 1346 action = &t->sighand->action[sig-1]; 1347 ignored = action->sa.sa_handler == SIG_IGN; 1348 blocked = sigismember(&t->blocked, sig); 1349 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1350 action->sa.sa_handler = SIG_DFL; 1351 if (handler == HANDLER_EXIT) 1352 action->sa.sa_flags |= SA_IMMUTABLE; 1353 if (blocked) { 1354 sigdelset(&t->blocked, sig); 1355 recalc_sigpending_and_wake(t); 1356 } 1357 } 1358 /* 1359 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1360 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1361 */ 1362 if (action->sa.sa_handler == SIG_DFL && 1363 (!t->ptrace || (handler == HANDLER_EXIT))) 1364 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1365 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1366 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1367 1368 return ret; 1369 } 1370 1371 int force_sig_info(struct kernel_siginfo *info) 1372 { 1373 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1374 } 1375 1376 /* 1377 * Nuke all other threads in the group. 1378 */ 1379 int zap_other_threads(struct task_struct *p) 1380 { 1381 struct task_struct *t = p; 1382 int count = 0; 1383 1384 p->signal->group_stop_count = 0; 1385 1386 while_each_thread(p, t) { 1387 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1388 /* Don't require de_thread to wait for the vhost_worker */ 1389 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) 1390 count++; 1391 1392 /* Don't bother with already dead threads */ 1393 if (t->exit_state) 1394 continue; 1395 sigaddset(&t->pending.signal, SIGKILL); 1396 signal_wake_up(t, 1); 1397 } 1398 1399 return count; 1400 } 1401 1402 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1403 unsigned long *flags) 1404 { 1405 struct sighand_struct *sighand; 1406 1407 rcu_read_lock(); 1408 for (;;) { 1409 sighand = rcu_dereference(tsk->sighand); 1410 if (unlikely(sighand == NULL)) 1411 break; 1412 1413 /* 1414 * This sighand can be already freed and even reused, but 1415 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1416 * initializes ->siglock: this slab can't go away, it has 1417 * the same object type, ->siglock can't be reinitialized. 1418 * 1419 * We need to ensure that tsk->sighand is still the same 1420 * after we take the lock, we can race with de_thread() or 1421 * __exit_signal(). In the latter case the next iteration 1422 * must see ->sighand == NULL. 1423 */ 1424 spin_lock_irqsave(&sighand->siglock, *flags); 1425 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1426 break; 1427 spin_unlock_irqrestore(&sighand->siglock, *flags); 1428 } 1429 rcu_read_unlock(); 1430 1431 return sighand; 1432 } 1433 1434 #ifdef CONFIG_LOCKDEP 1435 void lockdep_assert_task_sighand_held(struct task_struct *task) 1436 { 1437 struct sighand_struct *sighand; 1438 1439 rcu_read_lock(); 1440 sighand = rcu_dereference(task->sighand); 1441 if (sighand) 1442 lockdep_assert_held(&sighand->siglock); 1443 else 1444 WARN_ON_ONCE(1); 1445 rcu_read_unlock(); 1446 } 1447 #endif 1448 1449 /* 1450 * send signal info to all the members of a group 1451 */ 1452 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1453 struct task_struct *p, enum pid_type type) 1454 { 1455 int ret; 1456 1457 rcu_read_lock(); 1458 ret = check_kill_permission(sig, info, p); 1459 rcu_read_unlock(); 1460 1461 if (!ret && sig) 1462 ret = do_send_sig_info(sig, info, p, type); 1463 1464 return ret; 1465 } 1466 1467 /* 1468 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1469 * control characters do (^C, ^Z etc) 1470 * - the caller must hold at least a readlock on tasklist_lock 1471 */ 1472 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1473 { 1474 struct task_struct *p = NULL; 1475 int retval, success; 1476 1477 success = 0; 1478 retval = -ESRCH; 1479 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1480 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1481 success |= !err; 1482 retval = err; 1483 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1484 return success ? 0 : retval; 1485 } 1486 1487 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1488 { 1489 int error = -ESRCH; 1490 struct task_struct *p; 1491 1492 for (;;) { 1493 rcu_read_lock(); 1494 p = pid_task(pid, PIDTYPE_PID); 1495 if (p) 1496 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1497 rcu_read_unlock(); 1498 if (likely(!p || error != -ESRCH)) 1499 return error; 1500 1501 /* 1502 * The task was unhashed in between, try again. If it 1503 * is dead, pid_task() will return NULL, if we race with 1504 * de_thread() it will find the new leader. 1505 */ 1506 } 1507 } 1508 1509 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1510 { 1511 int error; 1512 rcu_read_lock(); 1513 error = kill_pid_info(sig, info, find_vpid(pid)); 1514 rcu_read_unlock(); 1515 return error; 1516 } 1517 1518 static inline bool kill_as_cred_perm(const struct cred *cred, 1519 struct task_struct *target) 1520 { 1521 const struct cred *pcred = __task_cred(target); 1522 1523 return uid_eq(cred->euid, pcred->suid) || 1524 uid_eq(cred->euid, pcred->uid) || 1525 uid_eq(cred->uid, pcred->suid) || 1526 uid_eq(cred->uid, pcred->uid); 1527 } 1528 1529 /* 1530 * The usb asyncio usage of siginfo is wrong. The glibc support 1531 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1532 * AKA after the generic fields: 1533 * kernel_pid_t si_pid; 1534 * kernel_uid32_t si_uid; 1535 * sigval_t si_value; 1536 * 1537 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1538 * after the generic fields is: 1539 * void __user *si_addr; 1540 * 1541 * This is a practical problem when there is a 64bit big endian kernel 1542 * and a 32bit userspace. As the 32bit address will encoded in the low 1543 * 32bits of the pointer. Those low 32bits will be stored at higher 1544 * address than appear in a 32 bit pointer. So userspace will not 1545 * see the address it was expecting for it's completions. 1546 * 1547 * There is nothing in the encoding that can allow 1548 * copy_siginfo_to_user32 to detect this confusion of formats, so 1549 * handle this by requiring the caller of kill_pid_usb_asyncio to 1550 * notice when this situration takes place and to store the 32bit 1551 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1552 * parameter. 1553 */ 1554 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1555 struct pid *pid, const struct cred *cred) 1556 { 1557 struct kernel_siginfo info; 1558 struct task_struct *p; 1559 unsigned long flags; 1560 int ret = -EINVAL; 1561 1562 if (!valid_signal(sig)) 1563 return ret; 1564 1565 clear_siginfo(&info); 1566 info.si_signo = sig; 1567 info.si_errno = errno; 1568 info.si_code = SI_ASYNCIO; 1569 *((sigval_t *)&info.si_pid) = addr; 1570 1571 rcu_read_lock(); 1572 p = pid_task(pid, PIDTYPE_PID); 1573 if (!p) { 1574 ret = -ESRCH; 1575 goto out_unlock; 1576 } 1577 if (!kill_as_cred_perm(cred, p)) { 1578 ret = -EPERM; 1579 goto out_unlock; 1580 } 1581 ret = security_task_kill(p, &info, sig, cred); 1582 if (ret) 1583 goto out_unlock; 1584 1585 if (sig) { 1586 if (lock_task_sighand(p, &flags)) { 1587 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1588 unlock_task_sighand(p, &flags); 1589 } else 1590 ret = -ESRCH; 1591 } 1592 out_unlock: 1593 rcu_read_unlock(); 1594 return ret; 1595 } 1596 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1597 1598 /* 1599 * kill_something_info() interprets pid in interesting ways just like kill(2). 1600 * 1601 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1602 * is probably wrong. Should make it like BSD or SYSV. 1603 */ 1604 1605 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1606 { 1607 int ret; 1608 1609 if (pid > 0) 1610 return kill_proc_info(sig, info, pid); 1611 1612 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1613 if (pid == INT_MIN) 1614 return -ESRCH; 1615 1616 read_lock(&tasklist_lock); 1617 if (pid != -1) { 1618 ret = __kill_pgrp_info(sig, info, 1619 pid ? find_vpid(-pid) : task_pgrp(current)); 1620 } else { 1621 int retval = 0, count = 0; 1622 struct task_struct * p; 1623 1624 for_each_process(p) { 1625 if (task_pid_vnr(p) > 1 && 1626 !same_thread_group(p, current)) { 1627 int err = group_send_sig_info(sig, info, p, 1628 PIDTYPE_MAX); 1629 ++count; 1630 if (err != -EPERM) 1631 retval = err; 1632 } 1633 } 1634 ret = count ? retval : -ESRCH; 1635 } 1636 read_unlock(&tasklist_lock); 1637 1638 return ret; 1639 } 1640 1641 /* 1642 * These are for backward compatibility with the rest of the kernel source. 1643 */ 1644 1645 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1646 { 1647 /* 1648 * Make sure legacy kernel users don't send in bad values 1649 * (normal paths check this in check_kill_permission). 1650 */ 1651 if (!valid_signal(sig)) 1652 return -EINVAL; 1653 1654 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1655 } 1656 EXPORT_SYMBOL(send_sig_info); 1657 1658 #define __si_special(priv) \ 1659 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1660 1661 int 1662 send_sig(int sig, struct task_struct *p, int priv) 1663 { 1664 return send_sig_info(sig, __si_special(priv), p); 1665 } 1666 EXPORT_SYMBOL(send_sig); 1667 1668 void force_sig(int sig) 1669 { 1670 struct kernel_siginfo info; 1671 1672 clear_siginfo(&info); 1673 info.si_signo = sig; 1674 info.si_errno = 0; 1675 info.si_code = SI_KERNEL; 1676 info.si_pid = 0; 1677 info.si_uid = 0; 1678 force_sig_info(&info); 1679 } 1680 EXPORT_SYMBOL(force_sig); 1681 1682 void force_fatal_sig(int sig) 1683 { 1684 struct kernel_siginfo info; 1685 1686 clear_siginfo(&info); 1687 info.si_signo = sig; 1688 info.si_errno = 0; 1689 info.si_code = SI_KERNEL; 1690 info.si_pid = 0; 1691 info.si_uid = 0; 1692 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1693 } 1694 1695 void force_exit_sig(int sig) 1696 { 1697 struct kernel_siginfo info; 1698 1699 clear_siginfo(&info); 1700 info.si_signo = sig; 1701 info.si_errno = 0; 1702 info.si_code = SI_KERNEL; 1703 info.si_pid = 0; 1704 info.si_uid = 0; 1705 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1706 } 1707 1708 /* 1709 * When things go south during signal handling, we 1710 * will force a SIGSEGV. And if the signal that caused 1711 * the problem was already a SIGSEGV, we'll want to 1712 * make sure we don't even try to deliver the signal.. 1713 */ 1714 void force_sigsegv(int sig) 1715 { 1716 if (sig == SIGSEGV) 1717 force_fatal_sig(SIGSEGV); 1718 else 1719 force_sig(SIGSEGV); 1720 } 1721 1722 int force_sig_fault_to_task(int sig, int code, void __user *addr 1723 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1724 , struct task_struct *t) 1725 { 1726 struct kernel_siginfo info; 1727 1728 clear_siginfo(&info); 1729 info.si_signo = sig; 1730 info.si_errno = 0; 1731 info.si_code = code; 1732 info.si_addr = addr; 1733 #ifdef __ia64__ 1734 info.si_imm = imm; 1735 info.si_flags = flags; 1736 info.si_isr = isr; 1737 #endif 1738 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1739 } 1740 1741 int force_sig_fault(int sig, int code, void __user *addr 1742 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1743 { 1744 return force_sig_fault_to_task(sig, code, addr 1745 ___ARCH_SI_IA64(imm, flags, isr), current); 1746 } 1747 1748 int send_sig_fault(int sig, int code, void __user *addr 1749 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1750 , struct task_struct *t) 1751 { 1752 struct kernel_siginfo info; 1753 1754 clear_siginfo(&info); 1755 info.si_signo = sig; 1756 info.si_errno = 0; 1757 info.si_code = code; 1758 info.si_addr = addr; 1759 #ifdef __ia64__ 1760 info.si_imm = imm; 1761 info.si_flags = flags; 1762 info.si_isr = isr; 1763 #endif 1764 return send_sig_info(info.si_signo, &info, t); 1765 } 1766 1767 int force_sig_mceerr(int code, void __user *addr, short lsb) 1768 { 1769 struct kernel_siginfo info; 1770 1771 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1772 clear_siginfo(&info); 1773 info.si_signo = SIGBUS; 1774 info.si_errno = 0; 1775 info.si_code = code; 1776 info.si_addr = addr; 1777 info.si_addr_lsb = lsb; 1778 return force_sig_info(&info); 1779 } 1780 1781 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1782 { 1783 struct kernel_siginfo info; 1784 1785 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1786 clear_siginfo(&info); 1787 info.si_signo = SIGBUS; 1788 info.si_errno = 0; 1789 info.si_code = code; 1790 info.si_addr = addr; 1791 info.si_addr_lsb = lsb; 1792 return send_sig_info(info.si_signo, &info, t); 1793 } 1794 EXPORT_SYMBOL(send_sig_mceerr); 1795 1796 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1797 { 1798 struct kernel_siginfo info; 1799 1800 clear_siginfo(&info); 1801 info.si_signo = SIGSEGV; 1802 info.si_errno = 0; 1803 info.si_code = SEGV_BNDERR; 1804 info.si_addr = addr; 1805 info.si_lower = lower; 1806 info.si_upper = upper; 1807 return force_sig_info(&info); 1808 } 1809 1810 #ifdef SEGV_PKUERR 1811 int force_sig_pkuerr(void __user *addr, u32 pkey) 1812 { 1813 struct kernel_siginfo info; 1814 1815 clear_siginfo(&info); 1816 info.si_signo = SIGSEGV; 1817 info.si_errno = 0; 1818 info.si_code = SEGV_PKUERR; 1819 info.si_addr = addr; 1820 info.si_pkey = pkey; 1821 return force_sig_info(&info); 1822 } 1823 #endif 1824 1825 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1826 { 1827 struct kernel_siginfo info; 1828 1829 clear_siginfo(&info); 1830 info.si_signo = SIGTRAP; 1831 info.si_errno = 0; 1832 info.si_code = TRAP_PERF; 1833 info.si_addr = addr; 1834 info.si_perf_data = sig_data; 1835 info.si_perf_type = type; 1836 1837 /* 1838 * Signals generated by perf events should not terminate the whole 1839 * process if SIGTRAP is blocked, however, delivering the signal 1840 * asynchronously is better than not delivering at all. But tell user 1841 * space if the signal was asynchronous, so it can clearly be 1842 * distinguished from normal synchronous ones. 1843 */ 1844 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1845 TRAP_PERF_FLAG_ASYNC : 1846 0; 1847 1848 return send_sig_info(info.si_signo, &info, current); 1849 } 1850 1851 /** 1852 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1853 * @syscall: syscall number to send to userland 1854 * @reason: filter-supplied reason code to send to userland (via si_errno) 1855 * @force_coredump: true to trigger a coredump 1856 * 1857 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1858 */ 1859 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1860 { 1861 struct kernel_siginfo info; 1862 1863 clear_siginfo(&info); 1864 info.si_signo = SIGSYS; 1865 info.si_code = SYS_SECCOMP; 1866 info.si_call_addr = (void __user *)KSTK_EIP(current); 1867 info.si_errno = reason; 1868 info.si_arch = syscall_get_arch(current); 1869 info.si_syscall = syscall; 1870 return force_sig_info_to_task(&info, current, 1871 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1872 } 1873 1874 /* For the crazy architectures that include trap information in 1875 * the errno field, instead of an actual errno value. 1876 */ 1877 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1878 { 1879 struct kernel_siginfo info; 1880 1881 clear_siginfo(&info); 1882 info.si_signo = SIGTRAP; 1883 info.si_errno = errno; 1884 info.si_code = TRAP_HWBKPT; 1885 info.si_addr = addr; 1886 return force_sig_info(&info); 1887 } 1888 1889 /* For the rare architectures that include trap information using 1890 * si_trapno. 1891 */ 1892 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1893 { 1894 struct kernel_siginfo info; 1895 1896 clear_siginfo(&info); 1897 info.si_signo = sig; 1898 info.si_errno = 0; 1899 info.si_code = code; 1900 info.si_addr = addr; 1901 info.si_trapno = trapno; 1902 return force_sig_info(&info); 1903 } 1904 1905 /* For the rare architectures that include trap information using 1906 * si_trapno. 1907 */ 1908 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1909 struct task_struct *t) 1910 { 1911 struct kernel_siginfo info; 1912 1913 clear_siginfo(&info); 1914 info.si_signo = sig; 1915 info.si_errno = 0; 1916 info.si_code = code; 1917 info.si_addr = addr; 1918 info.si_trapno = trapno; 1919 return send_sig_info(info.si_signo, &info, t); 1920 } 1921 1922 int kill_pgrp(struct pid *pid, int sig, int priv) 1923 { 1924 int ret; 1925 1926 read_lock(&tasklist_lock); 1927 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1928 read_unlock(&tasklist_lock); 1929 1930 return ret; 1931 } 1932 EXPORT_SYMBOL(kill_pgrp); 1933 1934 int kill_pid(struct pid *pid, int sig, int priv) 1935 { 1936 return kill_pid_info(sig, __si_special(priv), pid); 1937 } 1938 EXPORT_SYMBOL(kill_pid); 1939 1940 /* 1941 * These functions support sending signals using preallocated sigqueue 1942 * structures. This is needed "because realtime applications cannot 1943 * afford to lose notifications of asynchronous events, like timer 1944 * expirations or I/O completions". In the case of POSIX Timers 1945 * we allocate the sigqueue structure from the timer_create. If this 1946 * allocation fails we are able to report the failure to the application 1947 * with an EAGAIN error. 1948 */ 1949 struct sigqueue *sigqueue_alloc(void) 1950 { 1951 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1952 } 1953 1954 void sigqueue_free(struct sigqueue *q) 1955 { 1956 unsigned long flags; 1957 spinlock_t *lock = ¤t->sighand->siglock; 1958 1959 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1960 /* 1961 * We must hold ->siglock while testing q->list 1962 * to serialize with collect_signal() or with 1963 * __exit_signal()->flush_sigqueue(). 1964 */ 1965 spin_lock_irqsave(lock, flags); 1966 q->flags &= ~SIGQUEUE_PREALLOC; 1967 /* 1968 * If it is queued it will be freed when dequeued, 1969 * like the "regular" sigqueue. 1970 */ 1971 if (!list_empty(&q->list)) 1972 q = NULL; 1973 spin_unlock_irqrestore(lock, flags); 1974 1975 if (q) 1976 __sigqueue_free(q); 1977 } 1978 1979 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1980 { 1981 int sig = q->info.si_signo; 1982 struct sigpending *pending; 1983 struct task_struct *t; 1984 unsigned long flags; 1985 int ret, result; 1986 1987 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1988 1989 ret = -1; 1990 rcu_read_lock(); 1991 1992 /* 1993 * This function is used by POSIX timers to deliver a timer signal. 1994 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1995 * set), the signal must be delivered to the specific thread (queues 1996 * into t->pending). 1997 * 1998 * Where type is not PIDTYPE_PID, signals must be delivered to the 1999 * process. In this case, prefer to deliver to current if it is in 2000 * the same thread group as the target process, which avoids 2001 * unnecessarily waking up a potentially idle task. 2002 */ 2003 t = pid_task(pid, type); 2004 if (!t) 2005 goto ret; 2006 if (type != PIDTYPE_PID && same_thread_group(t, current)) 2007 t = current; 2008 if (!likely(lock_task_sighand(t, &flags))) 2009 goto ret; 2010 2011 ret = 1; /* the signal is ignored */ 2012 result = TRACE_SIGNAL_IGNORED; 2013 if (!prepare_signal(sig, t, false)) 2014 goto out; 2015 2016 ret = 0; 2017 if (unlikely(!list_empty(&q->list))) { 2018 /* 2019 * If an SI_TIMER entry is already queue just increment 2020 * the overrun count. 2021 */ 2022 BUG_ON(q->info.si_code != SI_TIMER); 2023 q->info.si_overrun++; 2024 result = TRACE_SIGNAL_ALREADY_PENDING; 2025 goto out; 2026 } 2027 q->info.si_overrun = 0; 2028 2029 signalfd_notify(t, sig); 2030 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2031 list_add_tail(&q->list, &pending->list); 2032 sigaddset(&pending->signal, sig); 2033 complete_signal(sig, t, type); 2034 result = TRACE_SIGNAL_DELIVERED; 2035 out: 2036 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2037 unlock_task_sighand(t, &flags); 2038 ret: 2039 rcu_read_unlock(); 2040 return ret; 2041 } 2042 2043 static void do_notify_pidfd(struct task_struct *task) 2044 { 2045 struct pid *pid; 2046 2047 WARN_ON(task->exit_state == 0); 2048 pid = task_pid(task); 2049 wake_up_all(&pid->wait_pidfd); 2050 } 2051 2052 /* 2053 * Let a parent know about the death of a child. 2054 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2055 * 2056 * Returns true if our parent ignored us and so we've switched to 2057 * self-reaping. 2058 */ 2059 bool do_notify_parent(struct task_struct *tsk, int sig) 2060 { 2061 struct kernel_siginfo info; 2062 unsigned long flags; 2063 struct sighand_struct *psig; 2064 bool autoreap = false; 2065 u64 utime, stime; 2066 2067 WARN_ON_ONCE(sig == -1); 2068 2069 /* do_notify_parent_cldstop should have been called instead. */ 2070 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2071 2072 WARN_ON_ONCE(!tsk->ptrace && 2073 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2074 2075 /* Wake up all pidfd waiters */ 2076 do_notify_pidfd(tsk); 2077 2078 if (sig != SIGCHLD) { 2079 /* 2080 * This is only possible if parent == real_parent. 2081 * Check if it has changed security domain. 2082 */ 2083 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2084 sig = SIGCHLD; 2085 } 2086 2087 clear_siginfo(&info); 2088 info.si_signo = sig; 2089 info.si_errno = 0; 2090 /* 2091 * We are under tasklist_lock here so our parent is tied to 2092 * us and cannot change. 2093 * 2094 * task_active_pid_ns will always return the same pid namespace 2095 * until a task passes through release_task. 2096 * 2097 * write_lock() currently calls preempt_disable() which is the 2098 * same as rcu_read_lock(), but according to Oleg, this is not 2099 * correct to rely on this 2100 */ 2101 rcu_read_lock(); 2102 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2103 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2104 task_uid(tsk)); 2105 rcu_read_unlock(); 2106 2107 task_cputime(tsk, &utime, &stime); 2108 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2109 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2110 2111 info.si_status = tsk->exit_code & 0x7f; 2112 if (tsk->exit_code & 0x80) 2113 info.si_code = CLD_DUMPED; 2114 else if (tsk->exit_code & 0x7f) 2115 info.si_code = CLD_KILLED; 2116 else { 2117 info.si_code = CLD_EXITED; 2118 info.si_status = tsk->exit_code >> 8; 2119 } 2120 2121 psig = tsk->parent->sighand; 2122 spin_lock_irqsave(&psig->siglock, flags); 2123 if (!tsk->ptrace && sig == SIGCHLD && 2124 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2125 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2126 /* 2127 * We are exiting and our parent doesn't care. POSIX.1 2128 * defines special semantics for setting SIGCHLD to SIG_IGN 2129 * or setting the SA_NOCLDWAIT flag: we should be reaped 2130 * automatically and not left for our parent's wait4 call. 2131 * Rather than having the parent do it as a magic kind of 2132 * signal handler, we just set this to tell do_exit that we 2133 * can be cleaned up without becoming a zombie. Note that 2134 * we still call __wake_up_parent in this case, because a 2135 * blocked sys_wait4 might now return -ECHILD. 2136 * 2137 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2138 * is implementation-defined: we do (if you don't want 2139 * it, just use SIG_IGN instead). 2140 */ 2141 autoreap = true; 2142 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2143 sig = 0; 2144 } 2145 /* 2146 * Send with __send_signal as si_pid and si_uid are in the 2147 * parent's namespaces. 2148 */ 2149 if (valid_signal(sig) && sig) 2150 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2151 __wake_up_parent(tsk, tsk->parent); 2152 spin_unlock_irqrestore(&psig->siglock, flags); 2153 2154 return autoreap; 2155 } 2156 2157 /** 2158 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2159 * @tsk: task reporting the state change 2160 * @for_ptracer: the notification is for ptracer 2161 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2162 * 2163 * Notify @tsk's parent that the stopped/continued state has changed. If 2164 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2165 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2166 * 2167 * CONTEXT: 2168 * Must be called with tasklist_lock at least read locked. 2169 */ 2170 static void do_notify_parent_cldstop(struct task_struct *tsk, 2171 bool for_ptracer, int why) 2172 { 2173 struct kernel_siginfo info; 2174 unsigned long flags; 2175 struct task_struct *parent; 2176 struct sighand_struct *sighand; 2177 u64 utime, stime; 2178 2179 if (for_ptracer) { 2180 parent = tsk->parent; 2181 } else { 2182 tsk = tsk->group_leader; 2183 parent = tsk->real_parent; 2184 } 2185 2186 clear_siginfo(&info); 2187 info.si_signo = SIGCHLD; 2188 info.si_errno = 0; 2189 /* 2190 * see comment in do_notify_parent() about the following 4 lines 2191 */ 2192 rcu_read_lock(); 2193 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2194 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2195 rcu_read_unlock(); 2196 2197 task_cputime(tsk, &utime, &stime); 2198 info.si_utime = nsec_to_clock_t(utime); 2199 info.si_stime = nsec_to_clock_t(stime); 2200 2201 info.si_code = why; 2202 switch (why) { 2203 case CLD_CONTINUED: 2204 info.si_status = SIGCONT; 2205 break; 2206 case CLD_STOPPED: 2207 info.si_status = tsk->signal->group_exit_code & 0x7f; 2208 break; 2209 case CLD_TRAPPED: 2210 info.si_status = tsk->exit_code & 0x7f; 2211 break; 2212 default: 2213 BUG(); 2214 } 2215 2216 sighand = parent->sighand; 2217 spin_lock_irqsave(&sighand->siglock, flags); 2218 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2219 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2220 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2221 /* 2222 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2223 */ 2224 __wake_up_parent(tsk, parent); 2225 spin_unlock_irqrestore(&sighand->siglock, flags); 2226 } 2227 2228 /* 2229 * This must be called with current->sighand->siglock held. 2230 * 2231 * This should be the path for all ptrace stops. 2232 * We always set current->last_siginfo while stopped here. 2233 * That makes it a way to test a stopped process for 2234 * being ptrace-stopped vs being job-control-stopped. 2235 * 2236 * Returns the signal the ptracer requested the code resume 2237 * with. If the code did not stop because the tracer is gone, 2238 * the stop signal remains unchanged unless clear_code. 2239 */ 2240 static int ptrace_stop(int exit_code, int why, unsigned long message, 2241 kernel_siginfo_t *info) 2242 __releases(¤t->sighand->siglock) 2243 __acquires(¤t->sighand->siglock) 2244 { 2245 bool gstop_done = false; 2246 2247 if (arch_ptrace_stop_needed()) { 2248 /* 2249 * The arch code has something special to do before a 2250 * ptrace stop. This is allowed to block, e.g. for faults 2251 * on user stack pages. We can't keep the siglock while 2252 * calling arch_ptrace_stop, so we must release it now. 2253 * To preserve proper semantics, we must do this before 2254 * any signal bookkeeping like checking group_stop_count. 2255 */ 2256 spin_unlock_irq(¤t->sighand->siglock); 2257 arch_ptrace_stop(); 2258 spin_lock_irq(¤t->sighand->siglock); 2259 } 2260 2261 /* 2262 * After this point ptrace_signal_wake_up or signal_wake_up 2263 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2264 * signal comes in. Handle previous ptrace_unlinks and fatal 2265 * signals here to prevent ptrace_stop sleeping in schedule. 2266 */ 2267 if (!current->ptrace || __fatal_signal_pending(current)) 2268 return exit_code; 2269 2270 set_special_state(TASK_TRACED); 2271 current->jobctl |= JOBCTL_TRACED; 2272 2273 /* 2274 * We're committing to trapping. TRACED should be visible before 2275 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2276 * Also, transition to TRACED and updates to ->jobctl should be 2277 * atomic with respect to siglock and should be done after the arch 2278 * hook as siglock is released and regrabbed across it. 2279 * 2280 * TRACER TRACEE 2281 * 2282 * ptrace_attach() 2283 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2284 * do_wait() 2285 * set_current_state() smp_wmb(); 2286 * ptrace_do_wait() 2287 * wait_task_stopped() 2288 * task_stopped_code() 2289 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2290 */ 2291 smp_wmb(); 2292 2293 current->ptrace_message = message; 2294 current->last_siginfo = info; 2295 current->exit_code = exit_code; 2296 2297 /* 2298 * If @why is CLD_STOPPED, we're trapping to participate in a group 2299 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2300 * across siglock relocks since INTERRUPT was scheduled, PENDING 2301 * could be clear now. We act as if SIGCONT is received after 2302 * TASK_TRACED is entered - ignore it. 2303 */ 2304 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2305 gstop_done = task_participate_group_stop(current); 2306 2307 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2308 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2309 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2310 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2311 2312 /* entering a trap, clear TRAPPING */ 2313 task_clear_jobctl_trapping(current); 2314 2315 spin_unlock_irq(¤t->sighand->siglock); 2316 read_lock(&tasklist_lock); 2317 /* 2318 * Notify parents of the stop. 2319 * 2320 * While ptraced, there are two parents - the ptracer and 2321 * the real_parent of the group_leader. The ptracer should 2322 * know about every stop while the real parent is only 2323 * interested in the completion of group stop. The states 2324 * for the two don't interact with each other. Notify 2325 * separately unless they're gonna be duplicates. 2326 */ 2327 if (current->ptrace) 2328 do_notify_parent_cldstop(current, true, why); 2329 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2330 do_notify_parent_cldstop(current, false, why); 2331 2332 /* 2333 * Don't want to allow preemption here, because 2334 * sys_ptrace() needs this task to be inactive. 2335 * 2336 * XXX: implement read_unlock_no_resched(). 2337 */ 2338 preempt_disable(); 2339 read_unlock(&tasklist_lock); 2340 cgroup_enter_frozen(); 2341 preempt_enable_no_resched(); 2342 schedule(); 2343 cgroup_leave_frozen(true); 2344 2345 /* 2346 * We are back. Now reacquire the siglock before touching 2347 * last_siginfo, so that we are sure to have synchronized with 2348 * any signal-sending on another CPU that wants to examine it. 2349 */ 2350 spin_lock_irq(¤t->sighand->siglock); 2351 exit_code = current->exit_code; 2352 current->last_siginfo = NULL; 2353 current->ptrace_message = 0; 2354 current->exit_code = 0; 2355 2356 /* LISTENING can be set only during STOP traps, clear it */ 2357 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2358 2359 /* 2360 * Queued signals ignored us while we were stopped for tracing. 2361 * So check for any that we should take before resuming user mode. 2362 * This sets TIF_SIGPENDING, but never clears it. 2363 */ 2364 recalc_sigpending_tsk(current); 2365 return exit_code; 2366 } 2367 2368 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2369 { 2370 kernel_siginfo_t info; 2371 2372 clear_siginfo(&info); 2373 info.si_signo = signr; 2374 info.si_code = exit_code; 2375 info.si_pid = task_pid_vnr(current); 2376 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2377 2378 /* Let the debugger run. */ 2379 return ptrace_stop(exit_code, why, message, &info); 2380 } 2381 2382 int ptrace_notify(int exit_code, unsigned long message) 2383 { 2384 int signr; 2385 2386 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2387 if (unlikely(task_work_pending(current))) 2388 task_work_run(); 2389 2390 spin_lock_irq(¤t->sighand->siglock); 2391 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2392 spin_unlock_irq(¤t->sighand->siglock); 2393 return signr; 2394 } 2395 2396 /** 2397 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2398 * @signr: signr causing group stop if initiating 2399 * 2400 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2401 * and participate in it. If already set, participate in the existing 2402 * group stop. If participated in a group stop (and thus slept), %true is 2403 * returned with siglock released. 2404 * 2405 * If ptraced, this function doesn't handle stop itself. Instead, 2406 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2407 * untouched. The caller must ensure that INTERRUPT trap handling takes 2408 * places afterwards. 2409 * 2410 * CONTEXT: 2411 * Must be called with @current->sighand->siglock held, which is released 2412 * on %true return. 2413 * 2414 * RETURNS: 2415 * %false if group stop is already cancelled or ptrace trap is scheduled. 2416 * %true if participated in group stop. 2417 */ 2418 static bool do_signal_stop(int signr) 2419 __releases(¤t->sighand->siglock) 2420 { 2421 struct signal_struct *sig = current->signal; 2422 2423 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2424 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2425 struct task_struct *t; 2426 2427 /* signr will be recorded in task->jobctl for retries */ 2428 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2429 2430 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2431 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2432 unlikely(sig->group_exec_task)) 2433 return false; 2434 /* 2435 * There is no group stop already in progress. We must 2436 * initiate one now. 2437 * 2438 * While ptraced, a task may be resumed while group stop is 2439 * still in effect and then receive a stop signal and 2440 * initiate another group stop. This deviates from the 2441 * usual behavior as two consecutive stop signals can't 2442 * cause two group stops when !ptraced. That is why we 2443 * also check !task_is_stopped(t) below. 2444 * 2445 * The condition can be distinguished by testing whether 2446 * SIGNAL_STOP_STOPPED is already set. Don't generate 2447 * group_exit_code in such case. 2448 * 2449 * This is not necessary for SIGNAL_STOP_CONTINUED because 2450 * an intervening stop signal is required to cause two 2451 * continued events regardless of ptrace. 2452 */ 2453 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2454 sig->group_exit_code = signr; 2455 2456 sig->group_stop_count = 0; 2457 2458 if (task_set_jobctl_pending(current, signr | gstop)) 2459 sig->group_stop_count++; 2460 2461 t = current; 2462 while_each_thread(current, t) { 2463 /* 2464 * Setting state to TASK_STOPPED for a group 2465 * stop is always done with the siglock held, 2466 * so this check has no races. 2467 */ 2468 if (!task_is_stopped(t) && 2469 task_set_jobctl_pending(t, signr | gstop)) { 2470 sig->group_stop_count++; 2471 if (likely(!(t->ptrace & PT_SEIZED))) 2472 signal_wake_up(t, 0); 2473 else 2474 ptrace_trap_notify(t); 2475 } 2476 } 2477 } 2478 2479 if (likely(!current->ptrace)) { 2480 int notify = 0; 2481 2482 /* 2483 * If there are no other threads in the group, or if there 2484 * is a group stop in progress and we are the last to stop, 2485 * report to the parent. 2486 */ 2487 if (task_participate_group_stop(current)) 2488 notify = CLD_STOPPED; 2489 2490 current->jobctl |= JOBCTL_STOPPED; 2491 set_special_state(TASK_STOPPED); 2492 spin_unlock_irq(¤t->sighand->siglock); 2493 2494 /* 2495 * Notify the parent of the group stop completion. Because 2496 * we're not holding either the siglock or tasklist_lock 2497 * here, ptracer may attach inbetween; however, this is for 2498 * group stop and should always be delivered to the real 2499 * parent of the group leader. The new ptracer will get 2500 * its notification when this task transitions into 2501 * TASK_TRACED. 2502 */ 2503 if (notify) { 2504 read_lock(&tasklist_lock); 2505 do_notify_parent_cldstop(current, false, notify); 2506 read_unlock(&tasklist_lock); 2507 } 2508 2509 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2510 cgroup_enter_frozen(); 2511 schedule(); 2512 return true; 2513 } else { 2514 /* 2515 * While ptraced, group stop is handled by STOP trap. 2516 * Schedule it and let the caller deal with it. 2517 */ 2518 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2519 return false; 2520 } 2521 } 2522 2523 /** 2524 * do_jobctl_trap - take care of ptrace jobctl traps 2525 * 2526 * When PT_SEIZED, it's used for both group stop and explicit 2527 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2528 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2529 * the stop signal; otherwise, %SIGTRAP. 2530 * 2531 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2532 * number as exit_code and no siginfo. 2533 * 2534 * CONTEXT: 2535 * Must be called with @current->sighand->siglock held, which may be 2536 * released and re-acquired before returning with intervening sleep. 2537 */ 2538 static void do_jobctl_trap(void) 2539 { 2540 struct signal_struct *signal = current->signal; 2541 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2542 2543 if (current->ptrace & PT_SEIZED) { 2544 if (!signal->group_stop_count && 2545 !(signal->flags & SIGNAL_STOP_STOPPED)) 2546 signr = SIGTRAP; 2547 WARN_ON_ONCE(!signr); 2548 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2549 CLD_STOPPED, 0); 2550 } else { 2551 WARN_ON_ONCE(!signr); 2552 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2553 } 2554 } 2555 2556 /** 2557 * do_freezer_trap - handle the freezer jobctl trap 2558 * 2559 * Puts the task into frozen state, if only the task is not about to quit. 2560 * In this case it drops JOBCTL_TRAP_FREEZE. 2561 * 2562 * CONTEXT: 2563 * Must be called with @current->sighand->siglock held, 2564 * which is always released before returning. 2565 */ 2566 static void do_freezer_trap(void) 2567 __releases(¤t->sighand->siglock) 2568 { 2569 /* 2570 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2571 * let's make another loop to give it a chance to be handled. 2572 * In any case, we'll return back. 2573 */ 2574 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2575 JOBCTL_TRAP_FREEZE) { 2576 spin_unlock_irq(¤t->sighand->siglock); 2577 return; 2578 } 2579 2580 /* 2581 * Now we're sure that there is no pending fatal signal and no 2582 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2583 * immediately (if there is a non-fatal signal pending), and 2584 * put the task into sleep. 2585 */ 2586 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2587 clear_thread_flag(TIF_SIGPENDING); 2588 spin_unlock_irq(¤t->sighand->siglock); 2589 cgroup_enter_frozen(); 2590 schedule(); 2591 2592 /* 2593 * We could've been woken by task_work, run it to clear 2594 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2595 */ 2596 clear_notify_signal(); 2597 if (unlikely(task_work_pending(current))) 2598 task_work_run(); 2599 } 2600 2601 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2602 { 2603 /* 2604 * We do not check sig_kernel_stop(signr) but set this marker 2605 * unconditionally because we do not know whether debugger will 2606 * change signr. This flag has no meaning unless we are going 2607 * to stop after return from ptrace_stop(). In this case it will 2608 * be checked in do_signal_stop(), we should only stop if it was 2609 * not cleared by SIGCONT while we were sleeping. See also the 2610 * comment in dequeue_signal(). 2611 */ 2612 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2613 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2614 2615 /* We're back. Did the debugger cancel the sig? */ 2616 if (signr == 0) 2617 return signr; 2618 2619 /* 2620 * Update the siginfo structure if the signal has 2621 * changed. If the debugger wanted something 2622 * specific in the siginfo structure then it should 2623 * have updated *info via PTRACE_SETSIGINFO. 2624 */ 2625 if (signr != info->si_signo) { 2626 clear_siginfo(info); 2627 info->si_signo = signr; 2628 info->si_errno = 0; 2629 info->si_code = SI_USER; 2630 rcu_read_lock(); 2631 info->si_pid = task_pid_vnr(current->parent); 2632 info->si_uid = from_kuid_munged(current_user_ns(), 2633 task_uid(current->parent)); 2634 rcu_read_unlock(); 2635 } 2636 2637 /* If the (new) signal is now blocked, requeue it. */ 2638 if (sigismember(¤t->blocked, signr) || 2639 fatal_signal_pending(current)) { 2640 send_signal_locked(signr, info, current, type); 2641 signr = 0; 2642 } 2643 2644 return signr; 2645 } 2646 2647 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2648 { 2649 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2650 case SIL_FAULT: 2651 case SIL_FAULT_TRAPNO: 2652 case SIL_FAULT_MCEERR: 2653 case SIL_FAULT_BNDERR: 2654 case SIL_FAULT_PKUERR: 2655 case SIL_FAULT_PERF_EVENT: 2656 ksig->info.si_addr = arch_untagged_si_addr( 2657 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2658 break; 2659 case SIL_KILL: 2660 case SIL_TIMER: 2661 case SIL_POLL: 2662 case SIL_CHLD: 2663 case SIL_RT: 2664 case SIL_SYS: 2665 break; 2666 } 2667 } 2668 2669 bool get_signal(struct ksignal *ksig) 2670 { 2671 struct sighand_struct *sighand = current->sighand; 2672 struct signal_struct *signal = current->signal; 2673 int signr; 2674 2675 clear_notify_signal(); 2676 if (unlikely(task_work_pending(current))) 2677 task_work_run(); 2678 2679 if (!task_sigpending(current)) 2680 return false; 2681 2682 if (unlikely(uprobe_deny_signal())) 2683 return false; 2684 2685 /* 2686 * Do this once, we can't return to user-mode if freezing() == T. 2687 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2688 * thus do not need another check after return. 2689 */ 2690 try_to_freeze(); 2691 2692 relock: 2693 spin_lock_irq(&sighand->siglock); 2694 2695 /* 2696 * Every stopped thread goes here after wakeup. Check to see if 2697 * we should notify the parent, prepare_signal(SIGCONT) encodes 2698 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2699 */ 2700 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2701 int why; 2702 2703 if (signal->flags & SIGNAL_CLD_CONTINUED) 2704 why = CLD_CONTINUED; 2705 else 2706 why = CLD_STOPPED; 2707 2708 signal->flags &= ~SIGNAL_CLD_MASK; 2709 2710 spin_unlock_irq(&sighand->siglock); 2711 2712 /* 2713 * Notify the parent that we're continuing. This event is 2714 * always per-process and doesn't make whole lot of sense 2715 * for ptracers, who shouldn't consume the state via 2716 * wait(2) either, but, for backward compatibility, notify 2717 * the ptracer of the group leader too unless it's gonna be 2718 * a duplicate. 2719 */ 2720 read_lock(&tasklist_lock); 2721 do_notify_parent_cldstop(current, false, why); 2722 2723 if (ptrace_reparented(current->group_leader)) 2724 do_notify_parent_cldstop(current->group_leader, 2725 true, why); 2726 read_unlock(&tasklist_lock); 2727 2728 goto relock; 2729 } 2730 2731 for (;;) { 2732 struct k_sigaction *ka; 2733 enum pid_type type; 2734 2735 /* Has this task already been marked for death? */ 2736 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2737 signal->group_exec_task) { 2738 clear_siginfo(&ksig->info); 2739 ksig->info.si_signo = signr = SIGKILL; 2740 sigdelset(¤t->pending.signal, SIGKILL); 2741 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2742 &sighand->action[SIGKILL - 1]); 2743 recalc_sigpending(); 2744 goto fatal; 2745 } 2746 2747 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2748 do_signal_stop(0)) 2749 goto relock; 2750 2751 if (unlikely(current->jobctl & 2752 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2753 if (current->jobctl & JOBCTL_TRAP_MASK) { 2754 do_jobctl_trap(); 2755 spin_unlock_irq(&sighand->siglock); 2756 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2757 do_freezer_trap(); 2758 2759 goto relock; 2760 } 2761 2762 /* 2763 * If the task is leaving the frozen state, let's update 2764 * cgroup counters and reset the frozen bit. 2765 */ 2766 if (unlikely(cgroup_task_frozen(current))) { 2767 spin_unlock_irq(&sighand->siglock); 2768 cgroup_leave_frozen(false); 2769 goto relock; 2770 } 2771 2772 /* 2773 * Signals generated by the execution of an instruction 2774 * need to be delivered before any other pending signals 2775 * so that the instruction pointer in the signal stack 2776 * frame points to the faulting instruction. 2777 */ 2778 type = PIDTYPE_PID; 2779 signr = dequeue_synchronous_signal(&ksig->info); 2780 if (!signr) 2781 signr = dequeue_signal(current, ¤t->blocked, 2782 &ksig->info, &type); 2783 2784 if (!signr) 2785 break; /* will return 0 */ 2786 2787 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2788 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2789 signr = ptrace_signal(signr, &ksig->info, type); 2790 if (!signr) 2791 continue; 2792 } 2793 2794 ka = &sighand->action[signr-1]; 2795 2796 /* Trace actually delivered signals. */ 2797 trace_signal_deliver(signr, &ksig->info, ka); 2798 2799 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2800 continue; 2801 if (ka->sa.sa_handler != SIG_DFL) { 2802 /* Run the handler. */ 2803 ksig->ka = *ka; 2804 2805 if (ka->sa.sa_flags & SA_ONESHOT) 2806 ka->sa.sa_handler = SIG_DFL; 2807 2808 break; /* will return non-zero "signr" value */ 2809 } 2810 2811 /* 2812 * Now we are doing the default action for this signal. 2813 */ 2814 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2815 continue; 2816 2817 /* 2818 * Global init gets no signals it doesn't want. 2819 * Container-init gets no signals it doesn't want from same 2820 * container. 2821 * 2822 * Note that if global/container-init sees a sig_kernel_only() 2823 * signal here, the signal must have been generated internally 2824 * or must have come from an ancestor namespace. In either 2825 * case, the signal cannot be dropped. 2826 */ 2827 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2828 !sig_kernel_only(signr)) 2829 continue; 2830 2831 if (sig_kernel_stop(signr)) { 2832 /* 2833 * The default action is to stop all threads in 2834 * the thread group. The job control signals 2835 * do nothing in an orphaned pgrp, but SIGSTOP 2836 * always works. Note that siglock needs to be 2837 * dropped during the call to is_orphaned_pgrp() 2838 * because of lock ordering with tasklist_lock. 2839 * This allows an intervening SIGCONT to be posted. 2840 * We need to check for that and bail out if necessary. 2841 */ 2842 if (signr != SIGSTOP) { 2843 spin_unlock_irq(&sighand->siglock); 2844 2845 /* signals can be posted during this window */ 2846 2847 if (is_current_pgrp_orphaned()) 2848 goto relock; 2849 2850 spin_lock_irq(&sighand->siglock); 2851 } 2852 2853 if (likely(do_signal_stop(ksig->info.si_signo))) { 2854 /* It released the siglock. */ 2855 goto relock; 2856 } 2857 2858 /* 2859 * We didn't actually stop, due to a race 2860 * with SIGCONT or something like that. 2861 */ 2862 continue; 2863 } 2864 2865 fatal: 2866 spin_unlock_irq(&sighand->siglock); 2867 if (unlikely(cgroup_task_frozen(current))) 2868 cgroup_leave_frozen(true); 2869 2870 /* 2871 * Anything else is fatal, maybe with a core dump. 2872 */ 2873 current->flags |= PF_SIGNALED; 2874 2875 if (sig_kernel_coredump(signr)) { 2876 if (print_fatal_signals) 2877 print_fatal_signal(ksig->info.si_signo); 2878 proc_coredump_connector(current); 2879 /* 2880 * If it was able to dump core, this kills all 2881 * other threads in the group and synchronizes with 2882 * their demise. If we lost the race with another 2883 * thread getting here, it set group_exit_code 2884 * first and our do_group_exit call below will use 2885 * that value and ignore the one we pass it. 2886 */ 2887 do_coredump(&ksig->info); 2888 } 2889 2890 /* 2891 * PF_USER_WORKER threads will catch and exit on fatal signals 2892 * themselves. They have cleanup that must be performed, so 2893 * we cannot call do_exit() on their behalf. 2894 */ 2895 if (current->flags & PF_USER_WORKER) 2896 goto out; 2897 2898 /* 2899 * Death signals, no core dump. 2900 */ 2901 do_group_exit(ksig->info.si_signo); 2902 /* NOTREACHED */ 2903 } 2904 spin_unlock_irq(&sighand->siglock); 2905 out: 2906 ksig->sig = signr; 2907 2908 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2909 hide_si_addr_tag_bits(ksig); 2910 2911 return ksig->sig > 0; 2912 } 2913 2914 /** 2915 * signal_delivered - called after signal delivery to update blocked signals 2916 * @ksig: kernel signal struct 2917 * @stepping: nonzero if debugger single-step or block-step in use 2918 * 2919 * This function should be called when a signal has successfully been 2920 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2921 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2922 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2923 */ 2924 static void signal_delivered(struct ksignal *ksig, int stepping) 2925 { 2926 sigset_t blocked; 2927 2928 /* A signal was successfully delivered, and the 2929 saved sigmask was stored on the signal frame, 2930 and will be restored by sigreturn. So we can 2931 simply clear the restore sigmask flag. */ 2932 clear_restore_sigmask(); 2933 2934 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2935 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2936 sigaddset(&blocked, ksig->sig); 2937 set_current_blocked(&blocked); 2938 if (current->sas_ss_flags & SS_AUTODISARM) 2939 sas_ss_reset(current); 2940 if (stepping) 2941 ptrace_notify(SIGTRAP, 0); 2942 } 2943 2944 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2945 { 2946 if (failed) 2947 force_sigsegv(ksig->sig); 2948 else 2949 signal_delivered(ksig, stepping); 2950 } 2951 2952 /* 2953 * It could be that complete_signal() picked us to notify about the 2954 * group-wide signal. Other threads should be notified now to take 2955 * the shared signals in @which since we will not. 2956 */ 2957 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2958 { 2959 sigset_t retarget; 2960 struct task_struct *t; 2961 2962 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2963 if (sigisemptyset(&retarget)) 2964 return; 2965 2966 t = tsk; 2967 while_each_thread(tsk, t) { 2968 if (t->flags & PF_EXITING) 2969 continue; 2970 2971 if (!has_pending_signals(&retarget, &t->blocked)) 2972 continue; 2973 /* Remove the signals this thread can handle. */ 2974 sigandsets(&retarget, &retarget, &t->blocked); 2975 2976 if (!task_sigpending(t)) 2977 signal_wake_up(t, 0); 2978 2979 if (sigisemptyset(&retarget)) 2980 break; 2981 } 2982 } 2983 2984 void exit_signals(struct task_struct *tsk) 2985 { 2986 int group_stop = 0; 2987 sigset_t unblocked; 2988 2989 /* 2990 * @tsk is about to have PF_EXITING set - lock out users which 2991 * expect stable threadgroup. 2992 */ 2993 cgroup_threadgroup_change_begin(tsk); 2994 2995 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2996 sched_mm_cid_exit_signals(tsk); 2997 tsk->flags |= PF_EXITING; 2998 cgroup_threadgroup_change_end(tsk); 2999 return; 3000 } 3001 3002 spin_lock_irq(&tsk->sighand->siglock); 3003 /* 3004 * From now this task is not visible for group-wide signals, 3005 * see wants_signal(), do_signal_stop(). 3006 */ 3007 sched_mm_cid_exit_signals(tsk); 3008 tsk->flags |= PF_EXITING; 3009 3010 cgroup_threadgroup_change_end(tsk); 3011 3012 if (!task_sigpending(tsk)) 3013 goto out; 3014 3015 unblocked = tsk->blocked; 3016 signotset(&unblocked); 3017 retarget_shared_pending(tsk, &unblocked); 3018 3019 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3020 task_participate_group_stop(tsk)) 3021 group_stop = CLD_STOPPED; 3022 out: 3023 spin_unlock_irq(&tsk->sighand->siglock); 3024 3025 /* 3026 * If group stop has completed, deliver the notification. This 3027 * should always go to the real parent of the group leader. 3028 */ 3029 if (unlikely(group_stop)) { 3030 read_lock(&tasklist_lock); 3031 do_notify_parent_cldstop(tsk, false, group_stop); 3032 read_unlock(&tasklist_lock); 3033 } 3034 } 3035 3036 /* 3037 * System call entry points. 3038 */ 3039 3040 /** 3041 * sys_restart_syscall - restart a system call 3042 */ 3043 SYSCALL_DEFINE0(restart_syscall) 3044 { 3045 struct restart_block *restart = ¤t->restart_block; 3046 return restart->fn(restart); 3047 } 3048 3049 long do_no_restart_syscall(struct restart_block *param) 3050 { 3051 return -EINTR; 3052 } 3053 3054 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3055 { 3056 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3057 sigset_t newblocked; 3058 /* A set of now blocked but previously unblocked signals. */ 3059 sigandnsets(&newblocked, newset, ¤t->blocked); 3060 retarget_shared_pending(tsk, &newblocked); 3061 } 3062 tsk->blocked = *newset; 3063 recalc_sigpending(); 3064 } 3065 3066 /** 3067 * set_current_blocked - change current->blocked mask 3068 * @newset: new mask 3069 * 3070 * It is wrong to change ->blocked directly, this helper should be used 3071 * to ensure the process can't miss a shared signal we are going to block. 3072 */ 3073 void set_current_blocked(sigset_t *newset) 3074 { 3075 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3076 __set_current_blocked(newset); 3077 } 3078 3079 void __set_current_blocked(const sigset_t *newset) 3080 { 3081 struct task_struct *tsk = current; 3082 3083 /* 3084 * In case the signal mask hasn't changed, there is nothing we need 3085 * to do. The current->blocked shouldn't be modified by other task. 3086 */ 3087 if (sigequalsets(&tsk->blocked, newset)) 3088 return; 3089 3090 spin_lock_irq(&tsk->sighand->siglock); 3091 __set_task_blocked(tsk, newset); 3092 spin_unlock_irq(&tsk->sighand->siglock); 3093 } 3094 3095 /* 3096 * This is also useful for kernel threads that want to temporarily 3097 * (or permanently) block certain signals. 3098 * 3099 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3100 * interface happily blocks "unblockable" signals like SIGKILL 3101 * and friends. 3102 */ 3103 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3104 { 3105 struct task_struct *tsk = current; 3106 sigset_t newset; 3107 3108 /* Lockless, only current can change ->blocked, never from irq */ 3109 if (oldset) 3110 *oldset = tsk->blocked; 3111 3112 switch (how) { 3113 case SIG_BLOCK: 3114 sigorsets(&newset, &tsk->blocked, set); 3115 break; 3116 case SIG_UNBLOCK: 3117 sigandnsets(&newset, &tsk->blocked, set); 3118 break; 3119 case SIG_SETMASK: 3120 newset = *set; 3121 break; 3122 default: 3123 return -EINVAL; 3124 } 3125 3126 __set_current_blocked(&newset); 3127 return 0; 3128 } 3129 EXPORT_SYMBOL(sigprocmask); 3130 3131 /* 3132 * The api helps set app-provided sigmasks. 3133 * 3134 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3135 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3136 * 3137 * Note that it does set_restore_sigmask() in advance, so it must be always 3138 * paired with restore_saved_sigmask_unless() before return from syscall. 3139 */ 3140 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3141 { 3142 sigset_t kmask; 3143 3144 if (!umask) 3145 return 0; 3146 if (sigsetsize != sizeof(sigset_t)) 3147 return -EINVAL; 3148 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3149 return -EFAULT; 3150 3151 set_restore_sigmask(); 3152 current->saved_sigmask = current->blocked; 3153 set_current_blocked(&kmask); 3154 3155 return 0; 3156 } 3157 3158 #ifdef CONFIG_COMPAT 3159 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3160 size_t sigsetsize) 3161 { 3162 sigset_t kmask; 3163 3164 if (!umask) 3165 return 0; 3166 if (sigsetsize != sizeof(compat_sigset_t)) 3167 return -EINVAL; 3168 if (get_compat_sigset(&kmask, umask)) 3169 return -EFAULT; 3170 3171 set_restore_sigmask(); 3172 current->saved_sigmask = current->blocked; 3173 set_current_blocked(&kmask); 3174 3175 return 0; 3176 } 3177 #endif 3178 3179 /** 3180 * sys_rt_sigprocmask - change the list of currently blocked signals 3181 * @how: whether to add, remove, or set signals 3182 * @nset: stores pending signals 3183 * @oset: previous value of signal mask if non-null 3184 * @sigsetsize: size of sigset_t type 3185 */ 3186 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3187 sigset_t __user *, oset, size_t, sigsetsize) 3188 { 3189 sigset_t old_set, new_set; 3190 int error; 3191 3192 /* XXX: Don't preclude handling different sized sigset_t's. */ 3193 if (sigsetsize != sizeof(sigset_t)) 3194 return -EINVAL; 3195 3196 old_set = current->blocked; 3197 3198 if (nset) { 3199 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3200 return -EFAULT; 3201 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3202 3203 error = sigprocmask(how, &new_set, NULL); 3204 if (error) 3205 return error; 3206 } 3207 3208 if (oset) { 3209 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3210 return -EFAULT; 3211 } 3212 3213 return 0; 3214 } 3215 3216 #ifdef CONFIG_COMPAT 3217 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3218 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3219 { 3220 sigset_t old_set = current->blocked; 3221 3222 /* XXX: Don't preclude handling different sized sigset_t's. */ 3223 if (sigsetsize != sizeof(sigset_t)) 3224 return -EINVAL; 3225 3226 if (nset) { 3227 sigset_t new_set; 3228 int error; 3229 if (get_compat_sigset(&new_set, nset)) 3230 return -EFAULT; 3231 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3232 3233 error = sigprocmask(how, &new_set, NULL); 3234 if (error) 3235 return error; 3236 } 3237 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3238 } 3239 #endif 3240 3241 static void do_sigpending(sigset_t *set) 3242 { 3243 spin_lock_irq(¤t->sighand->siglock); 3244 sigorsets(set, ¤t->pending.signal, 3245 ¤t->signal->shared_pending.signal); 3246 spin_unlock_irq(¤t->sighand->siglock); 3247 3248 /* Outside the lock because only this thread touches it. */ 3249 sigandsets(set, ¤t->blocked, set); 3250 } 3251 3252 /** 3253 * sys_rt_sigpending - examine a pending signal that has been raised 3254 * while blocked 3255 * @uset: stores pending signals 3256 * @sigsetsize: size of sigset_t type or larger 3257 */ 3258 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3259 { 3260 sigset_t set; 3261 3262 if (sigsetsize > sizeof(*uset)) 3263 return -EINVAL; 3264 3265 do_sigpending(&set); 3266 3267 if (copy_to_user(uset, &set, sigsetsize)) 3268 return -EFAULT; 3269 3270 return 0; 3271 } 3272 3273 #ifdef CONFIG_COMPAT 3274 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3275 compat_size_t, sigsetsize) 3276 { 3277 sigset_t set; 3278 3279 if (sigsetsize > sizeof(*uset)) 3280 return -EINVAL; 3281 3282 do_sigpending(&set); 3283 3284 return put_compat_sigset(uset, &set, sigsetsize); 3285 } 3286 #endif 3287 3288 static const struct { 3289 unsigned char limit, layout; 3290 } sig_sicodes[] = { 3291 [SIGILL] = { NSIGILL, SIL_FAULT }, 3292 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3293 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3294 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3295 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3296 #if defined(SIGEMT) 3297 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3298 #endif 3299 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3300 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3301 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3302 }; 3303 3304 static bool known_siginfo_layout(unsigned sig, int si_code) 3305 { 3306 if (si_code == SI_KERNEL) 3307 return true; 3308 else if ((si_code > SI_USER)) { 3309 if (sig_specific_sicodes(sig)) { 3310 if (si_code <= sig_sicodes[sig].limit) 3311 return true; 3312 } 3313 else if (si_code <= NSIGPOLL) 3314 return true; 3315 } 3316 else if (si_code >= SI_DETHREAD) 3317 return true; 3318 else if (si_code == SI_ASYNCNL) 3319 return true; 3320 return false; 3321 } 3322 3323 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3324 { 3325 enum siginfo_layout layout = SIL_KILL; 3326 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3327 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3328 (si_code <= sig_sicodes[sig].limit)) { 3329 layout = sig_sicodes[sig].layout; 3330 /* Handle the exceptions */ 3331 if ((sig == SIGBUS) && 3332 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3333 layout = SIL_FAULT_MCEERR; 3334 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3335 layout = SIL_FAULT_BNDERR; 3336 #ifdef SEGV_PKUERR 3337 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3338 layout = SIL_FAULT_PKUERR; 3339 #endif 3340 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3341 layout = SIL_FAULT_PERF_EVENT; 3342 else if (IS_ENABLED(CONFIG_SPARC) && 3343 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3344 layout = SIL_FAULT_TRAPNO; 3345 else if (IS_ENABLED(CONFIG_ALPHA) && 3346 ((sig == SIGFPE) || 3347 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3348 layout = SIL_FAULT_TRAPNO; 3349 } 3350 else if (si_code <= NSIGPOLL) 3351 layout = SIL_POLL; 3352 } else { 3353 if (si_code == SI_TIMER) 3354 layout = SIL_TIMER; 3355 else if (si_code == SI_SIGIO) 3356 layout = SIL_POLL; 3357 else if (si_code < 0) 3358 layout = SIL_RT; 3359 } 3360 return layout; 3361 } 3362 3363 static inline char __user *si_expansion(const siginfo_t __user *info) 3364 { 3365 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3366 } 3367 3368 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3369 { 3370 char __user *expansion = si_expansion(to); 3371 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3372 return -EFAULT; 3373 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3374 return -EFAULT; 3375 return 0; 3376 } 3377 3378 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3379 const siginfo_t __user *from) 3380 { 3381 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3382 char __user *expansion = si_expansion(from); 3383 char buf[SI_EXPANSION_SIZE]; 3384 int i; 3385 /* 3386 * An unknown si_code might need more than 3387 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3388 * extra bytes are 0. This guarantees copy_siginfo_to_user 3389 * will return this data to userspace exactly. 3390 */ 3391 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3392 return -EFAULT; 3393 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3394 if (buf[i] != 0) 3395 return -E2BIG; 3396 } 3397 } 3398 return 0; 3399 } 3400 3401 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3402 const siginfo_t __user *from) 3403 { 3404 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3405 return -EFAULT; 3406 to->si_signo = signo; 3407 return post_copy_siginfo_from_user(to, from); 3408 } 3409 3410 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3411 { 3412 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3413 return -EFAULT; 3414 return post_copy_siginfo_from_user(to, from); 3415 } 3416 3417 #ifdef CONFIG_COMPAT 3418 /** 3419 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3420 * @to: compat siginfo destination 3421 * @from: kernel siginfo source 3422 * 3423 * Note: This function does not work properly for the SIGCHLD on x32, but 3424 * fortunately it doesn't have to. The only valid callers for this function are 3425 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3426 * The latter does not care because SIGCHLD will never cause a coredump. 3427 */ 3428 void copy_siginfo_to_external32(struct compat_siginfo *to, 3429 const struct kernel_siginfo *from) 3430 { 3431 memset(to, 0, sizeof(*to)); 3432 3433 to->si_signo = from->si_signo; 3434 to->si_errno = from->si_errno; 3435 to->si_code = from->si_code; 3436 switch(siginfo_layout(from->si_signo, from->si_code)) { 3437 case SIL_KILL: 3438 to->si_pid = from->si_pid; 3439 to->si_uid = from->si_uid; 3440 break; 3441 case SIL_TIMER: 3442 to->si_tid = from->si_tid; 3443 to->si_overrun = from->si_overrun; 3444 to->si_int = from->si_int; 3445 break; 3446 case SIL_POLL: 3447 to->si_band = from->si_band; 3448 to->si_fd = from->si_fd; 3449 break; 3450 case SIL_FAULT: 3451 to->si_addr = ptr_to_compat(from->si_addr); 3452 break; 3453 case SIL_FAULT_TRAPNO: 3454 to->si_addr = ptr_to_compat(from->si_addr); 3455 to->si_trapno = from->si_trapno; 3456 break; 3457 case SIL_FAULT_MCEERR: 3458 to->si_addr = ptr_to_compat(from->si_addr); 3459 to->si_addr_lsb = from->si_addr_lsb; 3460 break; 3461 case SIL_FAULT_BNDERR: 3462 to->si_addr = ptr_to_compat(from->si_addr); 3463 to->si_lower = ptr_to_compat(from->si_lower); 3464 to->si_upper = ptr_to_compat(from->si_upper); 3465 break; 3466 case SIL_FAULT_PKUERR: 3467 to->si_addr = ptr_to_compat(from->si_addr); 3468 to->si_pkey = from->si_pkey; 3469 break; 3470 case SIL_FAULT_PERF_EVENT: 3471 to->si_addr = ptr_to_compat(from->si_addr); 3472 to->si_perf_data = from->si_perf_data; 3473 to->si_perf_type = from->si_perf_type; 3474 to->si_perf_flags = from->si_perf_flags; 3475 break; 3476 case SIL_CHLD: 3477 to->si_pid = from->si_pid; 3478 to->si_uid = from->si_uid; 3479 to->si_status = from->si_status; 3480 to->si_utime = from->si_utime; 3481 to->si_stime = from->si_stime; 3482 break; 3483 case SIL_RT: 3484 to->si_pid = from->si_pid; 3485 to->si_uid = from->si_uid; 3486 to->si_int = from->si_int; 3487 break; 3488 case SIL_SYS: 3489 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3490 to->si_syscall = from->si_syscall; 3491 to->si_arch = from->si_arch; 3492 break; 3493 } 3494 } 3495 3496 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3497 const struct kernel_siginfo *from) 3498 { 3499 struct compat_siginfo new; 3500 3501 copy_siginfo_to_external32(&new, from); 3502 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3503 return -EFAULT; 3504 return 0; 3505 } 3506 3507 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3508 const struct compat_siginfo *from) 3509 { 3510 clear_siginfo(to); 3511 to->si_signo = from->si_signo; 3512 to->si_errno = from->si_errno; 3513 to->si_code = from->si_code; 3514 switch(siginfo_layout(from->si_signo, from->si_code)) { 3515 case SIL_KILL: 3516 to->si_pid = from->si_pid; 3517 to->si_uid = from->si_uid; 3518 break; 3519 case SIL_TIMER: 3520 to->si_tid = from->si_tid; 3521 to->si_overrun = from->si_overrun; 3522 to->si_int = from->si_int; 3523 break; 3524 case SIL_POLL: 3525 to->si_band = from->si_band; 3526 to->si_fd = from->si_fd; 3527 break; 3528 case SIL_FAULT: 3529 to->si_addr = compat_ptr(from->si_addr); 3530 break; 3531 case SIL_FAULT_TRAPNO: 3532 to->si_addr = compat_ptr(from->si_addr); 3533 to->si_trapno = from->si_trapno; 3534 break; 3535 case SIL_FAULT_MCEERR: 3536 to->si_addr = compat_ptr(from->si_addr); 3537 to->si_addr_lsb = from->si_addr_lsb; 3538 break; 3539 case SIL_FAULT_BNDERR: 3540 to->si_addr = compat_ptr(from->si_addr); 3541 to->si_lower = compat_ptr(from->si_lower); 3542 to->si_upper = compat_ptr(from->si_upper); 3543 break; 3544 case SIL_FAULT_PKUERR: 3545 to->si_addr = compat_ptr(from->si_addr); 3546 to->si_pkey = from->si_pkey; 3547 break; 3548 case SIL_FAULT_PERF_EVENT: 3549 to->si_addr = compat_ptr(from->si_addr); 3550 to->si_perf_data = from->si_perf_data; 3551 to->si_perf_type = from->si_perf_type; 3552 to->si_perf_flags = from->si_perf_flags; 3553 break; 3554 case SIL_CHLD: 3555 to->si_pid = from->si_pid; 3556 to->si_uid = from->si_uid; 3557 to->si_status = from->si_status; 3558 #ifdef CONFIG_X86_X32_ABI 3559 if (in_x32_syscall()) { 3560 to->si_utime = from->_sifields._sigchld_x32._utime; 3561 to->si_stime = from->_sifields._sigchld_x32._stime; 3562 } else 3563 #endif 3564 { 3565 to->si_utime = from->si_utime; 3566 to->si_stime = from->si_stime; 3567 } 3568 break; 3569 case SIL_RT: 3570 to->si_pid = from->si_pid; 3571 to->si_uid = from->si_uid; 3572 to->si_int = from->si_int; 3573 break; 3574 case SIL_SYS: 3575 to->si_call_addr = compat_ptr(from->si_call_addr); 3576 to->si_syscall = from->si_syscall; 3577 to->si_arch = from->si_arch; 3578 break; 3579 } 3580 return 0; 3581 } 3582 3583 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3584 const struct compat_siginfo __user *ufrom) 3585 { 3586 struct compat_siginfo from; 3587 3588 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3589 return -EFAULT; 3590 3591 from.si_signo = signo; 3592 return post_copy_siginfo_from_user32(to, &from); 3593 } 3594 3595 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3596 const struct compat_siginfo __user *ufrom) 3597 { 3598 struct compat_siginfo from; 3599 3600 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3601 return -EFAULT; 3602 3603 return post_copy_siginfo_from_user32(to, &from); 3604 } 3605 #endif /* CONFIG_COMPAT */ 3606 3607 /** 3608 * do_sigtimedwait - wait for queued signals specified in @which 3609 * @which: queued signals to wait for 3610 * @info: if non-null, the signal's siginfo is returned here 3611 * @ts: upper bound on process time suspension 3612 */ 3613 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3614 const struct timespec64 *ts) 3615 { 3616 ktime_t *to = NULL, timeout = KTIME_MAX; 3617 struct task_struct *tsk = current; 3618 sigset_t mask = *which; 3619 enum pid_type type; 3620 int sig, ret = 0; 3621 3622 if (ts) { 3623 if (!timespec64_valid(ts)) 3624 return -EINVAL; 3625 timeout = timespec64_to_ktime(*ts); 3626 to = &timeout; 3627 } 3628 3629 /* 3630 * Invert the set of allowed signals to get those we want to block. 3631 */ 3632 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3633 signotset(&mask); 3634 3635 spin_lock_irq(&tsk->sighand->siglock); 3636 sig = dequeue_signal(tsk, &mask, info, &type); 3637 if (!sig && timeout) { 3638 /* 3639 * None ready, temporarily unblock those we're interested 3640 * while we are sleeping in so that we'll be awakened when 3641 * they arrive. Unblocking is always fine, we can avoid 3642 * set_current_blocked(). 3643 */ 3644 tsk->real_blocked = tsk->blocked; 3645 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3646 recalc_sigpending(); 3647 spin_unlock_irq(&tsk->sighand->siglock); 3648 3649 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3650 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3651 HRTIMER_MODE_REL); 3652 spin_lock_irq(&tsk->sighand->siglock); 3653 __set_task_blocked(tsk, &tsk->real_blocked); 3654 sigemptyset(&tsk->real_blocked); 3655 sig = dequeue_signal(tsk, &mask, info, &type); 3656 } 3657 spin_unlock_irq(&tsk->sighand->siglock); 3658 3659 if (sig) 3660 return sig; 3661 return ret ? -EINTR : -EAGAIN; 3662 } 3663 3664 /** 3665 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3666 * in @uthese 3667 * @uthese: queued signals to wait for 3668 * @uinfo: if non-null, the signal's siginfo is returned here 3669 * @uts: upper bound on process time suspension 3670 * @sigsetsize: size of sigset_t type 3671 */ 3672 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3673 siginfo_t __user *, uinfo, 3674 const struct __kernel_timespec __user *, uts, 3675 size_t, sigsetsize) 3676 { 3677 sigset_t these; 3678 struct timespec64 ts; 3679 kernel_siginfo_t info; 3680 int ret; 3681 3682 /* XXX: Don't preclude handling different sized sigset_t's. */ 3683 if (sigsetsize != sizeof(sigset_t)) 3684 return -EINVAL; 3685 3686 if (copy_from_user(&these, uthese, sizeof(these))) 3687 return -EFAULT; 3688 3689 if (uts) { 3690 if (get_timespec64(&ts, uts)) 3691 return -EFAULT; 3692 } 3693 3694 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3695 3696 if (ret > 0 && uinfo) { 3697 if (copy_siginfo_to_user(uinfo, &info)) 3698 ret = -EFAULT; 3699 } 3700 3701 return ret; 3702 } 3703 3704 #ifdef CONFIG_COMPAT_32BIT_TIME 3705 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3706 siginfo_t __user *, uinfo, 3707 const struct old_timespec32 __user *, uts, 3708 size_t, sigsetsize) 3709 { 3710 sigset_t these; 3711 struct timespec64 ts; 3712 kernel_siginfo_t info; 3713 int ret; 3714 3715 if (sigsetsize != sizeof(sigset_t)) 3716 return -EINVAL; 3717 3718 if (copy_from_user(&these, uthese, sizeof(these))) 3719 return -EFAULT; 3720 3721 if (uts) { 3722 if (get_old_timespec32(&ts, uts)) 3723 return -EFAULT; 3724 } 3725 3726 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3727 3728 if (ret > 0 && uinfo) { 3729 if (copy_siginfo_to_user(uinfo, &info)) 3730 ret = -EFAULT; 3731 } 3732 3733 return ret; 3734 } 3735 #endif 3736 3737 #ifdef CONFIG_COMPAT 3738 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3739 struct compat_siginfo __user *, uinfo, 3740 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3741 { 3742 sigset_t s; 3743 struct timespec64 t; 3744 kernel_siginfo_t info; 3745 long ret; 3746 3747 if (sigsetsize != sizeof(sigset_t)) 3748 return -EINVAL; 3749 3750 if (get_compat_sigset(&s, uthese)) 3751 return -EFAULT; 3752 3753 if (uts) { 3754 if (get_timespec64(&t, uts)) 3755 return -EFAULT; 3756 } 3757 3758 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3759 3760 if (ret > 0 && uinfo) { 3761 if (copy_siginfo_to_user32(uinfo, &info)) 3762 ret = -EFAULT; 3763 } 3764 3765 return ret; 3766 } 3767 3768 #ifdef CONFIG_COMPAT_32BIT_TIME 3769 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3770 struct compat_siginfo __user *, uinfo, 3771 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3772 { 3773 sigset_t s; 3774 struct timespec64 t; 3775 kernel_siginfo_t info; 3776 long ret; 3777 3778 if (sigsetsize != sizeof(sigset_t)) 3779 return -EINVAL; 3780 3781 if (get_compat_sigset(&s, uthese)) 3782 return -EFAULT; 3783 3784 if (uts) { 3785 if (get_old_timespec32(&t, uts)) 3786 return -EFAULT; 3787 } 3788 3789 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3790 3791 if (ret > 0 && uinfo) { 3792 if (copy_siginfo_to_user32(uinfo, &info)) 3793 ret = -EFAULT; 3794 } 3795 3796 return ret; 3797 } 3798 #endif 3799 #endif 3800 3801 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3802 { 3803 clear_siginfo(info); 3804 info->si_signo = sig; 3805 info->si_errno = 0; 3806 info->si_code = SI_USER; 3807 info->si_pid = task_tgid_vnr(current); 3808 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3809 } 3810 3811 /** 3812 * sys_kill - send a signal to a process 3813 * @pid: the PID of the process 3814 * @sig: signal to be sent 3815 */ 3816 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3817 { 3818 struct kernel_siginfo info; 3819 3820 prepare_kill_siginfo(sig, &info); 3821 3822 return kill_something_info(sig, &info, pid); 3823 } 3824 3825 /* 3826 * Verify that the signaler and signalee either are in the same pid namespace 3827 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3828 * namespace. 3829 */ 3830 static bool access_pidfd_pidns(struct pid *pid) 3831 { 3832 struct pid_namespace *active = task_active_pid_ns(current); 3833 struct pid_namespace *p = ns_of_pid(pid); 3834 3835 for (;;) { 3836 if (!p) 3837 return false; 3838 if (p == active) 3839 break; 3840 p = p->parent; 3841 } 3842 3843 return true; 3844 } 3845 3846 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3847 siginfo_t __user *info) 3848 { 3849 #ifdef CONFIG_COMPAT 3850 /* 3851 * Avoid hooking up compat syscalls and instead handle necessary 3852 * conversions here. Note, this is a stop-gap measure and should not be 3853 * considered a generic solution. 3854 */ 3855 if (in_compat_syscall()) 3856 return copy_siginfo_from_user32( 3857 kinfo, (struct compat_siginfo __user *)info); 3858 #endif 3859 return copy_siginfo_from_user(kinfo, info); 3860 } 3861 3862 static struct pid *pidfd_to_pid(const struct file *file) 3863 { 3864 struct pid *pid; 3865 3866 pid = pidfd_pid(file); 3867 if (!IS_ERR(pid)) 3868 return pid; 3869 3870 return tgid_pidfd_to_pid(file); 3871 } 3872 3873 /** 3874 * sys_pidfd_send_signal - Signal a process through a pidfd 3875 * @pidfd: file descriptor of the process 3876 * @sig: signal to send 3877 * @info: signal info 3878 * @flags: future flags 3879 * 3880 * The syscall currently only signals via PIDTYPE_PID which covers 3881 * kill(<positive-pid>, <signal>. It does not signal threads or process 3882 * groups. 3883 * In order to extend the syscall to threads and process groups the @flags 3884 * argument should be used. In essence, the @flags argument will determine 3885 * what is signaled and not the file descriptor itself. Put in other words, 3886 * grouping is a property of the flags argument not a property of the file 3887 * descriptor. 3888 * 3889 * Return: 0 on success, negative errno on failure 3890 */ 3891 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3892 siginfo_t __user *, info, unsigned int, flags) 3893 { 3894 int ret; 3895 struct fd f; 3896 struct pid *pid; 3897 kernel_siginfo_t kinfo; 3898 3899 /* Enforce flags be set to 0 until we add an extension. */ 3900 if (flags) 3901 return -EINVAL; 3902 3903 f = fdget(pidfd); 3904 if (!f.file) 3905 return -EBADF; 3906 3907 /* Is this a pidfd? */ 3908 pid = pidfd_to_pid(f.file); 3909 if (IS_ERR(pid)) { 3910 ret = PTR_ERR(pid); 3911 goto err; 3912 } 3913 3914 ret = -EINVAL; 3915 if (!access_pidfd_pidns(pid)) 3916 goto err; 3917 3918 if (info) { 3919 ret = copy_siginfo_from_user_any(&kinfo, info); 3920 if (unlikely(ret)) 3921 goto err; 3922 3923 ret = -EINVAL; 3924 if (unlikely(sig != kinfo.si_signo)) 3925 goto err; 3926 3927 /* Only allow sending arbitrary signals to yourself. */ 3928 ret = -EPERM; 3929 if ((task_pid(current) != pid) && 3930 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3931 goto err; 3932 } else { 3933 prepare_kill_siginfo(sig, &kinfo); 3934 } 3935 3936 ret = kill_pid_info(sig, &kinfo, pid); 3937 3938 err: 3939 fdput(f); 3940 return ret; 3941 } 3942 3943 static int 3944 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3945 { 3946 struct task_struct *p; 3947 int error = -ESRCH; 3948 3949 rcu_read_lock(); 3950 p = find_task_by_vpid(pid); 3951 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3952 error = check_kill_permission(sig, info, p); 3953 /* 3954 * The null signal is a permissions and process existence 3955 * probe. No signal is actually delivered. 3956 */ 3957 if (!error && sig) { 3958 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3959 /* 3960 * If lock_task_sighand() failed we pretend the task 3961 * dies after receiving the signal. The window is tiny, 3962 * and the signal is private anyway. 3963 */ 3964 if (unlikely(error == -ESRCH)) 3965 error = 0; 3966 } 3967 } 3968 rcu_read_unlock(); 3969 3970 return error; 3971 } 3972 3973 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3974 { 3975 struct kernel_siginfo info; 3976 3977 clear_siginfo(&info); 3978 info.si_signo = sig; 3979 info.si_errno = 0; 3980 info.si_code = SI_TKILL; 3981 info.si_pid = task_tgid_vnr(current); 3982 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3983 3984 return do_send_specific(tgid, pid, sig, &info); 3985 } 3986 3987 /** 3988 * sys_tgkill - send signal to one specific thread 3989 * @tgid: the thread group ID of the thread 3990 * @pid: the PID of the thread 3991 * @sig: signal to be sent 3992 * 3993 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3994 * exists but it's not belonging to the target process anymore. This 3995 * method solves the problem of threads exiting and PIDs getting reused. 3996 */ 3997 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3998 { 3999 /* This is only valid for single tasks */ 4000 if (pid <= 0 || tgid <= 0) 4001 return -EINVAL; 4002 4003 return do_tkill(tgid, pid, sig); 4004 } 4005 4006 /** 4007 * sys_tkill - send signal to one specific task 4008 * @pid: the PID of the task 4009 * @sig: signal to be sent 4010 * 4011 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4012 */ 4013 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4014 { 4015 /* This is only valid for single tasks */ 4016 if (pid <= 0) 4017 return -EINVAL; 4018 4019 return do_tkill(0, pid, sig); 4020 } 4021 4022 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4023 { 4024 /* Not even root can pretend to send signals from the kernel. 4025 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4026 */ 4027 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4028 (task_pid_vnr(current) != pid)) 4029 return -EPERM; 4030 4031 /* POSIX.1b doesn't mention process groups. */ 4032 return kill_proc_info(sig, info, pid); 4033 } 4034 4035 /** 4036 * sys_rt_sigqueueinfo - send signal information to a signal 4037 * @pid: the PID of the thread 4038 * @sig: signal to be sent 4039 * @uinfo: signal info to be sent 4040 */ 4041 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4042 siginfo_t __user *, uinfo) 4043 { 4044 kernel_siginfo_t info; 4045 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4046 if (unlikely(ret)) 4047 return ret; 4048 return do_rt_sigqueueinfo(pid, sig, &info); 4049 } 4050 4051 #ifdef CONFIG_COMPAT 4052 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4053 compat_pid_t, pid, 4054 int, sig, 4055 struct compat_siginfo __user *, uinfo) 4056 { 4057 kernel_siginfo_t info; 4058 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4059 if (unlikely(ret)) 4060 return ret; 4061 return do_rt_sigqueueinfo(pid, sig, &info); 4062 } 4063 #endif 4064 4065 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4066 { 4067 /* This is only valid for single tasks */ 4068 if (pid <= 0 || tgid <= 0) 4069 return -EINVAL; 4070 4071 /* Not even root can pretend to send signals from the kernel. 4072 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4073 */ 4074 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4075 (task_pid_vnr(current) != pid)) 4076 return -EPERM; 4077 4078 return do_send_specific(tgid, pid, sig, info); 4079 } 4080 4081 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4082 siginfo_t __user *, uinfo) 4083 { 4084 kernel_siginfo_t info; 4085 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4086 if (unlikely(ret)) 4087 return ret; 4088 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4089 } 4090 4091 #ifdef CONFIG_COMPAT 4092 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4093 compat_pid_t, tgid, 4094 compat_pid_t, pid, 4095 int, sig, 4096 struct compat_siginfo __user *, uinfo) 4097 { 4098 kernel_siginfo_t info; 4099 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4100 if (unlikely(ret)) 4101 return ret; 4102 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4103 } 4104 #endif 4105 4106 /* 4107 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4108 */ 4109 void kernel_sigaction(int sig, __sighandler_t action) 4110 { 4111 spin_lock_irq(¤t->sighand->siglock); 4112 current->sighand->action[sig - 1].sa.sa_handler = action; 4113 if (action == SIG_IGN) { 4114 sigset_t mask; 4115 4116 sigemptyset(&mask); 4117 sigaddset(&mask, sig); 4118 4119 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4120 flush_sigqueue_mask(&mask, ¤t->pending); 4121 recalc_sigpending(); 4122 } 4123 spin_unlock_irq(¤t->sighand->siglock); 4124 } 4125 EXPORT_SYMBOL(kernel_sigaction); 4126 4127 void __weak sigaction_compat_abi(struct k_sigaction *act, 4128 struct k_sigaction *oact) 4129 { 4130 } 4131 4132 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4133 { 4134 struct task_struct *p = current, *t; 4135 struct k_sigaction *k; 4136 sigset_t mask; 4137 4138 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4139 return -EINVAL; 4140 4141 k = &p->sighand->action[sig-1]; 4142 4143 spin_lock_irq(&p->sighand->siglock); 4144 if (k->sa.sa_flags & SA_IMMUTABLE) { 4145 spin_unlock_irq(&p->sighand->siglock); 4146 return -EINVAL; 4147 } 4148 if (oact) 4149 *oact = *k; 4150 4151 /* 4152 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4153 * e.g. by having an architecture use the bit in their uapi. 4154 */ 4155 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4156 4157 /* 4158 * Clear unknown flag bits in order to allow userspace to detect missing 4159 * support for flag bits and to allow the kernel to use non-uapi bits 4160 * internally. 4161 */ 4162 if (act) 4163 act->sa.sa_flags &= UAPI_SA_FLAGS; 4164 if (oact) 4165 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4166 4167 sigaction_compat_abi(act, oact); 4168 4169 if (act) { 4170 sigdelsetmask(&act->sa.sa_mask, 4171 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4172 *k = *act; 4173 /* 4174 * POSIX 3.3.1.3: 4175 * "Setting a signal action to SIG_IGN for a signal that is 4176 * pending shall cause the pending signal to be discarded, 4177 * whether or not it is blocked." 4178 * 4179 * "Setting a signal action to SIG_DFL for a signal that is 4180 * pending and whose default action is to ignore the signal 4181 * (for example, SIGCHLD), shall cause the pending signal to 4182 * be discarded, whether or not it is blocked" 4183 */ 4184 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4185 sigemptyset(&mask); 4186 sigaddset(&mask, sig); 4187 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4188 for_each_thread(p, t) 4189 flush_sigqueue_mask(&mask, &t->pending); 4190 } 4191 } 4192 4193 spin_unlock_irq(&p->sighand->siglock); 4194 return 0; 4195 } 4196 4197 #ifdef CONFIG_DYNAMIC_SIGFRAME 4198 static inline void sigaltstack_lock(void) 4199 __acquires(¤t->sighand->siglock) 4200 { 4201 spin_lock_irq(¤t->sighand->siglock); 4202 } 4203 4204 static inline void sigaltstack_unlock(void) 4205 __releases(¤t->sighand->siglock) 4206 { 4207 spin_unlock_irq(¤t->sighand->siglock); 4208 } 4209 #else 4210 static inline void sigaltstack_lock(void) { } 4211 static inline void sigaltstack_unlock(void) { } 4212 #endif 4213 4214 static int 4215 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4216 size_t min_ss_size) 4217 { 4218 struct task_struct *t = current; 4219 int ret = 0; 4220 4221 if (oss) { 4222 memset(oss, 0, sizeof(stack_t)); 4223 oss->ss_sp = (void __user *) t->sas_ss_sp; 4224 oss->ss_size = t->sas_ss_size; 4225 oss->ss_flags = sas_ss_flags(sp) | 4226 (current->sas_ss_flags & SS_FLAG_BITS); 4227 } 4228 4229 if (ss) { 4230 void __user *ss_sp = ss->ss_sp; 4231 size_t ss_size = ss->ss_size; 4232 unsigned ss_flags = ss->ss_flags; 4233 int ss_mode; 4234 4235 if (unlikely(on_sig_stack(sp))) 4236 return -EPERM; 4237 4238 ss_mode = ss_flags & ~SS_FLAG_BITS; 4239 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4240 ss_mode != 0)) 4241 return -EINVAL; 4242 4243 /* 4244 * Return before taking any locks if no actual 4245 * sigaltstack changes were requested. 4246 */ 4247 if (t->sas_ss_sp == (unsigned long)ss_sp && 4248 t->sas_ss_size == ss_size && 4249 t->sas_ss_flags == ss_flags) 4250 return 0; 4251 4252 sigaltstack_lock(); 4253 if (ss_mode == SS_DISABLE) { 4254 ss_size = 0; 4255 ss_sp = NULL; 4256 } else { 4257 if (unlikely(ss_size < min_ss_size)) 4258 ret = -ENOMEM; 4259 if (!sigaltstack_size_valid(ss_size)) 4260 ret = -ENOMEM; 4261 } 4262 if (!ret) { 4263 t->sas_ss_sp = (unsigned long) ss_sp; 4264 t->sas_ss_size = ss_size; 4265 t->sas_ss_flags = ss_flags; 4266 } 4267 sigaltstack_unlock(); 4268 } 4269 return ret; 4270 } 4271 4272 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4273 { 4274 stack_t new, old; 4275 int err; 4276 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4277 return -EFAULT; 4278 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4279 current_user_stack_pointer(), 4280 MINSIGSTKSZ); 4281 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4282 err = -EFAULT; 4283 return err; 4284 } 4285 4286 int restore_altstack(const stack_t __user *uss) 4287 { 4288 stack_t new; 4289 if (copy_from_user(&new, uss, sizeof(stack_t))) 4290 return -EFAULT; 4291 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4292 MINSIGSTKSZ); 4293 /* squash all but EFAULT for now */ 4294 return 0; 4295 } 4296 4297 int __save_altstack(stack_t __user *uss, unsigned long sp) 4298 { 4299 struct task_struct *t = current; 4300 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4301 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4302 __put_user(t->sas_ss_size, &uss->ss_size); 4303 return err; 4304 } 4305 4306 #ifdef CONFIG_COMPAT 4307 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4308 compat_stack_t __user *uoss_ptr) 4309 { 4310 stack_t uss, uoss; 4311 int ret; 4312 4313 if (uss_ptr) { 4314 compat_stack_t uss32; 4315 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4316 return -EFAULT; 4317 uss.ss_sp = compat_ptr(uss32.ss_sp); 4318 uss.ss_flags = uss32.ss_flags; 4319 uss.ss_size = uss32.ss_size; 4320 } 4321 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4322 compat_user_stack_pointer(), 4323 COMPAT_MINSIGSTKSZ); 4324 if (ret >= 0 && uoss_ptr) { 4325 compat_stack_t old; 4326 memset(&old, 0, sizeof(old)); 4327 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4328 old.ss_flags = uoss.ss_flags; 4329 old.ss_size = uoss.ss_size; 4330 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4331 ret = -EFAULT; 4332 } 4333 return ret; 4334 } 4335 4336 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4337 const compat_stack_t __user *, uss_ptr, 4338 compat_stack_t __user *, uoss_ptr) 4339 { 4340 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4341 } 4342 4343 int compat_restore_altstack(const compat_stack_t __user *uss) 4344 { 4345 int err = do_compat_sigaltstack(uss, NULL); 4346 /* squash all but -EFAULT for now */ 4347 return err == -EFAULT ? err : 0; 4348 } 4349 4350 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4351 { 4352 int err; 4353 struct task_struct *t = current; 4354 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4355 &uss->ss_sp) | 4356 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4357 __put_user(t->sas_ss_size, &uss->ss_size); 4358 return err; 4359 } 4360 #endif 4361 4362 #ifdef __ARCH_WANT_SYS_SIGPENDING 4363 4364 /** 4365 * sys_sigpending - examine pending signals 4366 * @uset: where mask of pending signal is returned 4367 */ 4368 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4369 { 4370 sigset_t set; 4371 4372 if (sizeof(old_sigset_t) > sizeof(*uset)) 4373 return -EINVAL; 4374 4375 do_sigpending(&set); 4376 4377 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4378 return -EFAULT; 4379 4380 return 0; 4381 } 4382 4383 #ifdef CONFIG_COMPAT 4384 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4385 { 4386 sigset_t set; 4387 4388 do_sigpending(&set); 4389 4390 return put_user(set.sig[0], set32); 4391 } 4392 #endif 4393 4394 #endif 4395 4396 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4397 /** 4398 * sys_sigprocmask - examine and change blocked signals 4399 * @how: whether to add, remove, or set signals 4400 * @nset: signals to add or remove (if non-null) 4401 * @oset: previous value of signal mask if non-null 4402 * 4403 * Some platforms have their own version with special arguments; 4404 * others support only sys_rt_sigprocmask. 4405 */ 4406 4407 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4408 old_sigset_t __user *, oset) 4409 { 4410 old_sigset_t old_set, new_set; 4411 sigset_t new_blocked; 4412 4413 old_set = current->blocked.sig[0]; 4414 4415 if (nset) { 4416 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4417 return -EFAULT; 4418 4419 new_blocked = current->blocked; 4420 4421 switch (how) { 4422 case SIG_BLOCK: 4423 sigaddsetmask(&new_blocked, new_set); 4424 break; 4425 case SIG_UNBLOCK: 4426 sigdelsetmask(&new_blocked, new_set); 4427 break; 4428 case SIG_SETMASK: 4429 new_blocked.sig[0] = new_set; 4430 break; 4431 default: 4432 return -EINVAL; 4433 } 4434 4435 set_current_blocked(&new_blocked); 4436 } 4437 4438 if (oset) { 4439 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4440 return -EFAULT; 4441 } 4442 4443 return 0; 4444 } 4445 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4446 4447 #ifndef CONFIG_ODD_RT_SIGACTION 4448 /** 4449 * sys_rt_sigaction - alter an action taken by a process 4450 * @sig: signal to be sent 4451 * @act: new sigaction 4452 * @oact: used to save the previous sigaction 4453 * @sigsetsize: size of sigset_t type 4454 */ 4455 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4456 const struct sigaction __user *, act, 4457 struct sigaction __user *, oact, 4458 size_t, sigsetsize) 4459 { 4460 struct k_sigaction new_sa, old_sa; 4461 int ret; 4462 4463 /* XXX: Don't preclude handling different sized sigset_t's. */ 4464 if (sigsetsize != sizeof(sigset_t)) 4465 return -EINVAL; 4466 4467 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4468 return -EFAULT; 4469 4470 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4471 if (ret) 4472 return ret; 4473 4474 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4475 return -EFAULT; 4476 4477 return 0; 4478 } 4479 #ifdef CONFIG_COMPAT 4480 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4481 const struct compat_sigaction __user *, act, 4482 struct compat_sigaction __user *, oact, 4483 compat_size_t, sigsetsize) 4484 { 4485 struct k_sigaction new_ka, old_ka; 4486 #ifdef __ARCH_HAS_SA_RESTORER 4487 compat_uptr_t restorer; 4488 #endif 4489 int ret; 4490 4491 /* XXX: Don't preclude handling different sized sigset_t's. */ 4492 if (sigsetsize != sizeof(compat_sigset_t)) 4493 return -EINVAL; 4494 4495 if (act) { 4496 compat_uptr_t handler; 4497 ret = get_user(handler, &act->sa_handler); 4498 new_ka.sa.sa_handler = compat_ptr(handler); 4499 #ifdef __ARCH_HAS_SA_RESTORER 4500 ret |= get_user(restorer, &act->sa_restorer); 4501 new_ka.sa.sa_restorer = compat_ptr(restorer); 4502 #endif 4503 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4504 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4505 if (ret) 4506 return -EFAULT; 4507 } 4508 4509 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4510 if (!ret && oact) { 4511 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4512 &oact->sa_handler); 4513 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4514 sizeof(oact->sa_mask)); 4515 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4516 #ifdef __ARCH_HAS_SA_RESTORER 4517 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4518 &oact->sa_restorer); 4519 #endif 4520 } 4521 return ret; 4522 } 4523 #endif 4524 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4525 4526 #ifdef CONFIG_OLD_SIGACTION 4527 SYSCALL_DEFINE3(sigaction, int, sig, 4528 const struct old_sigaction __user *, act, 4529 struct old_sigaction __user *, oact) 4530 { 4531 struct k_sigaction new_ka, old_ka; 4532 int ret; 4533 4534 if (act) { 4535 old_sigset_t mask; 4536 if (!access_ok(act, sizeof(*act)) || 4537 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4538 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4539 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4540 __get_user(mask, &act->sa_mask)) 4541 return -EFAULT; 4542 #ifdef __ARCH_HAS_KA_RESTORER 4543 new_ka.ka_restorer = NULL; 4544 #endif 4545 siginitset(&new_ka.sa.sa_mask, mask); 4546 } 4547 4548 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4549 4550 if (!ret && oact) { 4551 if (!access_ok(oact, sizeof(*oact)) || 4552 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4553 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4554 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4555 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4556 return -EFAULT; 4557 } 4558 4559 return ret; 4560 } 4561 #endif 4562 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4563 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4564 const struct compat_old_sigaction __user *, act, 4565 struct compat_old_sigaction __user *, oact) 4566 { 4567 struct k_sigaction new_ka, old_ka; 4568 int ret; 4569 compat_old_sigset_t mask; 4570 compat_uptr_t handler, restorer; 4571 4572 if (act) { 4573 if (!access_ok(act, sizeof(*act)) || 4574 __get_user(handler, &act->sa_handler) || 4575 __get_user(restorer, &act->sa_restorer) || 4576 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4577 __get_user(mask, &act->sa_mask)) 4578 return -EFAULT; 4579 4580 #ifdef __ARCH_HAS_KA_RESTORER 4581 new_ka.ka_restorer = NULL; 4582 #endif 4583 new_ka.sa.sa_handler = compat_ptr(handler); 4584 new_ka.sa.sa_restorer = compat_ptr(restorer); 4585 siginitset(&new_ka.sa.sa_mask, mask); 4586 } 4587 4588 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4589 4590 if (!ret && oact) { 4591 if (!access_ok(oact, sizeof(*oact)) || 4592 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4593 &oact->sa_handler) || 4594 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4595 &oact->sa_restorer) || 4596 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4597 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4598 return -EFAULT; 4599 } 4600 return ret; 4601 } 4602 #endif 4603 4604 #ifdef CONFIG_SGETMASK_SYSCALL 4605 4606 /* 4607 * For backwards compatibility. Functionality superseded by sigprocmask. 4608 */ 4609 SYSCALL_DEFINE0(sgetmask) 4610 { 4611 /* SMP safe */ 4612 return current->blocked.sig[0]; 4613 } 4614 4615 SYSCALL_DEFINE1(ssetmask, int, newmask) 4616 { 4617 int old = current->blocked.sig[0]; 4618 sigset_t newset; 4619 4620 siginitset(&newset, newmask); 4621 set_current_blocked(&newset); 4622 4623 return old; 4624 } 4625 #endif /* CONFIG_SGETMASK_SYSCALL */ 4626 4627 #ifdef __ARCH_WANT_SYS_SIGNAL 4628 /* 4629 * For backwards compatibility. Functionality superseded by sigaction. 4630 */ 4631 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4632 { 4633 struct k_sigaction new_sa, old_sa; 4634 int ret; 4635 4636 new_sa.sa.sa_handler = handler; 4637 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4638 sigemptyset(&new_sa.sa.sa_mask); 4639 4640 ret = do_sigaction(sig, &new_sa, &old_sa); 4641 4642 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4643 } 4644 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4645 4646 #ifdef __ARCH_WANT_SYS_PAUSE 4647 4648 SYSCALL_DEFINE0(pause) 4649 { 4650 while (!signal_pending(current)) { 4651 __set_current_state(TASK_INTERRUPTIBLE); 4652 schedule(); 4653 } 4654 return -ERESTARTNOHAND; 4655 } 4656 4657 #endif 4658 4659 static int sigsuspend(sigset_t *set) 4660 { 4661 current->saved_sigmask = current->blocked; 4662 set_current_blocked(set); 4663 4664 while (!signal_pending(current)) { 4665 __set_current_state(TASK_INTERRUPTIBLE); 4666 schedule(); 4667 } 4668 set_restore_sigmask(); 4669 return -ERESTARTNOHAND; 4670 } 4671 4672 /** 4673 * sys_rt_sigsuspend - replace the signal mask for a value with the 4674 * @unewset value until a signal is received 4675 * @unewset: new signal mask value 4676 * @sigsetsize: size of sigset_t type 4677 */ 4678 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4679 { 4680 sigset_t newset; 4681 4682 /* XXX: Don't preclude handling different sized sigset_t's. */ 4683 if (sigsetsize != sizeof(sigset_t)) 4684 return -EINVAL; 4685 4686 if (copy_from_user(&newset, unewset, sizeof(newset))) 4687 return -EFAULT; 4688 return sigsuspend(&newset); 4689 } 4690 4691 #ifdef CONFIG_COMPAT 4692 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4693 { 4694 sigset_t newset; 4695 4696 /* XXX: Don't preclude handling different sized sigset_t's. */ 4697 if (sigsetsize != sizeof(sigset_t)) 4698 return -EINVAL; 4699 4700 if (get_compat_sigset(&newset, unewset)) 4701 return -EFAULT; 4702 return sigsuspend(&newset); 4703 } 4704 #endif 4705 4706 #ifdef CONFIG_OLD_SIGSUSPEND 4707 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4708 { 4709 sigset_t blocked; 4710 siginitset(&blocked, mask); 4711 return sigsuspend(&blocked); 4712 } 4713 #endif 4714 #ifdef CONFIG_OLD_SIGSUSPEND3 4715 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4716 { 4717 sigset_t blocked; 4718 siginitset(&blocked, mask); 4719 return sigsuspend(&blocked); 4720 } 4721 #endif 4722 4723 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4724 { 4725 return NULL; 4726 } 4727 4728 static inline void siginfo_buildtime_checks(void) 4729 { 4730 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4731 4732 /* Verify the offsets in the two siginfos match */ 4733 #define CHECK_OFFSET(field) \ 4734 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4735 4736 /* kill */ 4737 CHECK_OFFSET(si_pid); 4738 CHECK_OFFSET(si_uid); 4739 4740 /* timer */ 4741 CHECK_OFFSET(si_tid); 4742 CHECK_OFFSET(si_overrun); 4743 CHECK_OFFSET(si_value); 4744 4745 /* rt */ 4746 CHECK_OFFSET(si_pid); 4747 CHECK_OFFSET(si_uid); 4748 CHECK_OFFSET(si_value); 4749 4750 /* sigchld */ 4751 CHECK_OFFSET(si_pid); 4752 CHECK_OFFSET(si_uid); 4753 CHECK_OFFSET(si_status); 4754 CHECK_OFFSET(si_utime); 4755 CHECK_OFFSET(si_stime); 4756 4757 /* sigfault */ 4758 CHECK_OFFSET(si_addr); 4759 CHECK_OFFSET(si_trapno); 4760 CHECK_OFFSET(si_addr_lsb); 4761 CHECK_OFFSET(si_lower); 4762 CHECK_OFFSET(si_upper); 4763 CHECK_OFFSET(si_pkey); 4764 CHECK_OFFSET(si_perf_data); 4765 CHECK_OFFSET(si_perf_type); 4766 CHECK_OFFSET(si_perf_flags); 4767 4768 /* sigpoll */ 4769 CHECK_OFFSET(si_band); 4770 CHECK_OFFSET(si_fd); 4771 4772 /* sigsys */ 4773 CHECK_OFFSET(si_call_addr); 4774 CHECK_OFFSET(si_syscall); 4775 CHECK_OFFSET(si_arch); 4776 #undef CHECK_OFFSET 4777 4778 /* usb asyncio */ 4779 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4780 offsetof(struct siginfo, si_addr)); 4781 if (sizeof(int) == sizeof(void __user *)) { 4782 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4783 sizeof(void __user *)); 4784 } else { 4785 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4786 sizeof_field(struct siginfo, si_uid)) != 4787 sizeof(void __user *)); 4788 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4789 offsetof(struct siginfo, si_uid)); 4790 } 4791 #ifdef CONFIG_COMPAT 4792 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4793 offsetof(struct compat_siginfo, si_addr)); 4794 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4795 sizeof(compat_uptr_t)); 4796 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4797 sizeof_field(struct siginfo, si_pid)); 4798 #endif 4799 } 4800 4801 #if defined(CONFIG_SYSCTL) 4802 static struct ctl_table signal_debug_table[] = { 4803 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4804 { 4805 .procname = "exception-trace", 4806 .data = &show_unhandled_signals, 4807 .maxlen = sizeof(int), 4808 .mode = 0644, 4809 .proc_handler = proc_dointvec 4810 }, 4811 #endif 4812 { } 4813 }; 4814 4815 static int __init init_signal_sysctls(void) 4816 { 4817 register_sysctl_init("debug", signal_debug_table); 4818 return 0; 4819 } 4820 early_initcall(init_signal_sysctls); 4821 #endif /* CONFIG_SYSCTL */ 4822 4823 void __init signals_init(void) 4824 { 4825 siginfo_buildtime_checks(); 4826 4827 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4828 } 4829 4830 #ifdef CONFIG_KGDB_KDB 4831 #include <linux/kdb.h> 4832 /* 4833 * kdb_send_sig - Allows kdb to send signals without exposing 4834 * signal internals. This function checks if the required locks are 4835 * available before calling the main signal code, to avoid kdb 4836 * deadlocks. 4837 */ 4838 void kdb_send_sig(struct task_struct *t, int sig) 4839 { 4840 static struct task_struct *kdb_prev_t; 4841 int new_t, ret; 4842 if (!spin_trylock(&t->sighand->siglock)) { 4843 kdb_printf("Can't do kill command now.\n" 4844 "The sigmask lock is held somewhere else in " 4845 "kernel, try again later\n"); 4846 return; 4847 } 4848 new_t = kdb_prev_t != t; 4849 kdb_prev_t = t; 4850 if (!task_is_running(t) && new_t) { 4851 spin_unlock(&t->sighand->siglock); 4852 kdb_printf("Process is not RUNNING, sending a signal from " 4853 "kdb risks deadlock\n" 4854 "on the run queue locks. " 4855 "The signal has _not_ been sent.\n" 4856 "Reissue the kill command if you want to risk " 4857 "the deadlock.\n"); 4858 return; 4859 } 4860 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4861 spin_unlock(&t->sighand->siglock); 4862 if (ret) 4863 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4864 sig, t->pid); 4865 else 4866 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4867 } 4868 #endif /* CONFIG_KGDB_KDB */ 4869