1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 33 #include <asm/syscall.h> 34 #endif 35 36 #ifdef CONFIG_SECCOMP_FILTER 37 #include <linux/file.h> 38 #include <linux/filter.h> 39 #include <linux/pid.h> 40 #include <linux/ptrace.h> 41 #include <linux/capability.h> 42 #include <linux/tracehook.h> 43 #include <linux/uaccess.h> 44 #include <linux/anon_inodes.h> 45 #include <linux/lockdep.h> 46 47 /* 48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 49 * wrong direction flag in the ioctl number. This is the broken one, 50 * which the kernel needs to keep supporting until all userspaces stop 51 * using the wrong command number. 52 */ 53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 54 55 enum notify_state { 56 SECCOMP_NOTIFY_INIT, 57 SECCOMP_NOTIFY_SENT, 58 SECCOMP_NOTIFY_REPLIED, 59 }; 60 61 struct seccomp_knotif { 62 /* The struct pid of the task whose filter triggered the notification */ 63 struct task_struct *task; 64 65 /* The "cookie" for this request; this is unique for this filter. */ 66 u64 id; 67 68 /* 69 * The seccomp data. This pointer is valid the entire time this 70 * notification is active, since it comes from __seccomp_filter which 71 * eclipses the entire lifecycle here. 72 */ 73 const struct seccomp_data *data; 74 75 /* 76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 77 * struct seccomp_knotif is created and starts out in INIT. Once the 78 * handler reads the notification off of an FD, it transitions to SENT. 79 * If a signal is received the state transitions back to INIT and 80 * another message is sent. When the userspace handler replies, state 81 * transitions to REPLIED. 82 */ 83 enum notify_state state; 84 85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 86 int error; 87 long val; 88 u32 flags; 89 90 /* 91 * Signals when this has changed states, such as the listener 92 * dying, a new seccomp addfd message, or changing to REPLIED 93 */ 94 struct completion ready; 95 96 struct list_head list; 97 98 /* outstanding addfd requests */ 99 struct list_head addfd; 100 }; 101 102 /** 103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 104 * 105 * @file: A reference to the file to install in the other task 106 * @fd: The fd number to install it at. If the fd number is -1, it means the 107 * installing process should allocate the fd as normal. 108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 109 * is allowed. 110 * @ret: The return value of the installing process. It is set to the fd num 111 * upon success (>= 0). 112 * @completion: Indicates that the installing process has completed fd 113 * installation, or gone away (either due to successful 114 * reply, or signal) 115 * 116 */ 117 struct seccomp_kaddfd { 118 struct file *file; 119 int fd; 120 unsigned int flags; 121 122 union { 123 bool setfd; 124 /* To only be set on reply */ 125 int ret; 126 }; 127 struct completion completion; 128 struct list_head list; 129 }; 130 131 /** 132 * struct notification - container for seccomp userspace notifications. Since 133 * most seccomp filters will not have notification listeners attached and this 134 * structure is fairly large, we store the notification-specific stuff in a 135 * separate structure. 136 * 137 * @request: A semaphore that users of this notification can wait on for 138 * changes. Actual reads and writes are still controlled with 139 * filter->notify_lock. 140 * @next_id: The id of the next request. 141 * @notifications: A list of struct seccomp_knotif elements. 142 */ 143 struct notification { 144 struct semaphore request; 145 u64 next_id; 146 struct list_head notifications; 147 }; 148 149 #ifdef SECCOMP_ARCH_NATIVE 150 /** 151 * struct action_cache - per-filter cache of seccomp actions per 152 * arch/syscall pair 153 * 154 * @allow_native: A bitmap where each bit represents whether the 155 * filter will always allow the syscall, for the 156 * native architecture. 157 * @allow_compat: A bitmap where each bit represents whether the 158 * filter will always allow the syscall, for the 159 * compat architecture. 160 */ 161 struct action_cache { 162 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 163 #ifdef SECCOMP_ARCH_COMPAT 164 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 165 #endif 166 }; 167 #else 168 struct action_cache { }; 169 170 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 171 const struct seccomp_data *sd) 172 { 173 return false; 174 } 175 176 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 177 { 178 } 179 #endif /* SECCOMP_ARCH_NATIVE */ 180 181 /** 182 * struct seccomp_filter - container for seccomp BPF programs 183 * 184 * @refs: Reference count to manage the object lifetime. 185 * A filter's reference count is incremented for each directly 186 * attached task, once for the dependent filter, and if 187 * requested for the user notifier. When @refs reaches zero, 188 * the filter can be freed. 189 * @users: A filter's @users count is incremented for each directly 190 * attached task (filter installation, fork(), thread_sync), 191 * and once for the dependent filter (tracked in filter->prev). 192 * When it reaches zero it indicates that no direct or indirect 193 * users of that filter exist. No new tasks can get associated with 194 * this filter after reaching 0. The @users count is always smaller 195 * or equal to @refs. Hence, reaching 0 for @users does not mean 196 * the filter can be freed. 197 * @cache: cache of arch/syscall mappings to actions 198 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 199 * @prev: points to a previously installed, or inherited, filter 200 * @prog: the BPF program to evaluate 201 * @notif: the struct that holds all notification related information 202 * @notify_lock: A lock for all notification-related accesses. 203 * @wqh: A wait queue for poll if a notifier is in use. 204 * 205 * seccomp_filter objects are organized in a tree linked via the @prev 206 * pointer. For any task, it appears to be a singly-linked list starting 207 * with current->seccomp.filter, the most recently attached or inherited filter. 208 * However, multiple filters may share a @prev node, by way of fork(), which 209 * results in a unidirectional tree existing in memory. This is similar to 210 * how namespaces work. 211 * 212 * seccomp_filter objects should never be modified after being attached 213 * to a task_struct (other than @refs). 214 */ 215 struct seccomp_filter { 216 refcount_t refs; 217 refcount_t users; 218 bool log; 219 struct action_cache cache; 220 struct seccomp_filter *prev; 221 struct bpf_prog *prog; 222 struct notification *notif; 223 struct mutex notify_lock; 224 wait_queue_head_t wqh; 225 }; 226 227 /* Limit any path through the tree to 256KB worth of instructions. */ 228 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 229 230 /* 231 * Endianness is explicitly ignored and left for BPF program authors to manage 232 * as per the specific architecture. 233 */ 234 static void populate_seccomp_data(struct seccomp_data *sd) 235 { 236 /* 237 * Instead of using current_pt_reg(), we're already doing the work 238 * to safely fetch "current", so just use "task" everywhere below. 239 */ 240 struct task_struct *task = current; 241 struct pt_regs *regs = task_pt_regs(task); 242 unsigned long args[6]; 243 244 sd->nr = syscall_get_nr(task, regs); 245 sd->arch = syscall_get_arch(task); 246 syscall_get_arguments(task, regs, args); 247 sd->args[0] = args[0]; 248 sd->args[1] = args[1]; 249 sd->args[2] = args[2]; 250 sd->args[3] = args[3]; 251 sd->args[4] = args[4]; 252 sd->args[5] = args[5]; 253 sd->instruction_pointer = KSTK_EIP(task); 254 } 255 256 /** 257 * seccomp_check_filter - verify seccomp filter code 258 * @filter: filter to verify 259 * @flen: length of filter 260 * 261 * Takes a previously checked filter (by bpf_check_classic) and 262 * redirects all filter code that loads struct sk_buff data 263 * and related data through seccomp_bpf_load. It also 264 * enforces length and alignment checking of those loads. 265 * 266 * Returns 0 if the rule set is legal or -EINVAL if not. 267 */ 268 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 269 { 270 int pc; 271 for (pc = 0; pc < flen; pc++) { 272 struct sock_filter *ftest = &filter[pc]; 273 u16 code = ftest->code; 274 u32 k = ftest->k; 275 276 switch (code) { 277 case BPF_LD | BPF_W | BPF_ABS: 278 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 279 /* 32-bit aligned and not out of bounds. */ 280 if (k >= sizeof(struct seccomp_data) || k & 3) 281 return -EINVAL; 282 continue; 283 case BPF_LD | BPF_W | BPF_LEN: 284 ftest->code = BPF_LD | BPF_IMM; 285 ftest->k = sizeof(struct seccomp_data); 286 continue; 287 case BPF_LDX | BPF_W | BPF_LEN: 288 ftest->code = BPF_LDX | BPF_IMM; 289 ftest->k = sizeof(struct seccomp_data); 290 continue; 291 /* Explicitly include allowed calls. */ 292 case BPF_RET | BPF_K: 293 case BPF_RET | BPF_A: 294 case BPF_ALU | BPF_ADD | BPF_K: 295 case BPF_ALU | BPF_ADD | BPF_X: 296 case BPF_ALU | BPF_SUB | BPF_K: 297 case BPF_ALU | BPF_SUB | BPF_X: 298 case BPF_ALU | BPF_MUL | BPF_K: 299 case BPF_ALU | BPF_MUL | BPF_X: 300 case BPF_ALU | BPF_DIV | BPF_K: 301 case BPF_ALU | BPF_DIV | BPF_X: 302 case BPF_ALU | BPF_AND | BPF_K: 303 case BPF_ALU | BPF_AND | BPF_X: 304 case BPF_ALU | BPF_OR | BPF_K: 305 case BPF_ALU | BPF_OR | BPF_X: 306 case BPF_ALU | BPF_XOR | BPF_K: 307 case BPF_ALU | BPF_XOR | BPF_X: 308 case BPF_ALU | BPF_LSH | BPF_K: 309 case BPF_ALU | BPF_LSH | BPF_X: 310 case BPF_ALU | BPF_RSH | BPF_K: 311 case BPF_ALU | BPF_RSH | BPF_X: 312 case BPF_ALU | BPF_NEG: 313 case BPF_LD | BPF_IMM: 314 case BPF_LDX | BPF_IMM: 315 case BPF_MISC | BPF_TAX: 316 case BPF_MISC | BPF_TXA: 317 case BPF_LD | BPF_MEM: 318 case BPF_LDX | BPF_MEM: 319 case BPF_ST: 320 case BPF_STX: 321 case BPF_JMP | BPF_JA: 322 case BPF_JMP | BPF_JEQ | BPF_K: 323 case BPF_JMP | BPF_JEQ | BPF_X: 324 case BPF_JMP | BPF_JGE | BPF_K: 325 case BPF_JMP | BPF_JGE | BPF_X: 326 case BPF_JMP | BPF_JGT | BPF_K: 327 case BPF_JMP | BPF_JGT | BPF_X: 328 case BPF_JMP | BPF_JSET | BPF_K: 329 case BPF_JMP | BPF_JSET | BPF_X: 330 continue; 331 default: 332 return -EINVAL; 333 } 334 } 335 return 0; 336 } 337 338 #ifdef SECCOMP_ARCH_NATIVE 339 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 340 size_t bitmap_size, 341 int syscall_nr) 342 { 343 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 344 return false; 345 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 346 347 return test_bit(syscall_nr, bitmap); 348 } 349 350 /** 351 * seccomp_cache_check_allow - lookup seccomp cache 352 * @sfilter: The seccomp filter 353 * @sd: The seccomp data to lookup the cache with 354 * 355 * Returns true if the seccomp_data is cached and allowed. 356 */ 357 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 358 const struct seccomp_data *sd) 359 { 360 int syscall_nr = sd->nr; 361 const struct action_cache *cache = &sfilter->cache; 362 363 #ifndef SECCOMP_ARCH_COMPAT 364 /* A native-only architecture doesn't need to check sd->arch. */ 365 return seccomp_cache_check_allow_bitmap(cache->allow_native, 366 SECCOMP_ARCH_NATIVE_NR, 367 syscall_nr); 368 #else 369 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 370 return seccomp_cache_check_allow_bitmap(cache->allow_native, 371 SECCOMP_ARCH_NATIVE_NR, 372 syscall_nr); 373 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 374 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 375 SECCOMP_ARCH_COMPAT_NR, 376 syscall_nr); 377 #endif /* SECCOMP_ARCH_COMPAT */ 378 379 WARN_ON_ONCE(true); 380 return false; 381 } 382 #endif /* SECCOMP_ARCH_NATIVE */ 383 384 /** 385 * seccomp_run_filters - evaluates all seccomp filters against @sd 386 * @sd: optional seccomp data to be passed to filters 387 * @match: stores struct seccomp_filter that resulted in the return value, 388 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 389 * be unchanged. 390 * 391 * Returns valid seccomp BPF response codes. 392 */ 393 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 394 static u32 seccomp_run_filters(const struct seccomp_data *sd, 395 struct seccomp_filter **match) 396 { 397 u32 ret = SECCOMP_RET_ALLOW; 398 /* Make sure cross-thread synced filter points somewhere sane. */ 399 struct seccomp_filter *f = 400 READ_ONCE(current->seccomp.filter); 401 402 /* Ensure unexpected behavior doesn't result in failing open. */ 403 if (WARN_ON(f == NULL)) 404 return SECCOMP_RET_KILL_PROCESS; 405 406 if (seccomp_cache_check_allow(f, sd)) 407 return SECCOMP_RET_ALLOW; 408 409 /* 410 * All filters in the list are evaluated and the lowest BPF return 411 * value always takes priority (ignoring the DATA). 412 */ 413 for (; f; f = f->prev) { 414 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 415 416 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 417 ret = cur_ret; 418 *match = f; 419 } 420 } 421 return ret; 422 } 423 #endif /* CONFIG_SECCOMP_FILTER */ 424 425 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 426 { 427 assert_spin_locked(¤t->sighand->siglock); 428 429 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 430 return false; 431 432 return true; 433 } 434 435 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 436 437 static inline void seccomp_assign_mode(struct task_struct *task, 438 unsigned long seccomp_mode, 439 unsigned long flags) 440 { 441 assert_spin_locked(&task->sighand->siglock); 442 443 task->seccomp.mode = seccomp_mode; 444 /* 445 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and 446 * filter) is set. 447 */ 448 smp_mb__before_atomic(); 449 /* Assume default seccomp processes want spec flaw mitigation. */ 450 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 451 arch_seccomp_spec_mitigate(task); 452 set_task_syscall_work(task, SECCOMP); 453 } 454 455 #ifdef CONFIG_SECCOMP_FILTER 456 /* Returns 1 if the parent is an ancestor of the child. */ 457 static int is_ancestor(struct seccomp_filter *parent, 458 struct seccomp_filter *child) 459 { 460 /* NULL is the root ancestor. */ 461 if (parent == NULL) 462 return 1; 463 for (; child; child = child->prev) 464 if (child == parent) 465 return 1; 466 return 0; 467 } 468 469 /** 470 * seccomp_can_sync_threads: checks if all threads can be synchronized 471 * 472 * Expects sighand and cred_guard_mutex locks to be held. 473 * 474 * Returns 0 on success, -ve on error, or the pid of a thread which was 475 * either not in the correct seccomp mode or did not have an ancestral 476 * seccomp filter. 477 */ 478 static inline pid_t seccomp_can_sync_threads(void) 479 { 480 struct task_struct *thread, *caller; 481 482 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 483 assert_spin_locked(¤t->sighand->siglock); 484 485 /* Validate all threads being eligible for synchronization. */ 486 caller = current; 487 for_each_thread(caller, thread) { 488 pid_t failed; 489 490 /* Skip current, since it is initiating the sync. */ 491 if (thread == caller) 492 continue; 493 494 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 495 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 496 is_ancestor(thread->seccomp.filter, 497 caller->seccomp.filter))) 498 continue; 499 500 /* Return the first thread that cannot be synchronized. */ 501 failed = task_pid_vnr(thread); 502 /* If the pid cannot be resolved, then return -ESRCH */ 503 if (WARN_ON(failed == 0)) 504 failed = -ESRCH; 505 return failed; 506 } 507 508 return 0; 509 } 510 511 static inline void seccomp_filter_free(struct seccomp_filter *filter) 512 { 513 if (filter) { 514 bpf_prog_destroy(filter->prog); 515 kfree(filter); 516 } 517 } 518 519 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 520 { 521 while (orig && refcount_dec_and_test(&orig->users)) { 522 if (waitqueue_active(&orig->wqh)) 523 wake_up_poll(&orig->wqh, EPOLLHUP); 524 orig = orig->prev; 525 } 526 } 527 528 static void __put_seccomp_filter(struct seccomp_filter *orig) 529 { 530 /* Clean up single-reference branches iteratively. */ 531 while (orig && refcount_dec_and_test(&orig->refs)) { 532 struct seccomp_filter *freeme = orig; 533 orig = orig->prev; 534 seccomp_filter_free(freeme); 535 } 536 } 537 538 static void __seccomp_filter_release(struct seccomp_filter *orig) 539 { 540 /* Notify about any unused filters in the task's former filter tree. */ 541 __seccomp_filter_orphan(orig); 542 /* Finally drop all references to the task's former tree. */ 543 __put_seccomp_filter(orig); 544 } 545 546 /** 547 * seccomp_filter_release - Detach the task from its filter tree, 548 * drop its reference count, and notify 549 * about unused filters 550 * 551 * This function should only be called when the task is exiting as 552 * it detaches it from its filter tree. As such, READ_ONCE() and 553 * barriers are not needed here, as would normally be needed. 554 */ 555 void seccomp_filter_release(struct task_struct *tsk) 556 { 557 struct seccomp_filter *orig = tsk->seccomp.filter; 558 559 /* We are effectively holding the siglock by not having any sighand. */ 560 WARN_ON(tsk->sighand != NULL); 561 562 /* Detach task from its filter tree. */ 563 tsk->seccomp.filter = NULL; 564 __seccomp_filter_release(orig); 565 } 566 567 /** 568 * seccomp_sync_threads: sets all threads to use current's filter 569 * 570 * Expects sighand and cred_guard_mutex locks to be held, and for 571 * seccomp_can_sync_threads() to have returned success already 572 * without dropping the locks. 573 * 574 */ 575 static inline void seccomp_sync_threads(unsigned long flags) 576 { 577 struct task_struct *thread, *caller; 578 579 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 580 assert_spin_locked(¤t->sighand->siglock); 581 582 /* Synchronize all threads. */ 583 caller = current; 584 for_each_thread(caller, thread) { 585 /* Skip current, since it needs no changes. */ 586 if (thread == caller) 587 continue; 588 589 /* Get a task reference for the new leaf node. */ 590 get_seccomp_filter(caller); 591 592 /* 593 * Drop the task reference to the shared ancestor since 594 * current's path will hold a reference. (This also 595 * allows a put before the assignment.) 596 */ 597 __seccomp_filter_release(thread->seccomp.filter); 598 599 /* Make our new filter tree visible. */ 600 smp_store_release(&thread->seccomp.filter, 601 caller->seccomp.filter); 602 atomic_set(&thread->seccomp.filter_count, 603 atomic_read(&thread->seccomp.filter_count)); 604 605 /* 606 * Don't let an unprivileged task work around 607 * the no_new_privs restriction by creating 608 * a thread that sets it up, enters seccomp, 609 * then dies. 610 */ 611 if (task_no_new_privs(caller)) 612 task_set_no_new_privs(thread); 613 614 /* 615 * Opt the other thread into seccomp if needed. 616 * As threads are considered to be trust-realm 617 * equivalent (see ptrace_may_access), it is safe to 618 * allow one thread to transition the other. 619 */ 620 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 621 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 622 flags); 623 } 624 } 625 626 /** 627 * seccomp_prepare_filter: Prepares a seccomp filter for use. 628 * @fprog: BPF program to install 629 * 630 * Returns filter on success or an ERR_PTR on failure. 631 */ 632 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 633 { 634 struct seccomp_filter *sfilter; 635 int ret; 636 const bool save_orig = 637 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 638 true; 639 #else 640 false; 641 #endif 642 643 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 644 return ERR_PTR(-EINVAL); 645 646 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 647 648 /* 649 * Installing a seccomp filter requires that the task has 650 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 651 * This avoids scenarios where unprivileged tasks can affect the 652 * behavior of privileged children. 653 */ 654 if (!task_no_new_privs(current) && 655 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN)) 656 return ERR_PTR(-EACCES); 657 658 /* Allocate a new seccomp_filter */ 659 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 660 if (!sfilter) 661 return ERR_PTR(-ENOMEM); 662 663 mutex_init(&sfilter->notify_lock); 664 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 665 seccomp_check_filter, save_orig); 666 if (ret < 0) { 667 kfree(sfilter); 668 return ERR_PTR(ret); 669 } 670 671 refcount_set(&sfilter->refs, 1); 672 refcount_set(&sfilter->users, 1); 673 init_waitqueue_head(&sfilter->wqh); 674 675 return sfilter; 676 } 677 678 /** 679 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 680 * @user_filter: pointer to the user data containing a sock_fprog. 681 * 682 * Returns 0 on success and non-zero otherwise. 683 */ 684 static struct seccomp_filter * 685 seccomp_prepare_user_filter(const char __user *user_filter) 686 { 687 struct sock_fprog fprog; 688 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 689 690 #ifdef CONFIG_COMPAT 691 if (in_compat_syscall()) { 692 struct compat_sock_fprog fprog32; 693 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 694 goto out; 695 fprog.len = fprog32.len; 696 fprog.filter = compat_ptr(fprog32.filter); 697 } else /* falls through to the if below. */ 698 #endif 699 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 700 goto out; 701 filter = seccomp_prepare_filter(&fprog); 702 out: 703 return filter; 704 } 705 706 #ifdef SECCOMP_ARCH_NATIVE 707 /** 708 * seccomp_is_const_allow - check if filter is constant allow with given data 709 * @fprog: The BPF programs 710 * @sd: The seccomp data to check against, only syscall number and arch 711 * number are considered constant. 712 */ 713 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 714 struct seccomp_data *sd) 715 { 716 unsigned int reg_value = 0; 717 unsigned int pc; 718 bool op_res; 719 720 if (WARN_ON_ONCE(!fprog)) 721 return false; 722 723 for (pc = 0; pc < fprog->len; pc++) { 724 struct sock_filter *insn = &fprog->filter[pc]; 725 u16 code = insn->code; 726 u32 k = insn->k; 727 728 switch (code) { 729 case BPF_LD | BPF_W | BPF_ABS: 730 switch (k) { 731 case offsetof(struct seccomp_data, nr): 732 reg_value = sd->nr; 733 break; 734 case offsetof(struct seccomp_data, arch): 735 reg_value = sd->arch; 736 break; 737 default: 738 /* can't optimize (non-constant value load) */ 739 return false; 740 } 741 break; 742 case BPF_RET | BPF_K: 743 /* reached return with constant values only, check allow */ 744 return k == SECCOMP_RET_ALLOW; 745 case BPF_JMP | BPF_JA: 746 pc += insn->k; 747 break; 748 case BPF_JMP | BPF_JEQ | BPF_K: 749 case BPF_JMP | BPF_JGE | BPF_K: 750 case BPF_JMP | BPF_JGT | BPF_K: 751 case BPF_JMP | BPF_JSET | BPF_K: 752 switch (BPF_OP(code)) { 753 case BPF_JEQ: 754 op_res = reg_value == k; 755 break; 756 case BPF_JGE: 757 op_res = reg_value >= k; 758 break; 759 case BPF_JGT: 760 op_res = reg_value > k; 761 break; 762 case BPF_JSET: 763 op_res = !!(reg_value & k); 764 break; 765 default: 766 /* can't optimize (unknown jump) */ 767 return false; 768 } 769 770 pc += op_res ? insn->jt : insn->jf; 771 break; 772 case BPF_ALU | BPF_AND | BPF_K: 773 reg_value &= k; 774 break; 775 default: 776 /* can't optimize (unknown insn) */ 777 return false; 778 } 779 } 780 781 /* ran off the end of the filter?! */ 782 WARN_ON(1); 783 return false; 784 } 785 786 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 787 void *bitmap, const void *bitmap_prev, 788 size_t bitmap_size, int arch) 789 { 790 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 791 struct seccomp_data sd; 792 int nr; 793 794 if (bitmap_prev) { 795 /* The new filter must be as restrictive as the last. */ 796 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 797 } else { 798 /* Before any filters, all syscalls are always allowed. */ 799 bitmap_fill(bitmap, bitmap_size); 800 } 801 802 for (nr = 0; nr < bitmap_size; nr++) { 803 /* No bitmap change: not a cacheable action. */ 804 if (!test_bit(nr, bitmap)) 805 continue; 806 807 sd.nr = nr; 808 sd.arch = arch; 809 810 /* No bitmap change: continue to always allow. */ 811 if (seccomp_is_const_allow(fprog, &sd)) 812 continue; 813 814 /* 815 * Not a cacheable action: always run filters. 816 * atomic clear_bit() not needed, filter not visible yet. 817 */ 818 __clear_bit(nr, bitmap); 819 } 820 } 821 822 /** 823 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls 824 * @sfilter: The seccomp filter 825 * 826 * Returns 0 if successful or -errno if error occurred. 827 */ 828 static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 829 { 830 struct action_cache *cache = &sfilter->cache; 831 const struct action_cache *cache_prev = 832 sfilter->prev ? &sfilter->prev->cache : NULL; 833 834 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 835 cache_prev ? cache_prev->allow_native : NULL, 836 SECCOMP_ARCH_NATIVE_NR, 837 SECCOMP_ARCH_NATIVE); 838 839 #ifdef SECCOMP_ARCH_COMPAT 840 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 841 cache_prev ? cache_prev->allow_compat : NULL, 842 SECCOMP_ARCH_COMPAT_NR, 843 SECCOMP_ARCH_COMPAT); 844 #endif /* SECCOMP_ARCH_COMPAT */ 845 } 846 #endif /* SECCOMP_ARCH_NATIVE */ 847 848 /** 849 * seccomp_attach_filter: validate and attach filter 850 * @flags: flags to change filter behavior 851 * @filter: seccomp filter to add to the current process 852 * 853 * Caller must be holding current->sighand->siglock lock. 854 * 855 * Returns 0 on success, -ve on error, or 856 * - in TSYNC mode: the pid of a thread which was either not in the correct 857 * seccomp mode or did not have an ancestral seccomp filter 858 * - in NEW_LISTENER mode: the fd of the new listener 859 */ 860 static long seccomp_attach_filter(unsigned int flags, 861 struct seccomp_filter *filter) 862 { 863 unsigned long total_insns; 864 struct seccomp_filter *walker; 865 866 assert_spin_locked(¤t->sighand->siglock); 867 868 /* Validate resulting filter length. */ 869 total_insns = filter->prog->len; 870 for (walker = current->seccomp.filter; walker; walker = walker->prev) 871 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 872 if (total_insns > MAX_INSNS_PER_PATH) 873 return -ENOMEM; 874 875 /* If thread sync has been requested, check that it is possible. */ 876 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 877 int ret; 878 879 ret = seccomp_can_sync_threads(); 880 if (ret) { 881 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 882 return -ESRCH; 883 else 884 return ret; 885 } 886 } 887 888 /* Set log flag, if present. */ 889 if (flags & SECCOMP_FILTER_FLAG_LOG) 890 filter->log = true; 891 892 /* 893 * If there is an existing filter, make it the prev and don't drop its 894 * task reference. 895 */ 896 filter->prev = current->seccomp.filter; 897 seccomp_cache_prepare(filter); 898 current->seccomp.filter = filter; 899 atomic_inc(¤t->seccomp.filter_count); 900 901 /* Now that the new filter is in place, synchronize to all threads. */ 902 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 903 seccomp_sync_threads(flags); 904 905 return 0; 906 } 907 908 static void __get_seccomp_filter(struct seccomp_filter *filter) 909 { 910 refcount_inc(&filter->refs); 911 } 912 913 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 914 void get_seccomp_filter(struct task_struct *tsk) 915 { 916 struct seccomp_filter *orig = tsk->seccomp.filter; 917 if (!orig) 918 return; 919 __get_seccomp_filter(orig); 920 refcount_inc(&orig->users); 921 } 922 923 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason) 924 { 925 clear_siginfo(info); 926 info->si_signo = SIGSYS; 927 info->si_code = SYS_SECCOMP; 928 info->si_call_addr = (void __user *)KSTK_EIP(current); 929 info->si_errno = reason; 930 info->si_arch = syscall_get_arch(current); 931 info->si_syscall = syscall; 932 } 933 934 /** 935 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation 936 * @syscall: syscall number to send to userland 937 * @reason: filter-supplied reason code to send to userland (via si_errno) 938 * 939 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 940 */ 941 static void seccomp_send_sigsys(int syscall, int reason) 942 { 943 struct kernel_siginfo info; 944 seccomp_init_siginfo(&info, syscall, reason); 945 force_sig_info(&info); 946 } 947 #endif /* CONFIG_SECCOMP_FILTER */ 948 949 /* For use with seccomp_actions_logged */ 950 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 951 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 952 #define SECCOMP_LOG_TRAP (1 << 2) 953 #define SECCOMP_LOG_ERRNO (1 << 3) 954 #define SECCOMP_LOG_TRACE (1 << 4) 955 #define SECCOMP_LOG_LOG (1 << 5) 956 #define SECCOMP_LOG_ALLOW (1 << 6) 957 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 958 959 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 960 SECCOMP_LOG_KILL_THREAD | 961 SECCOMP_LOG_TRAP | 962 SECCOMP_LOG_ERRNO | 963 SECCOMP_LOG_USER_NOTIF | 964 SECCOMP_LOG_TRACE | 965 SECCOMP_LOG_LOG; 966 967 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 968 bool requested) 969 { 970 bool log = false; 971 972 switch (action) { 973 case SECCOMP_RET_ALLOW: 974 break; 975 case SECCOMP_RET_TRAP: 976 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 977 break; 978 case SECCOMP_RET_ERRNO: 979 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 980 break; 981 case SECCOMP_RET_TRACE: 982 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 983 break; 984 case SECCOMP_RET_USER_NOTIF: 985 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 986 break; 987 case SECCOMP_RET_LOG: 988 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 989 break; 990 case SECCOMP_RET_KILL_THREAD: 991 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 992 break; 993 case SECCOMP_RET_KILL_PROCESS: 994 default: 995 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 996 } 997 998 /* 999 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 1000 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 1001 * any action from being logged by removing the action name from the 1002 * seccomp_actions_logged sysctl. 1003 */ 1004 if (!log) 1005 return; 1006 1007 audit_seccomp(syscall, signr, action); 1008 } 1009 1010 /* 1011 * Secure computing mode 1 allows only read/write/exit/sigreturn. 1012 * To be fully secure this must be combined with rlimit 1013 * to limit the stack allocations too. 1014 */ 1015 static const int mode1_syscalls[] = { 1016 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 1017 -1, /* negative terminated */ 1018 }; 1019 1020 static void __secure_computing_strict(int this_syscall) 1021 { 1022 const int *allowed_syscalls = mode1_syscalls; 1023 #ifdef CONFIG_COMPAT 1024 if (in_compat_syscall()) 1025 allowed_syscalls = get_compat_mode1_syscalls(); 1026 #endif 1027 do { 1028 if (*allowed_syscalls == this_syscall) 1029 return; 1030 } while (*++allowed_syscalls != -1); 1031 1032 #ifdef SECCOMP_DEBUG 1033 dump_stack(); 1034 #endif 1035 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1036 do_exit(SIGKILL); 1037 } 1038 1039 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1040 void secure_computing_strict(int this_syscall) 1041 { 1042 int mode = current->seccomp.mode; 1043 1044 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1045 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1046 return; 1047 1048 if (mode == SECCOMP_MODE_DISABLED) 1049 return; 1050 else if (mode == SECCOMP_MODE_STRICT) 1051 __secure_computing_strict(this_syscall); 1052 else 1053 BUG(); 1054 } 1055 #else 1056 1057 #ifdef CONFIG_SECCOMP_FILTER 1058 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1059 { 1060 /* 1061 * Note: overflow is ok here, the id just needs to be unique per 1062 * filter. 1063 */ 1064 lockdep_assert_held(&filter->notify_lock); 1065 return filter->notif->next_id++; 1066 } 1067 1068 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd) 1069 { 1070 /* 1071 * Remove the notification, and reset the list pointers, indicating 1072 * that it has been handled. 1073 */ 1074 list_del_init(&addfd->list); 1075 if (!addfd->setfd) 1076 addfd->ret = receive_fd(addfd->file, addfd->flags); 1077 else 1078 addfd->ret = receive_fd_replace(addfd->fd, addfd->file, 1079 addfd->flags); 1080 complete(&addfd->completion); 1081 } 1082 1083 static int seccomp_do_user_notification(int this_syscall, 1084 struct seccomp_filter *match, 1085 const struct seccomp_data *sd) 1086 { 1087 int err; 1088 u32 flags = 0; 1089 long ret = 0; 1090 struct seccomp_knotif n = {}; 1091 struct seccomp_kaddfd *addfd, *tmp; 1092 1093 mutex_lock(&match->notify_lock); 1094 err = -ENOSYS; 1095 if (!match->notif) 1096 goto out; 1097 1098 n.task = current; 1099 n.state = SECCOMP_NOTIFY_INIT; 1100 n.data = sd; 1101 n.id = seccomp_next_notify_id(match); 1102 init_completion(&n.ready); 1103 list_add(&n.list, &match->notif->notifications); 1104 INIT_LIST_HEAD(&n.addfd); 1105 1106 up(&match->notif->request); 1107 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1108 mutex_unlock(&match->notify_lock); 1109 1110 /* 1111 * This is where we wait for a reply from userspace. 1112 */ 1113 wait: 1114 err = wait_for_completion_interruptible(&n.ready); 1115 mutex_lock(&match->notify_lock); 1116 if (err == 0) { 1117 /* Check if we were woken up by a addfd message */ 1118 addfd = list_first_entry_or_null(&n.addfd, 1119 struct seccomp_kaddfd, list); 1120 if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) { 1121 seccomp_handle_addfd(addfd); 1122 mutex_unlock(&match->notify_lock); 1123 goto wait; 1124 } 1125 ret = n.val; 1126 err = n.error; 1127 flags = n.flags; 1128 } 1129 1130 /* If there were any pending addfd calls, clear them out */ 1131 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1132 /* The process went away before we got a chance to handle it */ 1133 addfd->ret = -ESRCH; 1134 list_del_init(&addfd->list); 1135 complete(&addfd->completion); 1136 } 1137 1138 /* 1139 * Note that it's possible the listener died in between the time when 1140 * we were notified of a response (or a signal) and when we were able to 1141 * re-acquire the lock, so only delete from the list if the 1142 * notification actually exists. 1143 * 1144 * Also note that this test is only valid because there's no way to 1145 * *reattach* to a notifier right now. If one is added, we'll need to 1146 * keep track of the notif itself and make sure they match here. 1147 */ 1148 if (match->notif) 1149 list_del(&n.list); 1150 out: 1151 mutex_unlock(&match->notify_lock); 1152 1153 /* Userspace requests to continue the syscall. */ 1154 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1155 return 0; 1156 1157 syscall_set_return_value(current, current_pt_regs(), 1158 err, ret); 1159 return -1; 1160 } 1161 1162 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1163 const bool recheck_after_trace) 1164 { 1165 u32 filter_ret, action; 1166 struct seccomp_filter *match = NULL; 1167 int data; 1168 struct seccomp_data sd_local; 1169 1170 /* 1171 * Make sure that any changes to mode from another thread have 1172 * been seen after SYSCALL_WORK_SECCOMP was seen. 1173 */ 1174 smp_rmb(); 1175 1176 if (!sd) { 1177 populate_seccomp_data(&sd_local); 1178 sd = &sd_local; 1179 } 1180 1181 filter_ret = seccomp_run_filters(sd, &match); 1182 data = filter_ret & SECCOMP_RET_DATA; 1183 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1184 1185 switch (action) { 1186 case SECCOMP_RET_ERRNO: 1187 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1188 if (data > MAX_ERRNO) 1189 data = MAX_ERRNO; 1190 syscall_set_return_value(current, current_pt_regs(), 1191 -data, 0); 1192 goto skip; 1193 1194 case SECCOMP_RET_TRAP: 1195 /* Show the handler the original registers. */ 1196 syscall_rollback(current, current_pt_regs()); 1197 /* Let the filter pass back 16 bits of data. */ 1198 seccomp_send_sigsys(this_syscall, data); 1199 goto skip; 1200 1201 case SECCOMP_RET_TRACE: 1202 /* We've been put in this state by the ptracer already. */ 1203 if (recheck_after_trace) 1204 return 0; 1205 1206 /* ENOSYS these calls if there is no tracer attached. */ 1207 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1208 syscall_set_return_value(current, 1209 current_pt_regs(), 1210 -ENOSYS, 0); 1211 goto skip; 1212 } 1213 1214 /* Allow the BPF to provide the event message */ 1215 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1216 /* 1217 * The delivery of a fatal signal during event 1218 * notification may silently skip tracer notification, 1219 * which could leave us with a potentially unmodified 1220 * syscall that the tracer would have liked to have 1221 * changed. Since the process is about to die, we just 1222 * force the syscall to be skipped and let the signal 1223 * kill the process and correctly handle any tracer exit 1224 * notifications. 1225 */ 1226 if (fatal_signal_pending(current)) 1227 goto skip; 1228 /* Check if the tracer forced the syscall to be skipped. */ 1229 this_syscall = syscall_get_nr(current, current_pt_regs()); 1230 if (this_syscall < 0) 1231 goto skip; 1232 1233 /* 1234 * Recheck the syscall, since it may have changed. This 1235 * intentionally uses a NULL struct seccomp_data to force 1236 * a reload of all registers. This does not goto skip since 1237 * a skip would have already been reported. 1238 */ 1239 if (__seccomp_filter(this_syscall, NULL, true)) 1240 return -1; 1241 1242 return 0; 1243 1244 case SECCOMP_RET_USER_NOTIF: 1245 if (seccomp_do_user_notification(this_syscall, match, sd)) 1246 goto skip; 1247 1248 return 0; 1249 1250 case SECCOMP_RET_LOG: 1251 seccomp_log(this_syscall, 0, action, true); 1252 return 0; 1253 1254 case SECCOMP_RET_ALLOW: 1255 /* 1256 * Note that the "match" filter will always be NULL for 1257 * this action since SECCOMP_RET_ALLOW is the starting 1258 * state in seccomp_run_filters(). 1259 */ 1260 return 0; 1261 1262 case SECCOMP_RET_KILL_THREAD: 1263 case SECCOMP_RET_KILL_PROCESS: 1264 default: 1265 seccomp_log(this_syscall, SIGSYS, action, true); 1266 /* Dump core only if this is the last remaining thread. */ 1267 if (action != SECCOMP_RET_KILL_THREAD || 1268 get_nr_threads(current) == 1) { 1269 kernel_siginfo_t info; 1270 1271 /* Show the original registers in the dump. */ 1272 syscall_rollback(current, current_pt_regs()); 1273 /* Trigger a manual coredump since do_exit skips it. */ 1274 seccomp_init_siginfo(&info, this_syscall, data); 1275 do_coredump(&info); 1276 } 1277 if (action == SECCOMP_RET_KILL_THREAD) 1278 do_exit(SIGSYS); 1279 else 1280 do_group_exit(SIGSYS); 1281 } 1282 1283 unreachable(); 1284 1285 skip: 1286 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1287 return -1; 1288 } 1289 #else 1290 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1291 const bool recheck_after_trace) 1292 { 1293 BUG(); 1294 1295 return -1; 1296 } 1297 #endif 1298 1299 int __secure_computing(const struct seccomp_data *sd) 1300 { 1301 int mode = current->seccomp.mode; 1302 int this_syscall; 1303 1304 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1305 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1306 return 0; 1307 1308 this_syscall = sd ? sd->nr : 1309 syscall_get_nr(current, current_pt_regs()); 1310 1311 switch (mode) { 1312 case SECCOMP_MODE_STRICT: 1313 __secure_computing_strict(this_syscall); /* may call do_exit */ 1314 return 0; 1315 case SECCOMP_MODE_FILTER: 1316 return __seccomp_filter(this_syscall, sd, false); 1317 default: 1318 BUG(); 1319 } 1320 } 1321 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1322 1323 long prctl_get_seccomp(void) 1324 { 1325 return current->seccomp.mode; 1326 } 1327 1328 /** 1329 * seccomp_set_mode_strict: internal function for setting strict seccomp 1330 * 1331 * Once current->seccomp.mode is non-zero, it may not be changed. 1332 * 1333 * Returns 0 on success or -EINVAL on failure. 1334 */ 1335 static long seccomp_set_mode_strict(void) 1336 { 1337 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1338 long ret = -EINVAL; 1339 1340 spin_lock_irq(¤t->sighand->siglock); 1341 1342 if (!seccomp_may_assign_mode(seccomp_mode)) 1343 goto out; 1344 1345 #ifdef TIF_NOTSC 1346 disable_TSC(); 1347 #endif 1348 seccomp_assign_mode(current, seccomp_mode, 0); 1349 ret = 0; 1350 1351 out: 1352 spin_unlock_irq(¤t->sighand->siglock); 1353 1354 return ret; 1355 } 1356 1357 #ifdef CONFIG_SECCOMP_FILTER 1358 static void seccomp_notify_free(struct seccomp_filter *filter) 1359 { 1360 kfree(filter->notif); 1361 filter->notif = NULL; 1362 } 1363 1364 static void seccomp_notify_detach(struct seccomp_filter *filter) 1365 { 1366 struct seccomp_knotif *knotif; 1367 1368 if (!filter) 1369 return; 1370 1371 mutex_lock(&filter->notify_lock); 1372 1373 /* 1374 * If this file is being closed because e.g. the task who owned it 1375 * died, let's wake everyone up who was waiting on us. 1376 */ 1377 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1378 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1379 continue; 1380 1381 knotif->state = SECCOMP_NOTIFY_REPLIED; 1382 knotif->error = -ENOSYS; 1383 knotif->val = 0; 1384 1385 /* 1386 * We do not need to wake up any pending addfd messages, as 1387 * the notifier will do that for us, as this just looks 1388 * like a standard reply. 1389 */ 1390 complete(&knotif->ready); 1391 } 1392 1393 seccomp_notify_free(filter); 1394 mutex_unlock(&filter->notify_lock); 1395 } 1396 1397 static int seccomp_notify_release(struct inode *inode, struct file *file) 1398 { 1399 struct seccomp_filter *filter = file->private_data; 1400 1401 seccomp_notify_detach(filter); 1402 __put_seccomp_filter(filter); 1403 return 0; 1404 } 1405 1406 /* must be called with notif_lock held */ 1407 static inline struct seccomp_knotif * 1408 find_notification(struct seccomp_filter *filter, u64 id) 1409 { 1410 struct seccomp_knotif *cur; 1411 1412 lockdep_assert_held(&filter->notify_lock); 1413 1414 list_for_each_entry(cur, &filter->notif->notifications, list) { 1415 if (cur->id == id) 1416 return cur; 1417 } 1418 1419 return NULL; 1420 } 1421 1422 1423 static long seccomp_notify_recv(struct seccomp_filter *filter, 1424 void __user *buf) 1425 { 1426 struct seccomp_knotif *knotif = NULL, *cur; 1427 struct seccomp_notif unotif; 1428 ssize_t ret; 1429 1430 /* Verify that we're not given garbage to keep struct extensible. */ 1431 ret = check_zeroed_user(buf, sizeof(unotif)); 1432 if (ret < 0) 1433 return ret; 1434 if (!ret) 1435 return -EINVAL; 1436 1437 memset(&unotif, 0, sizeof(unotif)); 1438 1439 ret = down_interruptible(&filter->notif->request); 1440 if (ret < 0) 1441 return ret; 1442 1443 mutex_lock(&filter->notify_lock); 1444 list_for_each_entry(cur, &filter->notif->notifications, list) { 1445 if (cur->state == SECCOMP_NOTIFY_INIT) { 1446 knotif = cur; 1447 break; 1448 } 1449 } 1450 1451 /* 1452 * If we didn't find a notification, it could be that the task was 1453 * interrupted by a fatal signal between the time we were woken and 1454 * when we were able to acquire the rw lock. 1455 */ 1456 if (!knotif) { 1457 ret = -ENOENT; 1458 goto out; 1459 } 1460 1461 unotif.id = knotif->id; 1462 unotif.pid = task_pid_vnr(knotif->task); 1463 unotif.data = *(knotif->data); 1464 1465 knotif->state = SECCOMP_NOTIFY_SENT; 1466 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1467 ret = 0; 1468 out: 1469 mutex_unlock(&filter->notify_lock); 1470 1471 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1472 ret = -EFAULT; 1473 1474 /* 1475 * Userspace screwed up. To make sure that we keep this 1476 * notification alive, let's reset it back to INIT. It 1477 * may have died when we released the lock, so we need to make 1478 * sure it's still around. 1479 */ 1480 mutex_lock(&filter->notify_lock); 1481 knotif = find_notification(filter, unotif.id); 1482 if (knotif) { 1483 knotif->state = SECCOMP_NOTIFY_INIT; 1484 up(&filter->notif->request); 1485 } 1486 mutex_unlock(&filter->notify_lock); 1487 } 1488 1489 return ret; 1490 } 1491 1492 static long seccomp_notify_send(struct seccomp_filter *filter, 1493 void __user *buf) 1494 { 1495 struct seccomp_notif_resp resp = {}; 1496 struct seccomp_knotif *knotif; 1497 long ret; 1498 1499 if (copy_from_user(&resp, buf, sizeof(resp))) 1500 return -EFAULT; 1501 1502 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1503 return -EINVAL; 1504 1505 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1506 (resp.error || resp.val)) 1507 return -EINVAL; 1508 1509 ret = mutex_lock_interruptible(&filter->notify_lock); 1510 if (ret < 0) 1511 return ret; 1512 1513 knotif = find_notification(filter, resp.id); 1514 if (!knotif) { 1515 ret = -ENOENT; 1516 goto out; 1517 } 1518 1519 /* Allow exactly one reply. */ 1520 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1521 ret = -EINPROGRESS; 1522 goto out; 1523 } 1524 1525 ret = 0; 1526 knotif->state = SECCOMP_NOTIFY_REPLIED; 1527 knotif->error = resp.error; 1528 knotif->val = resp.val; 1529 knotif->flags = resp.flags; 1530 complete(&knotif->ready); 1531 out: 1532 mutex_unlock(&filter->notify_lock); 1533 return ret; 1534 } 1535 1536 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1537 void __user *buf) 1538 { 1539 struct seccomp_knotif *knotif; 1540 u64 id; 1541 long ret; 1542 1543 if (copy_from_user(&id, buf, sizeof(id))) 1544 return -EFAULT; 1545 1546 ret = mutex_lock_interruptible(&filter->notify_lock); 1547 if (ret < 0) 1548 return ret; 1549 1550 knotif = find_notification(filter, id); 1551 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1552 ret = 0; 1553 else 1554 ret = -ENOENT; 1555 1556 mutex_unlock(&filter->notify_lock); 1557 return ret; 1558 } 1559 1560 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1561 struct seccomp_notif_addfd __user *uaddfd, 1562 unsigned int size) 1563 { 1564 struct seccomp_notif_addfd addfd; 1565 struct seccomp_knotif *knotif; 1566 struct seccomp_kaddfd kaddfd; 1567 int ret; 1568 1569 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1570 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1571 1572 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1573 return -EINVAL; 1574 1575 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1576 if (ret) 1577 return ret; 1578 1579 if (addfd.newfd_flags & ~O_CLOEXEC) 1580 return -EINVAL; 1581 1582 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD) 1583 return -EINVAL; 1584 1585 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1586 return -EINVAL; 1587 1588 kaddfd.file = fget(addfd.srcfd); 1589 if (!kaddfd.file) 1590 return -EBADF; 1591 1592 kaddfd.flags = addfd.newfd_flags; 1593 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD; 1594 kaddfd.fd = addfd.newfd; 1595 init_completion(&kaddfd.completion); 1596 1597 ret = mutex_lock_interruptible(&filter->notify_lock); 1598 if (ret < 0) 1599 goto out; 1600 1601 knotif = find_notification(filter, addfd.id); 1602 if (!knotif) { 1603 ret = -ENOENT; 1604 goto out_unlock; 1605 } 1606 1607 /* 1608 * We do not want to allow for FD injection to occur before the 1609 * notification has been picked up by a userspace handler, or after 1610 * the notification has been replied to. 1611 */ 1612 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1613 ret = -EINPROGRESS; 1614 goto out_unlock; 1615 } 1616 1617 list_add(&kaddfd.list, &knotif->addfd); 1618 complete(&knotif->ready); 1619 mutex_unlock(&filter->notify_lock); 1620 1621 /* Now we wait for it to be processed or be interrupted */ 1622 ret = wait_for_completion_interruptible(&kaddfd.completion); 1623 if (ret == 0) { 1624 /* 1625 * We had a successful completion. The other side has already 1626 * removed us from the addfd queue, and 1627 * wait_for_completion_interruptible has a memory barrier upon 1628 * success that lets us read this value directly without 1629 * locking. 1630 */ 1631 ret = kaddfd.ret; 1632 goto out; 1633 } 1634 1635 mutex_lock(&filter->notify_lock); 1636 /* 1637 * Even though we were woken up by a signal and not a successful 1638 * completion, a completion may have happened in the mean time. 1639 * 1640 * We need to check again if the addfd request has been handled, 1641 * and if not, we will remove it from the queue. 1642 */ 1643 if (list_empty(&kaddfd.list)) 1644 ret = kaddfd.ret; 1645 else 1646 list_del(&kaddfd.list); 1647 1648 out_unlock: 1649 mutex_unlock(&filter->notify_lock); 1650 out: 1651 fput(kaddfd.file); 1652 1653 return ret; 1654 } 1655 1656 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1657 unsigned long arg) 1658 { 1659 struct seccomp_filter *filter = file->private_data; 1660 void __user *buf = (void __user *)arg; 1661 1662 /* Fixed-size ioctls */ 1663 switch (cmd) { 1664 case SECCOMP_IOCTL_NOTIF_RECV: 1665 return seccomp_notify_recv(filter, buf); 1666 case SECCOMP_IOCTL_NOTIF_SEND: 1667 return seccomp_notify_send(filter, buf); 1668 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1669 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1670 return seccomp_notify_id_valid(filter, buf); 1671 } 1672 1673 /* Extensible Argument ioctls */ 1674 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1675 switch (EA_IOCTL(cmd)) { 1676 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1677 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1678 default: 1679 return -EINVAL; 1680 } 1681 } 1682 1683 static __poll_t seccomp_notify_poll(struct file *file, 1684 struct poll_table_struct *poll_tab) 1685 { 1686 struct seccomp_filter *filter = file->private_data; 1687 __poll_t ret = 0; 1688 struct seccomp_knotif *cur; 1689 1690 poll_wait(file, &filter->wqh, poll_tab); 1691 1692 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1693 return EPOLLERR; 1694 1695 list_for_each_entry(cur, &filter->notif->notifications, list) { 1696 if (cur->state == SECCOMP_NOTIFY_INIT) 1697 ret |= EPOLLIN | EPOLLRDNORM; 1698 if (cur->state == SECCOMP_NOTIFY_SENT) 1699 ret |= EPOLLOUT | EPOLLWRNORM; 1700 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1701 break; 1702 } 1703 1704 mutex_unlock(&filter->notify_lock); 1705 1706 if (refcount_read(&filter->users) == 0) 1707 ret |= EPOLLHUP; 1708 1709 return ret; 1710 } 1711 1712 static const struct file_operations seccomp_notify_ops = { 1713 .poll = seccomp_notify_poll, 1714 .release = seccomp_notify_release, 1715 .unlocked_ioctl = seccomp_notify_ioctl, 1716 .compat_ioctl = seccomp_notify_ioctl, 1717 }; 1718 1719 static struct file *init_listener(struct seccomp_filter *filter) 1720 { 1721 struct file *ret; 1722 1723 ret = ERR_PTR(-ENOMEM); 1724 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1725 if (!filter->notif) 1726 goto out; 1727 1728 sema_init(&filter->notif->request, 0); 1729 filter->notif->next_id = get_random_u64(); 1730 INIT_LIST_HEAD(&filter->notif->notifications); 1731 1732 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1733 filter, O_RDWR); 1734 if (IS_ERR(ret)) 1735 goto out_notif; 1736 1737 /* The file has a reference to it now */ 1738 __get_seccomp_filter(filter); 1739 1740 out_notif: 1741 if (IS_ERR(ret)) 1742 seccomp_notify_free(filter); 1743 out: 1744 return ret; 1745 } 1746 1747 /* 1748 * Does @new_child have a listener while an ancestor also has a listener? 1749 * If so, we'll want to reject this filter. 1750 * This only has to be tested for the current process, even in the TSYNC case, 1751 * because TSYNC installs @child with the same parent on all threads. 1752 * Note that @new_child is not hooked up to its parent at this point yet, so 1753 * we use current->seccomp.filter. 1754 */ 1755 static bool has_duplicate_listener(struct seccomp_filter *new_child) 1756 { 1757 struct seccomp_filter *cur; 1758 1759 /* must be protected against concurrent TSYNC */ 1760 lockdep_assert_held(¤t->sighand->siglock); 1761 1762 if (!new_child->notif) 1763 return false; 1764 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1765 if (cur->notif) 1766 return true; 1767 } 1768 1769 return false; 1770 } 1771 1772 /** 1773 * seccomp_set_mode_filter: internal function for setting seccomp filter 1774 * @flags: flags to change filter behavior 1775 * @filter: struct sock_fprog containing filter 1776 * 1777 * This function may be called repeatedly to install additional filters. 1778 * Every filter successfully installed will be evaluated (in reverse order) 1779 * for each system call the task makes. 1780 * 1781 * Once current->seccomp.mode is non-zero, it may not be changed. 1782 * 1783 * Returns 0 on success or -EINVAL on failure. 1784 */ 1785 static long seccomp_set_mode_filter(unsigned int flags, 1786 const char __user *filter) 1787 { 1788 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1789 struct seccomp_filter *prepared = NULL; 1790 long ret = -EINVAL; 1791 int listener = -1; 1792 struct file *listener_f = NULL; 1793 1794 /* Validate flags. */ 1795 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1796 return -EINVAL; 1797 1798 /* 1799 * In the successful case, NEW_LISTENER returns the new listener fd. 1800 * But in the failure case, TSYNC returns the thread that died. If you 1801 * combine these two flags, there's no way to tell whether something 1802 * succeeded or failed. So, let's disallow this combination if the user 1803 * has not explicitly requested no errors from TSYNC. 1804 */ 1805 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1806 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1807 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1808 return -EINVAL; 1809 1810 /* Prepare the new filter before holding any locks. */ 1811 prepared = seccomp_prepare_user_filter(filter); 1812 if (IS_ERR(prepared)) 1813 return PTR_ERR(prepared); 1814 1815 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1816 listener = get_unused_fd_flags(O_CLOEXEC); 1817 if (listener < 0) { 1818 ret = listener; 1819 goto out_free; 1820 } 1821 1822 listener_f = init_listener(prepared); 1823 if (IS_ERR(listener_f)) { 1824 put_unused_fd(listener); 1825 ret = PTR_ERR(listener_f); 1826 goto out_free; 1827 } 1828 } 1829 1830 /* 1831 * Make sure we cannot change seccomp or nnp state via TSYNC 1832 * while another thread is in the middle of calling exec. 1833 */ 1834 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1835 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1836 goto out_put_fd; 1837 1838 spin_lock_irq(¤t->sighand->siglock); 1839 1840 if (!seccomp_may_assign_mode(seccomp_mode)) 1841 goto out; 1842 1843 if (has_duplicate_listener(prepared)) { 1844 ret = -EBUSY; 1845 goto out; 1846 } 1847 1848 ret = seccomp_attach_filter(flags, prepared); 1849 if (ret) 1850 goto out; 1851 /* Do not free the successfully attached filter. */ 1852 prepared = NULL; 1853 1854 seccomp_assign_mode(current, seccomp_mode, flags); 1855 out: 1856 spin_unlock_irq(¤t->sighand->siglock); 1857 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 1858 mutex_unlock(¤t->signal->cred_guard_mutex); 1859 out_put_fd: 1860 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1861 if (ret) { 1862 listener_f->private_data = NULL; 1863 fput(listener_f); 1864 put_unused_fd(listener); 1865 seccomp_notify_detach(prepared); 1866 } else { 1867 fd_install(listener, listener_f); 1868 ret = listener; 1869 } 1870 } 1871 out_free: 1872 seccomp_filter_free(prepared); 1873 return ret; 1874 } 1875 #else 1876 static inline long seccomp_set_mode_filter(unsigned int flags, 1877 const char __user *filter) 1878 { 1879 return -EINVAL; 1880 } 1881 #endif 1882 1883 static long seccomp_get_action_avail(const char __user *uaction) 1884 { 1885 u32 action; 1886 1887 if (copy_from_user(&action, uaction, sizeof(action))) 1888 return -EFAULT; 1889 1890 switch (action) { 1891 case SECCOMP_RET_KILL_PROCESS: 1892 case SECCOMP_RET_KILL_THREAD: 1893 case SECCOMP_RET_TRAP: 1894 case SECCOMP_RET_ERRNO: 1895 case SECCOMP_RET_USER_NOTIF: 1896 case SECCOMP_RET_TRACE: 1897 case SECCOMP_RET_LOG: 1898 case SECCOMP_RET_ALLOW: 1899 break; 1900 default: 1901 return -EOPNOTSUPP; 1902 } 1903 1904 return 0; 1905 } 1906 1907 static long seccomp_get_notif_sizes(void __user *usizes) 1908 { 1909 struct seccomp_notif_sizes sizes = { 1910 .seccomp_notif = sizeof(struct seccomp_notif), 1911 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 1912 .seccomp_data = sizeof(struct seccomp_data), 1913 }; 1914 1915 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 1916 return -EFAULT; 1917 1918 return 0; 1919 } 1920 1921 /* Common entry point for both prctl and syscall. */ 1922 static long do_seccomp(unsigned int op, unsigned int flags, 1923 void __user *uargs) 1924 { 1925 switch (op) { 1926 case SECCOMP_SET_MODE_STRICT: 1927 if (flags != 0 || uargs != NULL) 1928 return -EINVAL; 1929 return seccomp_set_mode_strict(); 1930 case SECCOMP_SET_MODE_FILTER: 1931 return seccomp_set_mode_filter(flags, uargs); 1932 case SECCOMP_GET_ACTION_AVAIL: 1933 if (flags != 0) 1934 return -EINVAL; 1935 1936 return seccomp_get_action_avail(uargs); 1937 case SECCOMP_GET_NOTIF_SIZES: 1938 if (flags != 0) 1939 return -EINVAL; 1940 1941 return seccomp_get_notif_sizes(uargs); 1942 default: 1943 return -EINVAL; 1944 } 1945 } 1946 1947 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 1948 void __user *, uargs) 1949 { 1950 return do_seccomp(op, flags, uargs); 1951 } 1952 1953 /** 1954 * prctl_set_seccomp: configures current->seccomp.mode 1955 * @seccomp_mode: requested mode to use 1956 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 1957 * 1958 * Returns 0 on success or -EINVAL on failure. 1959 */ 1960 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 1961 { 1962 unsigned int op; 1963 void __user *uargs; 1964 1965 switch (seccomp_mode) { 1966 case SECCOMP_MODE_STRICT: 1967 op = SECCOMP_SET_MODE_STRICT; 1968 /* 1969 * Setting strict mode through prctl always ignored filter, 1970 * so make sure it is always NULL here to pass the internal 1971 * check in do_seccomp(). 1972 */ 1973 uargs = NULL; 1974 break; 1975 case SECCOMP_MODE_FILTER: 1976 op = SECCOMP_SET_MODE_FILTER; 1977 uargs = filter; 1978 break; 1979 default: 1980 return -EINVAL; 1981 } 1982 1983 /* prctl interface doesn't have flags, so they are always zero. */ 1984 return do_seccomp(op, 0, uargs); 1985 } 1986 1987 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 1988 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 1989 unsigned long filter_off) 1990 { 1991 struct seccomp_filter *orig, *filter; 1992 unsigned long count; 1993 1994 /* 1995 * Note: this is only correct because the caller should be the (ptrace) 1996 * tracer of the task, otherwise lock_task_sighand is needed. 1997 */ 1998 spin_lock_irq(&task->sighand->siglock); 1999 2000 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 2001 spin_unlock_irq(&task->sighand->siglock); 2002 return ERR_PTR(-EINVAL); 2003 } 2004 2005 orig = task->seccomp.filter; 2006 __get_seccomp_filter(orig); 2007 spin_unlock_irq(&task->sighand->siglock); 2008 2009 count = 0; 2010 for (filter = orig; filter; filter = filter->prev) 2011 count++; 2012 2013 if (filter_off >= count) { 2014 filter = ERR_PTR(-ENOENT); 2015 goto out; 2016 } 2017 2018 count -= filter_off; 2019 for (filter = orig; filter && count > 1; filter = filter->prev) 2020 count--; 2021 2022 if (WARN_ON(count != 1 || !filter)) { 2023 filter = ERR_PTR(-ENOENT); 2024 goto out; 2025 } 2026 2027 __get_seccomp_filter(filter); 2028 2029 out: 2030 __put_seccomp_filter(orig); 2031 return filter; 2032 } 2033 2034 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2035 void __user *data) 2036 { 2037 struct seccomp_filter *filter; 2038 struct sock_fprog_kern *fprog; 2039 long ret; 2040 2041 if (!capable(CAP_SYS_ADMIN) || 2042 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2043 return -EACCES; 2044 } 2045 2046 filter = get_nth_filter(task, filter_off); 2047 if (IS_ERR(filter)) 2048 return PTR_ERR(filter); 2049 2050 fprog = filter->prog->orig_prog; 2051 if (!fprog) { 2052 /* This must be a new non-cBPF filter, since we save 2053 * every cBPF filter's orig_prog above when 2054 * CONFIG_CHECKPOINT_RESTORE is enabled. 2055 */ 2056 ret = -EMEDIUMTYPE; 2057 goto out; 2058 } 2059 2060 ret = fprog->len; 2061 if (!data) 2062 goto out; 2063 2064 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2065 ret = -EFAULT; 2066 2067 out: 2068 __put_seccomp_filter(filter); 2069 return ret; 2070 } 2071 2072 long seccomp_get_metadata(struct task_struct *task, 2073 unsigned long size, void __user *data) 2074 { 2075 long ret; 2076 struct seccomp_filter *filter; 2077 struct seccomp_metadata kmd = {}; 2078 2079 if (!capable(CAP_SYS_ADMIN) || 2080 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2081 return -EACCES; 2082 } 2083 2084 size = min_t(unsigned long, size, sizeof(kmd)); 2085 2086 if (size < sizeof(kmd.filter_off)) 2087 return -EINVAL; 2088 2089 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2090 return -EFAULT; 2091 2092 filter = get_nth_filter(task, kmd.filter_off); 2093 if (IS_ERR(filter)) 2094 return PTR_ERR(filter); 2095 2096 if (filter->log) 2097 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2098 2099 ret = size; 2100 if (copy_to_user(data, &kmd, size)) 2101 ret = -EFAULT; 2102 2103 __put_seccomp_filter(filter); 2104 return ret; 2105 } 2106 #endif 2107 2108 #ifdef CONFIG_SYSCTL 2109 2110 /* Human readable action names for friendly sysctl interaction */ 2111 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2112 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2113 #define SECCOMP_RET_TRAP_NAME "trap" 2114 #define SECCOMP_RET_ERRNO_NAME "errno" 2115 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2116 #define SECCOMP_RET_TRACE_NAME "trace" 2117 #define SECCOMP_RET_LOG_NAME "log" 2118 #define SECCOMP_RET_ALLOW_NAME "allow" 2119 2120 static const char seccomp_actions_avail[] = 2121 SECCOMP_RET_KILL_PROCESS_NAME " " 2122 SECCOMP_RET_KILL_THREAD_NAME " " 2123 SECCOMP_RET_TRAP_NAME " " 2124 SECCOMP_RET_ERRNO_NAME " " 2125 SECCOMP_RET_USER_NOTIF_NAME " " 2126 SECCOMP_RET_TRACE_NAME " " 2127 SECCOMP_RET_LOG_NAME " " 2128 SECCOMP_RET_ALLOW_NAME; 2129 2130 struct seccomp_log_name { 2131 u32 log; 2132 const char *name; 2133 }; 2134 2135 static const struct seccomp_log_name seccomp_log_names[] = { 2136 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2137 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2138 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2139 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2140 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2141 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2142 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2143 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2144 { } 2145 }; 2146 2147 static bool seccomp_names_from_actions_logged(char *names, size_t size, 2148 u32 actions_logged, 2149 const char *sep) 2150 { 2151 const struct seccomp_log_name *cur; 2152 bool append_sep = false; 2153 2154 for (cur = seccomp_log_names; cur->name && size; cur++) { 2155 ssize_t ret; 2156 2157 if (!(actions_logged & cur->log)) 2158 continue; 2159 2160 if (append_sep) { 2161 ret = strscpy(names, sep, size); 2162 if (ret < 0) 2163 return false; 2164 2165 names += ret; 2166 size -= ret; 2167 } else 2168 append_sep = true; 2169 2170 ret = strscpy(names, cur->name, size); 2171 if (ret < 0) 2172 return false; 2173 2174 names += ret; 2175 size -= ret; 2176 } 2177 2178 return true; 2179 } 2180 2181 static bool seccomp_action_logged_from_name(u32 *action_logged, 2182 const char *name) 2183 { 2184 const struct seccomp_log_name *cur; 2185 2186 for (cur = seccomp_log_names; cur->name; cur++) { 2187 if (!strcmp(cur->name, name)) { 2188 *action_logged = cur->log; 2189 return true; 2190 } 2191 } 2192 2193 return false; 2194 } 2195 2196 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2197 { 2198 char *name; 2199 2200 *actions_logged = 0; 2201 while ((name = strsep(&names, " ")) && *name) { 2202 u32 action_logged = 0; 2203 2204 if (!seccomp_action_logged_from_name(&action_logged, name)) 2205 return false; 2206 2207 *actions_logged |= action_logged; 2208 } 2209 2210 return true; 2211 } 2212 2213 static int read_actions_logged(struct ctl_table *ro_table, void *buffer, 2214 size_t *lenp, loff_t *ppos) 2215 { 2216 char names[sizeof(seccomp_actions_avail)]; 2217 struct ctl_table table; 2218 2219 memset(names, 0, sizeof(names)); 2220 2221 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2222 seccomp_actions_logged, " ")) 2223 return -EINVAL; 2224 2225 table = *ro_table; 2226 table.data = names; 2227 table.maxlen = sizeof(names); 2228 return proc_dostring(&table, 0, buffer, lenp, ppos); 2229 } 2230 2231 static int write_actions_logged(struct ctl_table *ro_table, void *buffer, 2232 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2233 { 2234 char names[sizeof(seccomp_actions_avail)]; 2235 struct ctl_table table; 2236 int ret; 2237 2238 if (!capable(CAP_SYS_ADMIN)) 2239 return -EPERM; 2240 2241 memset(names, 0, sizeof(names)); 2242 2243 table = *ro_table; 2244 table.data = names; 2245 table.maxlen = sizeof(names); 2246 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2247 if (ret) 2248 return ret; 2249 2250 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2251 return -EINVAL; 2252 2253 if (*actions_logged & SECCOMP_LOG_ALLOW) 2254 return -EINVAL; 2255 2256 seccomp_actions_logged = *actions_logged; 2257 return 0; 2258 } 2259 2260 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2261 int ret) 2262 { 2263 char names[sizeof(seccomp_actions_avail)]; 2264 char old_names[sizeof(seccomp_actions_avail)]; 2265 const char *new = names; 2266 const char *old = old_names; 2267 2268 if (!audit_enabled) 2269 return; 2270 2271 memset(names, 0, sizeof(names)); 2272 memset(old_names, 0, sizeof(old_names)); 2273 2274 if (ret) 2275 new = "?"; 2276 else if (!actions_logged) 2277 new = "(none)"; 2278 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2279 actions_logged, ",")) 2280 new = "?"; 2281 2282 if (!old_actions_logged) 2283 old = "(none)"; 2284 else if (!seccomp_names_from_actions_logged(old_names, 2285 sizeof(old_names), 2286 old_actions_logged, ",")) 2287 old = "?"; 2288 2289 return audit_seccomp_actions_logged(new, old, !ret); 2290 } 2291 2292 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, 2293 void *buffer, size_t *lenp, 2294 loff_t *ppos) 2295 { 2296 int ret; 2297 2298 if (write) { 2299 u32 actions_logged = 0; 2300 u32 old_actions_logged = seccomp_actions_logged; 2301 2302 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2303 &actions_logged); 2304 audit_actions_logged(actions_logged, old_actions_logged, ret); 2305 } else 2306 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2307 2308 return ret; 2309 } 2310 2311 static struct ctl_path seccomp_sysctl_path[] = { 2312 { .procname = "kernel", }, 2313 { .procname = "seccomp", }, 2314 { } 2315 }; 2316 2317 static struct ctl_table seccomp_sysctl_table[] = { 2318 { 2319 .procname = "actions_avail", 2320 .data = (void *) &seccomp_actions_avail, 2321 .maxlen = sizeof(seccomp_actions_avail), 2322 .mode = 0444, 2323 .proc_handler = proc_dostring, 2324 }, 2325 { 2326 .procname = "actions_logged", 2327 .mode = 0644, 2328 .proc_handler = seccomp_actions_logged_handler, 2329 }, 2330 { } 2331 }; 2332 2333 static int __init seccomp_sysctl_init(void) 2334 { 2335 struct ctl_table_header *hdr; 2336 2337 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table); 2338 if (!hdr) 2339 pr_warn("sysctl registration failed\n"); 2340 else 2341 kmemleak_not_leak(hdr); 2342 2343 return 0; 2344 } 2345 2346 device_initcall(seccomp_sysctl_init) 2347 2348 #endif /* CONFIG_SYSCTL */ 2349 2350 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 2351 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ 2352 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, 2353 const void *bitmap, size_t bitmap_size) 2354 { 2355 int nr; 2356 2357 for (nr = 0; nr < bitmap_size; nr++) { 2358 bool cached = test_bit(nr, bitmap); 2359 char *status = cached ? "ALLOW" : "FILTER"; 2360 2361 seq_printf(m, "%s %d %s\n", name, nr, status); 2362 } 2363 } 2364 2365 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, 2366 struct pid *pid, struct task_struct *task) 2367 { 2368 struct seccomp_filter *f; 2369 unsigned long flags; 2370 2371 /* 2372 * We don't want some sandboxed process to know what their seccomp 2373 * filters consist of. 2374 */ 2375 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 2376 return -EACCES; 2377 2378 if (!lock_task_sighand(task, &flags)) 2379 return -ESRCH; 2380 2381 f = READ_ONCE(task->seccomp.filter); 2382 if (!f) { 2383 unlock_task_sighand(task, &flags); 2384 return 0; 2385 } 2386 2387 /* prevent filter from being freed while we are printing it */ 2388 __get_seccomp_filter(f); 2389 unlock_task_sighand(task, &flags); 2390 2391 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, 2392 f->cache.allow_native, 2393 SECCOMP_ARCH_NATIVE_NR); 2394 2395 #ifdef SECCOMP_ARCH_COMPAT 2396 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, 2397 f->cache.allow_compat, 2398 SECCOMP_ARCH_COMPAT_NR); 2399 #endif /* SECCOMP_ARCH_COMPAT */ 2400 2401 __put_seccomp_filter(f); 2402 return 0; 2403 } 2404 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */ 2405