xref: /openbmc/linux/kernel/seccomp.c (revision 2f61c664)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/kernel/seccomp.c
4  *
5  * Copyright 2004-2005  Andrea Arcangeli <andrea@cpushare.com>
6  *
7  * Copyright (C) 2012 Google, Inc.
8  * Will Drewry <wad@chromium.org>
9  *
10  * This defines a simple but solid secure-computing facility.
11  *
12  * Mode 1 uses a fixed list of allowed system calls.
13  * Mode 2 allows user-defined system call filters in the form
14  *        of Berkeley Packet Filters/Linux Socket Filters.
15  */
16 #define pr_fmt(fmt) "seccomp: " fmt
17 
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31 
32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
33 #include <asm/syscall.h>
34 #endif
35 
36 #ifdef CONFIG_SECCOMP_FILTER
37 #include <linux/file.h>
38 #include <linux/filter.h>
39 #include <linux/pid.h>
40 #include <linux/ptrace.h>
41 #include <linux/capability.h>
42 #include <linux/tracehook.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46 
47 /*
48  * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49  * wrong direction flag in the ioctl number. This is the broken one,
50  * which the kernel needs to keep supporting until all userspaces stop
51  * using the wrong command number.
52  */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR	SECCOMP_IOR(2, __u64)
54 
55 enum notify_state {
56 	SECCOMP_NOTIFY_INIT,
57 	SECCOMP_NOTIFY_SENT,
58 	SECCOMP_NOTIFY_REPLIED,
59 };
60 
61 struct seccomp_knotif {
62 	/* The struct pid of the task whose filter triggered the notification */
63 	struct task_struct *task;
64 
65 	/* The "cookie" for this request; this is unique for this filter. */
66 	u64 id;
67 
68 	/*
69 	 * The seccomp data. This pointer is valid the entire time this
70 	 * notification is active, since it comes from __seccomp_filter which
71 	 * eclipses the entire lifecycle here.
72 	 */
73 	const struct seccomp_data *data;
74 
75 	/*
76 	 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 	 * struct seccomp_knotif is created and starts out in INIT. Once the
78 	 * handler reads the notification off of an FD, it transitions to SENT.
79 	 * If a signal is received the state transitions back to INIT and
80 	 * another message is sent. When the userspace handler replies, state
81 	 * transitions to REPLIED.
82 	 */
83 	enum notify_state state;
84 
85 	/* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 	int error;
87 	long val;
88 	u32 flags;
89 
90 	/*
91 	 * Signals when this has changed states, such as the listener
92 	 * dying, a new seccomp addfd message, or changing to REPLIED
93 	 */
94 	struct completion ready;
95 
96 	struct list_head list;
97 
98 	/* outstanding addfd requests */
99 	struct list_head addfd;
100 };
101 
102 /**
103  * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104  *
105  * @file: A reference to the file to install in the other task
106  * @fd: The fd number to install it at. If the fd number is -1, it means the
107  *      installing process should allocate the fd as normal.
108  * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109  *         is allowed.
110  * @ret: The return value of the installing process. It is set to the fd num
111  *       upon success (>= 0).
112  * @completion: Indicates that the installing process has completed fd
113  *              installation, or gone away (either due to successful
114  *              reply, or signal)
115  *
116  */
117 struct seccomp_kaddfd {
118 	struct file *file;
119 	int fd;
120 	unsigned int flags;
121 
122 	union {
123 		bool setfd;
124 		/* To only be set on reply */
125 		int ret;
126 	};
127 	struct completion completion;
128 	struct list_head list;
129 };
130 
131 /**
132  * struct notification - container for seccomp userspace notifications. Since
133  * most seccomp filters will not have notification listeners attached and this
134  * structure is fairly large, we store the notification-specific stuff in a
135  * separate structure.
136  *
137  * @request: A semaphore that users of this notification can wait on for
138  *           changes. Actual reads and writes are still controlled with
139  *           filter->notify_lock.
140  * @next_id: The id of the next request.
141  * @notifications: A list of struct seccomp_knotif elements.
142  */
143 struct notification {
144 	struct semaphore request;
145 	u64 next_id;
146 	struct list_head notifications;
147 };
148 
149 #ifdef SECCOMP_ARCH_NATIVE
150 /**
151  * struct action_cache - per-filter cache of seccomp actions per
152  * arch/syscall pair
153  *
154  * @allow_native: A bitmap where each bit represents whether the
155  *		  filter will always allow the syscall, for the
156  *		  native architecture.
157  * @allow_compat: A bitmap where each bit represents whether the
158  *		  filter will always allow the syscall, for the
159  *		  compat architecture.
160  */
161 struct action_cache {
162 	DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
163 #ifdef SECCOMP_ARCH_COMPAT
164 	DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
165 #endif
166 };
167 #else
168 struct action_cache { };
169 
170 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
171 					     const struct seccomp_data *sd)
172 {
173 	return false;
174 }
175 
176 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
177 {
178 }
179 #endif /* SECCOMP_ARCH_NATIVE */
180 
181 /**
182  * struct seccomp_filter - container for seccomp BPF programs
183  *
184  * @refs: Reference count to manage the object lifetime.
185  *	  A filter's reference count is incremented for each directly
186  *	  attached task, once for the dependent filter, and if
187  *	  requested for the user notifier. When @refs reaches zero,
188  *	  the filter can be freed.
189  * @users: A filter's @users count is incremented for each directly
190  *         attached task (filter installation, fork(), thread_sync),
191  *	   and once for the dependent filter (tracked in filter->prev).
192  *	   When it reaches zero it indicates that no direct or indirect
193  *	   users of that filter exist. No new tasks can get associated with
194  *	   this filter after reaching 0. The @users count is always smaller
195  *	   or equal to @refs. Hence, reaching 0 for @users does not mean
196  *	   the filter can be freed.
197  * @cache: cache of arch/syscall mappings to actions
198  * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
199  * @prev: points to a previously installed, or inherited, filter
200  * @prog: the BPF program to evaluate
201  * @notif: the struct that holds all notification related information
202  * @notify_lock: A lock for all notification-related accesses.
203  * @wqh: A wait queue for poll if a notifier is in use.
204  *
205  * seccomp_filter objects are organized in a tree linked via the @prev
206  * pointer.  For any task, it appears to be a singly-linked list starting
207  * with current->seccomp.filter, the most recently attached or inherited filter.
208  * However, multiple filters may share a @prev node, by way of fork(), which
209  * results in a unidirectional tree existing in memory.  This is similar to
210  * how namespaces work.
211  *
212  * seccomp_filter objects should never be modified after being attached
213  * to a task_struct (other than @refs).
214  */
215 struct seccomp_filter {
216 	refcount_t refs;
217 	refcount_t users;
218 	bool log;
219 	struct action_cache cache;
220 	struct seccomp_filter *prev;
221 	struct bpf_prog *prog;
222 	struct notification *notif;
223 	struct mutex notify_lock;
224 	wait_queue_head_t wqh;
225 };
226 
227 /* Limit any path through the tree to 256KB worth of instructions. */
228 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
229 
230 /*
231  * Endianness is explicitly ignored and left for BPF program authors to manage
232  * as per the specific architecture.
233  */
234 static void populate_seccomp_data(struct seccomp_data *sd)
235 {
236 	/*
237 	 * Instead of using current_pt_reg(), we're already doing the work
238 	 * to safely fetch "current", so just use "task" everywhere below.
239 	 */
240 	struct task_struct *task = current;
241 	struct pt_regs *regs = task_pt_regs(task);
242 	unsigned long args[6];
243 
244 	sd->nr = syscall_get_nr(task, regs);
245 	sd->arch = syscall_get_arch(task);
246 	syscall_get_arguments(task, regs, args);
247 	sd->args[0] = args[0];
248 	sd->args[1] = args[1];
249 	sd->args[2] = args[2];
250 	sd->args[3] = args[3];
251 	sd->args[4] = args[4];
252 	sd->args[5] = args[5];
253 	sd->instruction_pointer = KSTK_EIP(task);
254 }
255 
256 /**
257  *	seccomp_check_filter - verify seccomp filter code
258  *	@filter: filter to verify
259  *	@flen: length of filter
260  *
261  * Takes a previously checked filter (by bpf_check_classic) and
262  * redirects all filter code that loads struct sk_buff data
263  * and related data through seccomp_bpf_load.  It also
264  * enforces length and alignment checking of those loads.
265  *
266  * Returns 0 if the rule set is legal or -EINVAL if not.
267  */
268 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
269 {
270 	int pc;
271 	for (pc = 0; pc < flen; pc++) {
272 		struct sock_filter *ftest = &filter[pc];
273 		u16 code = ftest->code;
274 		u32 k = ftest->k;
275 
276 		switch (code) {
277 		case BPF_LD | BPF_W | BPF_ABS:
278 			ftest->code = BPF_LDX | BPF_W | BPF_ABS;
279 			/* 32-bit aligned and not out of bounds. */
280 			if (k >= sizeof(struct seccomp_data) || k & 3)
281 				return -EINVAL;
282 			continue;
283 		case BPF_LD | BPF_W | BPF_LEN:
284 			ftest->code = BPF_LD | BPF_IMM;
285 			ftest->k = sizeof(struct seccomp_data);
286 			continue;
287 		case BPF_LDX | BPF_W | BPF_LEN:
288 			ftest->code = BPF_LDX | BPF_IMM;
289 			ftest->k = sizeof(struct seccomp_data);
290 			continue;
291 		/* Explicitly include allowed calls. */
292 		case BPF_RET | BPF_K:
293 		case BPF_RET | BPF_A:
294 		case BPF_ALU | BPF_ADD | BPF_K:
295 		case BPF_ALU | BPF_ADD | BPF_X:
296 		case BPF_ALU | BPF_SUB | BPF_K:
297 		case BPF_ALU | BPF_SUB | BPF_X:
298 		case BPF_ALU | BPF_MUL | BPF_K:
299 		case BPF_ALU | BPF_MUL | BPF_X:
300 		case BPF_ALU | BPF_DIV | BPF_K:
301 		case BPF_ALU | BPF_DIV | BPF_X:
302 		case BPF_ALU | BPF_AND | BPF_K:
303 		case BPF_ALU | BPF_AND | BPF_X:
304 		case BPF_ALU | BPF_OR | BPF_K:
305 		case BPF_ALU | BPF_OR | BPF_X:
306 		case BPF_ALU | BPF_XOR | BPF_K:
307 		case BPF_ALU | BPF_XOR | BPF_X:
308 		case BPF_ALU | BPF_LSH | BPF_K:
309 		case BPF_ALU | BPF_LSH | BPF_X:
310 		case BPF_ALU | BPF_RSH | BPF_K:
311 		case BPF_ALU | BPF_RSH | BPF_X:
312 		case BPF_ALU | BPF_NEG:
313 		case BPF_LD | BPF_IMM:
314 		case BPF_LDX | BPF_IMM:
315 		case BPF_MISC | BPF_TAX:
316 		case BPF_MISC | BPF_TXA:
317 		case BPF_LD | BPF_MEM:
318 		case BPF_LDX | BPF_MEM:
319 		case BPF_ST:
320 		case BPF_STX:
321 		case BPF_JMP | BPF_JA:
322 		case BPF_JMP | BPF_JEQ | BPF_K:
323 		case BPF_JMP | BPF_JEQ | BPF_X:
324 		case BPF_JMP | BPF_JGE | BPF_K:
325 		case BPF_JMP | BPF_JGE | BPF_X:
326 		case BPF_JMP | BPF_JGT | BPF_K:
327 		case BPF_JMP | BPF_JGT | BPF_X:
328 		case BPF_JMP | BPF_JSET | BPF_K:
329 		case BPF_JMP | BPF_JSET | BPF_X:
330 			continue;
331 		default:
332 			return -EINVAL;
333 		}
334 	}
335 	return 0;
336 }
337 
338 #ifdef SECCOMP_ARCH_NATIVE
339 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
340 						    size_t bitmap_size,
341 						    int syscall_nr)
342 {
343 	if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
344 		return false;
345 	syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
346 
347 	return test_bit(syscall_nr, bitmap);
348 }
349 
350 /**
351  * seccomp_cache_check_allow - lookup seccomp cache
352  * @sfilter: The seccomp filter
353  * @sd: The seccomp data to lookup the cache with
354  *
355  * Returns true if the seccomp_data is cached and allowed.
356  */
357 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
358 					     const struct seccomp_data *sd)
359 {
360 	int syscall_nr = sd->nr;
361 	const struct action_cache *cache = &sfilter->cache;
362 
363 #ifndef SECCOMP_ARCH_COMPAT
364 	/* A native-only architecture doesn't need to check sd->arch. */
365 	return seccomp_cache_check_allow_bitmap(cache->allow_native,
366 						SECCOMP_ARCH_NATIVE_NR,
367 						syscall_nr);
368 #else
369 	if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
370 		return seccomp_cache_check_allow_bitmap(cache->allow_native,
371 							SECCOMP_ARCH_NATIVE_NR,
372 							syscall_nr);
373 	if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
374 		return seccomp_cache_check_allow_bitmap(cache->allow_compat,
375 							SECCOMP_ARCH_COMPAT_NR,
376 							syscall_nr);
377 #endif /* SECCOMP_ARCH_COMPAT */
378 
379 	WARN_ON_ONCE(true);
380 	return false;
381 }
382 #endif /* SECCOMP_ARCH_NATIVE */
383 
384 /**
385  * seccomp_run_filters - evaluates all seccomp filters against @sd
386  * @sd: optional seccomp data to be passed to filters
387  * @match: stores struct seccomp_filter that resulted in the return value,
388  *         unless filter returned SECCOMP_RET_ALLOW, in which case it will
389  *         be unchanged.
390  *
391  * Returns valid seccomp BPF response codes.
392  */
393 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
394 static u32 seccomp_run_filters(const struct seccomp_data *sd,
395 			       struct seccomp_filter **match)
396 {
397 	u32 ret = SECCOMP_RET_ALLOW;
398 	/* Make sure cross-thread synced filter points somewhere sane. */
399 	struct seccomp_filter *f =
400 			READ_ONCE(current->seccomp.filter);
401 
402 	/* Ensure unexpected behavior doesn't result in failing open. */
403 	if (WARN_ON(f == NULL))
404 		return SECCOMP_RET_KILL_PROCESS;
405 
406 	if (seccomp_cache_check_allow(f, sd))
407 		return SECCOMP_RET_ALLOW;
408 
409 	/*
410 	 * All filters in the list are evaluated and the lowest BPF return
411 	 * value always takes priority (ignoring the DATA).
412 	 */
413 	for (; f; f = f->prev) {
414 		u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
415 
416 		if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
417 			ret = cur_ret;
418 			*match = f;
419 		}
420 	}
421 	return ret;
422 }
423 #endif /* CONFIG_SECCOMP_FILTER */
424 
425 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
426 {
427 	assert_spin_locked(&current->sighand->siglock);
428 
429 	if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
430 		return false;
431 
432 	return true;
433 }
434 
435 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
436 
437 static inline void seccomp_assign_mode(struct task_struct *task,
438 				       unsigned long seccomp_mode,
439 				       unsigned long flags)
440 {
441 	assert_spin_locked(&task->sighand->siglock);
442 
443 	task->seccomp.mode = seccomp_mode;
444 	/*
445 	 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and
446 	 * filter) is set.
447 	 */
448 	smp_mb__before_atomic();
449 	/* Assume default seccomp processes want spec flaw mitigation. */
450 	if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
451 		arch_seccomp_spec_mitigate(task);
452 	set_task_syscall_work(task, SECCOMP);
453 }
454 
455 #ifdef CONFIG_SECCOMP_FILTER
456 /* Returns 1 if the parent is an ancestor of the child. */
457 static int is_ancestor(struct seccomp_filter *parent,
458 		       struct seccomp_filter *child)
459 {
460 	/* NULL is the root ancestor. */
461 	if (parent == NULL)
462 		return 1;
463 	for (; child; child = child->prev)
464 		if (child == parent)
465 			return 1;
466 	return 0;
467 }
468 
469 /**
470  * seccomp_can_sync_threads: checks if all threads can be synchronized
471  *
472  * Expects sighand and cred_guard_mutex locks to be held.
473  *
474  * Returns 0 on success, -ve on error, or the pid of a thread which was
475  * either not in the correct seccomp mode or did not have an ancestral
476  * seccomp filter.
477  */
478 static inline pid_t seccomp_can_sync_threads(void)
479 {
480 	struct task_struct *thread, *caller;
481 
482 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
483 	assert_spin_locked(&current->sighand->siglock);
484 
485 	/* Validate all threads being eligible for synchronization. */
486 	caller = current;
487 	for_each_thread(caller, thread) {
488 		pid_t failed;
489 
490 		/* Skip current, since it is initiating the sync. */
491 		if (thread == caller)
492 			continue;
493 
494 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
495 		    (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
496 		     is_ancestor(thread->seccomp.filter,
497 				 caller->seccomp.filter)))
498 			continue;
499 
500 		/* Return the first thread that cannot be synchronized. */
501 		failed = task_pid_vnr(thread);
502 		/* If the pid cannot be resolved, then return -ESRCH */
503 		if (WARN_ON(failed == 0))
504 			failed = -ESRCH;
505 		return failed;
506 	}
507 
508 	return 0;
509 }
510 
511 static inline void seccomp_filter_free(struct seccomp_filter *filter)
512 {
513 	if (filter) {
514 		bpf_prog_destroy(filter->prog);
515 		kfree(filter);
516 	}
517 }
518 
519 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
520 {
521 	while (orig && refcount_dec_and_test(&orig->users)) {
522 		if (waitqueue_active(&orig->wqh))
523 			wake_up_poll(&orig->wqh, EPOLLHUP);
524 		orig = orig->prev;
525 	}
526 }
527 
528 static void __put_seccomp_filter(struct seccomp_filter *orig)
529 {
530 	/* Clean up single-reference branches iteratively. */
531 	while (orig && refcount_dec_and_test(&orig->refs)) {
532 		struct seccomp_filter *freeme = orig;
533 		orig = orig->prev;
534 		seccomp_filter_free(freeme);
535 	}
536 }
537 
538 static void __seccomp_filter_release(struct seccomp_filter *orig)
539 {
540 	/* Notify about any unused filters in the task's former filter tree. */
541 	__seccomp_filter_orphan(orig);
542 	/* Finally drop all references to the task's former tree. */
543 	__put_seccomp_filter(orig);
544 }
545 
546 /**
547  * seccomp_filter_release - Detach the task from its filter tree,
548  *			    drop its reference count, and notify
549  *			    about unused filters
550  *
551  * This function should only be called when the task is exiting as
552  * it detaches it from its filter tree. As such, READ_ONCE() and
553  * barriers are not needed here, as would normally be needed.
554  */
555 void seccomp_filter_release(struct task_struct *tsk)
556 {
557 	struct seccomp_filter *orig = tsk->seccomp.filter;
558 
559 	/* We are effectively holding the siglock by not having any sighand. */
560 	WARN_ON(tsk->sighand != NULL);
561 
562 	/* Detach task from its filter tree. */
563 	tsk->seccomp.filter = NULL;
564 	__seccomp_filter_release(orig);
565 }
566 
567 /**
568  * seccomp_sync_threads: sets all threads to use current's filter
569  *
570  * Expects sighand and cred_guard_mutex locks to be held, and for
571  * seccomp_can_sync_threads() to have returned success already
572  * without dropping the locks.
573  *
574  */
575 static inline void seccomp_sync_threads(unsigned long flags)
576 {
577 	struct task_struct *thread, *caller;
578 
579 	BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
580 	assert_spin_locked(&current->sighand->siglock);
581 
582 	/* Synchronize all threads. */
583 	caller = current;
584 	for_each_thread(caller, thread) {
585 		/* Skip current, since it needs no changes. */
586 		if (thread == caller)
587 			continue;
588 
589 		/* Get a task reference for the new leaf node. */
590 		get_seccomp_filter(caller);
591 
592 		/*
593 		 * Drop the task reference to the shared ancestor since
594 		 * current's path will hold a reference.  (This also
595 		 * allows a put before the assignment.)
596 		 */
597 		__seccomp_filter_release(thread->seccomp.filter);
598 
599 		/* Make our new filter tree visible. */
600 		smp_store_release(&thread->seccomp.filter,
601 				  caller->seccomp.filter);
602 		atomic_set(&thread->seccomp.filter_count,
603 			   atomic_read(&thread->seccomp.filter_count));
604 
605 		/*
606 		 * Don't let an unprivileged task work around
607 		 * the no_new_privs restriction by creating
608 		 * a thread that sets it up, enters seccomp,
609 		 * then dies.
610 		 */
611 		if (task_no_new_privs(caller))
612 			task_set_no_new_privs(thread);
613 
614 		/*
615 		 * Opt the other thread into seccomp if needed.
616 		 * As threads are considered to be trust-realm
617 		 * equivalent (see ptrace_may_access), it is safe to
618 		 * allow one thread to transition the other.
619 		 */
620 		if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
621 			seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
622 					    flags);
623 	}
624 }
625 
626 /**
627  * seccomp_prepare_filter: Prepares a seccomp filter for use.
628  * @fprog: BPF program to install
629  *
630  * Returns filter on success or an ERR_PTR on failure.
631  */
632 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
633 {
634 	struct seccomp_filter *sfilter;
635 	int ret;
636 	const bool save_orig =
637 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
638 		true;
639 #else
640 		false;
641 #endif
642 
643 	if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
644 		return ERR_PTR(-EINVAL);
645 
646 	BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
647 
648 	/*
649 	 * Installing a seccomp filter requires that the task has
650 	 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
651 	 * This avoids scenarios where unprivileged tasks can affect the
652 	 * behavior of privileged children.
653 	 */
654 	if (!task_no_new_privs(current) &&
655 			!ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN))
656 		return ERR_PTR(-EACCES);
657 
658 	/* Allocate a new seccomp_filter */
659 	sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
660 	if (!sfilter)
661 		return ERR_PTR(-ENOMEM);
662 
663 	mutex_init(&sfilter->notify_lock);
664 	ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
665 					seccomp_check_filter, save_orig);
666 	if (ret < 0) {
667 		kfree(sfilter);
668 		return ERR_PTR(ret);
669 	}
670 
671 	refcount_set(&sfilter->refs, 1);
672 	refcount_set(&sfilter->users, 1);
673 	init_waitqueue_head(&sfilter->wqh);
674 
675 	return sfilter;
676 }
677 
678 /**
679  * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
680  * @user_filter: pointer to the user data containing a sock_fprog.
681  *
682  * Returns 0 on success and non-zero otherwise.
683  */
684 static struct seccomp_filter *
685 seccomp_prepare_user_filter(const char __user *user_filter)
686 {
687 	struct sock_fprog fprog;
688 	struct seccomp_filter *filter = ERR_PTR(-EFAULT);
689 
690 #ifdef CONFIG_COMPAT
691 	if (in_compat_syscall()) {
692 		struct compat_sock_fprog fprog32;
693 		if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
694 			goto out;
695 		fprog.len = fprog32.len;
696 		fprog.filter = compat_ptr(fprog32.filter);
697 	} else /* falls through to the if below. */
698 #endif
699 	if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
700 		goto out;
701 	filter = seccomp_prepare_filter(&fprog);
702 out:
703 	return filter;
704 }
705 
706 #ifdef SECCOMP_ARCH_NATIVE
707 /**
708  * seccomp_is_const_allow - check if filter is constant allow with given data
709  * @fprog: The BPF programs
710  * @sd: The seccomp data to check against, only syscall number and arch
711  *      number are considered constant.
712  */
713 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
714 				   struct seccomp_data *sd)
715 {
716 	unsigned int reg_value = 0;
717 	unsigned int pc;
718 	bool op_res;
719 
720 	if (WARN_ON_ONCE(!fprog))
721 		return false;
722 
723 	for (pc = 0; pc < fprog->len; pc++) {
724 		struct sock_filter *insn = &fprog->filter[pc];
725 		u16 code = insn->code;
726 		u32 k = insn->k;
727 
728 		switch (code) {
729 		case BPF_LD | BPF_W | BPF_ABS:
730 			switch (k) {
731 			case offsetof(struct seccomp_data, nr):
732 				reg_value = sd->nr;
733 				break;
734 			case offsetof(struct seccomp_data, arch):
735 				reg_value = sd->arch;
736 				break;
737 			default:
738 				/* can't optimize (non-constant value load) */
739 				return false;
740 			}
741 			break;
742 		case BPF_RET | BPF_K:
743 			/* reached return with constant values only, check allow */
744 			return k == SECCOMP_RET_ALLOW;
745 		case BPF_JMP | BPF_JA:
746 			pc += insn->k;
747 			break;
748 		case BPF_JMP | BPF_JEQ | BPF_K:
749 		case BPF_JMP | BPF_JGE | BPF_K:
750 		case BPF_JMP | BPF_JGT | BPF_K:
751 		case BPF_JMP | BPF_JSET | BPF_K:
752 			switch (BPF_OP(code)) {
753 			case BPF_JEQ:
754 				op_res = reg_value == k;
755 				break;
756 			case BPF_JGE:
757 				op_res = reg_value >= k;
758 				break;
759 			case BPF_JGT:
760 				op_res = reg_value > k;
761 				break;
762 			case BPF_JSET:
763 				op_res = !!(reg_value & k);
764 				break;
765 			default:
766 				/* can't optimize (unknown jump) */
767 				return false;
768 			}
769 
770 			pc += op_res ? insn->jt : insn->jf;
771 			break;
772 		case BPF_ALU | BPF_AND | BPF_K:
773 			reg_value &= k;
774 			break;
775 		default:
776 			/* can't optimize (unknown insn) */
777 			return false;
778 		}
779 	}
780 
781 	/* ran off the end of the filter?! */
782 	WARN_ON(1);
783 	return false;
784 }
785 
786 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
787 					 void *bitmap, const void *bitmap_prev,
788 					 size_t bitmap_size, int arch)
789 {
790 	struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
791 	struct seccomp_data sd;
792 	int nr;
793 
794 	if (bitmap_prev) {
795 		/* The new filter must be as restrictive as the last. */
796 		bitmap_copy(bitmap, bitmap_prev, bitmap_size);
797 	} else {
798 		/* Before any filters, all syscalls are always allowed. */
799 		bitmap_fill(bitmap, bitmap_size);
800 	}
801 
802 	for (nr = 0; nr < bitmap_size; nr++) {
803 		/* No bitmap change: not a cacheable action. */
804 		if (!test_bit(nr, bitmap))
805 			continue;
806 
807 		sd.nr = nr;
808 		sd.arch = arch;
809 
810 		/* No bitmap change: continue to always allow. */
811 		if (seccomp_is_const_allow(fprog, &sd))
812 			continue;
813 
814 		/*
815 		 * Not a cacheable action: always run filters.
816 		 * atomic clear_bit() not needed, filter not visible yet.
817 		 */
818 		__clear_bit(nr, bitmap);
819 	}
820 }
821 
822 /**
823  * seccomp_cache_prepare - emulate the filter to find cacheable syscalls
824  * @sfilter: The seccomp filter
825  *
826  * Returns 0 if successful or -errno if error occurred.
827  */
828 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
829 {
830 	struct action_cache *cache = &sfilter->cache;
831 	const struct action_cache *cache_prev =
832 		sfilter->prev ? &sfilter->prev->cache : NULL;
833 
834 	seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
835 				     cache_prev ? cache_prev->allow_native : NULL,
836 				     SECCOMP_ARCH_NATIVE_NR,
837 				     SECCOMP_ARCH_NATIVE);
838 
839 #ifdef SECCOMP_ARCH_COMPAT
840 	seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
841 				     cache_prev ? cache_prev->allow_compat : NULL,
842 				     SECCOMP_ARCH_COMPAT_NR,
843 				     SECCOMP_ARCH_COMPAT);
844 #endif /* SECCOMP_ARCH_COMPAT */
845 }
846 #endif /* SECCOMP_ARCH_NATIVE */
847 
848 /**
849  * seccomp_attach_filter: validate and attach filter
850  * @flags:  flags to change filter behavior
851  * @filter: seccomp filter to add to the current process
852  *
853  * Caller must be holding current->sighand->siglock lock.
854  *
855  * Returns 0 on success, -ve on error, or
856  *   - in TSYNC mode: the pid of a thread which was either not in the correct
857  *     seccomp mode or did not have an ancestral seccomp filter
858  *   - in NEW_LISTENER mode: the fd of the new listener
859  */
860 static long seccomp_attach_filter(unsigned int flags,
861 				  struct seccomp_filter *filter)
862 {
863 	unsigned long total_insns;
864 	struct seccomp_filter *walker;
865 
866 	assert_spin_locked(&current->sighand->siglock);
867 
868 	/* Validate resulting filter length. */
869 	total_insns = filter->prog->len;
870 	for (walker = current->seccomp.filter; walker; walker = walker->prev)
871 		total_insns += walker->prog->len + 4;  /* 4 instr penalty */
872 	if (total_insns > MAX_INSNS_PER_PATH)
873 		return -ENOMEM;
874 
875 	/* If thread sync has been requested, check that it is possible. */
876 	if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
877 		int ret;
878 
879 		ret = seccomp_can_sync_threads();
880 		if (ret) {
881 			if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
882 				return -ESRCH;
883 			else
884 				return ret;
885 		}
886 	}
887 
888 	/* Set log flag, if present. */
889 	if (flags & SECCOMP_FILTER_FLAG_LOG)
890 		filter->log = true;
891 
892 	/*
893 	 * If there is an existing filter, make it the prev and don't drop its
894 	 * task reference.
895 	 */
896 	filter->prev = current->seccomp.filter;
897 	seccomp_cache_prepare(filter);
898 	current->seccomp.filter = filter;
899 	atomic_inc(&current->seccomp.filter_count);
900 
901 	/* Now that the new filter is in place, synchronize to all threads. */
902 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
903 		seccomp_sync_threads(flags);
904 
905 	return 0;
906 }
907 
908 static void __get_seccomp_filter(struct seccomp_filter *filter)
909 {
910 	refcount_inc(&filter->refs);
911 }
912 
913 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
914 void get_seccomp_filter(struct task_struct *tsk)
915 {
916 	struct seccomp_filter *orig = tsk->seccomp.filter;
917 	if (!orig)
918 		return;
919 	__get_seccomp_filter(orig);
920 	refcount_inc(&orig->users);
921 }
922 
923 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason)
924 {
925 	clear_siginfo(info);
926 	info->si_signo = SIGSYS;
927 	info->si_code = SYS_SECCOMP;
928 	info->si_call_addr = (void __user *)KSTK_EIP(current);
929 	info->si_errno = reason;
930 	info->si_arch = syscall_get_arch(current);
931 	info->si_syscall = syscall;
932 }
933 
934 /**
935  * seccomp_send_sigsys - signals the task to allow in-process syscall emulation
936  * @syscall: syscall number to send to userland
937  * @reason: filter-supplied reason code to send to userland (via si_errno)
938  *
939  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
940  */
941 static void seccomp_send_sigsys(int syscall, int reason)
942 {
943 	struct kernel_siginfo info;
944 	seccomp_init_siginfo(&info, syscall, reason);
945 	force_sig_info(&info);
946 }
947 #endif	/* CONFIG_SECCOMP_FILTER */
948 
949 /* For use with seccomp_actions_logged */
950 #define SECCOMP_LOG_KILL_PROCESS	(1 << 0)
951 #define SECCOMP_LOG_KILL_THREAD		(1 << 1)
952 #define SECCOMP_LOG_TRAP		(1 << 2)
953 #define SECCOMP_LOG_ERRNO		(1 << 3)
954 #define SECCOMP_LOG_TRACE		(1 << 4)
955 #define SECCOMP_LOG_LOG			(1 << 5)
956 #define SECCOMP_LOG_ALLOW		(1 << 6)
957 #define SECCOMP_LOG_USER_NOTIF		(1 << 7)
958 
959 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
960 				    SECCOMP_LOG_KILL_THREAD  |
961 				    SECCOMP_LOG_TRAP  |
962 				    SECCOMP_LOG_ERRNO |
963 				    SECCOMP_LOG_USER_NOTIF |
964 				    SECCOMP_LOG_TRACE |
965 				    SECCOMP_LOG_LOG;
966 
967 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
968 			       bool requested)
969 {
970 	bool log = false;
971 
972 	switch (action) {
973 	case SECCOMP_RET_ALLOW:
974 		break;
975 	case SECCOMP_RET_TRAP:
976 		log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
977 		break;
978 	case SECCOMP_RET_ERRNO:
979 		log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
980 		break;
981 	case SECCOMP_RET_TRACE:
982 		log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
983 		break;
984 	case SECCOMP_RET_USER_NOTIF:
985 		log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
986 		break;
987 	case SECCOMP_RET_LOG:
988 		log = seccomp_actions_logged & SECCOMP_LOG_LOG;
989 		break;
990 	case SECCOMP_RET_KILL_THREAD:
991 		log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
992 		break;
993 	case SECCOMP_RET_KILL_PROCESS:
994 	default:
995 		log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
996 	}
997 
998 	/*
999 	 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
1000 	 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
1001 	 * any action from being logged by removing the action name from the
1002 	 * seccomp_actions_logged sysctl.
1003 	 */
1004 	if (!log)
1005 		return;
1006 
1007 	audit_seccomp(syscall, signr, action);
1008 }
1009 
1010 /*
1011  * Secure computing mode 1 allows only read/write/exit/sigreturn.
1012  * To be fully secure this must be combined with rlimit
1013  * to limit the stack allocations too.
1014  */
1015 static const int mode1_syscalls[] = {
1016 	__NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
1017 	-1, /* negative terminated */
1018 };
1019 
1020 static void __secure_computing_strict(int this_syscall)
1021 {
1022 	const int *allowed_syscalls = mode1_syscalls;
1023 #ifdef CONFIG_COMPAT
1024 	if (in_compat_syscall())
1025 		allowed_syscalls = get_compat_mode1_syscalls();
1026 #endif
1027 	do {
1028 		if (*allowed_syscalls == this_syscall)
1029 			return;
1030 	} while (*++allowed_syscalls != -1);
1031 
1032 #ifdef SECCOMP_DEBUG
1033 	dump_stack();
1034 #endif
1035 	seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1036 	do_exit(SIGKILL);
1037 }
1038 
1039 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
1040 void secure_computing_strict(int this_syscall)
1041 {
1042 	int mode = current->seccomp.mode;
1043 
1044 	if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1045 	    unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1046 		return;
1047 
1048 	if (mode == SECCOMP_MODE_DISABLED)
1049 		return;
1050 	else if (mode == SECCOMP_MODE_STRICT)
1051 		__secure_computing_strict(this_syscall);
1052 	else
1053 		BUG();
1054 }
1055 #else
1056 
1057 #ifdef CONFIG_SECCOMP_FILTER
1058 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1059 {
1060 	/*
1061 	 * Note: overflow is ok here, the id just needs to be unique per
1062 	 * filter.
1063 	 */
1064 	lockdep_assert_held(&filter->notify_lock);
1065 	return filter->notif->next_id++;
1066 }
1067 
1068 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd)
1069 {
1070 	/*
1071 	 * Remove the notification, and reset the list pointers, indicating
1072 	 * that it has been handled.
1073 	 */
1074 	list_del_init(&addfd->list);
1075 	if (!addfd->setfd)
1076 		addfd->ret = receive_fd(addfd->file, addfd->flags);
1077 	else
1078 		addfd->ret = receive_fd_replace(addfd->fd, addfd->file,
1079 						addfd->flags);
1080 	complete(&addfd->completion);
1081 }
1082 
1083 static int seccomp_do_user_notification(int this_syscall,
1084 					struct seccomp_filter *match,
1085 					const struct seccomp_data *sd)
1086 {
1087 	int err;
1088 	u32 flags = 0;
1089 	long ret = 0;
1090 	struct seccomp_knotif n = {};
1091 	struct seccomp_kaddfd *addfd, *tmp;
1092 
1093 	mutex_lock(&match->notify_lock);
1094 	err = -ENOSYS;
1095 	if (!match->notif)
1096 		goto out;
1097 
1098 	n.task = current;
1099 	n.state = SECCOMP_NOTIFY_INIT;
1100 	n.data = sd;
1101 	n.id = seccomp_next_notify_id(match);
1102 	init_completion(&n.ready);
1103 	list_add(&n.list, &match->notif->notifications);
1104 	INIT_LIST_HEAD(&n.addfd);
1105 
1106 	up(&match->notif->request);
1107 	wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1108 	mutex_unlock(&match->notify_lock);
1109 
1110 	/*
1111 	 * This is where we wait for a reply from userspace.
1112 	 */
1113 wait:
1114 	err = wait_for_completion_interruptible(&n.ready);
1115 	mutex_lock(&match->notify_lock);
1116 	if (err == 0) {
1117 		/* Check if we were woken up by a addfd message */
1118 		addfd = list_first_entry_or_null(&n.addfd,
1119 						 struct seccomp_kaddfd, list);
1120 		if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) {
1121 			seccomp_handle_addfd(addfd);
1122 			mutex_unlock(&match->notify_lock);
1123 			goto wait;
1124 		}
1125 		ret = n.val;
1126 		err = n.error;
1127 		flags = n.flags;
1128 	}
1129 
1130 	/* If there were any pending addfd calls, clear them out */
1131 	list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1132 		/* The process went away before we got a chance to handle it */
1133 		addfd->ret = -ESRCH;
1134 		list_del_init(&addfd->list);
1135 		complete(&addfd->completion);
1136 	}
1137 
1138 	/*
1139 	 * Note that it's possible the listener died in between the time when
1140 	 * we were notified of a response (or a signal) and when we were able to
1141 	 * re-acquire the lock, so only delete from the list if the
1142 	 * notification actually exists.
1143 	 *
1144 	 * Also note that this test is only valid because there's no way to
1145 	 * *reattach* to a notifier right now. If one is added, we'll need to
1146 	 * keep track of the notif itself and make sure they match here.
1147 	 */
1148 	if (match->notif)
1149 		list_del(&n.list);
1150 out:
1151 	mutex_unlock(&match->notify_lock);
1152 
1153 	/* Userspace requests to continue the syscall. */
1154 	if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1155 		return 0;
1156 
1157 	syscall_set_return_value(current, current_pt_regs(),
1158 				 err, ret);
1159 	return -1;
1160 }
1161 
1162 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1163 			    const bool recheck_after_trace)
1164 {
1165 	u32 filter_ret, action;
1166 	struct seccomp_filter *match = NULL;
1167 	int data;
1168 	struct seccomp_data sd_local;
1169 
1170 	/*
1171 	 * Make sure that any changes to mode from another thread have
1172 	 * been seen after SYSCALL_WORK_SECCOMP was seen.
1173 	 */
1174 	smp_rmb();
1175 
1176 	if (!sd) {
1177 		populate_seccomp_data(&sd_local);
1178 		sd = &sd_local;
1179 	}
1180 
1181 	filter_ret = seccomp_run_filters(sd, &match);
1182 	data = filter_ret & SECCOMP_RET_DATA;
1183 	action = filter_ret & SECCOMP_RET_ACTION_FULL;
1184 
1185 	switch (action) {
1186 	case SECCOMP_RET_ERRNO:
1187 		/* Set low-order bits as an errno, capped at MAX_ERRNO. */
1188 		if (data > MAX_ERRNO)
1189 			data = MAX_ERRNO;
1190 		syscall_set_return_value(current, current_pt_regs(),
1191 					 -data, 0);
1192 		goto skip;
1193 
1194 	case SECCOMP_RET_TRAP:
1195 		/* Show the handler the original registers. */
1196 		syscall_rollback(current, current_pt_regs());
1197 		/* Let the filter pass back 16 bits of data. */
1198 		seccomp_send_sigsys(this_syscall, data);
1199 		goto skip;
1200 
1201 	case SECCOMP_RET_TRACE:
1202 		/* We've been put in this state by the ptracer already. */
1203 		if (recheck_after_trace)
1204 			return 0;
1205 
1206 		/* ENOSYS these calls if there is no tracer attached. */
1207 		if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1208 			syscall_set_return_value(current,
1209 						 current_pt_regs(),
1210 						 -ENOSYS, 0);
1211 			goto skip;
1212 		}
1213 
1214 		/* Allow the BPF to provide the event message */
1215 		ptrace_event(PTRACE_EVENT_SECCOMP, data);
1216 		/*
1217 		 * The delivery of a fatal signal during event
1218 		 * notification may silently skip tracer notification,
1219 		 * which could leave us with a potentially unmodified
1220 		 * syscall that the tracer would have liked to have
1221 		 * changed. Since the process is about to die, we just
1222 		 * force the syscall to be skipped and let the signal
1223 		 * kill the process and correctly handle any tracer exit
1224 		 * notifications.
1225 		 */
1226 		if (fatal_signal_pending(current))
1227 			goto skip;
1228 		/* Check if the tracer forced the syscall to be skipped. */
1229 		this_syscall = syscall_get_nr(current, current_pt_regs());
1230 		if (this_syscall < 0)
1231 			goto skip;
1232 
1233 		/*
1234 		 * Recheck the syscall, since it may have changed. This
1235 		 * intentionally uses a NULL struct seccomp_data to force
1236 		 * a reload of all registers. This does not goto skip since
1237 		 * a skip would have already been reported.
1238 		 */
1239 		if (__seccomp_filter(this_syscall, NULL, true))
1240 			return -1;
1241 
1242 		return 0;
1243 
1244 	case SECCOMP_RET_USER_NOTIF:
1245 		if (seccomp_do_user_notification(this_syscall, match, sd))
1246 			goto skip;
1247 
1248 		return 0;
1249 
1250 	case SECCOMP_RET_LOG:
1251 		seccomp_log(this_syscall, 0, action, true);
1252 		return 0;
1253 
1254 	case SECCOMP_RET_ALLOW:
1255 		/*
1256 		 * Note that the "match" filter will always be NULL for
1257 		 * this action since SECCOMP_RET_ALLOW is the starting
1258 		 * state in seccomp_run_filters().
1259 		 */
1260 		return 0;
1261 
1262 	case SECCOMP_RET_KILL_THREAD:
1263 	case SECCOMP_RET_KILL_PROCESS:
1264 	default:
1265 		seccomp_log(this_syscall, SIGSYS, action, true);
1266 		/* Dump core only if this is the last remaining thread. */
1267 		if (action != SECCOMP_RET_KILL_THREAD ||
1268 		    get_nr_threads(current) == 1) {
1269 			kernel_siginfo_t info;
1270 
1271 			/* Show the original registers in the dump. */
1272 			syscall_rollback(current, current_pt_regs());
1273 			/* Trigger a manual coredump since do_exit skips it. */
1274 			seccomp_init_siginfo(&info, this_syscall, data);
1275 			do_coredump(&info);
1276 		}
1277 		if (action == SECCOMP_RET_KILL_THREAD)
1278 			do_exit(SIGSYS);
1279 		else
1280 			do_group_exit(SIGSYS);
1281 	}
1282 
1283 	unreachable();
1284 
1285 skip:
1286 	seccomp_log(this_syscall, 0, action, match ? match->log : false);
1287 	return -1;
1288 }
1289 #else
1290 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1291 			    const bool recheck_after_trace)
1292 {
1293 	BUG();
1294 
1295 	return -1;
1296 }
1297 #endif
1298 
1299 int __secure_computing(const struct seccomp_data *sd)
1300 {
1301 	int mode = current->seccomp.mode;
1302 	int this_syscall;
1303 
1304 	if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1305 	    unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1306 		return 0;
1307 
1308 	this_syscall = sd ? sd->nr :
1309 		syscall_get_nr(current, current_pt_regs());
1310 
1311 	switch (mode) {
1312 	case SECCOMP_MODE_STRICT:
1313 		__secure_computing_strict(this_syscall);  /* may call do_exit */
1314 		return 0;
1315 	case SECCOMP_MODE_FILTER:
1316 		return __seccomp_filter(this_syscall, sd, false);
1317 	default:
1318 		BUG();
1319 	}
1320 }
1321 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1322 
1323 long prctl_get_seccomp(void)
1324 {
1325 	return current->seccomp.mode;
1326 }
1327 
1328 /**
1329  * seccomp_set_mode_strict: internal function for setting strict seccomp
1330  *
1331  * Once current->seccomp.mode is non-zero, it may not be changed.
1332  *
1333  * Returns 0 on success or -EINVAL on failure.
1334  */
1335 static long seccomp_set_mode_strict(void)
1336 {
1337 	const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1338 	long ret = -EINVAL;
1339 
1340 	spin_lock_irq(&current->sighand->siglock);
1341 
1342 	if (!seccomp_may_assign_mode(seccomp_mode))
1343 		goto out;
1344 
1345 #ifdef TIF_NOTSC
1346 	disable_TSC();
1347 #endif
1348 	seccomp_assign_mode(current, seccomp_mode, 0);
1349 	ret = 0;
1350 
1351 out:
1352 	spin_unlock_irq(&current->sighand->siglock);
1353 
1354 	return ret;
1355 }
1356 
1357 #ifdef CONFIG_SECCOMP_FILTER
1358 static void seccomp_notify_free(struct seccomp_filter *filter)
1359 {
1360 	kfree(filter->notif);
1361 	filter->notif = NULL;
1362 }
1363 
1364 static void seccomp_notify_detach(struct seccomp_filter *filter)
1365 {
1366 	struct seccomp_knotif *knotif;
1367 
1368 	if (!filter)
1369 		return;
1370 
1371 	mutex_lock(&filter->notify_lock);
1372 
1373 	/*
1374 	 * If this file is being closed because e.g. the task who owned it
1375 	 * died, let's wake everyone up who was waiting on us.
1376 	 */
1377 	list_for_each_entry(knotif, &filter->notif->notifications, list) {
1378 		if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1379 			continue;
1380 
1381 		knotif->state = SECCOMP_NOTIFY_REPLIED;
1382 		knotif->error = -ENOSYS;
1383 		knotif->val = 0;
1384 
1385 		/*
1386 		 * We do not need to wake up any pending addfd messages, as
1387 		 * the notifier will do that for us, as this just looks
1388 		 * like a standard reply.
1389 		 */
1390 		complete(&knotif->ready);
1391 	}
1392 
1393 	seccomp_notify_free(filter);
1394 	mutex_unlock(&filter->notify_lock);
1395 }
1396 
1397 static int seccomp_notify_release(struct inode *inode, struct file *file)
1398 {
1399 	struct seccomp_filter *filter = file->private_data;
1400 
1401 	seccomp_notify_detach(filter);
1402 	__put_seccomp_filter(filter);
1403 	return 0;
1404 }
1405 
1406 /* must be called with notif_lock held */
1407 static inline struct seccomp_knotif *
1408 find_notification(struct seccomp_filter *filter, u64 id)
1409 {
1410 	struct seccomp_knotif *cur;
1411 
1412 	lockdep_assert_held(&filter->notify_lock);
1413 
1414 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1415 		if (cur->id == id)
1416 			return cur;
1417 	}
1418 
1419 	return NULL;
1420 }
1421 
1422 
1423 static long seccomp_notify_recv(struct seccomp_filter *filter,
1424 				void __user *buf)
1425 {
1426 	struct seccomp_knotif *knotif = NULL, *cur;
1427 	struct seccomp_notif unotif;
1428 	ssize_t ret;
1429 
1430 	/* Verify that we're not given garbage to keep struct extensible. */
1431 	ret = check_zeroed_user(buf, sizeof(unotif));
1432 	if (ret < 0)
1433 		return ret;
1434 	if (!ret)
1435 		return -EINVAL;
1436 
1437 	memset(&unotif, 0, sizeof(unotif));
1438 
1439 	ret = down_interruptible(&filter->notif->request);
1440 	if (ret < 0)
1441 		return ret;
1442 
1443 	mutex_lock(&filter->notify_lock);
1444 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1445 		if (cur->state == SECCOMP_NOTIFY_INIT) {
1446 			knotif = cur;
1447 			break;
1448 		}
1449 	}
1450 
1451 	/*
1452 	 * If we didn't find a notification, it could be that the task was
1453 	 * interrupted by a fatal signal between the time we were woken and
1454 	 * when we were able to acquire the rw lock.
1455 	 */
1456 	if (!knotif) {
1457 		ret = -ENOENT;
1458 		goto out;
1459 	}
1460 
1461 	unotif.id = knotif->id;
1462 	unotif.pid = task_pid_vnr(knotif->task);
1463 	unotif.data = *(knotif->data);
1464 
1465 	knotif->state = SECCOMP_NOTIFY_SENT;
1466 	wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1467 	ret = 0;
1468 out:
1469 	mutex_unlock(&filter->notify_lock);
1470 
1471 	if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1472 		ret = -EFAULT;
1473 
1474 		/*
1475 		 * Userspace screwed up. To make sure that we keep this
1476 		 * notification alive, let's reset it back to INIT. It
1477 		 * may have died when we released the lock, so we need to make
1478 		 * sure it's still around.
1479 		 */
1480 		mutex_lock(&filter->notify_lock);
1481 		knotif = find_notification(filter, unotif.id);
1482 		if (knotif) {
1483 			knotif->state = SECCOMP_NOTIFY_INIT;
1484 			up(&filter->notif->request);
1485 		}
1486 		mutex_unlock(&filter->notify_lock);
1487 	}
1488 
1489 	return ret;
1490 }
1491 
1492 static long seccomp_notify_send(struct seccomp_filter *filter,
1493 				void __user *buf)
1494 {
1495 	struct seccomp_notif_resp resp = {};
1496 	struct seccomp_knotif *knotif;
1497 	long ret;
1498 
1499 	if (copy_from_user(&resp, buf, sizeof(resp)))
1500 		return -EFAULT;
1501 
1502 	if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1503 		return -EINVAL;
1504 
1505 	if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1506 	    (resp.error || resp.val))
1507 		return -EINVAL;
1508 
1509 	ret = mutex_lock_interruptible(&filter->notify_lock);
1510 	if (ret < 0)
1511 		return ret;
1512 
1513 	knotif = find_notification(filter, resp.id);
1514 	if (!knotif) {
1515 		ret = -ENOENT;
1516 		goto out;
1517 	}
1518 
1519 	/* Allow exactly one reply. */
1520 	if (knotif->state != SECCOMP_NOTIFY_SENT) {
1521 		ret = -EINPROGRESS;
1522 		goto out;
1523 	}
1524 
1525 	ret = 0;
1526 	knotif->state = SECCOMP_NOTIFY_REPLIED;
1527 	knotif->error = resp.error;
1528 	knotif->val = resp.val;
1529 	knotif->flags = resp.flags;
1530 	complete(&knotif->ready);
1531 out:
1532 	mutex_unlock(&filter->notify_lock);
1533 	return ret;
1534 }
1535 
1536 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1537 				    void __user *buf)
1538 {
1539 	struct seccomp_knotif *knotif;
1540 	u64 id;
1541 	long ret;
1542 
1543 	if (copy_from_user(&id, buf, sizeof(id)))
1544 		return -EFAULT;
1545 
1546 	ret = mutex_lock_interruptible(&filter->notify_lock);
1547 	if (ret < 0)
1548 		return ret;
1549 
1550 	knotif = find_notification(filter, id);
1551 	if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1552 		ret = 0;
1553 	else
1554 		ret = -ENOENT;
1555 
1556 	mutex_unlock(&filter->notify_lock);
1557 	return ret;
1558 }
1559 
1560 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1561 				 struct seccomp_notif_addfd __user *uaddfd,
1562 				 unsigned int size)
1563 {
1564 	struct seccomp_notif_addfd addfd;
1565 	struct seccomp_knotif *knotif;
1566 	struct seccomp_kaddfd kaddfd;
1567 	int ret;
1568 
1569 	BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1570 	BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1571 
1572 	if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1573 		return -EINVAL;
1574 
1575 	ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1576 	if (ret)
1577 		return ret;
1578 
1579 	if (addfd.newfd_flags & ~O_CLOEXEC)
1580 		return -EINVAL;
1581 
1582 	if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD)
1583 		return -EINVAL;
1584 
1585 	if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1586 		return -EINVAL;
1587 
1588 	kaddfd.file = fget(addfd.srcfd);
1589 	if (!kaddfd.file)
1590 		return -EBADF;
1591 
1592 	kaddfd.flags = addfd.newfd_flags;
1593 	kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD;
1594 	kaddfd.fd = addfd.newfd;
1595 	init_completion(&kaddfd.completion);
1596 
1597 	ret = mutex_lock_interruptible(&filter->notify_lock);
1598 	if (ret < 0)
1599 		goto out;
1600 
1601 	knotif = find_notification(filter, addfd.id);
1602 	if (!knotif) {
1603 		ret = -ENOENT;
1604 		goto out_unlock;
1605 	}
1606 
1607 	/*
1608 	 * We do not want to allow for FD injection to occur before the
1609 	 * notification has been picked up by a userspace handler, or after
1610 	 * the notification has been replied to.
1611 	 */
1612 	if (knotif->state != SECCOMP_NOTIFY_SENT) {
1613 		ret = -EINPROGRESS;
1614 		goto out_unlock;
1615 	}
1616 
1617 	list_add(&kaddfd.list, &knotif->addfd);
1618 	complete(&knotif->ready);
1619 	mutex_unlock(&filter->notify_lock);
1620 
1621 	/* Now we wait for it to be processed or be interrupted */
1622 	ret = wait_for_completion_interruptible(&kaddfd.completion);
1623 	if (ret == 0) {
1624 		/*
1625 		 * We had a successful completion. The other side has already
1626 		 * removed us from the addfd queue, and
1627 		 * wait_for_completion_interruptible has a memory barrier upon
1628 		 * success that lets us read this value directly without
1629 		 * locking.
1630 		 */
1631 		ret = kaddfd.ret;
1632 		goto out;
1633 	}
1634 
1635 	mutex_lock(&filter->notify_lock);
1636 	/*
1637 	 * Even though we were woken up by a signal and not a successful
1638 	 * completion, a completion may have happened in the mean time.
1639 	 *
1640 	 * We need to check again if the addfd request has been handled,
1641 	 * and if not, we will remove it from the queue.
1642 	 */
1643 	if (list_empty(&kaddfd.list))
1644 		ret = kaddfd.ret;
1645 	else
1646 		list_del(&kaddfd.list);
1647 
1648 out_unlock:
1649 	mutex_unlock(&filter->notify_lock);
1650 out:
1651 	fput(kaddfd.file);
1652 
1653 	return ret;
1654 }
1655 
1656 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1657 				 unsigned long arg)
1658 {
1659 	struct seccomp_filter *filter = file->private_data;
1660 	void __user *buf = (void __user *)arg;
1661 
1662 	/* Fixed-size ioctls */
1663 	switch (cmd) {
1664 	case SECCOMP_IOCTL_NOTIF_RECV:
1665 		return seccomp_notify_recv(filter, buf);
1666 	case SECCOMP_IOCTL_NOTIF_SEND:
1667 		return seccomp_notify_send(filter, buf);
1668 	case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1669 	case SECCOMP_IOCTL_NOTIF_ID_VALID:
1670 		return seccomp_notify_id_valid(filter, buf);
1671 	}
1672 
1673 	/* Extensible Argument ioctls */
1674 #define EA_IOCTL(cmd)	((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1675 	switch (EA_IOCTL(cmd)) {
1676 	case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1677 		return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1678 	default:
1679 		return -EINVAL;
1680 	}
1681 }
1682 
1683 static __poll_t seccomp_notify_poll(struct file *file,
1684 				    struct poll_table_struct *poll_tab)
1685 {
1686 	struct seccomp_filter *filter = file->private_data;
1687 	__poll_t ret = 0;
1688 	struct seccomp_knotif *cur;
1689 
1690 	poll_wait(file, &filter->wqh, poll_tab);
1691 
1692 	if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1693 		return EPOLLERR;
1694 
1695 	list_for_each_entry(cur, &filter->notif->notifications, list) {
1696 		if (cur->state == SECCOMP_NOTIFY_INIT)
1697 			ret |= EPOLLIN | EPOLLRDNORM;
1698 		if (cur->state == SECCOMP_NOTIFY_SENT)
1699 			ret |= EPOLLOUT | EPOLLWRNORM;
1700 		if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1701 			break;
1702 	}
1703 
1704 	mutex_unlock(&filter->notify_lock);
1705 
1706 	if (refcount_read(&filter->users) == 0)
1707 		ret |= EPOLLHUP;
1708 
1709 	return ret;
1710 }
1711 
1712 static const struct file_operations seccomp_notify_ops = {
1713 	.poll = seccomp_notify_poll,
1714 	.release = seccomp_notify_release,
1715 	.unlocked_ioctl = seccomp_notify_ioctl,
1716 	.compat_ioctl = seccomp_notify_ioctl,
1717 };
1718 
1719 static struct file *init_listener(struct seccomp_filter *filter)
1720 {
1721 	struct file *ret;
1722 
1723 	ret = ERR_PTR(-ENOMEM);
1724 	filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1725 	if (!filter->notif)
1726 		goto out;
1727 
1728 	sema_init(&filter->notif->request, 0);
1729 	filter->notif->next_id = get_random_u64();
1730 	INIT_LIST_HEAD(&filter->notif->notifications);
1731 
1732 	ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1733 				 filter, O_RDWR);
1734 	if (IS_ERR(ret))
1735 		goto out_notif;
1736 
1737 	/* The file has a reference to it now */
1738 	__get_seccomp_filter(filter);
1739 
1740 out_notif:
1741 	if (IS_ERR(ret))
1742 		seccomp_notify_free(filter);
1743 out:
1744 	return ret;
1745 }
1746 
1747 /*
1748  * Does @new_child have a listener while an ancestor also has a listener?
1749  * If so, we'll want to reject this filter.
1750  * This only has to be tested for the current process, even in the TSYNC case,
1751  * because TSYNC installs @child with the same parent on all threads.
1752  * Note that @new_child is not hooked up to its parent at this point yet, so
1753  * we use current->seccomp.filter.
1754  */
1755 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1756 {
1757 	struct seccomp_filter *cur;
1758 
1759 	/* must be protected against concurrent TSYNC */
1760 	lockdep_assert_held(&current->sighand->siglock);
1761 
1762 	if (!new_child->notif)
1763 		return false;
1764 	for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1765 		if (cur->notif)
1766 			return true;
1767 	}
1768 
1769 	return false;
1770 }
1771 
1772 /**
1773  * seccomp_set_mode_filter: internal function for setting seccomp filter
1774  * @flags:  flags to change filter behavior
1775  * @filter: struct sock_fprog containing filter
1776  *
1777  * This function may be called repeatedly to install additional filters.
1778  * Every filter successfully installed will be evaluated (in reverse order)
1779  * for each system call the task makes.
1780  *
1781  * Once current->seccomp.mode is non-zero, it may not be changed.
1782  *
1783  * Returns 0 on success or -EINVAL on failure.
1784  */
1785 static long seccomp_set_mode_filter(unsigned int flags,
1786 				    const char __user *filter)
1787 {
1788 	const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1789 	struct seccomp_filter *prepared = NULL;
1790 	long ret = -EINVAL;
1791 	int listener = -1;
1792 	struct file *listener_f = NULL;
1793 
1794 	/* Validate flags. */
1795 	if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1796 		return -EINVAL;
1797 
1798 	/*
1799 	 * In the successful case, NEW_LISTENER returns the new listener fd.
1800 	 * But in the failure case, TSYNC returns the thread that died. If you
1801 	 * combine these two flags, there's no way to tell whether something
1802 	 * succeeded or failed. So, let's disallow this combination if the user
1803 	 * has not explicitly requested no errors from TSYNC.
1804 	 */
1805 	if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1806 	    (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1807 	    ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1808 		return -EINVAL;
1809 
1810 	/* Prepare the new filter before holding any locks. */
1811 	prepared = seccomp_prepare_user_filter(filter);
1812 	if (IS_ERR(prepared))
1813 		return PTR_ERR(prepared);
1814 
1815 	if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1816 		listener = get_unused_fd_flags(O_CLOEXEC);
1817 		if (listener < 0) {
1818 			ret = listener;
1819 			goto out_free;
1820 		}
1821 
1822 		listener_f = init_listener(prepared);
1823 		if (IS_ERR(listener_f)) {
1824 			put_unused_fd(listener);
1825 			ret = PTR_ERR(listener_f);
1826 			goto out_free;
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * Make sure we cannot change seccomp or nnp state via TSYNC
1832 	 * while another thread is in the middle of calling exec.
1833 	 */
1834 	if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1835 	    mutex_lock_killable(&current->signal->cred_guard_mutex))
1836 		goto out_put_fd;
1837 
1838 	spin_lock_irq(&current->sighand->siglock);
1839 
1840 	if (!seccomp_may_assign_mode(seccomp_mode))
1841 		goto out;
1842 
1843 	if (has_duplicate_listener(prepared)) {
1844 		ret = -EBUSY;
1845 		goto out;
1846 	}
1847 
1848 	ret = seccomp_attach_filter(flags, prepared);
1849 	if (ret)
1850 		goto out;
1851 	/* Do not free the successfully attached filter. */
1852 	prepared = NULL;
1853 
1854 	seccomp_assign_mode(current, seccomp_mode, flags);
1855 out:
1856 	spin_unlock_irq(&current->sighand->siglock);
1857 	if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1858 		mutex_unlock(&current->signal->cred_guard_mutex);
1859 out_put_fd:
1860 	if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1861 		if (ret) {
1862 			listener_f->private_data = NULL;
1863 			fput(listener_f);
1864 			put_unused_fd(listener);
1865 			seccomp_notify_detach(prepared);
1866 		} else {
1867 			fd_install(listener, listener_f);
1868 			ret = listener;
1869 		}
1870 	}
1871 out_free:
1872 	seccomp_filter_free(prepared);
1873 	return ret;
1874 }
1875 #else
1876 static inline long seccomp_set_mode_filter(unsigned int flags,
1877 					   const char __user *filter)
1878 {
1879 	return -EINVAL;
1880 }
1881 #endif
1882 
1883 static long seccomp_get_action_avail(const char __user *uaction)
1884 {
1885 	u32 action;
1886 
1887 	if (copy_from_user(&action, uaction, sizeof(action)))
1888 		return -EFAULT;
1889 
1890 	switch (action) {
1891 	case SECCOMP_RET_KILL_PROCESS:
1892 	case SECCOMP_RET_KILL_THREAD:
1893 	case SECCOMP_RET_TRAP:
1894 	case SECCOMP_RET_ERRNO:
1895 	case SECCOMP_RET_USER_NOTIF:
1896 	case SECCOMP_RET_TRACE:
1897 	case SECCOMP_RET_LOG:
1898 	case SECCOMP_RET_ALLOW:
1899 		break;
1900 	default:
1901 		return -EOPNOTSUPP;
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 static long seccomp_get_notif_sizes(void __user *usizes)
1908 {
1909 	struct seccomp_notif_sizes sizes = {
1910 		.seccomp_notif = sizeof(struct seccomp_notif),
1911 		.seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1912 		.seccomp_data = sizeof(struct seccomp_data),
1913 	};
1914 
1915 	if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1916 		return -EFAULT;
1917 
1918 	return 0;
1919 }
1920 
1921 /* Common entry point for both prctl and syscall. */
1922 static long do_seccomp(unsigned int op, unsigned int flags,
1923 		       void __user *uargs)
1924 {
1925 	switch (op) {
1926 	case SECCOMP_SET_MODE_STRICT:
1927 		if (flags != 0 || uargs != NULL)
1928 			return -EINVAL;
1929 		return seccomp_set_mode_strict();
1930 	case SECCOMP_SET_MODE_FILTER:
1931 		return seccomp_set_mode_filter(flags, uargs);
1932 	case SECCOMP_GET_ACTION_AVAIL:
1933 		if (flags != 0)
1934 			return -EINVAL;
1935 
1936 		return seccomp_get_action_avail(uargs);
1937 	case SECCOMP_GET_NOTIF_SIZES:
1938 		if (flags != 0)
1939 			return -EINVAL;
1940 
1941 		return seccomp_get_notif_sizes(uargs);
1942 	default:
1943 		return -EINVAL;
1944 	}
1945 }
1946 
1947 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1948 			 void __user *, uargs)
1949 {
1950 	return do_seccomp(op, flags, uargs);
1951 }
1952 
1953 /**
1954  * prctl_set_seccomp: configures current->seccomp.mode
1955  * @seccomp_mode: requested mode to use
1956  * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1957  *
1958  * Returns 0 on success or -EINVAL on failure.
1959  */
1960 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1961 {
1962 	unsigned int op;
1963 	void __user *uargs;
1964 
1965 	switch (seccomp_mode) {
1966 	case SECCOMP_MODE_STRICT:
1967 		op = SECCOMP_SET_MODE_STRICT;
1968 		/*
1969 		 * Setting strict mode through prctl always ignored filter,
1970 		 * so make sure it is always NULL here to pass the internal
1971 		 * check in do_seccomp().
1972 		 */
1973 		uargs = NULL;
1974 		break;
1975 	case SECCOMP_MODE_FILTER:
1976 		op = SECCOMP_SET_MODE_FILTER;
1977 		uargs = filter;
1978 		break;
1979 	default:
1980 		return -EINVAL;
1981 	}
1982 
1983 	/* prctl interface doesn't have flags, so they are always zero. */
1984 	return do_seccomp(op, 0, uargs);
1985 }
1986 
1987 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
1988 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
1989 					     unsigned long filter_off)
1990 {
1991 	struct seccomp_filter *orig, *filter;
1992 	unsigned long count;
1993 
1994 	/*
1995 	 * Note: this is only correct because the caller should be the (ptrace)
1996 	 * tracer of the task, otherwise lock_task_sighand is needed.
1997 	 */
1998 	spin_lock_irq(&task->sighand->siglock);
1999 
2000 	if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
2001 		spin_unlock_irq(&task->sighand->siglock);
2002 		return ERR_PTR(-EINVAL);
2003 	}
2004 
2005 	orig = task->seccomp.filter;
2006 	__get_seccomp_filter(orig);
2007 	spin_unlock_irq(&task->sighand->siglock);
2008 
2009 	count = 0;
2010 	for (filter = orig; filter; filter = filter->prev)
2011 		count++;
2012 
2013 	if (filter_off >= count) {
2014 		filter = ERR_PTR(-ENOENT);
2015 		goto out;
2016 	}
2017 
2018 	count -= filter_off;
2019 	for (filter = orig; filter && count > 1; filter = filter->prev)
2020 		count--;
2021 
2022 	if (WARN_ON(count != 1 || !filter)) {
2023 		filter = ERR_PTR(-ENOENT);
2024 		goto out;
2025 	}
2026 
2027 	__get_seccomp_filter(filter);
2028 
2029 out:
2030 	__put_seccomp_filter(orig);
2031 	return filter;
2032 }
2033 
2034 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2035 			void __user *data)
2036 {
2037 	struct seccomp_filter *filter;
2038 	struct sock_fprog_kern *fprog;
2039 	long ret;
2040 
2041 	if (!capable(CAP_SYS_ADMIN) ||
2042 	    current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2043 		return -EACCES;
2044 	}
2045 
2046 	filter = get_nth_filter(task, filter_off);
2047 	if (IS_ERR(filter))
2048 		return PTR_ERR(filter);
2049 
2050 	fprog = filter->prog->orig_prog;
2051 	if (!fprog) {
2052 		/* This must be a new non-cBPF filter, since we save
2053 		 * every cBPF filter's orig_prog above when
2054 		 * CONFIG_CHECKPOINT_RESTORE is enabled.
2055 		 */
2056 		ret = -EMEDIUMTYPE;
2057 		goto out;
2058 	}
2059 
2060 	ret = fprog->len;
2061 	if (!data)
2062 		goto out;
2063 
2064 	if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2065 		ret = -EFAULT;
2066 
2067 out:
2068 	__put_seccomp_filter(filter);
2069 	return ret;
2070 }
2071 
2072 long seccomp_get_metadata(struct task_struct *task,
2073 			  unsigned long size, void __user *data)
2074 {
2075 	long ret;
2076 	struct seccomp_filter *filter;
2077 	struct seccomp_metadata kmd = {};
2078 
2079 	if (!capable(CAP_SYS_ADMIN) ||
2080 	    current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2081 		return -EACCES;
2082 	}
2083 
2084 	size = min_t(unsigned long, size, sizeof(kmd));
2085 
2086 	if (size < sizeof(kmd.filter_off))
2087 		return -EINVAL;
2088 
2089 	if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2090 		return -EFAULT;
2091 
2092 	filter = get_nth_filter(task, kmd.filter_off);
2093 	if (IS_ERR(filter))
2094 		return PTR_ERR(filter);
2095 
2096 	if (filter->log)
2097 		kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2098 
2099 	ret = size;
2100 	if (copy_to_user(data, &kmd, size))
2101 		ret = -EFAULT;
2102 
2103 	__put_seccomp_filter(filter);
2104 	return ret;
2105 }
2106 #endif
2107 
2108 #ifdef CONFIG_SYSCTL
2109 
2110 /* Human readable action names for friendly sysctl interaction */
2111 #define SECCOMP_RET_KILL_PROCESS_NAME	"kill_process"
2112 #define SECCOMP_RET_KILL_THREAD_NAME	"kill_thread"
2113 #define SECCOMP_RET_TRAP_NAME		"trap"
2114 #define SECCOMP_RET_ERRNO_NAME		"errno"
2115 #define SECCOMP_RET_USER_NOTIF_NAME	"user_notif"
2116 #define SECCOMP_RET_TRACE_NAME		"trace"
2117 #define SECCOMP_RET_LOG_NAME		"log"
2118 #define SECCOMP_RET_ALLOW_NAME		"allow"
2119 
2120 static const char seccomp_actions_avail[] =
2121 				SECCOMP_RET_KILL_PROCESS_NAME	" "
2122 				SECCOMP_RET_KILL_THREAD_NAME	" "
2123 				SECCOMP_RET_TRAP_NAME		" "
2124 				SECCOMP_RET_ERRNO_NAME		" "
2125 				SECCOMP_RET_USER_NOTIF_NAME     " "
2126 				SECCOMP_RET_TRACE_NAME		" "
2127 				SECCOMP_RET_LOG_NAME		" "
2128 				SECCOMP_RET_ALLOW_NAME;
2129 
2130 struct seccomp_log_name {
2131 	u32		log;
2132 	const char	*name;
2133 };
2134 
2135 static const struct seccomp_log_name seccomp_log_names[] = {
2136 	{ SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2137 	{ SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2138 	{ SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2139 	{ SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2140 	{ SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2141 	{ SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2142 	{ SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2143 	{ SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2144 	{ }
2145 };
2146 
2147 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2148 					      u32 actions_logged,
2149 					      const char *sep)
2150 {
2151 	const struct seccomp_log_name *cur;
2152 	bool append_sep = false;
2153 
2154 	for (cur = seccomp_log_names; cur->name && size; cur++) {
2155 		ssize_t ret;
2156 
2157 		if (!(actions_logged & cur->log))
2158 			continue;
2159 
2160 		if (append_sep) {
2161 			ret = strscpy(names, sep, size);
2162 			if (ret < 0)
2163 				return false;
2164 
2165 			names += ret;
2166 			size -= ret;
2167 		} else
2168 			append_sep = true;
2169 
2170 		ret = strscpy(names, cur->name, size);
2171 		if (ret < 0)
2172 			return false;
2173 
2174 		names += ret;
2175 		size -= ret;
2176 	}
2177 
2178 	return true;
2179 }
2180 
2181 static bool seccomp_action_logged_from_name(u32 *action_logged,
2182 					    const char *name)
2183 {
2184 	const struct seccomp_log_name *cur;
2185 
2186 	for (cur = seccomp_log_names; cur->name; cur++) {
2187 		if (!strcmp(cur->name, name)) {
2188 			*action_logged = cur->log;
2189 			return true;
2190 		}
2191 	}
2192 
2193 	return false;
2194 }
2195 
2196 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2197 {
2198 	char *name;
2199 
2200 	*actions_logged = 0;
2201 	while ((name = strsep(&names, " ")) && *name) {
2202 		u32 action_logged = 0;
2203 
2204 		if (!seccomp_action_logged_from_name(&action_logged, name))
2205 			return false;
2206 
2207 		*actions_logged |= action_logged;
2208 	}
2209 
2210 	return true;
2211 }
2212 
2213 static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
2214 			       size_t *lenp, loff_t *ppos)
2215 {
2216 	char names[sizeof(seccomp_actions_avail)];
2217 	struct ctl_table table;
2218 
2219 	memset(names, 0, sizeof(names));
2220 
2221 	if (!seccomp_names_from_actions_logged(names, sizeof(names),
2222 					       seccomp_actions_logged, " "))
2223 		return -EINVAL;
2224 
2225 	table = *ro_table;
2226 	table.data = names;
2227 	table.maxlen = sizeof(names);
2228 	return proc_dostring(&table, 0, buffer, lenp, ppos);
2229 }
2230 
2231 static int write_actions_logged(struct ctl_table *ro_table, void *buffer,
2232 				size_t *lenp, loff_t *ppos, u32 *actions_logged)
2233 {
2234 	char names[sizeof(seccomp_actions_avail)];
2235 	struct ctl_table table;
2236 	int ret;
2237 
2238 	if (!capable(CAP_SYS_ADMIN))
2239 		return -EPERM;
2240 
2241 	memset(names, 0, sizeof(names));
2242 
2243 	table = *ro_table;
2244 	table.data = names;
2245 	table.maxlen = sizeof(names);
2246 	ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2247 	if (ret)
2248 		return ret;
2249 
2250 	if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2251 		return -EINVAL;
2252 
2253 	if (*actions_logged & SECCOMP_LOG_ALLOW)
2254 		return -EINVAL;
2255 
2256 	seccomp_actions_logged = *actions_logged;
2257 	return 0;
2258 }
2259 
2260 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2261 				 int ret)
2262 {
2263 	char names[sizeof(seccomp_actions_avail)];
2264 	char old_names[sizeof(seccomp_actions_avail)];
2265 	const char *new = names;
2266 	const char *old = old_names;
2267 
2268 	if (!audit_enabled)
2269 		return;
2270 
2271 	memset(names, 0, sizeof(names));
2272 	memset(old_names, 0, sizeof(old_names));
2273 
2274 	if (ret)
2275 		new = "?";
2276 	else if (!actions_logged)
2277 		new = "(none)";
2278 	else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2279 						    actions_logged, ","))
2280 		new = "?";
2281 
2282 	if (!old_actions_logged)
2283 		old = "(none)";
2284 	else if (!seccomp_names_from_actions_logged(old_names,
2285 						    sizeof(old_names),
2286 						    old_actions_logged, ","))
2287 		old = "?";
2288 
2289 	return audit_seccomp_actions_logged(new, old, !ret);
2290 }
2291 
2292 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2293 					  void *buffer, size_t *lenp,
2294 					  loff_t *ppos)
2295 {
2296 	int ret;
2297 
2298 	if (write) {
2299 		u32 actions_logged = 0;
2300 		u32 old_actions_logged = seccomp_actions_logged;
2301 
2302 		ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2303 					   &actions_logged);
2304 		audit_actions_logged(actions_logged, old_actions_logged, ret);
2305 	} else
2306 		ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2307 
2308 	return ret;
2309 }
2310 
2311 static struct ctl_path seccomp_sysctl_path[] = {
2312 	{ .procname = "kernel", },
2313 	{ .procname = "seccomp", },
2314 	{ }
2315 };
2316 
2317 static struct ctl_table seccomp_sysctl_table[] = {
2318 	{
2319 		.procname	= "actions_avail",
2320 		.data		= (void *) &seccomp_actions_avail,
2321 		.maxlen		= sizeof(seccomp_actions_avail),
2322 		.mode		= 0444,
2323 		.proc_handler	= proc_dostring,
2324 	},
2325 	{
2326 		.procname	= "actions_logged",
2327 		.mode		= 0644,
2328 		.proc_handler	= seccomp_actions_logged_handler,
2329 	},
2330 	{ }
2331 };
2332 
2333 static int __init seccomp_sysctl_init(void)
2334 {
2335 	struct ctl_table_header *hdr;
2336 
2337 	hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2338 	if (!hdr)
2339 		pr_warn("sysctl registration failed\n");
2340 	else
2341 		kmemleak_not_leak(hdr);
2342 
2343 	return 0;
2344 }
2345 
2346 device_initcall(seccomp_sysctl_init)
2347 
2348 #endif /* CONFIG_SYSCTL */
2349 
2350 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
2351 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */
2352 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name,
2353 					const void *bitmap, size_t bitmap_size)
2354 {
2355 	int nr;
2356 
2357 	for (nr = 0; nr < bitmap_size; nr++) {
2358 		bool cached = test_bit(nr, bitmap);
2359 		char *status = cached ? "ALLOW" : "FILTER";
2360 
2361 		seq_printf(m, "%s %d %s\n", name, nr, status);
2362 	}
2363 }
2364 
2365 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns,
2366 			   struct pid *pid, struct task_struct *task)
2367 {
2368 	struct seccomp_filter *f;
2369 	unsigned long flags;
2370 
2371 	/*
2372 	 * We don't want some sandboxed process to know what their seccomp
2373 	 * filters consist of.
2374 	 */
2375 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
2376 		return -EACCES;
2377 
2378 	if (!lock_task_sighand(task, &flags))
2379 		return -ESRCH;
2380 
2381 	f = READ_ONCE(task->seccomp.filter);
2382 	if (!f) {
2383 		unlock_task_sighand(task, &flags);
2384 		return 0;
2385 	}
2386 
2387 	/* prevent filter from being freed while we are printing it */
2388 	__get_seccomp_filter(f);
2389 	unlock_task_sighand(task, &flags);
2390 
2391 	proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME,
2392 				    f->cache.allow_native,
2393 				    SECCOMP_ARCH_NATIVE_NR);
2394 
2395 #ifdef SECCOMP_ARCH_COMPAT
2396 	proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME,
2397 				    f->cache.allow_compat,
2398 				    SECCOMP_ARCH_COMPAT_NR);
2399 #endif /* SECCOMP_ARCH_COMPAT */
2400 
2401 	__put_seccomp_filter(f);
2402 	return 0;
2403 }
2404 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */
2405