1 /* 2 * Generic waiting primitives. 3 * 4 * (C) 2004 Nadia Yvette Chambers, Oracle 5 */ 6 #include <linux/init.h> 7 #include <linux/export.h> 8 #include <linux/sched/signal.h> 9 #include <linux/sched/debug.h> 10 #include <linux/mm.h> 11 #include <linux/wait.h> 12 #include <linux/hash.h> 13 #include <linux/kthread.h> 14 15 void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key) 16 { 17 spin_lock_init(&q->lock); 18 lockdep_set_class_and_name(&q->lock, key, name); 19 INIT_LIST_HEAD(&q->task_list); 20 } 21 22 EXPORT_SYMBOL(__init_waitqueue_head); 23 24 void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) 25 { 26 unsigned long flags; 27 28 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 29 spin_lock_irqsave(&q->lock, flags); 30 __add_wait_queue(q, wait); 31 spin_unlock_irqrestore(&q->lock, flags); 32 } 33 EXPORT_SYMBOL(add_wait_queue); 34 35 void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) 36 { 37 unsigned long flags; 38 39 wait->flags |= WQ_FLAG_EXCLUSIVE; 40 spin_lock_irqsave(&q->lock, flags); 41 __add_wait_queue_tail(q, wait); 42 spin_unlock_irqrestore(&q->lock, flags); 43 } 44 EXPORT_SYMBOL(add_wait_queue_exclusive); 45 46 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) 47 { 48 unsigned long flags; 49 50 spin_lock_irqsave(&q->lock, flags); 51 __remove_wait_queue(q, wait); 52 spin_unlock_irqrestore(&q->lock, flags); 53 } 54 EXPORT_SYMBOL(remove_wait_queue); 55 56 57 /* 58 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 59 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 60 * number) then we wake all the non-exclusive tasks and one exclusive task. 61 * 62 * There are circumstances in which we can try to wake a task which has already 63 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 64 * zero in this (rare) case, and we handle it by continuing to scan the queue. 65 */ 66 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 67 int nr_exclusive, int wake_flags, void *key) 68 { 69 wait_queue_t *curr, *next; 70 71 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 72 unsigned flags = curr->flags; 73 74 if (curr->func(curr, mode, wake_flags, key) && 75 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 76 break; 77 } 78 } 79 80 /** 81 * __wake_up - wake up threads blocked on a waitqueue. 82 * @q: the waitqueue 83 * @mode: which threads 84 * @nr_exclusive: how many wake-one or wake-many threads to wake up 85 * @key: is directly passed to the wakeup function 86 * 87 * It may be assumed that this function implies a write memory barrier before 88 * changing the task state if and only if any tasks are woken up. 89 */ 90 void __wake_up(wait_queue_head_t *q, unsigned int mode, 91 int nr_exclusive, void *key) 92 { 93 unsigned long flags; 94 95 spin_lock_irqsave(&q->lock, flags); 96 __wake_up_common(q, mode, nr_exclusive, 0, key); 97 spin_unlock_irqrestore(&q->lock, flags); 98 } 99 EXPORT_SYMBOL(__wake_up); 100 101 /* 102 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 103 */ 104 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 105 { 106 __wake_up_common(q, mode, nr, 0, NULL); 107 } 108 EXPORT_SYMBOL_GPL(__wake_up_locked); 109 110 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 111 { 112 __wake_up_common(q, mode, 1, 0, key); 113 } 114 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 115 116 /** 117 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 118 * @q: the waitqueue 119 * @mode: which threads 120 * @nr_exclusive: how many wake-one or wake-many threads to wake up 121 * @key: opaque value to be passed to wakeup targets 122 * 123 * The sync wakeup differs that the waker knows that it will schedule 124 * away soon, so while the target thread will be woken up, it will not 125 * be migrated to another CPU - ie. the two threads are 'synchronized' 126 * with each other. This can prevent needless bouncing between CPUs. 127 * 128 * On UP it can prevent extra preemption. 129 * 130 * It may be assumed that this function implies a write memory barrier before 131 * changing the task state if and only if any tasks are woken up. 132 */ 133 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 134 int nr_exclusive, void *key) 135 { 136 unsigned long flags; 137 int wake_flags = 1; /* XXX WF_SYNC */ 138 139 if (unlikely(!q)) 140 return; 141 142 if (unlikely(nr_exclusive != 1)) 143 wake_flags = 0; 144 145 spin_lock_irqsave(&q->lock, flags); 146 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 147 spin_unlock_irqrestore(&q->lock, flags); 148 } 149 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 150 151 /* 152 * __wake_up_sync - see __wake_up_sync_key() 153 */ 154 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 155 { 156 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 157 } 158 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 159 160 /* 161 * Note: we use "set_current_state()" _after_ the wait-queue add, 162 * because we need a memory barrier there on SMP, so that any 163 * wake-function that tests for the wait-queue being active 164 * will be guaranteed to see waitqueue addition _or_ subsequent 165 * tests in this thread will see the wakeup having taken place. 166 * 167 * The spin_unlock() itself is semi-permeable and only protects 168 * one way (it only protects stuff inside the critical region and 169 * stops them from bleeding out - it would still allow subsequent 170 * loads to move into the critical region). 171 */ 172 void 173 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) 174 { 175 unsigned long flags; 176 177 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 178 spin_lock_irqsave(&q->lock, flags); 179 if (list_empty(&wait->task_list)) 180 __add_wait_queue(q, wait); 181 set_current_state(state); 182 spin_unlock_irqrestore(&q->lock, flags); 183 } 184 EXPORT_SYMBOL(prepare_to_wait); 185 186 void 187 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) 188 { 189 unsigned long flags; 190 191 wait->flags |= WQ_FLAG_EXCLUSIVE; 192 spin_lock_irqsave(&q->lock, flags); 193 if (list_empty(&wait->task_list)) 194 __add_wait_queue_tail(q, wait); 195 set_current_state(state); 196 spin_unlock_irqrestore(&q->lock, flags); 197 } 198 EXPORT_SYMBOL(prepare_to_wait_exclusive); 199 200 void init_wait_entry(wait_queue_t *wait, int flags) 201 { 202 wait->flags = flags; 203 wait->private = current; 204 wait->func = autoremove_wake_function; 205 INIT_LIST_HEAD(&wait->task_list); 206 } 207 EXPORT_SYMBOL(init_wait_entry); 208 209 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) 210 { 211 unsigned long flags; 212 long ret = 0; 213 214 spin_lock_irqsave(&q->lock, flags); 215 if (unlikely(signal_pending_state(state, current))) { 216 /* 217 * Exclusive waiter must not fail if it was selected by wakeup, 218 * it should "consume" the condition we were waiting for. 219 * 220 * The caller will recheck the condition and return success if 221 * we were already woken up, we can not miss the event because 222 * wakeup locks/unlocks the same q->lock. 223 * 224 * But we need to ensure that set-condition + wakeup after that 225 * can't see us, it should wake up another exclusive waiter if 226 * we fail. 227 */ 228 list_del_init(&wait->task_list); 229 ret = -ERESTARTSYS; 230 } else { 231 if (list_empty(&wait->task_list)) { 232 if (wait->flags & WQ_FLAG_EXCLUSIVE) 233 __add_wait_queue_tail(q, wait); 234 else 235 __add_wait_queue(q, wait); 236 } 237 set_current_state(state); 238 } 239 spin_unlock_irqrestore(&q->lock, flags); 240 241 return ret; 242 } 243 EXPORT_SYMBOL(prepare_to_wait_event); 244 245 /** 246 * finish_wait - clean up after waiting in a queue 247 * @q: waitqueue waited on 248 * @wait: wait descriptor 249 * 250 * Sets current thread back to running state and removes 251 * the wait descriptor from the given waitqueue if still 252 * queued. 253 */ 254 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) 255 { 256 unsigned long flags; 257 258 __set_current_state(TASK_RUNNING); 259 /* 260 * We can check for list emptiness outside the lock 261 * IFF: 262 * - we use the "careful" check that verifies both 263 * the next and prev pointers, so that there cannot 264 * be any half-pending updates in progress on other 265 * CPU's that we haven't seen yet (and that might 266 * still change the stack area. 267 * and 268 * - all other users take the lock (ie we can only 269 * have _one_ other CPU that looks at or modifies 270 * the list). 271 */ 272 if (!list_empty_careful(&wait->task_list)) { 273 spin_lock_irqsave(&q->lock, flags); 274 list_del_init(&wait->task_list); 275 spin_unlock_irqrestore(&q->lock, flags); 276 } 277 } 278 EXPORT_SYMBOL(finish_wait); 279 280 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) 281 { 282 int ret = default_wake_function(wait, mode, sync, key); 283 284 if (ret) 285 list_del_init(&wait->task_list); 286 return ret; 287 } 288 EXPORT_SYMBOL(autoremove_wake_function); 289 290 static inline bool is_kthread_should_stop(void) 291 { 292 return (current->flags & PF_KTHREAD) && kthread_should_stop(); 293 } 294 295 /* 296 * DEFINE_WAIT_FUNC(wait, woken_wake_func); 297 * 298 * add_wait_queue(&wq, &wait); 299 * for (;;) { 300 * if (condition) 301 * break; 302 * 303 * p->state = mode; condition = true; 304 * smp_mb(); // A smp_wmb(); // C 305 * if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN; 306 * schedule() try_to_wake_up(); 307 * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~ 308 * wait->flags &= ~WQ_FLAG_WOKEN; condition = true; 309 * smp_mb() // B smp_wmb(); // C 310 * wait->flags |= WQ_FLAG_WOKEN; 311 * } 312 * remove_wait_queue(&wq, &wait); 313 * 314 */ 315 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout) 316 { 317 set_current_state(mode); /* A */ 318 /* 319 * The above implies an smp_mb(), which matches with the smp_wmb() from 320 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must 321 * also observe all state before the wakeup. 322 */ 323 if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop()) 324 timeout = schedule_timeout(timeout); 325 __set_current_state(TASK_RUNNING); 326 327 /* 328 * The below implies an smp_mb(), it too pairs with the smp_wmb() from 329 * woken_wake_function() such that we must either observe the wait 330 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss 331 * an event. 332 */ 333 smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */ 334 335 return timeout; 336 } 337 EXPORT_SYMBOL(wait_woken); 338 339 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) 340 { 341 /* 342 * Although this function is called under waitqueue lock, LOCK 343 * doesn't imply write barrier and the users expects write 344 * barrier semantics on wakeup functions. The following 345 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up() 346 * and is paired with smp_store_mb() in wait_woken(). 347 */ 348 smp_wmb(); /* C */ 349 wait->flags |= WQ_FLAG_WOKEN; 350 351 return default_wake_function(wait, mode, sync, key); 352 } 353 EXPORT_SYMBOL(woken_wake_function); 354 355 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) 356 { 357 struct wait_bit_key *key = arg; 358 struct wait_bit_queue *wait_bit 359 = container_of(wait, struct wait_bit_queue, wait); 360 361 if (wait_bit->key.flags != key->flags || 362 wait_bit->key.bit_nr != key->bit_nr || 363 test_bit(key->bit_nr, key->flags)) 364 return 0; 365 else 366 return autoremove_wake_function(wait, mode, sync, key); 367 } 368 EXPORT_SYMBOL(wake_bit_function); 369 370 /* 371 * To allow interruptible waiting and asynchronous (i.e. nonblocking) 372 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are 373 * permitted return codes. Nonzero return codes halt waiting and return. 374 */ 375 int __sched 376 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, 377 wait_bit_action_f *action, unsigned mode) 378 { 379 int ret = 0; 380 381 do { 382 prepare_to_wait(wq, &q->wait, mode); 383 if (test_bit(q->key.bit_nr, q->key.flags)) 384 ret = (*action)(&q->key, mode); 385 } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); 386 finish_wait(wq, &q->wait); 387 return ret; 388 } 389 EXPORT_SYMBOL(__wait_on_bit); 390 391 int __sched out_of_line_wait_on_bit(void *word, int bit, 392 wait_bit_action_f *action, unsigned mode) 393 { 394 wait_queue_head_t *wq = bit_waitqueue(word, bit); 395 DEFINE_WAIT_BIT(wait, word, bit); 396 397 return __wait_on_bit(wq, &wait, action, mode); 398 } 399 EXPORT_SYMBOL(out_of_line_wait_on_bit); 400 401 int __sched out_of_line_wait_on_bit_timeout( 402 void *word, int bit, wait_bit_action_f *action, 403 unsigned mode, unsigned long timeout) 404 { 405 wait_queue_head_t *wq = bit_waitqueue(word, bit); 406 DEFINE_WAIT_BIT(wait, word, bit); 407 408 wait.key.timeout = jiffies + timeout; 409 return __wait_on_bit(wq, &wait, action, mode); 410 } 411 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout); 412 413 int __sched 414 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, 415 wait_bit_action_f *action, unsigned mode) 416 { 417 int ret = 0; 418 419 for (;;) { 420 prepare_to_wait_exclusive(wq, &q->wait, mode); 421 if (test_bit(q->key.bit_nr, q->key.flags)) { 422 ret = action(&q->key, mode); 423 /* 424 * See the comment in prepare_to_wait_event(). 425 * finish_wait() does not necessarily takes wq->lock, 426 * but test_and_set_bit() implies mb() which pairs with 427 * smp_mb__after_atomic() before wake_up_page(). 428 */ 429 if (ret) 430 finish_wait(wq, &q->wait); 431 } 432 if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) { 433 if (!ret) 434 finish_wait(wq, &q->wait); 435 return 0; 436 } else if (ret) { 437 return ret; 438 } 439 } 440 } 441 EXPORT_SYMBOL(__wait_on_bit_lock); 442 443 int __sched out_of_line_wait_on_bit_lock(void *word, int bit, 444 wait_bit_action_f *action, unsigned mode) 445 { 446 wait_queue_head_t *wq = bit_waitqueue(word, bit); 447 DEFINE_WAIT_BIT(wait, word, bit); 448 449 return __wait_on_bit_lock(wq, &wait, action, mode); 450 } 451 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); 452 453 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) 454 { 455 struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); 456 if (waitqueue_active(wq)) 457 __wake_up(wq, TASK_NORMAL, 1, &key); 458 } 459 EXPORT_SYMBOL(__wake_up_bit); 460 461 /** 462 * wake_up_bit - wake up a waiter on a bit 463 * @word: the word being waited on, a kernel virtual address 464 * @bit: the bit of the word being waited on 465 * 466 * There is a standard hashed waitqueue table for generic use. This 467 * is the part of the hashtable's accessor API that wakes up waiters 468 * on a bit. For instance, if one were to have waiters on a bitflag, 469 * one would call wake_up_bit() after clearing the bit. 470 * 471 * In order for this to function properly, as it uses waitqueue_active() 472 * internally, some kind of memory barrier must be done prior to calling 473 * this. Typically, this will be smp_mb__after_atomic(), but in some 474 * cases where bitflags are manipulated non-atomically under a lock, one 475 * may need to use a less regular barrier, such fs/inode.c's smp_mb(), 476 * because spin_unlock() does not guarantee a memory barrier. 477 */ 478 void wake_up_bit(void *word, int bit) 479 { 480 __wake_up_bit(bit_waitqueue(word, bit), word, bit); 481 } 482 EXPORT_SYMBOL(wake_up_bit); 483 484 /* 485 * Manipulate the atomic_t address to produce a better bit waitqueue table hash 486 * index (we're keying off bit -1, but that would produce a horrible hash 487 * value). 488 */ 489 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) 490 { 491 if (BITS_PER_LONG == 64) { 492 unsigned long q = (unsigned long)p; 493 return bit_waitqueue((void *)(q & ~1), q & 1); 494 } 495 return bit_waitqueue(p, 0); 496 } 497 498 static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync, 499 void *arg) 500 { 501 struct wait_bit_key *key = arg; 502 struct wait_bit_queue *wait_bit 503 = container_of(wait, struct wait_bit_queue, wait); 504 atomic_t *val = key->flags; 505 506 if (wait_bit->key.flags != key->flags || 507 wait_bit->key.bit_nr != key->bit_nr || 508 atomic_read(val) != 0) 509 return 0; 510 return autoremove_wake_function(wait, mode, sync, key); 511 } 512 513 /* 514 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, 515 * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero 516 * return codes halt waiting and return. 517 */ 518 static __sched 519 int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q, 520 int (*action)(atomic_t *), unsigned mode) 521 { 522 atomic_t *val; 523 int ret = 0; 524 525 do { 526 prepare_to_wait(wq, &q->wait, mode); 527 val = q->key.flags; 528 if (atomic_read(val) == 0) 529 break; 530 ret = (*action)(val); 531 } while (!ret && atomic_read(val) != 0); 532 finish_wait(wq, &q->wait); 533 return ret; 534 } 535 536 #define DEFINE_WAIT_ATOMIC_T(name, p) \ 537 struct wait_bit_queue name = { \ 538 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \ 539 .wait = { \ 540 .private = current, \ 541 .func = wake_atomic_t_function, \ 542 .task_list = \ 543 LIST_HEAD_INIT((name).wait.task_list), \ 544 }, \ 545 } 546 547 __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), 548 unsigned mode) 549 { 550 wait_queue_head_t *wq = atomic_t_waitqueue(p); 551 DEFINE_WAIT_ATOMIC_T(wait, p); 552 553 return __wait_on_atomic_t(wq, &wait, action, mode); 554 } 555 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); 556 557 /** 558 * wake_up_atomic_t - Wake up a waiter on a atomic_t 559 * @p: The atomic_t being waited on, a kernel virtual address 560 * 561 * Wake up anyone waiting for the atomic_t to go to zero. 562 * 563 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t 564 * check is done by the waiter's wake function, not the by the waker itself). 565 */ 566 void wake_up_atomic_t(atomic_t *p) 567 { 568 __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); 569 } 570 EXPORT_SYMBOL(wake_up_atomic_t); 571 572 __sched int bit_wait(struct wait_bit_key *word, int mode) 573 { 574 schedule(); 575 if (signal_pending_state(mode, current)) 576 return -EINTR; 577 return 0; 578 } 579 EXPORT_SYMBOL(bit_wait); 580 581 __sched int bit_wait_io(struct wait_bit_key *word, int mode) 582 { 583 io_schedule(); 584 if (signal_pending_state(mode, current)) 585 return -EINTR; 586 return 0; 587 } 588 EXPORT_SYMBOL(bit_wait_io); 589 590 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode) 591 { 592 unsigned long now = READ_ONCE(jiffies); 593 if (time_after_eq(now, word->timeout)) 594 return -EAGAIN; 595 schedule_timeout(word->timeout - now); 596 if (signal_pending_state(mode, current)) 597 return -EINTR; 598 return 0; 599 } 600 EXPORT_SYMBOL_GPL(bit_wait_timeout); 601 602 __sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode) 603 { 604 unsigned long now = READ_ONCE(jiffies); 605 if (time_after_eq(now, word->timeout)) 606 return -EAGAIN; 607 io_schedule_timeout(word->timeout - now); 608 if (signal_pending_state(mode, current)) 609 return -EINTR; 610 return 0; 611 } 612 EXPORT_SYMBOL_GPL(bit_wait_io_timeout); 613