xref: /openbmc/linux/kernel/sched/wait_bit.c (revision addee42a)
1 /*
2  * The implementation of the wait_bit*() and related waiting APIs:
3  */
4 #include "sched.h"
5 
6 #define WAIT_TABLE_BITS 8
7 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
8 
9 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
10 
11 wait_queue_head_t *bit_waitqueue(void *word, int bit)
12 {
13 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
14 	unsigned long val = (unsigned long)word << shift | bit;
15 
16 	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
17 }
18 EXPORT_SYMBOL(bit_waitqueue);
19 
20 int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *arg)
21 {
22 	struct wait_bit_key *key = arg;
23 	struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry);
24 
25 	if (wait_bit->key.flags != key->flags ||
26 			wait_bit->key.bit_nr != key->bit_nr ||
27 			test_bit(key->bit_nr, key->flags))
28 		return 0;
29 
30 	return autoremove_wake_function(wq_entry, mode, sync, key);
31 }
32 EXPORT_SYMBOL(wake_bit_function);
33 
34 /*
35  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
36  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
37  * permitted return codes. Nonzero return codes halt waiting and return.
38  */
39 int __sched
40 __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry,
41 	      wait_bit_action_f *action, unsigned mode)
42 {
43 	int ret = 0;
44 
45 	do {
46 		prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode);
47 		if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags))
48 			ret = (*action)(&wbq_entry->key, mode);
49 	} while (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags) && !ret);
50 
51 	finish_wait(wq_head, &wbq_entry->wq_entry);
52 
53 	return ret;
54 }
55 EXPORT_SYMBOL(__wait_on_bit);
56 
57 int __sched out_of_line_wait_on_bit(void *word, int bit,
58 				    wait_bit_action_f *action, unsigned mode)
59 {
60 	struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
61 	DEFINE_WAIT_BIT(wq_entry, word, bit);
62 
63 	return __wait_on_bit(wq_head, &wq_entry, action, mode);
64 }
65 EXPORT_SYMBOL(out_of_line_wait_on_bit);
66 
67 int __sched out_of_line_wait_on_bit_timeout(
68 	void *word, int bit, wait_bit_action_f *action,
69 	unsigned mode, unsigned long timeout)
70 {
71 	struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
72 	DEFINE_WAIT_BIT(wq_entry, word, bit);
73 
74 	wq_entry.key.timeout = jiffies + timeout;
75 
76 	return __wait_on_bit(wq_head, &wq_entry, action, mode);
77 }
78 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
79 
80 int __sched
81 __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry,
82 			wait_bit_action_f *action, unsigned mode)
83 {
84 	int ret = 0;
85 
86 	for (;;) {
87 		prepare_to_wait_exclusive(wq_head, &wbq_entry->wq_entry, mode);
88 		if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) {
89 			ret = action(&wbq_entry->key, mode);
90 			/*
91 			 * See the comment in prepare_to_wait_event().
92 			 * finish_wait() does not necessarily takes wwq_head->lock,
93 			 * but test_and_set_bit() implies mb() which pairs with
94 			 * smp_mb__after_atomic() before wake_up_page().
95 			 */
96 			if (ret)
97 				finish_wait(wq_head, &wbq_entry->wq_entry);
98 		}
99 		if (!test_and_set_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) {
100 			if (!ret)
101 				finish_wait(wq_head, &wbq_entry->wq_entry);
102 			return 0;
103 		} else if (ret) {
104 			return ret;
105 		}
106 	}
107 }
108 EXPORT_SYMBOL(__wait_on_bit_lock);
109 
110 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
111 					 wait_bit_action_f *action, unsigned mode)
112 {
113 	struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
114 	DEFINE_WAIT_BIT(wq_entry, word, bit);
115 
116 	return __wait_on_bit_lock(wq_head, &wq_entry, action, mode);
117 }
118 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
119 
120 void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit)
121 {
122 	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
123 
124 	if (waitqueue_active(wq_head))
125 		__wake_up(wq_head, TASK_NORMAL, 1, &key);
126 }
127 EXPORT_SYMBOL(__wake_up_bit);
128 
129 /**
130  * wake_up_bit - wake up a waiter on a bit
131  * @word: the word being waited on, a kernel virtual address
132  * @bit: the bit of the word being waited on
133  *
134  * There is a standard hashed waitqueue table for generic use. This
135  * is the part of the hashtable's accessor API that wakes up waiters
136  * on a bit. For instance, if one were to have waiters on a bitflag,
137  * one would call wake_up_bit() after clearing the bit.
138  *
139  * In order for this to function properly, as it uses waitqueue_active()
140  * internally, some kind of memory barrier must be done prior to calling
141  * this. Typically, this will be smp_mb__after_atomic(), but in some
142  * cases where bitflags are manipulated non-atomically under a lock, one
143  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
144  * because spin_unlock() does not guarantee a memory barrier.
145  */
146 void wake_up_bit(void *word, int bit)
147 {
148 	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
149 }
150 EXPORT_SYMBOL(wake_up_bit);
151 
152 wait_queue_head_t *__var_waitqueue(void *p)
153 {
154 	return bit_wait_table + hash_ptr(p, WAIT_TABLE_BITS);
155 }
156 EXPORT_SYMBOL(__var_waitqueue);
157 
158 static int
159 var_wake_function(struct wait_queue_entry *wq_entry, unsigned int mode,
160 		  int sync, void *arg)
161 {
162 	struct wait_bit_key *key = arg;
163 	struct wait_bit_queue_entry *wbq_entry =
164 		container_of(wq_entry, struct wait_bit_queue_entry, wq_entry);
165 
166 	if (wbq_entry->key.flags != key->flags ||
167 	    wbq_entry->key.bit_nr != key->bit_nr)
168 		return 0;
169 
170 	return autoremove_wake_function(wq_entry, mode, sync, key);
171 }
172 
173 void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags)
174 {
175 	*wbq_entry = (struct wait_bit_queue_entry){
176 		.key = {
177 			.flags	= (var),
178 			.bit_nr = -1,
179 		},
180 		.wq_entry = {
181 			.private = current,
182 			.func	 = var_wake_function,
183 			.entry	 = LIST_HEAD_INIT(wbq_entry->wq_entry.entry),
184 		},
185 	};
186 }
187 EXPORT_SYMBOL(init_wait_var_entry);
188 
189 void wake_up_var(void *var)
190 {
191 	__wake_up_bit(__var_waitqueue(var), var, -1);
192 }
193 EXPORT_SYMBOL(wake_up_var);
194 
195 __sched int bit_wait(struct wait_bit_key *word, int mode)
196 {
197 	schedule();
198 	if (signal_pending_state(mode, current))
199 		return -EINTR;
200 
201 	return 0;
202 }
203 EXPORT_SYMBOL(bit_wait);
204 
205 __sched int bit_wait_io(struct wait_bit_key *word, int mode)
206 {
207 	io_schedule();
208 	if (signal_pending_state(mode, current))
209 		return -EINTR;
210 
211 	return 0;
212 }
213 EXPORT_SYMBOL(bit_wait_io);
214 
215 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
216 {
217 	unsigned long now = READ_ONCE(jiffies);
218 
219 	if (time_after_eq(now, word->timeout))
220 		return -EAGAIN;
221 	schedule_timeout(word->timeout - now);
222 	if (signal_pending_state(mode, current))
223 		return -EINTR;
224 
225 	return 0;
226 }
227 EXPORT_SYMBOL_GPL(bit_wait_timeout);
228 
229 __sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
230 {
231 	unsigned long now = READ_ONCE(jiffies);
232 
233 	if (time_after_eq(now, word->timeout))
234 		return -EAGAIN;
235 	io_schedule_timeout(word->timeout - now);
236 	if (signal_pending_state(mode, current))
237 		return -EINTR;
238 
239 	return 0;
240 }
241 EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
242 
243 void __init wait_bit_init(void)
244 {
245 	int i;
246 
247 	for (i = 0; i < WAIT_TABLE_SIZE; i++)
248 		init_waitqueue_head(bit_wait_table + i);
249 }
250