xref: /openbmc/linux/kernel/sched/wait.c (revision 8b235f2f)
1 /*
2  * Generic waiting primitives.
3  *
4  * (C) 2004 Nadia Yvette Chambers, Oracle
5  */
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12 #include <linux/kthread.h>
13 
14 void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
15 {
16 	spin_lock_init(&q->lock);
17 	lockdep_set_class_and_name(&q->lock, key, name);
18 	INIT_LIST_HEAD(&q->task_list);
19 }
20 
21 EXPORT_SYMBOL(__init_waitqueue_head);
22 
23 void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
24 {
25 	unsigned long flags;
26 
27 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
28 	spin_lock_irqsave(&q->lock, flags);
29 	__add_wait_queue(q, wait);
30 	spin_unlock_irqrestore(&q->lock, flags);
31 }
32 EXPORT_SYMBOL(add_wait_queue);
33 
34 void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
35 {
36 	unsigned long flags;
37 
38 	wait->flags |= WQ_FLAG_EXCLUSIVE;
39 	spin_lock_irqsave(&q->lock, flags);
40 	__add_wait_queue_tail(q, wait);
41 	spin_unlock_irqrestore(&q->lock, flags);
42 }
43 EXPORT_SYMBOL(add_wait_queue_exclusive);
44 
45 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&q->lock, flags);
50 	__remove_wait_queue(q, wait);
51 	spin_unlock_irqrestore(&q->lock, flags);
52 }
53 EXPORT_SYMBOL(remove_wait_queue);
54 
55 
56 /*
57  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
58  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
59  * number) then we wake all the non-exclusive tasks and one exclusive task.
60  *
61  * There are circumstances in which we can try to wake a task which has already
62  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
63  * zero in this (rare) case, and we handle it by continuing to scan the queue.
64  */
65 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
66 			int nr_exclusive, int wake_flags, void *key)
67 {
68 	wait_queue_t *curr, *next;
69 
70 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
71 		unsigned flags = curr->flags;
72 
73 		if (curr->func(curr, mode, wake_flags, key) &&
74 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
75 			break;
76 	}
77 }
78 
79 /**
80  * __wake_up - wake up threads blocked on a waitqueue.
81  * @q: the waitqueue
82  * @mode: which threads
83  * @nr_exclusive: how many wake-one or wake-many threads to wake up
84  * @key: is directly passed to the wakeup function
85  *
86  * It may be assumed that this function implies a write memory barrier before
87  * changing the task state if and only if any tasks are woken up.
88  */
89 void __wake_up(wait_queue_head_t *q, unsigned int mode,
90 			int nr_exclusive, void *key)
91 {
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&q->lock, flags);
95 	__wake_up_common(q, mode, nr_exclusive, 0, key);
96 	spin_unlock_irqrestore(&q->lock, flags);
97 }
98 EXPORT_SYMBOL(__wake_up);
99 
100 /*
101  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
102  */
103 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
104 {
105 	__wake_up_common(q, mode, nr, 0, NULL);
106 }
107 EXPORT_SYMBOL_GPL(__wake_up_locked);
108 
109 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, int nr,
110 			  void *key)
111 {
112 	__wake_up_common(q, mode, nr, 0, key);
113 }
114 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
115 
116 /**
117  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
118  * @q: the waitqueue
119  * @mode: which threads
120  * @nr_exclusive: how many wake-one or wake-many threads to wake up
121  * @key: opaque value to be passed to wakeup targets
122  *
123  * The sync wakeup differs that the waker knows that it will schedule
124  * away soon, so while the target thread will be woken up, it will not
125  * be migrated to another CPU - ie. the two threads are 'synchronized'
126  * with each other. This can prevent needless bouncing between CPUs.
127  *
128  * On UP it can prevent extra preemption.
129  *
130  * It may be assumed that this function implies a write memory barrier before
131  * changing the task state if and only if any tasks are woken up.
132  */
133 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
134 			int nr_exclusive, void *key)
135 {
136 	unsigned long flags;
137 	int wake_flags = 1; /* XXX WF_SYNC */
138 
139 	if (unlikely(!q))
140 		return;
141 
142 	if (unlikely(nr_exclusive != 1))
143 		wake_flags = 0;
144 
145 	spin_lock_irqsave(&q->lock, flags);
146 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
147 	spin_unlock_irqrestore(&q->lock, flags);
148 }
149 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
150 
151 /*
152  * __wake_up_sync - see __wake_up_sync_key()
153  */
154 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
155 {
156 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
157 }
158 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
159 
160 /*
161  * Note: we use "set_current_state()" _after_ the wait-queue add,
162  * because we need a memory barrier there on SMP, so that any
163  * wake-function that tests for the wait-queue being active
164  * will be guaranteed to see waitqueue addition _or_ subsequent
165  * tests in this thread will see the wakeup having taken place.
166  *
167  * The spin_unlock() itself is semi-permeable and only protects
168  * one way (it only protects stuff inside the critical region and
169  * stops them from bleeding out - it would still allow subsequent
170  * loads to move into the critical region).
171  */
172 void
173 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
174 {
175 	unsigned long flags;
176 
177 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
178 	spin_lock_irqsave(&q->lock, flags);
179 	if (list_empty(&wait->task_list))
180 		__add_wait_queue(q, wait);
181 	set_current_state(state);
182 	spin_unlock_irqrestore(&q->lock, flags);
183 }
184 EXPORT_SYMBOL(prepare_to_wait);
185 
186 void
187 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
188 {
189 	unsigned long flags;
190 
191 	wait->flags |= WQ_FLAG_EXCLUSIVE;
192 	spin_lock_irqsave(&q->lock, flags);
193 	if (list_empty(&wait->task_list))
194 		__add_wait_queue_tail(q, wait);
195 	set_current_state(state);
196 	spin_unlock_irqrestore(&q->lock, flags);
197 }
198 EXPORT_SYMBOL(prepare_to_wait_exclusive);
199 
200 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
201 {
202 	unsigned long flags;
203 
204 	if (signal_pending_state(state, current))
205 		return -ERESTARTSYS;
206 
207 	wait->private = current;
208 	wait->func = autoremove_wake_function;
209 
210 	spin_lock_irqsave(&q->lock, flags);
211 	if (list_empty(&wait->task_list)) {
212 		if (wait->flags & WQ_FLAG_EXCLUSIVE)
213 			__add_wait_queue_tail(q, wait);
214 		else
215 			__add_wait_queue(q, wait);
216 	}
217 	set_current_state(state);
218 	spin_unlock_irqrestore(&q->lock, flags);
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL(prepare_to_wait_event);
223 
224 /**
225  * finish_wait - clean up after waiting in a queue
226  * @q: waitqueue waited on
227  * @wait: wait descriptor
228  *
229  * Sets current thread back to running state and removes
230  * the wait descriptor from the given waitqueue if still
231  * queued.
232  */
233 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
234 {
235 	unsigned long flags;
236 
237 	__set_current_state(TASK_RUNNING);
238 	/*
239 	 * We can check for list emptiness outside the lock
240 	 * IFF:
241 	 *  - we use the "careful" check that verifies both
242 	 *    the next and prev pointers, so that there cannot
243 	 *    be any half-pending updates in progress on other
244 	 *    CPU's that we haven't seen yet (and that might
245 	 *    still change the stack area.
246 	 * and
247 	 *  - all other users take the lock (ie we can only
248 	 *    have _one_ other CPU that looks at or modifies
249 	 *    the list).
250 	 */
251 	if (!list_empty_careful(&wait->task_list)) {
252 		spin_lock_irqsave(&q->lock, flags);
253 		list_del_init(&wait->task_list);
254 		spin_unlock_irqrestore(&q->lock, flags);
255 	}
256 }
257 EXPORT_SYMBOL(finish_wait);
258 
259 /**
260  * abort_exclusive_wait - abort exclusive waiting in a queue
261  * @q: waitqueue waited on
262  * @wait: wait descriptor
263  * @mode: runstate of the waiter to be woken
264  * @key: key to identify a wait bit queue or %NULL
265  *
266  * Sets current thread back to running state and removes
267  * the wait descriptor from the given waitqueue if still
268  * queued.
269  *
270  * Wakes up the next waiter if the caller is concurrently
271  * woken up through the queue.
272  *
273  * This prevents waiter starvation where an exclusive waiter
274  * aborts and is woken up concurrently and no one wakes up
275  * the next waiter.
276  */
277 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
278 			unsigned int mode, void *key)
279 {
280 	unsigned long flags;
281 
282 	__set_current_state(TASK_RUNNING);
283 	spin_lock_irqsave(&q->lock, flags);
284 	if (!list_empty(&wait->task_list))
285 		list_del_init(&wait->task_list);
286 	else if (waitqueue_active(q))
287 		__wake_up_locked_key(q, mode, 1, key);
288 	spin_unlock_irqrestore(&q->lock, flags);
289 }
290 EXPORT_SYMBOL(abort_exclusive_wait);
291 
292 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
293 {
294 	int ret = default_wake_function(wait, mode, sync, key);
295 
296 	if (ret)
297 		list_del_init(&wait->task_list);
298 	return ret;
299 }
300 EXPORT_SYMBOL(autoremove_wake_function);
301 
302 static inline bool is_kthread_should_stop(void)
303 {
304 	return (current->flags & PF_KTHREAD) && kthread_should_stop();
305 }
306 
307 /*
308  * DEFINE_WAIT_FUNC(wait, woken_wake_func);
309  *
310  * add_wait_queue(&wq, &wait);
311  * for (;;) {
312  *     if (condition)
313  *         break;
314  *
315  *     p->state = mode;				condition = true;
316  *     smp_mb(); // A				smp_wmb(); // C
317  *     if (!wait->flags & WQ_FLAG_WOKEN)	wait->flags |= WQ_FLAG_WOKEN;
318  *         schedule()				try_to_wake_up();
319  *     p->state = TASK_RUNNING;		    ~~~~~~~~~~~~~~~~~~
320  *     wait->flags &= ~WQ_FLAG_WOKEN;		condition = true;
321  *     smp_mb() // B				smp_wmb(); // C
322  *						wait->flags |= WQ_FLAG_WOKEN;
323  * }
324  * remove_wait_queue(&wq, &wait);
325  *
326  */
327 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
328 {
329 	set_current_state(mode); /* A */
330 	/*
331 	 * The above implies an smp_mb(), which matches with the smp_wmb() from
332 	 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
333 	 * also observe all state before the wakeup.
334 	 */
335 	if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
336 		timeout = schedule_timeout(timeout);
337 	__set_current_state(TASK_RUNNING);
338 
339 	/*
340 	 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
341 	 * woken_wake_function() such that we must either observe the wait
342 	 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
343 	 * an event.
344 	 */
345 	smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
346 
347 	return timeout;
348 }
349 EXPORT_SYMBOL(wait_woken);
350 
351 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
352 {
353 	/*
354 	 * Although this function is called under waitqueue lock, LOCK
355 	 * doesn't imply write barrier and the users expects write
356 	 * barrier semantics on wakeup functions.  The following
357 	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
358 	 * and is paired with smp_store_mb() in wait_woken().
359 	 */
360 	smp_wmb(); /* C */
361 	wait->flags |= WQ_FLAG_WOKEN;
362 
363 	return default_wake_function(wait, mode, sync, key);
364 }
365 EXPORT_SYMBOL(woken_wake_function);
366 
367 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
368 {
369 	struct wait_bit_key *key = arg;
370 	struct wait_bit_queue *wait_bit
371 		= container_of(wait, struct wait_bit_queue, wait);
372 
373 	if (wait_bit->key.flags != key->flags ||
374 			wait_bit->key.bit_nr != key->bit_nr ||
375 			test_bit(key->bit_nr, key->flags))
376 		return 0;
377 	else
378 		return autoremove_wake_function(wait, mode, sync, key);
379 }
380 EXPORT_SYMBOL(wake_bit_function);
381 
382 /*
383  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
384  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
385  * permitted return codes. Nonzero return codes halt waiting and return.
386  */
387 int __sched
388 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
389 	      wait_bit_action_f *action, unsigned mode)
390 {
391 	int ret = 0;
392 
393 	do {
394 		prepare_to_wait(wq, &q->wait, mode);
395 		if (test_bit(q->key.bit_nr, q->key.flags))
396 			ret = (*action)(&q->key);
397 	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
398 	finish_wait(wq, &q->wait);
399 	return ret;
400 }
401 EXPORT_SYMBOL(__wait_on_bit);
402 
403 int __sched out_of_line_wait_on_bit(void *word, int bit,
404 				    wait_bit_action_f *action, unsigned mode)
405 {
406 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
407 	DEFINE_WAIT_BIT(wait, word, bit);
408 
409 	return __wait_on_bit(wq, &wait, action, mode);
410 }
411 EXPORT_SYMBOL(out_of_line_wait_on_bit);
412 
413 int __sched out_of_line_wait_on_bit_timeout(
414 	void *word, int bit, wait_bit_action_f *action,
415 	unsigned mode, unsigned long timeout)
416 {
417 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
418 	DEFINE_WAIT_BIT(wait, word, bit);
419 
420 	wait.key.timeout = jiffies + timeout;
421 	return __wait_on_bit(wq, &wait, action, mode);
422 }
423 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
424 
425 int __sched
426 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
427 			wait_bit_action_f *action, unsigned mode)
428 {
429 	do {
430 		int ret;
431 
432 		prepare_to_wait_exclusive(wq, &q->wait, mode);
433 		if (!test_bit(q->key.bit_nr, q->key.flags))
434 			continue;
435 		ret = action(&q->key);
436 		if (!ret)
437 			continue;
438 		abort_exclusive_wait(wq, &q->wait, mode, &q->key);
439 		return ret;
440 	} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
441 	finish_wait(wq, &q->wait);
442 	return 0;
443 }
444 EXPORT_SYMBOL(__wait_on_bit_lock);
445 
446 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
447 					 wait_bit_action_f *action, unsigned mode)
448 {
449 	wait_queue_head_t *wq = bit_waitqueue(word, bit);
450 	DEFINE_WAIT_BIT(wait, word, bit);
451 
452 	return __wait_on_bit_lock(wq, &wait, action, mode);
453 }
454 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
455 
456 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
457 {
458 	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
459 	if (waitqueue_active(wq))
460 		__wake_up(wq, TASK_NORMAL, 1, &key);
461 }
462 EXPORT_SYMBOL(__wake_up_bit);
463 
464 /**
465  * wake_up_bit - wake up a waiter on a bit
466  * @word: the word being waited on, a kernel virtual address
467  * @bit: the bit of the word being waited on
468  *
469  * There is a standard hashed waitqueue table for generic use. This
470  * is the part of the hashtable's accessor API that wakes up waiters
471  * on a bit. For instance, if one were to have waiters on a bitflag,
472  * one would call wake_up_bit() after clearing the bit.
473  *
474  * In order for this to function properly, as it uses waitqueue_active()
475  * internally, some kind of memory barrier must be done prior to calling
476  * this. Typically, this will be smp_mb__after_atomic(), but in some
477  * cases where bitflags are manipulated non-atomically under a lock, one
478  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
479  * because spin_unlock() does not guarantee a memory barrier.
480  */
481 void wake_up_bit(void *word, int bit)
482 {
483 	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
484 }
485 EXPORT_SYMBOL(wake_up_bit);
486 
487 wait_queue_head_t *bit_waitqueue(void *word, int bit)
488 {
489 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
490 	const struct zone *zone = page_zone(virt_to_page(word));
491 	unsigned long val = (unsigned long)word << shift | bit;
492 
493 	return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
494 }
495 EXPORT_SYMBOL(bit_waitqueue);
496 
497 /*
498  * Manipulate the atomic_t address to produce a better bit waitqueue table hash
499  * index (we're keying off bit -1, but that would produce a horrible hash
500  * value).
501  */
502 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
503 {
504 	if (BITS_PER_LONG == 64) {
505 		unsigned long q = (unsigned long)p;
506 		return bit_waitqueue((void *)(q & ~1), q & 1);
507 	}
508 	return bit_waitqueue(p, 0);
509 }
510 
511 static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
512 				  void *arg)
513 {
514 	struct wait_bit_key *key = arg;
515 	struct wait_bit_queue *wait_bit
516 		= container_of(wait, struct wait_bit_queue, wait);
517 	atomic_t *val = key->flags;
518 
519 	if (wait_bit->key.flags != key->flags ||
520 	    wait_bit->key.bit_nr != key->bit_nr ||
521 	    atomic_read(val) != 0)
522 		return 0;
523 	return autoremove_wake_function(wait, mode, sync, key);
524 }
525 
526 /*
527  * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
528  * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
529  * return codes halt waiting and return.
530  */
531 static __sched
532 int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
533 		       int (*action)(atomic_t *), unsigned mode)
534 {
535 	atomic_t *val;
536 	int ret = 0;
537 
538 	do {
539 		prepare_to_wait(wq, &q->wait, mode);
540 		val = q->key.flags;
541 		if (atomic_read(val) == 0)
542 			break;
543 		ret = (*action)(val);
544 	} while (!ret && atomic_read(val) != 0);
545 	finish_wait(wq, &q->wait);
546 	return ret;
547 }
548 
549 #define DEFINE_WAIT_ATOMIC_T(name, p)					\
550 	struct wait_bit_queue name = {					\
551 		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
552 		.wait	= {						\
553 			.private	= current,			\
554 			.func		= wake_atomic_t_function,	\
555 			.task_list	=				\
556 				LIST_HEAD_INIT((name).wait.task_list),	\
557 		},							\
558 	}
559 
560 __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
561 					 unsigned mode)
562 {
563 	wait_queue_head_t *wq = atomic_t_waitqueue(p);
564 	DEFINE_WAIT_ATOMIC_T(wait, p);
565 
566 	return __wait_on_atomic_t(wq, &wait, action, mode);
567 }
568 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
569 
570 /**
571  * wake_up_atomic_t - Wake up a waiter on a atomic_t
572  * @p: The atomic_t being waited on, a kernel virtual address
573  *
574  * Wake up anyone waiting for the atomic_t to go to zero.
575  *
576  * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
577  * check is done by the waiter's wake function, not the by the waker itself).
578  */
579 void wake_up_atomic_t(atomic_t *p)
580 {
581 	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
582 }
583 EXPORT_SYMBOL(wake_up_atomic_t);
584 
585 __sched int bit_wait(struct wait_bit_key *word)
586 {
587 	if (signal_pending_state(current->state, current))
588 		return 1;
589 	schedule();
590 	return 0;
591 }
592 EXPORT_SYMBOL(bit_wait);
593 
594 __sched int bit_wait_io(struct wait_bit_key *word)
595 {
596 	if (signal_pending_state(current->state, current))
597 		return 1;
598 	io_schedule();
599 	return 0;
600 }
601 EXPORT_SYMBOL(bit_wait_io);
602 
603 __sched int bit_wait_timeout(struct wait_bit_key *word)
604 {
605 	unsigned long now = READ_ONCE(jiffies);
606 	if (signal_pending_state(current->state, current))
607 		return 1;
608 	if (time_after_eq(now, word->timeout))
609 		return -EAGAIN;
610 	schedule_timeout(word->timeout - now);
611 	return 0;
612 }
613 EXPORT_SYMBOL_GPL(bit_wait_timeout);
614 
615 __sched int bit_wait_io_timeout(struct wait_bit_key *word)
616 {
617 	unsigned long now = READ_ONCE(jiffies);
618 	if (signal_pending_state(current->state, current))
619 		return 1;
620 	if (time_after_eq(now, word->timeout))
621 		return -EAGAIN;
622 	io_schedule_timeout(word->timeout - now);
623 	return 0;
624 }
625 EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
626