1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
53
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h> /* for syscall_get_* */
60
61 /*
62 * SLAB caches for signal bits.
63 */
64
65 static struct kmem_cache *sigqueue_cachep;
66
67 int print_fatal_signals __read_mostly;
68
sig_handler(struct task_struct * t,int sig)69 static void __user *sig_handler(struct task_struct *t, int sig)
70 {
71 return t->sighand->action[sig - 1].sa.sa_handler;
72 }
73
sig_handler_ignored(void __user * handler,int sig)74 static inline bool sig_handler_ignored(void __user *handler, int sig)
75 {
76 /* Is it explicitly or implicitly ignored? */
77 return handler == SIG_IGN ||
78 (handler == SIG_DFL && sig_kernel_ignore(sig));
79 }
80
sig_task_ignored(struct task_struct * t,int sig,bool force)81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 {
83 void __user *handler;
84
85 handler = sig_handler(t, sig);
86
87 /* SIGKILL and SIGSTOP may not be sent to the global init */
88 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 return true;
90
91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 return true;
94
95 /* Only allow kernel generated signals to this kthread */
96 if (unlikely((t->flags & PF_KTHREAD) &&
97 (handler == SIG_KTHREAD_KERNEL) && !force))
98 return true;
99
100 return sig_handler_ignored(handler, sig);
101 }
102
sig_ignored(struct task_struct * t,int sig,bool force)103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 {
105 /*
106 * Blocked signals are never ignored, since the
107 * signal handler may change by the time it is
108 * unblocked.
109 */
110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 return false;
112
113 /*
114 * Tracers may want to know about even ignored signal unless it
115 * is SIGKILL which can't be reported anyway but can be ignored
116 * by SIGNAL_UNKILLABLE task.
117 */
118 if (t->ptrace && sig != SIGKILL)
119 return false;
120
121 return sig_task_ignored(t, sig, force);
122 }
123
124 /*
125 * Re-calculate pending state from the set of locally pending
126 * signals, globally pending signals, and blocked signals.
127 */
has_pending_signals(sigset_t * signal,sigset_t * blocked)128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
129 {
130 unsigned long ready;
131 long i;
132
133 switch (_NSIG_WORDS) {
134 default:
135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 ready |= signal->sig[i] &~ blocked->sig[i];
137 break;
138
139 case 4: ready = signal->sig[3] &~ blocked->sig[3];
140 ready |= signal->sig[2] &~ blocked->sig[2];
141 ready |= signal->sig[1] &~ blocked->sig[1];
142 ready |= signal->sig[0] &~ blocked->sig[0];
143 break;
144
145 case 2: ready = signal->sig[1] &~ blocked->sig[1];
146 ready |= signal->sig[0] &~ blocked->sig[0];
147 break;
148
149 case 1: ready = signal->sig[0] &~ blocked->sig[0];
150 }
151 return ready != 0;
152 }
153
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155
recalc_sigpending_tsk(struct task_struct * t)156 static bool recalc_sigpending_tsk(struct task_struct *t)
157 {
158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 PENDING(&t->pending, &t->blocked) ||
160 PENDING(&t->signal->shared_pending, &t->blocked) ||
161 cgroup_task_frozen(t)) {
162 set_tsk_thread_flag(t, TIF_SIGPENDING);
163 return true;
164 }
165
166 /*
167 * We must never clear the flag in another thread, or in current
168 * when it's possible the current syscall is returning -ERESTART*.
169 * So we don't clear it here, and only callers who know they should do.
170 */
171 return false;
172 }
173
174 /*
175 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176 * This is superfluous when called on current, the wakeup is a harmless no-op.
177 */
recalc_sigpending_and_wake(struct task_struct * t)178 void recalc_sigpending_and_wake(struct task_struct *t)
179 {
180 if (recalc_sigpending_tsk(t))
181 signal_wake_up(t, 0);
182 }
183
recalc_sigpending(void)184 void recalc_sigpending(void)
185 {
186 if (!recalc_sigpending_tsk(current) && !freezing(current))
187 clear_thread_flag(TIF_SIGPENDING);
188
189 }
190 EXPORT_SYMBOL(recalc_sigpending);
191
calculate_sigpending(void)192 void calculate_sigpending(void)
193 {
194 /* Have any signals or users of TIF_SIGPENDING been delayed
195 * until after fork?
196 */
197 spin_lock_irq(¤t->sighand->siglock);
198 set_tsk_thread_flag(current, TIF_SIGPENDING);
199 recalc_sigpending();
200 spin_unlock_irq(¤t->sighand->siglock);
201 }
202
203 /* Given the mask, find the first available signal that should be serviced. */
204
205 #define SYNCHRONOUS_MASK \
206 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
208
next_signal(struct sigpending * pending,sigset_t * mask)209 int next_signal(struct sigpending *pending, sigset_t *mask)
210 {
211 unsigned long i, *s, *m, x;
212 int sig = 0;
213
214 s = pending->signal.sig;
215 m = mask->sig;
216
217 /*
218 * Handle the first word specially: it contains the
219 * synchronous signals that need to be dequeued first.
220 */
221 x = *s &~ *m;
222 if (x) {
223 if (x & SYNCHRONOUS_MASK)
224 x &= SYNCHRONOUS_MASK;
225 sig = ffz(~x) + 1;
226 return sig;
227 }
228
229 switch (_NSIG_WORDS) {
230 default:
231 for (i = 1; i < _NSIG_WORDS; ++i) {
232 x = *++s &~ *++m;
233 if (!x)
234 continue;
235 sig = ffz(~x) + i*_NSIG_BPW + 1;
236 break;
237 }
238 break;
239
240 case 2:
241 x = s[1] &~ m[1];
242 if (!x)
243 break;
244 sig = ffz(~x) + _NSIG_BPW + 1;
245 break;
246
247 case 1:
248 /* Nothing to do */
249 break;
250 }
251
252 return sig;
253 }
254
print_dropped_signal(int sig)255 static inline void print_dropped_signal(int sig)
256 {
257 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
258
259 if (!print_fatal_signals)
260 return;
261
262 if (!__ratelimit(&ratelimit_state))
263 return;
264
265 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 current->comm, current->pid, sig);
267 }
268
269 /**
270 * task_set_jobctl_pending - set jobctl pending bits
271 * @task: target task
272 * @mask: pending bits to set
273 *
274 * Clear @mask from @task->jobctl. @mask must be subset of
275 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
277 * cleared. If @task is already being killed or exiting, this function
278 * becomes noop.
279 *
280 * CONTEXT:
281 * Must be called with @task->sighand->siglock held.
282 *
283 * RETURNS:
284 * %true if @mask is set, %false if made noop because @task was dying.
285 */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
287 {
288 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
291
292 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 return false;
294
295 if (mask & JOBCTL_STOP_SIGMASK)
296 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
297
298 task->jobctl |= mask;
299 return true;
300 }
301
302 /**
303 * task_clear_jobctl_trapping - clear jobctl trapping bit
304 * @task: target task
305 *
306 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307 * Clear it and wake up the ptracer. Note that we don't need any further
308 * locking. @task->siglock guarantees that @task->parent points to the
309 * ptracer.
310 *
311 * CONTEXT:
312 * Must be called with @task->sighand->siglock held.
313 */
task_clear_jobctl_trapping(struct task_struct * task)314 void task_clear_jobctl_trapping(struct task_struct *task)
315 {
316 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 task->jobctl &= ~JOBCTL_TRAPPING;
318 smp_mb(); /* advised by wake_up_bit() */
319 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
320 }
321 }
322
323 /**
324 * task_clear_jobctl_pending - clear jobctl pending bits
325 * @task: target task
326 * @mask: pending bits to clear
327 *
328 * Clear @mask from @task->jobctl. @mask must be subset of
329 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
330 * STOP bits are cleared together.
331 *
332 * If clearing of @mask leaves no stop or trap pending, this function calls
333 * task_clear_jobctl_trapping().
334 *
335 * CONTEXT:
336 * Must be called with @task->sighand->siglock held.
337 */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
339 {
340 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
341
342 if (mask & JOBCTL_STOP_PENDING)
343 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
344
345 task->jobctl &= ~mask;
346
347 if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 task_clear_jobctl_trapping(task);
349 }
350
351 /**
352 * task_participate_group_stop - participate in a group stop
353 * @task: task participating in a group stop
354 *
355 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356 * Group stop states are cleared and the group stop count is consumed if
357 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
358 * stop, the appropriate `SIGNAL_*` flags are set.
359 *
360 * CONTEXT:
361 * Must be called with @task->sighand->siglock held.
362 *
363 * RETURNS:
364 * %true if group stop completion should be notified to the parent, %false
365 * otherwise.
366 */
task_participate_group_stop(struct task_struct * task)367 static bool task_participate_group_stop(struct task_struct *task)
368 {
369 struct signal_struct *sig = task->signal;
370 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
371
372 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
373
374 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
375
376 if (!consume)
377 return false;
378
379 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 sig->group_stop_count--;
381
382 /*
383 * Tell the caller to notify completion iff we are entering into a
384 * fresh group stop. Read comment in do_signal_stop() for details.
385 */
386 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
388 return true;
389 }
390 return false;
391 }
392
task_join_group_stop(struct task_struct * task)393 void task_join_group_stop(struct task_struct *task)
394 {
395 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 struct signal_struct *sig = current->signal;
397
398 if (sig->group_stop_count) {
399 sig->group_stop_count++;
400 mask |= JOBCTL_STOP_CONSUME;
401 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 return;
403
404 /* Have the new thread join an on-going signal group stop */
405 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 }
407
408 /*
409 * allocate a new signal queue record
410 * - this may be called without locks if and only if t == current, otherwise an
411 * appropriate lock must be held to stop the target task from exiting
412 */
413 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t gfp_flags,int override_rlimit,const unsigned int sigqueue_flags)414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 int override_rlimit, const unsigned int sigqueue_flags)
416 {
417 struct sigqueue *q = NULL;
418 struct ucounts *ucounts = NULL;
419 long sigpending;
420
421 /*
422 * Protect access to @t credentials. This can go away when all
423 * callers hold rcu read lock.
424 *
425 * NOTE! A pending signal will hold on to the user refcount,
426 * and we get/put the refcount only when the sigpending count
427 * changes from/to zero.
428 */
429 rcu_read_lock();
430 ucounts = task_ucounts(t);
431 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
432 rcu_read_unlock();
433 if (!sigpending)
434 return NULL;
435
436 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
437 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
438 } else {
439 print_dropped_signal(sig);
440 }
441
442 if (unlikely(q == NULL)) {
443 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
444 } else {
445 INIT_LIST_HEAD(&q->list);
446 q->flags = sigqueue_flags;
447 q->ucounts = ucounts;
448 }
449 return q;
450 }
451
__sigqueue_free(struct sigqueue * q)452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 if (q->flags & SIGQUEUE_PREALLOC)
455 return;
456 if (q->ucounts) {
457 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 q->ucounts = NULL;
459 }
460 kmem_cache_free(sigqueue_cachep, q);
461 }
462
flush_sigqueue(struct sigpending * queue)463 void flush_sigqueue(struct sigpending *queue)
464 {
465 struct sigqueue *q;
466
467 sigemptyset(&queue->signal);
468 while (!list_empty(&queue->list)) {
469 q = list_entry(queue->list.next, struct sigqueue , list);
470 list_del_init(&q->list);
471 __sigqueue_free(q);
472 }
473 }
474
475 /*
476 * Flush all pending signals for this kthread.
477 */
flush_signals(struct task_struct * t)478 void flush_signals(struct task_struct *t)
479 {
480 unsigned long flags;
481
482 spin_lock_irqsave(&t->sighand->siglock, flags);
483 clear_tsk_thread_flag(t, TIF_SIGPENDING);
484 flush_sigqueue(&t->pending);
485 flush_sigqueue(&t->signal->shared_pending);
486 spin_unlock_irqrestore(&t->sighand->siglock, flags);
487 }
488 EXPORT_SYMBOL(flush_signals);
489
490 #ifdef CONFIG_POSIX_TIMERS
__flush_itimer_signals(struct sigpending * pending)491 static void __flush_itimer_signals(struct sigpending *pending)
492 {
493 sigset_t signal, retain;
494 struct sigqueue *q, *n;
495
496 signal = pending->signal;
497 sigemptyset(&retain);
498
499 list_for_each_entry_safe(q, n, &pending->list, list) {
500 int sig = q->info.si_signo;
501
502 if (likely(q->info.si_code != SI_TIMER)) {
503 sigaddset(&retain, sig);
504 } else {
505 sigdelset(&signal, sig);
506 list_del_init(&q->list);
507 __sigqueue_free(q);
508 }
509 }
510
511 sigorsets(&pending->signal, &signal, &retain);
512 }
513
flush_itimer_signals(void)514 void flush_itimer_signals(void)
515 {
516 struct task_struct *tsk = current;
517 unsigned long flags;
518
519 spin_lock_irqsave(&tsk->sighand->siglock, flags);
520 __flush_itimer_signals(&tsk->pending);
521 __flush_itimer_signals(&tsk->signal->shared_pending);
522 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
523 }
524 #endif
525
ignore_signals(struct task_struct * t)526 void ignore_signals(struct task_struct *t)
527 {
528 int i;
529
530 for (i = 0; i < _NSIG; ++i)
531 t->sighand->action[i].sa.sa_handler = SIG_IGN;
532
533 flush_signals(t);
534 }
535
536 /*
537 * Flush all handlers for a task.
538 */
539
540 void
flush_signal_handlers(struct task_struct * t,int force_default)541 flush_signal_handlers(struct task_struct *t, int force_default)
542 {
543 int i;
544 struct k_sigaction *ka = &t->sighand->action[0];
545 for (i = _NSIG ; i != 0 ; i--) {
546 if (force_default || ka->sa.sa_handler != SIG_IGN)
547 ka->sa.sa_handler = SIG_DFL;
548 ka->sa.sa_flags = 0;
549 #ifdef __ARCH_HAS_SA_RESTORER
550 ka->sa.sa_restorer = NULL;
551 #endif
552 sigemptyset(&ka->sa.sa_mask);
553 ka++;
554 }
555 }
556
unhandled_signal(struct task_struct * tsk,int sig)557 bool unhandled_signal(struct task_struct *tsk, int sig)
558 {
559 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
560 if (is_global_init(tsk))
561 return true;
562
563 if (handler != SIG_IGN && handler != SIG_DFL)
564 return false;
565
566 /* If dying, we handle all new signals by ignoring them */
567 if (fatal_signal_pending(tsk))
568 return false;
569
570 /* if ptraced, let the tracer determine */
571 return !tsk->ptrace;
572 }
573
collect_signal(int sig,struct sigpending * list,kernel_siginfo_t * info,bool * resched_timer)574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
575 bool *resched_timer)
576 {
577 struct sigqueue *q, *first = NULL;
578
579 /*
580 * Collect the siginfo appropriate to this signal. Check if
581 * there is another siginfo for the same signal.
582 */
583 list_for_each_entry(q, &list->list, list) {
584 if (q->info.si_signo == sig) {
585 if (first)
586 goto still_pending;
587 first = q;
588 }
589 }
590
591 sigdelset(&list->signal, sig);
592
593 if (first) {
594 still_pending:
595 list_del_init(&first->list);
596 copy_siginfo(info, &first->info);
597
598 *resched_timer =
599 (first->flags & SIGQUEUE_PREALLOC) &&
600 (info->si_code == SI_TIMER) &&
601 (info->si_sys_private);
602
603 __sigqueue_free(first);
604 } else {
605 /*
606 * Ok, it wasn't in the queue. This must be
607 * a fast-pathed signal or we must have been
608 * out of queue space. So zero out the info.
609 */
610 clear_siginfo(info);
611 info->si_signo = sig;
612 info->si_errno = 0;
613 info->si_code = SI_USER;
614 info->si_pid = 0;
615 info->si_uid = 0;
616 }
617 }
618
__dequeue_signal(struct sigpending * pending,sigset_t * mask,kernel_siginfo_t * info,bool * resched_timer)619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
620 kernel_siginfo_t *info, bool *resched_timer)
621 {
622 int sig = next_signal(pending, mask);
623
624 if (sig)
625 collect_signal(sig, pending, info, resched_timer);
626 return sig;
627 }
628
629 /*
630 * Dequeue a signal and return the element to the caller, which is
631 * expected to free it.
632 *
633 * All callers have to hold the siglock.
634 */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,kernel_siginfo_t * info,enum pid_type * type)635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
636 kernel_siginfo_t *info, enum pid_type *type)
637 {
638 bool resched_timer = false;
639 int signr;
640
641 /* We only dequeue private signals from ourselves, we don't let
642 * signalfd steal them
643 */
644 *type = PIDTYPE_PID;
645 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
646 if (!signr) {
647 *type = PIDTYPE_TGID;
648 signr = __dequeue_signal(&tsk->signal->shared_pending,
649 mask, info, &resched_timer);
650 #ifdef CONFIG_POSIX_TIMERS
651 /*
652 * itimer signal ?
653 *
654 * itimers are process shared and we restart periodic
655 * itimers in the signal delivery path to prevent DoS
656 * attacks in the high resolution timer case. This is
657 * compliant with the old way of self-restarting
658 * itimers, as the SIGALRM is a legacy signal and only
659 * queued once. Changing the restart behaviour to
660 * restart the timer in the signal dequeue path is
661 * reducing the timer noise on heavy loaded !highres
662 * systems too.
663 */
664 if (unlikely(signr == SIGALRM)) {
665 struct hrtimer *tmr = &tsk->signal->real_timer;
666
667 if (!hrtimer_is_queued(tmr) &&
668 tsk->signal->it_real_incr != 0) {
669 hrtimer_forward(tmr, tmr->base->get_time(),
670 tsk->signal->it_real_incr);
671 hrtimer_restart(tmr);
672 }
673 }
674 #endif
675 }
676
677 recalc_sigpending();
678 if (!signr)
679 return 0;
680
681 if (unlikely(sig_kernel_stop(signr))) {
682 /*
683 * Set a marker that we have dequeued a stop signal. Our
684 * caller might release the siglock and then the pending
685 * stop signal it is about to process is no longer in the
686 * pending bitmasks, but must still be cleared by a SIGCONT
687 * (and overruled by a SIGKILL). So those cases clear this
688 * shared flag after we've set it. Note that this flag may
689 * remain set after the signal we return is ignored or
690 * handled. That doesn't matter because its only purpose
691 * is to alert stop-signal processing code when another
692 * processor has come along and cleared the flag.
693 */
694 current->jobctl |= JOBCTL_STOP_DEQUEUED;
695 }
696 #ifdef CONFIG_POSIX_TIMERS
697 if (resched_timer) {
698 /*
699 * Release the siglock to ensure proper locking order
700 * of timer locks outside of siglocks. Note, we leave
701 * irqs disabled here, since the posix-timers code is
702 * about to disable them again anyway.
703 */
704 spin_unlock(&tsk->sighand->siglock);
705 posixtimer_rearm(info);
706 spin_lock(&tsk->sighand->siglock);
707
708 /* Don't expose the si_sys_private value to userspace */
709 info->si_sys_private = 0;
710 }
711 #endif
712 return signr;
713 }
714 EXPORT_SYMBOL_GPL(dequeue_signal);
715
dequeue_synchronous_signal(kernel_siginfo_t * info)716 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
717 {
718 struct task_struct *tsk = current;
719 struct sigpending *pending = &tsk->pending;
720 struct sigqueue *q, *sync = NULL;
721
722 /*
723 * Might a synchronous signal be in the queue?
724 */
725 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
726 return 0;
727
728 /*
729 * Return the first synchronous signal in the queue.
730 */
731 list_for_each_entry(q, &pending->list, list) {
732 /* Synchronous signals have a positive si_code */
733 if ((q->info.si_code > SI_USER) &&
734 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
735 sync = q;
736 goto next;
737 }
738 }
739 return 0;
740 next:
741 /*
742 * Check if there is another siginfo for the same signal.
743 */
744 list_for_each_entry_continue(q, &pending->list, list) {
745 if (q->info.si_signo == sync->info.si_signo)
746 goto still_pending;
747 }
748
749 sigdelset(&pending->signal, sync->info.si_signo);
750 recalc_sigpending();
751 still_pending:
752 list_del_init(&sync->list);
753 copy_siginfo(info, &sync->info);
754 __sigqueue_free(sync);
755 return info->si_signo;
756 }
757
758 /*
759 * Tell a process that it has a new active signal..
760 *
761 * NOTE! we rely on the previous spin_lock to
762 * lock interrupts for us! We can only be called with
763 * "siglock" held, and the local interrupt must
764 * have been disabled when that got acquired!
765 *
766 * No need to set need_resched since signal event passing
767 * goes through ->blocked
768 */
signal_wake_up_state(struct task_struct * t,unsigned int state)769 void signal_wake_up_state(struct task_struct *t, unsigned int state)
770 {
771 lockdep_assert_held(&t->sighand->siglock);
772
773 set_tsk_thread_flag(t, TIF_SIGPENDING);
774
775 /*
776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 * case. We don't check t->state here because there is a race with it
778 * executing another processor and just now entering stopped state.
779 * By using wake_up_state, we ensure the process will wake up and
780 * handle its death signal.
781 */
782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
783 kick_process(t);
784 }
785
786 /*
787 * Remove signals in mask from the pending set and queue.
788 * Returns 1 if any signals were found.
789 *
790 * All callers must be holding the siglock.
791 */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
793 {
794 struct sigqueue *q, *n;
795 sigset_t m;
796
797 sigandsets(&m, mask, &s->signal);
798 if (sigisemptyset(&m))
799 return;
800
801 sigandnsets(&s->signal, &s->signal, mask);
802 list_for_each_entry_safe(q, n, &s->list, list) {
803 if (sigismember(mask, q->info.si_signo)) {
804 list_del_init(&q->list);
805 __sigqueue_free(q);
806 }
807 }
808 }
809
is_si_special(const struct kernel_siginfo * info)810 static inline int is_si_special(const struct kernel_siginfo *info)
811 {
812 return info <= SEND_SIG_PRIV;
813 }
814
si_fromuser(const struct kernel_siginfo * info)815 static inline bool si_fromuser(const struct kernel_siginfo *info)
816 {
817 return info == SEND_SIG_NOINFO ||
818 (!is_si_special(info) && SI_FROMUSER(info));
819 }
820
821 /*
822 * called with RCU read lock from check_kill_permission()
823 */
kill_ok_by_cred(struct task_struct * t)824 static bool kill_ok_by_cred(struct task_struct *t)
825 {
826 const struct cred *cred = current_cred();
827 const struct cred *tcred = __task_cred(t);
828
829 return uid_eq(cred->euid, tcred->suid) ||
830 uid_eq(cred->euid, tcred->uid) ||
831 uid_eq(cred->uid, tcred->suid) ||
832 uid_eq(cred->uid, tcred->uid) ||
833 ns_capable(tcred->user_ns, CAP_KILL);
834 }
835
836 /*
837 * Bad permissions for sending the signal
838 * - the caller must hold the RCU read lock
839 */
check_kill_permission(int sig,struct kernel_siginfo * info,struct task_struct * t)840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 struct task_struct *t)
842 {
843 struct pid *sid;
844 int error;
845
846 if (!valid_signal(sig))
847 return -EINVAL;
848
849 if (!si_fromuser(info))
850 return 0;
851
852 error = audit_signal_info(sig, t); /* Let audit system see the signal */
853 if (error)
854 return error;
855
856 if (!same_thread_group(current, t) &&
857 !kill_ok_by_cred(t)) {
858 switch (sig) {
859 case SIGCONT:
860 sid = task_session(t);
861 /*
862 * We don't return the error if sid == NULL. The
863 * task was unhashed, the caller must notice this.
864 */
865 if (!sid || sid == task_session(current))
866 break;
867 fallthrough;
868 default:
869 return -EPERM;
870 }
871 }
872
873 return security_task_kill(t, info, sig, NULL);
874 }
875
876 /**
877 * ptrace_trap_notify - schedule trap to notify ptracer
878 * @t: tracee wanting to notify tracer
879 *
880 * This function schedules sticky ptrace trap which is cleared on the next
881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
882 * ptracer.
883 *
884 * If @t is running, STOP trap will be taken. If trapped for STOP and
885 * ptracer is listening for events, tracee is woken up so that it can
886 * re-trap for the new event. If trapped otherwise, STOP trap will be
887 * eventually taken without returning to userland after the existing traps
888 * are finished by PTRACE_CONT.
889 *
890 * CONTEXT:
891 * Must be called with @task->sighand->siglock held.
892 */
ptrace_trap_notify(struct task_struct * t)893 static void ptrace_trap_notify(struct task_struct *t)
894 {
895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 lockdep_assert_held(&t->sighand->siglock);
897
898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
900 }
901
902 /*
903 * Handle magic process-wide effects of stop/continue signals. Unlike
904 * the signal actions, these happen immediately at signal-generation
905 * time regardless of blocking, ignoring, or handling. This does the
906 * actual continuing for SIGCONT, but not the actual stopping for stop
907 * signals. The process stop is done as a signal action for SIG_DFL.
908 *
909 * Returns true if the signal should be actually delivered, otherwise
910 * it should be dropped.
911 */
prepare_signal(int sig,struct task_struct * p,bool force)912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
913 {
914 struct signal_struct *signal = p->signal;
915 struct task_struct *t;
916 sigset_t flush;
917
918 if (signal->flags & SIGNAL_GROUP_EXIT) {
919 if (signal->core_state)
920 return sig == SIGKILL;
921 /*
922 * The process is in the middle of dying, drop the signal.
923 */
924 return false;
925 } else if (sig_kernel_stop(sig)) {
926 /*
927 * This is a stop signal. Remove SIGCONT from all queues.
928 */
929 siginitset(&flush, sigmask(SIGCONT));
930 flush_sigqueue_mask(&flush, &signal->shared_pending);
931 for_each_thread(p, t)
932 flush_sigqueue_mask(&flush, &t->pending);
933 } else if (sig == SIGCONT) {
934 unsigned int why;
935 /*
936 * Remove all stop signals from all queues, wake all threads.
937 */
938 siginitset(&flush, SIG_KERNEL_STOP_MASK);
939 flush_sigqueue_mask(&flush, &signal->shared_pending);
940 for_each_thread(p, t) {
941 flush_sigqueue_mask(&flush, &t->pending);
942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
943 if (likely(!(t->ptrace & PT_SEIZED))) {
944 t->jobctl &= ~JOBCTL_STOPPED;
945 wake_up_state(t, __TASK_STOPPED);
946 } else
947 ptrace_trap_notify(t);
948 }
949
950 /*
951 * Notify the parent with CLD_CONTINUED if we were stopped.
952 *
953 * If we were in the middle of a group stop, we pretend it
954 * was already finished, and then continued. Since SIGCHLD
955 * doesn't queue we report only CLD_STOPPED, as if the next
956 * CLD_CONTINUED was dropped.
957 */
958 why = 0;
959 if (signal->flags & SIGNAL_STOP_STOPPED)
960 why |= SIGNAL_CLD_CONTINUED;
961 else if (signal->group_stop_count)
962 why |= SIGNAL_CLD_STOPPED;
963
964 if (why) {
965 /*
966 * The first thread which returns from do_signal_stop()
967 * will take ->siglock, notice SIGNAL_CLD_MASK, and
968 * notify its parent. See get_signal().
969 */
970 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
971 signal->group_stop_count = 0;
972 signal->group_exit_code = 0;
973 }
974 }
975
976 return !sig_ignored(p, sig, force);
977 }
978
979 /*
980 * Test if P wants to take SIG. After we've checked all threads with this,
981 * it's equivalent to finding no threads not blocking SIG. Any threads not
982 * blocking SIG were ruled out because they are not running and already
983 * have pending signals. Such threads will dequeue from the shared queue
984 * as soon as they're available, so putting the signal on the shared queue
985 * will be equivalent to sending it to one such thread.
986 */
wants_signal(int sig,struct task_struct * p)987 static inline bool wants_signal(int sig, struct task_struct *p)
988 {
989 if (sigismember(&p->blocked, sig))
990 return false;
991
992 if (p->flags & PF_EXITING)
993 return false;
994
995 if (sig == SIGKILL)
996 return true;
997
998 if (task_is_stopped_or_traced(p))
999 return false;
1000
1001 return task_curr(p) || !task_sigpending(p);
1002 }
1003
complete_signal(int sig,struct task_struct * p,enum pid_type type)1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1005 {
1006 struct signal_struct *signal = p->signal;
1007 struct task_struct *t;
1008
1009 /*
1010 * Now find a thread we can wake up to take the signal off the queue.
1011 *
1012 * Try the suggested task first (may or may not be the main thread).
1013 */
1014 if (wants_signal(sig, p))
1015 t = p;
1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1017 /*
1018 * There is just one thread and it does not need to be woken.
1019 * It will dequeue unblocked signals before it runs again.
1020 */
1021 return;
1022 else {
1023 /*
1024 * Otherwise try to find a suitable thread.
1025 */
1026 t = signal->curr_target;
1027 while (!wants_signal(sig, t)) {
1028 t = next_thread(t);
1029 if (t == signal->curr_target)
1030 /*
1031 * No thread needs to be woken.
1032 * Any eligible threads will see
1033 * the signal in the queue soon.
1034 */
1035 return;
1036 }
1037 signal->curr_target = t;
1038 }
1039
1040 /*
1041 * Found a killable thread. If the signal will be fatal,
1042 * then start taking the whole group down immediately.
1043 */
1044 if (sig_fatal(p, sig) &&
1045 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1046 !sigismember(&t->real_blocked, sig) &&
1047 (sig == SIGKILL || !p->ptrace)) {
1048 /*
1049 * This signal will be fatal to the whole group.
1050 */
1051 if (!sig_kernel_coredump(sig)) {
1052 /*
1053 * Start a group exit and wake everybody up.
1054 * This way we don't have other threads
1055 * running and doing things after a slower
1056 * thread has the fatal signal pending.
1057 */
1058 signal->flags = SIGNAL_GROUP_EXIT;
1059 signal->group_exit_code = sig;
1060 signal->group_stop_count = 0;
1061 t = p;
1062 do {
1063 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1064 sigaddset(&t->pending.signal, SIGKILL);
1065 signal_wake_up(t, 1);
1066 } while_each_thread(p, t);
1067 return;
1068 }
1069 }
1070
1071 /*
1072 * The signal is already in the shared-pending queue.
1073 * Tell the chosen thread to wake up and dequeue it.
1074 */
1075 signal_wake_up(t, sig == SIGKILL);
1076 return;
1077 }
1078
legacy_queue(struct sigpending * signals,int sig)1079 static inline bool legacy_queue(struct sigpending *signals, int sig)
1080 {
1081 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1082 }
1083
__send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type,bool force)1084 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1085 struct task_struct *t, enum pid_type type, bool force)
1086 {
1087 struct sigpending *pending;
1088 struct sigqueue *q;
1089 int override_rlimit;
1090 int ret = 0, result;
1091
1092 lockdep_assert_held(&t->sighand->siglock);
1093
1094 result = TRACE_SIGNAL_IGNORED;
1095 if (!prepare_signal(sig, t, force))
1096 goto ret;
1097
1098 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1099 /*
1100 * Short-circuit ignored signals and support queuing
1101 * exactly one non-rt signal, so that we can get more
1102 * detailed information about the cause of the signal.
1103 */
1104 result = TRACE_SIGNAL_ALREADY_PENDING;
1105 if (legacy_queue(pending, sig))
1106 goto ret;
1107
1108 result = TRACE_SIGNAL_DELIVERED;
1109 /*
1110 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1111 */
1112 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1113 goto out_set;
1114
1115 /*
1116 * Real-time signals must be queued if sent by sigqueue, or
1117 * some other real-time mechanism. It is implementation
1118 * defined whether kill() does so. We attempt to do so, on
1119 * the principle of least surprise, but since kill is not
1120 * allowed to fail with EAGAIN when low on memory we just
1121 * make sure at least one signal gets delivered and don't
1122 * pass on the info struct.
1123 */
1124 if (sig < SIGRTMIN)
1125 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1126 else
1127 override_rlimit = 0;
1128
1129 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1130
1131 if (q) {
1132 list_add_tail(&q->list, &pending->list);
1133 switch ((unsigned long) info) {
1134 case (unsigned long) SEND_SIG_NOINFO:
1135 clear_siginfo(&q->info);
1136 q->info.si_signo = sig;
1137 q->info.si_errno = 0;
1138 q->info.si_code = SI_USER;
1139 q->info.si_pid = task_tgid_nr_ns(current,
1140 task_active_pid_ns(t));
1141 rcu_read_lock();
1142 q->info.si_uid =
1143 from_kuid_munged(task_cred_xxx(t, user_ns),
1144 current_uid());
1145 rcu_read_unlock();
1146 break;
1147 case (unsigned long) SEND_SIG_PRIV:
1148 clear_siginfo(&q->info);
1149 q->info.si_signo = sig;
1150 q->info.si_errno = 0;
1151 q->info.si_code = SI_KERNEL;
1152 q->info.si_pid = 0;
1153 q->info.si_uid = 0;
1154 break;
1155 default:
1156 copy_siginfo(&q->info, info);
1157 break;
1158 }
1159 } else if (!is_si_special(info) &&
1160 sig >= SIGRTMIN && info->si_code != SI_USER) {
1161 /*
1162 * Queue overflow, abort. We may abort if the
1163 * signal was rt and sent by user using something
1164 * other than kill().
1165 */
1166 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1167 ret = -EAGAIN;
1168 goto ret;
1169 } else {
1170 /*
1171 * This is a silent loss of information. We still
1172 * send the signal, but the *info bits are lost.
1173 */
1174 result = TRACE_SIGNAL_LOSE_INFO;
1175 }
1176
1177 out_set:
1178 signalfd_notify(t, sig);
1179 sigaddset(&pending->signal, sig);
1180
1181 /* Let multiprocess signals appear after on-going forks */
1182 if (type > PIDTYPE_TGID) {
1183 struct multiprocess_signals *delayed;
1184 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1185 sigset_t *signal = &delayed->signal;
1186 /* Can't queue both a stop and a continue signal */
1187 if (sig == SIGCONT)
1188 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1189 else if (sig_kernel_stop(sig))
1190 sigdelset(signal, SIGCONT);
1191 sigaddset(signal, sig);
1192 }
1193 }
1194
1195 complete_signal(sig, t, type);
1196 ret:
1197 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1198 return ret;
1199 }
1200
has_si_pid_and_uid(struct kernel_siginfo * info)1201 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1202 {
1203 bool ret = false;
1204 switch (siginfo_layout(info->si_signo, info->si_code)) {
1205 case SIL_KILL:
1206 case SIL_CHLD:
1207 case SIL_RT:
1208 ret = true;
1209 break;
1210 case SIL_TIMER:
1211 case SIL_POLL:
1212 case SIL_FAULT:
1213 case SIL_FAULT_TRAPNO:
1214 case SIL_FAULT_MCEERR:
1215 case SIL_FAULT_BNDERR:
1216 case SIL_FAULT_PKUERR:
1217 case SIL_FAULT_PERF_EVENT:
1218 case SIL_SYS:
1219 ret = false;
1220 break;
1221 }
1222 return ret;
1223 }
1224
send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type)1225 int send_signal_locked(int sig, struct kernel_siginfo *info,
1226 struct task_struct *t, enum pid_type type)
1227 {
1228 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1229 bool force = false;
1230
1231 if (info == SEND_SIG_NOINFO) {
1232 /* Force if sent from an ancestor pid namespace */
1233 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1234 } else if (info == SEND_SIG_PRIV) {
1235 /* Don't ignore kernel generated signals */
1236 force = true;
1237 } else if (has_si_pid_and_uid(info)) {
1238 /* SIGKILL and SIGSTOP is special or has ids */
1239 struct user_namespace *t_user_ns;
1240
1241 rcu_read_lock();
1242 t_user_ns = task_cred_xxx(t, user_ns);
1243 if (current_user_ns() != t_user_ns) {
1244 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1245 info->si_uid = from_kuid_munged(t_user_ns, uid);
1246 }
1247 rcu_read_unlock();
1248
1249 /* A kernel generated signal? */
1250 force = (info->si_code == SI_KERNEL);
1251
1252 /* From an ancestor pid namespace? */
1253 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1254 info->si_pid = 0;
1255 force = true;
1256 }
1257 }
1258 return __send_signal_locked(sig, info, t, type, force);
1259 }
1260
print_fatal_signal(int signr)1261 static void print_fatal_signal(int signr)
1262 {
1263 struct pt_regs *regs = task_pt_regs(current);
1264 struct file *exe_file;
1265
1266 exe_file = get_task_exe_file(current);
1267 if (exe_file) {
1268 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1269 exe_file, current->comm, signr);
1270 fput(exe_file);
1271 } else {
1272 pr_info("%s: potentially unexpected fatal signal %d.\n",
1273 current->comm, signr);
1274 }
1275
1276 #if defined(__i386__) && !defined(__arch_um__)
1277 pr_info("code at %08lx: ", regs->ip);
1278 {
1279 int i;
1280 for (i = 0; i < 16; i++) {
1281 unsigned char insn;
1282
1283 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1284 break;
1285 pr_cont("%02x ", insn);
1286 }
1287 }
1288 pr_cont("\n");
1289 #endif
1290 preempt_disable();
1291 show_regs(regs);
1292 preempt_enable();
1293 }
1294
setup_print_fatal_signals(char * str)1295 static int __init setup_print_fatal_signals(char *str)
1296 {
1297 get_option (&str, &print_fatal_signals);
1298
1299 return 1;
1300 }
1301
1302 __setup("print-fatal-signals=", setup_print_fatal_signals);
1303
do_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1304 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1305 enum pid_type type)
1306 {
1307 unsigned long flags;
1308 int ret = -ESRCH;
1309
1310 if (lock_task_sighand(p, &flags)) {
1311 ret = send_signal_locked(sig, info, p, type);
1312 unlock_task_sighand(p, &flags);
1313 }
1314
1315 return ret;
1316 }
1317
1318 enum sig_handler {
1319 HANDLER_CURRENT, /* If reachable use the current handler */
1320 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1321 HANDLER_EXIT, /* Only visible as the process exit code */
1322 };
1323
1324 /*
1325 * Force a signal that the process can't ignore: if necessary
1326 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1327 *
1328 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1329 * since we do not want to have a signal handler that was blocked
1330 * be invoked when user space had explicitly blocked it.
1331 *
1332 * We don't want to have recursive SIGSEGV's etc, for example,
1333 * that is why we also clear SIGNAL_UNKILLABLE.
1334 */
1335 static int
force_sig_info_to_task(struct kernel_siginfo * info,struct task_struct * t,enum sig_handler handler)1336 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1337 enum sig_handler handler)
1338 {
1339 unsigned long int flags;
1340 int ret, blocked, ignored;
1341 struct k_sigaction *action;
1342 int sig = info->si_signo;
1343
1344 spin_lock_irqsave(&t->sighand->siglock, flags);
1345 action = &t->sighand->action[sig-1];
1346 ignored = action->sa.sa_handler == SIG_IGN;
1347 blocked = sigismember(&t->blocked, sig);
1348 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1349 action->sa.sa_handler = SIG_DFL;
1350 if (handler == HANDLER_EXIT)
1351 action->sa.sa_flags |= SA_IMMUTABLE;
1352 if (blocked) {
1353 sigdelset(&t->blocked, sig);
1354 recalc_sigpending_and_wake(t);
1355 }
1356 }
1357 /*
1358 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1359 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1360 */
1361 if (action->sa.sa_handler == SIG_DFL &&
1362 (!t->ptrace || (handler == HANDLER_EXIT)))
1363 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1364 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1365 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1366
1367 return ret;
1368 }
1369
force_sig_info(struct kernel_siginfo * info)1370 int force_sig_info(struct kernel_siginfo *info)
1371 {
1372 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1373 }
1374
1375 /*
1376 * Nuke all other threads in the group.
1377 */
zap_other_threads(struct task_struct * p)1378 int zap_other_threads(struct task_struct *p)
1379 {
1380 struct task_struct *t = p;
1381 int count = 0;
1382
1383 p->signal->group_stop_count = 0;
1384
1385 while_each_thread(p, t) {
1386 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1387 /* Don't require de_thread to wait for the vhost_worker */
1388 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1389 count++;
1390
1391 /* Don't bother with already dead threads */
1392 if (t->exit_state)
1393 continue;
1394 sigaddset(&t->pending.signal, SIGKILL);
1395 signal_wake_up(t, 1);
1396 }
1397
1398 return count;
1399 }
1400
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1401 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1402 unsigned long *flags)
1403 {
1404 struct sighand_struct *sighand;
1405
1406 rcu_read_lock();
1407 for (;;) {
1408 sighand = rcu_dereference(tsk->sighand);
1409 if (unlikely(sighand == NULL))
1410 break;
1411
1412 /*
1413 * This sighand can be already freed and even reused, but
1414 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1415 * initializes ->siglock: this slab can't go away, it has
1416 * the same object type, ->siglock can't be reinitialized.
1417 *
1418 * We need to ensure that tsk->sighand is still the same
1419 * after we take the lock, we can race with de_thread() or
1420 * __exit_signal(). In the latter case the next iteration
1421 * must see ->sighand == NULL.
1422 */
1423 spin_lock_irqsave(&sighand->siglock, *flags);
1424 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1425 break;
1426 spin_unlock_irqrestore(&sighand->siglock, *flags);
1427 }
1428 rcu_read_unlock();
1429
1430 return sighand;
1431 }
1432
1433 #ifdef CONFIG_LOCKDEP
lockdep_assert_task_sighand_held(struct task_struct * task)1434 void lockdep_assert_task_sighand_held(struct task_struct *task)
1435 {
1436 struct sighand_struct *sighand;
1437
1438 rcu_read_lock();
1439 sighand = rcu_dereference(task->sighand);
1440 if (sighand)
1441 lockdep_assert_held(&sighand->siglock);
1442 else
1443 WARN_ON_ONCE(1);
1444 rcu_read_unlock();
1445 }
1446 #endif
1447
1448 /*
1449 * send signal info to all the members of a group
1450 */
group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1451 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1452 struct task_struct *p, enum pid_type type)
1453 {
1454 int ret;
1455
1456 rcu_read_lock();
1457 ret = check_kill_permission(sig, info, p);
1458 rcu_read_unlock();
1459
1460 if (!ret && sig)
1461 ret = do_send_sig_info(sig, info, p, type);
1462
1463 return ret;
1464 }
1465
1466 /*
1467 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1468 * control characters do (^C, ^Z etc)
1469 * - the caller must hold at least a readlock on tasklist_lock
1470 */
__kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1471 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1472 {
1473 struct task_struct *p = NULL;
1474 int retval, success;
1475
1476 success = 0;
1477 retval = -ESRCH;
1478 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1479 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1480 success |= !err;
1481 retval = err;
1482 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1483 return success ? 0 : retval;
1484 }
1485
kill_pid_info(int sig,struct kernel_siginfo * info,struct pid * pid)1486 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1487 {
1488 int error = -ESRCH;
1489 struct task_struct *p;
1490
1491 for (;;) {
1492 rcu_read_lock();
1493 p = pid_task(pid, PIDTYPE_PID);
1494 if (p)
1495 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1496 rcu_read_unlock();
1497 if (likely(!p || error != -ESRCH))
1498 return error;
1499
1500 /*
1501 * The task was unhashed in between, try again. If it
1502 * is dead, pid_task() will return NULL, if we race with
1503 * de_thread() it will find the new leader.
1504 */
1505 }
1506 }
1507
kill_proc_info(int sig,struct kernel_siginfo * info,pid_t pid)1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1509 {
1510 int error;
1511 rcu_read_lock();
1512 error = kill_pid_info(sig, info, find_vpid(pid));
1513 rcu_read_unlock();
1514 return error;
1515 }
1516
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1517 static inline bool kill_as_cred_perm(const struct cred *cred,
1518 struct task_struct *target)
1519 {
1520 const struct cred *pcred = __task_cred(target);
1521
1522 return uid_eq(cred->euid, pcred->suid) ||
1523 uid_eq(cred->euid, pcred->uid) ||
1524 uid_eq(cred->uid, pcred->suid) ||
1525 uid_eq(cred->uid, pcred->uid);
1526 }
1527
1528 /*
1529 * The usb asyncio usage of siginfo is wrong. The glibc support
1530 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1531 * AKA after the generic fields:
1532 * kernel_pid_t si_pid;
1533 * kernel_uid32_t si_uid;
1534 * sigval_t si_value;
1535 *
1536 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1537 * after the generic fields is:
1538 * void __user *si_addr;
1539 *
1540 * This is a practical problem when there is a 64bit big endian kernel
1541 * and a 32bit userspace. As the 32bit address will encoded in the low
1542 * 32bits of the pointer. Those low 32bits will be stored at higher
1543 * address than appear in a 32 bit pointer. So userspace will not
1544 * see the address it was expecting for it's completions.
1545 *
1546 * There is nothing in the encoding that can allow
1547 * copy_siginfo_to_user32 to detect this confusion of formats, so
1548 * handle this by requiring the caller of kill_pid_usb_asyncio to
1549 * notice when this situration takes place and to store the 32bit
1550 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1551 * parameter.
1552 */
kill_pid_usb_asyncio(int sig,int errno,sigval_t addr,struct pid * pid,const struct cred * cred)1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1554 struct pid *pid, const struct cred *cred)
1555 {
1556 struct kernel_siginfo info;
1557 struct task_struct *p;
1558 unsigned long flags;
1559 int ret = -EINVAL;
1560
1561 if (!valid_signal(sig))
1562 return ret;
1563
1564 clear_siginfo(&info);
1565 info.si_signo = sig;
1566 info.si_errno = errno;
1567 info.si_code = SI_ASYNCIO;
1568 *((sigval_t *)&info.si_pid) = addr;
1569
1570 rcu_read_lock();
1571 p = pid_task(pid, PIDTYPE_PID);
1572 if (!p) {
1573 ret = -ESRCH;
1574 goto out_unlock;
1575 }
1576 if (!kill_as_cred_perm(cred, p)) {
1577 ret = -EPERM;
1578 goto out_unlock;
1579 }
1580 ret = security_task_kill(p, &info, sig, cred);
1581 if (ret)
1582 goto out_unlock;
1583
1584 if (sig) {
1585 if (lock_task_sighand(p, &flags)) {
1586 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1587 unlock_task_sighand(p, &flags);
1588 } else
1589 ret = -ESRCH;
1590 }
1591 out_unlock:
1592 rcu_read_unlock();
1593 return ret;
1594 }
1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1596
1597 /*
1598 * kill_something_info() interprets pid in interesting ways just like kill(2).
1599 *
1600 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1601 * is probably wrong. Should make it like BSD or SYSV.
1602 */
1603
kill_something_info(int sig,struct kernel_siginfo * info,pid_t pid)1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1605 {
1606 int ret;
1607
1608 if (pid > 0)
1609 return kill_proc_info(sig, info, pid);
1610
1611 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1612 if (pid == INT_MIN)
1613 return -ESRCH;
1614
1615 read_lock(&tasklist_lock);
1616 if (pid != -1) {
1617 ret = __kill_pgrp_info(sig, info,
1618 pid ? find_vpid(-pid) : task_pgrp(current));
1619 } else {
1620 int retval = 0, count = 0;
1621 struct task_struct * p;
1622
1623 for_each_process(p) {
1624 if (task_pid_vnr(p) > 1 &&
1625 !same_thread_group(p, current)) {
1626 int err = group_send_sig_info(sig, info, p,
1627 PIDTYPE_MAX);
1628 ++count;
1629 if (err != -EPERM)
1630 retval = err;
1631 }
1632 }
1633 ret = count ? retval : -ESRCH;
1634 }
1635 read_unlock(&tasklist_lock);
1636
1637 return ret;
1638 }
1639
1640 /*
1641 * These are for backward compatibility with the rest of the kernel source.
1642 */
1643
send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1645 {
1646 /*
1647 * Make sure legacy kernel users don't send in bad values
1648 * (normal paths check this in check_kill_permission).
1649 */
1650 if (!valid_signal(sig))
1651 return -EINVAL;
1652
1653 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1654 }
1655 EXPORT_SYMBOL(send_sig_info);
1656
1657 #define __si_special(priv) \
1658 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1659
1660 int
send_sig(int sig,struct task_struct * p,int priv)1661 send_sig(int sig, struct task_struct *p, int priv)
1662 {
1663 return send_sig_info(sig, __si_special(priv), p);
1664 }
1665 EXPORT_SYMBOL(send_sig);
1666
force_sig(int sig)1667 void force_sig(int sig)
1668 {
1669 struct kernel_siginfo info;
1670
1671 clear_siginfo(&info);
1672 info.si_signo = sig;
1673 info.si_errno = 0;
1674 info.si_code = SI_KERNEL;
1675 info.si_pid = 0;
1676 info.si_uid = 0;
1677 force_sig_info(&info);
1678 }
1679 EXPORT_SYMBOL(force_sig);
1680
force_fatal_sig(int sig)1681 void force_fatal_sig(int sig)
1682 {
1683 struct kernel_siginfo info;
1684
1685 clear_siginfo(&info);
1686 info.si_signo = sig;
1687 info.si_errno = 0;
1688 info.si_code = SI_KERNEL;
1689 info.si_pid = 0;
1690 info.si_uid = 0;
1691 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1692 }
1693
force_exit_sig(int sig)1694 void force_exit_sig(int sig)
1695 {
1696 struct kernel_siginfo info;
1697
1698 clear_siginfo(&info);
1699 info.si_signo = sig;
1700 info.si_errno = 0;
1701 info.si_code = SI_KERNEL;
1702 info.si_pid = 0;
1703 info.si_uid = 0;
1704 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1705 }
1706
1707 /*
1708 * When things go south during signal handling, we
1709 * will force a SIGSEGV. And if the signal that caused
1710 * the problem was already a SIGSEGV, we'll want to
1711 * make sure we don't even try to deliver the signal..
1712 */
force_sigsegv(int sig)1713 void force_sigsegv(int sig)
1714 {
1715 if (sig == SIGSEGV)
1716 force_fatal_sig(SIGSEGV);
1717 else
1718 force_sig(SIGSEGV);
1719 }
1720
force_sig_fault_to_task(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1721 int force_sig_fault_to_task(int sig, int code, void __user *addr
1722 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1723 , struct task_struct *t)
1724 {
1725 struct kernel_siginfo info;
1726
1727 clear_siginfo(&info);
1728 info.si_signo = sig;
1729 info.si_errno = 0;
1730 info.si_code = code;
1731 info.si_addr = addr;
1732 #ifdef __ia64__
1733 info.si_imm = imm;
1734 info.si_flags = flags;
1735 info.si_isr = isr;
1736 #endif
1737 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1738 }
1739
force_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr))1740 int force_sig_fault(int sig, int code, void __user *addr
1741 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1742 {
1743 return force_sig_fault_to_task(sig, code, addr
1744 ___ARCH_SI_IA64(imm, flags, isr), current);
1745 }
1746
send_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1747 int send_sig_fault(int sig, int code, void __user *addr
1748 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1749 , struct task_struct *t)
1750 {
1751 struct kernel_siginfo info;
1752
1753 clear_siginfo(&info);
1754 info.si_signo = sig;
1755 info.si_errno = 0;
1756 info.si_code = code;
1757 info.si_addr = addr;
1758 #ifdef __ia64__
1759 info.si_imm = imm;
1760 info.si_flags = flags;
1761 info.si_isr = isr;
1762 #endif
1763 return send_sig_info(info.si_signo, &info, t);
1764 }
1765
force_sig_mceerr(int code,void __user * addr,short lsb)1766 int force_sig_mceerr(int code, void __user *addr, short lsb)
1767 {
1768 struct kernel_siginfo info;
1769
1770 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1771 clear_siginfo(&info);
1772 info.si_signo = SIGBUS;
1773 info.si_errno = 0;
1774 info.si_code = code;
1775 info.si_addr = addr;
1776 info.si_addr_lsb = lsb;
1777 return force_sig_info(&info);
1778 }
1779
send_sig_mceerr(int code,void __user * addr,short lsb,struct task_struct * t)1780 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1781 {
1782 struct kernel_siginfo info;
1783
1784 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1785 clear_siginfo(&info);
1786 info.si_signo = SIGBUS;
1787 info.si_errno = 0;
1788 info.si_code = code;
1789 info.si_addr = addr;
1790 info.si_addr_lsb = lsb;
1791 return send_sig_info(info.si_signo, &info, t);
1792 }
1793 EXPORT_SYMBOL(send_sig_mceerr);
1794
force_sig_bnderr(void __user * addr,void __user * lower,void __user * upper)1795 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1796 {
1797 struct kernel_siginfo info;
1798
1799 clear_siginfo(&info);
1800 info.si_signo = SIGSEGV;
1801 info.si_errno = 0;
1802 info.si_code = SEGV_BNDERR;
1803 info.si_addr = addr;
1804 info.si_lower = lower;
1805 info.si_upper = upper;
1806 return force_sig_info(&info);
1807 }
1808
1809 #ifdef SEGV_PKUERR
force_sig_pkuerr(void __user * addr,u32 pkey)1810 int force_sig_pkuerr(void __user *addr, u32 pkey)
1811 {
1812 struct kernel_siginfo info;
1813
1814 clear_siginfo(&info);
1815 info.si_signo = SIGSEGV;
1816 info.si_errno = 0;
1817 info.si_code = SEGV_PKUERR;
1818 info.si_addr = addr;
1819 info.si_pkey = pkey;
1820 return force_sig_info(&info);
1821 }
1822 #endif
1823
send_sig_perf(void __user * addr,u32 type,u64 sig_data)1824 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1825 {
1826 struct kernel_siginfo info;
1827
1828 clear_siginfo(&info);
1829 info.si_signo = SIGTRAP;
1830 info.si_errno = 0;
1831 info.si_code = TRAP_PERF;
1832 info.si_addr = addr;
1833 info.si_perf_data = sig_data;
1834 info.si_perf_type = type;
1835
1836 /*
1837 * Signals generated by perf events should not terminate the whole
1838 * process if SIGTRAP is blocked, however, delivering the signal
1839 * asynchronously is better than not delivering at all. But tell user
1840 * space if the signal was asynchronous, so it can clearly be
1841 * distinguished from normal synchronous ones.
1842 */
1843 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1844 TRAP_PERF_FLAG_ASYNC :
1845 0;
1846
1847 return send_sig_info(info.si_signo, &info, current);
1848 }
1849
1850 /**
1851 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1852 * @syscall: syscall number to send to userland
1853 * @reason: filter-supplied reason code to send to userland (via si_errno)
1854 * @force_coredump: true to trigger a coredump
1855 *
1856 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1857 */
force_sig_seccomp(int syscall,int reason,bool force_coredump)1858 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1859 {
1860 struct kernel_siginfo info;
1861
1862 clear_siginfo(&info);
1863 info.si_signo = SIGSYS;
1864 info.si_code = SYS_SECCOMP;
1865 info.si_call_addr = (void __user *)KSTK_EIP(current);
1866 info.si_errno = reason;
1867 info.si_arch = syscall_get_arch(current);
1868 info.si_syscall = syscall;
1869 return force_sig_info_to_task(&info, current,
1870 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1871 }
1872
1873 /* For the crazy architectures that include trap information in
1874 * the errno field, instead of an actual errno value.
1875 */
force_sig_ptrace_errno_trap(int errno,void __user * addr)1876 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1877 {
1878 struct kernel_siginfo info;
1879
1880 clear_siginfo(&info);
1881 info.si_signo = SIGTRAP;
1882 info.si_errno = errno;
1883 info.si_code = TRAP_HWBKPT;
1884 info.si_addr = addr;
1885 return force_sig_info(&info);
1886 }
1887
1888 /* For the rare architectures that include trap information using
1889 * si_trapno.
1890 */
force_sig_fault_trapno(int sig,int code,void __user * addr,int trapno)1891 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1892 {
1893 struct kernel_siginfo info;
1894
1895 clear_siginfo(&info);
1896 info.si_signo = sig;
1897 info.si_errno = 0;
1898 info.si_code = code;
1899 info.si_addr = addr;
1900 info.si_trapno = trapno;
1901 return force_sig_info(&info);
1902 }
1903
1904 /* For the rare architectures that include trap information using
1905 * si_trapno.
1906 */
send_sig_fault_trapno(int sig,int code,void __user * addr,int trapno,struct task_struct * t)1907 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1908 struct task_struct *t)
1909 {
1910 struct kernel_siginfo info;
1911
1912 clear_siginfo(&info);
1913 info.si_signo = sig;
1914 info.si_errno = 0;
1915 info.si_code = code;
1916 info.si_addr = addr;
1917 info.si_trapno = trapno;
1918 return send_sig_info(info.si_signo, &info, t);
1919 }
1920
kill_pgrp(struct pid * pid,int sig,int priv)1921 int kill_pgrp(struct pid *pid, int sig, int priv)
1922 {
1923 int ret;
1924
1925 read_lock(&tasklist_lock);
1926 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1927 read_unlock(&tasklist_lock);
1928
1929 return ret;
1930 }
1931 EXPORT_SYMBOL(kill_pgrp);
1932
kill_pid(struct pid * pid,int sig,int priv)1933 int kill_pid(struct pid *pid, int sig, int priv)
1934 {
1935 return kill_pid_info(sig, __si_special(priv), pid);
1936 }
1937 EXPORT_SYMBOL(kill_pid);
1938
1939 /*
1940 * These functions support sending signals using preallocated sigqueue
1941 * structures. This is needed "because realtime applications cannot
1942 * afford to lose notifications of asynchronous events, like timer
1943 * expirations or I/O completions". In the case of POSIX Timers
1944 * we allocate the sigqueue structure from the timer_create. If this
1945 * allocation fails we are able to report the failure to the application
1946 * with an EAGAIN error.
1947 */
sigqueue_alloc(void)1948 struct sigqueue *sigqueue_alloc(void)
1949 {
1950 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1951 }
1952
sigqueue_free(struct sigqueue * q)1953 void sigqueue_free(struct sigqueue *q)
1954 {
1955 unsigned long flags;
1956 spinlock_t *lock = ¤t->sighand->siglock;
1957
1958 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1959 /*
1960 * We must hold ->siglock while testing q->list
1961 * to serialize with collect_signal() or with
1962 * __exit_signal()->flush_sigqueue().
1963 */
1964 spin_lock_irqsave(lock, flags);
1965 q->flags &= ~SIGQUEUE_PREALLOC;
1966 /*
1967 * If it is queued it will be freed when dequeued,
1968 * like the "regular" sigqueue.
1969 */
1970 if (!list_empty(&q->list))
1971 q = NULL;
1972 spin_unlock_irqrestore(lock, flags);
1973
1974 if (q)
1975 __sigqueue_free(q);
1976 }
1977
send_sigqueue(struct sigqueue * q,struct pid * pid,enum pid_type type)1978 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1979 {
1980 int sig = q->info.si_signo;
1981 struct sigpending *pending;
1982 struct task_struct *t;
1983 unsigned long flags;
1984 int ret, result;
1985
1986 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1987
1988 ret = -1;
1989 rcu_read_lock();
1990
1991 /*
1992 * This function is used by POSIX timers to deliver a timer signal.
1993 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1994 * set), the signal must be delivered to the specific thread (queues
1995 * into t->pending).
1996 *
1997 * Where type is not PIDTYPE_PID, signals must be delivered to the
1998 * process. In this case, prefer to deliver to current if it is in
1999 * the same thread group as the target process, which avoids
2000 * unnecessarily waking up a potentially idle task.
2001 */
2002 t = pid_task(pid, type);
2003 if (!t)
2004 goto ret;
2005 if (type != PIDTYPE_PID && same_thread_group(t, current))
2006 t = current;
2007 if (!likely(lock_task_sighand(t, &flags)))
2008 goto ret;
2009
2010 ret = 1; /* the signal is ignored */
2011 result = TRACE_SIGNAL_IGNORED;
2012 if (!prepare_signal(sig, t, false))
2013 goto out;
2014
2015 ret = 0;
2016 if (unlikely(!list_empty(&q->list))) {
2017 /*
2018 * If an SI_TIMER entry is already queue just increment
2019 * the overrun count.
2020 */
2021 BUG_ON(q->info.si_code != SI_TIMER);
2022 q->info.si_overrun++;
2023 result = TRACE_SIGNAL_ALREADY_PENDING;
2024 goto out;
2025 }
2026 q->info.si_overrun = 0;
2027
2028 signalfd_notify(t, sig);
2029 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2030 list_add_tail(&q->list, &pending->list);
2031 sigaddset(&pending->signal, sig);
2032 complete_signal(sig, t, type);
2033 result = TRACE_SIGNAL_DELIVERED;
2034 out:
2035 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2036 unlock_task_sighand(t, &flags);
2037 ret:
2038 rcu_read_unlock();
2039 return ret;
2040 }
2041
do_notify_pidfd(struct task_struct * task)2042 static void do_notify_pidfd(struct task_struct *task)
2043 {
2044 struct pid *pid;
2045
2046 WARN_ON(task->exit_state == 0);
2047 pid = task_pid(task);
2048 wake_up_all(&pid->wait_pidfd);
2049 }
2050
2051 /*
2052 * Let a parent know about the death of a child.
2053 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2054 *
2055 * Returns true if our parent ignored us and so we've switched to
2056 * self-reaping.
2057 */
do_notify_parent(struct task_struct * tsk,int sig)2058 bool do_notify_parent(struct task_struct *tsk, int sig)
2059 {
2060 struct kernel_siginfo info;
2061 unsigned long flags;
2062 struct sighand_struct *psig;
2063 bool autoreap = false;
2064 u64 utime, stime;
2065
2066 WARN_ON_ONCE(sig == -1);
2067
2068 /* do_notify_parent_cldstop should have been called instead. */
2069 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2070
2071 WARN_ON_ONCE(!tsk->ptrace &&
2072 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2073
2074 /* Wake up all pidfd waiters */
2075 do_notify_pidfd(tsk);
2076
2077 if (sig != SIGCHLD) {
2078 /*
2079 * This is only possible if parent == real_parent.
2080 * Check if it has changed security domain.
2081 */
2082 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2083 sig = SIGCHLD;
2084 }
2085
2086 clear_siginfo(&info);
2087 info.si_signo = sig;
2088 info.si_errno = 0;
2089 /*
2090 * We are under tasklist_lock here so our parent is tied to
2091 * us and cannot change.
2092 *
2093 * task_active_pid_ns will always return the same pid namespace
2094 * until a task passes through release_task.
2095 *
2096 * write_lock() currently calls preempt_disable() which is the
2097 * same as rcu_read_lock(), but according to Oleg, this is not
2098 * correct to rely on this
2099 */
2100 rcu_read_lock();
2101 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2102 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2103 task_uid(tsk));
2104 rcu_read_unlock();
2105
2106 task_cputime(tsk, &utime, &stime);
2107 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2108 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2109
2110 info.si_status = tsk->exit_code & 0x7f;
2111 if (tsk->exit_code & 0x80)
2112 info.si_code = CLD_DUMPED;
2113 else if (tsk->exit_code & 0x7f)
2114 info.si_code = CLD_KILLED;
2115 else {
2116 info.si_code = CLD_EXITED;
2117 info.si_status = tsk->exit_code >> 8;
2118 }
2119
2120 psig = tsk->parent->sighand;
2121 spin_lock_irqsave(&psig->siglock, flags);
2122 if (!tsk->ptrace && sig == SIGCHLD &&
2123 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2124 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2125 /*
2126 * We are exiting and our parent doesn't care. POSIX.1
2127 * defines special semantics for setting SIGCHLD to SIG_IGN
2128 * or setting the SA_NOCLDWAIT flag: we should be reaped
2129 * automatically and not left for our parent's wait4 call.
2130 * Rather than having the parent do it as a magic kind of
2131 * signal handler, we just set this to tell do_exit that we
2132 * can be cleaned up without becoming a zombie. Note that
2133 * we still call __wake_up_parent in this case, because a
2134 * blocked sys_wait4 might now return -ECHILD.
2135 *
2136 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2137 * is implementation-defined: we do (if you don't want
2138 * it, just use SIG_IGN instead).
2139 */
2140 autoreap = true;
2141 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2142 sig = 0;
2143 }
2144 /*
2145 * Send with __send_signal as si_pid and si_uid are in the
2146 * parent's namespaces.
2147 */
2148 if (valid_signal(sig) && sig)
2149 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2150 __wake_up_parent(tsk, tsk->parent);
2151 spin_unlock_irqrestore(&psig->siglock, flags);
2152
2153 return autoreap;
2154 }
2155
2156 /**
2157 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2158 * @tsk: task reporting the state change
2159 * @for_ptracer: the notification is for ptracer
2160 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2161 *
2162 * Notify @tsk's parent that the stopped/continued state has changed. If
2163 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2164 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2165 *
2166 * CONTEXT:
2167 * Must be called with tasklist_lock at least read locked.
2168 */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)2169 static void do_notify_parent_cldstop(struct task_struct *tsk,
2170 bool for_ptracer, int why)
2171 {
2172 struct kernel_siginfo info;
2173 unsigned long flags;
2174 struct task_struct *parent;
2175 struct sighand_struct *sighand;
2176 u64 utime, stime;
2177
2178 if (for_ptracer) {
2179 parent = tsk->parent;
2180 } else {
2181 tsk = tsk->group_leader;
2182 parent = tsk->real_parent;
2183 }
2184
2185 clear_siginfo(&info);
2186 info.si_signo = SIGCHLD;
2187 info.si_errno = 0;
2188 /*
2189 * see comment in do_notify_parent() about the following 4 lines
2190 */
2191 rcu_read_lock();
2192 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2193 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2194 rcu_read_unlock();
2195
2196 task_cputime(tsk, &utime, &stime);
2197 info.si_utime = nsec_to_clock_t(utime);
2198 info.si_stime = nsec_to_clock_t(stime);
2199
2200 info.si_code = why;
2201 switch (why) {
2202 case CLD_CONTINUED:
2203 info.si_status = SIGCONT;
2204 break;
2205 case CLD_STOPPED:
2206 info.si_status = tsk->signal->group_exit_code & 0x7f;
2207 break;
2208 case CLD_TRAPPED:
2209 info.si_status = tsk->exit_code & 0x7f;
2210 break;
2211 default:
2212 BUG();
2213 }
2214
2215 sighand = parent->sighand;
2216 spin_lock_irqsave(&sighand->siglock, flags);
2217 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2218 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2219 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2220 /*
2221 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2222 */
2223 __wake_up_parent(tsk, parent);
2224 spin_unlock_irqrestore(&sighand->siglock, flags);
2225 }
2226
2227 /*
2228 * This must be called with current->sighand->siglock held.
2229 *
2230 * This should be the path for all ptrace stops.
2231 * We always set current->last_siginfo while stopped here.
2232 * That makes it a way to test a stopped process for
2233 * being ptrace-stopped vs being job-control-stopped.
2234 *
2235 * Returns the signal the ptracer requested the code resume
2236 * with. If the code did not stop because the tracer is gone,
2237 * the stop signal remains unchanged unless clear_code.
2238 */
ptrace_stop(int exit_code,int why,unsigned long message,kernel_siginfo_t * info)2239 static int ptrace_stop(int exit_code, int why, unsigned long message,
2240 kernel_siginfo_t *info)
2241 __releases(¤t->sighand->siglock)
2242 __acquires(¤t->sighand->siglock)
2243 {
2244 bool gstop_done = false;
2245
2246 if (arch_ptrace_stop_needed()) {
2247 /*
2248 * The arch code has something special to do before a
2249 * ptrace stop. This is allowed to block, e.g. for faults
2250 * on user stack pages. We can't keep the siglock while
2251 * calling arch_ptrace_stop, so we must release it now.
2252 * To preserve proper semantics, we must do this before
2253 * any signal bookkeeping like checking group_stop_count.
2254 */
2255 spin_unlock_irq(¤t->sighand->siglock);
2256 arch_ptrace_stop();
2257 spin_lock_irq(¤t->sighand->siglock);
2258 }
2259
2260 /*
2261 * After this point ptrace_signal_wake_up or signal_wake_up
2262 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2263 * signal comes in. Handle previous ptrace_unlinks and fatal
2264 * signals here to prevent ptrace_stop sleeping in schedule.
2265 */
2266 if (!current->ptrace || __fatal_signal_pending(current))
2267 return exit_code;
2268
2269 set_special_state(TASK_TRACED);
2270 current->jobctl |= JOBCTL_TRACED;
2271
2272 /*
2273 * We're committing to trapping. TRACED should be visible before
2274 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2275 * Also, transition to TRACED and updates to ->jobctl should be
2276 * atomic with respect to siglock and should be done after the arch
2277 * hook as siglock is released and regrabbed across it.
2278 *
2279 * TRACER TRACEE
2280 *
2281 * ptrace_attach()
2282 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2283 * do_wait()
2284 * set_current_state() smp_wmb();
2285 * ptrace_do_wait()
2286 * wait_task_stopped()
2287 * task_stopped_code()
2288 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2289 */
2290 smp_wmb();
2291
2292 current->ptrace_message = message;
2293 current->last_siginfo = info;
2294 current->exit_code = exit_code;
2295
2296 /*
2297 * If @why is CLD_STOPPED, we're trapping to participate in a group
2298 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2299 * across siglock relocks since INTERRUPT was scheduled, PENDING
2300 * could be clear now. We act as if SIGCONT is received after
2301 * TASK_TRACED is entered - ignore it.
2302 */
2303 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2304 gstop_done = task_participate_group_stop(current);
2305
2306 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2307 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2308 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2309 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2310
2311 /* entering a trap, clear TRAPPING */
2312 task_clear_jobctl_trapping(current);
2313
2314 spin_unlock_irq(¤t->sighand->siglock);
2315 read_lock(&tasklist_lock);
2316 /*
2317 * Notify parents of the stop.
2318 *
2319 * While ptraced, there are two parents - the ptracer and
2320 * the real_parent of the group_leader. The ptracer should
2321 * know about every stop while the real parent is only
2322 * interested in the completion of group stop. The states
2323 * for the two don't interact with each other. Notify
2324 * separately unless they're gonna be duplicates.
2325 */
2326 if (current->ptrace)
2327 do_notify_parent_cldstop(current, true, why);
2328 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2329 do_notify_parent_cldstop(current, false, why);
2330
2331 /*
2332 * Don't want to allow preemption here, because
2333 * sys_ptrace() needs this task to be inactive.
2334 *
2335 * XXX: implement read_unlock_no_resched().
2336 */
2337 preempt_disable();
2338 read_unlock(&tasklist_lock);
2339 cgroup_enter_frozen();
2340 preempt_enable_no_resched();
2341 schedule();
2342 cgroup_leave_frozen(true);
2343
2344 /*
2345 * We are back. Now reacquire the siglock before touching
2346 * last_siginfo, so that we are sure to have synchronized with
2347 * any signal-sending on another CPU that wants to examine it.
2348 */
2349 spin_lock_irq(¤t->sighand->siglock);
2350 exit_code = current->exit_code;
2351 current->last_siginfo = NULL;
2352 current->ptrace_message = 0;
2353 current->exit_code = 0;
2354
2355 /* LISTENING can be set only during STOP traps, clear it */
2356 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2357
2358 /*
2359 * Queued signals ignored us while we were stopped for tracing.
2360 * So check for any that we should take before resuming user mode.
2361 * This sets TIF_SIGPENDING, but never clears it.
2362 */
2363 recalc_sigpending_tsk(current);
2364 return exit_code;
2365 }
2366
ptrace_do_notify(int signr,int exit_code,int why,unsigned long message)2367 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2368 {
2369 kernel_siginfo_t info;
2370
2371 clear_siginfo(&info);
2372 info.si_signo = signr;
2373 info.si_code = exit_code;
2374 info.si_pid = task_pid_vnr(current);
2375 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2376
2377 /* Let the debugger run. */
2378 return ptrace_stop(exit_code, why, message, &info);
2379 }
2380
ptrace_notify(int exit_code,unsigned long message)2381 int ptrace_notify(int exit_code, unsigned long message)
2382 {
2383 int signr;
2384
2385 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2386 if (unlikely(task_work_pending(current)))
2387 task_work_run();
2388
2389 spin_lock_irq(¤t->sighand->siglock);
2390 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2391 spin_unlock_irq(¤t->sighand->siglock);
2392 return signr;
2393 }
2394
2395 /**
2396 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2397 * @signr: signr causing group stop if initiating
2398 *
2399 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2400 * and participate in it. If already set, participate in the existing
2401 * group stop. If participated in a group stop (and thus slept), %true is
2402 * returned with siglock released.
2403 *
2404 * If ptraced, this function doesn't handle stop itself. Instead,
2405 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2406 * untouched. The caller must ensure that INTERRUPT trap handling takes
2407 * places afterwards.
2408 *
2409 * CONTEXT:
2410 * Must be called with @current->sighand->siglock held, which is released
2411 * on %true return.
2412 *
2413 * RETURNS:
2414 * %false if group stop is already cancelled or ptrace trap is scheduled.
2415 * %true if participated in group stop.
2416 */
do_signal_stop(int signr)2417 static bool do_signal_stop(int signr)
2418 __releases(¤t->sighand->siglock)
2419 {
2420 struct signal_struct *sig = current->signal;
2421
2422 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2423 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2424 struct task_struct *t;
2425
2426 /* signr will be recorded in task->jobctl for retries */
2427 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2428
2429 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2430 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2431 unlikely(sig->group_exec_task))
2432 return false;
2433 /*
2434 * There is no group stop already in progress. We must
2435 * initiate one now.
2436 *
2437 * While ptraced, a task may be resumed while group stop is
2438 * still in effect and then receive a stop signal and
2439 * initiate another group stop. This deviates from the
2440 * usual behavior as two consecutive stop signals can't
2441 * cause two group stops when !ptraced. That is why we
2442 * also check !task_is_stopped(t) below.
2443 *
2444 * The condition can be distinguished by testing whether
2445 * SIGNAL_STOP_STOPPED is already set. Don't generate
2446 * group_exit_code in such case.
2447 *
2448 * This is not necessary for SIGNAL_STOP_CONTINUED because
2449 * an intervening stop signal is required to cause two
2450 * continued events regardless of ptrace.
2451 */
2452 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2453 sig->group_exit_code = signr;
2454
2455 sig->group_stop_count = 0;
2456
2457 if (task_set_jobctl_pending(current, signr | gstop))
2458 sig->group_stop_count++;
2459
2460 t = current;
2461 while_each_thread(current, t) {
2462 /*
2463 * Setting state to TASK_STOPPED for a group
2464 * stop is always done with the siglock held,
2465 * so this check has no races.
2466 */
2467 if (!task_is_stopped(t) &&
2468 task_set_jobctl_pending(t, signr | gstop)) {
2469 sig->group_stop_count++;
2470 if (likely(!(t->ptrace & PT_SEIZED)))
2471 signal_wake_up(t, 0);
2472 else
2473 ptrace_trap_notify(t);
2474 }
2475 }
2476 }
2477
2478 if (likely(!current->ptrace)) {
2479 int notify = 0;
2480
2481 /*
2482 * If there are no other threads in the group, or if there
2483 * is a group stop in progress and we are the last to stop,
2484 * report to the parent.
2485 */
2486 if (task_participate_group_stop(current))
2487 notify = CLD_STOPPED;
2488
2489 current->jobctl |= JOBCTL_STOPPED;
2490 set_special_state(TASK_STOPPED);
2491 spin_unlock_irq(¤t->sighand->siglock);
2492
2493 /*
2494 * Notify the parent of the group stop completion. Because
2495 * we're not holding either the siglock or tasklist_lock
2496 * here, ptracer may attach inbetween; however, this is for
2497 * group stop and should always be delivered to the real
2498 * parent of the group leader. The new ptracer will get
2499 * its notification when this task transitions into
2500 * TASK_TRACED.
2501 */
2502 if (notify) {
2503 read_lock(&tasklist_lock);
2504 do_notify_parent_cldstop(current, false, notify);
2505 read_unlock(&tasklist_lock);
2506 }
2507
2508 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2509 cgroup_enter_frozen();
2510 schedule();
2511 return true;
2512 } else {
2513 /*
2514 * While ptraced, group stop is handled by STOP trap.
2515 * Schedule it and let the caller deal with it.
2516 */
2517 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2518 return false;
2519 }
2520 }
2521
2522 /**
2523 * do_jobctl_trap - take care of ptrace jobctl traps
2524 *
2525 * When PT_SEIZED, it's used for both group stop and explicit
2526 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2527 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2528 * the stop signal; otherwise, %SIGTRAP.
2529 *
2530 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2531 * number as exit_code and no siginfo.
2532 *
2533 * CONTEXT:
2534 * Must be called with @current->sighand->siglock held, which may be
2535 * released and re-acquired before returning with intervening sleep.
2536 */
do_jobctl_trap(void)2537 static void do_jobctl_trap(void)
2538 {
2539 struct signal_struct *signal = current->signal;
2540 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2541
2542 if (current->ptrace & PT_SEIZED) {
2543 if (!signal->group_stop_count &&
2544 !(signal->flags & SIGNAL_STOP_STOPPED))
2545 signr = SIGTRAP;
2546 WARN_ON_ONCE(!signr);
2547 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2548 CLD_STOPPED, 0);
2549 } else {
2550 WARN_ON_ONCE(!signr);
2551 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2552 }
2553 }
2554
2555 /**
2556 * do_freezer_trap - handle the freezer jobctl trap
2557 *
2558 * Puts the task into frozen state, if only the task is not about to quit.
2559 * In this case it drops JOBCTL_TRAP_FREEZE.
2560 *
2561 * CONTEXT:
2562 * Must be called with @current->sighand->siglock held,
2563 * which is always released before returning.
2564 */
do_freezer_trap(void)2565 static void do_freezer_trap(void)
2566 __releases(¤t->sighand->siglock)
2567 {
2568 /*
2569 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2570 * let's make another loop to give it a chance to be handled.
2571 * In any case, we'll return back.
2572 */
2573 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2574 JOBCTL_TRAP_FREEZE) {
2575 spin_unlock_irq(¤t->sighand->siglock);
2576 return;
2577 }
2578
2579 /*
2580 * Now we're sure that there is no pending fatal signal and no
2581 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2582 * immediately (if there is a non-fatal signal pending), and
2583 * put the task into sleep.
2584 */
2585 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2586 clear_thread_flag(TIF_SIGPENDING);
2587 spin_unlock_irq(¤t->sighand->siglock);
2588 cgroup_enter_frozen();
2589 schedule();
2590
2591 /*
2592 * We could've been woken by task_work, run it to clear
2593 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2594 */
2595 clear_notify_signal();
2596 if (unlikely(task_work_pending(current)))
2597 task_work_run();
2598 }
2599
ptrace_signal(int signr,kernel_siginfo_t * info,enum pid_type type)2600 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2601 {
2602 /*
2603 * We do not check sig_kernel_stop(signr) but set this marker
2604 * unconditionally because we do not know whether debugger will
2605 * change signr. This flag has no meaning unless we are going
2606 * to stop after return from ptrace_stop(). In this case it will
2607 * be checked in do_signal_stop(), we should only stop if it was
2608 * not cleared by SIGCONT while we were sleeping. See also the
2609 * comment in dequeue_signal().
2610 */
2611 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2612 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2613
2614 /* We're back. Did the debugger cancel the sig? */
2615 if (signr == 0)
2616 return signr;
2617
2618 /*
2619 * Update the siginfo structure if the signal has
2620 * changed. If the debugger wanted something
2621 * specific in the siginfo structure then it should
2622 * have updated *info via PTRACE_SETSIGINFO.
2623 */
2624 if (signr != info->si_signo) {
2625 clear_siginfo(info);
2626 info->si_signo = signr;
2627 info->si_errno = 0;
2628 info->si_code = SI_USER;
2629 rcu_read_lock();
2630 info->si_pid = task_pid_vnr(current->parent);
2631 info->si_uid = from_kuid_munged(current_user_ns(),
2632 task_uid(current->parent));
2633 rcu_read_unlock();
2634 }
2635
2636 /* If the (new) signal is now blocked, requeue it. */
2637 if (sigismember(¤t->blocked, signr) ||
2638 fatal_signal_pending(current)) {
2639 send_signal_locked(signr, info, current, type);
2640 signr = 0;
2641 }
2642
2643 return signr;
2644 }
2645
hide_si_addr_tag_bits(struct ksignal * ksig)2646 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2647 {
2648 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2649 case SIL_FAULT:
2650 case SIL_FAULT_TRAPNO:
2651 case SIL_FAULT_MCEERR:
2652 case SIL_FAULT_BNDERR:
2653 case SIL_FAULT_PKUERR:
2654 case SIL_FAULT_PERF_EVENT:
2655 ksig->info.si_addr = arch_untagged_si_addr(
2656 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2657 break;
2658 case SIL_KILL:
2659 case SIL_TIMER:
2660 case SIL_POLL:
2661 case SIL_CHLD:
2662 case SIL_RT:
2663 case SIL_SYS:
2664 break;
2665 }
2666 }
2667
get_signal(struct ksignal * ksig)2668 bool get_signal(struct ksignal *ksig)
2669 {
2670 struct sighand_struct *sighand = current->sighand;
2671 struct signal_struct *signal = current->signal;
2672 int signr;
2673
2674 clear_notify_signal();
2675 if (unlikely(task_work_pending(current)))
2676 task_work_run();
2677
2678 if (!task_sigpending(current))
2679 return false;
2680
2681 if (unlikely(uprobe_deny_signal()))
2682 return false;
2683
2684 /*
2685 * Do this once, we can't return to user-mode if freezing() == T.
2686 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2687 * thus do not need another check after return.
2688 */
2689 try_to_freeze();
2690
2691 relock:
2692 spin_lock_irq(&sighand->siglock);
2693
2694 /*
2695 * Every stopped thread goes here after wakeup. Check to see if
2696 * we should notify the parent, prepare_signal(SIGCONT) encodes
2697 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2698 */
2699 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2700 int why;
2701
2702 if (signal->flags & SIGNAL_CLD_CONTINUED)
2703 why = CLD_CONTINUED;
2704 else
2705 why = CLD_STOPPED;
2706
2707 signal->flags &= ~SIGNAL_CLD_MASK;
2708
2709 spin_unlock_irq(&sighand->siglock);
2710
2711 /*
2712 * Notify the parent that we're continuing. This event is
2713 * always per-process and doesn't make whole lot of sense
2714 * for ptracers, who shouldn't consume the state via
2715 * wait(2) either, but, for backward compatibility, notify
2716 * the ptracer of the group leader too unless it's gonna be
2717 * a duplicate.
2718 */
2719 read_lock(&tasklist_lock);
2720 do_notify_parent_cldstop(current, false, why);
2721
2722 if (ptrace_reparented(current->group_leader))
2723 do_notify_parent_cldstop(current->group_leader,
2724 true, why);
2725 read_unlock(&tasklist_lock);
2726
2727 goto relock;
2728 }
2729
2730 for (;;) {
2731 struct k_sigaction *ka;
2732 enum pid_type type;
2733
2734 /* Has this task already been marked for death? */
2735 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2736 signal->group_exec_task) {
2737 clear_siginfo(&ksig->info);
2738 ksig->info.si_signo = signr = SIGKILL;
2739 sigdelset(¤t->pending.signal, SIGKILL);
2740 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2741 &sighand->action[SIGKILL - 1]);
2742 recalc_sigpending();
2743 goto fatal;
2744 }
2745
2746 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2747 do_signal_stop(0))
2748 goto relock;
2749
2750 if (unlikely(current->jobctl &
2751 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2752 if (current->jobctl & JOBCTL_TRAP_MASK) {
2753 do_jobctl_trap();
2754 spin_unlock_irq(&sighand->siglock);
2755 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2756 do_freezer_trap();
2757
2758 goto relock;
2759 }
2760
2761 /*
2762 * If the task is leaving the frozen state, let's update
2763 * cgroup counters and reset the frozen bit.
2764 */
2765 if (unlikely(cgroup_task_frozen(current))) {
2766 spin_unlock_irq(&sighand->siglock);
2767 cgroup_leave_frozen(false);
2768 goto relock;
2769 }
2770
2771 /*
2772 * Signals generated by the execution of an instruction
2773 * need to be delivered before any other pending signals
2774 * so that the instruction pointer in the signal stack
2775 * frame points to the faulting instruction.
2776 */
2777 type = PIDTYPE_PID;
2778 signr = dequeue_synchronous_signal(&ksig->info);
2779 if (!signr)
2780 signr = dequeue_signal(current, ¤t->blocked,
2781 &ksig->info, &type);
2782
2783 if (!signr)
2784 break; /* will return 0 */
2785
2786 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2787 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2788 signr = ptrace_signal(signr, &ksig->info, type);
2789 if (!signr)
2790 continue;
2791 }
2792
2793 ka = &sighand->action[signr-1];
2794
2795 /* Trace actually delivered signals. */
2796 trace_signal_deliver(signr, &ksig->info, ka);
2797
2798 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2799 continue;
2800 if (ka->sa.sa_handler != SIG_DFL) {
2801 /* Run the handler. */
2802 ksig->ka = *ka;
2803
2804 if (ka->sa.sa_flags & SA_ONESHOT)
2805 ka->sa.sa_handler = SIG_DFL;
2806
2807 break; /* will return non-zero "signr" value */
2808 }
2809
2810 /*
2811 * Now we are doing the default action for this signal.
2812 */
2813 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2814 continue;
2815
2816 /*
2817 * Global init gets no signals it doesn't want.
2818 * Container-init gets no signals it doesn't want from same
2819 * container.
2820 *
2821 * Note that if global/container-init sees a sig_kernel_only()
2822 * signal here, the signal must have been generated internally
2823 * or must have come from an ancestor namespace. In either
2824 * case, the signal cannot be dropped.
2825 */
2826 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2827 !sig_kernel_only(signr))
2828 continue;
2829
2830 if (sig_kernel_stop(signr)) {
2831 /*
2832 * The default action is to stop all threads in
2833 * the thread group. The job control signals
2834 * do nothing in an orphaned pgrp, but SIGSTOP
2835 * always works. Note that siglock needs to be
2836 * dropped during the call to is_orphaned_pgrp()
2837 * because of lock ordering with tasklist_lock.
2838 * This allows an intervening SIGCONT to be posted.
2839 * We need to check for that and bail out if necessary.
2840 */
2841 if (signr != SIGSTOP) {
2842 spin_unlock_irq(&sighand->siglock);
2843
2844 /* signals can be posted during this window */
2845
2846 if (is_current_pgrp_orphaned())
2847 goto relock;
2848
2849 spin_lock_irq(&sighand->siglock);
2850 }
2851
2852 if (likely(do_signal_stop(ksig->info.si_signo))) {
2853 /* It released the siglock. */
2854 goto relock;
2855 }
2856
2857 /*
2858 * We didn't actually stop, due to a race
2859 * with SIGCONT or something like that.
2860 */
2861 continue;
2862 }
2863
2864 fatal:
2865 spin_unlock_irq(&sighand->siglock);
2866 if (unlikely(cgroup_task_frozen(current)))
2867 cgroup_leave_frozen(true);
2868
2869 /*
2870 * Anything else is fatal, maybe with a core dump.
2871 */
2872 current->flags |= PF_SIGNALED;
2873
2874 if (sig_kernel_coredump(signr)) {
2875 if (print_fatal_signals)
2876 print_fatal_signal(ksig->info.si_signo);
2877 proc_coredump_connector(current);
2878 /*
2879 * If it was able to dump core, this kills all
2880 * other threads in the group and synchronizes with
2881 * their demise. If we lost the race with another
2882 * thread getting here, it set group_exit_code
2883 * first and our do_group_exit call below will use
2884 * that value and ignore the one we pass it.
2885 */
2886 do_coredump(&ksig->info);
2887 }
2888
2889 /*
2890 * PF_USER_WORKER threads will catch and exit on fatal signals
2891 * themselves. They have cleanup that must be performed, so
2892 * we cannot call do_exit() on their behalf.
2893 */
2894 if (current->flags & PF_USER_WORKER)
2895 goto out;
2896
2897 /*
2898 * Death signals, no core dump.
2899 */
2900 do_group_exit(ksig->info.si_signo);
2901 /* NOTREACHED */
2902 }
2903 spin_unlock_irq(&sighand->siglock);
2904 out:
2905 ksig->sig = signr;
2906
2907 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2908 hide_si_addr_tag_bits(ksig);
2909
2910 return ksig->sig > 0;
2911 }
2912
2913 /**
2914 * signal_delivered - called after signal delivery to update blocked signals
2915 * @ksig: kernel signal struct
2916 * @stepping: nonzero if debugger single-step or block-step in use
2917 *
2918 * This function should be called when a signal has successfully been
2919 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2920 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2921 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2922 */
signal_delivered(struct ksignal * ksig,int stepping)2923 static void signal_delivered(struct ksignal *ksig, int stepping)
2924 {
2925 sigset_t blocked;
2926
2927 /* A signal was successfully delivered, and the
2928 saved sigmask was stored on the signal frame,
2929 and will be restored by sigreturn. So we can
2930 simply clear the restore sigmask flag. */
2931 clear_restore_sigmask();
2932
2933 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2934 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2935 sigaddset(&blocked, ksig->sig);
2936 set_current_blocked(&blocked);
2937 if (current->sas_ss_flags & SS_AUTODISARM)
2938 sas_ss_reset(current);
2939 if (stepping)
2940 ptrace_notify(SIGTRAP, 0);
2941 }
2942
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2943 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2944 {
2945 if (failed)
2946 force_sigsegv(ksig->sig);
2947 else
2948 signal_delivered(ksig, stepping);
2949 }
2950
2951 /*
2952 * It could be that complete_signal() picked us to notify about the
2953 * group-wide signal. Other threads should be notified now to take
2954 * the shared signals in @which since we will not.
2955 */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2956 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2957 {
2958 sigset_t retarget;
2959 struct task_struct *t;
2960
2961 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2962 if (sigisemptyset(&retarget))
2963 return;
2964
2965 t = tsk;
2966 while_each_thread(tsk, t) {
2967 if (t->flags & PF_EXITING)
2968 continue;
2969
2970 if (!has_pending_signals(&retarget, &t->blocked))
2971 continue;
2972 /* Remove the signals this thread can handle. */
2973 sigandsets(&retarget, &retarget, &t->blocked);
2974
2975 if (!task_sigpending(t))
2976 signal_wake_up(t, 0);
2977
2978 if (sigisemptyset(&retarget))
2979 break;
2980 }
2981 }
2982
exit_signals(struct task_struct * tsk)2983 void exit_signals(struct task_struct *tsk)
2984 {
2985 int group_stop = 0;
2986 sigset_t unblocked;
2987
2988 /*
2989 * @tsk is about to have PF_EXITING set - lock out users which
2990 * expect stable threadgroup.
2991 */
2992 cgroup_threadgroup_change_begin(tsk);
2993
2994 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2995 sched_mm_cid_exit_signals(tsk);
2996 tsk->flags |= PF_EXITING;
2997 cgroup_threadgroup_change_end(tsk);
2998 return;
2999 }
3000
3001 spin_lock_irq(&tsk->sighand->siglock);
3002 /*
3003 * From now this task is not visible for group-wide signals,
3004 * see wants_signal(), do_signal_stop().
3005 */
3006 sched_mm_cid_exit_signals(tsk);
3007 tsk->flags |= PF_EXITING;
3008
3009 cgroup_threadgroup_change_end(tsk);
3010
3011 if (!task_sigpending(tsk))
3012 goto out;
3013
3014 unblocked = tsk->blocked;
3015 signotset(&unblocked);
3016 retarget_shared_pending(tsk, &unblocked);
3017
3018 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3019 task_participate_group_stop(tsk))
3020 group_stop = CLD_STOPPED;
3021 out:
3022 spin_unlock_irq(&tsk->sighand->siglock);
3023
3024 /*
3025 * If group stop has completed, deliver the notification. This
3026 * should always go to the real parent of the group leader.
3027 */
3028 if (unlikely(group_stop)) {
3029 read_lock(&tasklist_lock);
3030 do_notify_parent_cldstop(tsk, false, group_stop);
3031 read_unlock(&tasklist_lock);
3032 }
3033 }
3034
3035 /*
3036 * System call entry points.
3037 */
3038
3039 /**
3040 * sys_restart_syscall - restart a system call
3041 */
SYSCALL_DEFINE0(restart_syscall)3042 SYSCALL_DEFINE0(restart_syscall)
3043 {
3044 struct restart_block *restart = ¤t->restart_block;
3045 return restart->fn(restart);
3046 }
3047
do_no_restart_syscall(struct restart_block * param)3048 long do_no_restart_syscall(struct restart_block *param)
3049 {
3050 return -EINTR;
3051 }
3052
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)3053 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3054 {
3055 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3056 sigset_t newblocked;
3057 /* A set of now blocked but previously unblocked signals. */
3058 sigandnsets(&newblocked, newset, ¤t->blocked);
3059 retarget_shared_pending(tsk, &newblocked);
3060 }
3061 tsk->blocked = *newset;
3062 recalc_sigpending();
3063 }
3064
3065 /**
3066 * set_current_blocked - change current->blocked mask
3067 * @newset: new mask
3068 *
3069 * It is wrong to change ->blocked directly, this helper should be used
3070 * to ensure the process can't miss a shared signal we are going to block.
3071 */
set_current_blocked(sigset_t * newset)3072 void set_current_blocked(sigset_t *newset)
3073 {
3074 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3075 __set_current_blocked(newset);
3076 }
3077
__set_current_blocked(const sigset_t * newset)3078 void __set_current_blocked(const sigset_t *newset)
3079 {
3080 struct task_struct *tsk = current;
3081
3082 /*
3083 * In case the signal mask hasn't changed, there is nothing we need
3084 * to do. The current->blocked shouldn't be modified by other task.
3085 */
3086 if (sigequalsets(&tsk->blocked, newset))
3087 return;
3088
3089 spin_lock_irq(&tsk->sighand->siglock);
3090 __set_task_blocked(tsk, newset);
3091 spin_unlock_irq(&tsk->sighand->siglock);
3092 }
3093
3094 /*
3095 * This is also useful for kernel threads that want to temporarily
3096 * (or permanently) block certain signals.
3097 *
3098 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3099 * interface happily blocks "unblockable" signals like SIGKILL
3100 * and friends.
3101 */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)3102 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3103 {
3104 struct task_struct *tsk = current;
3105 sigset_t newset;
3106
3107 /* Lockless, only current can change ->blocked, never from irq */
3108 if (oldset)
3109 *oldset = tsk->blocked;
3110
3111 switch (how) {
3112 case SIG_BLOCK:
3113 sigorsets(&newset, &tsk->blocked, set);
3114 break;
3115 case SIG_UNBLOCK:
3116 sigandnsets(&newset, &tsk->blocked, set);
3117 break;
3118 case SIG_SETMASK:
3119 newset = *set;
3120 break;
3121 default:
3122 return -EINVAL;
3123 }
3124
3125 __set_current_blocked(&newset);
3126 return 0;
3127 }
3128 EXPORT_SYMBOL(sigprocmask);
3129
3130 /*
3131 * The api helps set app-provided sigmasks.
3132 *
3133 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3134 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3135 *
3136 * Note that it does set_restore_sigmask() in advance, so it must be always
3137 * paired with restore_saved_sigmask_unless() before return from syscall.
3138 */
set_user_sigmask(const sigset_t __user * umask,size_t sigsetsize)3139 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3140 {
3141 sigset_t kmask;
3142
3143 if (!umask)
3144 return 0;
3145 if (sigsetsize != sizeof(sigset_t))
3146 return -EINVAL;
3147 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3148 return -EFAULT;
3149
3150 set_restore_sigmask();
3151 current->saved_sigmask = current->blocked;
3152 set_current_blocked(&kmask);
3153
3154 return 0;
3155 }
3156
3157 #ifdef CONFIG_COMPAT
set_compat_user_sigmask(const compat_sigset_t __user * umask,size_t sigsetsize)3158 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3159 size_t sigsetsize)
3160 {
3161 sigset_t kmask;
3162
3163 if (!umask)
3164 return 0;
3165 if (sigsetsize != sizeof(compat_sigset_t))
3166 return -EINVAL;
3167 if (get_compat_sigset(&kmask, umask))
3168 return -EFAULT;
3169
3170 set_restore_sigmask();
3171 current->saved_sigmask = current->blocked;
3172 set_current_blocked(&kmask);
3173
3174 return 0;
3175 }
3176 #endif
3177
3178 /**
3179 * sys_rt_sigprocmask - change the list of currently blocked signals
3180 * @how: whether to add, remove, or set signals
3181 * @nset: stores pending signals
3182 * @oset: previous value of signal mask if non-null
3183 * @sigsetsize: size of sigset_t type
3184 */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)3185 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3186 sigset_t __user *, oset, size_t, sigsetsize)
3187 {
3188 sigset_t old_set, new_set;
3189 int error;
3190
3191 /* XXX: Don't preclude handling different sized sigset_t's. */
3192 if (sigsetsize != sizeof(sigset_t))
3193 return -EINVAL;
3194
3195 old_set = current->blocked;
3196
3197 if (nset) {
3198 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3199 return -EFAULT;
3200 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3201
3202 error = sigprocmask(how, &new_set, NULL);
3203 if (error)
3204 return error;
3205 }
3206
3207 if (oset) {
3208 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3209 return -EFAULT;
3210 }
3211
3212 return 0;
3213 }
3214
3215 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)3216 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3217 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3218 {
3219 sigset_t old_set = current->blocked;
3220
3221 /* XXX: Don't preclude handling different sized sigset_t's. */
3222 if (sigsetsize != sizeof(sigset_t))
3223 return -EINVAL;
3224
3225 if (nset) {
3226 sigset_t new_set;
3227 int error;
3228 if (get_compat_sigset(&new_set, nset))
3229 return -EFAULT;
3230 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3231
3232 error = sigprocmask(how, &new_set, NULL);
3233 if (error)
3234 return error;
3235 }
3236 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3237 }
3238 #endif
3239
do_sigpending(sigset_t * set)3240 static void do_sigpending(sigset_t *set)
3241 {
3242 spin_lock_irq(¤t->sighand->siglock);
3243 sigorsets(set, ¤t->pending.signal,
3244 ¤t->signal->shared_pending.signal);
3245 spin_unlock_irq(¤t->sighand->siglock);
3246
3247 /* Outside the lock because only this thread touches it. */
3248 sigandsets(set, ¤t->blocked, set);
3249 }
3250
3251 /**
3252 * sys_rt_sigpending - examine a pending signal that has been raised
3253 * while blocked
3254 * @uset: stores pending signals
3255 * @sigsetsize: size of sigset_t type or larger
3256 */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)3257 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3258 {
3259 sigset_t set;
3260
3261 if (sigsetsize > sizeof(*uset))
3262 return -EINVAL;
3263
3264 do_sigpending(&set);
3265
3266 if (copy_to_user(uset, &set, sigsetsize))
3267 return -EFAULT;
3268
3269 return 0;
3270 }
3271
3272 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)3273 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3274 compat_size_t, sigsetsize)
3275 {
3276 sigset_t set;
3277
3278 if (sigsetsize > sizeof(*uset))
3279 return -EINVAL;
3280
3281 do_sigpending(&set);
3282
3283 return put_compat_sigset(uset, &set, sigsetsize);
3284 }
3285 #endif
3286
3287 static const struct {
3288 unsigned char limit, layout;
3289 } sig_sicodes[] = {
3290 [SIGILL] = { NSIGILL, SIL_FAULT },
3291 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3292 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3293 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3294 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3295 #if defined(SIGEMT)
3296 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3297 #endif
3298 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3299 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3300 [SIGSYS] = { NSIGSYS, SIL_SYS },
3301 };
3302
known_siginfo_layout(unsigned sig,int si_code)3303 static bool known_siginfo_layout(unsigned sig, int si_code)
3304 {
3305 if (si_code == SI_KERNEL)
3306 return true;
3307 else if ((si_code > SI_USER)) {
3308 if (sig_specific_sicodes(sig)) {
3309 if (si_code <= sig_sicodes[sig].limit)
3310 return true;
3311 }
3312 else if (si_code <= NSIGPOLL)
3313 return true;
3314 }
3315 else if (si_code >= SI_DETHREAD)
3316 return true;
3317 else if (si_code == SI_ASYNCNL)
3318 return true;
3319 return false;
3320 }
3321
siginfo_layout(unsigned sig,int si_code)3322 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3323 {
3324 enum siginfo_layout layout = SIL_KILL;
3325 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3326 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3327 (si_code <= sig_sicodes[sig].limit)) {
3328 layout = sig_sicodes[sig].layout;
3329 /* Handle the exceptions */
3330 if ((sig == SIGBUS) &&
3331 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3332 layout = SIL_FAULT_MCEERR;
3333 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3334 layout = SIL_FAULT_BNDERR;
3335 #ifdef SEGV_PKUERR
3336 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3337 layout = SIL_FAULT_PKUERR;
3338 #endif
3339 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3340 layout = SIL_FAULT_PERF_EVENT;
3341 else if (IS_ENABLED(CONFIG_SPARC) &&
3342 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3343 layout = SIL_FAULT_TRAPNO;
3344 else if (IS_ENABLED(CONFIG_ALPHA) &&
3345 ((sig == SIGFPE) ||
3346 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3347 layout = SIL_FAULT_TRAPNO;
3348 }
3349 else if (si_code <= NSIGPOLL)
3350 layout = SIL_POLL;
3351 } else {
3352 if (si_code == SI_TIMER)
3353 layout = SIL_TIMER;
3354 else if (si_code == SI_SIGIO)
3355 layout = SIL_POLL;
3356 else if (si_code < 0)
3357 layout = SIL_RT;
3358 }
3359 return layout;
3360 }
3361
si_expansion(const siginfo_t __user * info)3362 static inline char __user *si_expansion(const siginfo_t __user *info)
3363 {
3364 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3365 }
3366
copy_siginfo_to_user(siginfo_t __user * to,const kernel_siginfo_t * from)3367 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3368 {
3369 char __user *expansion = si_expansion(to);
3370 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3371 return -EFAULT;
3372 if (clear_user(expansion, SI_EXPANSION_SIZE))
3373 return -EFAULT;
3374 return 0;
3375 }
3376
post_copy_siginfo_from_user(kernel_siginfo_t * info,const siginfo_t __user * from)3377 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3378 const siginfo_t __user *from)
3379 {
3380 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3381 char __user *expansion = si_expansion(from);
3382 char buf[SI_EXPANSION_SIZE];
3383 int i;
3384 /*
3385 * An unknown si_code might need more than
3386 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3387 * extra bytes are 0. This guarantees copy_siginfo_to_user
3388 * will return this data to userspace exactly.
3389 */
3390 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3391 return -EFAULT;
3392 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3393 if (buf[i] != 0)
3394 return -E2BIG;
3395 }
3396 }
3397 return 0;
3398 }
3399
__copy_siginfo_from_user(int signo,kernel_siginfo_t * to,const siginfo_t __user * from)3400 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3401 const siginfo_t __user *from)
3402 {
3403 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3404 return -EFAULT;
3405 to->si_signo = signo;
3406 return post_copy_siginfo_from_user(to, from);
3407 }
3408
copy_siginfo_from_user(kernel_siginfo_t * to,const siginfo_t __user * from)3409 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3410 {
3411 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3412 return -EFAULT;
3413 return post_copy_siginfo_from_user(to, from);
3414 }
3415
3416 #ifdef CONFIG_COMPAT
3417 /**
3418 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3419 * @to: compat siginfo destination
3420 * @from: kernel siginfo source
3421 *
3422 * Note: This function does not work properly for the SIGCHLD on x32, but
3423 * fortunately it doesn't have to. The only valid callers for this function are
3424 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3425 * The latter does not care because SIGCHLD will never cause a coredump.
3426 */
copy_siginfo_to_external32(struct compat_siginfo * to,const struct kernel_siginfo * from)3427 void copy_siginfo_to_external32(struct compat_siginfo *to,
3428 const struct kernel_siginfo *from)
3429 {
3430 memset(to, 0, sizeof(*to));
3431
3432 to->si_signo = from->si_signo;
3433 to->si_errno = from->si_errno;
3434 to->si_code = from->si_code;
3435 switch(siginfo_layout(from->si_signo, from->si_code)) {
3436 case SIL_KILL:
3437 to->si_pid = from->si_pid;
3438 to->si_uid = from->si_uid;
3439 break;
3440 case SIL_TIMER:
3441 to->si_tid = from->si_tid;
3442 to->si_overrun = from->si_overrun;
3443 to->si_int = from->si_int;
3444 break;
3445 case SIL_POLL:
3446 to->si_band = from->si_band;
3447 to->si_fd = from->si_fd;
3448 break;
3449 case SIL_FAULT:
3450 to->si_addr = ptr_to_compat(from->si_addr);
3451 break;
3452 case SIL_FAULT_TRAPNO:
3453 to->si_addr = ptr_to_compat(from->si_addr);
3454 to->si_trapno = from->si_trapno;
3455 break;
3456 case SIL_FAULT_MCEERR:
3457 to->si_addr = ptr_to_compat(from->si_addr);
3458 to->si_addr_lsb = from->si_addr_lsb;
3459 break;
3460 case SIL_FAULT_BNDERR:
3461 to->si_addr = ptr_to_compat(from->si_addr);
3462 to->si_lower = ptr_to_compat(from->si_lower);
3463 to->si_upper = ptr_to_compat(from->si_upper);
3464 break;
3465 case SIL_FAULT_PKUERR:
3466 to->si_addr = ptr_to_compat(from->si_addr);
3467 to->si_pkey = from->si_pkey;
3468 break;
3469 case SIL_FAULT_PERF_EVENT:
3470 to->si_addr = ptr_to_compat(from->si_addr);
3471 to->si_perf_data = from->si_perf_data;
3472 to->si_perf_type = from->si_perf_type;
3473 to->si_perf_flags = from->si_perf_flags;
3474 break;
3475 case SIL_CHLD:
3476 to->si_pid = from->si_pid;
3477 to->si_uid = from->si_uid;
3478 to->si_status = from->si_status;
3479 to->si_utime = from->si_utime;
3480 to->si_stime = from->si_stime;
3481 break;
3482 case SIL_RT:
3483 to->si_pid = from->si_pid;
3484 to->si_uid = from->si_uid;
3485 to->si_int = from->si_int;
3486 break;
3487 case SIL_SYS:
3488 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3489 to->si_syscall = from->si_syscall;
3490 to->si_arch = from->si_arch;
3491 break;
3492 }
3493 }
3494
__copy_siginfo_to_user32(struct compat_siginfo __user * to,const struct kernel_siginfo * from)3495 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3496 const struct kernel_siginfo *from)
3497 {
3498 struct compat_siginfo new;
3499
3500 copy_siginfo_to_external32(&new, from);
3501 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3502 return -EFAULT;
3503 return 0;
3504 }
3505
post_copy_siginfo_from_user32(kernel_siginfo_t * to,const struct compat_siginfo * from)3506 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3507 const struct compat_siginfo *from)
3508 {
3509 clear_siginfo(to);
3510 to->si_signo = from->si_signo;
3511 to->si_errno = from->si_errno;
3512 to->si_code = from->si_code;
3513 switch(siginfo_layout(from->si_signo, from->si_code)) {
3514 case SIL_KILL:
3515 to->si_pid = from->si_pid;
3516 to->si_uid = from->si_uid;
3517 break;
3518 case SIL_TIMER:
3519 to->si_tid = from->si_tid;
3520 to->si_overrun = from->si_overrun;
3521 to->si_int = from->si_int;
3522 break;
3523 case SIL_POLL:
3524 to->si_band = from->si_band;
3525 to->si_fd = from->si_fd;
3526 break;
3527 case SIL_FAULT:
3528 to->si_addr = compat_ptr(from->si_addr);
3529 break;
3530 case SIL_FAULT_TRAPNO:
3531 to->si_addr = compat_ptr(from->si_addr);
3532 to->si_trapno = from->si_trapno;
3533 break;
3534 case SIL_FAULT_MCEERR:
3535 to->si_addr = compat_ptr(from->si_addr);
3536 to->si_addr_lsb = from->si_addr_lsb;
3537 break;
3538 case SIL_FAULT_BNDERR:
3539 to->si_addr = compat_ptr(from->si_addr);
3540 to->si_lower = compat_ptr(from->si_lower);
3541 to->si_upper = compat_ptr(from->si_upper);
3542 break;
3543 case SIL_FAULT_PKUERR:
3544 to->si_addr = compat_ptr(from->si_addr);
3545 to->si_pkey = from->si_pkey;
3546 break;
3547 case SIL_FAULT_PERF_EVENT:
3548 to->si_addr = compat_ptr(from->si_addr);
3549 to->si_perf_data = from->si_perf_data;
3550 to->si_perf_type = from->si_perf_type;
3551 to->si_perf_flags = from->si_perf_flags;
3552 break;
3553 case SIL_CHLD:
3554 to->si_pid = from->si_pid;
3555 to->si_uid = from->si_uid;
3556 to->si_status = from->si_status;
3557 #ifdef CONFIG_X86_X32_ABI
3558 if (in_x32_syscall()) {
3559 to->si_utime = from->_sifields._sigchld_x32._utime;
3560 to->si_stime = from->_sifields._sigchld_x32._stime;
3561 } else
3562 #endif
3563 {
3564 to->si_utime = from->si_utime;
3565 to->si_stime = from->si_stime;
3566 }
3567 break;
3568 case SIL_RT:
3569 to->si_pid = from->si_pid;
3570 to->si_uid = from->si_uid;
3571 to->si_int = from->si_int;
3572 break;
3573 case SIL_SYS:
3574 to->si_call_addr = compat_ptr(from->si_call_addr);
3575 to->si_syscall = from->si_syscall;
3576 to->si_arch = from->si_arch;
3577 break;
3578 }
3579 return 0;
3580 }
3581
__copy_siginfo_from_user32(int signo,struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3582 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3583 const struct compat_siginfo __user *ufrom)
3584 {
3585 struct compat_siginfo from;
3586
3587 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3588 return -EFAULT;
3589
3590 from.si_signo = signo;
3591 return post_copy_siginfo_from_user32(to, &from);
3592 }
3593
copy_siginfo_from_user32(struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3594 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3595 const struct compat_siginfo __user *ufrom)
3596 {
3597 struct compat_siginfo from;
3598
3599 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3600 return -EFAULT;
3601
3602 return post_copy_siginfo_from_user32(to, &from);
3603 }
3604 #endif /* CONFIG_COMPAT */
3605
3606 /**
3607 * do_sigtimedwait - wait for queued signals specified in @which
3608 * @which: queued signals to wait for
3609 * @info: if non-null, the signal's siginfo is returned here
3610 * @ts: upper bound on process time suspension
3611 */
do_sigtimedwait(const sigset_t * which,kernel_siginfo_t * info,const struct timespec64 * ts)3612 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3613 const struct timespec64 *ts)
3614 {
3615 ktime_t *to = NULL, timeout = KTIME_MAX;
3616 struct task_struct *tsk = current;
3617 sigset_t mask = *which;
3618 enum pid_type type;
3619 int sig, ret = 0;
3620
3621 if (ts) {
3622 if (!timespec64_valid(ts))
3623 return -EINVAL;
3624 timeout = timespec64_to_ktime(*ts);
3625 to = &timeout;
3626 }
3627
3628 /*
3629 * Invert the set of allowed signals to get those we want to block.
3630 */
3631 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3632 signotset(&mask);
3633
3634 spin_lock_irq(&tsk->sighand->siglock);
3635 sig = dequeue_signal(tsk, &mask, info, &type);
3636 if (!sig && timeout) {
3637 /*
3638 * None ready, temporarily unblock those we're interested
3639 * while we are sleeping in so that we'll be awakened when
3640 * they arrive. Unblocking is always fine, we can avoid
3641 * set_current_blocked().
3642 */
3643 tsk->real_blocked = tsk->blocked;
3644 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3645 recalc_sigpending();
3646 spin_unlock_irq(&tsk->sighand->siglock);
3647
3648 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3649 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3650 HRTIMER_MODE_REL);
3651 spin_lock_irq(&tsk->sighand->siglock);
3652 __set_task_blocked(tsk, &tsk->real_blocked);
3653 sigemptyset(&tsk->real_blocked);
3654 sig = dequeue_signal(tsk, &mask, info, &type);
3655 }
3656 spin_unlock_irq(&tsk->sighand->siglock);
3657
3658 if (sig)
3659 return sig;
3660 return ret ? -EINTR : -EAGAIN;
3661 }
3662
3663 /**
3664 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3665 * in @uthese
3666 * @uthese: queued signals to wait for
3667 * @uinfo: if non-null, the signal's siginfo is returned here
3668 * @uts: upper bound on process time suspension
3669 * @sigsetsize: size of sigset_t type
3670 */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct __kernel_timespec __user *,uts,size_t,sigsetsize)3671 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3672 siginfo_t __user *, uinfo,
3673 const struct __kernel_timespec __user *, uts,
3674 size_t, sigsetsize)
3675 {
3676 sigset_t these;
3677 struct timespec64 ts;
3678 kernel_siginfo_t info;
3679 int ret;
3680
3681 /* XXX: Don't preclude handling different sized sigset_t's. */
3682 if (sigsetsize != sizeof(sigset_t))
3683 return -EINVAL;
3684
3685 if (copy_from_user(&these, uthese, sizeof(these)))
3686 return -EFAULT;
3687
3688 if (uts) {
3689 if (get_timespec64(&ts, uts))
3690 return -EFAULT;
3691 }
3692
3693 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3694
3695 if (ret > 0 && uinfo) {
3696 if (copy_siginfo_to_user(uinfo, &info))
3697 ret = -EFAULT;
3698 }
3699
3700 return ret;
3701 }
3702
3703 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct old_timespec32 __user *,uts,size_t,sigsetsize)3704 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3705 siginfo_t __user *, uinfo,
3706 const struct old_timespec32 __user *, uts,
3707 size_t, sigsetsize)
3708 {
3709 sigset_t these;
3710 struct timespec64 ts;
3711 kernel_siginfo_t info;
3712 int ret;
3713
3714 if (sigsetsize != sizeof(sigset_t))
3715 return -EINVAL;
3716
3717 if (copy_from_user(&these, uthese, sizeof(these)))
3718 return -EFAULT;
3719
3720 if (uts) {
3721 if (get_old_timespec32(&ts, uts))
3722 return -EFAULT;
3723 }
3724
3725 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3726
3727 if (ret > 0 && uinfo) {
3728 if (copy_siginfo_to_user(uinfo, &info))
3729 ret = -EFAULT;
3730 }
3731
3732 return ret;
3733 }
3734 #endif
3735
3736 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct __kernel_timespec __user *,uts,compat_size_t,sigsetsize)3737 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3738 struct compat_siginfo __user *, uinfo,
3739 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3740 {
3741 sigset_t s;
3742 struct timespec64 t;
3743 kernel_siginfo_t info;
3744 long ret;
3745
3746 if (sigsetsize != sizeof(sigset_t))
3747 return -EINVAL;
3748
3749 if (get_compat_sigset(&s, uthese))
3750 return -EFAULT;
3751
3752 if (uts) {
3753 if (get_timespec64(&t, uts))
3754 return -EFAULT;
3755 }
3756
3757 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3758
3759 if (ret > 0 && uinfo) {
3760 if (copy_siginfo_to_user32(uinfo, &info))
3761 ret = -EFAULT;
3762 }
3763
3764 return ret;
3765 }
3766
3767 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct old_timespec32 __user *,uts,compat_size_t,sigsetsize)3768 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3769 struct compat_siginfo __user *, uinfo,
3770 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3771 {
3772 sigset_t s;
3773 struct timespec64 t;
3774 kernel_siginfo_t info;
3775 long ret;
3776
3777 if (sigsetsize != sizeof(sigset_t))
3778 return -EINVAL;
3779
3780 if (get_compat_sigset(&s, uthese))
3781 return -EFAULT;
3782
3783 if (uts) {
3784 if (get_old_timespec32(&t, uts))
3785 return -EFAULT;
3786 }
3787
3788 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3789
3790 if (ret > 0 && uinfo) {
3791 if (copy_siginfo_to_user32(uinfo, &info))
3792 ret = -EFAULT;
3793 }
3794
3795 return ret;
3796 }
3797 #endif
3798 #endif
3799
prepare_kill_siginfo(int sig,struct kernel_siginfo * info)3800 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3801 {
3802 clear_siginfo(info);
3803 info->si_signo = sig;
3804 info->si_errno = 0;
3805 info->si_code = SI_USER;
3806 info->si_pid = task_tgid_vnr(current);
3807 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3808 }
3809
3810 /**
3811 * sys_kill - send a signal to a process
3812 * @pid: the PID of the process
3813 * @sig: signal to be sent
3814 */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3815 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3816 {
3817 struct kernel_siginfo info;
3818
3819 prepare_kill_siginfo(sig, &info);
3820
3821 return kill_something_info(sig, &info, pid);
3822 }
3823
3824 /*
3825 * Verify that the signaler and signalee either are in the same pid namespace
3826 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3827 * namespace.
3828 */
access_pidfd_pidns(struct pid * pid)3829 static bool access_pidfd_pidns(struct pid *pid)
3830 {
3831 struct pid_namespace *active = task_active_pid_ns(current);
3832 struct pid_namespace *p = ns_of_pid(pid);
3833
3834 for (;;) {
3835 if (!p)
3836 return false;
3837 if (p == active)
3838 break;
3839 p = p->parent;
3840 }
3841
3842 return true;
3843 }
3844
copy_siginfo_from_user_any(kernel_siginfo_t * kinfo,siginfo_t __user * info)3845 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3846 siginfo_t __user *info)
3847 {
3848 #ifdef CONFIG_COMPAT
3849 /*
3850 * Avoid hooking up compat syscalls and instead handle necessary
3851 * conversions here. Note, this is a stop-gap measure and should not be
3852 * considered a generic solution.
3853 */
3854 if (in_compat_syscall())
3855 return copy_siginfo_from_user32(
3856 kinfo, (struct compat_siginfo __user *)info);
3857 #endif
3858 return copy_siginfo_from_user(kinfo, info);
3859 }
3860
pidfd_to_pid(const struct file * file)3861 static struct pid *pidfd_to_pid(const struct file *file)
3862 {
3863 struct pid *pid;
3864
3865 pid = pidfd_pid(file);
3866 if (!IS_ERR(pid))
3867 return pid;
3868
3869 return tgid_pidfd_to_pid(file);
3870 }
3871
3872 /**
3873 * sys_pidfd_send_signal - Signal a process through a pidfd
3874 * @pidfd: file descriptor of the process
3875 * @sig: signal to send
3876 * @info: signal info
3877 * @flags: future flags
3878 *
3879 * The syscall currently only signals via PIDTYPE_PID which covers
3880 * kill(<positive-pid>, <signal>. It does not signal threads or process
3881 * groups.
3882 * In order to extend the syscall to threads and process groups the @flags
3883 * argument should be used. In essence, the @flags argument will determine
3884 * what is signaled and not the file descriptor itself. Put in other words,
3885 * grouping is a property of the flags argument not a property of the file
3886 * descriptor.
3887 *
3888 * Return: 0 on success, negative errno on failure
3889 */
SYSCALL_DEFINE4(pidfd_send_signal,int,pidfd,int,sig,siginfo_t __user *,info,unsigned int,flags)3890 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3891 siginfo_t __user *, info, unsigned int, flags)
3892 {
3893 int ret;
3894 struct fd f;
3895 struct pid *pid;
3896 kernel_siginfo_t kinfo;
3897
3898 /* Enforce flags be set to 0 until we add an extension. */
3899 if (flags)
3900 return -EINVAL;
3901
3902 f = fdget(pidfd);
3903 if (!f.file)
3904 return -EBADF;
3905
3906 /* Is this a pidfd? */
3907 pid = pidfd_to_pid(f.file);
3908 if (IS_ERR(pid)) {
3909 ret = PTR_ERR(pid);
3910 goto err;
3911 }
3912
3913 ret = -EINVAL;
3914 if (!access_pidfd_pidns(pid))
3915 goto err;
3916
3917 if (info) {
3918 ret = copy_siginfo_from_user_any(&kinfo, info);
3919 if (unlikely(ret))
3920 goto err;
3921
3922 ret = -EINVAL;
3923 if (unlikely(sig != kinfo.si_signo))
3924 goto err;
3925
3926 /* Only allow sending arbitrary signals to yourself. */
3927 ret = -EPERM;
3928 if ((task_pid(current) != pid) &&
3929 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3930 goto err;
3931 } else {
3932 prepare_kill_siginfo(sig, &kinfo);
3933 }
3934
3935 ret = kill_pid_info(sig, &kinfo, pid);
3936
3937 err:
3938 fdput(f);
3939 return ret;
3940 }
3941
3942 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct kernel_siginfo * info)3943 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3944 {
3945 struct task_struct *p;
3946 int error = -ESRCH;
3947
3948 rcu_read_lock();
3949 p = find_task_by_vpid(pid);
3950 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3951 error = check_kill_permission(sig, info, p);
3952 /*
3953 * The null signal is a permissions and process existence
3954 * probe. No signal is actually delivered.
3955 */
3956 if (!error && sig) {
3957 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3958 /*
3959 * If lock_task_sighand() failed we pretend the task
3960 * dies after receiving the signal. The window is tiny,
3961 * and the signal is private anyway.
3962 */
3963 if (unlikely(error == -ESRCH))
3964 error = 0;
3965 }
3966 }
3967 rcu_read_unlock();
3968
3969 return error;
3970 }
3971
do_tkill(pid_t tgid,pid_t pid,int sig)3972 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3973 {
3974 struct kernel_siginfo info;
3975
3976 clear_siginfo(&info);
3977 info.si_signo = sig;
3978 info.si_errno = 0;
3979 info.si_code = SI_TKILL;
3980 info.si_pid = task_tgid_vnr(current);
3981 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3982
3983 return do_send_specific(tgid, pid, sig, &info);
3984 }
3985
3986 /**
3987 * sys_tgkill - send signal to one specific thread
3988 * @tgid: the thread group ID of the thread
3989 * @pid: the PID of the thread
3990 * @sig: signal to be sent
3991 *
3992 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3993 * exists but it's not belonging to the target process anymore. This
3994 * method solves the problem of threads exiting and PIDs getting reused.
3995 */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)3996 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3997 {
3998 /* This is only valid for single tasks */
3999 if (pid <= 0 || tgid <= 0)
4000 return -EINVAL;
4001
4002 return do_tkill(tgid, pid, sig);
4003 }
4004
4005 /**
4006 * sys_tkill - send signal to one specific task
4007 * @pid: the PID of the task
4008 * @sig: signal to be sent
4009 *
4010 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4011 */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)4012 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4013 {
4014 /* This is only valid for single tasks */
4015 if (pid <= 0)
4016 return -EINVAL;
4017
4018 return do_tkill(0, pid, sig);
4019 }
4020
do_rt_sigqueueinfo(pid_t pid,int sig,kernel_siginfo_t * info)4021 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4022 {
4023 /* Not even root can pretend to send signals from the kernel.
4024 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4025 */
4026 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4027 (task_pid_vnr(current) != pid))
4028 return -EPERM;
4029
4030 /* POSIX.1b doesn't mention process groups. */
4031 return kill_proc_info(sig, info, pid);
4032 }
4033
4034 /**
4035 * sys_rt_sigqueueinfo - send signal information to a signal
4036 * @pid: the PID of the thread
4037 * @sig: signal to be sent
4038 * @uinfo: signal info to be sent
4039 */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4040 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4041 siginfo_t __user *, uinfo)
4042 {
4043 kernel_siginfo_t info;
4044 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4045 if (unlikely(ret))
4046 return ret;
4047 return do_rt_sigqueueinfo(pid, sig, &info);
4048 }
4049
4050 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4051 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4052 compat_pid_t, pid,
4053 int, sig,
4054 struct compat_siginfo __user *, uinfo)
4055 {
4056 kernel_siginfo_t info;
4057 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4058 if (unlikely(ret))
4059 return ret;
4060 return do_rt_sigqueueinfo(pid, sig, &info);
4061 }
4062 #endif
4063
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,kernel_siginfo_t * info)4064 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4065 {
4066 /* This is only valid for single tasks */
4067 if (pid <= 0 || tgid <= 0)
4068 return -EINVAL;
4069
4070 /* Not even root can pretend to send signals from the kernel.
4071 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4072 */
4073 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4074 (task_pid_vnr(current) != pid))
4075 return -EPERM;
4076
4077 return do_send_specific(tgid, pid, sig, info);
4078 }
4079
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4080 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4081 siginfo_t __user *, uinfo)
4082 {
4083 kernel_siginfo_t info;
4084 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4085 if (unlikely(ret))
4086 return ret;
4087 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4088 }
4089
4090 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4091 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4092 compat_pid_t, tgid,
4093 compat_pid_t, pid,
4094 int, sig,
4095 struct compat_siginfo __user *, uinfo)
4096 {
4097 kernel_siginfo_t info;
4098 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4099 if (unlikely(ret))
4100 return ret;
4101 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4102 }
4103 #endif
4104
4105 /*
4106 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4107 */
kernel_sigaction(int sig,__sighandler_t action)4108 void kernel_sigaction(int sig, __sighandler_t action)
4109 {
4110 spin_lock_irq(¤t->sighand->siglock);
4111 current->sighand->action[sig - 1].sa.sa_handler = action;
4112 if (action == SIG_IGN) {
4113 sigset_t mask;
4114
4115 sigemptyset(&mask);
4116 sigaddset(&mask, sig);
4117
4118 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4119 flush_sigqueue_mask(&mask, ¤t->pending);
4120 recalc_sigpending();
4121 }
4122 spin_unlock_irq(¤t->sighand->siglock);
4123 }
4124 EXPORT_SYMBOL(kernel_sigaction);
4125
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)4126 void __weak sigaction_compat_abi(struct k_sigaction *act,
4127 struct k_sigaction *oact)
4128 {
4129 }
4130
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)4131 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4132 {
4133 struct task_struct *p = current, *t;
4134 struct k_sigaction *k;
4135 sigset_t mask;
4136
4137 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4138 return -EINVAL;
4139
4140 k = &p->sighand->action[sig-1];
4141
4142 spin_lock_irq(&p->sighand->siglock);
4143 if (k->sa.sa_flags & SA_IMMUTABLE) {
4144 spin_unlock_irq(&p->sighand->siglock);
4145 return -EINVAL;
4146 }
4147 if (oact)
4148 *oact = *k;
4149
4150 /*
4151 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4152 * e.g. by having an architecture use the bit in their uapi.
4153 */
4154 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4155
4156 /*
4157 * Clear unknown flag bits in order to allow userspace to detect missing
4158 * support for flag bits and to allow the kernel to use non-uapi bits
4159 * internally.
4160 */
4161 if (act)
4162 act->sa.sa_flags &= UAPI_SA_FLAGS;
4163 if (oact)
4164 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4165
4166 sigaction_compat_abi(act, oact);
4167
4168 if (act) {
4169 sigdelsetmask(&act->sa.sa_mask,
4170 sigmask(SIGKILL) | sigmask(SIGSTOP));
4171 *k = *act;
4172 /*
4173 * POSIX 3.3.1.3:
4174 * "Setting a signal action to SIG_IGN for a signal that is
4175 * pending shall cause the pending signal to be discarded,
4176 * whether or not it is blocked."
4177 *
4178 * "Setting a signal action to SIG_DFL for a signal that is
4179 * pending and whose default action is to ignore the signal
4180 * (for example, SIGCHLD), shall cause the pending signal to
4181 * be discarded, whether or not it is blocked"
4182 */
4183 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4184 sigemptyset(&mask);
4185 sigaddset(&mask, sig);
4186 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4187 for_each_thread(p, t)
4188 flush_sigqueue_mask(&mask, &t->pending);
4189 }
4190 }
4191
4192 spin_unlock_irq(&p->sighand->siglock);
4193 return 0;
4194 }
4195
4196 #ifdef CONFIG_DYNAMIC_SIGFRAME
sigaltstack_lock(void)4197 static inline void sigaltstack_lock(void)
4198 __acquires(¤t->sighand->siglock)
4199 {
4200 spin_lock_irq(¤t->sighand->siglock);
4201 }
4202
sigaltstack_unlock(void)4203 static inline void sigaltstack_unlock(void)
4204 __releases(¤t->sighand->siglock)
4205 {
4206 spin_unlock_irq(¤t->sighand->siglock);
4207 }
4208 #else
sigaltstack_lock(void)4209 static inline void sigaltstack_lock(void) { }
sigaltstack_unlock(void)4210 static inline void sigaltstack_unlock(void) { }
4211 #endif
4212
4213 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)4214 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4215 size_t min_ss_size)
4216 {
4217 struct task_struct *t = current;
4218 int ret = 0;
4219
4220 if (oss) {
4221 memset(oss, 0, sizeof(stack_t));
4222 oss->ss_sp = (void __user *) t->sas_ss_sp;
4223 oss->ss_size = t->sas_ss_size;
4224 oss->ss_flags = sas_ss_flags(sp) |
4225 (current->sas_ss_flags & SS_FLAG_BITS);
4226 }
4227
4228 if (ss) {
4229 void __user *ss_sp = ss->ss_sp;
4230 size_t ss_size = ss->ss_size;
4231 unsigned ss_flags = ss->ss_flags;
4232 int ss_mode;
4233
4234 if (unlikely(on_sig_stack(sp)))
4235 return -EPERM;
4236
4237 ss_mode = ss_flags & ~SS_FLAG_BITS;
4238 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4239 ss_mode != 0))
4240 return -EINVAL;
4241
4242 /*
4243 * Return before taking any locks if no actual
4244 * sigaltstack changes were requested.
4245 */
4246 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4247 t->sas_ss_size == ss_size &&
4248 t->sas_ss_flags == ss_flags)
4249 return 0;
4250
4251 sigaltstack_lock();
4252 if (ss_mode == SS_DISABLE) {
4253 ss_size = 0;
4254 ss_sp = NULL;
4255 } else {
4256 if (unlikely(ss_size < min_ss_size))
4257 ret = -ENOMEM;
4258 if (!sigaltstack_size_valid(ss_size))
4259 ret = -ENOMEM;
4260 }
4261 if (!ret) {
4262 t->sas_ss_sp = (unsigned long) ss_sp;
4263 t->sas_ss_size = ss_size;
4264 t->sas_ss_flags = ss_flags;
4265 }
4266 sigaltstack_unlock();
4267 }
4268 return ret;
4269 }
4270
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)4271 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4272 {
4273 stack_t new, old;
4274 int err;
4275 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4276 return -EFAULT;
4277 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4278 current_user_stack_pointer(),
4279 MINSIGSTKSZ);
4280 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4281 err = -EFAULT;
4282 return err;
4283 }
4284
restore_altstack(const stack_t __user * uss)4285 int restore_altstack(const stack_t __user *uss)
4286 {
4287 stack_t new;
4288 if (copy_from_user(&new, uss, sizeof(stack_t)))
4289 return -EFAULT;
4290 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4291 MINSIGSTKSZ);
4292 /* squash all but EFAULT for now */
4293 return 0;
4294 }
4295
__save_altstack(stack_t __user * uss,unsigned long sp)4296 int __save_altstack(stack_t __user *uss, unsigned long sp)
4297 {
4298 struct task_struct *t = current;
4299 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4300 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4301 __put_user(t->sas_ss_size, &uss->ss_size);
4302 return err;
4303 }
4304
4305 #ifdef CONFIG_COMPAT
do_compat_sigaltstack(const compat_stack_t __user * uss_ptr,compat_stack_t __user * uoss_ptr)4306 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4307 compat_stack_t __user *uoss_ptr)
4308 {
4309 stack_t uss, uoss;
4310 int ret;
4311
4312 if (uss_ptr) {
4313 compat_stack_t uss32;
4314 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4315 return -EFAULT;
4316 uss.ss_sp = compat_ptr(uss32.ss_sp);
4317 uss.ss_flags = uss32.ss_flags;
4318 uss.ss_size = uss32.ss_size;
4319 }
4320 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4321 compat_user_stack_pointer(),
4322 COMPAT_MINSIGSTKSZ);
4323 if (ret >= 0 && uoss_ptr) {
4324 compat_stack_t old;
4325 memset(&old, 0, sizeof(old));
4326 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4327 old.ss_flags = uoss.ss_flags;
4328 old.ss_size = uoss.ss_size;
4329 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4330 ret = -EFAULT;
4331 }
4332 return ret;
4333 }
4334
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)4335 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4336 const compat_stack_t __user *, uss_ptr,
4337 compat_stack_t __user *, uoss_ptr)
4338 {
4339 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4340 }
4341
compat_restore_altstack(const compat_stack_t __user * uss)4342 int compat_restore_altstack(const compat_stack_t __user *uss)
4343 {
4344 int err = do_compat_sigaltstack(uss, NULL);
4345 /* squash all but -EFAULT for now */
4346 return err == -EFAULT ? err : 0;
4347 }
4348
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)4349 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4350 {
4351 int err;
4352 struct task_struct *t = current;
4353 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4354 &uss->ss_sp) |
4355 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4356 __put_user(t->sas_ss_size, &uss->ss_size);
4357 return err;
4358 }
4359 #endif
4360
4361 #ifdef __ARCH_WANT_SYS_SIGPENDING
4362
4363 /**
4364 * sys_sigpending - examine pending signals
4365 * @uset: where mask of pending signal is returned
4366 */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,uset)4367 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4368 {
4369 sigset_t set;
4370
4371 if (sizeof(old_sigset_t) > sizeof(*uset))
4372 return -EINVAL;
4373
4374 do_sigpending(&set);
4375
4376 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4377 return -EFAULT;
4378
4379 return 0;
4380 }
4381
4382 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)4383 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4384 {
4385 sigset_t set;
4386
4387 do_sigpending(&set);
4388
4389 return put_user(set.sig[0], set32);
4390 }
4391 #endif
4392
4393 #endif
4394
4395 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4396 /**
4397 * sys_sigprocmask - examine and change blocked signals
4398 * @how: whether to add, remove, or set signals
4399 * @nset: signals to add or remove (if non-null)
4400 * @oset: previous value of signal mask if non-null
4401 *
4402 * Some platforms have their own version with special arguments;
4403 * others support only sys_rt_sigprocmask.
4404 */
4405
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)4406 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4407 old_sigset_t __user *, oset)
4408 {
4409 old_sigset_t old_set, new_set;
4410 sigset_t new_blocked;
4411
4412 old_set = current->blocked.sig[0];
4413
4414 if (nset) {
4415 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4416 return -EFAULT;
4417
4418 new_blocked = current->blocked;
4419
4420 switch (how) {
4421 case SIG_BLOCK:
4422 sigaddsetmask(&new_blocked, new_set);
4423 break;
4424 case SIG_UNBLOCK:
4425 sigdelsetmask(&new_blocked, new_set);
4426 break;
4427 case SIG_SETMASK:
4428 new_blocked.sig[0] = new_set;
4429 break;
4430 default:
4431 return -EINVAL;
4432 }
4433
4434 set_current_blocked(&new_blocked);
4435 }
4436
4437 if (oset) {
4438 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4439 return -EFAULT;
4440 }
4441
4442 return 0;
4443 }
4444 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4445
4446 #ifndef CONFIG_ODD_RT_SIGACTION
4447 /**
4448 * sys_rt_sigaction - alter an action taken by a process
4449 * @sig: signal to be sent
4450 * @act: new sigaction
4451 * @oact: used to save the previous sigaction
4452 * @sigsetsize: size of sigset_t type
4453 */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)4454 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4455 const struct sigaction __user *, act,
4456 struct sigaction __user *, oact,
4457 size_t, sigsetsize)
4458 {
4459 struct k_sigaction new_sa, old_sa;
4460 int ret;
4461
4462 /* XXX: Don't preclude handling different sized sigset_t's. */
4463 if (sigsetsize != sizeof(sigset_t))
4464 return -EINVAL;
4465
4466 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4467 return -EFAULT;
4468
4469 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4470 if (ret)
4471 return ret;
4472
4473 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4474 return -EFAULT;
4475
4476 return 0;
4477 }
4478 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)4479 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4480 const struct compat_sigaction __user *, act,
4481 struct compat_sigaction __user *, oact,
4482 compat_size_t, sigsetsize)
4483 {
4484 struct k_sigaction new_ka, old_ka;
4485 #ifdef __ARCH_HAS_SA_RESTORER
4486 compat_uptr_t restorer;
4487 #endif
4488 int ret;
4489
4490 /* XXX: Don't preclude handling different sized sigset_t's. */
4491 if (sigsetsize != sizeof(compat_sigset_t))
4492 return -EINVAL;
4493
4494 if (act) {
4495 compat_uptr_t handler;
4496 ret = get_user(handler, &act->sa_handler);
4497 new_ka.sa.sa_handler = compat_ptr(handler);
4498 #ifdef __ARCH_HAS_SA_RESTORER
4499 ret |= get_user(restorer, &act->sa_restorer);
4500 new_ka.sa.sa_restorer = compat_ptr(restorer);
4501 #endif
4502 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4503 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4504 if (ret)
4505 return -EFAULT;
4506 }
4507
4508 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4509 if (!ret && oact) {
4510 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4511 &oact->sa_handler);
4512 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4513 sizeof(oact->sa_mask));
4514 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4515 #ifdef __ARCH_HAS_SA_RESTORER
4516 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4517 &oact->sa_restorer);
4518 #endif
4519 }
4520 return ret;
4521 }
4522 #endif
4523 #endif /* !CONFIG_ODD_RT_SIGACTION */
4524
4525 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)4526 SYSCALL_DEFINE3(sigaction, int, sig,
4527 const struct old_sigaction __user *, act,
4528 struct old_sigaction __user *, oact)
4529 {
4530 struct k_sigaction new_ka, old_ka;
4531 int ret;
4532
4533 if (act) {
4534 old_sigset_t mask;
4535 if (!access_ok(act, sizeof(*act)) ||
4536 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4537 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4538 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4539 __get_user(mask, &act->sa_mask))
4540 return -EFAULT;
4541 #ifdef __ARCH_HAS_KA_RESTORER
4542 new_ka.ka_restorer = NULL;
4543 #endif
4544 siginitset(&new_ka.sa.sa_mask, mask);
4545 }
4546
4547 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4548
4549 if (!ret && oact) {
4550 if (!access_ok(oact, sizeof(*oact)) ||
4551 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4552 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4553 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4554 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4555 return -EFAULT;
4556 }
4557
4558 return ret;
4559 }
4560 #endif
4561 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)4562 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4563 const struct compat_old_sigaction __user *, act,
4564 struct compat_old_sigaction __user *, oact)
4565 {
4566 struct k_sigaction new_ka, old_ka;
4567 int ret;
4568 compat_old_sigset_t mask;
4569 compat_uptr_t handler, restorer;
4570
4571 if (act) {
4572 if (!access_ok(act, sizeof(*act)) ||
4573 __get_user(handler, &act->sa_handler) ||
4574 __get_user(restorer, &act->sa_restorer) ||
4575 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4576 __get_user(mask, &act->sa_mask))
4577 return -EFAULT;
4578
4579 #ifdef __ARCH_HAS_KA_RESTORER
4580 new_ka.ka_restorer = NULL;
4581 #endif
4582 new_ka.sa.sa_handler = compat_ptr(handler);
4583 new_ka.sa.sa_restorer = compat_ptr(restorer);
4584 siginitset(&new_ka.sa.sa_mask, mask);
4585 }
4586
4587 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4588
4589 if (!ret && oact) {
4590 if (!access_ok(oact, sizeof(*oact)) ||
4591 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4592 &oact->sa_handler) ||
4593 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4594 &oact->sa_restorer) ||
4595 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4596 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4597 return -EFAULT;
4598 }
4599 return ret;
4600 }
4601 #endif
4602
4603 #ifdef CONFIG_SGETMASK_SYSCALL
4604
4605 /*
4606 * For backwards compatibility. Functionality superseded by sigprocmask.
4607 */
SYSCALL_DEFINE0(sgetmask)4608 SYSCALL_DEFINE0(sgetmask)
4609 {
4610 /* SMP safe */
4611 return current->blocked.sig[0];
4612 }
4613
SYSCALL_DEFINE1(ssetmask,int,newmask)4614 SYSCALL_DEFINE1(ssetmask, int, newmask)
4615 {
4616 int old = current->blocked.sig[0];
4617 sigset_t newset;
4618
4619 siginitset(&newset, newmask);
4620 set_current_blocked(&newset);
4621
4622 return old;
4623 }
4624 #endif /* CONFIG_SGETMASK_SYSCALL */
4625
4626 #ifdef __ARCH_WANT_SYS_SIGNAL
4627 /*
4628 * For backwards compatibility. Functionality superseded by sigaction.
4629 */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)4630 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4631 {
4632 struct k_sigaction new_sa, old_sa;
4633 int ret;
4634
4635 new_sa.sa.sa_handler = handler;
4636 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4637 sigemptyset(&new_sa.sa.sa_mask);
4638
4639 ret = do_sigaction(sig, &new_sa, &old_sa);
4640
4641 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4642 }
4643 #endif /* __ARCH_WANT_SYS_SIGNAL */
4644
4645 #ifdef __ARCH_WANT_SYS_PAUSE
4646
SYSCALL_DEFINE0(pause)4647 SYSCALL_DEFINE0(pause)
4648 {
4649 while (!signal_pending(current)) {
4650 __set_current_state(TASK_INTERRUPTIBLE);
4651 schedule();
4652 }
4653 return -ERESTARTNOHAND;
4654 }
4655
4656 #endif
4657
sigsuspend(sigset_t * set)4658 static int sigsuspend(sigset_t *set)
4659 {
4660 current->saved_sigmask = current->blocked;
4661 set_current_blocked(set);
4662
4663 while (!signal_pending(current)) {
4664 __set_current_state(TASK_INTERRUPTIBLE);
4665 schedule();
4666 }
4667 set_restore_sigmask();
4668 return -ERESTARTNOHAND;
4669 }
4670
4671 /**
4672 * sys_rt_sigsuspend - replace the signal mask for a value with the
4673 * @unewset value until a signal is received
4674 * @unewset: new signal mask value
4675 * @sigsetsize: size of sigset_t type
4676 */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)4677 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4678 {
4679 sigset_t newset;
4680
4681 /* XXX: Don't preclude handling different sized sigset_t's. */
4682 if (sigsetsize != sizeof(sigset_t))
4683 return -EINVAL;
4684
4685 if (copy_from_user(&newset, unewset, sizeof(newset)))
4686 return -EFAULT;
4687 return sigsuspend(&newset);
4688 }
4689
4690 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)4691 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4692 {
4693 sigset_t newset;
4694
4695 /* XXX: Don't preclude handling different sized sigset_t's. */
4696 if (sigsetsize != sizeof(sigset_t))
4697 return -EINVAL;
4698
4699 if (get_compat_sigset(&newset, unewset))
4700 return -EFAULT;
4701 return sigsuspend(&newset);
4702 }
4703 #endif
4704
4705 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)4706 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4707 {
4708 sigset_t blocked;
4709 siginitset(&blocked, mask);
4710 return sigsuspend(&blocked);
4711 }
4712 #endif
4713 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)4714 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4715 {
4716 sigset_t blocked;
4717 siginitset(&blocked, mask);
4718 return sigsuspend(&blocked);
4719 }
4720 #endif
4721
arch_vma_name(struct vm_area_struct * vma)4722 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4723 {
4724 return NULL;
4725 }
4726
siginfo_buildtime_checks(void)4727 static inline void siginfo_buildtime_checks(void)
4728 {
4729 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4730
4731 /* Verify the offsets in the two siginfos match */
4732 #define CHECK_OFFSET(field) \
4733 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4734
4735 /* kill */
4736 CHECK_OFFSET(si_pid);
4737 CHECK_OFFSET(si_uid);
4738
4739 /* timer */
4740 CHECK_OFFSET(si_tid);
4741 CHECK_OFFSET(si_overrun);
4742 CHECK_OFFSET(si_value);
4743
4744 /* rt */
4745 CHECK_OFFSET(si_pid);
4746 CHECK_OFFSET(si_uid);
4747 CHECK_OFFSET(si_value);
4748
4749 /* sigchld */
4750 CHECK_OFFSET(si_pid);
4751 CHECK_OFFSET(si_uid);
4752 CHECK_OFFSET(si_status);
4753 CHECK_OFFSET(si_utime);
4754 CHECK_OFFSET(si_stime);
4755
4756 /* sigfault */
4757 CHECK_OFFSET(si_addr);
4758 CHECK_OFFSET(si_trapno);
4759 CHECK_OFFSET(si_addr_lsb);
4760 CHECK_OFFSET(si_lower);
4761 CHECK_OFFSET(si_upper);
4762 CHECK_OFFSET(si_pkey);
4763 CHECK_OFFSET(si_perf_data);
4764 CHECK_OFFSET(si_perf_type);
4765 CHECK_OFFSET(si_perf_flags);
4766
4767 /* sigpoll */
4768 CHECK_OFFSET(si_band);
4769 CHECK_OFFSET(si_fd);
4770
4771 /* sigsys */
4772 CHECK_OFFSET(si_call_addr);
4773 CHECK_OFFSET(si_syscall);
4774 CHECK_OFFSET(si_arch);
4775 #undef CHECK_OFFSET
4776
4777 /* usb asyncio */
4778 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4779 offsetof(struct siginfo, si_addr));
4780 if (sizeof(int) == sizeof(void __user *)) {
4781 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4782 sizeof(void __user *));
4783 } else {
4784 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4785 sizeof_field(struct siginfo, si_uid)) !=
4786 sizeof(void __user *));
4787 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4788 offsetof(struct siginfo, si_uid));
4789 }
4790 #ifdef CONFIG_COMPAT
4791 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4792 offsetof(struct compat_siginfo, si_addr));
4793 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4794 sizeof(compat_uptr_t));
4795 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4796 sizeof_field(struct siginfo, si_pid));
4797 #endif
4798 }
4799
4800 #if defined(CONFIG_SYSCTL)
4801 static struct ctl_table signal_debug_table[] = {
4802 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4803 {
4804 .procname = "exception-trace",
4805 .data = &show_unhandled_signals,
4806 .maxlen = sizeof(int),
4807 .mode = 0644,
4808 .proc_handler = proc_dointvec
4809 },
4810 #endif
4811 { }
4812 };
4813
init_signal_sysctls(void)4814 static int __init init_signal_sysctls(void)
4815 {
4816 register_sysctl_init("debug", signal_debug_table);
4817 return 0;
4818 }
4819 early_initcall(init_signal_sysctls);
4820 #endif /* CONFIG_SYSCTL */
4821
signals_init(void)4822 void __init signals_init(void)
4823 {
4824 siginfo_buildtime_checks();
4825
4826 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4827 }
4828
4829 #ifdef CONFIG_KGDB_KDB
4830 #include <linux/kdb.h>
4831 /*
4832 * kdb_send_sig - Allows kdb to send signals without exposing
4833 * signal internals. This function checks if the required locks are
4834 * available before calling the main signal code, to avoid kdb
4835 * deadlocks.
4836 */
kdb_send_sig(struct task_struct * t,int sig)4837 void kdb_send_sig(struct task_struct *t, int sig)
4838 {
4839 static struct task_struct *kdb_prev_t;
4840 int new_t, ret;
4841 if (!spin_trylock(&t->sighand->siglock)) {
4842 kdb_printf("Can't do kill command now.\n"
4843 "The sigmask lock is held somewhere else in "
4844 "kernel, try again later\n");
4845 return;
4846 }
4847 new_t = kdb_prev_t != t;
4848 kdb_prev_t = t;
4849 if (!task_is_running(t) && new_t) {
4850 spin_unlock(&t->sighand->siglock);
4851 kdb_printf("Process is not RUNNING, sending a signal from "
4852 "kdb risks deadlock\n"
4853 "on the run queue locks. "
4854 "The signal has _not_ been sent.\n"
4855 "Reissue the kill command if you want to risk "
4856 "the deadlock.\n");
4857 return;
4858 }
4859 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4860 spin_unlock(&t->sighand->siglock);
4861 if (ret)
4862 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4863 sig, t->pid);
4864 else
4865 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4866 }
4867 #endif /* CONFIG_KGDB_KDB */
4868