xref: /openbmc/linux/kernel/sched/topology.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 DEFINE_MUTEX(sched_domains_mutex);
7 
8 /* Protected by sched_domains_mutex: */
9 static cpumask_var_t sched_domains_tmpmask;
10 static cpumask_var_t sched_domains_tmpmask2;
11 
12 #ifdef CONFIG_SCHED_DEBUG
13 
14 static int __init sched_debug_setup(char *str)
15 {
16 	sched_debug_verbose = true;
17 
18 	return 0;
19 }
20 early_param("sched_verbose", sched_debug_setup);
21 
22 static inline bool sched_debug(void)
23 {
24 	return sched_debug_verbose;
25 }
26 
27 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
28 const struct sd_flag_debug sd_flag_debug[] = {
29 #include <linux/sched/sd_flags.h>
30 };
31 #undef SD_FLAG
32 
33 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
34 				  struct cpumask *groupmask)
35 {
36 	struct sched_group *group = sd->groups;
37 	unsigned long flags = sd->flags;
38 	unsigned int idx;
39 
40 	cpumask_clear(groupmask);
41 
42 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
43 	printk(KERN_CONT "span=%*pbl level=%s\n",
44 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
45 
46 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
47 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
48 	}
49 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
50 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
51 	}
52 
53 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
54 		unsigned int flag = BIT(idx);
55 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
56 
57 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
58 		    !(sd->child->flags & flag))
59 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
60 			       sd_flag_debug[idx].name);
61 
62 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
63 		    !(sd->parent->flags & flag))
64 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
65 			       sd_flag_debug[idx].name);
66 	}
67 
68 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
69 	do {
70 		if (!group) {
71 			printk("\n");
72 			printk(KERN_ERR "ERROR: group is NULL\n");
73 			break;
74 		}
75 
76 		if (cpumask_empty(sched_group_span(group))) {
77 			printk(KERN_CONT "\n");
78 			printk(KERN_ERR "ERROR: empty group\n");
79 			break;
80 		}
81 
82 		if (!(sd->flags & SD_OVERLAP) &&
83 		    cpumask_intersects(groupmask, sched_group_span(group))) {
84 			printk(KERN_CONT "\n");
85 			printk(KERN_ERR "ERROR: repeated CPUs\n");
86 			break;
87 		}
88 
89 		cpumask_or(groupmask, groupmask, sched_group_span(group));
90 
91 		printk(KERN_CONT " %d:{ span=%*pbl",
92 				group->sgc->id,
93 				cpumask_pr_args(sched_group_span(group)));
94 
95 		if ((sd->flags & SD_OVERLAP) &&
96 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
97 			printk(KERN_CONT " mask=%*pbl",
98 				cpumask_pr_args(group_balance_mask(group)));
99 		}
100 
101 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
102 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
103 
104 		if (group == sd->groups && sd->child &&
105 		    !cpumask_equal(sched_domain_span(sd->child),
106 				   sched_group_span(group))) {
107 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
108 		}
109 
110 		printk(KERN_CONT " }");
111 
112 		group = group->next;
113 
114 		if (group != sd->groups)
115 			printk(KERN_CONT ",");
116 
117 	} while (group != sd->groups);
118 	printk(KERN_CONT "\n");
119 
120 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
121 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
122 
123 	if (sd->parent &&
124 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
125 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
126 	return 0;
127 }
128 
129 static void sched_domain_debug(struct sched_domain *sd, int cpu)
130 {
131 	int level = 0;
132 
133 	if (!sched_debug_verbose)
134 		return;
135 
136 	if (!sd) {
137 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
138 		return;
139 	}
140 
141 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
142 
143 	for (;;) {
144 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
145 			break;
146 		level++;
147 		sd = sd->parent;
148 		if (!sd)
149 			break;
150 	}
151 }
152 #else /* !CONFIG_SCHED_DEBUG */
153 
154 # define sched_debug_verbose 0
155 # define sched_domain_debug(sd, cpu) do { } while (0)
156 static inline bool sched_debug(void)
157 {
158 	return false;
159 }
160 #endif /* CONFIG_SCHED_DEBUG */
161 
162 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
163 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
164 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
165 #include <linux/sched/sd_flags.h>
166 0;
167 #undef SD_FLAG
168 
169 static int sd_degenerate(struct sched_domain *sd)
170 {
171 	if (cpumask_weight(sched_domain_span(sd)) == 1)
172 		return 1;
173 
174 	/* Following flags need at least 2 groups */
175 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
176 	    (sd->groups != sd->groups->next))
177 		return 0;
178 
179 	/* Following flags don't use groups */
180 	if (sd->flags & (SD_WAKE_AFFINE))
181 		return 0;
182 
183 	return 1;
184 }
185 
186 static int
187 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
188 {
189 	unsigned long cflags = sd->flags, pflags = parent->flags;
190 
191 	if (sd_degenerate(parent))
192 		return 1;
193 
194 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
195 		return 0;
196 
197 	/* Flags needing groups don't count if only 1 group in parent */
198 	if (parent->groups == parent->groups->next)
199 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
200 
201 	if (~cflags & pflags)
202 		return 0;
203 
204 	return 1;
205 }
206 
207 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
208 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
209 static unsigned int sysctl_sched_energy_aware = 1;
210 DEFINE_MUTEX(sched_energy_mutex);
211 bool sched_energy_update;
212 
213 void rebuild_sched_domains_energy(void)
214 {
215 	mutex_lock(&sched_energy_mutex);
216 	sched_energy_update = true;
217 	rebuild_sched_domains();
218 	sched_energy_update = false;
219 	mutex_unlock(&sched_energy_mutex);
220 }
221 
222 #ifdef CONFIG_PROC_SYSCTL
223 static int sched_energy_aware_handler(struct ctl_table *table, int write,
224 		void *buffer, size_t *lenp, loff_t *ppos)
225 {
226 	int ret, state;
227 
228 	if (write && !capable(CAP_SYS_ADMIN))
229 		return -EPERM;
230 
231 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
232 	if (!ret && write) {
233 		state = static_branch_unlikely(&sched_energy_present);
234 		if (state != sysctl_sched_energy_aware)
235 			rebuild_sched_domains_energy();
236 	}
237 
238 	return ret;
239 }
240 
241 static struct ctl_table sched_energy_aware_sysctls[] = {
242 	{
243 		.procname       = "sched_energy_aware",
244 		.data           = &sysctl_sched_energy_aware,
245 		.maxlen         = sizeof(unsigned int),
246 		.mode           = 0644,
247 		.proc_handler   = sched_energy_aware_handler,
248 		.extra1         = SYSCTL_ZERO,
249 		.extra2         = SYSCTL_ONE,
250 	},
251 	{}
252 };
253 
254 static int __init sched_energy_aware_sysctl_init(void)
255 {
256 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
257 	return 0;
258 }
259 
260 late_initcall(sched_energy_aware_sysctl_init);
261 #endif
262 
263 static void free_pd(struct perf_domain *pd)
264 {
265 	struct perf_domain *tmp;
266 
267 	while (pd) {
268 		tmp = pd->next;
269 		kfree(pd);
270 		pd = tmp;
271 	}
272 }
273 
274 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
275 {
276 	while (pd) {
277 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
278 			return pd;
279 		pd = pd->next;
280 	}
281 
282 	return NULL;
283 }
284 
285 static struct perf_domain *pd_init(int cpu)
286 {
287 	struct em_perf_domain *obj = em_cpu_get(cpu);
288 	struct perf_domain *pd;
289 
290 	if (!obj) {
291 		if (sched_debug())
292 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
293 		return NULL;
294 	}
295 
296 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
297 	if (!pd)
298 		return NULL;
299 	pd->em_pd = obj;
300 
301 	return pd;
302 }
303 
304 static void perf_domain_debug(const struct cpumask *cpu_map,
305 						struct perf_domain *pd)
306 {
307 	if (!sched_debug() || !pd)
308 		return;
309 
310 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
311 
312 	while (pd) {
313 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
314 				cpumask_first(perf_domain_span(pd)),
315 				cpumask_pr_args(perf_domain_span(pd)),
316 				em_pd_nr_perf_states(pd->em_pd));
317 		pd = pd->next;
318 	}
319 
320 	printk(KERN_CONT "\n");
321 }
322 
323 static void destroy_perf_domain_rcu(struct rcu_head *rp)
324 {
325 	struct perf_domain *pd;
326 
327 	pd = container_of(rp, struct perf_domain, rcu);
328 	free_pd(pd);
329 }
330 
331 static void sched_energy_set(bool has_eas)
332 {
333 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
334 		if (sched_debug())
335 			pr_info("%s: stopping EAS\n", __func__);
336 		static_branch_disable_cpuslocked(&sched_energy_present);
337 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
338 		if (sched_debug())
339 			pr_info("%s: starting EAS\n", __func__);
340 		static_branch_enable_cpuslocked(&sched_energy_present);
341 	}
342 }
343 
344 /*
345  * EAS can be used on a root domain if it meets all the following conditions:
346  *    1. an Energy Model (EM) is available;
347  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
348  *    3. no SMT is detected.
349  *    4. the EM complexity is low enough to keep scheduling overheads low;
350  *    5. schedutil is driving the frequency of all CPUs of the rd;
351  *    6. frequency invariance support is present;
352  *
353  * The complexity of the Energy Model is defined as:
354  *
355  *              C = nr_pd * (nr_cpus + nr_ps)
356  *
357  * with parameters defined as:
358  *  - nr_pd:    the number of performance domains
359  *  - nr_cpus:  the number of CPUs
360  *  - nr_ps:    the sum of the number of performance states of all performance
361  *              domains (for example, on a system with 2 performance domains,
362  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
363  *
364  * It is generally not a good idea to use such a model in the wake-up path on
365  * very complex platforms because of the associated scheduling overheads. The
366  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
367  * with per-CPU DVFS and less than 8 performance states each, for example.
368  */
369 #define EM_MAX_COMPLEXITY 2048
370 
371 extern struct cpufreq_governor schedutil_gov;
372 static bool build_perf_domains(const struct cpumask *cpu_map)
373 {
374 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
375 	struct perf_domain *pd = NULL, *tmp;
376 	int cpu = cpumask_first(cpu_map);
377 	struct root_domain *rd = cpu_rq(cpu)->rd;
378 	struct cpufreq_policy *policy;
379 	struct cpufreq_governor *gov;
380 
381 	if (!sysctl_sched_energy_aware)
382 		goto free;
383 
384 	/* EAS is enabled for asymmetric CPU capacity topologies. */
385 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
386 		if (sched_debug()) {
387 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
388 					cpumask_pr_args(cpu_map));
389 		}
390 		goto free;
391 	}
392 
393 	/* EAS definitely does *not* handle SMT */
394 	if (sched_smt_active()) {
395 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
396 			cpumask_pr_args(cpu_map));
397 		goto free;
398 	}
399 
400 	if (!arch_scale_freq_invariant()) {
401 		if (sched_debug()) {
402 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
403 				cpumask_pr_args(cpu_map));
404 		}
405 		goto free;
406 	}
407 
408 	for_each_cpu(i, cpu_map) {
409 		/* Skip already covered CPUs. */
410 		if (find_pd(pd, i))
411 			continue;
412 
413 		/* Do not attempt EAS if schedutil is not being used. */
414 		policy = cpufreq_cpu_get(i);
415 		if (!policy)
416 			goto free;
417 		gov = policy->governor;
418 		cpufreq_cpu_put(policy);
419 		if (gov != &schedutil_gov) {
420 			if (rd->pd)
421 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
422 						cpumask_pr_args(cpu_map));
423 			goto free;
424 		}
425 
426 		/* Create the new pd and add it to the local list. */
427 		tmp = pd_init(i);
428 		if (!tmp)
429 			goto free;
430 		tmp->next = pd;
431 		pd = tmp;
432 
433 		/*
434 		 * Count performance domains and performance states for the
435 		 * complexity check.
436 		 */
437 		nr_pd++;
438 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
439 	}
440 
441 	/* Bail out if the Energy Model complexity is too high. */
442 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
443 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
444 						cpumask_pr_args(cpu_map));
445 		goto free;
446 	}
447 
448 	perf_domain_debug(cpu_map, pd);
449 
450 	/* Attach the new list of performance domains to the root domain. */
451 	tmp = rd->pd;
452 	rcu_assign_pointer(rd->pd, pd);
453 	if (tmp)
454 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
455 
456 	return !!pd;
457 
458 free:
459 	free_pd(pd);
460 	tmp = rd->pd;
461 	rcu_assign_pointer(rd->pd, NULL);
462 	if (tmp)
463 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
464 
465 	return false;
466 }
467 #else
468 static void free_pd(struct perf_domain *pd) { }
469 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
470 
471 static void free_rootdomain(struct rcu_head *rcu)
472 {
473 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
474 
475 	cpupri_cleanup(&rd->cpupri);
476 	cpudl_cleanup(&rd->cpudl);
477 	free_cpumask_var(rd->dlo_mask);
478 	free_cpumask_var(rd->rto_mask);
479 	free_cpumask_var(rd->online);
480 	free_cpumask_var(rd->span);
481 	free_pd(rd->pd);
482 	kfree(rd);
483 }
484 
485 void rq_attach_root(struct rq *rq, struct root_domain *rd)
486 {
487 	struct root_domain *old_rd = NULL;
488 	unsigned long flags;
489 
490 	raw_spin_rq_lock_irqsave(rq, flags);
491 
492 	if (rq->rd) {
493 		old_rd = rq->rd;
494 
495 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
496 			set_rq_offline(rq);
497 
498 		cpumask_clear_cpu(rq->cpu, old_rd->span);
499 
500 		/*
501 		 * If we dont want to free the old_rd yet then
502 		 * set old_rd to NULL to skip the freeing later
503 		 * in this function:
504 		 */
505 		if (!atomic_dec_and_test(&old_rd->refcount))
506 			old_rd = NULL;
507 	}
508 
509 	atomic_inc(&rd->refcount);
510 	rq->rd = rd;
511 
512 	cpumask_set_cpu(rq->cpu, rd->span);
513 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
514 		set_rq_online(rq);
515 
516 	raw_spin_rq_unlock_irqrestore(rq, flags);
517 
518 	if (old_rd)
519 		call_rcu(&old_rd->rcu, free_rootdomain);
520 }
521 
522 void sched_get_rd(struct root_domain *rd)
523 {
524 	atomic_inc(&rd->refcount);
525 }
526 
527 void sched_put_rd(struct root_domain *rd)
528 {
529 	if (!atomic_dec_and_test(&rd->refcount))
530 		return;
531 
532 	call_rcu(&rd->rcu, free_rootdomain);
533 }
534 
535 static int init_rootdomain(struct root_domain *rd)
536 {
537 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
538 		goto out;
539 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
540 		goto free_span;
541 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
542 		goto free_online;
543 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
544 		goto free_dlo_mask;
545 
546 #ifdef HAVE_RT_PUSH_IPI
547 	rd->rto_cpu = -1;
548 	raw_spin_lock_init(&rd->rto_lock);
549 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
550 #endif
551 
552 	rd->visit_gen = 0;
553 	init_dl_bw(&rd->dl_bw);
554 	if (cpudl_init(&rd->cpudl) != 0)
555 		goto free_rto_mask;
556 
557 	if (cpupri_init(&rd->cpupri) != 0)
558 		goto free_cpudl;
559 	return 0;
560 
561 free_cpudl:
562 	cpudl_cleanup(&rd->cpudl);
563 free_rto_mask:
564 	free_cpumask_var(rd->rto_mask);
565 free_dlo_mask:
566 	free_cpumask_var(rd->dlo_mask);
567 free_online:
568 	free_cpumask_var(rd->online);
569 free_span:
570 	free_cpumask_var(rd->span);
571 out:
572 	return -ENOMEM;
573 }
574 
575 /*
576  * By default the system creates a single root-domain with all CPUs as
577  * members (mimicking the global state we have today).
578  */
579 struct root_domain def_root_domain;
580 
581 void init_defrootdomain(void)
582 {
583 	init_rootdomain(&def_root_domain);
584 
585 	atomic_set(&def_root_domain.refcount, 1);
586 }
587 
588 static struct root_domain *alloc_rootdomain(void)
589 {
590 	struct root_domain *rd;
591 
592 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
593 	if (!rd)
594 		return NULL;
595 
596 	if (init_rootdomain(rd) != 0) {
597 		kfree(rd);
598 		return NULL;
599 	}
600 
601 	return rd;
602 }
603 
604 static void free_sched_groups(struct sched_group *sg, int free_sgc)
605 {
606 	struct sched_group *tmp, *first;
607 
608 	if (!sg)
609 		return;
610 
611 	first = sg;
612 	do {
613 		tmp = sg->next;
614 
615 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
616 			kfree(sg->sgc);
617 
618 		if (atomic_dec_and_test(&sg->ref))
619 			kfree(sg);
620 		sg = tmp;
621 	} while (sg != first);
622 }
623 
624 static void destroy_sched_domain(struct sched_domain *sd)
625 {
626 	/*
627 	 * A normal sched domain may have multiple group references, an
628 	 * overlapping domain, having private groups, only one.  Iterate,
629 	 * dropping group/capacity references, freeing where none remain.
630 	 */
631 	free_sched_groups(sd->groups, 1);
632 
633 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
634 		kfree(sd->shared);
635 	kfree(sd);
636 }
637 
638 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
639 {
640 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
641 
642 	while (sd) {
643 		struct sched_domain *parent = sd->parent;
644 		destroy_sched_domain(sd);
645 		sd = parent;
646 	}
647 }
648 
649 static void destroy_sched_domains(struct sched_domain *sd)
650 {
651 	if (sd)
652 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
653 }
654 
655 /*
656  * Keep a special pointer to the highest sched_domain that has
657  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
658  * allows us to avoid some pointer chasing select_idle_sibling().
659  *
660  * Also keep a unique ID per domain (we use the first CPU number in
661  * the cpumask of the domain), this allows us to quickly tell if
662  * two CPUs are in the same cache domain, see cpus_share_cache().
663  */
664 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
665 DEFINE_PER_CPU(int, sd_llc_size);
666 DEFINE_PER_CPU(int, sd_llc_id);
667 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
668 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
669 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
670 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
671 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
672 
673 static void update_top_cache_domain(int cpu)
674 {
675 	struct sched_domain_shared *sds = NULL;
676 	struct sched_domain *sd;
677 	int id = cpu;
678 	int size = 1;
679 
680 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
681 	if (sd) {
682 		id = cpumask_first(sched_domain_span(sd));
683 		size = cpumask_weight(sched_domain_span(sd));
684 		sds = sd->shared;
685 	}
686 
687 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
688 	per_cpu(sd_llc_size, cpu) = size;
689 	per_cpu(sd_llc_id, cpu) = id;
690 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
691 
692 	sd = lowest_flag_domain(cpu, SD_NUMA);
693 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
694 
695 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
696 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
697 
698 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
699 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
700 }
701 
702 /*
703  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
704  * hold the hotplug lock.
705  */
706 static void
707 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
708 {
709 	struct rq *rq = cpu_rq(cpu);
710 	struct sched_domain *tmp;
711 
712 	/* Remove the sched domains which do not contribute to scheduling. */
713 	for (tmp = sd; tmp; ) {
714 		struct sched_domain *parent = tmp->parent;
715 		if (!parent)
716 			break;
717 
718 		if (sd_parent_degenerate(tmp, parent)) {
719 			tmp->parent = parent->parent;
720 			if (parent->parent)
721 				parent->parent->child = tmp;
722 			/*
723 			 * Transfer SD_PREFER_SIBLING down in case of a
724 			 * degenerate parent; the spans match for this
725 			 * so the property transfers.
726 			 */
727 			if (parent->flags & SD_PREFER_SIBLING)
728 				tmp->flags |= SD_PREFER_SIBLING;
729 			destroy_sched_domain(parent);
730 		} else
731 			tmp = tmp->parent;
732 	}
733 
734 	if (sd && sd_degenerate(sd)) {
735 		tmp = sd;
736 		sd = sd->parent;
737 		destroy_sched_domain(tmp);
738 		if (sd) {
739 			struct sched_group *sg = sd->groups;
740 
741 			/*
742 			 * sched groups hold the flags of the child sched
743 			 * domain for convenience. Clear such flags since
744 			 * the child is being destroyed.
745 			 */
746 			do {
747 				sg->flags = 0;
748 			} while (sg != sd->groups);
749 
750 			sd->child = NULL;
751 		}
752 	}
753 
754 	sched_domain_debug(sd, cpu);
755 
756 	rq_attach_root(rq, rd);
757 	tmp = rq->sd;
758 	rcu_assign_pointer(rq->sd, sd);
759 	dirty_sched_domain_sysctl(cpu);
760 	destroy_sched_domains(tmp);
761 
762 	update_top_cache_domain(cpu);
763 }
764 
765 struct s_data {
766 	struct sched_domain * __percpu *sd;
767 	struct root_domain	*rd;
768 };
769 
770 enum s_alloc {
771 	sa_rootdomain,
772 	sa_sd,
773 	sa_sd_storage,
774 	sa_none,
775 };
776 
777 /*
778  * Return the canonical balance CPU for this group, this is the first CPU
779  * of this group that's also in the balance mask.
780  *
781  * The balance mask are all those CPUs that could actually end up at this
782  * group. See build_balance_mask().
783  *
784  * Also see should_we_balance().
785  */
786 int group_balance_cpu(struct sched_group *sg)
787 {
788 	return cpumask_first(group_balance_mask(sg));
789 }
790 
791 
792 /*
793  * NUMA topology (first read the regular topology blurb below)
794  *
795  * Given a node-distance table, for example:
796  *
797  *   node   0   1   2   3
798  *     0:  10  20  30  20
799  *     1:  20  10  20  30
800  *     2:  30  20  10  20
801  *     3:  20  30  20  10
802  *
803  * which represents a 4 node ring topology like:
804  *
805  *   0 ----- 1
806  *   |       |
807  *   |       |
808  *   |       |
809  *   3 ----- 2
810  *
811  * We want to construct domains and groups to represent this. The way we go
812  * about doing this is to build the domains on 'hops'. For each NUMA level we
813  * construct the mask of all nodes reachable in @level hops.
814  *
815  * For the above NUMA topology that gives 3 levels:
816  *
817  * NUMA-2	0-3		0-3		0-3		0-3
818  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
819  *
820  * NUMA-1	0-1,3		0-2		1-3		0,2-3
821  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
822  *
823  * NUMA-0	0		1		2		3
824  *
825  *
826  * As can be seen; things don't nicely line up as with the regular topology.
827  * When we iterate a domain in child domain chunks some nodes can be
828  * represented multiple times -- hence the "overlap" naming for this part of
829  * the topology.
830  *
831  * In order to minimize this overlap, we only build enough groups to cover the
832  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
833  *
834  * Because:
835  *
836  *  - the first group of each domain is its child domain; this
837  *    gets us the first 0-1,3
838  *  - the only uncovered node is 2, who's child domain is 1-3.
839  *
840  * However, because of the overlap, computing a unique CPU for each group is
841  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
842  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
843  * end up at those groups (they would end up in group: 0-1,3).
844  *
845  * To correct this we have to introduce the group balance mask. This mask
846  * will contain those CPUs in the group that can reach this group given the
847  * (child) domain tree.
848  *
849  * With this we can once again compute balance_cpu and sched_group_capacity
850  * relations.
851  *
852  * XXX include words on how balance_cpu is unique and therefore can be
853  * used for sched_group_capacity links.
854  *
855  *
856  * Another 'interesting' topology is:
857  *
858  *   node   0   1   2   3
859  *     0:  10  20  20  30
860  *     1:  20  10  20  20
861  *     2:  20  20  10  20
862  *     3:  30  20  20  10
863  *
864  * Which looks a little like:
865  *
866  *   0 ----- 1
867  *   |     / |
868  *   |   /   |
869  *   | /     |
870  *   2 ----- 3
871  *
872  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
873  * are not.
874  *
875  * This leads to a few particularly weird cases where the sched_domain's are
876  * not of the same number for each CPU. Consider:
877  *
878  * NUMA-2	0-3						0-3
879  *  groups:	{0-2},{1-3}					{1-3},{0-2}
880  *
881  * NUMA-1	0-2		0-3		0-3		1-3
882  *
883  * NUMA-0	0		1		2		3
884  *
885  */
886 
887 
888 /*
889  * Build the balance mask; it contains only those CPUs that can arrive at this
890  * group and should be considered to continue balancing.
891  *
892  * We do this during the group creation pass, therefore the group information
893  * isn't complete yet, however since each group represents a (child) domain we
894  * can fully construct this using the sched_domain bits (which are already
895  * complete).
896  */
897 static void
898 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
899 {
900 	const struct cpumask *sg_span = sched_group_span(sg);
901 	struct sd_data *sdd = sd->private;
902 	struct sched_domain *sibling;
903 	int i;
904 
905 	cpumask_clear(mask);
906 
907 	for_each_cpu(i, sg_span) {
908 		sibling = *per_cpu_ptr(sdd->sd, i);
909 
910 		/*
911 		 * Can happen in the asymmetric case, where these siblings are
912 		 * unused. The mask will not be empty because those CPUs that
913 		 * do have the top domain _should_ span the domain.
914 		 */
915 		if (!sibling->child)
916 			continue;
917 
918 		/* If we would not end up here, we can't continue from here */
919 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
920 			continue;
921 
922 		cpumask_set_cpu(i, mask);
923 	}
924 
925 	/* We must not have empty masks here */
926 	WARN_ON_ONCE(cpumask_empty(mask));
927 }
928 
929 /*
930  * XXX: This creates per-node group entries; since the load-balancer will
931  * immediately access remote memory to construct this group's load-balance
932  * statistics having the groups node local is of dubious benefit.
933  */
934 static struct sched_group *
935 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
936 {
937 	struct sched_group *sg;
938 	struct cpumask *sg_span;
939 
940 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
941 			GFP_KERNEL, cpu_to_node(cpu));
942 
943 	if (!sg)
944 		return NULL;
945 
946 	sg_span = sched_group_span(sg);
947 	if (sd->child) {
948 		cpumask_copy(sg_span, sched_domain_span(sd->child));
949 		sg->flags = sd->child->flags;
950 	} else {
951 		cpumask_copy(sg_span, sched_domain_span(sd));
952 	}
953 
954 	atomic_inc(&sg->ref);
955 	return sg;
956 }
957 
958 static void init_overlap_sched_group(struct sched_domain *sd,
959 				     struct sched_group *sg)
960 {
961 	struct cpumask *mask = sched_domains_tmpmask2;
962 	struct sd_data *sdd = sd->private;
963 	struct cpumask *sg_span;
964 	int cpu;
965 
966 	build_balance_mask(sd, sg, mask);
967 	cpu = cpumask_first(mask);
968 
969 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
970 	if (atomic_inc_return(&sg->sgc->ref) == 1)
971 		cpumask_copy(group_balance_mask(sg), mask);
972 	else
973 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
974 
975 	/*
976 	 * Initialize sgc->capacity such that even if we mess up the
977 	 * domains and no possible iteration will get us here, we won't
978 	 * die on a /0 trap.
979 	 */
980 	sg_span = sched_group_span(sg);
981 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
982 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
983 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
984 }
985 
986 static struct sched_domain *
987 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
988 {
989 	/*
990 	 * The proper descendant would be the one whose child won't span out
991 	 * of sd
992 	 */
993 	while (sibling->child &&
994 	       !cpumask_subset(sched_domain_span(sibling->child),
995 			       sched_domain_span(sd)))
996 		sibling = sibling->child;
997 
998 	/*
999 	 * As we are referencing sgc across different topology level, we need
1000 	 * to go down to skip those sched_domains which don't contribute to
1001 	 * scheduling because they will be degenerated in cpu_attach_domain
1002 	 */
1003 	while (sibling->child &&
1004 	       cpumask_equal(sched_domain_span(sibling->child),
1005 			     sched_domain_span(sibling)))
1006 		sibling = sibling->child;
1007 
1008 	return sibling;
1009 }
1010 
1011 static int
1012 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1013 {
1014 	struct sched_group *first = NULL, *last = NULL, *sg;
1015 	const struct cpumask *span = sched_domain_span(sd);
1016 	struct cpumask *covered = sched_domains_tmpmask;
1017 	struct sd_data *sdd = sd->private;
1018 	struct sched_domain *sibling;
1019 	int i;
1020 
1021 	cpumask_clear(covered);
1022 
1023 	for_each_cpu_wrap(i, span, cpu) {
1024 		struct cpumask *sg_span;
1025 
1026 		if (cpumask_test_cpu(i, covered))
1027 			continue;
1028 
1029 		sibling = *per_cpu_ptr(sdd->sd, i);
1030 
1031 		/*
1032 		 * Asymmetric node setups can result in situations where the
1033 		 * domain tree is of unequal depth, make sure to skip domains
1034 		 * that already cover the entire range.
1035 		 *
1036 		 * In that case build_sched_domains() will have terminated the
1037 		 * iteration early and our sibling sd spans will be empty.
1038 		 * Domains should always include the CPU they're built on, so
1039 		 * check that.
1040 		 */
1041 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1042 			continue;
1043 
1044 		/*
1045 		 * Usually we build sched_group by sibling's child sched_domain
1046 		 * But for machines whose NUMA diameter are 3 or above, we move
1047 		 * to build sched_group by sibling's proper descendant's child
1048 		 * domain because sibling's child sched_domain will span out of
1049 		 * the sched_domain being built as below.
1050 		 *
1051 		 * Smallest diameter=3 topology is:
1052 		 *
1053 		 *   node   0   1   2   3
1054 		 *     0:  10  20  30  40
1055 		 *     1:  20  10  20  30
1056 		 *     2:  30  20  10  20
1057 		 *     3:  40  30  20  10
1058 		 *
1059 		 *   0 --- 1 --- 2 --- 3
1060 		 *
1061 		 * NUMA-3       0-3             N/A             N/A             0-3
1062 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1063 		 *
1064 		 * NUMA-2       0-2             0-3             0-3             1-3
1065 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1066 		 *
1067 		 * NUMA-1       0-1             0-2             1-3             2-3
1068 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1069 		 *
1070 		 * NUMA-0       0               1               2               3
1071 		 *
1072 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1073 		 * group span isn't a subset of the domain span.
1074 		 */
1075 		if (sibling->child &&
1076 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1077 			sibling = find_descended_sibling(sd, sibling);
1078 
1079 		sg = build_group_from_child_sched_domain(sibling, cpu);
1080 		if (!sg)
1081 			goto fail;
1082 
1083 		sg_span = sched_group_span(sg);
1084 		cpumask_or(covered, covered, sg_span);
1085 
1086 		init_overlap_sched_group(sibling, sg);
1087 
1088 		if (!first)
1089 			first = sg;
1090 		if (last)
1091 			last->next = sg;
1092 		last = sg;
1093 		last->next = first;
1094 	}
1095 	sd->groups = first;
1096 
1097 	return 0;
1098 
1099 fail:
1100 	free_sched_groups(first, 0);
1101 
1102 	return -ENOMEM;
1103 }
1104 
1105 
1106 /*
1107  * Package topology (also see the load-balance blurb in fair.c)
1108  *
1109  * The scheduler builds a tree structure to represent a number of important
1110  * topology features. By default (default_topology[]) these include:
1111  *
1112  *  - Simultaneous multithreading (SMT)
1113  *  - Multi-Core Cache (MC)
1114  *  - Package (DIE)
1115  *
1116  * Where the last one more or less denotes everything up to a NUMA node.
1117  *
1118  * The tree consists of 3 primary data structures:
1119  *
1120  *	sched_domain -> sched_group -> sched_group_capacity
1121  *	    ^ ^             ^ ^
1122  *          `-'             `-'
1123  *
1124  * The sched_domains are per-CPU and have a two way link (parent & child) and
1125  * denote the ever growing mask of CPUs belonging to that level of topology.
1126  *
1127  * Each sched_domain has a circular (double) linked list of sched_group's, each
1128  * denoting the domains of the level below (or individual CPUs in case of the
1129  * first domain level). The sched_group linked by a sched_domain includes the
1130  * CPU of that sched_domain [*].
1131  *
1132  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1133  *
1134  * CPU   0   1   2   3   4   5   6   7
1135  *
1136  * DIE  [                             ]
1137  * MC   [             ] [             ]
1138  * SMT  [     ] [     ] [     ] [     ]
1139  *
1140  *  - or -
1141  *
1142  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1143  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1144  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1145  *
1146  * CPU   0   1   2   3   4   5   6   7
1147  *
1148  * One way to think about it is: sched_domain moves you up and down among these
1149  * topology levels, while sched_group moves you sideways through it, at child
1150  * domain granularity.
1151  *
1152  * sched_group_capacity ensures each unique sched_group has shared storage.
1153  *
1154  * There are two related construction problems, both require a CPU that
1155  * uniquely identify each group (for a given domain):
1156  *
1157  *  - The first is the balance_cpu (see should_we_balance() and the
1158  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1159  *    continue balancing at a higher domain.
1160  *
1161  *  - The second is the sched_group_capacity; we want all identical groups
1162  *    to share a single sched_group_capacity.
1163  *
1164  * Since these topologies are exclusive by construction. That is, its
1165  * impossible for an SMT thread to belong to multiple cores, and cores to
1166  * be part of multiple caches. There is a very clear and unique location
1167  * for each CPU in the hierarchy.
1168  *
1169  * Therefore computing a unique CPU for each group is trivial (the iteration
1170  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1171  * group), we can simply pick the first CPU in each group.
1172  *
1173  *
1174  * [*] in other words, the first group of each domain is its child domain.
1175  */
1176 
1177 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1178 {
1179 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1180 	struct sched_domain *child = sd->child;
1181 	struct sched_group *sg;
1182 	bool already_visited;
1183 
1184 	if (child)
1185 		cpu = cpumask_first(sched_domain_span(child));
1186 
1187 	sg = *per_cpu_ptr(sdd->sg, cpu);
1188 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1189 
1190 	/* Increase refcounts for claim_allocations: */
1191 	already_visited = atomic_inc_return(&sg->ref) > 1;
1192 	/* sgc visits should follow a similar trend as sg */
1193 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1194 
1195 	/* If we have already visited that group, it's already initialized. */
1196 	if (already_visited)
1197 		return sg;
1198 
1199 	if (child) {
1200 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1201 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1202 		sg->flags = child->flags;
1203 	} else {
1204 		cpumask_set_cpu(cpu, sched_group_span(sg));
1205 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1206 	}
1207 
1208 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1209 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1210 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1211 
1212 	return sg;
1213 }
1214 
1215 /*
1216  * build_sched_groups will build a circular linked list of the groups
1217  * covered by the given span, will set each group's ->cpumask correctly,
1218  * and will initialize their ->sgc.
1219  *
1220  * Assumes the sched_domain tree is fully constructed
1221  */
1222 static int
1223 build_sched_groups(struct sched_domain *sd, int cpu)
1224 {
1225 	struct sched_group *first = NULL, *last = NULL;
1226 	struct sd_data *sdd = sd->private;
1227 	const struct cpumask *span = sched_domain_span(sd);
1228 	struct cpumask *covered;
1229 	int i;
1230 
1231 	lockdep_assert_held(&sched_domains_mutex);
1232 	covered = sched_domains_tmpmask;
1233 
1234 	cpumask_clear(covered);
1235 
1236 	for_each_cpu_wrap(i, span, cpu) {
1237 		struct sched_group *sg;
1238 
1239 		if (cpumask_test_cpu(i, covered))
1240 			continue;
1241 
1242 		sg = get_group(i, sdd);
1243 
1244 		cpumask_or(covered, covered, sched_group_span(sg));
1245 
1246 		if (!first)
1247 			first = sg;
1248 		if (last)
1249 			last->next = sg;
1250 		last = sg;
1251 	}
1252 	last->next = first;
1253 	sd->groups = first;
1254 
1255 	return 0;
1256 }
1257 
1258 /*
1259  * Initialize sched groups cpu_capacity.
1260  *
1261  * cpu_capacity indicates the capacity of sched group, which is used while
1262  * distributing the load between different sched groups in a sched domain.
1263  * Typically cpu_capacity for all the groups in a sched domain will be same
1264  * unless there are asymmetries in the topology. If there are asymmetries,
1265  * group having more cpu_capacity will pickup more load compared to the
1266  * group having less cpu_capacity.
1267  */
1268 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1269 {
1270 	struct sched_group *sg = sd->groups;
1271 
1272 	WARN_ON(!sg);
1273 
1274 	do {
1275 		int cpu, max_cpu = -1;
1276 
1277 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1278 
1279 		if (!(sd->flags & SD_ASYM_PACKING))
1280 			goto next;
1281 
1282 		for_each_cpu(cpu, sched_group_span(sg)) {
1283 			if (max_cpu < 0)
1284 				max_cpu = cpu;
1285 			else if (sched_asym_prefer(cpu, max_cpu))
1286 				max_cpu = cpu;
1287 		}
1288 		sg->asym_prefer_cpu = max_cpu;
1289 
1290 next:
1291 		sg = sg->next;
1292 	} while (sg != sd->groups);
1293 
1294 	if (cpu != group_balance_cpu(sg))
1295 		return;
1296 
1297 	update_group_capacity(sd, cpu);
1298 }
1299 
1300 /*
1301  * Asymmetric CPU capacity bits
1302  */
1303 struct asym_cap_data {
1304 	struct list_head link;
1305 	unsigned long capacity;
1306 	unsigned long cpus[];
1307 };
1308 
1309 /*
1310  * Set of available CPUs grouped by their corresponding capacities
1311  * Each list entry contains a CPU mask reflecting CPUs that share the same
1312  * capacity.
1313  * The lifespan of data is unlimited.
1314  */
1315 static LIST_HEAD(asym_cap_list);
1316 
1317 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1318 
1319 /*
1320  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1321  * Provides sd_flags reflecting the asymmetry scope.
1322  */
1323 static inline int
1324 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1325 			   const struct cpumask *cpu_map)
1326 {
1327 	struct asym_cap_data *entry;
1328 	int count = 0, miss = 0;
1329 
1330 	/*
1331 	 * Count how many unique CPU capacities this domain spans across
1332 	 * (compare sched_domain CPUs mask with ones representing  available
1333 	 * CPUs capacities). Take into account CPUs that might be offline:
1334 	 * skip those.
1335 	 */
1336 	list_for_each_entry(entry, &asym_cap_list, link) {
1337 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1338 			++count;
1339 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1340 			++miss;
1341 	}
1342 
1343 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1344 
1345 	/* No asymmetry detected */
1346 	if (count < 2)
1347 		return 0;
1348 	/* Some of the available CPU capacity values have not been detected */
1349 	if (miss)
1350 		return SD_ASYM_CPUCAPACITY;
1351 
1352 	/* Full asymmetry */
1353 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1354 
1355 }
1356 
1357 static inline void asym_cpu_capacity_update_data(int cpu)
1358 {
1359 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1360 	struct asym_cap_data *entry = NULL;
1361 
1362 	list_for_each_entry(entry, &asym_cap_list, link) {
1363 		if (capacity == entry->capacity)
1364 			goto done;
1365 	}
1366 
1367 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1368 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1369 		return;
1370 	entry->capacity = capacity;
1371 	list_add(&entry->link, &asym_cap_list);
1372 done:
1373 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1374 }
1375 
1376 /*
1377  * Build-up/update list of CPUs grouped by their capacities
1378  * An update requires explicit request to rebuild sched domains
1379  * with state indicating CPU topology changes.
1380  */
1381 static void asym_cpu_capacity_scan(void)
1382 {
1383 	struct asym_cap_data *entry, *next;
1384 	int cpu;
1385 
1386 	list_for_each_entry(entry, &asym_cap_list, link)
1387 		cpumask_clear(cpu_capacity_span(entry));
1388 
1389 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1390 		asym_cpu_capacity_update_data(cpu);
1391 
1392 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1393 		if (cpumask_empty(cpu_capacity_span(entry))) {
1394 			list_del(&entry->link);
1395 			kfree(entry);
1396 		}
1397 	}
1398 
1399 	/*
1400 	 * Only one capacity value has been detected i.e. this system is symmetric.
1401 	 * No need to keep this data around.
1402 	 */
1403 	if (list_is_singular(&asym_cap_list)) {
1404 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1405 		list_del(&entry->link);
1406 		kfree(entry);
1407 	}
1408 }
1409 
1410 /*
1411  * Initializers for schedule domains
1412  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1413  */
1414 
1415 static int default_relax_domain_level = -1;
1416 int sched_domain_level_max;
1417 
1418 static int __init setup_relax_domain_level(char *str)
1419 {
1420 	if (kstrtoint(str, 0, &default_relax_domain_level))
1421 		pr_warn("Unable to set relax_domain_level\n");
1422 
1423 	return 1;
1424 }
1425 __setup("relax_domain_level=", setup_relax_domain_level);
1426 
1427 static void set_domain_attribute(struct sched_domain *sd,
1428 				 struct sched_domain_attr *attr)
1429 {
1430 	int request;
1431 
1432 	if (!attr || attr->relax_domain_level < 0) {
1433 		if (default_relax_domain_level < 0)
1434 			return;
1435 		request = default_relax_domain_level;
1436 	} else
1437 		request = attr->relax_domain_level;
1438 
1439 	if (sd->level > request) {
1440 		/* Turn off idle balance on this domain: */
1441 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1442 	}
1443 }
1444 
1445 static void __sdt_free(const struct cpumask *cpu_map);
1446 static int __sdt_alloc(const struct cpumask *cpu_map);
1447 
1448 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1449 				 const struct cpumask *cpu_map)
1450 {
1451 	switch (what) {
1452 	case sa_rootdomain:
1453 		if (!atomic_read(&d->rd->refcount))
1454 			free_rootdomain(&d->rd->rcu);
1455 		fallthrough;
1456 	case sa_sd:
1457 		free_percpu(d->sd);
1458 		fallthrough;
1459 	case sa_sd_storage:
1460 		__sdt_free(cpu_map);
1461 		fallthrough;
1462 	case sa_none:
1463 		break;
1464 	}
1465 }
1466 
1467 static enum s_alloc
1468 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1469 {
1470 	memset(d, 0, sizeof(*d));
1471 
1472 	if (__sdt_alloc(cpu_map))
1473 		return sa_sd_storage;
1474 	d->sd = alloc_percpu(struct sched_domain *);
1475 	if (!d->sd)
1476 		return sa_sd_storage;
1477 	d->rd = alloc_rootdomain();
1478 	if (!d->rd)
1479 		return sa_sd;
1480 
1481 	return sa_rootdomain;
1482 }
1483 
1484 /*
1485  * NULL the sd_data elements we've used to build the sched_domain and
1486  * sched_group structure so that the subsequent __free_domain_allocs()
1487  * will not free the data we're using.
1488  */
1489 static void claim_allocations(int cpu, struct sched_domain *sd)
1490 {
1491 	struct sd_data *sdd = sd->private;
1492 
1493 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1494 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1495 
1496 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1497 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1498 
1499 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1500 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1501 
1502 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1503 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1504 }
1505 
1506 #ifdef CONFIG_NUMA
1507 enum numa_topology_type sched_numa_topology_type;
1508 
1509 static int			sched_domains_numa_levels;
1510 static int			sched_domains_curr_level;
1511 
1512 int				sched_max_numa_distance;
1513 static int			*sched_domains_numa_distance;
1514 static struct cpumask		***sched_domains_numa_masks;
1515 #endif
1516 
1517 /*
1518  * SD_flags allowed in topology descriptions.
1519  *
1520  * These flags are purely descriptive of the topology and do not prescribe
1521  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1522  * function:
1523  *
1524  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1525  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1526  *   SD_NUMA                - describes NUMA topologies
1527  *
1528  * Odd one out, which beside describing the topology has a quirk also
1529  * prescribes the desired behaviour that goes along with it:
1530  *
1531  *   SD_ASYM_PACKING        - describes SMT quirks
1532  */
1533 #define TOPOLOGY_SD_FLAGS		\
1534 	(SD_SHARE_CPUCAPACITY	|	\
1535 	 SD_SHARE_PKG_RESOURCES |	\
1536 	 SD_NUMA		|	\
1537 	 SD_ASYM_PACKING)
1538 
1539 static struct sched_domain *
1540 sd_init(struct sched_domain_topology_level *tl,
1541 	const struct cpumask *cpu_map,
1542 	struct sched_domain *child, int cpu)
1543 {
1544 	struct sd_data *sdd = &tl->data;
1545 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1546 	int sd_id, sd_weight, sd_flags = 0;
1547 	struct cpumask *sd_span;
1548 
1549 #ifdef CONFIG_NUMA
1550 	/*
1551 	 * Ugly hack to pass state to sd_numa_mask()...
1552 	 */
1553 	sched_domains_curr_level = tl->numa_level;
1554 #endif
1555 
1556 	sd_weight = cpumask_weight(tl->mask(cpu));
1557 
1558 	if (tl->sd_flags)
1559 		sd_flags = (*tl->sd_flags)();
1560 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1561 			"wrong sd_flags in topology description\n"))
1562 		sd_flags &= TOPOLOGY_SD_FLAGS;
1563 
1564 	*sd = (struct sched_domain){
1565 		.min_interval		= sd_weight,
1566 		.max_interval		= 2*sd_weight,
1567 		.busy_factor		= 16,
1568 		.imbalance_pct		= 117,
1569 
1570 		.cache_nice_tries	= 0,
1571 
1572 		.flags			= 1*SD_BALANCE_NEWIDLE
1573 					| 1*SD_BALANCE_EXEC
1574 					| 1*SD_BALANCE_FORK
1575 					| 0*SD_BALANCE_WAKE
1576 					| 1*SD_WAKE_AFFINE
1577 					| 0*SD_SHARE_CPUCAPACITY
1578 					| 0*SD_SHARE_PKG_RESOURCES
1579 					| 0*SD_SERIALIZE
1580 					| 1*SD_PREFER_SIBLING
1581 					| 0*SD_NUMA
1582 					| sd_flags
1583 					,
1584 
1585 		.last_balance		= jiffies,
1586 		.balance_interval	= sd_weight,
1587 		.max_newidle_lb_cost	= 0,
1588 		.last_decay_max_lb_cost	= jiffies,
1589 		.child			= child,
1590 #ifdef CONFIG_SCHED_DEBUG
1591 		.name			= tl->name,
1592 #endif
1593 	};
1594 
1595 	sd_span = sched_domain_span(sd);
1596 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1597 	sd_id = cpumask_first(sd_span);
1598 
1599 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1600 
1601 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1602 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1603 		  "CPU capacity asymmetry not supported on SMT\n");
1604 
1605 	/*
1606 	 * Convert topological properties into behaviour.
1607 	 */
1608 	/* Don't attempt to spread across CPUs of different capacities. */
1609 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1610 		sd->child->flags &= ~SD_PREFER_SIBLING;
1611 
1612 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1613 		sd->imbalance_pct = 110;
1614 
1615 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1616 		sd->imbalance_pct = 117;
1617 		sd->cache_nice_tries = 1;
1618 
1619 #ifdef CONFIG_NUMA
1620 	} else if (sd->flags & SD_NUMA) {
1621 		sd->cache_nice_tries = 2;
1622 
1623 		sd->flags &= ~SD_PREFER_SIBLING;
1624 		sd->flags |= SD_SERIALIZE;
1625 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1626 			sd->flags &= ~(SD_BALANCE_EXEC |
1627 				       SD_BALANCE_FORK |
1628 				       SD_WAKE_AFFINE);
1629 		}
1630 
1631 #endif
1632 	} else {
1633 		sd->cache_nice_tries = 1;
1634 	}
1635 
1636 	/*
1637 	 * For all levels sharing cache; connect a sched_domain_shared
1638 	 * instance.
1639 	 */
1640 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1641 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1642 		atomic_inc(&sd->shared->ref);
1643 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1644 	}
1645 
1646 	sd->private = sdd;
1647 
1648 	return sd;
1649 }
1650 
1651 /*
1652  * Topology list, bottom-up.
1653  */
1654 static struct sched_domain_topology_level default_topology[] = {
1655 #ifdef CONFIG_SCHED_SMT
1656 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1657 #endif
1658 
1659 #ifdef CONFIG_SCHED_CLUSTER
1660 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1661 #endif
1662 
1663 #ifdef CONFIG_SCHED_MC
1664 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1665 #endif
1666 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1667 	{ NULL, },
1668 };
1669 
1670 static struct sched_domain_topology_level *sched_domain_topology =
1671 	default_topology;
1672 static struct sched_domain_topology_level *sched_domain_topology_saved;
1673 
1674 #define for_each_sd_topology(tl)			\
1675 	for (tl = sched_domain_topology; tl->mask; tl++)
1676 
1677 void set_sched_topology(struct sched_domain_topology_level *tl)
1678 {
1679 	if (WARN_ON_ONCE(sched_smp_initialized))
1680 		return;
1681 
1682 	sched_domain_topology = tl;
1683 	sched_domain_topology_saved = NULL;
1684 }
1685 
1686 #ifdef CONFIG_NUMA
1687 
1688 static const struct cpumask *sd_numa_mask(int cpu)
1689 {
1690 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1691 }
1692 
1693 static void sched_numa_warn(const char *str)
1694 {
1695 	static int done = false;
1696 	int i,j;
1697 
1698 	if (done)
1699 		return;
1700 
1701 	done = true;
1702 
1703 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1704 
1705 	for (i = 0; i < nr_node_ids; i++) {
1706 		printk(KERN_WARNING "  ");
1707 		for (j = 0; j < nr_node_ids; j++) {
1708 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1709 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1710 			else
1711 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1712 		}
1713 		printk(KERN_CONT "\n");
1714 	}
1715 	printk(KERN_WARNING "\n");
1716 }
1717 
1718 bool find_numa_distance(int distance)
1719 {
1720 	bool found = false;
1721 	int i, *distances;
1722 
1723 	if (distance == node_distance(0, 0))
1724 		return true;
1725 
1726 	rcu_read_lock();
1727 	distances = rcu_dereference(sched_domains_numa_distance);
1728 	if (!distances)
1729 		goto unlock;
1730 	for (i = 0; i < sched_domains_numa_levels; i++) {
1731 		if (distances[i] == distance) {
1732 			found = true;
1733 			break;
1734 		}
1735 	}
1736 unlock:
1737 	rcu_read_unlock();
1738 
1739 	return found;
1740 }
1741 
1742 #define for_each_cpu_node_but(n, nbut)		\
1743 	for_each_node_state(n, N_CPU)		\
1744 		if (n == nbut)			\
1745 			continue;		\
1746 		else
1747 
1748 /*
1749  * A system can have three types of NUMA topology:
1750  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1751  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1752  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1753  *
1754  * The difference between a glueless mesh topology and a backplane
1755  * topology lies in whether communication between not directly
1756  * connected nodes goes through intermediary nodes (where programs
1757  * could run), or through backplane controllers. This affects
1758  * placement of programs.
1759  *
1760  * The type of topology can be discerned with the following tests:
1761  * - If the maximum distance between any nodes is 1 hop, the system
1762  *   is directly connected.
1763  * - If for two nodes A and B, located N > 1 hops away from each other,
1764  *   there is an intermediary node C, which is < N hops away from both
1765  *   nodes A and B, the system is a glueless mesh.
1766  */
1767 static void init_numa_topology_type(int offline_node)
1768 {
1769 	int a, b, c, n;
1770 
1771 	n = sched_max_numa_distance;
1772 
1773 	if (sched_domains_numa_levels <= 2) {
1774 		sched_numa_topology_type = NUMA_DIRECT;
1775 		return;
1776 	}
1777 
1778 	for_each_cpu_node_but(a, offline_node) {
1779 		for_each_cpu_node_but(b, offline_node) {
1780 			/* Find two nodes furthest removed from each other. */
1781 			if (node_distance(a, b) < n)
1782 				continue;
1783 
1784 			/* Is there an intermediary node between a and b? */
1785 			for_each_cpu_node_but(c, offline_node) {
1786 				if (node_distance(a, c) < n &&
1787 				    node_distance(b, c) < n) {
1788 					sched_numa_topology_type =
1789 							NUMA_GLUELESS_MESH;
1790 					return;
1791 				}
1792 			}
1793 
1794 			sched_numa_topology_type = NUMA_BACKPLANE;
1795 			return;
1796 		}
1797 	}
1798 
1799 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1800 	sched_numa_topology_type = NUMA_DIRECT;
1801 }
1802 
1803 
1804 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1805 
1806 void sched_init_numa(int offline_node)
1807 {
1808 	struct sched_domain_topology_level *tl;
1809 	unsigned long *distance_map;
1810 	int nr_levels = 0;
1811 	int i, j;
1812 	int *distances;
1813 	struct cpumask ***masks;
1814 
1815 	/*
1816 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1817 	 * unique distances in the node_distance() table.
1818 	 */
1819 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1820 	if (!distance_map)
1821 		return;
1822 
1823 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1824 	for_each_cpu_node_but(i, offline_node) {
1825 		for_each_cpu_node_but(j, offline_node) {
1826 			int distance = node_distance(i, j);
1827 
1828 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1829 				sched_numa_warn("Invalid distance value range");
1830 				bitmap_free(distance_map);
1831 				return;
1832 			}
1833 
1834 			bitmap_set(distance_map, distance, 1);
1835 		}
1836 	}
1837 	/*
1838 	 * We can now figure out how many unique distance values there are and
1839 	 * allocate memory accordingly.
1840 	 */
1841 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1842 
1843 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1844 	if (!distances) {
1845 		bitmap_free(distance_map);
1846 		return;
1847 	}
1848 
1849 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1850 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1851 		distances[i] = j;
1852 	}
1853 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1854 
1855 	bitmap_free(distance_map);
1856 
1857 	/*
1858 	 * 'nr_levels' contains the number of unique distances
1859 	 *
1860 	 * The sched_domains_numa_distance[] array includes the actual distance
1861 	 * numbers.
1862 	 */
1863 
1864 	/*
1865 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1866 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1867 	 * the array will contain less then 'nr_levels' members. This could be
1868 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1869 	 * in other functions.
1870 	 *
1871 	 * We reset it to 'nr_levels' at the end of this function.
1872 	 */
1873 	sched_domains_numa_levels = 0;
1874 
1875 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1876 	if (!masks)
1877 		return;
1878 
1879 	/*
1880 	 * Now for each level, construct a mask per node which contains all
1881 	 * CPUs of nodes that are that many hops away from us.
1882 	 */
1883 	for (i = 0; i < nr_levels; i++) {
1884 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1885 		if (!masks[i])
1886 			return;
1887 
1888 		for_each_cpu_node_but(j, offline_node) {
1889 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1890 			int k;
1891 
1892 			if (!mask)
1893 				return;
1894 
1895 			masks[i][j] = mask;
1896 
1897 			for_each_cpu_node_but(k, offline_node) {
1898 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1899 					sched_numa_warn("Node-distance not symmetric");
1900 
1901 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1902 					continue;
1903 
1904 				cpumask_or(mask, mask, cpumask_of_node(k));
1905 			}
1906 		}
1907 	}
1908 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1909 
1910 	/* Compute default topology size */
1911 	for (i = 0; sched_domain_topology[i].mask; i++);
1912 
1913 	tl = kzalloc((i + nr_levels + 1) *
1914 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1915 	if (!tl)
1916 		return;
1917 
1918 	/*
1919 	 * Copy the default topology bits..
1920 	 */
1921 	for (i = 0; sched_domain_topology[i].mask; i++)
1922 		tl[i] = sched_domain_topology[i];
1923 
1924 	/*
1925 	 * Add the NUMA identity distance, aka single NODE.
1926 	 */
1927 	tl[i++] = (struct sched_domain_topology_level){
1928 		.mask = sd_numa_mask,
1929 		.numa_level = 0,
1930 		SD_INIT_NAME(NODE)
1931 	};
1932 
1933 	/*
1934 	 * .. and append 'j' levels of NUMA goodness.
1935 	 */
1936 	for (j = 1; j < nr_levels; i++, j++) {
1937 		tl[i] = (struct sched_domain_topology_level){
1938 			.mask = sd_numa_mask,
1939 			.sd_flags = cpu_numa_flags,
1940 			.flags = SDTL_OVERLAP,
1941 			.numa_level = j,
1942 			SD_INIT_NAME(NUMA)
1943 		};
1944 	}
1945 
1946 	sched_domain_topology_saved = sched_domain_topology;
1947 	sched_domain_topology = tl;
1948 
1949 	sched_domains_numa_levels = nr_levels;
1950 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1951 
1952 	init_numa_topology_type(offline_node);
1953 }
1954 
1955 
1956 static void sched_reset_numa(void)
1957 {
1958 	int nr_levels, *distances;
1959 	struct cpumask ***masks;
1960 
1961 	nr_levels = sched_domains_numa_levels;
1962 	sched_domains_numa_levels = 0;
1963 	sched_max_numa_distance = 0;
1964 	sched_numa_topology_type = NUMA_DIRECT;
1965 	distances = sched_domains_numa_distance;
1966 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
1967 	masks = sched_domains_numa_masks;
1968 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
1969 	if (distances || masks) {
1970 		int i, j;
1971 
1972 		synchronize_rcu();
1973 		kfree(distances);
1974 		for (i = 0; i < nr_levels && masks; i++) {
1975 			if (!masks[i])
1976 				continue;
1977 			for_each_node(j)
1978 				kfree(masks[i][j]);
1979 			kfree(masks[i]);
1980 		}
1981 		kfree(masks);
1982 	}
1983 	if (sched_domain_topology_saved) {
1984 		kfree(sched_domain_topology);
1985 		sched_domain_topology = sched_domain_topology_saved;
1986 		sched_domain_topology_saved = NULL;
1987 	}
1988 }
1989 
1990 /*
1991  * Call with hotplug lock held
1992  */
1993 void sched_update_numa(int cpu, bool online)
1994 {
1995 	int node;
1996 
1997 	node = cpu_to_node(cpu);
1998 	/*
1999 	 * Scheduler NUMA topology is updated when the first CPU of a
2000 	 * node is onlined or the last CPU of a node is offlined.
2001 	 */
2002 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2003 		return;
2004 
2005 	sched_reset_numa();
2006 	sched_init_numa(online ? NUMA_NO_NODE : node);
2007 }
2008 
2009 void sched_domains_numa_masks_set(unsigned int cpu)
2010 {
2011 	int node = cpu_to_node(cpu);
2012 	int i, j;
2013 
2014 	for (i = 0; i < sched_domains_numa_levels; i++) {
2015 		for (j = 0; j < nr_node_ids; j++) {
2016 			if (!node_state(j, N_CPU))
2017 				continue;
2018 
2019 			/* Set ourselves in the remote node's masks */
2020 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2021 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2022 		}
2023 	}
2024 }
2025 
2026 void sched_domains_numa_masks_clear(unsigned int cpu)
2027 {
2028 	int i, j;
2029 
2030 	for (i = 0; i < sched_domains_numa_levels; i++) {
2031 		for (j = 0; j < nr_node_ids; j++) {
2032 			if (sched_domains_numa_masks[i][j])
2033 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2034 		}
2035 	}
2036 }
2037 
2038 /*
2039  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2040  *                             closest to @cpu from @cpumask.
2041  * cpumask: cpumask to find a cpu from
2042  * cpu: cpu to be close to
2043  *
2044  * returns: cpu, or nr_cpu_ids when nothing found.
2045  */
2046 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2047 {
2048 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2049 	struct cpumask ***masks;
2050 
2051 	rcu_read_lock();
2052 	masks = rcu_dereference(sched_domains_numa_masks);
2053 	if (!masks)
2054 		goto unlock;
2055 	for (i = 0; i < sched_domains_numa_levels; i++) {
2056 		if (!masks[i][j])
2057 			break;
2058 		cpu = cpumask_any_and(cpus, masks[i][j]);
2059 		if (cpu < nr_cpu_ids) {
2060 			found = cpu;
2061 			break;
2062 		}
2063 	}
2064 unlock:
2065 	rcu_read_unlock();
2066 
2067 	return found;
2068 }
2069 
2070 #endif /* CONFIG_NUMA */
2071 
2072 static int __sdt_alloc(const struct cpumask *cpu_map)
2073 {
2074 	struct sched_domain_topology_level *tl;
2075 	int j;
2076 
2077 	for_each_sd_topology(tl) {
2078 		struct sd_data *sdd = &tl->data;
2079 
2080 		sdd->sd = alloc_percpu(struct sched_domain *);
2081 		if (!sdd->sd)
2082 			return -ENOMEM;
2083 
2084 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2085 		if (!sdd->sds)
2086 			return -ENOMEM;
2087 
2088 		sdd->sg = alloc_percpu(struct sched_group *);
2089 		if (!sdd->sg)
2090 			return -ENOMEM;
2091 
2092 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2093 		if (!sdd->sgc)
2094 			return -ENOMEM;
2095 
2096 		for_each_cpu(j, cpu_map) {
2097 			struct sched_domain *sd;
2098 			struct sched_domain_shared *sds;
2099 			struct sched_group *sg;
2100 			struct sched_group_capacity *sgc;
2101 
2102 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2103 					GFP_KERNEL, cpu_to_node(j));
2104 			if (!sd)
2105 				return -ENOMEM;
2106 
2107 			*per_cpu_ptr(sdd->sd, j) = sd;
2108 
2109 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2110 					GFP_KERNEL, cpu_to_node(j));
2111 			if (!sds)
2112 				return -ENOMEM;
2113 
2114 			*per_cpu_ptr(sdd->sds, j) = sds;
2115 
2116 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2117 					GFP_KERNEL, cpu_to_node(j));
2118 			if (!sg)
2119 				return -ENOMEM;
2120 
2121 			sg->next = sg;
2122 
2123 			*per_cpu_ptr(sdd->sg, j) = sg;
2124 
2125 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2126 					GFP_KERNEL, cpu_to_node(j));
2127 			if (!sgc)
2128 				return -ENOMEM;
2129 
2130 #ifdef CONFIG_SCHED_DEBUG
2131 			sgc->id = j;
2132 #endif
2133 
2134 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2135 		}
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static void __sdt_free(const struct cpumask *cpu_map)
2142 {
2143 	struct sched_domain_topology_level *tl;
2144 	int j;
2145 
2146 	for_each_sd_topology(tl) {
2147 		struct sd_data *sdd = &tl->data;
2148 
2149 		for_each_cpu(j, cpu_map) {
2150 			struct sched_domain *sd;
2151 
2152 			if (sdd->sd) {
2153 				sd = *per_cpu_ptr(sdd->sd, j);
2154 				if (sd && (sd->flags & SD_OVERLAP))
2155 					free_sched_groups(sd->groups, 0);
2156 				kfree(*per_cpu_ptr(sdd->sd, j));
2157 			}
2158 
2159 			if (sdd->sds)
2160 				kfree(*per_cpu_ptr(sdd->sds, j));
2161 			if (sdd->sg)
2162 				kfree(*per_cpu_ptr(sdd->sg, j));
2163 			if (sdd->sgc)
2164 				kfree(*per_cpu_ptr(sdd->sgc, j));
2165 		}
2166 		free_percpu(sdd->sd);
2167 		sdd->sd = NULL;
2168 		free_percpu(sdd->sds);
2169 		sdd->sds = NULL;
2170 		free_percpu(sdd->sg);
2171 		sdd->sg = NULL;
2172 		free_percpu(sdd->sgc);
2173 		sdd->sgc = NULL;
2174 	}
2175 }
2176 
2177 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2178 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2179 		struct sched_domain *child, int cpu)
2180 {
2181 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2182 
2183 	if (child) {
2184 		sd->level = child->level + 1;
2185 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2186 		child->parent = sd;
2187 
2188 		if (!cpumask_subset(sched_domain_span(child),
2189 				    sched_domain_span(sd))) {
2190 			pr_err("BUG: arch topology borken\n");
2191 #ifdef CONFIG_SCHED_DEBUG
2192 			pr_err("     the %s domain not a subset of the %s domain\n",
2193 					child->name, sd->name);
2194 #endif
2195 			/* Fixup, ensure @sd has at least @child CPUs. */
2196 			cpumask_or(sched_domain_span(sd),
2197 				   sched_domain_span(sd),
2198 				   sched_domain_span(child));
2199 		}
2200 
2201 	}
2202 	set_domain_attribute(sd, attr);
2203 
2204 	return sd;
2205 }
2206 
2207 /*
2208  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2209  * any two given CPUs at this (non-NUMA) topology level.
2210  */
2211 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2212 			      const struct cpumask *cpu_map, int cpu)
2213 {
2214 	int i;
2215 
2216 	/* NUMA levels are allowed to overlap */
2217 	if (tl->flags & SDTL_OVERLAP)
2218 		return true;
2219 
2220 	/*
2221 	 * Non-NUMA levels cannot partially overlap - they must be either
2222 	 * completely equal or completely disjoint. Otherwise we can end up
2223 	 * breaking the sched_group lists - i.e. a later get_group() pass
2224 	 * breaks the linking done for an earlier span.
2225 	 */
2226 	for_each_cpu(i, cpu_map) {
2227 		if (i == cpu)
2228 			continue;
2229 		/*
2230 		 * We should 'and' all those masks with 'cpu_map' to exactly
2231 		 * match the topology we're about to build, but that can only
2232 		 * remove CPUs, which only lessens our ability to detect
2233 		 * overlaps
2234 		 */
2235 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2236 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2237 			return false;
2238 	}
2239 
2240 	return true;
2241 }
2242 
2243 /*
2244  * Build sched domains for a given set of CPUs and attach the sched domains
2245  * to the individual CPUs
2246  */
2247 static int
2248 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2249 {
2250 	enum s_alloc alloc_state = sa_none;
2251 	struct sched_domain *sd;
2252 	struct s_data d;
2253 	struct rq *rq = NULL;
2254 	int i, ret = -ENOMEM;
2255 	bool has_asym = false;
2256 
2257 	if (WARN_ON(cpumask_empty(cpu_map)))
2258 		goto error;
2259 
2260 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2261 	if (alloc_state != sa_rootdomain)
2262 		goto error;
2263 
2264 	/* Set up domains for CPUs specified by the cpu_map: */
2265 	for_each_cpu(i, cpu_map) {
2266 		struct sched_domain_topology_level *tl;
2267 
2268 		sd = NULL;
2269 		for_each_sd_topology(tl) {
2270 
2271 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2272 				goto error;
2273 
2274 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2275 
2276 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2277 
2278 			if (tl == sched_domain_topology)
2279 				*per_cpu_ptr(d.sd, i) = sd;
2280 			if (tl->flags & SDTL_OVERLAP)
2281 				sd->flags |= SD_OVERLAP;
2282 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2283 				break;
2284 		}
2285 	}
2286 
2287 	/* Build the groups for the domains */
2288 	for_each_cpu(i, cpu_map) {
2289 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2290 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2291 			if (sd->flags & SD_OVERLAP) {
2292 				if (build_overlap_sched_groups(sd, i))
2293 					goto error;
2294 			} else {
2295 				if (build_sched_groups(sd, i))
2296 					goto error;
2297 			}
2298 		}
2299 	}
2300 
2301 	/*
2302 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2303 	 * imbalanced.
2304 	 */
2305 	for_each_cpu(i, cpu_map) {
2306 		unsigned int imb = 0;
2307 		unsigned int imb_span = 1;
2308 
2309 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2310 			struct sched_domain *child = sd->child;
2311 
2312 			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2313 			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
2314 				struct sched_domain __rcu *top_p;
2315 				unsigned int nr_llcs;
2316 
2317 				/*
2318 				 * For a single LLC per node, allow an
2319 				 * imbalance up to 25% of the node. This is an
2320 				 * arbitrary cutoff based on SMT-2 to balance
2321 				 * between memory bandwidth and avoiding
2322 				 * premature sharing of HT resources and SMT-4
2323 				 * or SMT-8 *may* benefit from a different
2324 				 * cutoff.
2325 				 *
2326 				 * For multiple LLCs, allow an imbalance
2327 				 * until multiple tasks would share an LLC
2328 				 * on one node while LLCs on another node
2329 				 * remain idle.
2330 				 */
2331 				nr_llcs = sd->span_weight / child->span_weight;
2332 				if (nr_llcs == 1)
2333 					imb = sd->span_weight >> 2;
2334 				else
2335 					imb = nr_llcs;
2336 				sd->imb_numa_nr = imb;
2337 
2338 				/* Set span based on the first NUMA domain. */
2339 				top_p = sd->parent;
2340 				while (top_p && !(top_p->flags & SD_NUMA)) {
2341 					top_p = top_p->parent;
2342 				}
2343 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2344 			} else {
2345 				int factor = max(1U, (sd->span_weight / imb_span));
2346 
2347 				sd->imb_numa_nr = imb * factor;
2348 			}
2349 		}
2350 	}
2351 
2352 	/* Calculate CPU capacity for physical packages and nodes */
2353 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2354 		if (!cpumask_test_cpu(i, cpu_map))
2355 			continue;
2356 
2357 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2358 			claim_allocations(i, sd);
2359 			init_sched_groups_capacity(i, sd);
2360 		}
2361 	}
2362 
2363 	/* Attach the domains */
2364 	rcu_read_lock();
2365 	for_each_cpu(i, cpu_map) {
2366 		rq = cpu_rq(i);
2367 		sd = *per_cpu_ptr(d.sd, i);
2368 
2369 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2370 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2371 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2372 
2373 		cpu_attach_domain(sd, d.rd, i);
2374 	}
2375 	rcu_read_unlock();
2376 
2377 	if (has_asym)
2378 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2379 
2380 	if (rq && sched_debug_verbose) {
2381 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2382 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2383 	}
2384 
2385 	ret = 0;
2386 error:
2387 	__free_domain_allocs(&d, alloc_state, cpu_map);
2388 
2389 	return ret;
2390 }
2391 
2392 /* Current sched domains: */
2393 static cpumask_var_t			*doms_cur;
2394 
2395 /* Number of sched domains in 'doms_cur': */
2396 static int				ndoms_cur;
2397 
2398 /* Attributes of custom domains in 'doms_cur' */
2399 static struct sched_domain_attr		*dattr_cur;
2400 
2401 /*
2402  * Special case: If a kmalloc() of a doms_cur partition (array of
2403  * cpumask) fails, then fallback to a single sched domain,
2404  * as determined by the single cpumask fallback_doms.
2405  */
2406 static cpumask_var_t			fallback_doms;
2407 
2408 /*
2409  * arch_update_cpu_topology lets virtualized architectures update the
2410  * CPU core maps. It is supposed to return 1 if the topology changed
2411  * or 0 if it stayed the same.
2412  */
2413 int __weak arch_update_cpu_topology(void)
2414 {
2415 	return 0;
2416 }
2417 
2418 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2419 {
2420 	int i;
2421 	cpumask_var_t *doms;
2422 
2423 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2424 	if (!doms)
2425 		return NULL;
2426 	for (i = 0; i < ndoms; i++) {
2427 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2428 			free_sched_domains(doms, i);
2429 			return NULL;
2430 		}
2431 	}
2432 	return doms;
2433 }
2434 
2435 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2436 {
2437 	unsigned int i;
2438 	for (i = 0; i < ndoms; i++)
2439 		free_cpumask_var(doms[i]);
2440 	kfree(doms);
2441 }
2442 
2443 /*
2444  * Set up scheduler domains and groups.  For now this just excludes isolated
2445  * CPUs, but could be used to exclude other special cases in the future.
2446  */
2447 int sched_init_domains(const struct cpumask *cpu_map)
2448 {
2449 	int err;
2450 
2451 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2452 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2453 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2454 
2455 	arch_update_cpu_topology();
2456 	asym_cpu_capacity_scan();
2457 	ndoms_cur = 1;
2458 	doms_cur = alloc_sched_domains(ndoms_cur);
2459 	if (!doms_cur)
2460 		doms_cur = &fallback_doms;
2461 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2462 	err = build_sched_domains(doms_cur[0], NULL);
2463 
2464 	return err;
2465 }
2466 
2467 /*
2468  * Detach sched domains from a group of CPUs specified in cpu_map
2469  * These CPUs will now be attached to the NULL domain
2470  */
2471 static void detach_destroy_domains(const struct cpumask *cpu_map)
2472 {
2473 	unsigned int cpu = cpumask_any(cpu_map);
2474 	int i;
2475 
2476 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2477 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2478 
2479 	rcu_read_lock();
2480 	for_each_cpu(i, cpu_map)
2481 		cpu_attach_domain(NULL, &def_root_domain, i);
2482 	rcu_read_unlock();
2483 }
2484 
2485 /* handle null as "default" */
2486 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2487 			struct sched_domain_attr *new, int idx_new)
2488 {
2489 	struct sched_domain_attr tmp;
2490 
2491 	/* Fast path: */
2492 	if (!new && !cur)
2493 		return 1;
2494 
2495 	tmp = SD_ATTR_INIT;
2496 
2497 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2498 			new ? (new + idx_new) : &tmp,
2499 			sizeof(struct sched_domain_attr));
2500 }
2501 
2502 /*
2503  * Partition sched domains as specified by the 'ndoms_new'
2504  * cpumasks in the array doms_new[] of cpumasks. This compares
2505  * doms_new[] to the current sched domain partitioning, doms_cur[].
2506  * It destroys each deleted domain and builds each new domain.
2507  *
2508  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2509  * The masks don't intersect (don't overlap.) We should setup one
2510  * sched domain for each mask. CPUs not in any of the cpumasks will
2511  * not be load balanced. If the same cpumask appears both in the
2512  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2513  * it as it is.
2514  *
2515  * The passed in 'doms_new' should be allocated using
2516  * alloc_sched_domains.  This routine takes ownership of it and will
2517  * free_sched_domains it when done with it. If the caller failed the
2518  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2519  * and partition_sched_domains() will fallback to the single partition
2520  * 'fallback_doms', it also forces the domains to be rebuilt.
2521  *
2522  * If doms_new == NULL it will be replaced with cpu_online_mask.
2523  * ndoms_new == 0 is a special case for destroying existing domains,
2524  * and it will not create the default domain.
2525  *
2526  * Call with hotplug lock and sched_domains_mutex held
2527  */
2528 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2529 				    struct sched_domain_attr *dattr_new)
2530 {
2531 	bool __maybe_unused has_eas = false;
2532 	int i, j, n;
2533 	int new_topology;
2534 
2535 	lockdep_assert_held(&sched_domains_mutex);
2536 
2537 	/* Let the architecture update CPU core mappings: */
2538 	new_topology = arch_update_cpu_topology();
2539 	/* Trigger rebuilding CPU capacity asymmetry data */
2540 	if (new_topology)
2541 		asym_cpu_capacity_scan();
2542 
2543 	if (!doms_new) {
2544 		WARN_ON_ONCE(dattr_new);
2545 		n = 0;
2546 		doms_new = alloc_sched_domains(1);
2547 		if (doms_new) {
2548 			n = 1;
2549 			cpumask_and(doms_new[0], cpu_active_mask,
2550 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2551 		}
2552 	} else {
2553 		n = ndoms_new;
2554 	}
2555 
2556 	/* Destroy deleted domains: */
2557 	for (i = 0; i < ndoms_cur; i++) {
2558 		for (j = 0; j < n && !new_topology; j++) {
2559 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2560 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2561 				struct root_domain *rd;
2562 
2563 				/*
2564 				 * This domain won't be destroyed and as such
2565 				 * its dl_bw->total_bw needs to be cleared.  It
2566 				 * will be recomputed in function
2567 				 * update_tasks_root_domain().
2568 				 */
2569 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2570 				dl_clear_root_domain(rd);
2571 				goto match1;
2572 			}
2573 		}
2574 		/* No match - a current sched domain not in new doms_new[] */
2575 		detach_destroy_domains(doms_cur[i]);
2576 match1:
2577 		;
2578 	}
2579 
2580 	n = ndoms_cur;
2581 	if (!doms_new) {
2582 		n = 0;
2583 		doms_new = &fallback_doms;
2584 		cpumask_and(doms_new[0], cpu_active_mask,
2585 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2586 	}
2587 
2588 	/* Build new domains: */
2589 	for (i = 0; i < ndoms_new; i++) {
2590 		for (j = 0; j < n && !new_topology; j++) {
2591 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2592 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2593 				goto match2;
2594 		}
2595 		/* No match - add a new doms_new */
2596 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2597 match2:
2598 		;
2599 	}
2600 
2601 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2602 	/* Build perf. domains: */
2603 	for (i = 0; i < ndoms_new; i++) {
2604 		for (j = 0; j < n && !sched_energy_update; j++) {
2605 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2606 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2607 				has_eas = true;
2608 				goto match3;
2609 			}
2610 		}
2611 		/* No match - add perf. domains for a new rd */
2612 		has_eas |= build_perf_domains(doms_new[i]);
2613 match3:
2614 		;
2615 	}
2616 	sched_energy_set(has_eas);
2617 #endif
2618 
2619 	/* Remember the new sched domains: */
2620 	if (doms_cur != &fallback_doms)
2621 		free_sched_domains(doms_cur, ndoms_cur);
2622 
2623 	kfree(dattr_cur);
2624 	doms_cur = doms_new;
2625 	dattr_cur = dattr_new;
2626 	ndoms_cur = ndoms_new;
2627 
2628 	update_sched_domain_debugfs();
2629 }
2630 
2631 /*
2632  * Call with hotplug lock held
2633  */
2634 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2635 			     struct sched_domain_attr *dattr_new)
2636 {
2637 	mutex_lock(&sched_domains_mutex);
2638 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2639 	mutex_unlock(&sched_domains_mutex);
2640 }
2641