xref: /openbmc/linux/kernel/sched/wait.c (revision 93032e31)
1 /*
2  * Generic waiting primitives.
3  *
4  * (C) 2004 Nadia Yvette Chambers, Oracle
5  */
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12 #include <linux/kthread.h>
13 
14 void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
15 {
16 	spin_lock_init(&q->lock);
17 	lockdep_set_class_and_name(&q->lock, key, name);
18 	INIT_LIST_HEAD(&q->task_list);
19 }
20 
21 EXPORT_SYMBOL(__init_waitqueue_head);
22 
23 void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
24 {
25 	unsigned long flags;
26 
27 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
28 	spin_lock_irqsave(&q->lock, flags);
29 	__add_wait_queue(q, wait);
30 	spin_unlock_irqrestore(&q->lock, flags);
31 }
32 EXPORT_SYMBOL(add_wait_queue);
33 
34 void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
35 {
36 	unsigned long flags;
37 
38 	wait->flags |= WQ_FLAG_EXCLUSIVE;
39 	spin_lock_irqsave(&q->lock, flags);
40 	__add_wait_queue_tail(q, wait);
41 	spin_unlock_irqrestore(&q->lock, flags);
42 }
43 EXPORT_SYMBOL(add_wait_queue_exclusive);
44 
45 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&q->lock, flags);
50 	__remove_wait_queue(q, wait);
51 	spin_unlock_irqrestore(&q->lock, flags);
52 }
53 EXPORT_SYMBOL(remove_wait_queue);
54 
55 
56 /*
57  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
58  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
59  * number) then we wake all the non-exclusive tasks and one exclusive task.
60  *
61  * There are circumstances in which we can try to wake a task which has already
62  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
63  * zero in this (rare) case, and we handle it by continuing to scan the queue.
64  */
65 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
66 			int nr_exclusive, int wake_flags, void *key)
67 {
68 	wait_queue_t *curr, *next;
69 
70 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
71 		unsigned flags = curr->flags;
72 
73 		if (curr->func(curr, mode, wake_flags, key) &&
74 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
75 			break;
76 	}
77 }
78 
79 /**
80  * __wake_up - wake up threads blocked on a waitqueue.
81  * @q: the waitqueue
82  * @mode: which threads
83  * @nr_exclusive: how many wake-one or wake-many threads to wake up
84  * @key: is directly passed to the wakeup function
85  *
86  * It may be assumed that this function implies a write memory barrier before
87  * changing the task state if and only if any tasks are woken up.
88  */
89 void __wake_up(wait_queue_head_t *q, unsigned int mode,
90 			int nr_exclusive, void *key)
91 {
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&q->lock, flags);
95 	__wake_up_common(q, mode, nr_exclusive, 0, key);
96 	spin_unlock_irqrestore(&q->lock, flags);
97 }
98 EXPORT_SYMBOL(__wake_up);
99 
100 /*
101  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
102  */
103 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
104 {
105 	__wake_up_common(q, mode, nr, 0, NULL);
106 }
107 EXPORT_SYMBOL_GPL(__wake_up_locked);
108 
109 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
110 {
111 	__wake_up_common(q, mode, 1, 0, key);
112 }
113 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
114 
115 /**
116  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
117  * @q: the waitqueue
118  * @mode: which threads
119  * @nr_exclusive: how many wake-one or wake-many threads to wake up
120  * @key: opaque value to be passed to wakeup targets
121  *
122  * The sync wakeup differs that the waker knows that it will schedule
123  * away soon, so while the target thread will be woken up, it will not
124  * be migrated to another CPU - ie. the two threads are 'synchronized'
125  * with each other. This can prevent needless bouncing between CPUs.
126  *
127  * On UP it can prevent extra preemption.
128  *
129  * It may be assumed that this function implies a write memory barrier before
130  * changing the task state if and only if any tasks are woken up.
131  */
132 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
133 			int nr_exclusive, void *key)
134 {
135 	unsigned long flags;
136 	int wake_flags = 1; /* XXX WF_SYNC */
137 
138 	if (unlikely(!q))
139 		return;
140 
141 	if (unlikely(nr_exclusive != 1))
142 		wake_flags = 0;
143 
144 	spin_lock_irqsave(&q->lock, flags);
145 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
146 	spin_unlock_irqrestore(&q->lock, flags);
147 }
148 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
149 
150 /*
151  * __wake_up_sync - see __wake_up_sync_key()
152  */
153 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
154 {
155 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
156 }
157 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
158 
159 /*
160  * Note: we use "set_current_state()" _after_ the wait-queue add,
161  * because we need a memory barrier there on SMP, so that any
162  * wake-function that tests for the wait-queue being active
163  * will be guaranteed to see waitqueue addition _or_ subsequent
164  * tests in this thread will see the wakeup having taken place.
165  *
166  * The spin_unlock() itself is semi-permeable and only protects
167  * one way (it only protects stuff inside the critical region and
168  * stops them from bleeding out - it would still allow subsequent
169  * loads to move into the critical region).
170  */
171 void
172 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
173 {
174 	unsigned long flags;
175 
176 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
177 	spin_lock_irqsave(&q->lock, flags);
178 	if (list_empty(&wait->task_list))
179 		__add_wait_queue(q, wait);
180 	set_current_state(state);
181 	spin_unlock_irqrestore(&q->lock, flags);
182 }
183 EXPORT_SYMBOL(prepare_to_wait);
184 
185 void
186 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
187 {
188 	unsigned long flags;
189 
190 	wait->flags |= WQ_FLAG_EXCLUSIVE;
191 	spin_lock_irqsave(&q->lock, flags);
192 	if (list_empty(&wait->task_list))
193 		__add_wait_queue_tail(q, wait);
194 	set_current_state(state);
195 	spin_unlock_irqrestore(&q->lock, flags);
196 }
197 EXPORT_SYMBOL(prepare_to_wait_exclusive);
198 
199 void init_wait_entry(wait_queue_t *wait, int flags)
200 {
201 	wait->flags = flags;
202 	wait->private = current;
203 	wait->func = autoremove_wake_function;
204 	INIT_LIST_HEAD(&wait->task_list);
205 }
206 EXPORT_SYMBOL(init_wait_entry);
207 
208 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
209 {
210 	unsigned long flags;
211 	long ret = 0;
212 
213 	spin_lock_irqsave(&q->lock, flags);
214 	if (unlikely(signal_pending_state(state, current))) {
215 		/*
216 		 * Exclusive waiter must not fail if it was selected by wakeup,
217 		 * it should "consume" the condition we were waiting for.
218 		 *
219 		 * The caller will recheck the condition and return success if
220 		 * we were already woken up, we can not miss the event because
221 		 * wakeup locks/unlocks the same q->lock.
222 		 *
223 		 * But we need to ensure that set-condition + wakeup after that
224 		 * can't see us, it should wake up another exclusive waiter if
225 		 * we fail.
226 		 */
227 		list_del_init(&wait->task_list);
228 		ret = -ERESTARTSYS;
229 	} else {
230 		if (list_empty(&wait->task_list)) {
231 			if (wait->flags & WQ_FLAG_EXCLUSIVE)
232 				__add_wait_queue_tail(q, wait);
233 			else
234 				__add_wait_queue(q, wait);
235 		}
236 		set_current_state(state);
237 	}
238 	spin_unlock_irqrestore(&q->lock, flags);
239 
240 	return ret;
241 }
242 EXPORT_SYMBOL(prepare_to_wait_event);
243 
244 /**
245  * finish_wait - clean up after waiting in a queue
246  * @q: waitqueue waited on
247  * @wait: wait descriptor
248  *
249  * Sets current thread back to running state and removes
250  * the wait descriptor from the given waitqueue if still
251  * queued.
252  */
253 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
254 {
255 	unsigned long flags;
256 
257 	__set_current_state(TASK_RUNNING);
258 	/*
259 	 * We can check for list emptiness outside the lock
260 	 * IFF:
261 	 *  - we use the "careful" check that verifies both
262 	 *    the next and prev pointers, so that there cannot
263 	 *    be any half-pending updates in progress on other
264 	 *    CPU's that we haven't seen yet (and that might
265 	 *    still change the stack area.
266 	 * and
267 	 *  - all other users take the lock (ie we can only
268 	 *    have _one_ other CPU that looks at or modifies
269 	 *    the list).
270 	 */
271 	if (!list_empty_careful(&wait->task_list)) {
272 		spin_lock_irqsave(&q->lock, flags);
273 		list_del_init(&wait->task_list);
274 		spin_unlock_irqrestore(&q->lock, flags);
275 	}
276 }
277 EXPORT_SYMBOL(finish_wait);
278 
279 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
280 {
281 	int ret = default_wake_function(wait, mode, sync, key);
282 
283 	if (ret)
284 		list_del_init(&wait->task_list);
285 	return ret;
286 }
287 EXPORT_SYMBOL(autoremove_wake_function);
288 
289 static inline bool is_kthread_should_stop(void)
290 {
291 	return (current->flags & PF_KTHREAD) && kthread_should_stop();
292 }
293 
294 /*
295  * DEFINE_WAIT_FUNC(wait, woken_wake_func);
296  *
297  * add_wait_queue(&wq, &wait);
298  * for (;;) {
299  *     if (condition)
300  *         break;
301  *
302  *     p->state = mode;				condition = true;
303  *     smp_mb(); // A				smp_wmb(); // C
304  *     if (!wait->flags & WQ_FLAG_WOKEN)	wait->flags |= WQ_FLAG_WOKEN;
305  *         schedule()				try_to_wake_up();
306  *     p->state = TASK_RUNNING;		    ~~~~~~~~~~~~~~~~~~
307  *     wait->flags &= ~WQ_FLAG_WOKEN;		condition = true;
308  *     smp_mb() // B				smp_wmb(); // C
309  *						wait->flags |= WQ_FLAG_WOKEN;
310  * }
311  * remove_wait_queue(&wq, &wait);
312  *
313  */
314 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
315 {
316 	set_current_state(mode); /* A */
317 	/*
318 	 * The above implies an smp_mb(), which matches with the smp_wmb() from
319 	 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
320 	 * also observe all state before the wakeup.
321 	 */
322 	if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
323 		timeout = schedule_timeout(timeout);
324 	__set_current_state(TASK_RUNNING);
325 
326 	/*
327 	 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
328 	 * woken_wake_function() such that we must either observe the wait
329 	 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
330 	 * an event.
331 	 */
332 	smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
333 
334 	return timeout;
335 }
336 EXPORT_SYMBOL(wait_woken);
337 
338 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
339 {
340 	/*
341 	 * Although this function is called under waitqueue lock, LOCK
342 	 * doesn't imply write barrier and the users expects write
343 	 * barrier semantics on wakeup functions.  The following
344 	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
345 	 * and is paired with smp_store_mb() in wait_woken().
346 	 */
347 	smp_wmb(); /* C */
348 	wait->flags |= WQ_FLAG_WOKEN;
349 
350 	return default_wake_function(wait, mode, sync, key);
351 }
352 EXPORT_SYMBOL(woken_wake_function);
353 
354 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
355 {
356 	struct wait_bit_key *key = arg;
357 	struct wait_bit_queue *wait_bit
358 		= container_of(wait, struct wait_bit_queue, wait);
359 
360 	if (wait_bit->key.flags != key->flags ||
361 			wait_bit->key.bit_nr != key->bit_nr ||
362 			test_bit(key->bit_nr, key->flags))
363 		return 0;
364 	else
365 		return autoremove_wake_function(wait, mode, sync, key);
366 }
367 EXPORT_SYMBOL(wake_bit_function);
368 
369 /*
370  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
371  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
372  * permitted return codes. Nonzero return codes halt waiting and return.
373  */
374 int __sched
375 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
376 	      wait_bit_action_f *action, unsigned mode)
377 {
378 	int ret = 0;
379 
380 	do {
381 		prepare_to_wait(wq, &q->wait, mode);
382 		if (test_bit(q->key.bit_nr, q->key.flags))
383 			ret = (*action)(&q->key, mode);
384 	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
385 	finish_wait(wq, &q->wait);
386 	return ret;
387 }
388 EXPORT_SYMBOL(__wait_on_bit);
389 
390 int __sched out_of_line_wait_on_bit(void *word, int bit,
391 				    wait_bit_action_f *action, unsigned mode)
392 {
393 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
394 	DEFINE_WAIT_BIT(wait, word, bit);
395 
396 	return __wait_on_bit(wq, &wait, action, mode);
397 }
398 EXPORT_SYMBOL(out_of_line_wait_on_bit);
399 
400 int __sched out_of_line_wait_on_bit_timeout(
401 	void *word, int bit, wait_bit_action_f *action,
402 	unsigned mode, unsigned long timeout)
403 {
404 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
405 	DEFINE_WAIT_BIT(wait, word, bit);
406 
407 	wait.key.timeout = jiffies + timeout;
408 	return __wait_on_bit(wq, &wait, action, mode);
409 }
410 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
411 
412 int __sched
413 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
414 			wait_bit_action_f *action, unsigned mode)
415 {
416 	int ret = 0;
417 
418 	for (;;) {
419 		prepare_to_wait_exclusive(wq, &q->wait, mode);
420 		if (test_bit(q->key.bit_nr, q->key.flags)) {
421 			ret = action(&q->key, mode);
422 			/*
423 			 * See the comment in prepare_to_wait_event().
424 			 * finish_wait() does not necessarily takes wq->lock,
425 			 * but test_and_set_bit() implies mb() which pairs with
426 			 * smp_mb__after_atomic() before wake_up_page().
427 			 */
428 			if (ret)
429 				finish_wait(wq, &q->wait);
430 		}
431 		if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) {
432 			if (!ret)
433 				finish_wait(wq, &q->wait);
434 			return 0;
435 		} else if (ret) {
436 			return ret;
437 		}
438 	}
439 }
440 EXPORT_SYMBOL(__wait_on_bit_lock);
441 
442 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
443 					 wait_bit_action_f *action, unsigned mode)
444 {
445 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
446 	DEFINE_WAIT_BIT(wait, word, bit);
447 
448 	return __wait_on_bit_lock(wq, &wait, action, mode);
449 }
450 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
451 
452 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
453 {
454 	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
455 	if (waitqueue_active(wq))
456 		__wake_up(wq, TASK_NORMAL, 1, &key);
457 }
458 EXPORT_SYMBOL(__wake_up_bit);
459 
460 /**
461  * wake_up_bit - wake up a waiter on a bit
462  * @word: the word being waited on, a kernel virtual address
463  * @bit: the bit of the word being waited on
464  *
465  * There is a standard hashed waitqueue table for generic use. This
466  * is the part of the hashtable's accessor API that wakes up waiters
467  * on a bit. For instance, if one were to have waiters on a bitflag,
468  * one would call wake_up_bit() after clearing the bit.
469  *
470  * In order for this to function properly, as it uses waitqueue_active()
471  * internally, some kind of memory barrier must be done prior to calling
472  * this. Typically, this will be smp_mb__after_atomic(), but in some
473  * cases where bitflags are manipulated non-atomically under a lock, one
474  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
475  * because spin_unlock() does not guarantee a memory barrier.
476  */
477 void wake_up_bit(void *word, int bit)
478 {
479 	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
480 }
481 EXPORT_SYMBOL(wake_up_bit);
482 
483 /*
484  * Manipulate the atomic_t address to produce a better bit waitqueue table hash
485  * index (we're keying off bit -1, but that would produce a horrible hash
486  * value).
487  */
488 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
489 {
490 	if (BITS_PER_LONG == 64) {
491 		unsigned long q = (unsigned long)p;
492 		return bit_waitqueue((void *)(q & ~1), q & 1);
493 	}
494 	return bit_waitqueue(p, 0);
495 }
496 
497 static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
498 				  void *arg)
499 {
500 	struct wait_bit_key *key = arg;
501 	struct wait_bit_queue *wait_bit
502 		= container_of(wait, struct wait_bit_queue, wait);
503 	atomic_t *val = key->flags;
504 
505 	if (wait_bit->key.flags != key->flags ||
506 	    wait_bit->key.bit_nr != key->bit_nr ||
507 	    atomic_read(val) != 0)
508 		return 0;
509 	return autoremove_wake_function(wait, mode, sync, key);
510 }
511 
512 /*
513  * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
514  * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
515  * return codes halt waiting and return.
516  */
517 static __sched
518 int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
519 		       int (*action)(atomic_t *), unsigned mode)
520 {
521 	atomic_t *val;
522 	int ret = 0;
523 
524 	do {
525 		prepare_to_wait(wq, &q->wait, mode);
526 		val = q->key.flags;
527 		if (atomic_read(val) == 0)
528 			break;
529 		ret = (*action)(val);
530 	} while (!ret && atomic_read(val) != 0);
531 	finish_wait(wq, &q->wait);
532 	return ret;
533 }
534 
535 #define DEFINE_WAIT_ATOMIC_T(name, p)					\
536 	struct wait_bit_queue name = {					\
537 		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
538 		.wait	= {						\
539 			.private	= current,			\
540 			.func		= wake_atomic_t_function,	\
541 			.task_list	=				\
542 				LIST_HEAD_INIT((name).wait.task_list),	\
543 		},							\
544 	}
545 
546 __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
547 					 unsigned mode)
548 {
549 	wait_queue_head_t *wq = atomic_t_waitqueue(p);
550 	DEFINE_WAIT_ATOMIC_T(wait, p);
551 
552 	return __wait_on_atomic_t(wq, &wait, action, mode);
553 }
554 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
555 
556 /**
557  * wake_up_atomic_t - Wake up a waiter on a atomic_t
558  * @p: The atomic_t being waited on, a kernel virtual address
559  *
560  * Wake up anyone waiting for the atomic_t to go to zero.
561  *
562  * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
563  * check is done by the waiter's wake function, not the by the waker itself).
564  */
565 void wake_up_atomic_t(atomic_t *p)
566 {
567 	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
568 }
569 EXPORT_SYMBOL(wake_up_atomic_t);
570 
571 __sched int bit_wait(struct wait_bit_key *word, int mode)
572 {
573 	schedule();
574 	if (signal_pending_state(mode, current))
575 		return -EINTR;
576 	return 0;
577 }
578 EXPORT_SYMBOL(bit_wait);
579 
580 __sched int bit_wait_io(struct wait_bit_key *word, int mode)
581 {
582 	io_schedule();
583 	if (signal_pending_state(mode, current))
584 		return -EINTR;
585 	return 0;
586 }
587 EXPORT_SYMBOL(bit_wait_io);
588 
589 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
590 {
591 	unsigned long now = READ_ONCE(jiffies);
592 	if (time_after_eq(now, word->timeout))
593 		return -EAGAIN;
594 	schedule_timeout(word->timeout - now);
595 	if (signal_pending_state(mode, current))
596 		return -EINTR;
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(bit_wait_timeout);
600 
601 __sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
602 {
603 	unsigned long now = READ_ONCE(jiffies);
604 	if (time_after_eq(now, word->timeout))
605 		return -EAGAIN;
606 	io_schedule_timeout(word->timeout - now);
607 	if (signal_pending_state(mode, current))
608 		return -EINTR;
609 	return 0;
610 }
611 EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
612