xref: /openbmc/linux/kernel/sched/topology.c (revision fb8d6c8d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_enabled = true;
18 
19 	return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_enabled;
26 }
27 
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 				  struct cpumask *groupmask)
30 {
31 	struct sched_group *group = sd->groups;
32 
33 	cpumask_clear(groupmask);
34 
35 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36 
37 	if (!(sd->flags & SD_LOAD_BALANCE)) {
38 		printk("does not load-balance\n");
39 		if (sd->parent)
40 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41 		return -1;
42 	}
43 
44 	printk(KERN_CONT "span=%*pbl level=%s\n",
45 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46 
47 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 	}
50 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 	}
53 
54 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 	do {
56 		if (!group) {
57 			printk("\n");
58 			printk(KERN_ERR "ERROR: group is NULL\n");
59 			break;
60 		}
61 
62 		if (!cpumask_weight(sched_group_span(group))) {
63 			printk(KERN_CONT "\n");
64 			printk(KERN_ERR "ERROR: empty group\n");
65 			break;
66 		}
67 
68 		if (!(sd->flags & SD_OVERLAP) &&
69 		    cpumask_intersects(groupmask, sched_group_span(group))) {
70 			printk(KERN_CONT "\n");
71 			printk(KERN_ERR "ERROR: repeated CPUs\n");
72 			break;
73 		}
74 
75 		cpumask_or(groupmask, groupmask, sched_group_span(group));
76 
77 		printk(KERN_CONT " %d:{ span=%*pbl",
78 				group->sgc->id,
79 				cpumask_pr_args(sched_group_span(group)));
80 
81 		if ((sd->flags & SD_OVERLAP) &&
82 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83 			printk(KERN_CONT " mask=%*pbl",
84 				cpumask_pr_args(group_balance_mask(group)));
85 		}
86 
87 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89 
90 		if (group == sd->groups && sd->child &&
91 		    !cpumask_equal(sched_domain_span(sd->child),
92 				   sched_group_span(group))) {
93 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94 		}
95 
96 		printk(KERN_CONT " }");
97 
98 		group = group->next;
99 
100 		if (group != sd->groups)
101 			printk(KERN_CONT ",");
102 
103 	} while (group != sd->groups);
104 	printk(KERN_CONT "\n");
105 
106 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108 
109 	if (sd->parent &&
110 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112 	return 0;
113 }
114 
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
116 {
117 	int level = 0;
118 
119 	if (!sched_debug_enabled)
120 		return;
121 
122 	if (!sd) {
123 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 		return;
125 	}
126 
127 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128 
129 	for (;;) {
130 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 			break;
132 		level++;
133 		sd = sd->parent;
134 		if (!sd)
135 			break;
136 	}
137 }
138 #else /* !CONFIG_SCHED_DEBUG */
139 
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
143 {
144 	return false;
145 }
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 static int sd_degenerate(struct sched_domain *sd)
149 {
150 	if (cpumask_weight(sched_domain_span(sd)) == 1)
151 		return 1;
152 
153 	/* Following flags need at least 2 groups */
154 	if (sd->flags & (SD_LOAD_BALANCE |
155 			 SD_BALANCE_NEWIDLE |
156 			 SD_BALANCE_FORK |
157 			 SD_BALANCE_EXEC |
158 			 SD_SHARE_CPUCAPACITY |
159 			 SD_ASYM_CPUCAPACITY |
160 			 SD_SHARE_PKG_RESOURCES |
161 			 SD_SHARE_POWERDOMAIN)) {
162 		if (sd->groups != sd->groups->next)
163 			return 0;
164 	}
165 
166 	/* Following flags don't use groups */
167 	if (sd->flags & (SD_WAKE_AFFINE))
168 		return 0;
169 
170 	return 1;
171 }
172 
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175 {
176 	unsigned long cflags = sd->flags, pflags = parent->flags;
177 
178 	if (sd_degenerate(parent))
179 		return 1;
180 
181 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 		return 0;
183 
184 	/* Flags needing groups don't count if only 1 group in parent */
185 	if (parent->groups == parent->groups->next) {
186 		pflags &= ~(SD_LOAD_BALANCE |
187 				SD_BALANCE_NEWIDLE |
188 				SD_BALANCE_FORK |
189 				SD_BALANCE_EXEC |
190 				SD_ASYM_CPUCAPACITY |
191 				SD_SHARE_CPUCAPACITY |
192 				SD_SHARE_PKG_RESOURCES |
193 				SD_PREFER_SIBLING |
194 				SD_SHARE_POWERDOMAIN);
195 		if (nr_node_ids == 1)
196 			pflags &= ~SD_SERIALIZE;
197 	}
198 	if (~cflags & pflags)
199 		return 0;
200 
201 	return 1;
202 }
203 
204 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
205 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
206 unsigned int sysctl_sched_energy_aware = 1;
207 DEFINE_MUTEX(sched_energy_mutex);
208 bool sched_energy_update;
209 
210 #ifdef CONFIG_PROC_SYSCTL
211 int sched_energy_aware_handler(struct ctl_table *table, int write,
212 			 void __user *buffer, size_t *lenp, loff_t *ppos)
213 {
214 	int ret, state;
215 
216 	if (write && !capable(CAP_SYS_ADMIN))
217 		return -EPERM;
218 
219 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
220 	if (!ret && write) {
221 		state = static_branch_unlikely(&sched_energy_present);
222 		if (state != sysctl_sched_energy_aware) {
223 			mutex_lock(&sched_energy_mutex);
224 			sched_energy_update = 1;
225 			rebuild_sched_domains();
226 			sched_energy_update = 0;
227 			mutex_unlock(&sched_energy_mutex);
228 		}
229 	}
230 
231 	return ret;
232 }
233 #endif
234 
235 static void free_pd(struct perf_domain *pd)
236 {
237 	struct perf_domain *tmp;
238 
239 	while (pd) {
240 		tmp = pd->next;
241 		kfree(pd);
242 		pd = tmp;
243 	}
244 }
245 
246 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
247 {
248 	while (pd) {
249 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
250 			return pd;
251 		pd = pd->next;
252 	}
253 
254 	return NULL;
255 }
256 
257 static struct perf_domain *pd_init(int cpu)
258 {
259 	struct em_perf_domain *obj = em_cpu_get(cpu);
260 	struct perf_domain *pd;
261 
262 	if (!obj) {
263 		if (sched_debug())
264 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
265 		return NULL;
266 	}
267 
268 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
269 	if (!pd)
270 		return NULL;
271 	pd->em_pd = obj;
272 
273 	return pd;
274 }
275 
276 static void perf_domain_debug(const struct cpumask *cpu_map,
277 						struct perf_domain *pd)
278 {
279 	if (!sched_debug() || !pd)
280 		return;
281 
282 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
283 
284 	while (pd) {
285 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
286 				cpumask_first(perf_domain_span(pd)),
287 				cpumask_pr_args(perf_domain_span(pd)),
288 				em_pd_nr_cap_states(pd->em_pd));
289 		pd = pd->next;
290 	}
291 
292 	printk(KERN_CONT "\n");
293 }
294 
295 static void destroy_perf_domain_rcu(struct rcu_head *rp)
296 {
297 	struct perf_domain *pd;
298 
299 	pd = container_of(rp, struct perf_domain, rcu);
300 	free_pd(pd);
301 }
302 
303 static void sched_energy_set(bool has_eas)
304 {
305 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
306 		if (sched_debug())
307 			pr_info("%s: stopping EAS\n", __func__);
308 		static_branch_disable_cpuslocked(&sched_energy_present);
309 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
310 		if (sched_debug())
311 			pr_info("%s: starting EAS\n", __func__);
312 		static_branch_enable_cpuslocked(&sched_energy_present);
313 	}
314 }
315 
316 /*
317  * EAS can be used on a root domain if it meets all the following conditions:
318  *    1. an Energy Model (EM) is available;
319  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
320  *    3. the EM complexity is low enough to keep scheduling overheads low;
321  *    4. schedutil is driving the frequency of all CPUs of the rd;
322  *
323  * The complexity of the Energy Model is defined as:
324  *
325  *              C = nr_pd * (nr_cpus + nr_cs)
326  *
327  * with parameters defined as:
328  *  - nr_pd:    the number of performance domains
329  *  - nr_cpus:  the number of CPUs
330  *  - nr_cs:    the sum of the number of capacity states of all performance
331  *              domains (for example, on a system with 2 performance domains,
332  *              with 10 capacity states each, nr_cs = 2 * 10 = 20).
333  *
334  * It is generally not a good idea to use such a model in the wake-up path on
335  * very complex platforms because of the associated scheduling overheads. The
336  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
337  * with per-CPU DVFS and less than 8 capacity states each, for example.
338  */
339 #define EM_MAX_COMPLEXITY 2048
340 
341 extern struct cpufreq_governor schedutil_gov;
342 static bool build_perf_domains(const struct cpumask *cpu_map)
343 {
344 	int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
345 	struct perf_domain *pd = NULL, *tmp;
346 	int cpu = cpumask_first(cpu_map);
347 	struct root_domain *rd = cpu_rq(cpu)->rd;
348 	struct cpufreq_policy *policy;
349 	struct cpufreq_governor *gov;
350 
351 	if (!sysctl_sched_energy_aware)
352 		goto free;
353 
354 	/* EAS is enabled for asymmetric CPU capacity topologies. */
355 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
356 		if (sched_debug()) {
357 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
358 					cpumask_pr_args(cpu_map));
359 		}
360 		goto free;
361 	}
362 
363 	for_each_cpu(i, cpu_map) {
364 		/* Skip already covered CPUs. */
365 		if (find_pd(pd, i))
366 			continue;
367 
368 		/* Do not attempt EAS if schedutil is not being used. */
369 		policy = cpufreq_cpu_get(i);
370 		if (!policy)
371 			goto free;
372 		gov = policy->governor;
373 		cpufreq_cpu_put(policy);
374 		if (gov != &schedutil_gov) {
375 			if (rd->pd)
376 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
377 						cpumask_pr_args(cpu_map));
378 			goto free;
379 		}
380 
381 		/* Create the new pd and add it to the local list. */
382 		tmp = pd_init(i);
383 		if (!tmp)
384 			goto free;
385 		tmp->next = pd;
386 		pd = tmp;
387 
388 		/*
389 		 * Count performance domains and capacity states for the
390 		 * complexity check.
391 		 */
392 		nr_pd++;
393 		nr_cs += em_pd_nr_cap_states(pd->em_pd);
394 	}
395 
396 	/* Bail out if the Energy Model complexity is too high. */
397 	if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
398 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
399 						cpumask_pr_args(cpu_map));
400 		goto free;
401 	}
402 
403 	perf_domain_debug(cpu_map, pd);
404 
405 	/* Attach the new list of performance domains to the root domain. */
406 	tmp = rd->pd;
407 	rcu_assign_pointer(rd->pd, pd);
408 	if (tmp)
409 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
410 
411 	return !!pd;
412 
413 free:
414 	free_pd(pd);
415 	tmp = rd->pd;
416 	rcu_assign_pointer(rd->pd, NULL);
417 	if (tmp)
418 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
419 
420 	return false;
421 }
422 #else
423 static void free_pd(struct perf_domain *pd) { }
424 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
425 
426 static void free_rootdomain(struct rcu_head *rcu)
427 {
428 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
429 
430 	cpupri_cleanup(&rd->cpupri);
431 	cpudl_cleanup(&rd->cpudl);
432 	free_cpumask_var(rd->dlo_mask);
433 	free_cpumask_var(rd->rto_mask);
434 	free_cpumask_var(rd->online);
435 	free_cpumask_var(rd->span);
436 	free_pd(rd->pd);
437 	kfree(rd);
438 }
439 
440 void rq_attach_root(struct rq *rq, struct root_domain *rd)
441 {
442 	struct root_domain *old_rd = NULL;
443 	unsigned long flags;
444 
445 	raw_spin_lock_irqsave(&rq->lock, flags);
446 
447 	if (rq->rd) {
448 		old_rd = rq->rd;
449 
450 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
451 			set_rq_offline(rq);
452 
453 		cpumask_clear_cpu(rq->cpu, old_rd->span);
454 
455 		/*
456 		 * If we dont want to free the old_rd yet then
457 		 * set old_rd to NULL to skip the freeing later
458 		 * in this function:
459 		 */
460 		if (!atomic_dec_and_test(&old_rd->refcount))
461 			old_rd = NULL;
462 	}
463 
464 	atomic_inc(&rd->refcount);
465 	rq->rd = rd;
466 
467 	cpumask_set_cpu(rq->cpu, rd->span);
468 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
469 		set_rq_online(rq);
470 
471 	raw_spin_unlock_irqrestore(&rq->lock, flags);
472 
473 	if (old_rd)
474 		call_rcu(&old_rd->rcu, free_rootdomain);
475 }
476 
477 void sched_get_rd(struct root_domain *rd)
478 {
479 	atomic_inc(&rd->refcount);
480 }
481 
482 void sched_put_rd(struct root_domain *rd)
483 {
484 	if (!atomic_dec_and_test(&rd->refcount))
485 		return;
486 
487 	call_rcu(&rd->rcu, free_rootdomain);
488 }
489 
490 static int init_rootdomain(struct root_domain *rd)
491 {
492 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
493 		goto out;
494 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
495 		goto free_span;
496 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
497 		goto free_online;
498 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
499 		goto free_dlo_mask;
500 
501 #ifdef HAVE_RT_PUSH_IPI
502 	rd->rto_cpu = -1;
503 	raw_spin_lock_init(&rd->rto_lock);
504 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
505 #endif
506 
507 	init_dl_bw(&rd->dl_bw);
508 	if (cpudl_init(&rd->cpudl) != 0)
509 		goto free_rto_mask;
510 
511 	if (cpupri_init(&rd->cpupri) != 0)
512 		goto free_cpudl;
513 	return 0;
514 
515 free_cpudl:
516 	cpudl_cleanup(&rd->cpudl);
517 free_rto_mask:
518 	free_cpumask_var(rd->rto_mask);
519 free_dlo_mask:
520 	free_cpumask_var(rd->dlo_mask);
521 free_online:
522 	free_cpumask_var(rd->online);
523 free_span:
524 	free_cpumask_var(rd->span);
525 out:
526 	return -ENOMEM;
527 }
528 
529 /*
530  * By default the system creates a single root-domain with all CPUs as
531  * members (mimicking the global state we have today).
532  */
533 struct root_domain def_root_domain;
534 
535 void init_defrootdomain(void)
536 {
537 	init_rootdomain(&def_root_domain);
538 
539 	atomic_set(&def_root_domain.refcount, 1);
540 }
541 
542 static struct root_domain *alloc_rootdomain(void)
543 {
544 	struct root_domain *rd;
545 
546 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
547 	if (!rd)
548 		return NULL;
549 
550 	if (init_rootdomain(rd) != 0) {
551 		kfree(rd);
552 		return NULL;
553 	}
554 
555 	return rd;
556 }
557 
558 static void free_sched_groups(struct sched_group *sg, int free_sgc)
559 {
560 	struct sched_group *tmp, *first;
561 
562 	if (!sg)
563 		return;
564 
565 	first = sg;
566 	do {
567 		tmp = sg->next;
568 
569 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
570 			kfree(sg->sgc);
571 
572 		if (atomic_dec_and_test(&sg->ref))
573 			kfree(sg);
574 		sg = tmp;
575 	} while (sg != first);
576 }
577 
578 static void destroy_sched_domain(struct sched_domain *sd)
579 {
580 	/*
581 	 * A normal sched domain may have multiple group references, an
582 	 * overlapping domain, having private groups, only one.  Iterate,
583 	 * dropping group/capacity references, freeing where none remain.
584 	 */
585 	free_sched_groups(sd->groups, 1);
586 
587 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
588 		kfree(sd->shared);
589 	kfree(sd);
590 }
591 
592 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
593 {
594 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
595 
596 	while (sd) {
597 		struct sched_domain *parent = sd->parent;
598 		destroy_sched_domain(sd);
599 		sd = parent;
600 	}
601 }
602 
603 static void destroy_sched_domains(struct sched_domain *sd)
604 {
605 	if (sd)
606 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
607 }
608 
609 /*
610  * Keep a special pointer to the highest sched_domain that has
611  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
612  * allows us to avoid some pointer chasing select_idle_sibling().
613  *
614  * Also keep a unique ID per domain (we use the first CPU number in
615  * the cpumask of the domain), this allows us to quickly tell if
616  * two CPUs are in the same cache domain, see cpus_share_cache().
617  */
618 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
619 DEFINE_PER_CPU(int, sd_llc_size);
620 DEFINE_PER_CPU(int, sd_llc_id);
621 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
622 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
623 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
624 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
625 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
626 
627 static void update_top_cache_domain(int cpu)
628 {
629 	struct sched_domain_shared *sds = NULL;
630 	struct sched_domain *sd;
631 	int id = cpu;
632 	int size = 1;
633 
634 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
635 	if (sd) {
636 		id = cpumask_first(sched_domain_span(sd));
637 		size = cpumask_weight(sched_domain_span(sd));
638 		sds = sd->shared;
639 	}
640 
641 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
642 	per_cpu(sd_llc_size, cpu) = size;
643 	per_cpu(sd_llc_id, cpu) = id;
644 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
645 
646 	sd = lowest_flag_domain(cpu, SD_NUMA);
647 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
648 
649 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
650 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
651 
652 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
653 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
654 }
655 
656 /*
657  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
658  * hold the hotplug lock.
659  */
660 static void
661 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
662 {
663 	struct rq *rq = cpu_rq(cpu);
664 	struct sched_domain *tmp;
665 
666 	/* Remove the sched domains which do not contribute to scheduling. */
667 	for (tmp = sd; tmp; ) {
668 		struct sched_domain *parent = tmp->parent;
669 		if (!parent)
670 			break;
671 
672 		if (sd_parent_degenerate(tmp, parent)) {
673 			tmp->parent = parent->parent;
674 			if (parent->parent)
675 				parent->parent->child = tmp;
676 			/*
677 			 * Transfer SD_PREFER_SIBLING down in case of a
678 			 * degenerate parent; the spans match for this
679 			 * so the property transfers.
680 			 */
681 			if (parent->flags & SD_PREFER_SIBLING)
682 				tmp->flags |= SD_PREFER_SIBLING;
683 			destroy_sched_domain(parent);
684 		} else
685 			tmp = tmp->parent;
686 	}
687 
688 	if (sd && sd_degenerate(sd)) {
689 		tmp = sd;
690 		sd = sd->parent;
691 		destroy_sched_domain(tmp);
692 		if (sd)
693 			sd->child = NULL;
694 	}
695 
696 	sched_domain_debug(sd, cpu);
697 
698 	rq_attach_root(rq, rd);
699 	tmp = rq->sd;
700 	rcu_assign_pointer(rq->sd, sd);
701 	dirty_sched_domain_sysctl(cpu);
702 	destroy_sched_domains(tmp);
703 
704 	update_top_cache_domain(cpu);
705 }
706 
707 struct s_data {
708 	struct sched_domain * __percpu *sd;
709 	struct root_domain	*rd;
710 };
711 
712 enum s_alloc {
713 	sa_rootdomain,
714 	sa_sd,
715 	sa_sd_storage,
716 	sa_none,
717 };
718 
719 /*
720  * Return the canonical balance CPU for this group, this is the first CPU
721  * of this group that's also in the balance mask.
722  *
723  * The balance mask are all those CPUs that could actually end up at this
724  * group. See build_balance_mask().
725  *
726  * Also see should_we_balance().
727  */
728 int group_balance_cpu(struct sched_group *sg)
729 {
730 	return cpumask_first(group_balance_mask(sg));
731 }
732 
733 
734 /*
735  * NUMA topology (first read the regular topology blurb below)
736  *
737  * Given a node-distance table, for example:
738  *
739  *   node   0   1   2   3
740  *     0:  10  20  30  20
741  *     1:  20  10  20  30
742  *     2:  30  20  10  20
743  *     3:  20  30  20  10
744  *
745  * which represents a 4 node ring topology like:
746  *
747  *   0 ----- 1
748  *   |       |
749  *   |       |
750  *   |       |
751  *   3 ----- 2
752  *
753  * We want to construct domains and groups to represent this. The way we go
754  * about doing this is to build the domains on 'hops'. For each NUMA level we
755  * construct the mask of all nodes reachable in @level hops.
756  *
757  * For the above NUMA topology that gives 3 levels:
758  *
759  * NUMA-2	0-3		0-3		0-3		0-3
760  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
761  *
762  * NUMA-1	0-1,3		0-2		1-3		0,2-3
763  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
764  *
765  * NUMA-0	0		1		2		3
766  *
767  *
768  * As can be seen; things don't nicely line up as with the regular topology.
769  * When we iterate a domain in child domain chunks some nodes can be
770  * represented multiple times -- hence the "overlap" naming for this part of
771  * the topology.
772  *
773  * In order to minimize this overlap, we only build enough groups to cover the
774  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
775  *
776  * Because:
777  *
778  *  - the first group of each domain is its child domain; this
779  *    gets us the first 0-1,3
780  *  - the only uncovered node is 2, who's child domain is 1-3.
781  *
782  * However, because of the overlap, computing a unique CPU for each group is
783  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
784  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
785  * end up at those groups (they would end up in group: 0-1,3).
786  *
787  * To correct this we have to introduce the group balance mask. This mask
788  * will contain those CPUs in the group that can reach this group given the
789  * (child) domain tree.
790  *
791  * With this we can once again compute balance_cpu and sched_group_capacity
792  * relations.
793  *
794  * XXX include words on how balance_cpu is unique and therefore can be
795  * used for sched_group_capacity links.
796  *
797  *
798  * Another 'interesting' topology is:
799  *
800  *   node   0   1   2   3
801  *     0:  10  20  20  30
802  *     1:  20  10  20  20
803  *     2:  20  20  10  20
804  *     3:  30  20  20  10
805  *
806  * Which looks a little like:
807  *
808  *   0 ----- 1
809  *   |     / |
810  *   |   /   |
811  *   | /     |
812  *   2 ----- 3
813  *
814  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
815  * are not.
816  *
817  * This leads to a few particularly weird cases where the sched_domain's are
818  * not of the same number for each CPU. Consider:
819  *
820  * NUMA-2	0-3						0-3
821  *  groups:	{0-2},{1-3}					{1-3},{0-2}
822  *
823  * NUMA-1	0-2		0-3		0-3		1-3
824  *
825  * NUMA-0	0		1		2		3
826  *
827  */
828 
829 
830 /*
831  * Build the balance mask; it contains only those CPUs that can arrive at this
832  * group and should be considered to continue balancing.
833  *
834  * We do this during the group creation pass, therefore the group information
835  * isn't complete yet, however since each group represents a (child) domain we
836  * can fully construct this using the sched_domain bits (which are already
837  * complete).
838  */
839 static void
840 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
841 {
842 	const struct cpumask *sg_span = sched_group_span(sg);
843 	struct sd_data *sdd = sd->private;
844 	struct sched_domain *sibling;
845 	int i;
846 
847 	cpumask_clear(mask);
848 
849 	for_each_cpu(i, sg_span) {
850 		sibling = *per_cpu_ptr(sdd->sd, i);
851 
852 		/*
853 		 * Can happen in the asymmetric case, where these siblings are
854 		 * unused. The mask will not be empty because those CPUs that
855 		 * do have the top domain _should_ span the domain.
856 		 */
857 		if (!sibling->child)
858 			continue;
859 
860 		/* If we would not end up here, we can't continue from here */
861 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
862 			continue;
863 
864 		cpumask_set_cpu(i, mask);
865 	}
866 
867 	/* We must not have empty masks here */
868 	WARN_ON_ONCE(cpumask_empty(mask));
869 }
870 
871 /*
872  * XXX: This creates per-node group entries; since the load-balancer will
873  * immediately access remote memory to construct this group's load-balance
874  * statistics having the groups node local is of dubious benefit.
875  */
876 static struct sched_group *
877 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
878 {
879 	struct sched_group *sg;
880 	struct cpumask *sg_span;
881 
882 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
883 			GFP_KERNEL, cpu_to_node(cpu));
884 
885 	if (!sg)
886 		return NULL;
887 
888 	sg_span = sched_group_span(sg);
889 	if (sd->child)
890 		cpumask_copy(sg_span, sched_domain_span(sd->child));
891 	else
892 		cpumask_copy(sg_span, sched_domain_span(sd));
893 
894 	atomic_inc(&sg->ref);
895 	return sg;
896 }
897 
898 static void init_overlap_sched_group(struct sched_domain *sd,
899 				     struct sched_group *sg)
900 {
901 	struct cpumask *mask = sched_domains_tmpmask2;
902 	struct sd_data *sdd = sd->private;
903 	struct cpumask *sg_span;
904 	int cpu;
905 
906 	build_balance_mask(sd, sg, mask);
907 	cpu = cpumask_first_and(sched_group_span(sg), mask);
908 
909 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
910 	if (atomic_inc_return(&sg->sgc->ref) == 1)
911 		cpumask_copy(group_balance_mask(sg), mask);
912 	else
913 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
914 
915 	/*
916 	 * Initialize sgc->capacity such that even if we mess up the
917 	 * domains and no possible iteration will get us here, we won't
918 	 * die on a /0 trap.
919 	 */
920 	sg_span = sched_group_span(sg);
921 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
922 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
923 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
924 }
925 
926 static int
927 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
928 {
929 	struct sched_group *first = NULL, *last = NULL, *sg;
930 	const struct cpumask *span = sched_domain_span(sd);
931 	struct cpumask *covered = sched_domains_tmpmask;
932 	struct sd_data *sdd = sd->private;
933 	struct sched_domain *sibling;
934 	int i;
935 
936 	cpumask_clear(covered);
937 
938 	for_each_cpu_wrap(i, span, cpu) {
939 		struct cpumask *sg_span;
940 
941 		if (cpumask_test_cpu(i, covered))
942 			continue;
943 
944 		sibling = *per_cpu_ptr(sdd->sd, i);
945 
946 		/*
947 		 * Asymmetric node setups can result in situations where the
948 		 * domain tree is of unequal depth, make sure to skip domains
949 		 * that already cover the entire range.
950 		 *
951 		 * In that case build_sched_domains() will have terminated the
952 		 * iteration early and our sibling sd spans will be empty.
953 		 * Domains should always include the CPU they're built on, so
954 		 * check that.
955 		 */
956 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
957 			continue;
958 
959 		sg = build_group_from_child_sched_domain(sibling, cpu);
960 		if (!sg)
961 			goto fail;
962 
963 		sg_span = sched_group_span(sg);
964 		cpumask_or(covered, covered, sg_span);
965 
966 		init_overlap_sched_group(sd, sg);
967 
968 		if (!first)
969 			first = sg;
970 		if (last)
971 			last->next = sg;
972 		last = sg;
973 		last->next = first;
974 	}
975 	sd->groups = first;
976 
977 	return 0;
978 
979 fail:
980 	free_sched_groups(first, 0);
981 
982 	return -ENOMEM;
983 }
984 
985 
986 /*
987  * Package topology (also see the load-balance blurb in fair.c)
988  *
989  * The scheduler builds a tree structure to represent a number of important
990  * topology features. By default (default_topology[]) these include:
991  *
992  *  - Simultaneous multithreading (SMT)
993  *  - Multi-Core Cache (MC)
994  *  - Package (DIE)
995  *
996  * Where the last one more or less denotes everything up to a NUMA node.
997  *
998  * The tree consists of 3 primary data structures:
999  *
1000  *	sched_domain -> sched_group -> sched_group_capacity
1001  *	    ^ ^             ^ ^
1002  *          `-'             `-'
1003  *
1004  * The sched_domains are per-CPU and have a two way link (parent & child) and
1005  * denote the ever growing mask of CPUs belonging to that level of topology.
1006  *
1007  * Each sched_domain has a circular (double) linked list of sched_group's, each
1008  * denoting the domains of the level below (or individual CPUs in case of the
1009  * first domain level). The sched_group linked by a sched_domain includes the
1010  * CPU of that sched_domain [*].
1011  *
1012  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1013  *
1014  * CPU   0   1   2   3   4   5   6   7
1015  *
1016  * DIE  [                             ]
1017  * MC   [             ] [             ]
1018  * SMT  [     ] [     ] [     ] [     ]
1019  *
1020  *  - or -
1021  *
1022  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1023  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1024  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1025  *
1026  * CPU   0   1   2   3   4   5   6   7
1027  *
1028  * One way to think about it is: sched_domain moves you up and down among these
1029  * topology levels, while sched_group moves you sideways through it, at child
1030  * domain granularity.
1031  *
1032  * sched_group_capacity ensures each unique sched_group has shared storage.
1033  *
1034  * There are two related construction problems, both require a CPU that
1035  * uniquely identify each group (for a given domain):
1036  *
1037  *  - The first is the balance_cpu (see should_we_balance() and the
1038  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1039  *    continue balancing at a higher domain.
1040  *
1041  *  - The second is the sched_group_capacity; we want all identical groups
1042  *    to share a single sched_group_capacity.
1043  *
1044  * Since these topologies are exclusive by construction. That is, its
1045  * impossible for an SMT thread to belong to multiple cores, and cores to
1046  * be part of multiple caches. There is a very clear and unique location
1047  * for each CPU in the hierarchy.
1048  *
1049  * Therefore computing a unique CPU for each group is trivial (the iteration
1050  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1051  * group), we can simply pick the first CPU in each group.
1052  *
1053  *
1054  * [*] in other words, the first group of each domain is its child domain.
1055  */
1056 
1057 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1058 {
1059 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1060 	struct sched_domain *child = sd->child;
1061 	struct sched_group *sg;
1062 	bool already_visited;
1063 
1064 	if (child)
1065 		cpu = cpumask_first(sched_domain_span(child));
1066 
1067 	sg = *per_cpu_ptr(sdd->sg, cpu);
1068 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1069 
1070 	/* Increase refcounts for claim_allocations: */
1071 	already_visited = atomic_inc_return(&sg->ref) > 1;
1072 	/* sgc visits should follow a similar trend as sg */
1073 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1074 
1075 	/* If we have already visited that group, it's already initialized. */
1076 	if (already_visited)
1077 		return sg;
1078 
1079 	if (child) {
1080 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1081 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1082 	} else {
1083 		cpumask_set_cpu(cpu, sched_group_span(sg));
1084 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1085 	}
1086 
1087 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1088 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1089 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1090 
1091 	return sg;
1092 }
1093 
1094 /*
1095  * build_sched_groups will build a circular linked list of the groups
1096  * covered by the given span, will set each group's ->cpumask correctly,
1097  * and will initialize their ->sgc.
1098  *
1099  * Assumes the sched_domain tree is fully constructed
1100  */
1101 static int
1102 build_sched_groups(struct sched_domain *sd, int cpu)
1103 {
1104 	struct sched_group *first = NULL, *last = NULL;
1105 	struct sd_data *sdd = sd->private;
1106 	const struct cpumask *span = sched_domain_span(sd);
1107 	struct cpumask *covered;
1108 	int i;
1109 
1110 	lockdep_assert_held(&sched_domains_mutex);
1111 	covered = sched_domains_tmpmask;
1112 
1113 	cpumask_clear(covered);
1114 
1115 	for_each_cpu_wrap(i, span, cpu) {
1116 		struct sched_group *sg;
1117 
1118 		if (cpumask_test_cpu(i, covered))
1119 			continue;
1120 
1121 		sg = get_group(i, sdd);
1122 
1123 		cpumask_or(covered, covered, sched_group_span(sg));
1124 
1125 		if (!first)
1126 			first = sg;
1127 		if (last)
1128 			last->next = sg;
1129 		last = sg;
1130 	}
1131 	last->next = first;
1132 	sd->groups = first;
1133 
1134 	return 0;
1135 }
1136 
1137 /*
1138  * Initialize sched groups cpu_capacity.
1139  *
1140  * cpu_capacity indicates the capacity of sched group, which is used while
1141  * distributing the load between different sched groups in a sched domain.
1142  * Typically cpu_capacity for all the groups in a sched domain will be same
1143  * unless there are asymmetries in the topology. If there are asymmetries,
1144  * group having more cpu_capacity will pickup more load compared to the
1145  * group having less cpu_capacity.
1146  */
1147 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1148 {
1149 	struct sched_group *sg = sd->groups;
1150 
1151 	WARN_ON(!sg);
1152 
1153 	do {
1154 		int cpu, max_cpu = -1;
1155 
1156 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1157 
1158 		if (!(sd->flags & SD_ASYM_PACKING))
1159 			goto next;
1160 
1161 		for_each_cpu(cpu, sched_group_span(sg)) {
1162 			if (max_cpu < 0)
1163 				max_cpu = cpu;
1164 			else if (sched_asym_prefer(cpu, max_cpu))
1165 				max_cpu = cpu;
1166 		}
1167 		sg->asym_prefer_cpu = max_cpu;
1168 
1169 next:
1170 		sg = sg->next;
1171 	} while (sg != sd->groups);
1172 
1173 	if (cpu != group_balance_cpu(sg))
1174 		return;
1175 
1176 	update_group_capacity(sd, cpu);
1177 }
1178 
1179 /*
1180  * Initializers for schedule domains
1181  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1182  */
1183 
1184 static int default_relax_domain_level = -1;
1185 int sched_domain_level_max;
1186 
1187 static int __init setup_relax_domain_level(char *str)
1188 {
1189 	if (kstrtoint(str, 0, &default_relax_domain_level))
1190 		pr_warn("Unable to set relax_domain_level\n");
1191 
1192 	return 1;
1193 }
1194 __setup("relax_domain_level=", setup_relax_domain_level);
1195 
1196 static void set_domain_attribute(struct sched_domain *sd,
1197 				 struct sched_domain_attr *attr)
1198 {
1199 	int request;
1200 
1201 	if (!attr || attr->relax_domain_level < 0) {
1202 		if (default_relax_domain_level < 0)
1203 			return;
1204 		else
1205 			request = default_relax_domain_level;
1206 	} else
1207 		request = attr->relax_domain_level;
1208 	if (request < sd->level) {
1209 		/* Turn off idle balance on this domain: */
1210 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1211 	} else {
1212 		/* Turn on idle balance on this domain: */
1213 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1214 	}
1215 }
1216 
1217 static void __sdt_free(const struct cpumask *cpu_map);
1218 static int __sdt_alloc(const struct cpumask *cpu_map);
1219 
1220 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1221 				 const struct cpumask *cpu_map)
1222 {
1223 	switch (what) {
1224 	case sa_rootdomain:
1225 		if (!atomic_read(&d->rd->refcount))
1226 			free_rootdomain(&d->rd->rcu);
1227 		/* Fall through */
1228 	case sa_sd:
1229 		free_percpu(d->sd);
1230 		/* Fall through */
1231 	case sa_sd_storage:
1232 		__sdt_free(cpu_map);
1233 		/* Fall through */
1234 	case sa_none:
1235 		break;
1236 	}
1237 }
1238 
1239 static enum s_alloc
1240 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1241 {
1242 	memset(d, 0, sizeof(*d));
1243 
1244 	if (__sdt_alloc(cpu_map))
1245 		return sa_sd_storage;
1246 	d->sd = alloc_percpu(struct sched_domain *);
1247 	if (!d->sd)
1248 		return sa_sd_storage;
1249 	d->rd = alloc_rootdomain();
1250 	if (!d->rd)
1251 		return sa_sd;
1252 
1253 	return sa_rootdomain;
1254 }
1255 
1256 /*
1257  * NULL the sd_data elements we've used to build the sched_domain and
1258  * sched_group structure so that the subsequent __free_domain_allocs()
1259  * will not free the data we're using.
1260  */
1261 static void claim_allocations(int cpu, struct sched_domain *sd)
1262 {
1263 	struct sd_data *sdd = sd->private;
1264 
1265 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1266 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1267 
1268 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1269 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1270 
1271 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1272 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1273 
1274 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1275 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1276 }
1277 
1278 #ifdef CONFIG_NUMA
1279 enum numa_topology_type sched_numa_topology_type;
1280 
1281 static int			sched_domains_numa_levels;
1282 static int			sched_domains_curr_level;
1283 
1284 int				sched_max_numa_distance;
1285 static int			*sched_domains_numa_distance;
1286 static struct cpumask		***sched_domains_numa_masks;
1287 int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1288 #endif
1289 
1290 /*
1291  * SD_flags allowed in topology descriptions.
1292  *
1293  * These flags are purely descriptive of the topology and do not prescribe
1294  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1295  * function:
1296  *
1297  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1298  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1299  *   SD_NUMA                - describes NUMA topologies
1300  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1301  *
1302  * Odd one out, which beside describing the topology has a quirk also
1303  * prescribes the desired behaviour that goes along with it:
1304  *
1305  *   SD_ASYM_PACKING        - describes SMT quirks
1306  */
1307 #define TOPOLOGY_SD_FLAGS		\
1308 	(SD_SHARE_CPUCAPACITY	|	\
1309 	 SD_SHARE_PKG_RESOURCES |	\
1310 	 SD_NUMA		|	\
1311 	 SD_ASYM_PACKING	|	\
1312 	 SD_SHARE_POWERDOMAIN)
1313 
1314 static struct sched_domain *
1315 sd_init(struct sched_domain_topology_level *tl,
1316 	const struct cpumask *cpu_map,
1317 	struct sched_domain *child, int dflags, int cpu)
1318 {
1319 	struct sd_data *sdd = &tl->data;
1320 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1321 	int sd_id, sd_weight, sd_flags = 0;
1322 
1323 #ifdef CONFIG_NUMA
1324 	/*
1325 	 * Ugly hack to pass state to sd_numa_mask()...
1326 	 */
1327 	sched_domains_curr_level = tl->numa_level;
1328 #endif
1329 
1330 	sd_weight = cpumask_weight(tl->mask(cpu));
1331 
1332 	if (tl->sd_flags)
1333 		sd_flags = (*tl->sd_flags)();
1334 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1335 			"wrong sd_flags in topology description\n"))
1336 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1337 
1338 	/* Apply detected topology flags */
1339 	sd_flags |= dflags;
1340 
1341 	*sd = (struct sched_domain){
1342 		.min_interval		= sd_weight,
1343 		.max_interval		= 2*sd_weight,
1344 		.busy_factor		= 32,
1345 		.imbalance_pct		= 125,
1346 
1347 		.cache_nice_tries	= 0,
1348 
1349 		.flags			= 1*SD_LOAD_BALANCE
1350 					| 1*SD_BALANCE_NEWIDLE
1351 					| 1*SD_BALANCE_EXEC
1352 					| 1*SD_BALANCE_FORK
1353 					| 0*SD_BALANCE_WAKE
1354 					| 1*SD_WAKE_AFFINE
1355 					| 0*SD_SHARE_CPUCAPACITY
1356 					| 0*SD_SHARE_PKG_RESOURCES
1357 					| 0*SD_SERIALIZE
1358 					| 1*SD_PREFER_SIBLING
1359 					| 0*SD_NUMA
1360 					| sd_flags
1361 					,
1362 
1363 		.last_balance		= jiffies,
1364 		.balance_interval	= sd_weight,
1365 		.max_newidle_lb_cost	= 0,
1366 		.next_decay_max_lb_cost	= jiffies,
1367 		.child			= child,
1368 #ifdef CONFIG_SCHED_DEBUG
1369 		.name			= tl->name,
1370 #endif
1371 	};
1372 
1373 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1374 	sd_id = cpumask_first(sched_domain_span(sd));
1375 
1376 	/*
1377 	 * Convert topological properties into behaviour.
1378 	 */
1379 
1380 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1381 		struct sched_domain *t = sd;
1382 
1383 		/*
1384 		 * Don't attempt to spread across CPUs of different capacities.
1385 		 */
1386 		if (sd->child)
1387 			sd->child->flags &= ~SD_PREFER_SIBLING;
1388 
1389 		for_each_lower_domain(t)
1390 			t->flags |= SD_BALANCE_WAKE;
1391 	}
1392 
1393 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1394 		sd->imbalance_pct = 110;
1395 
1396 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1397 		sd->imbalance_pct = 117;
1398 		sd->cache_nice_tries = 1;
1399 
1400 #ifdef CONFIG_NUMA
1401 	} else if (sd->flags & SD_NUMA) {
1402 		sd->cache_nice_tries = 2;
1403 
1404 		sd->flags &= ~SD_PREFER_SIBLING;
1405 		sd->flags |= SD_SERIALIZE;
1406 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1407 			sd->flags &= ~(SD_BALANCE_EXEC |
1408 				       SD_BALANCE_FORK |
1409 				       SD_WAKE_AFFINE);
1410 		}
1411 
1412 #endif
1413 	} else {
1414 		sd->cache_nice_tries = 1;
1415 	}
1416 
1417 	/*
1418 	 * For all levels sharing cache; connect a sched_domain_shared
1419 	 * instance.
1420 	 */
1421 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1422 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1423 		atomic_inc(&sd->shared->ref);
1424 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1425 	}
1426 
1427 	sd->private = sdd;
1428 
1429 	return sd;
1430 }
1431 
1432 /*
1433  * Topology list, bottom-up.
1434  */
1435 static struct sched_domain_topology_level default_topology[] = {
1436 #ifdef CONFIG_SCHED_SMT
1437 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1438 #endif
1439 #ifdef CONFIG_SCHED_MC
1440 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1441 #endif
1442 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1443 	{ NULL, },
1444 };
1445 
1446 static struct sched_domain_topology_level *sched_domain_topology =
1447 	default_topology;
1448 
1449 #define for_each_sd_topology(tl)			\
1450 	for (tl = sched_domain_topology; tl->mask; tl++)
1451 
1452 void set_sched_topology(struct sched_domain_topology_level *tl)
1453 {
1454 	if (WARN_ON_ONCE(sched_smp_initialized))
1455 		return;
1456 
1457 	sched_domain_topology = tl;
1458 }
1459 
1460 #ifdef CONFIG_NUMA
1461 
1462 static const struct cpumask *sd_numa_mask(int cpu)
1463 {
1464 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1465 }
1466 
1467 static void sched_numa_warn(const char *str)
1468 {
1469 	static int done = false;
1470 	int i,j;
1471 
1472 	if (done)
1473 		return;
1474 
1475 	done = true;
1476 
1477 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1478 
1479 	for (i = 0; i < nr_node_ids; i++) {
1480 		printk(KERN_WARNING "  ");
1481 		for (j = 0; j < nr_node_ids; j++)
1482 			printk(KERN_CONT "%02d ", node_distance(i,j));
1483 		printk(KERN_CONT "\n");
1484 	}
1485 	printk(KERN_WARNING "\n");
1486 }
1487 
1488 bool find_numa_distance(int distance)
1489 {
1490 	int i;
1491 
1492 	if (distance == node_distance(0, 0))
1493 		return true;
1494 
1495 	for (i = 0; i < sched_domains_numa_levels; i++) {
1496 		if (sched_domains_numa_distance[i] == distance)
1497 			return true;
1498 	}
1499 
1500 	return false;
1501 }
1502 
1503 /*
1504  * A system can have three types of NUMA topology:
1505  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1506  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1507  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1508  *
1509  * The difference between a glueless mesh topology and a backplane
1510  * topology lies in whether communication between not directly
1511  * connected nodes goes through intermediary nodes (where programs
1512  * could run), or through backplane controllers. This affects
1513  * placement of programs.
1514  *
1515  * The type of topology can be discerned with the following tests:
1516  * - If the maximum distance between any nodes is 1 hop, the system
1517  *   is directly connected.
1518  * - If for two nodes A and B, located N > 1 hops away from each other,
1519  *   there is an intermediary node C, which is < N hops away from both
1520  *   nodes A and B, the system is a glueless mesh.
1521  */
1522 static void init_numa_topology_type(void)
1523 {
1524 	int a, b, c, n;
1525 
1526 	n = sched_max_numa_distance;
1527 
1528 	if (sched_domains_numa_levels <= 2) {
1529 		sched_numa_topology_type = NUMA_DIRECT;
1530 		return;
1531 	}
1532 
1533 	for_each_online_node(a) {
1534 		for_each_online_node(b) {
1535 			/* Find two nodes furthest removed from each other. */
1536 			if (node_distance(a, b) < n)
1537 				continue;
1538 
1539 			/* Is there an intermediary node between a and b? */
1540 			for_each_online_node(c) {
1541 				if (node_distance(a, c) < n &&
1542 				    node_distance(b, c) < n) {
1543 					sched_numa_topology_type =
1544 							NUMA_GLUELESS_MESH;
1545 					return;
1546 				}
1547 			}
1548 
1549 			sched_numa_topology_type = NUMA_BACKPLANE;
1550 			return;
1551 		}
1552 	}
1553 }
1554 
1555 void sched_init_numa(void)
1556 {
1557 	int next_distance, curr_distance = node_distance(0, 0);
1558 	struct sched_domain_topology_level *tl;
1559 	int level = 0;
1560 	int i, j, k;
1561 
1562 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1563 	if (!sched_domains_numa_distance)
1564 		return;
1565 
1566 	/* Includes NUMA identity node at level 0. */
1567 	sched_domains_numa_distance[level++] = curr_distance;
1568 	sched_domains_numa_levels = level;
1569 
1570 	/*
1571 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1572 	 * unique distances in the node_distance() table.
1573 	 *
1574 	 * Assumes node_distance(0,j) includes all distances in
1575 	 * node_distance(i,j) in order to avoid cubic time.
1576 	 */
1577 	next_distance = curr_distance;
1578 	for (i = 0; i < nr_node_ids; i++) {
1579 		for (j = 0; j < nr_node_ids; j++) {
1580 			for (k = 0; k < nr_node_ids; k++) {
1581 				int distance = node_distance(i, k);
1582 
1583 				if (distance > curr_distance &&
1584 				    (distance < next_distance ||
1585 				     next_distance == curr_distance))
1586 					next_distance = distance;
1587 
1588 				/*
1589 				 * While not a strong assumption it would be nice to know
1590 				 * about cases where if node A is connected to B, B is not
1591 				 * equally connected to A.
1592 				 */
1593 				if (sched_debug() && node_distance(k, i) != distance)
1594 					sched_numa_warn("Node-distance not symmetric");
1595 
1596 				if (sched_debug() && i && !find_numa_distance(distance))
1597 					sched_numa_warn("Node-0 not representative");
1598 			}
1599 			if (next_distance != curr_distance) {
1600 				sched_domains_numa_distance[level++] = next_distance;
1601 				sched_domains_numa_levels = level;
1602 				curr_distance = next_distance;
1603 			} else break;
1604 		}
1605 
1606 		/*
1607 		 * In case of sched_debug() we verify the above assumption.
1608 		 */
1609 		if (!sched_debug())
1610 			break;
1611 	}
1612 
1613 	/*
1614 	 * 'level' contains the number of unique distances
1615 	 *
1616 	 * The sched_domains_numa_distance[] array includes the actual distance
1617 	 * numbers.
1618 	 */
1619 
1620 	/*
1621 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1622 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1623 	 * the array will contain less then 'level' members. This could be
1624 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1625 	 * in other functions.
1626 	 *
1627 	 * We reset it to 'level' at the end of this function.
1628 	 */
1629 	sched_domains_numa_levels = 0;
1630 
1631 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1632 	if (!sched_domains_numa_masks)
1633 		return;
1634 
1635 	/*
1636 	 * Now for each level, construct a mask per node which contains all
1637 	 * CPUs of nodes that are that many hops away from us.
1638 	 */
1639 	for (i = 0; i < level; i++) {
1640 		sched_domains_numa_masks[i] =
1641 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1642 		if (!sched_domains_numa_masks[i])
1643 			return;
1644 
1645 		for (j = 0; j < nr_node_ids; j++) {
1646 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1647 			if (!mask)
1648 				return;
1649 
1650 			sched_domains_numa_masks[i][j] = mask;
1651 
1652 			for_each_node(k) {
1653 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1654 					continue;
1655 
1656 				cpumask_or(mask, mask, cpumask_of_node(k));
1657 			}
1658 		}
1659 	}
1660 
1661 	/* Compute default topology size */
1662 	for (i = 0; sched_domain_topology[i].mask; i++);
1663 
1664 	tl = kzalloc((i + level + 1) *
1665 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1666 	if (!tl)
1667 		return;
1668 
1669 	/*
1670 	 * Copy the default topology bits..
1671 	 */
1672 	for (i = 0; sched_domain_topology[i].mask; i++)
1673 		tl[i] = sched_domain_topology[i];
1674 
1675 	/*
1676 	 * Add the NUMA identity distance, aka single NODE.
1677 	 */
1678 	tl[i++] = (struct sched_domain_topology_level){
1679 		.mask = sd_numa_mask,
1680 		.numa_level = 0,
1681 		SD_INIT_NAME(NODE)
1682 	};
1683 
1684 	/*
1685 	 * .. and append 'j' levels of NUMA goodness.
1686 	 */
1687 	for (j = 1; j < level; i++, j++) {
1688 		tl[i] = (struct sched_domain_topology_level){
1689 			.mask = sd_numa_mask,
1690 			.sd_flags = cpu_numa_flags,
1691 			.flags = SDTL_OVERLAP,
1692 			.numa_level = j,
1693 			SD_INIT_NAME(NUMA)
1694 		};
1695 	}
1696 
1697 	sched_domain_topology = tl;
1698 
1699 	sched_domains_numa_levels = level;
1700 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1701 
1702 	init_numa_topology_type();
1703 }
1704 
1705 void sched_domains_numa_masks_set(unsigned int cpu)
1706 {
1707 	int node = cpu_to_node(cpu);
1708 	int i, j;
1709 
1710 	for (i = 0; i < sched_domains_numa_levels; i++) {
1711 		for (j = 0; j < nr_node_ids; j++) {
1712 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1713 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1714 		}
1715 	}
1716 }
1717 
1718 void sched_domains_numa_masks_clear(unsigned int cpu)
1719 {
1720 	int i, j;
1721 
1722 	for (i = 0; i < sched_domains_numa_levels; i++) {
1723 		for (j = 0; j < nr_node_ids; j++)
1724 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1725 	}
1726 }
1727 
1728 /*
1729  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1730  *                             closest to @cpu from @cpumask.
1731  * cpumask: cpumask to find a cpu from
1732  * cpu: cpu to be close to
1733  *
1734  * returns: cpu, or nr_cpu_ids when nothing found.
1735  */
1736 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1737 {
1738 	int i, j = cpu_to_node(cpu);
1739 
1740 	for (i = 0; i < sched_domains_numa_levels; i++) {
1741 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1742 		if (cpu < nr_cpu_ids)
1743 			return cpu;
1744 	}
1745 	return nr_cpu_ids;
1746 }
1747 
1748 #endif /* CONFIG_NUMA */
1749 
1750 static int __sdt_alloc(const struct cpumask *cpu_map)
1751 {
1752 	struct sched_domain_topology_level *tl;
1753 	int j;
1754 
1755 	for_each_sd_topology(tl) {
1756 		struct sd_data *sdd = &tl->data;
1757 
1758 		sdd->sd = alloc_percpu(struct sched_domain *);
1759 		if (!sdd->sd)
1760 			return -ENOMEM;
1761 
1762 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1763 		if (!sdd->sds)
1764 			return -ENOMEM;
1765 
1766 		sdd->sg = alloc_percpu(struct sched_group *);
1767 		if (!sdd->sg)
1768 			return -ENOMEM;
1769 
1770 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1771 		if (!sdd->sgc)
1772 			return -ENOMEM;
1773 
1774 		for_each_cpu(j, cpu_map) {
1775 			struct sched_domain *sd;
1776 			struct sched_domain_shared *sds;
1777 			struct sched_group *sg;
1778 			struct sched_group_capacity *sgc;
1779 
1780 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1781 					GFP_KERNEL, cpu_to_node(j));
1782 			if (!sd)
1783 				return -ENOMEM;
1784 
1785 			*per_cpu_ptr(sdd->sd, j) = sd;
1786 
1787 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1788 					GFP_KERNEL, cpu_to_node(j));
1789 			if (!sds)
1790 				return -ENOMEM;
1791 
1792 			*per_cpu_ptr(sdd->sds, j) = sds;
1793 
1794 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1795 					GFP_KERNEL, cpu_to_node(j));
1796 			if (!sg)
1797 				return -ENOMEM;
1798 
1799 			sg->next = sg;
1800 
1801 			*per_cpu_ptr(sdd->sg, j) = sg;
1802 
1803 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1804 					GFP_KERNEL, cpu_to_node(j));
1805 			if (!sgc)
1806 				return -ENOMEM;
1807 
1808 #ifdef CONFIG_SCHED_DEBUG
1809 			sgc->id = j;
1810 #endif
1811 
1812 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1813 		}
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 static void __sdt_free(const struct cpumask *cpu_map)
1820 {
1821 	struct sched_domain_topology_level *tl;
1822 	int j;
1823 
1824 	for_each_sd_topology(tl) {
1825 		struct sd_data *sdd = &tl->data;
1826 
1827 		for_each_cpu(j, cpu_map) {
1828 			struct sched_domain *sd;
1829 
1830 			if (sdd->sd) {
1831 				sd = *per_cpu_ptr(sdd->sd, j);
1832 				if (sd && (sd->flags & SD_OVERLAP))
1833 					free_sched_groups(sd->groups, 0);
1834 				kfree(*per_cpu_ptr(sdd->sd, j));
1835 			}
1836 
1837 			if (sdd->sds)
1838 				kfree(*per_cpu_ptr(sdd->sds, j));
1839 			if (sdd->sg)
1840 				kfree(*per_cpu_ptr(sdd->sg, j));
1841 			if (sdd->sgc)
1842 				kfree(*per_cpu_ptr(sdd->sgc, j));
1843 		}
1844 		free_percpu(sdd->sd);
1845 		sdd->sd = NULL;
1846 		free_percpu(sdd->sds);
1847 		sdd->sds = NULL;
1848 		free_percpu(sdd->sg);
1849 		sdd->sg = NULL;
1850 		free_percpu(sdd->sgc);
1851 		sdd->sgc = NULL;
1852 	}
1853 }
1854 
1855 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1856 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1857 		struct sched_domain *child, int dflags, int cpu)
1858 {
1859 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1860 
1861 	if (child) {
1862 		sd->level = child->level + 1;
1863 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1864 		child->parent = sd;
1865 
1866 		if (!cpumask_subset(sched_domain_span(child),
1867 				    sched_domain_span(sd))) {
1868 			pr_err("BUG: arch topology borken\n");
1869 #ifdef CONFIG_SCHED_DEBUG
1870 			pr_err("     the %s domain not a subset of the %s domain\n",
1871 					child->name, sd->name);
1872 #endif
1873 			/* Fixup, ensure @sd has at least @child CPUs. */
1874 			cpumask_or(sched_domain_span(sd),
1875 				   sched_domain_span(sd),
1876 				   sched_domain_span(child));
1877 		}
1878 
1879 	}
1880 	set_domain_attribute(sd, attr);
1881 
1882 	return sd;
1883 }
1884 
1885 /*
1886  * Find the sched_domain_topology_level where all CPU capacities are visible
1887  * for all CPUs.
1888  */
1889 static struct sched_domain_topology_level
1890 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1891 {
1892 	int i, j, asym_level = 0;
1893 	bool asym = false;
1894 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1895 	unsigned long cap;
1896 
1897 	/* Is there any asymmetry? */
1898 	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1899 
1900 	for_each_cpu(i, cpu_map) {
1901 		if (arch_scale_cpu_capacity(i) != cap) {
1902 			asym = true;
1903 			break;
1904 		}
1905 	}
1906 
1907 	if (!asym)
1908 		return NULL;
1909 
1910 	/*
1911 	 * Examine topology from all CPU's point of views to detect the lowest
1912 	 * sched_domain_topology_level where a highest capacity CPU is visible
1913 	 * to everyone.
1914 	 */
1915 	for_each_cpu(i, cpu_map) {
1916 		unsigned long max_capacity = arch_scale_cpu_capacity(i);
1917 		int tl_id = 0;
1918 
1919 		for_each_sd_topology(tl) {
1920 			if (tl_id < asym_level)
1921 				goto next_level;
1922 
1923 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
1924 				unsigned long capacity;
1925 
1926 				capacity = arch_scale_cpu_capacity(j);
1927 
1928 				if (capacity <= max_capacity)
1929 					continue;
1930 
1931 				max_capacity = capacity;
1932 				asym_level = tl_id;
1933 				asym_tl = tl;
1934 			}
1935 next_level:
1936 			tl_id++;
1937 		}
1938 	}
1939 
1940 	return asym_tl;
1941 }
1942 
1943 
1944 /*
1945  * Build sched domains for a given set of CPUs and attach the sched domains
1946  * to the individual CPUs
1947  */
1948 static int
1949 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1950 {
1951 	enum s_alloc alloc_state = sa_none;
1952 	struct sched_domain *sd;
1953 	struct s_data d;
1954 	struct rq *rq = NULL;
1955 	int i, ret = -ENOMEM;
1956 	struct sched_domain_topology_level *tl_asym;
1957 	bool has_asym = false;
1958 
1959 	if (WARN_ON(cpumask_empty(cpu_map)))
1960 		goto error;
1961 
1962 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1963 	if (alloc_state != sa_rootdomain)
1964 		goto error;
1965 
1966 	tl_asym = asym_cpu_capacity_level(cpu_map);
1967 
1968 	/* Set up domains for CPUs specified by the cpu_map: */
1969 	for_each_cpu(i, cpu_map) {
1970 		struct sched_domain_topology_level *tl;
1971 
1972 		sd = NULL;
1973 		for_each_sd_topology(tl) {
1974 			int dflags = 0;
1975 
1976 			if (tl == tl_asym) {
1977 				dflags |= SD_ASYM_CPUCAPACITY;
1978 				has_asym = true;
1979 			}
1980 
1981 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1982 
1983 			if (tl == sched_domain_topology)
1984 				*per_cpu_ptr(d.sd, i) = sd;
1985 			if (tl->flags & SDTL_OVERLAP)
1986 				sd->flags |= SD_OVERLAP;
1987 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1988 				break;
1989 		}
1990 	}
1991 
1992 	/* Build the groups for the domains */
1993 	for_each_cpu(i, cpu_map) {
1994 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1995 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1996 			if (sd->flags & SD_OVERLAP) {
1997 				if (build_overlap_sched_groups(sd, i))
1998 					goto error;
1999 			} else {
2000 				if (build_sched_groups(sd, i))
2001 					goto error;
2002 			}
2003 		}
2004 	}
2005 
2006 	/* Calculate CPU capacity for physical packages and nodes */
2007 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2008 		if (!cpumask_test_cpu(i, cpu_map))
2009 			continue;
2010 
2011 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2012 			claim_allocations(i, sd);
2013 			init_sched_groups_capacity(i, sd);
2014 		}
2015 	}
2016 
2017 	/* Attach the domains */
2018 	rcu_read_lock();
2019 	for_each_cpu(i, cpu_map) {
2020 		rq = cpu_rq(i);
2021 		sd = *per_cpu_ptr(d.sd, i);
2022 
2023 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2024 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2025 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2026 
2027 		cpu_attach_domain(sd, d.rd, i);
2028 	}
2029 	rcu_read_unlock();
2030 
2031 	if (has_asym)
2032 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2033 
2034 	if (rq && sched_debug_enabled) {
2035 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2036 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2037 	}
2038 
2039 	ret = 0;
2040 error:
2041 	__free_domain_allocs(&d, alloc_state, cpu_map);
2042 
2043 	return ret;
2044 }
2045 
2046 /* Current sched domains: */
2047 static cpumask_var_t			*doms_cur;
2048 
2049 /* Number of sched domains in 'doms_cur': */
2050 static int				ndoms_cur;
2051 
2052 /* Attribues of custom domains in 'doms_cur' */
2053 static struct sched_domain_attr		*dattr_cur;
2054 
2055 /*
2056  * Special case: If a kmalloc() of a doms_cur partition (array of
2057  * cpumask) fails, then fallback to a single sched domain,
2058  * as determined by the single cpumask fallback_doms.
2059  */
2060 static cpumask_var_t			fallback_doms;
2061 
2062 /*
2063  * arch_update_cpu_topology lets virtualized architectures update the
2064  * CPU core maps. It is supposed to return 1 if the topology changed
2065  * or 0 if it stayed the same.
2066  */
2067 int __weak arch_update_cpu_topology(void)
2068 {
2069 	return 0;
2070 }
2071 
2072 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2073 {
2074 	int i;
2075 	cpumask_var_t *doms;
2076 
2077 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2078 	if (!doms)
2079 		return NULL;
2080 	for (i = 0; i < ndoms; i++) {
2081 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2082 			free_sched_domains(doms, i);
2083 			return NULL;
2084 		}
2085 	}
2086 	return doms;
2087 }
2088 
2089 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2090 {
2091 	unsigned int i;
2092 	for (i = 0; i < ndoms; i++)
2093 		free_cpumask_var(doms[i]);
2094 	kfree(doms);
2095 }
2096 
2097 /*
2098  * Set up scheduler domains and groups.  For now this just excludes isolated
2099  * CPUs, but could be used to exclude other special cases in the future.
2100  */
2101 int sched_init_domains(const struct cpumask *cpu_map)
2102 {
2103 	int err;
2104 
2105 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2106 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2107 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2108 
2109 	arch_update_cpu_topology();
2110 	ndoms_cur = 1;
2111 	doms_cur = alloc_sched_domains(ndoms_cur);
2112 	if (!doms_cur)
2113 		doms_cur = &fallback_doms;
2114 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2115 	err = build_sched_domains(doms_cur[0], NULL);
2116 	register_sched_domain_sysctl();
2117 
2118 	return err;
2119 }
2120 
2121 /*
2122  * Detach sched domains from a group of CPUs specified in cpu_map
2123  * These CPUs will now be attached to the NULL domain
2124  */
2125 static void detach_destroy_domains(const struct cpumask *cpu_map)
2126 {
2127 	unsigned int cpu = cpumask_any(cpu_map);
2128 	int i;
2129 
2130 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2131 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2132 
2133 	rcu_read_lock();
2134 	for_each_cpu(i, cpu_map)
2135 		cpu_attach_domain(NULL, &def_root_domain, i);
2136 	rcu_read_unlock();
2137 }
2138 
2139 /* handle null as "default" */
2140 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2141 			struct sched_domain_attr *new, int idx_new)
2142 {
2143 	struct sched_domain_attr tmp;
2144 
2145 	/* Fast path: */
2146 	if (!new && !cur)
2147 		return 1;
2148 
2149 	tmp = SD_ATTR_INIT;
2150 
2151 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2152 			new ? (new + idx_new) : &tmp,
2153 			sizeof(struct sched_domain_attr));
2154 }
2155 
2156 /*
2157  * Partition sched domains as specified by the 'ndoms_new'
2158  * cpumasks in the array doms_new[] of cpumasks. This compares
2159  * doms_new[] to the current sched domain partitioning, doms_cur[].
2160  * It destroys each deleted domain and builds each new domain.
2161  *
2162  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2163  * The masks don't intersect (don't overlap.) We should setup one
2164  * sched domain for each mask. CPUs not in any of the cpumasks will
2165  * not be load balanced. If the same cpumask appears both in the
2166  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2167  * it as it is.
2168  *
2169  * The passed in 'doms_new' should be allocated using
2170  * alloc_sched_domains.  This routine takes ownership of it and will
2171  * free_sched_domains it when done with it. If the caller failed the
2172  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2173  * and partition_sched_domains() will fallback to the single partition
2174  * 'fallback_doms', it also forces the domains to be rebuilt.
2175  *
2176  * If doms_new == NULL it will be replaced with cpu_online_mask.
2177  * ndoms_new == 0 is a special case for destroying existing domains,
2178  * and it will not create the default domain.
2179  *
2180  * Call with hotplug lock and sched_domains_mutex held
2181  */
2182 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2183 				    struct sched_domain_attr *dattr_new)
2184 {
2185 	bool __maybe_unused has_eas = false;
2186 	int i, j, n;
2187 	int new_topology;
2188 
2189 	lockdep_assert_held(&sched_domains_mutex);
2190 
2191 	/* Always unregister in case we don't destroy any domains: */
2192 	unregister_sched_domain_sysctl();
2193 
2194 	/* Let the architecture update CPU core mappings: */
2195 	new_topology = arch_update_cpu_topology();
2196 
2197 	if (!doms_new) {
2198 		WARN_ON_ONCE(dattr_new);
2199 		n = 0;
2200 		doms_new = alloc_sched_domains(1);
2201 		if (doms_new) {
2202 			n = 1;
2203 			cpumask_and(doms_new[0], cpu_active_mask,
2204 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2205 		}
2206 	} else {
2207 		n = ndoms_new;
2208 	}
2209 
2210 	/* Destroy deleted domains: */
2211 	for (i = 0; i < ndoms_cur; i++) {
2212 		for (j = 0; j < n && !new_topology; j++) {
2213 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2214 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2215 				struct root_domain *rd;
2216 
2217 				/*
2218 				 * This domain won't be destroyed and as such
2219 				 * its dl_bw->total_bw needs to be cleared.  It
2220 				 * will be recomputed in function
2221 				 * update_tasks_root_domain().
2222 				 */
2223 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2224 				dl_clear_root_domain(rd);
2225 				goto match1;
2226 			}
2227 		}
2228 		/* No match - a current sched domain not in new doms_new[] */
2229 		detach_destroy_domains(doms_cur[i]);
2230 match1:
2231 		;
2232 	}
2233 
2234 	n = ndoms_cur;
2235 	if (!doms_new) {
2236 		n = 0;
2237 		doms_new = &fallback_doms;
2238 		cpumask_and(doms_new[0], cpu_active_mask,
2239 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2240 	}
2241 
2242 	/* Build new domains: */
2243 	for (i = 0; i < ndoms_new; i++) {
2244 		for (j = 0; j < n && !new_topology; j++) {
2245 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2246 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2247 				goto match2;
2248 		}
2249 		/* No match - add a new doms_new */
2250 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2251 match2:
2252 		;
2253 	}
2254 
2255 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2256 	/* Build perf. domains: */
2257 	for (i = 0; i < ndoms_new; i++) {
2258 		for (j = 0; j < n && !sched_energy_update; j++) {
2259 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2260 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2261 				has_eas = true;
2262 				goto match3;
2263 			}
2264 		}
2265 		/* No match - add perf. domains for a new rd */
2266 		has_eas |= build_perf_domains(doms_new[i]);
2267 match3:
2268 		;
2269 	}
2270 	sched_energy_set(has_eas);
2271 #endif
2272 
2273 	/* Remember the new sched domains: */
2274 	if (doms_cur != &fallback_doms)
2275 		free_sched_domains(doms_cur, ndoms_cur);
2276 
2277 	kfree(dattr_cur);
2278 	doms_cur = doms_new;
2279 	dattr_cur = dattr_new;
2280 	ndoms_cur = ndoms_new;
2281 
2282 	register_sched_domain_sysctl();
2283 }
2284 
2285 /*
2286  * Call with hotplug lock held
2287  */
2288 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2289 			     struct sched_domain_attr *dattr_new)
2290 {
2291 	mutex_lock(&sched_domains_mutex);
2292 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2293 	mutex_unlock(&sched_domains_mutex);
2294 }
2295