xref: /openbmc/linux/kernel/sched/wait_bit.c (revision 5927145e)
1 /*
2  * The implementation of the wait_bit*() and related waiting APIs:
3  */
4 #include <linux/wait_bit.h>
5 #include <linux/sched/signal.h>
6 #include <linux/sched/debug.h>
7 #include <linux/hash.h>
8 
9 #define WAIT_TABLE_BITS 8
10 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
11 
12 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
13 
14 wait_queue_head_t *bit_waitqueue(void *word, int bit)
15 {
16 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
17 	unsigned long val = (unsigned long)word << shift | bit;
18 
19 	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
20 }
21 EXPORT_SYMBOL(bit_waitqueue);
22 
23 int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *arg)
24 {
25 	struct wait_bit_key *key = arg;
26 	struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry);
27 
28 	if (wait_bit->key.flags != key->flags ||
29 			wait_bit->key.bit_nr != key->bit_nr ||
30 			test_bit(key->bit_nr, key->flags))
31 		return 0;
32 	else
33 		return autoremove_wake_function(wq_entry, mode, sync, key);
34 }
35 EXPORT_SYMBOL(wake_bit_function);
36 
37 /*
38  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
39  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
40  * permitted return codes. Nonzero return codes halt waiting and return.
41  */
42 int __sched
43 __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry,
44 	      wait_bit_action_f *action, unsigned mode)
45 {
46 	int ret = 0;
47 
48 	do {
49 		prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode);
50 		if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags))
51 			ret = (*action)(&wbq_entry->key, mode);
52 	} while (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags) && !ret);
53 	finish_wait(wq_head, &wbq_entry->wq_entry);
54 	return ret;
55 }
56 EXPORT_SYMBOL(__wait_on_bit);
57 
58 int __sched out_of_line_wait_on_bit(void *word, int bit,
59 				    wait_bit_action_f *action, unsigned mode)
60 {
61 	struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
62 	DEFINE_WAIT_BIT(wq_entry, word, bit);
63 
64 	return __wait_on_bit(wq_head, &wq_entry, action, mode);
65 }
66 EXPORT_SYMBOL(out_of_line_wait_on_bit);
67 
68 int __sched out_of_line_wait_on_bit_timeout(
69 	void *word, int bit, wait_bit_action_f *action,
70 	unsigned mode, unsigned long timeout)
71 {
72 	struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
73 	DEFINE_WAIT_BIT(wq_entry, word, bit);
74 
75 	wq_entry.key.timeout = jiffies + timeout;
76 	return __wait_on_bit(wq_head, &wq_entry, action, mode);
77 }
78 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
79 
80 int __sched
81 __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry,
82 			wait_bit_action_f *action, unsigned mode)
83 {
84 	int ret = 0;
85 
86 	for (;;) {
87 		prepare_to_wait_exclusive(wq_head, &wbq_entry->wq_entry, mode);
88 		if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) {
89 			ret = action(&wbq_entry->key, mode);
90 			/*
91 			 * See the comment in prepare_to_wait_event().
92 			 * finish_wait() does not necessarily takes wwq_head->lock,
93 			 * but test_and_set_bit() implies mb() which pairs with
94 			 * smp_mb__after_atomic() before wake_up_page().
95 			 */
96 			if (ret)
97 				finish_wait(wq_head, &wbq_entry->wq_entry);
98 		}
99 		if (!test_and_set_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) {
100 			if (!ret)
101 				finish_wait(wq_head, &wbq_entry->wq_entry);
102 			return 0;
103 		} else if (ret) {
104 			return ret;
105 		}
106 	}
107 }
108 EXPORT_SYMBOL(__wait_on_bit_lock);
109 
110 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
111 					 wait_bit_action_f *action, unsigned mode)
112 {
113 	struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
114 	DEFINE_WAIT_BIT(wq_entry, word, bit);
115 
116 	return __wait_on_bit_lock(wq_head, &wq_entry, action, mode);
117 }
118 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
119 
120 void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit)
121 {
122 	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
123 	if (waitqueue_active(wq_head))
124 		__wake_up(wq_head, TASK_NORMAL, 1, &key);
125 }
126 EXPORT_SYMBOL(__wake_up_bit);
127 
128 /**
129  * wake_up_bit - wake up a waiter on a bit
130  * @word: the word being waited on, a kernel virtual address
131  * @bit: the bit of the word being waited on
132  *
133  * There is a standard hashed waitqueue table for generic use. This
134  * is the part of the hashtable's accessor API that wakes up waiters
135  * on a bit. For instance, if one were to have waiters on a bitflag,
136  * one would call wake_up_bit() after clearing the bit.
137  *
138  * In order for this to function properly, as it uses waitqueue_active()
139  * internally, some kind of memory barrier must be done prior to calling
140  * this. Typically, this will be smp_mb__after_atomic(), but in some
141  * cases where bitflags are manipulated non-atomically under a lock, one
142  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
143  * because spin_unlock() does not guarantee a memory barrier.
144  */
145 void wake_up_bit(void *word, int bit)
146 {
147 	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
148 }
149 EXPORT_SYMBOL(wake_up_bit);
150 
151 /*
152  * Manipulate the atomic_t address to produce a better bit waitqueue table hash
153  * index (we're keying off bit -1, but that would produce a horrible hash
154  * value).
155  */
156 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
157 {
158 	if (BITS_PER_LONG == 64) {
159 		unsigned long q = (unsigned long)p;
160 		return bit_waitqueue((void *)(q & ~1), q & 1);
161 	}
162 	return bit_waitqueue(p, 0);
163 }
164 
165 static int wake_atomic_t_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync,
166 				  void *arg)
167 {
168 	struct wait_bit_key *key = arg;
169 	struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry);
170 	atomic_t *val = key->flags;
171 
172 	if (wait_bit->key.flags != key->flags ||
173 	    wait_bit->key.bit_nr != key->bit_nr ||
174 	    atomic_read(val) != 0)
175 		return 0;
176 	return autoremove_wake_function(wq_entry, mode, sync, key);
177 }
178 
179 /*
180  * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
181  * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
182  * return codes halt waiting and return.
183  */
184 static __sched
185 int __wait_on_atomic_t(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry,
186 		       wait_atomic_t_action_f action, unsigned int mode)
187 {
188 	atomic_t *val;
189 	int ret = 0;
190 
191 	do {
192 		prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode);
193 		val = wbq_entry->key.flags;
194 		if (atomic_read(val) == 0)
195 			break;
196 		ret = (*action)(val, mode);
197 	} while (!ret && atomic_read(val) != 0);
198 	finish_wait(wq_head, &wbq_entry->wq_entry);
199 	return ret;
200 }
201 
202 #define DEFINE_WAIT_ATOMIC_T(name, p)					\
203 	struct wait_bit_queue_entry name = {				\
204 		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
205 		.wq_entry = {						\
206 			.private	= current,			\
207 			.func		= wake_atomic_t_function,	\
208 			.entry		=				\
209 				LIST_HEAD_INIT((name).wq_entry.entry),	\
210 		},							\
211 	}
212 
213 __sched int out_of_line_wait_on_atomic_t(atomic_t *p,
214 					 wait_atomic_t_action_f action,
215 					 unsigned int mode)
216 {
217 	struct wait_queue_head *wq_head = atomic_t_waitqueue(p);
218 	DEFINE_WAIT_ATOMIC_T(wq_entry, p);
219 
220 	return __wait_on_atomic_t(wq_head, &wq_entry, action, mode);
221 }
222 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
223 
224 __sched int atomic_t_wait(atomic_t *counter, unsigned int mode)
225 {
226 	schedule();
227 	if (signal_pending_state(mode, current))
228 		return -EINTR;
229 	return 0;
230 }
231 EXPORT_SYMBOL(atomic_t_wait);
232 
233 /**
234  * wake_up_atomic_t - Wake up a waiter on a atomic_t
235  * @p: The atomic_t being waited on, a kernel virtual address
236  *
237  * Wake up anyone waiting for the atomic_t to go to zero.
238  *
239  * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
240  * check is done by the waiter's wake function, not the by the waker itself).
241  */
242 void wake_up_atomic_t(atomic_t *p)
243 {
244 	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
245 }
246 EXPORT_SYMBOL(wake_up_atomic_t);
247 
248 __sched int bit_wait(struct wait_bit_key *word, int mode)
249 {
250 	schedule();
251 	if (signal_pending_state(mode, current))
252 		return -EINTR;
253 	return 0;
254 }
255 EXPORT_SYMBOL(bit_wait);
256 
257 __sched int bit_wait_io(struct wait_bit_key *word, int mode)
258 {
259 	io_schedule();
260 	if (signal_pending_state(mode, current))
261 		return -EINTR;
262 	return 0;
263 }
264 EXPORT_SYMBOL(bit_wait_io);
265 
266 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
267 {
268 	unsigned long now = READ_ONCE(jiffies);
269 	if (time_after_eq(now, word->timeout))
270 		return -EAGAIN;
271 	schedule_timeout(word->timeout - now);
272 	if (signal_pending_state(mode, current))
273 		return -EINTR;
274 	return 0;
275 }
276 EXPORT_SYMBOL_GPL(bit_wait_timeout);
277 
278 __sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
279 {
280 	unsigned long now = READ_ONCE(jiffies);
281 	if (time_after_eq(now, word->timeout))
282 		return -EAGAIN;
283 	io_schedule_timeout(word->timeout - now);
284 	if (signal_pending_state(mode, current))
285 		return -EINTR;
286 	return 0;
287 }
288 EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
289 
290 void __init wait_bit_init(void)
291 {
292 	int i;
293 
294 	for (i = 0; i < WAIT_TABLE_SIZE; i++)
295 		init_waitqueue_head(bit_wait_table + i);
296 }
297