1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 33 #include <asm/syscall.h> 34 #endif 35 36 #ifdef CONFIG_SECCOMP_FILTER 37 #include <linux/file.h> 38 #include <linux/filter.h> 39 #include <linux/pid.h> 40 #include <linux/ptrace.h> 41 #include <linux/security.h> 42 #include <linux/tracehook.h> 43 #include <linux/uaccess.h> 44 #include <linux/anon_inodes.h> 45 #include <linux/lockdep.h> 46 47 /* 48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 49 * wrong direction flag in the ioctl number. This is the broken one, 50 * which the kernel needs to keep supporting until all userspaces stop 51 * using the wrong command number. 52 */ 53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 54 55 enum notify_state { 56 SECCOMP_NOTIFY_INIT, 57 SECCOMP_NOTIFY_SENT, 58 SECCOMP_NOTIFY_REPLIED, 59 }; 60 61 struct seccomp_knotif { 62 /* The struct pid of the task whose filter triggered the notification */ 63 struct task_struct *task; 64 65 /* The "cookie" for this request; this is unique for this filter. */ 66 u64 id; 67 68 /* 69 * The seccomp data. This pointer is valid the entire time this 70 * notification is active, since it comes from __seccomp_filter which 71 * eclipses the entire lifecycle here. 72 */ 73 const struct seccomp_data *data; 74 75 /* 76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 77 * struct seccomp_knotif is created and starts out in INIT. Once the 78 * handler reads the notification off of an FD, it transitions to SENT. 79 * If a signal is received the state transitions back to INIT and 80 * another message is sent. When the userspace handler replies, state 81 * transitions to REPLIED. 82 */ 83 enum notify_state state; 84 85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 86 int error; 87 long val; 88 u32 flags; 89 90 /* 91 * Signals when this has changed states, such as the listener 92 * dying, a new seccomp addfd message, or changing to REPLIED 93 */ 94 struct completion ready; 95 96 struct list_head list; 97 98 /* outstanding addfd requests */ 99 struct list_head addfd; 100 }; 101 102 /** 103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 104 * 105 * @file: A reference to the file to install in the other task 106 * @fd: The fd number to install it at. If the fd number is -1, it means the 107 * installing process should allocate the fd as normal. 108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 109 * is allowed. 110 * @ret: The return value of the installing process. It is set to the fd num 111 * upon success (>= 0). 112 * @completion: Indicates that the installing process has completed fd 113 * installation, or gone away (either due to successful 114 * reply, or signal) 115 * 116 */ 117 struct seccomp_kaddfd { 118 struct file *file; 119 int fd; 120 unsigned int flags; 121 122 /* To only be set on reply */ 123 int ret; 124 struct completion completion; 125 struct list_head list; 126 }; 127 128 /** 129 * struct notification - container for seccomp userspace notifications. Since 130 * most seccomp filters will not have notification listeners attached and this 131 * structure is fairly large, we store the notification-specific stuff in a 132 * separate structure. 133 * 134 * @request: A semaphore that users of this notification can wait on for 135 * changes. Actual reads and writes are still controlled with 136 * filter->notify_lock. 137 * @next_id: The id of the next request. 138 * @notifications: A list of struct seccomp_knotif elements. 139 */ 140 struct notification { 141 struct semaphore request; 142 u64 next_id; 143 struct list_head notifications; 144 }; 145 146 /** 147 * struct seccomp_filter - container for seccomp BPF programs 148 * 149 * @refs: Reference count to manage the object lifetime. 150 * A filter's reference count is incremented for each directly 151 * attached task, once for the dependent filter, and if 152 * requested for the user notifier. When @refs reaches zero, 153 * the filter can be freed. 154 * @users: A filter's @users count is incremented for each directly 155 * attached task (filter installation, fork(), thread_sync), 156 * and once for the dependent filter (tracked in filter->prev). 157 * When it reaches zero it indicates that no direct or indirect 158 * users of that filter exist. No new tasks can get associated with 159 * this filter after reaching 0. The @users count is always smaller 160 * or equal to @refs. Hence, reaching 0 for @users does not mean 161 * the filter can be freed. 162 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 163 * @prev: points to a previously installed, or inherited, filter 164 * @prog: the BPF program to evaluate 165 * @notif: the struct that holds all notification related information 166 * @notify_lock: A lock for all notification-related accesses. 167 * @wqh: A wait queue for poll if a notifier is in use. 168 * 169 * seccomp_filter objects are organized in a tree linked via the @prev 170 * pointer. For any task, it appears to be a singly-linked list starting 171 * with current->seccomp.filter, the most recently attached or inherited filter. 172 * However, multiple filters may share a @prev node, by way of fork(), which 173 * results in a unidirectional tree existing in memory. This is similar to 174 * how namespaces work. 175 * 176 * seccomp_filter objects should never be modified after being attached 177 * to a task_struct (other than @refs). 178 */ 179 struct seccomp_filter { 180 refcount_t refs; 181 refcount_t users; 182 bool log; 183 struct seccomp_filter *prev; 184 struct bpf_prog *prog; 185 struct notification *notif; 186 struct mutex notify_lock; 187 wait_queue_head_t wqh; 188 }; 189 190 /* Limit any path through the tree to 256KB worth of instructions. */ 191 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 192 193 /* 194 * Endianness is explicitly ignored and left for BPF program authors to manage 195 * as per the specific architecture. 196 */ 197 static void populate_seccomp_data(struct seccomp_data *sd) 198 { 199 struct task_struct *task = current; 200 struct pt_regs *regs = task_pt_regs(task); 201 unsigned long args[6]; 202 203 sd->nr = syscall_get_nr(task, regs); 204 sd->arch = syscall_get_arch(task); 205 syscall_get_arguments(task, regs, args); 206 sd->args[0] = args[0]; 207 sd->args[1] = args[1]; 208 sd->args[2] = args[2]; 209 sd->args[3] = args[3]; 210 sd->args[4] = args[4]; 211 sd->args[5] = args[5]; 212 sd->instruction_pointer = KSTK_EIP(task); 213 } 214 215 /** 216 * seccomp_check_filter - verify seccomp filter code 217 * @filter: filter to verify 218 * @flen: length of filter 219 * 220 * Takes a previously checked filter (by bpf_check_classic) and 221 * redirects all filter code that loads struct sk_buff data 222 * and related data through seccomp_bpf_load. It also 223 * enforces length and alignment checking of those loads. 224 * 225 * Returns 0 if the rule set is legal or -EINVAL if not. 226 */ 227 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 228 { 229 int pc; 230 for (pc = 0; pc < flen; pc++) { 231 struct sock_filter *ftest = &filter[pc]; 232 u16 code = ftest->code; 233 u32 k = ftest->k; 234 235 switch (code) { 236 case BPF_LD | BPF_W | BPF_ABS: 237 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 238 /* 32-bit aligned and not out of bounds. */ 239 if (k >= sizeof(struct seccomp_data) || k & 3) 240 return -EINVAL; 241 continue; 242 case BPF_LD | BPF_W | BPF_LEN: 243 ftest->code = BPF_LD | BPF_IMM; 244 ftest->k = sizeof(struct seccomp_data); 245 continue; 246 case BPF_LDX | BPF_W | BPF_LEN: 247 ftest->code = BPF_LDX | BPF_IMM; 248 ftest->k = sizeof(struct seccomp_data); 249 continue; 250 /* Explicitly include allowed calls. */ 251 case BPF_RET | BPF_K: 252 case BPF_RET | BPF_A: 253 case BPF_ALU | BPF_ADD | BPF_K: 254 case BPF_ALU | BPF_ADD | BPF_X: 255 case BPF_ALU | BPF_SUB | BPF_K: 256 case BPF_ALU | BPF_SUB | BPF_X: 257 case BPF_ALU | BPF_MUL | BPF_K: 258 case BPF_ALU | BPF_MUL | BPF_X: 259 case BPF_ALU | BPF_DIV | BPF_K: 260 case BPF_ALU | BPF_DIV | BPF_X: 261 case BPF_ALU | BPF_AND | BPF_K: 262 case BPF_ALU | BPF_AND | BPF_X: 263 case BPF_ALU | BPF_OR | BPF_K: 264 case BPF_ALU | BPF_OR | BPF_X: 265 case BPF_ALU | BPF_XOR | BPF_K: 266 case BPF_ALU | BPF_XOR | BPF_X: 267 case BPF_ALU | BPF_LSH | BPF_K: 268 case BPF_ALU | BPF_LSH | BPF_X: 269 case BPF_ALU | BPF_RSH | BPF_K: 270 case BPF_ALU | BPF_RSH | BPF_X: 271 case BPF_ALU | BPF_NEG: 272 case BPF_LD | BPF_IMM: 273 case BPF_LDX | BPF_IMM: 274 case BPF_MISC | BPF_TAX: 275 case BPF_MISC | BPF_TXA: 276 case BPF_LD | BPF_MEM: 277 case BPF_LDX | BPF_MEM: 278 case BPF_ST: 279 case BPF_STX: 280 case BPF_JMP | BPF_JA: 281 case BPF_JMP | BPF_JEQ | BPF_K: 282 case BPF_JMP | BPF_JEQ | BPF_X: 283 case BPF_JMP | BPF_JGE | BPF_K: 284 case BPF_JMP | BPF_JGE | BPF_X: 285 case BPF_JMP | BPF_JGT | BPF_K: 286 case BPF_JMP | BPF_JGT | BPF_X: 287 case BPF_JMP | BPF_JSET | BPF_K: 288 case BPF_JMP | BPF_JSET | BPF_X: 289 continue; 290 default: 291 return -EINVAL; 292 } 293 } 294 return 0; 295 } 296 297 /** 298 * seccomp_run_filters - evaluates all seccomp filters against @sd 299 * @sd: optional seccomp data to be passed to filters 300 * @match: stores struct seccomp_filter that resulted in the return value, 301 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 302 * be unchanged. 303 * 304 * Returns valid seccomp BPF response codes. 305 */ 306 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 307 static u32 seccomp_run_filters(const struct seccomp_data *sd, 308 struct seccomp_filter **match) 309 { 310 u32 ret = SECCOMP_RET_ALLOW; 311 /* Make sure cross-thread synced filter points somewhere sane. */ 312 struct seccomp_filter *f = 313 READ_ONCE(current->seccomp.filter); 314 315 /* Ensure unexpected behavior doesn't result in failing open. */ 316 if (WARN_ON(f == NULL)) 317 return SECCOMP_RET_KILL_PROCESS; 318 319 /* 320 * All filters in the list are evaluated and the lowest BPF return 321 * value always takes priority (ignoring the DATA). 322 */ 323 for (; f; f = f->prev) { 324 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 325 326 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 327 ret = cur_ret; 328 *match = f; 329 } 330 } 331 return ret; 332 } 333 #endif /* CONFIG_SECCOMP_FILTER */ 334 335 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 336 { 337 assert_spin_locked(¤t->sighand->siglock); 338 339 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 340 return false; 341 342 return true; 343 } 344 345 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 346 347 static inline void seccomp_assign_mode(struct task_struct *task, 348 unsigned long seccomp_mode, 349 unsigned long flags) 350 { 351 assert_spin_locked(&task->sighand->siglock); 352 353 task->seccomp.mode = seccomp_mode; 354 /* 355 * Make sure TIF_SECCOMP cannot be set before the mode (and 356 * filter) is set. 357 */ 358 smp_mb__before_atomic(); 359 /* Assume default seccomp processes want spec flaw mitigation. */ 360 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 361 arch_seccomp_spec_mitigate(task); 362 set_tsk_thread_flag(task, TIF_SECCOMP); 363 } 364 365 #ifdef CONFIG_SECCOMP_FILTER 366 /* Returns 1 if the parent is an ancestor of the child. */ 367 static int is_ancestor(struct seccomp_filter *parent, 368 struct seccomp_filter *child) 369 { 370 /* NULL is the root ancestor. */ 371 if (parent == NULL) 372 return 1; 373 for (; child; child = child->prev) 374 if (child == parent) 375 return 1; 376 return 0; 377 } 378 379 /** 380 * seccomp_can_sync_threads: checks if all threads can be synchronized 381 * 382 * Expects sighand and cred_guard_mutex locks to be held. 383 * 384 * Returns 0 on success, -ve on error, or the pid of a thread which was 385 * either not in the correct seccomp mode or did not have an ancestral 386 * seccomp filter. 387 */ 388 static inline pid_t seccomp_can_sync_threads(void) 389 { 390 struct task_struct *thread, *caller; 391 392 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 393 assert_spin_locked(¤t->sighand->siglock); 394 395 /* Validate all threads being eligible for synchronization. */ 396 caller = current; 397 for_each_thread(caller, thread) { 398 pid_t failed; 399 400 /* Skip current, since it is initiating the sync. */ 401 if (thread == caller) 402 continue; 403 404 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 405 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 406 is_ancestor(thread->seccomp.filter, 407 caller->seccomp.filter))) 408 continue; 409 410 /* Return the first thread that cannot be synchronized. */ 411 failed = task_pid_vnr(thread); 412 /* If the pid cannot be resolved, then return -ESRCH */ 413 if (WARN_ON(failed == 0)) 414 failed = -ESRCH; 415 return failed; 416 } 417 418 return 0; 419 } 420 421 static inline void seccomp_filter_free(struct seccomp_filter *filter) 422 { 423 if (filter) { 424 bpf_prog_destroy(filter->prog); 425 kfree(filter); 426 } 427 } 428 429 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 430 { 431 while (orig && refcount_dec_and_test(&orig->users)) { 432 if (waitqueue_active(&orig->wqh)) 433 wake_up_poll(&orig->wqh, EPOLLHUP); 434 orig = orig->prev; 435 } 436 } 437 438 static void __put_seccomp_filter(struct seccomp_filter *orig) 439 { 440 /* Clean up single-reference branches iteratively. */ 441 while (orig && refcount_dec_and_test(&orig->refs)) { 442 struct seccomp_filter *freeme = orig; 443 orig = orig->prev; 444 seccomp_filter_free(freeme); 445 } 446 } 447 448 static void __seccomp_filter_release(struct seccomp_filter *orig) 449 { 450 /* Notify about any unused filters in the task's former filter tree. */ 451 __seccomp_filter_orphan(orig); 452 /* Finally drop all references to the task's former tree. */ 453 __put_seccomp_filter(orig); 454 } 455 456 /** 457 * seccomp_filter_release - Detach the task from its filter tree, 458 * drop its reference count, and notify 459 * about unused filters 460 * 461 * This function should only be called when the task is exiting as 462 * it detaches it from its filter tree. As such, READ_ONCE() and 463 * barriers are not needed here, as would normally be needed. 464 */ 465 void seccomp_filter_release(struct task_struct *tsk) 466 { 467 struct seccomp_filter *orig = tsk->seccomp.filter; 468 469 /* Detach task from its filter tree. */ 470 tsk->seccomp.filter = NULL; 471 __seccomp_filter_release(orig); 472 } 473 474 /** 475 * seccomp_sync_threads: sets all threads to use current's filter 476 * 477 * Expects sighand and cred_guard_mutex locks to be held, and for 478 * seccomp_can_sync_threads() to have returned success already 479 * without dropping the locks. 480 * 481 */ 482 static inline void seccomp_sync_threads(unsigned long flags) 483 { 484 struct task_struct *thread, *caller; 485 486 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 487 assert_spin_locked(¤t->sighand->siglock); 488 489 /* Synchronize all threads. */ 490 caller = current; 491 for_each_thread(caller, thread) { 492 /* Skip current, since it needs no changes. */ 493 if (thread == caller) 494 continue; 495 496 /* Get a task reference for the new leaf node. */ 497 get_seccomp_filter(caller); 498 499 /* 500 * Drop the task reference to the shared ancestor since 501 * current's path will hold a reference. (This also 502 * allows a put before the assignment.) 503 */ 504 __seccomp_filter_release(thread->seccomp.filter); 505 506 /* Make our new filter tree visible. */ 507 smp_store_release(&thread->seccomp.filter, 508 caller->seccomp.filter); 509 atomic_set(&thread->seccomp.filter_count, 510 atomic_read(&thread->seccomp.filter_count)); 511 512 /* 513 * Don't let an unprivileged task work around 514 * the no_new_privs restriction by creating 515 * a thread that sets it up, enters seccomp, 516 * then dies. 517 */ 518 if (task_no_new_privs(caller)) 519 task_set_no_new_privs(thread); 520 521 /* 522 * Opt the other thread into seccomp if needed. 523 * As threads are considered to be trust-realm 524 * equivalent (see ptrace_may_access), it is safe to 525 * allow one thread to transition the other. 526 */ 527 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 528 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 529 flags); 530 } 531 } 532 533 /** 534 * seccomp_prepare_filter: Prepares a seccomp filter for use. 535 * @fprog: BPF program to install 536 * 537 * Returns filter on success or an ERR_PTR on failure. 538 */ 539 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 540 { 541 struct seccomp_filter *sfilter; 542 int ret; 543 const bool save_orig = IS_ENABLED(CONFIG_CHECKPOINT_RESTORE); 544 545 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 546 return ERR_PTR(-EINVAL); 547 548 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 549 550 /* 551 * Installing a seccomp filter requires that the task has 552 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 553 * This avoids scenarios where unprivileged tasks can affect the 554 * behavior of privileged children. 555 */ 556 if (!task_no_new_privs(current) && 557 security_capable(current_cred(), current_user_ns(), 558 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) != 0) 559 return ERR_PTR(-EACCES); 560 561 /* Allocate a new seccomp_filter */ 562 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 563 if (!sfilter) 564 return ERR_PTR(-ENOMEM); 565 566 mutex_init(&sfilter->notify_lock); 567 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 568 seccomp_check_filter, save_orig); 569 if (ret < 0) { 570 kfree(sfilter); 571 return ERR_PTR(ret); 572 } 573 574 refcount_set(&sfilter->refs, 1); 575 refcount_set(&sfilter->users, 1); 576 init_waitqueue_head(&sfilter->wqh); 577 578 return sfilter; 579 } 580 581 /** 582 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 583 * @user_filter: pointer to the user data containing a sock_fprog. 584 * 585 * Returns 0 on success and non-zero otherwise. 586 */ 587 static struct seccomp_filter * 588 seccomp_prepare_user_filter(const char __user *user_filter) 589 { 590 struct sock_fprog fprog; 591 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 592 593 #ifdef CONFIG_COMPAT 594 if (in_compat_syscall()) { 595 struct compat_sock_fprog fprog32; 596 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 597 goto out; 598 fprog.len = fprog32.len; 599 fprog.filter = compat_ptr(fprog32.filter); 600 } else /* falls through to the if below. */ 601 #endif 602 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 603 goto out; 604 filter = seccomp_prepare_filter(&fprog); 605 out: 606 return filter; 607 } 608 609 /** 610 * seccomp_attach_filter: validate and attach filter 611 * @flags: flags to change filter behavior 612 * @filter: seccomp filter to add to the current process 613 * 614 * Caller must be holding current->sighand->siglock lock. 615 * 616 * Returns 0 on success, -ve on error, or 617 * - in TSYNC mode: the pid of a thread which was either not in the correct 618 * seccomp mode or did not have an ancestral seccomp filter 619 * - in NEW_LISTENER mode: the fd of the new listener 620 */ 621 static long seccomp_attach_filter(unsigned int flags, 622 struct seccomp_filter *filter) 623 { 624 unsigned long total_insns; 625 struct seccomp_filter *walker; 626 627 assert_spin_locked(¤t->sighand->siglock); 628 629 /* Validate resulting filter length. */ 630 total_insns = filter->prog->len; 631 for (walker = current->seccomp.filter; walker; walker = walker->prev) 632 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 633 if (total_insns > MAX_INSNS_PER_PATH) 634 return -ENOMEM; 635 636 /* If thread sync has been requested, check that it is possible. */ 637 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 638 int ret; 639 640 ret = seccomp_can_sync_threads(); 641 if (ret) { 642 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 643 return -ESRCH; 644 else 645 return ret; 646 } 647 } 648 649 /* Set log flag, if present. */ 650 if (flags & SECCOMP_FILTER_FLAG_LOG) 651 filter->log = true; 652 653 /* 654 * If there is an existing filter, make it the prev and don't drop its 655 * task reference. 656 */ 657 filter->prev = current->seccomp.filter; 658 current->seccomp.filter = filter; 659 atomic_inc(¤t->seccomp.filter_count); 660 661 /* Now that the new filter is in place, synchronize to all threads. */ 662 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 663 seccomp_sync_threads(flags); 664 665 return 0; 666 } 667 668 static void __get_seccomp_filter(struct seccomp_filter *filter) 669 { 670 refcount_inc(&filter->refs); 671 } 672 673 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 674 void get_seccomp_filter(struct task_struct *tsk) 675 { 676 struct seccomp_filter *orig = tsk->seccomp.filter; 677 if (!orig) 678 return; 679 __get_seccomp_filter(orig); 680 refcount_inc(&orig->users); 681 } 682 683 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason) 684 { 685 clear_siginfo(info); 686 info->si_signo = SIGSYS; 687 info->si_code = SYS_SECCOMP; 688 info->si_call_addr = (void __user *)KSTK_EIP(current); 689 info->si_errno = reason; 690 info->si_arch = syscall_get_arch(current); 691 info->si_syscall = syscall; 692 } 693 694 /** 695 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation 696 * @syscall: syscall number to send to userland 697 * @reason: filter-supplied reason code to send to userland (via si_errno) 698 * 699 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 700 */ 701 static void seccomp_send_sigsys(int syscall, int reason) 702 { 703 struct kernel_siginfo info; 704 seccomp_init_siginfo(&info, syscall, reason); 705 force_sig_info(&info); 706 } 707 #endif /* CONFIG_SECCOMP_FILTER */ 708 709 /* For use with seccomp_actions_logged */ 710 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 711 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 712 #define SECCOMP_LOG_TRAP (1 << 2) 713 #define SECCOMP_LOG_ERRNO (1 << 3) 714 #define SECCOMP_LOG_TRACE (1 << 4) 715 #define SECCOMP_LOG_LOG (1 << 5) 716 #define SECCOMP_LOG_ALLOW (1 << 6) 717 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 718 719 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 720 SECCOMP_LOG_KILL_THREAD | 721 SECCOMP_LOG_TRAP | 722 SECCOMP_LOG_ERRNO | 723 SECCOMP_LOG_USER_NOTIF | 724 SECCOMP_LOG_TRACE | 725 SECCOMP_LOG_LOG; 726 727 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 728 bool requested) 729 { 730 bool log = false; 731 732 switch (action) { 733 case SECCOMP_RET_ALLOW: 734 break; 735 case SECCOMP_RET_TRAP: 736 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 737 break; 738 case SECCOMP_RET_ERRNO: 739 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 740 break; 741 case SECCOMP_RET_TRACE: 742 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 743 break; 744 case SECCOMP_RET_USER_NOTIF: 745 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 746 break; 747 case SECCOMP_RET_LOG: 748 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 749 break; 750 case SECCOMP_RET_KILL_THREAD: 751 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 752 break; 753 case SECCOMP_RET_KILL_PROCESS: 754 default: 755 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 756 } 757 758 /* 759 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 760 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 761 * any action from being logged by removing the action name from the 762 * seccomp_actions_logged sysctl. 763 */ 764 if (!log) 765 return; 766 767 audit_seccomp(syscall, signr, action); 768 } 769 770 /* 771 * Secure computing mode 1 allows only read/write/exit/sigreturn. 772 * To be fully secure this must be combined with rlimit 773 * to limit the stack allocations too. 774 */ 775 static const int mode1_syscalls[] = { 776 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 777 -1, /* negative terminated */ 778 }; 779 780 static void __secure_computing_strict(int this_syscall) 781 { 782 const int *allowed_syscalls = mode1_syscalls; 783 #ifdef CONFIG_COMPAT 784 if (in_compat_syscall()) 785 allowed_syscalls = get_compat_mode1_syscalls(); 786 #endif 787 do { 788 if (*allowed_syscalls == this_syscall) 789 return; 790 } while (*++allowed_syscalls != -1); 791 792 #ifdef SECCOMP_DEBUG 793 dump_stack(); 794 #endif 795 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 796 do_exit(SIGKILL); 797 } 798 799 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 800 void secure_computing_strict(int this_syscall) 801 { 802 int mode = current->seccomp.mode; 803 804 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 805 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 806 return; 807 808 if (mode == SECCOMP_MODE_DISABLED) 809 return; 810 else if (mode == SECCOMP_MODE_STRICT) 811 __secure_computing_strict(this_syscall); 812 else 813 BUG(); 814 } 815 #else 816 817 #ifdef CONFIG_SECCOMP_FILTER 818 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 819 { 820 /* 821 * Note: overflow is ok here, the id just needs to be unique per 822 * filter. 823 */ 824 lockdep_assert_held(&filter->notify_lock); 825 return filter->notif->next_id++; 826 } 827 828 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd) 829 { 830 /* 831 * Remove the notification, and reset the list pointers, indicating 832 * that it has been handled. 833 */ 834 list_del_init(&addfd->list); 835 addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); 836 complete(&addfd->completion); 837 } 838 839 static int seccomp_do_user_notification(int this_syscall, 840 struct seccomp_filter *match, 841 const struct seccomp_data *sd) 842 { 843 int err; 844 u32 flags = 0; 845 long ret = 0; 846 struct seccomp_knotif n = {}; 847 struct seccomp_kaddfd *addfd, *tmp; 848 849 mutex_lock(&match->notify_lock); 850 err = -ENOSYS; 851 if (!match->notif) 852 goto out; 853 854 n.task = current; 855 n.state = SECCOMP_NOTIFY_INIT; 856 n.data = sd; 857 n.id = seccomp_next_notify_id(match); 858 init_completion(&n.ready); 859 list_add(&n.list, &match->notif->notifications); 860 INIT_LIST_HEAD(&n.addfd); 861 862 up(&match->notif->request); 863 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 864 mutex_unlock(&match->notify_lock); 865 866 /* 867 * This is where we wait for a reply from userspace. 868 */ 869 wait: 870 err = wait_for_completion_interruptible(&n.ready); 871 mutex_lock(&match->notify_lock); 872 if (err == 0) { 873 /* Check if we were woken up by a addfd message */ 874 addfd = list_first_entry_or_null(&n.addfd, 875 struct seccomp_kaddfd, list); 876 if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) { 877 seccomp_handle_addfd(addfd); 878 mutex_unlock(&match->notify_lock); 879 goto wait; 880 } 881 ret = n.val; 882 err = n.error; 883 flags = n.flags; 884 } 885 886 /* If there were any pending addfd calls, clear them out */ 887 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 888 /* The process went away before we got a chance to handle it */ 889 addfd->ret = -ESRCH; 890 list_del_init(&addfd->list); 891 complete(&addfd->completion); 892 } 893 894 /* 895 * Note that it's possible the listener died in between the time when 896 * we were notified of a response (or a signal) and when we were able to 897 * re-acquire the lock, so only delete from the list if the 898 * notification actually exists. 899 * 900 * Also note that this test is only valid because there's no way to 901 * *reattach* to a notifier right now. If one is added, we'll need to 902 * keep track of the notif itself and make sure they match here. 903 */ 904 if (match->notif) 905 list_del(&n.list); 906 out: 907 mutex_unlock(&match->notify_lock); 908 909 /* Userspace requests to continue the syscall. */ 910 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 911 return 0; 912 913 syscall_set_return_value(current, task_pt_regs(current), 914 err, ret); 915 return -1; 916 } 917 918 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 919 const bool recheck_after_trace) 920 { 921 u32 filter_ret, action; 922 struct seccomp_filter *match = NULL; 923 int data; 924 struct seccomp_data sd_local; 925 926 /* 927 * Make sure that any changes to mode from another thread have 928 * been seen after TIF_SECCOMP was seen. 929 */ 930 rmb(); 931 932 if (!sd) { 933 populate_seccomp_data(&sd_local); 934 sd = &sd_local; 935 } 936 937 filter_ret = seccomp_run_filters(sd, &match); 938 data = filter_ret & SECCOMP_RET_DATA; 939 action = filter_ret & SECCOMP_RET_ACTION_FULL; 940 941 switch (action) { 942 case SECCOMP_RET_ERRNO: 943 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 944 if (data > MAX_ERRNO) 945 data = MAX_ERRNO; 946 syscall_set_return_value(current, task_pt_regs(current), 947 -data, 0); 948 goto skip; 949 950 case SECCOMP_RET_TRAP: 951 /* Show the handler the original registers. */ 952 syscall_rollback(current, task_pt_regs(current)); 953 /* Let the filter pass back 16 bits of data. */ 954 seccomp_send_sigsys(this_syscall, data); 955 goto skip; 956 957 case SECCOMP_RET_TRACE: 958 /* We've been put in this state by the ptracer already. */ 959 if (recheck_after_trace) 960 return 0; 961 962 /* ENOSYS these calls if there is no tracer attached. */ 963 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 964 syscall_set_return_value(current, 965 task_pt_regs(current), 966 -ENOSYS, 0); 967 goto skip; 968 } 969 970 /* Allow the BPF to provide the event message */ 971 ptrace_event(PTRACE_EVENT_SECCOMP, data); 972 /* 973 * The delivery of a fatal signal during event 974 * notification may silently skip tracer notification, 975 * which could leave us with a potentially unmodified 976 * syscall that the tracer would have liked to have 977 * changed. Since the process is about to die, we just 978 * force the syscall to be skipped and let the signal 979 * kill the process and correctly handle any tracer exit 980 * notifications. 981 */ 982 if (fatal_signal_pending(current)) 983 goto skip; 984 /* Check if the tracer forced the syscall to be skipped. */ 985 this_syscall = syscall_get_nr(current, task_pt_regs(current)); 986 if (this_syscall < 0) 987 goto skip; 988 989 /* 990 * Recheck the syscall, since it may have changed. This 991 * intentionally uses a NULL struct seccomp_data to force 992 * a reload of all registers. This does not goto skip since 993 * a skip would have already been reported. 994 */ 995 if (__seccomp_filter(this_syscall, NULL, true)) 996 return -1; 997 998 return 0; 999 1000 case SECCOMP_RET_USER_NOTIF: 1001 if (seccomp_do_user_notification(this_syscall, match, sd)) 1002 goto skip; 1003 1004 return 0; 1005 1006 case SECCOMP_RET_LOG: 1007 seccomp_log(this_syscall, 0, action, true); 1008 return 0; 1009 1010 case SECCOMP_RET_ALLOW: 1011 /* 1012 * Note that the "match" filter will always be NULL for 1013 * this action since SECCOMP_RET_ALLOW is the starting 1014 * state in seccomp_run_filters(). 1015 */ 1016 return 0; 1017 1018 case SECCOMP_RET_KILL_THREAD: 1019 case SECCOMP_RET_KILL_PROCESS: 1020 default: 1021 seccomp_log(this_syscall, SIGSYS, action, true); 1022 /* Dump core only if this is the last remaining thread. */ 1023 if (action == SECCOMP_RET_KILL_PROCESS || 1024 get_nr_threads(current) == 1) { 1025 kernel_siginfo_t info; 1026 1027 /* Show the original registers in the dump. */ 1028 syscall_rollback(current, task_pt_regs(current)); 1029 /* Trigger a manual coredump since do_exit skips it. */ 1030 seccomp_init_siginfo(&info, this_syscall, data); 1031 do_coredump(&info); 1032 } 1033 if (action == SECCOMP_RET_KILL_PROCESS) 1034 do_group_exit(SIGSYS); 1035 else 1036 do_exit(SIGSYS); 1037 } 1038 1039 unreachable(); 1040 1041 skip: 1042 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1043 return -1; 1044 } 1045 #else 1046 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1047 const bool recheck_after_trace) 1048 { 1049 BUG(); 1050 } 1051 #endif 1052 1053 int __secure_computing(const struct seccomp_data *sd) 1054 { 1055 int mode = current->seccomp.mode; 1056 int this_syscall; 1057 1058 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1059 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1060 return 0; 1061 1062 this_syscall = sd ? sd->nr : 1063 syscall_get_nr(current, task_pt_regs(current)); 1064 1065 switch (mode) { 1066 case SECCOMP_MODE_STRICT: 1067 __secure_computing_strict(this_syscall); /* may call do_exit */ 1068 return 0; 1069 case SECCOMP_MODE_FILTER: 1070 return __seccomp_filter(this_syscall, sd, false); 1071 default: 1072 BUG(); 1073 } 1074 } 1075 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1076 1077 long prctl_get_seccomp(void) 1078 { 1079 return current->seccomp.mode; 1080 } 1081 1082 /** 1083 * seccomp_set_mode_strict: internal function for setting strict seccomp 1084 * 1085 * Once current->seccomp.mode is non-zero, it may not be changed. 1086 * 1087 * Returns 0 on success or -EINVAL on failure. 1088 */ 1089 static long seccomp_set_mode_strict(void) 1090 { 1091 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1092 long ret = -EINVAL; 1093 1094 spin_lock_irq(¤t->sighand->siglock); 1095 1096 if (!seccomp_may_assign_mode(seccomp_mode)) 1097 goto out; 1098 1099 #ifdef TIF_NOTSC 1100 disable_TSC(); 1101 #endif 1102 seccomp_assign_mode(current, seccomp_mode, 0); 1103 ret = 0; 1104 1105 out: 1106 spin_unlock_irq(¤t->sighand->siglock); 1107 1108 return ret; 1109 } 1110 1111 #ifdef CONFIG_SECCOMP_FILTER 1112 static int seccomp_notify_release(struct inode *inode, struct file *file) 1113 { 1114 struct seccomp_filter *filter = file->private_data; 1115 struct seccomp_knotif *knotif; 1116 1117 if (!filter) 1118 return 0; 1119 1120 mutex_lock(&filter->notify_lock); 1121 1122 /* 1123 * If this file is being closed because e.g. the task who owned it 1124 * died, let's wake everyone up who was waiting on us. 1125 */ 1126 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1127 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1128 continue; 1129 1130 knotif->state = SECCOMP_NOTIFY_REPLIED; 1131 knotif->error = -ENOSYS; 1132 knotif->val = 0; 1133 1134 /* 1135 * We do not need to wake up any pending addfd messages, as 1136 * the notifier will do that for us, as this just looks 1137 * like a standard reply. 1138 */ 1139 complete(&knotif->ready); 1140 } 1141 1142 kfree(filter->notif); 1143 filter->notif = NULL; 1144 mutex_unlock(&filter->notify_lock); 1145 __put_seccomp_filter(filter); 1146 return 0; 1147 } 1148 1149 /* must be called with notif_lock held */ 1150 static inline struct seccomp_knotif * 1151 find_notification(struct seccomp_filter *filter, u64 id) 1152 { 1153 struct seccomp_knotif *cur; 1154 1155 lockdep_assert_held(&filter->notify_lock); 1156 1157 list_for_each_entry(cur, &filter->notif->notifications, list) { 1158 if (cur->id == id) 1159 return cur; 1160 } 1161 1162 return NULL; 1163 } 1164 1165 1166 static long seccomp_notify_recv(struct seccomp_filter *filter, 1167 void __user *buf) 1168 { 1169 struct seccomp_knotif *knotif = NULL, *cur; 1170 struct seccomp_notif unotif; 1171 ssize_t ret; 1172 1173 /* Verify that we're not given garbage to keep struct extensible. */ 1174 ret = check_zeroed_user(buf, sizeof(unotif)); 1175 if (ret < 0) 1176 return ret; 1177 if (!ret) 1178 return -EINVAL; 1179 1180 memset(&unotif, 0, sizeof(unotif)); 1181 1182 ret = down_interruptible(&filter->notif->request); 1183 if (ret < 0) 1184 return ret; 1185 1186 mutex_lock(&filter->notify_lock); 1187 list_for_each_entry(cur, &filter->notif->notifications, list) { 1188 if (cur->state == SECCOMP_NOTIFY_INIT) { 1189 knotif = cur; 1190 break; 1191 } 1192 } 1193 1194 /* 1195 * If we didn't find a notification, it could be that the task was 1196 * interrupted by a fatal signal between the time we were woken and 1197 * when we were able to acquire the rw lock. 1198 */ 1199 if (!knotif) { 1200 ret = -ENOENT; 1201 goto out; 1202 } 1203 1204 unotif.id = knotif->id; 1205 unotif.pid = task_pid_vnr(knotif->task); 1206 unotif.data = *(knotif->data); 1207 1208 knotif->state = SECCOMP_NOTIFY_SENT; 1209 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1210 ret = 0; 1211 out: 1212 mutex_unlock(&filter->notify_lock); 1213 1214 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1215 ret = -EFAULT; 1216 1217 /* 1218 * Userspace screwed up. To make sure that we keep this 1219 * notification alive, let's reset it back to INIT. It 1220 * may have died when we released the lock, so we need to make 1221 * sure it's still around. 1222 */ 1223 mutex_lock(&filter->notify_lock); 1224 knotif = find_notification(filter, unotif.id); 1225 if (knotif) { 1226 knotif->state = SECCOMP_NOTIFY_INIT; 1227 up(&filter->notif->request); 1228 } 1229 mutex_unlock(&filter->notify_lock); 1230 } 1231 1232 return ret; 1233 } 1234 1235 static long seccomp_notify_send(struct seccomp_filter *filter, 1236 void __user *buf) 1237 { 1238 struct seccomp_notif_resp resp = {}; 1239 struct seccomp_knotif *knotif; 1240 long ret; 1241 1242 if (copy_from_user(&resp, buf, sizeof(resp))) 1243 return -EFAULT; 1244 1245 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1246 return -EINVAL; 1247 1248 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1249 (resp.error || resp.val)) 1250 return -EINVAL; 1251 1252 ret = mutex_lock_interruptible(&filter->notify_lock); 1253 if (ret < 0) 1254 return ret; 1255 1256 knotif = find_notification(filter, resp.id); 1257 if (!knotif) { 1258 ret = -ENOENT; 1259 goto out; 1260 } 1261 1262 /* Allow exactly one reply. */ 1263 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1264 ret = -EINPROGRESS; 1265 goto out; 1266 } 1267 1268 ret = 0; 1269 knotif->state = SECCOMP_NOTIFY_REPLIED; 1270 knotif->error = resp.error; 1271 knotif->val = resp.val; 1272 knotif->flags = resp.flags; 1273 complete(&knotif->ready); 1274 out: 1275 mutex_unlock(&filter->notify_lock); 1276 return ret; 1277 } 1278 1279 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1280 void __user *buf) 1281 { 1282 struct seccomp_knotif *knotif; 1283 u64 id; 1284 long ret; 1285 1286 if (copy_from_user(&id, buf, sizeof(id))) 1287 return -EFAULT; 1288 1289 ret = mutex_lock_interruptible(&filter->notify_lock); 1290 if (ret < 0) 1291 return ret; 1292 1293 knotif = find_notification(filter, id); 1294 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1295 ret = 0; 1296 else 1297 ret = -ENOENT; 1298 1299 mutex_unlock(&filter->notify_lock); 1300 return ret; 1301 } 1302 1303 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1304 struct seccomp_notif_addfd __user *uaddfd, 1305 unsigned int size) 1306 { 1307 struct seccomp_notif_addfd addfd; 1308 struct seccomp_knotif *knotif; 1309 struct seccomp_kaddfd kaddfd; 1310 int ret; 1311 1312 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1313 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1314 1315 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1316 return -EINVAL; 1317 1318 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1319 if (ret) 1320 return ret; 1321 1322 if (addfd.newfd_flags & ~O_CLOEXEC) 1323 return -EINVAL; 1324 1325 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD) 1326 return -EINVAL; 1327 1328 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1329 return -EINVAL; 1330 1331 kaddfd.file = fget(addfd.srcfd); 1332 if (!kaddfd.file) 1333 return -EBADF; 1334 1335 kaddfd.flags = addfd.newfd_flags; 1336 kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ? 1337 addfd.newfd : -1; 1338 init_completion(&kaddfd.completion); 1339 1340 ret = mutex_lock_interruptible(&filter->notify_lock); 1341 if (ret < 0) 1342 goto out; 1343 1344 knotif = find_notification(filter, addfd.id); 1345 if (!knotif) { 1346 ret = -ENOENT; 1347 goto out_unlock; 1348 } 1349 1350 /* 1351 * We do not want to allow for FD injection to occur before the 1352 * notification has been picked up by a userspace handler, or after 1353 * the notification has been replied to. 1354 */ 1355 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1356 ret = -EINPROGRESS; 1357 goto out_unlock; 1358 } 1359 1360 list_add(&kaddfd.list, &knotif->addfd); 1361 complete(&knotif->ready); 1362 mutex_unlock(&filter->notify_lock); 1363 1364 /* Now we wait for it to be processed or be interrupted */ 1365 ret = wait_for_completion_interruptible(&kaddfd.completion); 1366 if (ret == 0) { 1367 /* 1368 * We had a successful completion. The other side has already 1369 * removed us from the addfd queue, and 1370 * wait_for_completion_interruptible has a memory barrier upon 1371 * success that lets us read this value directly without 1372 * locking. 1373 */ 1374 ret = kaddfd.ret; 1375 goto out; 1376 } 1377 1378 mutex_lock(&filter->notify_lock); 1379 /* 1380 * Even though we were woken up by a signal and not a successful 1381 * completion, a completion may have happened in the mean time. 1382 * 1383 * We need to check again if the addfd request has been handled, 1384 * and if not, we will remove it from the queue. 1385 */ 1386 if (list_empty(&kaddfd.list)) 1387 ret = kaddfd.ret; 1388 else 1389 list_del(&kaddfd.list); 1390 1391 out_unlock: 1392 mutex_unlock(&filter->notify_lock); 1393 out: 1394 fput(kaddfd.file); 1395 1396 return ret; 1397 } 1398 1399 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1400 unsigned long arg) 1401 { 1402 struct seccomp_filter *filter = file->private_data; 1403 void __user *buf = (void __user *)arg; 1404 1405 /* Fixed-size ioctls */ 1406 switch (cmd) { 1407 case SECCOMP_IOCTL_NOTIF_RECV: 1408 return seccomp_notify_recv(filter, buf); 1409 case SECCOMP_IOCTL_NOTIF_SEND: 1410 return seccomp_notify_send(filter, buf); 1411 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1412 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1413 return seccomp_notify_id_valid(filter, buf); 1414 } 1415 1416 /* Extensible Argument ioctls */ 1417 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1418 switch (EA_IOCTL(cmd)) { 1419 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1420 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1421 default: 1422 return -EINVAL; 1423 } 1424 } 1425 1426 static __poll_t seccomp_notify_poll(struct file *file, 1427 struct poll_table_struct *poll_tab) 1428 { 1429 struct seccomp_filter *filter = file->private_data; 1430 __poll_t ret = 0; 1431 struct seccomp_knotif *cur; 1432 1433 poll_wait(file, &filter->wqh, poll_tab); 1434 1435 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1436 return EPOLLERR; 1437 1438 list_for_each_entry(cur, &filter->notif->notifications, list) { 1439 if (cur->state == SECCOMP_NOTIFY_INIT) 1440 ret |= EPOLLIN | EPOLLRDNORM; 1441 if (cur->state == SECCOMP_NOTIFY_SENT) 1442 ret |= EPOLLOUT | EPOLLWRNORM; 1443 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1444 break; 1445 } 1446 1447 mutex_unlock(&filter->notify_lock); 1448 1449 if (refcount_read(&filter->users) == 0) 1450 ret |= EPOLLHUP; 1451 1452 return ret; 1453 } 1454 1455 static const struct file_operations seccomp_notify_ops = { 1456 .poll = seccomp_notify_poll, 1457 .release = seccomp_notify_release, 1458 .unlocked_ioctl = seccomp_notify_ioctl, 1459 .compat_ioctl = seccomp_notify_ioctl, 1460 }; 1461 1462 static struct file *init_listener(struct seccomp_filter *filter) 1463 { 1464 struct file *ret = ERR_PTR(-EBUSY); 1465 struct seccomp_filter *cur; 1466 1467 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1468 if (cur->notif) 1469 goto out; 1470 } 1471 1472 ret = ERR_PTR(-ENOMEM); 1473 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1474 if (!filter->notif) 1475 goto out; 1476 1477 sema_init(&filter->notif->request, 0); 1478 filter->notif->next_id = get_random_u64(); 1479 INIT_LIST_HEAD(&filter->notif->notifications); 1480 1481 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1482 filter, O_RDWR); 1483 if (IS_ERR(ret)) 1484 goto out_notif; 1485 1486 /* The file has a reference to it now */ 1487 __get_seccomp_filter(filter); 1488 1489 out_notif: 1490 if (IS_ERR(ret)) 1491 kfree(filter->notif); 1492 out: 1493 return ret; 1494 } 1495 1496 /** 1497 * seccomp_set_mode_filter: internal function for setting seccomp filter 1498 * @flags: flags to change filter behavior 1499 * @filter: struct sock_fprog containing filter 1500 * 1501 * This function may be called repeatedly to install additional filters. 1502 * Every filter successfully installed will be evaluated (in reverse order) 1503 * for each system call the task makes. 1504 * 1505 * Once current->seccomp.mode is non-zero, it may not be changed. 1506 * 1507 * Returns 0 on success or -EINVAL on failure. 1508 */ 1509 static long seccomp_set_mode_filter(unsigned int flags, 1510 const char __user *filter) 1511 { 1512 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1513 struct seccomp_filter *prepared = NULL; 1514 long ret = -EINVAL; 1515 int listener = -1; 1516 struct file *listener_f = NULL; 1517 1518 /* Validate flags. */ 1519 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1520 return -EINVAL; 1521 1522 /* 1523 * In the successful case, NEW_LISTENER returns the new listener fd. 1524 * But in the failure case, TSYNC returns the thread that died. If you 1525 * combine these two flags, there's no way to tell whether something 1526 * succeeded or failed. So, let's disallow this combination if the user 1527 * has not explicitly requested no errors from TSYNC. 1528 */ 1529 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1530 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1531 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1532 return -EINVAL; 1533 1534 /* Prepare the new filter before holding any locks. */ 1535 prepared = seccomp_prepare_user_filter(filter); 1536 if (IS_ERR(prepared)) 1537 return PTR_ERR(prepared); 1538 1539 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1540 listener = get_unused_fd_flags(O_CLOEXEC); 1541 if (listener < 0) { 1542 ret = listener; 1543 goto out_free; 1544 } 1545 1546 listener_f = init_listener(prepared); 1547 if (IS_ERR(listener_f)) { 1548 put_unused_fd(listener); 1549 ret = PTR_ERR(listener_f); 1550 goto out_free; 1551 } 1552 } 1553 1554 /* 1555 * Make sure we cannot change seccomp or nnp state via TSYNC 1556 * while another thread is in the middle of calling exec. 1557 */ 1558 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1559 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1560 goto out_put_fd; 1561 1562 spin_lock_irq(¤t->sighand->siglock); 1563 1564 if (!seccomp_may_assign_mode(seccomp_mode)) 1565 goto out; 1566 1567 ret = seccomp_attach_filter(flags, prepared); 1568 if (ret) 1569 goto out; 1570 /* Do not free the successfully attached filter. */ 1571 prepared = NULL; 1572 1573 seccomp_assign_mode(current, seccomp_mode, flags); 1574 out: 1575 spin_unlock_irq(¤t->sighand->siglock); 1576 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 1577 mutex_unlock(¤t->signal->cred_guard_mutex); 1578 out_put_fd: 1579 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1580 if (ret) { 1581 listener_f->private_data = NULL; 1582 fput(listener_f); 1583 put_unused_fd(listener); 1584 } else { 1585 fd_install(listener, listener_f); 1586 ret = listener; 1587 } 1588 } 1589 out_free: 1590 seccomp_filter_free(prepared); 1591 return ret; 1592 } 1593 #else 1594 static inline long seccomp_set_mode_filter(unsigned int flags, 1595 const char __user *filter) 1596 { 1597 return -EINVAL; 1598 } 1599 #endif 1600 1601 static long seccomp_get_action_avail(const char __user *uaction) 1602 { 1603 u32 action; 1604 1605 if (copy_from_user(&action, uaction, sizeof(action))) 1606 return -EFAULT; 1607 1608 switch (action) { 1609 case SECCOMP_RET_KILL_PROCESS: 1610 case SECCOMP_RET_KILL_THREAD: 1611 case SECCOMP_RET_TRAP: 1612 case SECCOMP_RET_ERRNO: 1613 case SECCOMP_RET_USER_NOTIF: 1614 case SECCOMP_RET_TRACE: 1615 case SECCOMP_RET_LOG: 1616 case SECCOMP_RET_ALLOW: 1617 break; 1618 default: 1619 return -EOPNOTSUPP; 1620 } 1621 1622 return 0; 1623 } 1624 1625 static long seccomp_get_notif_sizes(void __user *usizes) 1626 { 1627 struct seccomp_notif_sizes sizes = { 1628 .seccomp_notif = sizeof(struct seccomp_notif), 1629 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 1630 .seccomp_data = sizeof(struct seccomp_data), 1631 }; 1632 1633 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 1634 return -EFAULT; 1635 1636 return 0; 1637 } 1638 1639 /* Common entry point for both prctl and syscall. */ 1640 static long do_seccomp(unsigned int op, unsigned int flags, 1641 void __user *uargs) 1642 { 1643 switch (op) { 1644 case SECCOMP_SET_MODE_STRICT: 1645 if (flags != 0 || uargs != NULL) 1646 return -EINVAL; 1647 return seccomp_set_mode_strict(); 1648 case SECCOMP_SET_MODE_FILTER: 1649 return seccomp_set_mode_filter(flags, uargs); 1650 case SECCOMP_GET_ACTION_AVAIL: 1651 if (flags != 0) 1652 return -EINVAL; 1653 1654 return seccomp_get_action_avail(uargs); 1655 case SECCOMP_GET_NOTIF_SIZES: 1656 if (flags != 0) 1657 return -EINVAL; 1658 1659 return seccomp_get_notif_sizes(uargs); 1660 default: 1661 return -EINVAL; 1662 } 1663 } 1664 1665 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 1666 void __user *, uargs) 1667 { 1668 return do_seccomp(op, flags, uargs); 1669 } 1670 1671 /** 1672 * prctl_set_seccomp: configures current->seccomp.mode 1673 * @seccomp_mode: requested mode to use 1674 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 1675 * 1676 * Returns 0 on success or -EINVAL on failure. 1677 */ 1678 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 1679 { 1680 unsigned int op; 1681 void __user *uargs; 1682 1683 switch (seccomp_mode) { 1684 case SECCOMP_MODE_STRICT: 1685 op = SECCOMP_SET_MODE_STRICT; 1686 /* 1687 * Setting strict mode through prctl always ignored filter, 1688 * so make sure it is always NULL here to pass the internal 1689 * check in do_seccomp(). 1690 */ 1691 uargs = NULL; 1692 break; 1693 case SECCOMP_MODE_FILTER: 1694 op = SECCOMP_SET_MODE_FILTER; 1695 uargs = filter; 1696 break; 1697 default: 1698 return -EINVAL; 1699 } 1700 1701 /* prctl interface doesn't have flags, so they are always zero. */ 1702 return do_seccomp(op, 0, uargs); 1703 } 1704 1705 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 1706 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 1707 unsigned long filter_off) 1708 { 1709 struct seccomp_filter *orig, *filter; 1710 unsigned long count; 1711 1712 /* 1713 * Note: this is only correct because the caller should be the (ptrace) 1714 * tracer of the task, otherwise lock_task_sighand is needed. 1715 */ 1716 spin_lock_irq(&task->sighand->siglock); 1717 1718 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 1719 spin_unlock_irq(&task->sighand->siglock); 1720 return ERR_PTR(-EINVAL); 1721 } 1722 1723 orig = task->seccomp.filter; 1724 __get_seccomp_filter(orig); 1725 spin_unlock_irq(&task->sighand->siglock); 1726 1727 count = 0; 1728 for (filter = orig; filter; filter = filter->prev) 1729 count++; 1730 1731 if (filter_off >= count) { 1732 filter = ERR_PTR(-ENOENT); 1733 goto out; 1734 } 1735 1736 count -= filter_off; 1737 for (filter = orig; filter && count > 1; filter = filter->prev) 1738 count--; 1739 1740 if (WARN_ON(count != 1 || !filter)) { 1741 filter = ERR_PTR(-ENOENT); 1742 goto out; 1743 } 1744 1745 __get_seccomp_filter(filter); 1746 1747 out: 1748 __put_seccomp_filter(orig); 1749 return filter; 1750 } 1751 1752 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 1753 void __user *data) 1754 { 1755 struct seccomp_filter *filter; 1756 struct sock_fprog_kern *fprog; 1757 long ret; 1758 1759 if (!capable(CAP_SYS_ADMIN) || 1760 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 1761 return -EACCES; 1762 } 1763 1764 filter = get_nth_filter(task, filter_off); 1765 if (IS_ERR(filter)) 1766 return PTR_ERR(filter); 1767 1768 fprog = filter->prog->orig_prog; 1769 if (!fprog) { 1770 /* This must be a new non-cBPF filter, since we save 1771 * every cBPF filter's orig_prog above when 1772 * CONFIG_CHECKPOINT_RESTORE is enabled. 1773 */ 1774 ret = -EMEDIUMTYPE; 1775 goto out; 1776 } 1777 1778 ret = fprog->len; 1779 if (!data) 1780 goto out; 1781 1782 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 1783 ret = -EFAULT; 1784 1785 out: 1786 __put_seccomp_filter(filter); 1787 return ret; 1788 } 1789 1790 long seccomp_get_metadata(struct task_struct *task, 1791 unsigned long size, void __user *data) 1792 { 1793 long ret; 1794 struct seccomp_filter *filter; 1795 struct seccomp_metadata kmd = {}; 1796 1797 if (!capable(CAP_SYS_ADMIN) || 1798 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 1799 return -EACCES; 1800 } 1801 1802 size = min_t(unsigned long, size, sizeof(kmd)); 1803 1804 if (size < sizeof(kmd.filter_off)) 1805 return -EINVAL; 1806 1807 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 1808 return -EFAULT; 1809 1810 filter = get_nth_filter(task, kmd.filter_off); 1811 if (IS_ERR(filter)) 1812 return PTR_ERR(filter); 1813 1814 if (filter->log) 1815 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 1816 1817 ret = size; 1818 if (copy_to_user(data, &kmd, size)) 1819 ret = -EFAULT; 1820 1821 __put_seccomp_filter(filter); 1822 return ret; 1823 } 1824 #endif 1825 1826 #ifdef CONFIG_SYSCTL 1827 1828 /* Human readable action names for friendly sysctl interaction */ 1829 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 1830 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 1831 #define SECCOMP_RET_TRAP_NAME "trap" 1832 #define SECCOMP_RET_ERRNO_NAME "errno" 1833 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 1834 #define SECCOMP_RET_TRACE_NAME "trace" 1835 #define SECCOMP_RET_LOG_NAME "log" 1836 #define SECCOMP_RET_ALLOW_NAME "allow" 1837 1838 static const char seccomp_actions_avail[] = 1839 SECCOMP_RET_KILL_PROCESS_NAME " " 1840 SECCOMP_RET_KILL_THREAD_NAME " " 1841 SECCOMP_RET_TRAP_NAME " " 1842 SECCOMP_RET_ERRNO_NAME " " 1843 SECCOMP_RET_USER_NOTIF_NAME " " 1844 SECCOMP_RET_TRACE_NAME " " 1845 SECCOMP_RET_LOG_NAME " " 1846 SECCOMP_RET_ALLOW_NAME; 1847 1848 struct seccomp_log_name { 1849 u32 log; 1850 const char *name; 1851 }; 1852 1853 static const struct seccomp_log_name seccomp_log_names[] = { 1854 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 1855 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 1856 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 1857 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 1858 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 1859 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 1860 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 1861 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 1862 { } 1863 }; 1864 1865 static bool seccomp_names_from_actions_logged(char *names, size_t size, 1866 u32 actions_logged, 1867 const char *sep) 1868 { 1869 const struct seccomp_log_name *cur; 1870 bool append_sep = false; 1871 1872 for (cur = seccomp_log_names; cur->name && size; cur++) { 1873 ssize_t ret; 1874 1875 if (!(actions_logged & cur->log)) 1876 continue; 1877 1878 if (append_sep) { 1879 ret = strscpy(names, sep, size); 1880 if (ret < 0) 1881 return false; 1882 1883 names += ret; 1884 size -= ret; 1885 } else 1886 append_sep = true; 1887 1888 ret = strscpy(names, cur->name, size); 1889 if (ret < 0) 1890 return false; 1891 1892 names += ret; 1893 size -= ret; 1894 } 1895 1896 return true; 1897 } 1898 1899 static bool seccomp_action_logged_from_name(u32 *action_logged, 1900 const char *name) 1901 { 1902 const struct seccomp_log_name *cur; 1903 1904 for (cur = seccomp_log_names; cur->name; cur++) { 1905 if (!strcmp(cur->name, name)) { 1906 *action_logged = cur->log; 1907 return true; 1908 } 1909 } 1910 1911 return false; 1912 } 1913 1914 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 1915 { 1916 char *name; 1917 1918 *actions_logged = 0; 1919 while ((name = strsep(&names, " ")) && *name) { 1920 u32 action_logged = 0; 1921 1922 if (!seccomp_action_logged_from_name(&action_logged, name)) 1923 return false; 1924 1925 *actions_logged |= action_logged; 1926 } 1927 1928 return true; 1929 } 1930 1931 static int read_actions_logged(struct ctl_table *ro_table, void __user *buffer, 1932 size_t *lenp, loff_t *ppos) 1933 { 1934 char names[sizeof(seccomp_actions_avail)]; 1935 struct ctl_table table; 1936 1937 memset(names, 0, sizeof(names)); 1938 1939 if (!seccomp_names_from_actions_logged(names, sizeof(names), 1940 seccomp_actions_logged, " ")) 1941 return -EINVAL; 1942 1943 table = *ro_table; 1944 table.data = names; 1945 table.maxlen = sizeof(names); 1946 return proc_dostring(&table, 0, buffer, lenp, ppos); 1947 } 1948 1949 static int write_actions_logged(struct ctl_table *ro_table, void __user *buffer, 1950 size_t *lenp, loff_t *ppos, u32 *actions_logged) 1951 { 1952 char names[sizeof(seccomp_actions_avail)]; 1953 struct ctl_table table; 1954 int ret; 1955 1956 if (!capable(CAP_SYS_ADMIN)) 1957 return -EPERM; 1958 1959 memset(names, 0, sizeof(names)); 1960 1961 table = *ro_table; 1962 table.data = names; 1963 table.maxlen = sizeof(names); 1964 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 1965 if (ret) 1966 return ret; 1967 1968 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 1969 return -EINVAL; 1970 1971 if (*actions_logged & SECCOMP_LOG_ALLOW) 1972 return -EINVAL; 1973 1974 seccomp_actions_logged = *actions_logged; 1975 return 0; 1976 } 1977 1978 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 1979 int ret) 1980 { 1981 char names[sizeof(seccomp_actions_avail)]; 1982 char old_names[sizeof(seccomp_actions_avail)]; 1983 const char *new = names; 1984 const char *old = old_names; 1985 1986 if (!audit_enabled) 1987 return; 1988 1989 memset(names, 0, sizeof(names)); 1990 memset(old_names, 0, sizeof(old_names)); 1991 1992 if (ret) 1993 new = "?"; 1994 else if (!actions_logged) 1995 new = "(none)"; 1996 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 1997 actions_logged, ",")) 1998 new = "?"; 1999 2000 if (!old_actions_logged) 2001 old = "(none)"; 2002 else if (!seccomp_names_from_actions_logged(old_names, 2003 sizeof(old_names), 2004 old_actions_logged, ",")) 2005 old = "?"; 2006 2007 return audit_seccomp_actions_logged(new, old, !ret); 2008 } 2009 2010 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, 2011 void *buffer, size_t *lenp, 2012 loff_t *ppos) 2013 { 2014 int ret; 2015 2016 if (write) { 2017 u32 actions_logged = 0; 2018 u32 old_actions_logged = seccomp_actions_logged; 2019 2020 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2021 &actions_logged); 2022 audit_actions_logged(actions_logged, old_actions_logged, ret); 2023 } else 2024 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2025 2026 return ret; 2027 } 2028 2029 static struct ctl_path seccomp_sysctl_path[] = { 2030 { .procname = "kernel", }, 2031 { .procname = "seccomp", }, 2032 { } 2033 }; 2034 2035 static struct ctl_table seccomp_sysctl_table[] = { 2036 { 2037 .procname = "actions_avail", 2038 .data = (void *) &seccomp_actions_avail, 2039 .maxlen = sizeof(seccomp_actions_avail), 2040 .mode = 0444, 2041 .proc_handler = proc_dostring, 2042 }, 2043 { 2044 .procname = "actions_logged", 2045 .mode = 0644, 2046 .proc_handler = seccomp_actions_logged_handler, 2047 }, 2048 { } 2049 }; 2050 2051 static int __init seccomp_sysctl_init(void) 2052 { 2053 struct ctl_table_header *hdr; 2054 2055 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table); 2056 if (!hdr) 2057 pr_warn("sysctl registration failed\n"); 2058 else 2059 kmemleak_not_leak(hdr); 2060 2061 return 0; 2062 } 2063 2064 device_initcall(seccomp_sysctl_init) 2065 2066 #endif /* CONFIG_SYSCTL */ 2067