xref: /openbmc/linux/kernel/sched/wait.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Generic waiting primitives.
3  *
4  * (C) 2004 Nadia Yvette Chambers, Oracle
5  */
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12 #include <linux/kthread.h>
13 
14 void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
15 {
16 	spin_lock_init(&q->lock);
17 	lockdep_set_class_and_name(&q->lock, key, name);
18 	INIT_LIST_HEAD(&q->task_list);
19 }
20 
21 EXPORT_SYMBOL(__init_waitqueue_head);
22 
23 void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
24 {
25 	unsigned long flags;
26 
27 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
28 	spin_lock_irqsave(&q->lock, flags);
29 	__add_wait_queue(q, wait);
30 	spin_unlock_irqrestore(&q->lock, flags);
31 }
32 EXPORT_SYMBOL(add_wait_queue);
33 
34 void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
35 {
36 	unsigned long flags;
37 
38 	wait->flags |= WQ_FLAG_EXCLUSIVE;
39 	spin_lock_irqsave(&q->lock, flags);
40 	__add_wait_queue_tail(q, wait);
41 	spin_unlock_irqrestore(&q->lock, flags);
42 }
43 EXPORT_SYMBOL(add_wait_queue_exclusive);
44 
45 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&q->lock, flags);
50 	__remove_wait_queue(q, wait);
51 	spin_unlock_irqrestore(&q->lock, flags);
52 }
53 EXPORT_SYMBOL(remove_wait_queue);
54 
55 
56 /*
57  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
58  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
59  * number) then we wake all the non-exclusive tasks and one exclusive task.
60  *
61  * There are circumstances in which we can try to wake a task which has already
62  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
63  * zero in this (rare) case, and we handle it by continuing to scan the queue.
64  */
65 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
66 			int nr_exclusive, int wake_flags, void *key)
67 {
68 	wait_queue_t *curr, *next;
69 
70 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
71 		unsigned flags = curr->flags;
72 
73 		if (curr->func(curr, mode, wake_flags, key) &&
74 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
75 			break;
76 	}
77 }
78 
79 /**
80  * __wake_up - wake up threads blocked on a waitqueue.
81  * @q: the waitqueue
82  * @mode: which threads
83  * @nr_exclusive: how many wake-one or wake-many threads to wake up
84  * @key: is directly passed to the wakeup function
85  *
86  * It may be assumed that this function implies a write memory barrier before
87  * changing the task state if and only if any tasks are woken up.
88  */
89 void __wake_up(wait_queue_head_t *q, unsigned int mode,
90 			int nr_exclusive, void *key)
91 {
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&q->lock, flags);
95 	__wake_up_common(q, mode, nr_exclusive, 0, key);
96 	spin_unlock_irqrestore(&q->lock, flags);
97 }
98 EXPORT_SYMBOL(__wake_up);
99 
100 /*
101  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
102  */
103 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
104 {
105 	__wake_up_common(q, mode, nr, 0, NULL);
106 }
107 EXPORT_SYMBOL_GPL(__wake_up_locked);
108 
109 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
110 {
111 	__wake_up_common(q, mode, 1, 0, key);
112 }
113 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
114 
115 /**
116  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
117  * @q: the waitqueue
118  * @mode: which threads
119  * @nr_exclusive: how many wake-one or wake-many threads to wake up
120  * @key: opaque value to be passed to wakeup targets
121  *
122  * The sync wakeup differs that the waker knows that it will schedule
123  * away soon, so while the target thread will be woken up, it will not
124  * be migrated to another CPU - ie. the two threads are 'synchronized'
125  * with each other. This can prevent needless bouncing between CPUs.
126  *
127  * On UP it can prevent extra preemption.
128  *
129  * It may be assumed that this function implies a write memory barrier before
130  * changing the task state if and only if any tasks are woken up.
131  */
132 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
133 			int nr_exclusive, void *key)
134 {
135 	unsigned long flags;
136 	int wake_flags = 1; /* XXX WF_SYNC */
137 
138 	if (unlikely(!q))
139 		return;
140 
141 	if (unlikely(nr_exclusive != 1))
142 		wake_flags = 0;
143 
144 	spin_lock_irqsave(&q->lock, flags);
145 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
146 	spin_unlock_irqrestore(&q->lock, flags);
147 }
148 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
149 
150 /*
151  * __wake_up_sync - see __wake_up_sync_key()
152  */
153 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
154 {
155 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
156 }
157 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
158 
159 /*
160  * Note: we use "set_current_state()" _after_ the wait-queue add,
161  * because we need a memory barrier there on SMP, so that any
162  * wake-function that tests for the wait-queue being active
163  * will be guaranteed to see waitqueue addition _or_ subsequent
164  * tests in this thread will see the wakeup having taken place.
165  *
166  * The spin_unlock() itself is semi-permeable and only protects
167  * one way (it only protects stuff inside the critical region and
168  * stops them from bleeding out - it would still allow subsequent
169  * loads to move into the critical region).
170  */
171 void
172 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
173 {
174 	unsigned long flags;
175 
176 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
177 	spin_lock_irqsave(&q->lock, flags);
178 	if (list_empty(&wait->task_list))
179 		__add_wait_queue(q, wait);
180 	set_current_state(state);
181 	spin_unlock_irqrestore(&q->lock, flags);
182 }
183 EXPORT_SYMBOL(prepare_to_wait);
184 
185 void
186 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
187 {
188 	unsigned long flags;
189 
190 	wait->flags |= WQ_FLAG_EXCLUSIVE;
191 	spin_lock_irqsave(&q->lock, flags);
192 	if (list_empty(&wait->task_list))
193 		__add_wait_queue_tail(q, wait);
194 	set_current_state(state);
195 	spin_unlock_irqrestore(&q->lock, flags);
196 }
197 EXPORT_SYMBOL(prepare_to_wait_exclusive);
198 
199 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
200 {
201 	unsigned long flags;
202 
203 	if (signal_pending_state(state, current))
204 		return -ERESTARTSYS;
205 
206 	wait->private = current;
207 	wait->func = autoremove_wake_function;
208 
209 	spin_lock_irqsave(&q->lock, flags);
210 	if (list_empty(&wait->task_list)) {
211 		if (wait->flags & WQ_FLAG_EXCLUSIVE)
212 			__add_wait_queue_tail(q, wait);
213 		else
214 			__add_wait_queue(q, wait);
215 	}
216 	set_current_state(state);
217 	spin_unlock_irqrestore(&q->lock, flags);
218 
219 	return 0;
220 }
221 EXPORT_SYMBOL(prepare_to_wait_event);
222 
223 /**
224  * finish_wait - clean up after waiting in a queue
225  * @q: waitqueue waited on
226  * @wait: wait descriptor
227  *
228  * Sets current thread back to running state and removes
229  * the wait descriptor from the given waitqueue if still
230  * queued.
231  */
232 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
233 {
234 	unsigned long flags;
235 
236 	__set_current_state(TASK_RUNNING);
237 	/*
238 	 * We can check for list emptiness outside the lock
239 	 * IFF:
240 	 *  - we use the "careful" check that verifies both
241 	 *    the next and prev pointers, so that there cannot
242 	 *    be any half-pending updates in progress on other
243 	 *    CPU's that we haven't seen yet (and that might
244 	 *    still change the stack area.
245 	 * and
246 	 *  - all other users take the lock (ie we can only
247 	 *    have _one_ other CPU that looks at or modifies
248 	 *    the list).
249 	 */
250 	if (!list_empty_careful(&wait->task_list)) {
251 		spin_lock_irqsave(&q->lock, flags);
252 		list_del_init(&wait->task_list);
253 		spin_unlock_irqrestore(&q->lock, flags);
254 	}
255 }
256 EXPORT_SYMBOL(finish_wait);
257 
258 /**
259  * abort_exclusive_wait - abort exclusive waiting in a queue
260  * @q: waitqueue waited on
261  * @wait: wait descriptor
262  * @mode: runstate of the waiter to be woken
263  * @key: key to identify a wait bit queue or %NULL
264  *
265  * Sets current thread back to running state and removes
266  * the wait descriptor from the given waitqueue if still
267  * queued.
268  *
269  * Wakes up the next waiter if the caller is concurrently
270  * woken up through the queue.
271  *
272  * This prevents waiter starvation where an exclusive waiter
273  * aborts and is woken up concurrently and no one wakes up
274  * the next waiter.
275  */
276 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
277 			unsigned int mode, void *key)
278 {
279 	unsigned long flags;
280 
281 	__set_current_state(TASK_RUNNING);
282 	spin_lock_irqsave(&q->lock, flags);
283 	if (!list_empty(&wait->task_list))
284 		list_del_init(&wait->task_list);
285 	else if (waitqueue_active(q))
286 		__wake_up_locked_key(q, mode, key);
287 	spin_unlock_irqrestore(&q->lock, flags);
288 }
289 EXPORT_SYMBOL(abort_exclusive_wait);
290 
291 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
292 {
293 	int ret = default_wake_function(wait, mode, sync, key);
294 
295 	if (ret)
296 		list_del_init(&wait->task_list);
297 	return ret;
298 }
299 EXPORT_SYMBOL(autoremove_wake_function);
300 
301 static inline bool is_kthread_should_stop(void)
302 {
303 	return (current->flags & PF_KTHREAD) && kthread_should_stop();
304 }
305 
306 /*
307  * DEFINE_WAIT_FUNC(wait, woken_wake_func);
308  *
309  * add_wait_queue(&wq, &wait);
310  * for (;;) {
311  *     if (condition)
312  *         break;
313  *
314  *     p->state = mode;				condition = true;
315  *     smp_mb(); // A				smp_wmb(); // C
316  *     if (!wait->flags & WQ_FLAG_WOKEN)	wait->flags |= WQ_FLAG_WOKEN;
317  *         schedule()				try_to_wake_up();
318  *     p->state = TASK_RUNNING;		    ~~~~~~~~~~~~~~~~~~
319  *     wait->flags &= ~WQ_FLAG_WOKEN;		condition = true;
320  *     smp_mb() // B				smp_wmb(); // C
321  *						wait->flags |= WQ_FLAG_WOKEN;
322  * }
323  * remove_wait_queue(&wq, &wait);
324  *
325  */
326 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
327 {
328 	set_current_state(mode); /* A */
329 	/*
330 	 * The above implies an smp_mb(), which matches with the smp_wmb() from
331 	 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
332 	 * also observe all state before the wakeup.
333 	 */
334 	if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
335 		timeout = schedule_timeout(timeout);
336 	__set_current_state(TASK_RUNNING);
337 
338 	/*
339 	 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
340 	 * woken_wake_function() such that we must either observe the wait
341 	 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
342 	 * an event.
343 	 */
344 	smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
345 
346 	return timeout;
347 }
348 EXPORT_SYMBOL(wait_woken);
349 
350 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
351 {
352 	/*
353 	 * Although this function is called under waitqueue lock, LOCK
354 	 * doesn't imply write barrier and the users expects write
355 	 * barrier semantics on wakeup functions.  The following
356 	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
357 	 * and is paired with smp_store_mb() in wait_woken().
358 	 */
359 	smp_wmb(); /* C */
360 	wait->flags |= WQ_FLAG_WOKEN;
361 
362 	return default_wake_function(wait, mode, sync, key);
363 }
364 EXPORT_SYMBOL(woken_wake_function);
365 
366 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
367 {
368 	struct wait_bit_key *key = arg;
369 	struct wait_bit_queue *wait_bit
370 		= container_of(wait, struct wait_bit_queue, wait);
371 
372 	if (wait_bit->key.flags != key->flags ||
373 			wait_bit->key.bit_nr != key->bit_nr ||
374 			test_bit(key->bit_nr, key->flags))
375 		return 0;
376 	else
377 		return autoremove_wake_function(wait, mode, sync, key);
378 }
379 EXPORT_SYMBOL(wake_bit_function);
380 
381 /*
382  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
383  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
384  * permitted return codes. Nonzero return codes halt waiting and return.
385  */
386 int __sched
387 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
388 	      wait_bit_action_f *action, unsigned mode)
389 {
390 	int ret = 0;
391 
392 	do {
393 		prepare_to_wait(wq, &q->wait, mode);
394 		if (test_bit(q->key.bit_nr, q->key.flags))
395 			ret = (*action)(&q->key);
396 	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
397 	finish_wait(wq, &q->wait);
398 	return ret;
399 }
400 EXPORT_SYMBOL(__wait_on_bit);
401 
402 int __sched out_of_line_wait_on_bit(void *word, int bit,
403 				    wait_bit_action_f *action, unsigned mode)
404 {
405 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
406 	DEFINE_WAIT_BIT(wait, word, bit);
407 
408 	return __wait_on_bit(wq, &wait, action, mode);
409 }
410 EXPORT_SYMBOL(out_of_line_wait_on_bit);
411 
412 int __sched out_of_line_wait_on_bit_timeout(
413 	void *word, int bit, wait_bit_action_f *action,
414 	unsigned mode, unsigned long timeout)
415 {
416 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
417 	DEFINE_WAIT_BIT(wait, word, bit);
418 
419 	wait.key.timeout = jiffies + timeout;
420 	return __wait_on_bit(wq, &wait, action, mode);
421 }
422 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
423 
424 int __sched
425 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
426 			wait_bit_action_f *action, unsigned mode)
427 {
428 	do {
429 		int ret;
430 
431 		prepare_to_wait_exclusive(wq, &q->wait, mode);
432 		if (!test_bit(q->key.bit_nr, q->key.flags))
433 			continue;
434 		ret = action(&q->key);
435 		if (!ret)
436 			continue;
437 		abort_exclusive_wait(wq, &q->wait, mode, &q->key);
438 		return ret;
439 	} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
440 	finish_wait(wq, &q->wait);
441 	return 0;
442 }
443 EXPORT_SYMBOL(__wait_on_bit_lock);
444 
445 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
446 					 wait_bit_action_f *action, unsigned mode)
447 {
448 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
449 	DEFINE_WAIT_BIT(wait, word, bit);
450 
451 	return __wait_on_bit_lock(wq, &wait, action, mode);
452 }
453 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
454 
455 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
456 {
457 	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
458 	if (waitqueue_active(wq))
459 		__wake_up(wq, TASK_NORMAL, 1, &key);
460 }
461 EXPORT_SYMBOL(__wake_up_bit);
462 
463 /**
464  * wake_up_bit - wake up a waiter on a bit
465  * @word: the word being waited on, a kernel virtual address
466  * @bit: the bit of the word being waited on
467  *
468  * There is a standard hashed waitqueue table for generic use. This
469  * is the part of the hashtable's accessor API that wakes up waiters
470  * on a bit. For instance, if one were to have waiters on a bitflag,
471  * one would call wake_up_bit() after clearing the bit.
472  *
473  * In order for this to function properly, as it uses waitqueue_active()
474  * internally, some kind of memory barrier must be done prior to calling
475  * this. Typically, this will be smp_mb__after_atomic(), but in some
476  * cases where bitflags are manipulated non-atomically under a lock, one
477  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
478  * because spin_unlock() does not guarantee a memory barrier.
479  */
480 void wake_up_bit(void *word, int bit)
481 {
482 	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
483 }
484 EXPORT_SYMBOL(wake_up_bit);
485 
486 wait_queue_head_t *bit_waitqueue(void *word, int bit)
487 {
488 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
489 	const struct zone *zone = page_zone(virt_to_page(word));
490 	unsigned long val = (unsigned long)word << shift | bit;
491 
492 	return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
493 }
494 EXPORT_SYMBOL(bit_waitqueue);
495 
496 /*
497  * Manipulate the atomic_t address to produce a better bit waitqueue table hash
498  * index (we're keying off bit -1, but that would produce a horrible hash
499  * value).
500  */
501 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
502 {
503 	if (BITS_PER_LONG == 64) {
504 		unsigned long q = (unsigned long)p;
505 		return bit_waitqueue((void *)(q & ~1), q & 1);
506 	}
507 	return bit_waitqueue(p, 0);
508 }
509 
510 static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
511 				  void *arg)
512 {
513 	struct wait_bit_key *key = arg;
514 	struct wait_bit_queue *wait_bit
515 		= container_of(wait, struct wait_bit_queue, wait);
516 	atomic_t *val = key->flags;
517 
518 	if (wait_bit->key.flags != key->flags ||
519 	    wait_bit->key.bit_nr != key->bit_nr ||
520 	    atomic_read(val) != 0)
521 		return 0;
522 	return autoremove_wake_function(wait, mode, sync, key);
523 }
524 
525 /*
526  * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
527  * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
528  * return codes halt waiting and return.
529  */
530 static __sched
531 int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
532 		       int (*action)(atomic_t *), unsigned mode)
533 {
534 	atomic_t *val;
535 	int ret = 0;
536 
537 	do {
538 		prepare_to_wait(wq, &q->wait, mode);
539 		val = q->key.flags;
540 		if (atomic_read(val) == 0)
541 			break;
542 		ret = (*action)(val);
543 	} while (!ret && atomic_read(val) != 0);
544 	finish_wait(wq, &q->wait);
545 	return ret;
546 }
547 
548 #define DEFINE_WAIT_ATOMIC_T(name, p)					\
549 	struct wait_bit_queue name = {					\
550 		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
551 		.wait	= {						\
552 			.private	= current,			\
553 			.func		= wake_atomic_t_function,	\
554 			.task_list	=				\
555 				LIST_HEAD_INIT((name).wait.task_list),	\
556 		},							\
557 	}
558 
559 __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
560 					 unsigned mode)
561 {
562 	wait_queue_head_t *wq = atomic_t_waitqueue(p);
563 	DEFINE_WAIT_ATOMIC_T(wait, p);
564 
565 	return __wait_on_atomic_t(wq, &wait, action, mode);
566 }
567 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
568 
569 /**
570  * wake_up_atomic_t - Wake up a waiter on a atomic_t
571  * @p: The atomic_t being waited on, a kernel virtual address
572  *
573  * Wake up anyone waiting for the atomic_t to go to zero.
574  *
575  * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
576  * check is done by the waiter's wake function, not the by the waker itself).
577  */
578 void wake_up_atomic_t(atomic_t *p)
579 {
580 	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
581 }
582 EXPORT_SYMBOL(wake_up_atomic_t);
583 
584 __sched int bit_wait(struct wait_bit_key *word)
585 {
586 	if (signal_pending_state(current->state, current))
587 		return 1;
588 	schedule();
589 	return 0;
590 }
591 EXPORT_SYMBOL(bit_wait);
592 
593 __sched int bit_wait_io(struct wait_bit_key *word)
594 {
595 	if (signal_pending_state(current->state, current))
596 		return 1;
597 	io_schedule();
598 	return 0;
599 }
600 EXPORT_SYMBOL(bit_wait_io);
601 
602 __sched int bit_wait_timeout(struct wait_bit_key *word)
603 {
604 	unsigned long now = READ_ONCE(jiffies);
605 	if (signal_pending_state(current->state, current))
606 		return 1;
607 	if (time_after_eq(now, word->timeout))
608 		return -EAGAIN;
609 	schedule_timeout(word->timeout - now);
610 	return 0;
611 }
612 EXPORT_SYMBOL_GPL(bit_wait_timeout);
613 
614 __sched int bit_wait_io_timeout(struct wait_bit_key *word)
615 {
616 	unsigned long now = READ_ONCE(jiffies);
617 	if (signal_pending_state(current->state, current))
618 		return 1;
619 	if (time_after_eq(now, word->timeout))
620 		return -EAGAIN;
621 	io_schedule_timeout(word->timeout - now);
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
625