1 /* 2 * The implementation of the wait_bit*() and related waiting APIs: 3 */ 4 #include <linux/wait_bit.h> 5 #include <linux/sched/signal.h> 6 #include <linux/sched/debug.h> 7 #include <linux/hash.h> 8 9 #define WAIT_TABLE_BITS 8 10 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS) 11 12 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned; 13 14 wait_queue_head_t *bit_waitqueue(void *word, int bit) 15 { 16 const int shift = BITS_PER_LONG == 32 ? 5 : 6; 17 unsigned long val = (unsigned long)word << shift | bit; 18 19 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS); 20 } 21 EXPORT_SYMBOL(bit_waitqueue); 22 23 int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *arg) 24 { 25 struct wait_bit_key *key = arg; 26 struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry); 27 28 if (wait_bit->key.flags != key->flags || 29 wait_bit->key.bit_nr != key->bit_nr || 30 test_bit(key->bit_nr, key->flags)) 31 return 0; 32 else 33 return autoremove_wake_function(wq_entry, mode, sync, key); 34 } 35 EXPORT_SYMBOL(wake_bit_function); 36 37 /* 38 * To allow interruptible waiting and asynchronous (i.e. nonblocking) 39 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are 40 * permitted return codes. Nonzero return codes halt waiting and return. 41 */ 42 int __sched 43 __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, 44 wait_bit_action_f *action, unsigned mode) 45 { 46 int ret = 0; 47 48 do { 49 prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode); 50 if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) 51 ret = (*action)(&wbq_entry->key, mode); 52 } while (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags) && !ret); 53 finish_wait(wq_head, &wbq_entry->wq_entry); 54 return ret; 55 } 56 EXPORT_SYMBOL(__wait_on_bit); 57 58 int __sched out_of_line_wait_on_bit(void *word, int bit, 59 wait_bit_action_f *action, unsigned mode) 60 { 61 struct wait_queue_head *wq_head = bit_waitqueue(word, bit); 62 DEFINE_WAIT_BIT(wq_entry, word, bit); 63 64 return __wait_on_bit(wq_head, &wq_entry, action, mode); 65 } 66 EXPORT_SYMBOL(out_of_line_wait_on_bit); 67 68 int __sched out_of_line_wait_on_bit_timeout( 69 void *word, int bit, wait_bit_action_f *action, 70 unsigned mode, unsigned long timeout) 71 { 72 struct wait_queue_head *wq_head = bit_waitqueue(word, bit); 73 DEFINE_WAIT_BIT(wq_entry, word, bit); 74 75 wq_entry.key.timeout = jiffies + timeout; 76 return __wait_on_bit(wq_head, &wq_entry, action, mode); 77 } 78 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout); 79 80 int __sched 81 __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, 82 wait_bit_action_f *action, unsigned mode) 83 { 84 int ret = 0; 85 86 for (;;) { 87 prepare_to_wait_exclusive(wq_head, &wbq_entry->wq_entry, mode); 88 if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) { 89 ret = action(&wbq_entry->key, mode); 90 /* 91 * See the comment in prepare_to_wait_event(). 92 * finish_wait() does not necessarily takes wwq_head->lock, 93 * but test_and_set_bit() implies mb() which pairs with 94 * smp_mb__after_atomic() before wake_up_page(). 95 */ 96 if (ret) 97 finish_wait(wq_head, &wbq_entry->wq_entry); 98 } 99 if (!test_and_set_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) { 100 if (!ret) 101 finish_wait(wq_head, &wbq_entry->wq_entry); 102 return 0; 103 } else if (ret) { 104 return ret; 105 } 106 } 107 } 108 EXPORT_SYMBOL(__wait_on_bit_lock); 109 110 int __sched out_of_line_wait_on_bit_lock(void *word, int bit, 111 wait_bit_action_f *action, unsigned mode) 112 { 113 struct wait_queue_head *wq_head = bit_waitqueue(word, bit); 114 DEFINE_WAIT_BIT(wq_entry, word, bit); 115 116 return __wait_on_bit_lock(wq_head, &wq_entry, action, mode); 117 } 118 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); 119 120 void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit) 121 { 122 struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); 123 if (waitqueue_active(wq_head)) 124 __wake_up(wq_head, TASK_NORMAL, 1, &key); 125 } 126 EXPORT_SYMBOL(__wake_up_bit); 127 128 /** 129 * wake_up_bit - wake up a waiter on a bit 130 * @word: the word being waited on, a kernel virtual address 131 * @bit: the bit of the word being waited on 132 * 133 * There is a standard hashed waitqueue table for generic use. This 134 * is the part of the hashtable's accessor API that wakes up waiters 135 * on a bit. For instance, if one were to have waiters on a bitflag, 136 * one would call wake_up_bit() after clearing the bit. 137 * 138 * In order for this to function properly, as it uses waitqueue_active() 139 * internally, some kind of memory barrier must be done prior to calling 140 * this. Typically, this will be smp_mb__after_atomic(), but in some 141 * cases where bitflags are manipulated non-atomically under a lock, one 142 * may need to use a less regular barrier, such fs/inode.c's smp_mb(), 143 * because spin_unlock() does not guarantee a memory barrier. 144 */ 145 void wake_up_bit(void *word, int bit) 146 { 147 __wake_up_bit(bit_waitqueue(word, bit), word, bit); 148 } 149 EXPORT_SYMBOL(wake_up_bit); 150 151 /* 152 * Manipulate the atomic_t address to produce a better bit waitqueue table hash 153 * index (we're keying off bit -1, but that would produce a horrible hash 154 * value). 155 */ 156 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) 157 { 158 if (BITS_PER_LONG == 64) { 159 unsigned long q = (unsigned long)p; 160 return bit_waitqueue((void *)(q & ~1), q & 1); 161 } 162 return bit_waitqueue(p, 0); 163 } 164 165 static int wake_atomic_t_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, 166 void *arg) 167 { 168 struct wait_bit_key *key = arg; 169 struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry); 170 atomic_t *val = key->flags; 171 172 if (wait_bit->key.flags != key->flags || 173 wait_bit->key.bit_nr != key->bit_nr || 174 atomic_read(val) != 0) 175 return 0; 176 return autoremove_wake_function(wq_entry, mode, sync, key); 177 } 178 179 /* 180 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, 181 * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero 182 * return codes halt waiting and return. 183 */ 184 static __sched 185 int __wait_on_atomic_t(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, 186 wait_atomic_t_action_f action, unsigned int mode) 187 { 188 atomic_t *val; 189 int ret = 0; 190 191 do { 192 prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode); 193 val = wbq_entry->key.flags; 194 if (atomic_read(val) == 0) 195 break; 196 ret = (*action)(val, mode); 197 } while (!ret && atomic_read(val) != 0); 198 finish_wait(wq_head, &wbq_entry->wq_entry); 199 return ret; 200 } 201 202 #define DEFINE_WAIT_ATOMIC_T(name, p) \ 203 struct wait_bit_queue_entry name = { \ 204 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \ 205 .wq_entry = { \ 206 .private = current, \ 207 .func = wake_atomic_t_function, \ 208 .entry = \ 209 LIST_HEAD_INIT((name).wq_entry.entry), \ 210 }, \ 211 } 212 213 __sched int out_of_line_wait_on_atomic_t(atomic_t *p, 214 wait_atomic_t_action_f action, 215 unsigned int mode) 216 { 217 struct wait_queue_head *wq_head = atomic_t_waitqueue(p); 218 DEFINE_WAIT_ATOMIC_T(wq_entry, p); 219 220 return __wait_on_atomic_t(wq_head, &wq_entry, action, mode); 221 } 222 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); 223 224 __sched int atomic_t_wait(atomic_t *counter, unsigned int mode) 225 { 226 schedule(); 227 if (signal_pending_state(mode, current)) 228 return -EINTR; 229 return 0; 230 } 231 EXPORT_SYMBOL(atomic_t_wait); 232 233 /** 234 * wake_up_atomic_t - Wake up a waiter on a atomic_t 235 * @p: The atomic_t being waited on, a kernel virtual address 236 * 237 * Wake up anyone waiting for the atomic_t to go to zero. 238 * 239 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t 240 * check is done by the waiter's wake function, not the by the waker itself). 241 */ 242 void wake_up_atomic_t(atomic_t *p) 243 { 244 __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); 245 } 246 EXPORT_SYMBOL(wake_up_atomic_t); 247 248 __sched int bit_wait(struct wait_bit_key *word, int mode) 249 { 250 schedule(); 251 if (signal_pending_state(mode, current)) 252 return -EINTR; 253 return 0; 254 } 255 EXPORT_SYMBOL(bit_wait); 256 257 __sched int bit_wait_io(struct wait_bit_key *word, int mode) 258 { 259 io_schedule(); 260 if (signal_pending_state(mode, current)) 261 return -EINTR; 262 return 0; 263 } 264 EXPORT_SYMBOL(bit_wait_io); 265 266 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode) 267 { 268 unsigned long now = READ_ONCE(jiffies); 269 if (time_after_eq(now, word->timeout)) 270 return -EAGAIN; 271 schedule_timeout(word->timeout - now); 272 if (signal_pending_state(mode, current)) 273 return -EINTR; 274 return 0; 275 } 276 EXPORT_SYMBOL_GPL(bit_wait_timeout); 277 278 __sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode) 279 { 280 unsigned long now = READ_ONCE(jiffies); 281 if (time_after_eq(now, word->timeout)) 282 return -EAGAIN; 283 io_schedule_timeout(word->timeout - now); 284 if (signal_pending_state(mode, current)) 285 return -EINTR; 286 return 0; 287 } 288 EXPORT_SYMBOL_GPL(bit_wait_io_timeout); 289 290 void __init wait_bit_init(void) 291 { 292 int i; 293 294 for (i = 0; i < WAIT_TABLE_SIZE; i++) 295 init_waitqueue_head(bit_wait_table + i); 296 } 297