xref: /openbmc/linux/kernel/seccomp.c (revision 8684014d)
1 /*
2  * linux/kernel/seccomp.c
3  *
4  * Copyright 2004-2005  Andrea Arcangeli <andrea@cpushare.com>
5  *
6  * Copyright (C) 2012 Google, Inc.
7  * Will Drewry <wad@chromium.org>
8  *
9  * This defines a simple but solid secure-computing facility.
10  *
11  * Mode 1 uses a fixed list of allowed system calls.
12  * Mode 2 allows user-defined system call filters in the form
13  *        of Berkeley Packet Filters/Linux Socket Filters.
14  */
15 
16 #include <linux/atomic.h>
17 #include <linux/audit.h>
18 #include <linux/compat.h>
19 #include <linux/sched.h>
20 #include <linux/seccomp.h>
21 #include <linux/slab.h>
22 #include <linux/syscalls.h>
23 
24 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
25 #include <asm/syscall.h>
26 #endif
27 
28 #ifdef CONFIG_SECCOMP_FILTER
29 #include <linux/filter.h>
30 #include <linux/pid.h>
31 #include <linux/ptrace.h>
32 #include <linux/security.h>
33 #include <linux/tracehook.h>
34 #include <linux/uaccess.h>
35 
36 /**
37  * struct seccomp_filter - container for seccomp BPF programs
38  *
39  * @usage: reference count to manage the object lifetime.
40  *         get/put helpers should be used when accessing an instance
41  *         outside of a lifetime-guarded section.  In general, this
42  *         is only needed for handling filters shared across tasks.
43  * @prev: points to a previously installed, or inherited, filter
44  * @len: the number of instructions in the program
45  * @insnsi: the BPF program instructions to evaluate
46  *
47  * seccomp_filter objects are organized in a tree linked via the @prev
48  * pointer.  For any task, it appears to be a singly-linked list starting
49  * with current->seccomp.filter, the most recently attached or inherited filter.
50  * However, multiple filters may share a @prev node, by way of fork(), which
51  * results in a unidirectional tree existing in memory.  This is similar to
52  * how namespaces work.
53  *
54  * seccomp_filter objects should never be modified after being attached
55  * to a task_struct (other than @usage).
56  */
57 struct seccomp_filter {
58 	atomic_t usage;
59 	struct seccomp_filter *prev;
60 	struct bpf_prog *prog;
61 };
62 
63 /* Limit any path through the tree to 256KB worth of instructions. */
64 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
65 
66 /*
67  * Endianness is explicitly ignored and left for BPF program authors to manage
68  * as per the specific architecture.
69  */
70 static void populate_seccomp_data(struct seccomp_data *sd)
71 {
72 	struct task_struct *task = current;
73 	struct pt_regs *regs = task_pt_regs(task);
74 	unsigned long args[6];
75 
76 	sd->nr = syscall_get_nr(task, regs);
77 	sd->arch = syscall_get_arch();
78 	syscall_get_arguments(task, regs, 0, 6, args);
79 	sd->args[0] = args[0];
80 	sd->args[1] = args[1];
81 	sd->args[2] = args[2];
82 	sd->args[3] = args[3];
83 	sd->args[4] = args[4];
84 	sd->args[5] = args[5];
85 	sd->instruction_pointer = KSTK_EIP(task);
86 }
87 
88 /**
89  *	seccomp_check_filter - verify seccomp filter code
90  *	@filter: filter to verify
91  *	@flen: length of filter
92  *
93  * Takes a previously checked filter (by bpf_check_classic) and
94  * redirects all filter code that loads struct sk_buff data
95  * and related data through seccomp_bpf_load.  It also
96  * enforces length and alignment checking of those loads.
97  *
98  * Returns 0 if the rule set is legal or -EINVAL if not.
99  */
100 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
101 {
102 	int pc;
103 	for (pc = 0; pc < flen; pc++) {
104 		struct sock_filter *ftest = &filter[pc];
105 		u16 code = ftest->code;
106 		u32 k = ftest->k;
107 
108 		switch (code) {
109 		case BPF_LD | BPF_W | BPF_ABS:
110 			ftest->code = BPF_LDX | BPF_W | BPF_ABS;
111 			/* 32-bit aligned and not out of bounds. */
112 			if (k >= sizeof(struct seccomp_data) || k & 3)
113 				return -EINVAL;
114 			continue;
115 		case BPF_LD | BPF_W | BPF_LEN:
116 			ftest->code = BPF_LD | BPF_IMM;
117 			ftest->k = sizeof(struct seccomp_data);
118 			continue;
119 		case BPF_LDX | BPF_W | BPF_LEN:
120 			ftest->code = BPF_LDX | BPF_IMM;
121 			ftest->k = sizeof(struct seccomp_data);
122 			continue;
123 		/* Explicitly include allowed calls. */
124 		case BPF_RET | BPF_K:
125 		case BPF_RET | BPF_A:
126 		case BPF_ALU | BPF_ADD | BPF_K:
127 		case BPF_ALU | BPF_ADD | BPF_X:
128 		case BPF_ALU | BPF_SUB | BPF_K:
129 		case BPF_ALU | BPF_SUB | BPF_X:
130 		case BPF_ALU | BPF_MUL | BPF_K:
131 		case BPF_ALU | BPF_MUL | BPF_X:
132 		case BPF_ALU | BPF_DIV | BPF_K:
133 		case BPF_ALU | BPF_DIV | BPF_X:
134 		case BPF_ALU | BPF_AND | BPF_K:
135 		case BPF_ALU | BPF_AND | BPF_X:
136 		case BPF_ALU | BPF_OR | BPF_K:
137 		case BPF_ALU | BPF_OR | BPF_X:
138 		case BPF_ALU | BPF_XOR | BPF_K:
139 		case BPF_ALU | BPF_XOR | BPF_X:
140 		case BPF_ALU | BPF_LSH | BPF_K:
141 		case BPF_ALU | BPF_LSH | BPF_X:
142 		case BPF_ALU | BPF_RSH | BPF_K:
143 		case BPF_ALU | BPF_RSH | BPF_X:
144 		case BPF_ALU | BPF_NEG:
145 		case BPF_LD | BPF_IMM:
146 		case BPF_LDX | BPF_IMM:
147 		case BPF_MISC | BPF_TAX:
148 		case BPF_MISC | BPF_TXA:
149 		case BPF_LD | BPF_MEM:
150 		case BPF_LDX | BPF_MEM:
151 		case BPF_ST:
152 		case BPF_STX:
153 		case BPF_JMP | BPF_JA:
154 		case BPF_JMP | BPF_JEQ | BPF_K:
155 		case BPF_JMP | BPF_JEQ | BPF_X:
156 		case BPF_JMP | BPF_JGE | BPF_K:
157 		case BPF_JMP | BPF_JGE | BPF_X:
158 		case BPF_JMP | BPF_JGT | BPF_K:
159 		case BPF_JMP | BPF_JGT | BPF_X:
160 		case BPF_JMP | BPF_JSET | BPF_K:
161 		case BPF_JMP | BPF_JSET | BPF_X:
162 			continue;
163 		default:
164 			return -EINVAL;
165 		}
166 	}
167 	return 0;
168 }
169 
170 /**
171  * seccomp_run_filters - evaluates all seccomp filters against @syscall
172  * @syscall: number of the current system call
173  *
174  * Returns valid seccomp BPF response codes.
175  */
176 static u32 seccomp_run_filters(struct seccomp_data *sd)
177 {
178 	struct seccomp_filter *f = ACCESS_ONCE(current->seccomp.filter);
179 	struct seccomp_data sd_local;
180 	u32 ret = SECCOMP_RET_ALLOW;
181 
182 	/* Ensure unexpected behavior doesn't result in failing open. */
183 	if (unlikely(WARN_ON(f == NULL)))
184 		return SECCOMP_RET_KILL;
185 
186 	/* Make sure cross-thread synced filter points somewhere sane. */
187 	smp_read_barrier_depends();
188 
189 	if (!sd) {
190 		populate_seccomp_data(&sd_local);
191 		sd = &sd_local;
192 	}
193 
194 	/*
195 	 * All filters in the list are evaluated and the lowest BPF return
196 	 * value always takes priority (ignoring the DATA).
197 	 */
198 	for (; f; f = f->prev) {
199 		u32 cur_ret = BPF_PROG_RUN(f->prog, (void *)sd);
200 
201 		if ((cur_ret & SECCOMP_RET_ACTION) < (ret & SECCOMP_RET_ACTION))
202 			ret = cur_ret;
203 	}
204 	return ret;
205 }
206 #endif /* CONFIG_SECCOMP_FILTER */
207 
208 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
209 {
210 	assert_spin_locked(&current->sighand->siglock);
211 
212 	if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
213 		return false;
214 
215 	return true;
216 }
217 
218 static inline void seccomp_assign_mode(struct task_struct *task,
219 				       unsigned long seccomp_mode)
220 {
221 	assert_spin_locked(&task->sighand->siglock);
222 
223 	task->seccomp.mode = seccomp_mode;
224 	/*
225 	 * Make sure TIF_SECCOMP cannot be set before the mode (and
226 	 * filter) is set.
227 	 */
228 	smp_mb__before_atomic();
229 	set_tsk_thread_flag(task, TIF_SECCOMP);
230 }
231 
232 #ifdef CONFIG_SECCOMP_FILTER
233 /* Returns 1 if the parent is an ancestor of the child. */
234 static int is_ancestor(struct seccomp_filter *parent,
235 		       struct seccomp_filter *child)
236 {
237 	/* NULL is the root ancestor. */
238 	if (parent == NULL)
239 		return 1;
240 	for (; child; child = child->prev)
241 		if (child == parent)
242 			return 1;
243 	return 0;
244 }
245 
246 /**
247  * seccomp_can_sync_threads: checks if all threads can be synchronized
248  *
249  * Expects sighand and cred_guard_mutex locks to be held.
250  *
251  * Returns 0 on success, -ve on error, or the pid of a thread which was
252  * either not in the correct seccomp mode or it did not have an ancestral
253  * seccomp filter.
254  */
255 static inline pid_t seccomp_can_sync_threads(void)
256 {
257 	struct task_struct *thread, *caller;
258 
259 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
260 	assert_spin_locked(&current->sighand->siglock);
261 
262 	/* Validate all threads being eligible for synchronization. */
263 	caller = current;
264 	for_each_thread(caller, thread) {
265 		pid_t failed;
266 
267 		/* Skip current, since it is initiating the sync. */
268 		if (thread == caller)
269 			continue;
270 
271 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
272 		    (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
273 		     is_ancestor(thread->seccomp.filter,
274 				 caller->seccomp.filter)))
275 			continue;
276 
277 		/* Return the first thread that cannot be synchronized. */
278 		failed = task_pid_vnr(thread);
279 		/* If the pid cannot be resolved, then return -ESRCH */
280 		if (unlikely(WARN_ON(failed == 0)))
281 			failed = -ESRCH;
282 		return failed;
283 	}
284 
285 	return 0;
286 }
287 
288 /**
289  * seccomp_sync_threads: sets all threads to use current's filter
290  *
291  * Expects sighand and cred_guard_mutex locks to be held, and for
292  * seccomp_can_sync_threads() to have returned success already
293  * without dropping the locks.
294  *
295  */
296 static inline void seccomp_sync_threads(void)
297 {
298 	struct task_struct *thread, *caller;
299 
300 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
301 	assert_spin_locked(&current->sighand->siglock);
302 
303 	/* Synchronize all threads. */
304 	caller = current;
305 	for_each_thread(caller, thread) {
306 		/* Skip current, since it needs no changes. */
307 		if (thread == caller)
308 			continue;
309 
310 		/* Get a task reference for the new leaf node. */
311 		get_seccomp_filter(caller);
312 		/*
313 		 * Drop the task reference to the shared ancestor since
314 		 * current's path will hold a reference.  (This also
315 		 * allows a put before the assignment.)
316 		 */
317 		put_seccomp_filter(thread);
318 		smp_store_release(&thread->seccomp.filter,
319 				  caller->seccomp.filter);
320 		/*
321 		 * Opt the other thread into seccomp if needed.
322 		 * As threads are considered to be trust-realm
323 		 * equivalent (see ptrace_may_access), it is safe to
324 		 * allow one thread to transition the other.
325 		 */
326 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) {
327 			/*
328 			 * Don't let an unprivileged task work around
329 			 * the no_new_privs restriction by creating
330 			 * a thread that sets it up, enters seccomp,
331 			 * then dies.
332 			 */
333 			if (task_no_new_privs(caller))
334 				task_set_no_new_privs(thread);
335 
336 			seccomp_assign_mode(thread, SECCOMP_MODE_FILTER);
337 		}
338 	}
339 }
340 
341 /**
342  * seccomp_prepare_filter: Prepares a seccomp filter for use.
343  * @fprog: BPF program to install
344  *
345  * Returns filter on success or an ERR_PTR on failure.
346  */
347 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
348 {
349 	struct seccomp_filter *filter;
350 	unsigned long fp_size;
351 	struct sock_filter *fp;
352 	int new_len;
353 	long ret;
354 
355 	if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
356 		return ERR_PTR(-EINVAL);
357 	BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
358 	fp_size = fprog->len * sizeof(struct sock_filter);
359 
360 	/*
361 	 * Installing a seccomp filter requires that the task has
362 	 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
363 	 * This avoids scenarios where unprivileged tasks can affect the
364 	 * behavior of privileged children.
365 	 */
366 	if (!task_no_new_privs(current) &&
367 	    security_capable_noaudit(current_cred(), current_user_ns(),
368 				     CAP_SYS_ADMIN) != 0)
369 		return ERR_PTR(-EACCES);
370 
371 	fp = kzalloc(fp_size, GFP_KERNEL|__GFP_NOWARN);
372 	if (!fp)
373 		return ERR_PTR(-ENOMEM);
374 
375 	/* Copy the instructions from fprog. */
376 	ret = -EFAULT;
377 	if (copy_from_user(fp, fprog->filter, fp_size))
378 		goto free_prog;
379 
380 	/* Check and rewrite the fprog via the skb checker */
381 	ret = bpf_check_classic(fp, fprog->len);
382 	if (ret)
383 		goto free_prog;
384 
385 	/* Check and rewrite the fprog for seccomp use */
386 	ret = seccomp_check_filter(fp, fprog->len);
387 	if (ret)
388 		goto free_prog;
389 
390 	/* Convert 'sock_filter' insns to 'bpf_insn' insns */
391 	ret = bpf_convert_filter(fp, fprog->len, NULL, &new_len);
392 	if (ret)
393 		goto free_prog;
394 
395 	/* Allocate a new seccomp_filter */
396 	ret = -ENOMEM;
397 	filter = kzalloc(sizeof(struct seccomp_filter),
398 			 GFP_KERNEL|__GFP_NOWARN);
399 	if (!filter)
400 		goto free_prog;
401 
402 	filter->prog = bpf_prog_alloc(bpf_prog_size(new_len), __GFP_NOWARN);
403 	if (!filter->prog)
404 		goto free_filter;
405 
406 	ret = bpf_convert_filter(fp, fprog->len, filter->prog->insnsi, &new_len);
407 	if (ret)
408 		goto free_filter_prog;
409 
410 	kfree(fp);
411 	atomic_set(&filter->usage, 1);
412 	filter->prog->len = new_len;
413 
414 	bpf_prog_select_runtime(filter->prog);
415 
416 	return filter;
417 
418 free_filter_prog:
419 	__bpf_prog_free(filter->prog);
420 free_filter:
421 	kfree(filter);
422 free_prog:
423 	kfree(fp);
424 	return ERR_PTR(ret);
425 }
426 
427 /**
428  * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
429  * @user_filter: pointer to the user data containing a sock_fprog.
430  *
431  * Returns 0 on success and non-zero otherwise.
432  */
433 static struct seccomp_filter *
434 seccomp_prepare_user_filter(const char __user *user_filter)
435 {
436 	struct sock_fprog fprog;
437 	struct seccomp_filter *filter = ERR_PTR(-EFAULT);
438 
439 #ifdef CONFIG_COMPAT
440 	if (is_compat_task()) {
441 		struct compat_sock_fprog fprog32;
442 		if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
443 			goto out;
444 		fprog.len = fprog32.len;
445 		fprog.filter = compat_ptr(fprog32.filter);
446 	} else /* falls through to the if below. */
447 #endif
448 	if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
449 		goto out;
450 	filter = seccomp_prepare_filter(&fprog);
451 out:
452 	return filter;
453 }
454 
455 /**
456  * seccomp_attach_filter: validate and attach filter
457  * @flags:  flags to change filter behavior
458  * @filter: seccomp filter to add to the current process
459  *
460  * Caller must be holding current->sighand->siglock lock.
461  *
462  * Returns 0 on success, -ve on error.
463  */
464 static long seccomp_attach_filter(unsigned int flags,
465 				  struct seccomp_filter *filter)
466 {
467 	unsigned long total_insns;
468 	struct seccomp_filter *walker;
469 
470 	assert_spin_locked(&current->sighand->siglock);
471 
472 	/* Validate resulting filter length. */
473 	total_insns = filter->prog->len;
474 	for (walker = current->seccomp.filter; walker; walker = walker->prev)
475 		total_insns += walker->prog->len + 4;  /* 4 instr penalty */
476 	if (total_insns > MAX_INSNS_PER_PATH)
477 		return -ENOMEM;
478 
479 	/* If thread sync has been requested, check that it is possible. */
480 	if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
481 		int ret;
482 
483 		ret = seccomp_can_sync_threads();
484 		if (ret)
485 			return ret;
486 	}
487 
488 	/*
489 	 * If there is an existing filter, make it the prev and don't drop its
490 	 * task reference.
491 	 */
492 	filter->prev = current->seccomp.filter;
493 	current->seccomp.filter = filter;
494 
495 	/* Now that the new filter is in place, synchronize to all threads. */
496 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
497 		seccomp_sync_threads();
498 
499 	return 0;
500 }
501 
502 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
503 void get_seccomp_filter(struct task_struct *tsk)
504 {
505 	struct seccomp_filter *orig = tsk->seccomp.filter;
506 	if (!orig)
507 		return;
508 	/* Reference count is bounded by the number of total processes. */
509 	atomic_inc(&orig->usage);
510 }
511 
512 static inline void seccomp_filter_free(struct seccomp_filter *filter)
513 {
514 	if (filter) {
515 		bpf_prog_free(filter->prog);
516 		kfree(filter);
517 	}
518 }
519 
520 /* put_seccomp_filter - decrements the ref count of tsk->seccomp.filter */
521 void put_seccomp_filter(struct task_struct *tsk)
522 {
523 	struct seccomp_filter *orig = tsk->seccomp.filter;
524 	/* Clean up single-reference branches iteratively. */
525 	while (orig && atomic_dec_and_test(&orig->usage)) {
526 		struct seccomp_filter *freeme = orig;
527 		orig = orig->prev;
528 		seccomp_filter_free(freeme);
529 	}
530 }
531 
532 /**
533  * seccomp_send_sigsys - signals the task to allow in-process syscall emulation
534  * @syscall: syscall number to send to userland
535  * @reason: filter-supplied reason code to send to userland (via si_errno)
536  *
537  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
538  */
539 static void seccomp_send_sigsys(int syscall, int reason)
540 {
541 	struct siginfo info;
542 	memset(&info, 0, sizeof(info));
543 	info.si_signo = SIGSYS;
544 	info.si_code = SYS_SECCOMP;
545 	info.si_call_addr = (void __user *)KSTK_EIP(current);
546 	info.si_errno = reason;
547 	info.si_arch = syscall_get_arch();
548 	info.si_syscall = syscall;
549 	force_sig_info(SIGSYS, &info, current);
550 }
551 #endif	/* CONFIG_SECCOMP_FILTER */
552 
553 /*
554  * Secure computing mode 1 allows only read/write/exit/sigreturn.
555  * To be fully secure this must be combined with rlimit
556  * to limit the stack allocations too.
557  */
558 static int mode1_syscalls[] = {
559 	__NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
560 	0, /* null terminated */
561 };
562 
563 #ifdef CONFIG_COMPAT
564 static int mode1_syscalls_32[] = {
565 	__NR_seccomp_read_32, __NR_seccomp_write_32, __NR_seccomp_exit_32, __NR_seccomp_sigreturn_32,
566 	0, /* null terminated */
567 };
568 #endif
569 
570 static void __secure_computing_strict(int this_syscall)
571 {
572 	int *syscall_whitelist = mode1_syscalls;
573 #ifdef CONFIG_COMPAT
574 	if (is_compat_task())
575 		syscall_whitelist = mode1_syscalls_32;
576 #endif
577 	do {
578 		if (*syscall_whitelist == this_syscall)
579 			return;
580 	} while (*++syscall_whitelist);
581 
582 #ifdef SECCOMP_DEBUG
583 	dump_stack();
584 #endif
585 	audit_seccomp(this_syscall, SIGKILL, SECCOMP_RET_KILL);
586 	do_exit(SIGKILL);
587 }
588 
589 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
590 void secure_computing_strict(int this_syscall)
591 {
592 	int mode = current->seccomp.mode;
593 
594 	if (mode == 0)
595 		return;
596 	else if (mode == SECCOMP_MODE_STRICT)
597 		__secure_computing_strict(this_syscall);
598 	else
599 		BUG();
600 }
601 #else
602 int __secure_computing(void)
603 {
604 	u32 phase1_result = seccomp_phase1(NULL);
605 
606 	if (likely(phase1_result == SECCOMP_PHASE1_OK))
607 		return 0;
608 	else if (likely(phase1_result == SECCOMP_PHASE1_SKIP))
609 		return -1;
610 	else
611 		return seccomp_phase2(phase1_result);
612 }
613 
614 #ifdef CONFIG_SECCOMP_FILTER
615 static u32 __seccomp_phase1_filter(int this_syscall, struct seccomp_data *sd)
616 {
617 	u32 filter_ret, action;
618 	int data;
619 
620 	/*
621 	 * Make sure that any changes to mode from another thread have
622 	 * been seen after TIF_SECCOMP was seen.
623 	 */
624 	rmb();
625 
626 	filter_ret = seccomp_run_filters(sd);
627 	data = filter_ret & SECCOMP_RET_DATA;
628 	action = filter_ret & SECCOMP_RET_ACTION;
629 
630 	switch (action) {
631 	case SECCOMP_RET_ERRNO:
632 		/* Set the low-order 16-bits as a errno. */
633 		syscall_set_return_value(current, task_pt_regs(current),
634 					 -data, 0);
635 		goto skip;
636 
637 	case SECCOMP_RET_TRAP:
638 		/* Show the handler the original registers. */
639 		syscall_rollback(current, task_pt_regs(current));
640 		/* Let the filter pass back 16 bits of data. */
641 		seccomp_send_sigsys(this_syscall, data);
642 		goto skip;
643 
644 	case SECCOMP_RET_TRACE:
645 		return filter_ret;  /* Save the rest for phase 2. */
646 
647 	case SECCOMP_RET_ALLOW:
648 		return SECCOMP_PHASE1_OK;
649 
650 	case SECCOMP_RET_KILL:
651 	default:
652 		audit_seccomp(this_syscall, SIGSYS, action);
653 		do_exit(SIGSYS);
654 	}
655 
656 	unreachable();
657 
658 skip:
659 	audit_seccomp(this_syscall, 0, action);
660 	return SECCOMP_PHASE1_SKIP;
661 }
662 #endif
663 
664 /**
665  * seccomp_phase1() - run fast path seccomp checks on the current syscall
666  * @arg sd: The seccomp_data or NULL
667  *
668  * This only reads pt_regs via the syscall_xyz helpers.  The only change
669  * it will make to pt_regs is via syscall_set_return_value, and it will
670  * only do that if it returns SECCOMP_PHASE1_SKIP.
671  *
672  * If sd is provided, it will not read pt_regs at all.
673  *
674  * It may also call do_exit or force a signal; these actions must be
675  * safe.
676  *
677  * If it returns SECCOMP_PHASE1_OK, the syscall passes checks and should
678  * be processed normally.
679  *
680  * If it returns SECCOMP_PHASE1_SKIP, then the syscall should not be
681  * invoked.  In this case, seccomp_phase1 will have set the return value
682  * using syscall_set_return_value.
683  *
684  * If it returns anything else, then the return value should be passed
685  * to seccomp_phase2 from a context in which ptrace hooks are safe.
686  */
687 u32 seccomp_phase1(struct seccomp_data *sd)
688 {
689 	int mode = current->seccomp.mode;
690 	int this_syscall = sd ? sd->nr :
691 		syscall_get_nr(current, task_pt_regs(current));
692 
693 	switch (mode) {
694 	case SECCOMP_MODE_STRICT:
695 		__secure_computing_strict(this_syscall);  /* may call do_exit */
696 		return SECCOMP_PHASE1_OK;
697 #ifdef CONFIG_SECCOMP_FILTER
698 	case SECCOMP_MODE_FILTER:
699 		return __seccomp_phase1_filter(this_syscall, sd);
700 #endif
701 	default:
702 		BUG();
703 	}
704 }
705 
706 /**
707  * seccomp_phase2() - finish slow path seccomp work for the current syscall
708  * @phase1_result: The return value from seccomp_phase1()
709  *
710  * This must be called from a context in which ptrace hooks can be used.
711  *
712  * Returns 0 if the syscall should be processed or -1 to skip the syscall.
713  */
714 int seccomp_phase2(u32 phase1_result)
715 {
716 	struct pt_regs *regs = task_pt_regs(current);
717 	u32 action = phase1_result & SECCOMP_RET_ACTION;
718 	int data = phase1_result & SECCOMP_RET_DATA;
719 
720 	BUG_ON(action != SECCOMP_RET_TRACE);
721 
722 	audit_seccomp(syscall_get_nr(current, regs), 0, action);
723 
724 	/* Skip these calls if there is no tracer. */
725 	if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
726 		syscall_set_return_value(current, regs,
727 					 -ENOSYS, 0);
728 		return -1;
729 	}
730 
731 	/* Allow the BPF to provide the event message */
732 	ptrace_event(PTRACE_EVENT_SECCOMP, data);
733 	/*
734 	 * The delivery of a fatal signal during event
735 	 * notification may silently skip tracer notification.
736 	 * Terminating the task now avoids executing a system
737 	 * call that may not be intended.
738 	 */
739 	if (fatal_signal_pending(current))
740 		do_exit(SIGSYS);
741 	if (syscall_get_nr(current, regs) < 0)
742 		return -1;  /* Explicit request to skip. */
743 
744 	return 0;
745 }
746 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
747 
748 long prctl_get_seccomp(void)
749 {
750 	return current->seccomp.mode;
751 }
752 
753 /**
754  * seccomp_set_mode_strict: internal function for setting strict seccomp
755  *
756  * Once current->seccomp.mode is non-zero, it may not be changed.
757  *
758  * Returns 0 on success or -EINVAL on failure.
759  */
760 static long seccomp_set_mode_strict(void)
761 {
762 	const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
763 	long ret = -EINVAL;
764 
765 	spin_lock_irq(&current->sighand->siglock);
766 
767 	if (!seccomp_may_assign_mode(seccomp_mode))
768 		goto out;
769 
770 #ifdef TIF_NOTSC
771 	disable_TSC();
772 #endif
773 	seccomp_assign_mode(current, seccomp_mode);
774 	ret = 0;
775 
776 out:
777 	spin_unlock_irq(&current->sighand->siglock);
778 
779 	return ret;
780 }
781 
782 #ifdef CONFIG_SECCOMP_FILTER
783 /**
784  * seccomp_set_mode_filter: internal function for setting seccomp filter
785  * @flags:  flags to change filter behavior
786  * @filter: struct sock_fprog containing filter
787  *
788  * This function may be called repeatedly to install additional filters.
789  * Every filter successfully installed will be evaluated (in reverse order)
790  * for each system call the task makes.
791  *
792  * Once current->seccomp.mode is non-zero, it may not be changed.
793  *
794  * Returns 0 on success or -EINVAL on failure.
795  */
796 static long seccomp_set_mode_filter(unsigned int flags,
797 				    const char __user *filter)
798 {
799 	const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
800 	struct seccomp_filter *prepared = NULL;
801 	long ret = -EINVAL;
802 
803 	/* Validate flags. */
804 	if (flags & ~SECCOMP_FILTER_FLAG_MASK)
805 		return -EINVAL;
806 
807 	/* Prepare the new filter before holding any locks. */
808 	prepared = seccomp_prepare_user_filter(filter);
809 	if (IS_ERR(prepared))
810 		return PTR_ERR(prepared);
811 
812 	/*
813 	 * Make sure we cannot change seccomp or nnp state via TSYNC
814 	 * while another thread is in the middle of calling exec.
815 	 */
816 	if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
817 	    mutex_lock_killable(&current->signal->cred_guard_mutex))
818 		goto out_free;
819 
820 	spin_lock_irq(&current->sighand->siglock);
821 
822 	if (!seccomp_may_assign_mode(seccomp_mode))
823 		goto out;
824 
825 	ret = seccomp_attach_filter(flags, prepared);
826 	if (ret)
827 		goto out;
828 	/* Do not free the successfully attached filter. */
829 	prepared = NULL;
830 
831 	seccomp_assign_mode(current, seccomp_mode);
832 out:
833 	spin_unlock_irq(&current->sighand->siglock);
834 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
835 		mutex_unlock(&current->signal->cred_guard_mutex);
836 out_free:
837 	seccomp_filter_free(prepared);
838 	return ret;
839 }
840 #else
841 static inline long seccomp_set_mode_filter(unsigned int flags,
842 					   const char __user *filter)
843 {
844 	return -EINVAL;
845 }
846 #endif
847 
848 /* Common entry point for both prctl and syscall. */
849 static long do_seccomp(unsigned int op, unsigned int flags,
850 		       const char __user *uargs)
851 {
852 	switch (op) {
853 	case SECCOMP_SET_MODE_STRICT:
854 		if (flags != 0 || uargs != NULL)
855 			return -EINVAL;
856 		return seccomp_set_mode_strict();
857 	case SECCOMP_SET_MODE_FILTER:
858 		return seccomp_set_mode_filter(flags, uargs);
859 	default:
860 		return -EINVAL;
861 	}
862 }
863 
864 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
865 			 const char __user *, uargs)
866 {
867 	return do_seccomp(op, flags, uargs);
868 }
869 
870 /**
871  * prctl_set_seccomp: configures current->seccomp.mode
872  * @seccomp_mode: requested mode to use
873  * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
874  *
875  * Returns 0 on success or -EINVAL on failure.
876  */
877 long prctl_set_seccomp(unsigned long seccomp_mode, char __user *filter)
878 {
879 	unsigned int op;
880 	char __user *uargs;
881 
882 	switch (seccomp_mode) {
883 	case SECCOMP_MODE_STRICT:
884 		op = SECCOMP_SET_MODE_STRICT;
885 		/*
886 		 * Setting strict mode through prctl always ignored filter,
887 		 * so make sure it is always NULL here to pass the internal
888 		 * check in do_seccomp().
889 		 */
890 		uargs = NULL;
891 		break;
892 	case SECCOMP_MODE_FILTER:
893 		op = SECCOMP_SET_MODE_FILTER;
894 		uargs = filter;
895 		break;
896 	default:
897 		return -EINVAL;
898 	}
899 
900 	/* prctl interface doesn't have flags, so they are always zero. */
901 	return do_seccomp(op, 0, uargs);
902 }
903