xref: /openbmc/linux/kernel/sched/topology.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_enabled = true;
18 
19 	return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_enabled;
26 }
27 
28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29 const struct sd_flag_debug sd_flag_debug[] = {
30 #include <linux/sched/sd_flags.h>
31 };
32 #undef SD_FLAG
33 
34 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
35 				  struct cpumask *groupmask)
36 {
37 	struct sched_group *group = sd->groups;
38 	unsigned long flags = sd->flags;
39 	unsigned int idx;
40 
41 	cpumask_clear(groupmask);
42 
43 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
44 	printk(KERN_CONT "span=%*pbl level=%s\n",
45 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46 
47 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 	}
50 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 	}
53 
54 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
55 		unsigned int flag = BIT(idx);
56 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
57 
58 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
59 		    !(sd->child->flags & flag))
60 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
61 			       sd_flag_debug[idx].name);
62 
63 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
64 		    !(sd->parent->flags & flag))
65 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
66 			       sd_flag_debug[idx].name);
67 	}
68 
69 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
70 	do {
71 		if (!group) {
72 			printk("\n");
73 			printk(KERN_ERR "ERROR: group is NULL\n");
74 			break;
75 		}
76 
77 		if (!cpumask_weight(sched_group_span(group))) {
78 			printk(KERN_CONT "\n");
79 			printk(KERN_ERR "ERROR: empty group\n");
80 			break;
81 		}
82 
83 		if (!(sd->flags & SD_OVERLAP) &&
84 		    cpumask_intersects(groupmask, sched_group_span(group))) {
85 			printk(KERN_CONT "\n");
86 			printk(KERN_ERR "ERROR: repeated CPUs\n");
87 			break;
88 		}
89 
90 		cpumask_or(groupmask, groupmask, sched_group_span(group));
91 
92 		printk(KERN_CONT " %d:{ span=%*pbl",
93 				group->sgc->id,
94 				cpumask_pr_args(sched_group_span(group)));
95 
96 		if ((sd->flags & SD_OVERLAP) &&
97 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
98 			printk(KERN_CONT " mask=%*pbl",
99 				cpumask_pr_args(group_balance_mask(group)));
100 		}
101 
102 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
103 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
104 
105 		if (group == sd->groups && sd->child &&
106 		    !cpumask_equal(sched_domain_span(sd->child),
107 				   sched_group_span(group))) {
108 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
109 		}
110 
111 		printk(KERN_CONT " }");
112 
113 		group = group->next;
114 
115 		if (group != sd->groups)
116 			printk(KERN_CONT ",");
117 
118 	} while (group != sd->groups);
119 	printk(KERN_CONT "\n");
120 
121 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
122 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
123 
124 	if (sd->parent &&
125 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
126 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
127 	return 0;
128 }
129 
130 static void sched_domain_debug(struct sched_domain *sd, int cpu)
131 {
132 	int level = 0;
133 
134 	if (!sched_debug_enabled)
135 		return;
136 
137 	if (!sd) {
138 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
139 		return;
140 	}
141 
142 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
143 
144 	for (;;) {
145 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
146 			break;
147 		level++;
148 		sd = sd->parent;
149 		if (!sd)
150 			break;
151 	}
152 }
153 #else /* !CONFIG_SCHED_DEBUG */
154 
155 # define sched_debug_enabled 0
156 # define sched_domain_debug(sd, cpu) do { } while (0)
157 static inline bool sched_debug(void)
158 {
159 	return false;
160 }
161 #endif /* CONFIG_SCHED_DEBUG */
162 
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166 #include <linux/sched/sd_flags.h>
167 0;
168 #undef SD_FLAG
169 
170 static int sd_degenerate(struct sched_domain *sd)
171 {
172 	if (cpumask_weight(sched_domain_span(sd)) == 1)
173 		return 1;
174 
175 	/* Following flags need at least 2 groups */
176 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 	    (sd->groups != sd->groups->next))
178 		return 0;
179 
180 	/* Following flags don't use groups */
181 	if (sd->flags & (SD_WAKE_AFFINE))
182 		return 0;
183 
184 	return 1;
185 }
186 
187 static int
188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189 {
190 	unsigned long cflags = sd->flags, pflags = parent->flags;
191 
192 	if (sd_degenerate(parent))
193 		return 1;
194 
195 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 		return 0;
197 
198 	/* Flags needing groups don't count if only 1 group in parent */
199 	if (parent->groups == parent->groups->next)
200 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
201 
202 	if (~cflags & pflags)
203 		return 0;
204 
205 	return 1;
206 }
207 
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210 unsigned int sysctl_sched_energy_aware = 1;
211 DEFINE_MUTEX(sched_energy_mutex);
212 bool sched_energy_update;
213 
214 void rebuild_sched_domains_energy(void)
215 {
216 	mutex_lock(&sched_energy_mutex);
217 	sched_energy_update = true;
218 	rebuild_sched_domains();
219 	sched_energy_update = false;
220 	mutex_unlock(&sched_energy_mutex);
221 }
222 
223 #ifdef CONFIG_PROC_SYSCTL
224 int sched_energy_aware_handler(struct ctl_table *table, int write,
225 		void *buffer, size_t *lenp, loff_t *ppos)
226 {
227 	int ret, state;
228 
229 	if (write && !capable(CAP_SYS_ADMIN))
230 		return -EPERM;
231 
232 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
233 	if (!ret && write) {
234 		state = static_branch_unlikely(&sched_energy_present);
235 		if (state != sysctl_sched_energy_aware)
236 			rebuild_sched_domains_energy();
237 	}
238 
239 	return ret;
240 }
241 #endif
242 
243 static void free_pd(struct perf_domain *pd)
244 {
245 	struct perf_domain *tmp;
246 
247 	while (pd) {
248 		tmp = pd->next;
249 		kfree(pd);
250 		pd = tmp;
251 	}
252 }
253 
254 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
255 {
256 	while (pd) {
257 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
258 			return pd;
259 		pd = pd->next;
260 	}
261 
262 	return NULL;
263 }
264 
265 static struct perf_domain *pd_init(int cpu)
266 {
267 	struct em_perf_domain *obj = em_cpu_get(cpu);
268 	struct perf_domain *pd;
269 
270 	if (!obj) {
271 		if (sched_debug())
272 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
273 		return NULL;
274 	}
275 
276 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
277 	if (!pd)
278 		return NULL;
279 	pd->em_pd = obj;
280 
281 	return pd;
282 }
283 
284 static void perf_domain_debug(const struct cpumask *cpu_map,
285 						struct perf_domain *pd)
286 {
287 	if (!sched_debug() || !pd)
288 		return;
289 
290 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
291 
292 	while (pd) {
293 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
294 				cpumask_first(perf_domain_span(pd)),
295 				cpumask_pr_args(perf_domain_span(pd)),
296 				em_pd_nr_perf_states(pd->em_pd));
297 		pd = pd->next;
298 	}
299 
300 	printk(KERN_CONT "\n");
301 }
302 
303 static void destroy_perf_domain_rcu(struct rcu_head *rp)
304 {
305 	struct perf_domain *pd;
306 
307 	pd = container_of(rp, struct perf_domain, rcu);
308 	free_pd(pd);
309 }
310 
311 static void sched_energy_set(bool has_eas)
312 {
313 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
314 		if (sched_debug())
315 			pr_info("%s: stopping EAS\n", __func__);
316 		static_branch_disable_cpuslocked(&sched_energy_present);
317 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
318 		if (sched_debug())
319 			pr_info("%s: starting EAS\n", __func__);
320 		static_branch_enable_cpuslocked(&sched_energy_present);
321 	}
322 }
323 
324 /*
325  * EAS can be used on a root domain if it meets all the following conditions:
326  *    1. an Energy Model (EM) is available;
327  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
328  *    3. no SMT is detected.
329  *    4. the EM complexity is low enough to keep scheduling overheads low;
330  *    5. schedutil is driving the frequency of all CPUs of the rd;
331  *    6. frequency invariance support is present;
332  *
333  * The complexity of the Energy Model is defined as:
334  *
335  *              C = nr_pd * (nr_cpus + nr_ps)
336  *
337  * with parameters defined as:
338  *  - nr_pd:    the number of performance domains
339  *  - nr_cpus:  the number of CPUs
340  *  - nr_ps:    the sum of the number of performance states of all performance
341  *              domains (for example, on a system with 2 performance domains,
342  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
343  *
344  * It is generally not a good idea to use such a model in the wake-up path on
345  * very complex platforms because of the associated scheduling overheads. The
346  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
347  * with per-CPU DVFS and less than 8 performance states each, for example.
348  */
349 #define EM_MAX_COMPLEXITY 2048
350 
351 extern struct cpufreq_governor schedutil_gov;
352 static bool build_perf_domains(const struct cpumask *cpu_map)
353 {
354 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
355 	struct perf_domain *pd = NULL, *tmp;
356 	int cpu = cpumask_first(cpu_map);
357 	struct root_domain *rd = cpu_rq(cpu)->rd;
358 	struct cpufreq_policy *policy;
359 	struct cpufreq_governor *gov;
360 
361 	if (!sysctl_sched_energy_aware)
362 		goto free;
363 
364 	/* EAS is enabled for asymmetric CPU capacity topologies. */
365 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
366 		if (sched_debug()) {
367 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
368 					cpumask_pr_args(cpu_map));
369 		}
370 		goto free;
371 	}
372 
373 	/* EAS definitely does *not* handle SMT */
374 	if (sched_smt_active()) {
375 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
376 			cpumask_pr_args(cpu_map));
377 		goto free;
378 	}
379 
380 	if (!arch_scale_freq_invariant()) {
381 		if (sched_debug()) {
382 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
383 				cpumask_pr_args(cpu_map));
384 		}
385 		goto free;
386 	}
387 
388 	for_each_cpu(i, cpu_map) {
389 		/* Skip already covered CPUs. */
390 		if (find_pd(pd, i))
391 			continue;
392 
393 		/* Do not attempt EAS if schedutil is not being used. */
394 		policy = cpufreq_cpu_get(i);
395 		if (!policy)
396 			goto free;
397 		gov = policy->governor;
398 		cpufreq_cpu_put(policy);
399 		if (gov != &schedutil_gov) {
400 			if (rd->pd)
401 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
402 						cpumask_pr_args(cpu_map));
403 			goto free;
404 		}
405 
406 		/* Create the new pd and add it to the local list. */
407 		tmp = pd_init(i);
408 		if (!tmp)
409 			goto free;
410 		tmp->next = pd;
411 		pd = tmp;
412 
413 		/*
414 		 * Count performance domains and performance states for the
415 		 * complexity check.
416 		 */
417 		nr_pd++;
418 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
419 	}
420 
421 	/* Bail out if the Energy Model complexity is too high. */
422 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
423 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
424 						cpumask_pr_args(cpu_map));
425 		goto free;
426 	}
427 
428 	perf_domain_debug(cpu_map, pd);
429 
430 	/* Attach the new list of performance domains to the root domain. */
431 	tmp = rd->pd;
432 	rcu_assign_pointer(rd->pd, pd);
433 	if (tmp)
434 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
435 
436 	return !!pd;
437 
438 free:
439 	free_pd(pd);
440 	tmp = rd->pd;
441 	rcu_assign_pointer(rd->pd, NULL);
442 	if (tmp)
443 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
444 
445 	return false;
446 }
447 #else
448 static void free_pd(struct perf_domain *pd) { }
449 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
450 
451 static void free_rootdomain(struct rcu_head *rcu)
452 {
453 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
454 
455 	cpupri_cleanup(&rd->cpupri);
456 	cpudl_cleanup(&rd->cpudl);
457 	free_cpumask_var(rd->dlo_mask);
458 	free_cpumask_var(rd->rto_mask);
459 	free_cpumask_var(rd->online);
460 	free_cpumask_var(rd->span);
461 	free_pd(rd->pd);
462 	kfree(rd);
463 }
464 
465 void rq_attach_root(struct rq *rq, struct root_domain *rd)
466 {
467 	struct root_domain *old_rd = NULL;
468 	unsigned long flags;
469 
470 	raw_spin_lock_irqsave(&rq->lock, flags);
471 
472 	if (rq->rd) {
473 		old_rd = rq->rd;
474 
475 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
476 			set_rq_offline(rq);
477 
478 		cpumask_clear_cpu(rq->cpu, old_rd->span);
479 
480 		/*
481 		 * If we dont want to free the old_rd yet then
482 		 * set old_rd to NULL to skip the freeing later
483 		 * in this function:
484 		 */
485 		if (!atomic_dec_and_test(&old_rd->refcount))
486 			old_rd = NULL;
487 	}
488 
489 	atomic_inc(&rd->refcount);
490 	rq->rd = rd;
491 
492 	cpumask_set_cpu(rq->cpu, rd->span);
493 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
494 		set_rq_online(rq);
495 
496 	raw_spin_unlock_irqrestore(&rq->lock, flags);
497 
498 	if (old_rd)
499 		call_rcu(&old_rd->rcu, free_rootdomain);
500 }
501 
502 void sched_get_rd(struct root_domain *rd)
503 {
504 	atomic_inc(&rd->refcount);
505 }
506 
507 void sched_put_rd(struct root_domain *rd)
508 {
509 	if (!atomic_dec_and_test(&rd->refcount))
510 		return;
511 
512 	call_rcu(&rd->rcu, free_rootdomain);
513 }
514 
515 static int init_rootdomain(struct root_domain *rd)
516 {
517 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
518 		goto out;
519 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
520 		goto free_span;
521 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
522 		goto free_online;
523 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
524 		goto free_dlo_mask;
525 
526 #ifdef HAVE_RT_PUSH_IPI
527 	rd->rto_cpu = -1;
528 	raw_spin_lock_init(&rd->rto_lock);
529 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
530 #endif
531 
532 	rd->visit_gen = 0;
533 	init_dl_bw(&rd->dl_bw);
534 	if (cpudl_init(&rd->cpudl) != 0)
535 		goto free_rto_mask;
536 
537 	if (cpupri_init(&rd->cpupri) != 0)
538 		goto free_cpudl;
539 	return 0;
540 
541 free_cpudl:
542 	cpudl_cleanup(&rd->cpudl);
543 free_rto_mask:
544 	free_cpumask_var(rd->rto_mask);
545 free_dlo_mask:
546 	free_cpumask_var(rd->dlo_mask);
547 free_online:
548 	free_cpumask_var(rd->online);
549 free_span:
550 	free_cpumask_var(rd->span);
551 out:
552 	return -ENOMEM;
553 }
554 
555 /*
556  * By default the system creates a single root-domain with all CPUs as
557  * members (mimicking the global state we have today).
558  */
559 struct root_domain def_root_domain;
560 
561 void init_defrootdomain(void)
562 {
563 	init_rootdomain(&def_root_domain);
564 
565 	atomic_set(&def_root_domain.refcount, 1);
566 }
567 
568 static struct root_domain *alloc_rootdomain(void)
569 {
570 	struct root_domain *rd;
571 
572 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
573 	if (!rd)
574 		return NULL;
575 
576 	if (init_rootdomain(rd) != 0) {
577 		kfree(rd);
578 		return NULL;
579 	}
580 
581 	return rd;
582 }
583 
584 static void free_sched_groups(struct sched_group *sg, int free_sgc)
585 {
586 	struct sched_group *tmp, *first;
587 
588 	if (!sg)
589 		return;
590 
591 	first = sg;
592 	do {
593 		tmp = sg->next;
594 
595 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
596 			kfree(sg->sgc);
597 
598 		if (atomic_dec_and_test(&sg->ref))
599 			kfree(sg);
600 		sg = tmp;
601 	} while (sg != first);
602 }
603 
604 static void destroy_sched_domain(struct sched_domain *sd)
605 {
606 	/*
607 	 * A normal sched domain may have multiple group references, an
608 	 * overlapping domain, having private groups, only one.  Iterate,
609 	 * dropping group/capacity references, freeing where none remain.
610 	 */
611 	free_sched_groups(sd->groups, 1);
612 
613 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
614 		kfree(sd->shared);
615 	kfree(sd);
616 }
617 
618 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
619 {
620 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
621 
622 	while (sd) {
623 		struct sched_domain *parent = sd->parent;
624 		destroy_sched_domain(sd);
625 		sd = parent;
626 	}
627 }
628 
629 static void destroy_sched_domains(struct sched_domain *sd)
630 {
631 	if (sd)
632 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
633 }
634 
635 /*
636  * Keep a special pointer to the highest sched_domain that has
637  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
638  * allows us to avoid some pointer chasing select_idle_sibling().
639  *
640  * Also keep a unique ID per domain (we use the first CPU number in
641  * the cpumask of the domain), this allows us to quickly tell if
642  * two CPUs are in the same cache domain, see cpus_share_cache().
643  */
644 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
645 DEFINE_PER_CPU(int, sd_llc_size);
646 DEFINE_PER_CPU(int, sd_llc_id);
647 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
648 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
649 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
650 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
651 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
652 
653 static void update_top_cache_domain(int cpu)
654 {
655 	struct sched_domain_shared *sds = NULL;
656 	struct sched_domain *sd;
657 	int id = cpu;
658 	int size = 1;
659 
660 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
661 	if (sd) {
662 		id = cpumask_first(sched_domain_span(sd));
663 		size = cpumask_weight(sched_domain_span(sd));
664 		sds = sd->shared;
665 	}
666 
667 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
668 	per_cpu(sd_llc_size, cpu) = size;
669 	per_cpu(sd_llc_id, cpu) = id;
670 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
671 
672 	sd = lowest_flag_domain(cpu, SD_NUMA);
673 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
674 
675 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
676 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
677 
678 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
679 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
680 }
681 
682 /*
683  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
684  * hold the hotplug lock.
685  */
686 static void
687 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
688 {
689 	struct rq *rq = cpu_rq(cpu);
690 	struct sched_domain *tmp;
691 	int numa_distance = 0;
692 
693 	/* Remove the sched domains which do not contribute to scheduling. */
694 	for (tmp = sd; tmp; ) {
695 		struct sched_domain *parent = tmp->parent;
696 		if (!parent)
697 			break;
698 
699 		if (sd_parent_degenerate(tmp, parent)) {
700 			tmp->parent = parent->parent;
701 			if (parent->parent)
702 				parent->parent->child = tmp;
703 			/*
704 			 * Transfer SD_PREFER_SIBLING down in case of a
705 			 * degenerate parent; the spans match for this
706 			 * so the property transfers.
707 			 */
708 			if (parent->flags & SD_PREFER_SIBLING)
709 				tmp->flags |= SD_PREFER_SIBLING;
710 			destroy_sched_domain(parent);
711 		} else
712 			tmp = tmp->parent;
713 	}
714 
715 	if (sd && sd_degenerate(sd)) {
716 		tmp = sd;
717 		sd = sd->parent;
718 		destroy_sched_domain(tmp);
719 		if (sd)
720 			sd->child = NULL;
721 	}
722 
723 	for (tmp = sd; tmp; tmp = tmp->parent)
724 		numa_distance += !!(tmp->flags & SD_NUMA);
725 
726 	/*
727 	 * FIXME: Diameter >=3 is misrepresented.
728 	 *
729 	 * Smallest diameter=3 topology is:
730 	 *
731 	 *   node   0   1   2   3
732 	 *     0:  10  20  30  40
733 	 *     1:  20  10  20  30
734 	 *     2:  30  20  10  20
735 	 *     3:  40  30  20  10
736 	 *
737 	 *   0 --- 1 --- 2 --- 3
738 	 *
739 	 * NUMA-3	0-3		N/A		N/A		0-3
740 	 *  groups:	{0-2},{1-3}					{1-3},{0-2}
741 	 *
742 	 * NUMA-2	0-2		0-3		0-3		1-3
743 	 *  groups:	{0-1},{1-3}	{0-2},{2-3}	{1-3},{0-1}	{2-3},{0-2}
744 	 *
745 	 * NUMA-1	0-1		0-2		1-3		2-3
746 	 *  groups:	{0},{1}		{1},{2},{0}	{2},{3},{1}	{3},{2}
747 	 *
748 	 * NUMA-0	0		1		2		3
749 	 *
750 	 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
751 	 * group span isn't a subset of the domain span.
752 	 */
753 	WARN_ONCE(numa_distance > 2, "Shortest NUMA path spans too many nodes\n");
754 
755 	sched_domain_debug(sd, cpu);
756 
757 	rq_attach_root(rq, rd);
758 	tmp = rq->sd;
759 	rcu_assign_pointer(rq->sd, sd);
760 	dirty_sched_domain_sysctl(cpu);
761 	destroy_sched_domains(tmp);
762 
763 	update_top_cache_domain(cpu);
764 }
765 
766 struct s_data {
767 	struct sched_domain * __percpu *sd;
768 	struct root_domain	*rd;
769 };
770 
771 enum s_alloc {
772 	sa_rootdomain,
773 	sa_sd,
774 	sa_sd_storage,
775 	sa_none,
776 };
777 
778 /*
779  * Return the canonical balance CPU for this group, this is the first CPU
780  * of this group that's also in the balance mask.
781  *
782  * The balance mask are all those CPUs that could actually end up at this
783  * group. See build_balance_mask().
784  *
785  * Also see should_we_balance().
786  */
787 int group_balance_cpu(struct sched_group *sg)
788 {
789 	return cpumask_first(group_balance_mask(sg));
790 }
791 
792 
793 /*
794  * NUMA topology (first read the regular topology blurb below)
795  *
796  * Given a node-distance table, for example:
797  *
798  *   node   0   1   2   3
799  *     0:  10  20  30  20
800  *     1:  20  10  20  30
801  *     2:  30  20  10  20
802  *     3:  20  30  20  10
803  *
804  * which represents a 4 node ring topology like:
805  *
806  *   0 ----- 1
807  *   |       |
808  *   |       |
809  *   |       |
810  *   3 ----- 2
811  *
812  * We want to construct domains and groups to represent this. The way we go
813  * about doing this is to build the domains on 'hops'. For each NUMA level we
814  * construct the mask of all nodes reachable in @level hops.
815  *
816  * For the above NUMA topology that gives 3 levels:
817  *
818  * NUMA-2	0-3		0-3		0-3		0-3
819  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
820  *
821  * NUMA-1	0-1,3		0-2		1-3		0,2-3
822  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
823  *
824  * NUMA-0	0		1		2		3
825  *
826  *
827  * As can be seen; things don't nicely line up as with the regular topology.
828  * When we iterate a domain in child domain chunks some nodes can be
829  * represented multiple times -- hence the "overlap" naming for this part of
830  * the topology.
831  *
832  * In order to minimize this overlap, we only build enough groups to cover the
833  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
834  *
835  * Because:
836  *
837  *  - the first group of each domain is its child domain; this
838  *    gets us the first 0-1,3
839  *  - the only uncovered node is 2, who's child domain is 1-3.
840  *
841  * However, because of the overlap, computing a unique CPU for each group is
842  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
843  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
844  * end up at those groups (they would end up in group: 0-1,3).
845  *
846  * To correct this we have to introduce the group balance mask. This mask
847  * will contain those CPUs in the group that can reach this group given the
848  * (child) domain tree.
849  *
850  * With this we can once again compute balance_cpu and sched_group_capacity
851  * relations.
852  *
853  * XXX include words on how balance_cpu is unique and therefore can be
854  * used for sched_group_capacity links.
855  *
856  *
857  * Another 'interesting' topology is:
858  *
859  *   node   0   1   2   3
860  *     0:  10  20  20  30
861  *     1:  20  10  20  20
862  *     2:  20  20  10  20
863  *     3:  30  20  20  10
864  *
865  * Which looks a little like:
866  *
867  *   0 ----- 1
868  *   |     / |
869  *   |   /   |
870  *   | /     |
871  *   2 ----- 3
872  *
873  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
874  * are not.
875  *
876  * This leads to a few particularly weird cases where the sched_domain's are
877  * not of the same number for each CPU. Consider:
878  *
879  * NUMA-2	0-3						0-3
880  *  groups:	{0-2},{1-3}					{1-3},{0-2}
881  *
882  * NUMA-1	0-2		0-3		0-3		1-3
883  *
884  * NUMA-0	0		1		2		3
885  *
886  */
887 
888 
889 /*
890  * Build the balance mask; it contains only those CPUs that can arrive at this
891  * group and should be considered to continue balancing.
892  *
893  * We do this during the group creation pass, therefore the group information
894  * isn't complete yet, however since each group represents a (child) domain we
895  * can fully construct this using the sched_domain bits (which are already
896  * complete).
897  */
898 static void
899 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
900 {
901 	const struct cpumask *sg_span = sched_group_span(sg);
902 	struct sd_data *sdd = sd->private;
903 	struct sched_domain *sibling;
904 	int i;
905 
906 	cpumask_clear(mask);
907 
908 	for_each_cpu(i, sg_span) {
909 		sibling = *per_cpu_ptr(sdd->sd, i);
910 
911 		/*
912 		 * Can happen in the asymmetric case, where these siblings are
913 		 * unused. The mask will not be empty because those CPUs that
914 		 * do have the top domain _should_ span the domain.
915 		 */
916 		if (!sibling->child)
917 			continue;
918 
919 		/* If we would not end up here, we can't continue from here */
920 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
921 			continue;
922 
923 		cpumask_set_cpu(i, mask);
924 	}
925 
926 	/* We must not have empty masks here */
927 	WARN_ON_ONCE(cpumask_empty(mask));
928 }
929 
930 /*
931  * XXX: This creates per-node group entries; since the load-balancer will
932  * immediately access remote memory to construct this group's load-balance
933  * statistics having the groups node local is of dubious benefit.
934  */
935 static struct sched_group *
936 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
937 {
938 	struct sched_group *sg;
939 	struct cpumask *sg_span;
940 
941 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
942 			GFP_KERNEL, cpu_to_node(cpu));
943 
944 	if (!sg)
945 		return NULL;
946 
947 	sg_span = sched_group_span(sg);
948 	if (sd->child)
949 		cpumask_copy(sg_span, sched_domain_span(sd->child));
950 	else
951 		cpumask_copy(sg_span, sched_domain_span(sd));
952 
953 	atomic_inc(&sg->ref);
954 	return sg;
955 }
956 
957 static void init_overlap_sched_group(struct sched_domain *sd,
958 				     struct sched_group *sg)
959 {
960 	struct cpumask *mask = sched_domains_tmpmask2;
961 	struct sd_data *sdd = sd->private;
962 	struct cpumask *sg_span;
963 	int cpu;
964 
965 	build_balance_mask(sd, sg, mask);
966 	cpu = cpumask_first_and(sched_group_span(sg), mask);
967 
968 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
969 	if (atomic_inc_return(&sg->sgc->ref) == 1)
970 		cpumask_copy(group_balance_mask(sg), mask);
971 	else
972 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
973 
974 	/*
975 	 * Initialize sgc->capacity such that even if we mess up the
976 	 * domains and no possible iteration will get us here, we won't
977 	 * die on a /0 trap.
978 	 */
979 	sg_span = sched_group_span(sg);
980 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
981 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
982 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
983 }
984 
985 static int
986 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
987 {
988 	struct sched_group *first = NULL, *last = NULL, *sg;
989 	const struct cpumask *span = sched_domain_span(sd);
990 	struct cpumask *covered = sched_domains_tmpmask;
991 	struct sd_data *sdd = sd->private;
992 	struct sched_domain *sibling;
993 	int i;
994 
995 	cpumask_clear(covered);
996 
997 	for_each_cpu_wrap(i, span, cpu) {
998 		struct cpumask *sg_span;
999 
1000 		if (cpumask_test_cpu(i, covered))
1001 			continue;
1002 
1003 		sibling = *per_cpu_ptr(sdd->sd, i);
1004 
1005 		/*
1006 		 * Asymmetric node setups can result in situations where the
1007 		 * domain tree is of unequal depth, make sure to skip domains
1008 		 * that already cover the entire range.
1009 		 *
1010 		 * In that case build_sched_domains() will have terminated the
1011 		 * iteration early and our sibling sd spans will be empty.
1012 		 * Domains should always include the CPU they're built on, so
1013 		 * check that.
1014 		 */
1015 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1016 			continue;
1017 
1018 		sg = build_group_from_child_sched_domain(sibling, cpu);
1019 		if (!sg)
1020 			goto fail;
1021 
1022 		sg_span = sched_group_span(sg);
1023 		cpumask_or(covered, covered, sg_span);
1024 
1025 		init_overlap_sched_group(sd, sg);
1026 
1027 		if (!first)
1028 			first = sg;
1029 		if (last)
1030 			last->next = sg;
1031 		last = sg;
1032 		last->next = first;
1033 	}
1034 	sd->groups = first;
1035 
1036 	return 0;
1037 
1038 fail:
1039 	free_sched_groups(first, 0);
1040 
1041 	return -ENOMEM;
1042 }
1043 
1044 
1045 /*
1046  * Package topology (also see the load-balance blurb in fair.c)
1047  *
1048  * The scheduler builds a tree structure to represent a number of important
1049  * topology features. By default (default_topology[]) these include:
1050  *
1051  *  - Simultaneous multithreading (SMT)
1052  *  - Multi-Core Cache (MC)
1053  *  - Package (DIE)
1054  *
1055  * Where the last one more or less denotes everything up to a NUMA node.
1056  *
1057  * The tree consists of 3 primary data structures:
1058  *
1059  *	sched_domain -> sched_group -> sched_group_capacity
1060  *	    ^ ^             ^ ^
1061  *          `-'             `-'
1062  *
1063  * The sched_domains are per-CPU and have a two way link (parent & child) and
1064  * denote the ever growing mask of CPUs belonging to that level of topology.
1065  *
1066  * Each sched_domain has a circular (double) linked list of sched_group's, each
1067  * denoting the domains of the level below (or individual CPUs in case of the
1068  * first domain level). The sched_group linked by a sched_domain includes the
1069  * CPU of that sched_domain [*].
1070  *
1071  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1072  *
1073  * CPU   0   1   2   3   4   5   6   7
1074  *
1075  * DIE  [                             ]
1076  * MC   [             ] [             ]
1077  * SMT  [     ] [     ] [     ] [     ]
1078  *
1079  *  - or -
1080  *
1081  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1082  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1083  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1084  *
1085  * CPU   0   1   2   3   4   5   6   7
1086  *
1087  * One way to think about it is: sched_domain moves you up and down among these
1088  * topology levels, while sched_group moves you sideways through it, at child
1089  * domain granularity.
1090  *
1091  * sched_group_capacity ensures each unique sched_group has shared storage.
1092  *
1093  * There are two related construction problems, both require a CPU that
1094  * uniquely identify each group (for a given domain):
1095  *
1096  *  - The first is the balance_cpu (see should_we_balance() and the
1097  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1098  *    continue balancing at a higher domain.
1099  *
1100  *  - The second is the sched_group_capacity; we want all identical groups
1101  *    to share a single sched_group_capacity.
1102  *
1103  * Since these topologies are exclusive by construction. That is, its
1104  * impossible for an SMT thread to belong to multiple cores, and cores to
1105  * be part of multiple caches. There is a very clear and unique location
1106  * for each CPU in the hierarchy.
1107  *
1108  * Therefore computing a unique CPU for each group is trivial (the iteration
1109  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1110  * group), we can simply pick the first CPU in each group.
1111  *
1112  *
1113  * [*] in other words, the first group of each domain is its child domain.
1114  */
1115 
1116 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1117 {
1118 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1119 	struct sched_domain *child = sd->child;
1120 	struct sched_group *sg;
1121 	bool already_visited;
1122 
1123 	if (child)
1124 		cpu = cpumask_first(sched_domain_span(child));
1125 
1126 	sg = *per_cpu_ptr(sdd->sg, cpu);
1127 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1128 
1129 	/* Increase refcounts for claim_allocations: */
1130 	already_visited = atomic_inc_return(&sg->ref) > 1;
1131 	/* sgc visits should follow a similar trend as sg */
1132 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1133 
1134 	/* If we have already visited that group, it's already initialized. */
1135 	if (already_visited)
1136 		return sg;
1137 
1138 	if (child) {
1139 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1140 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1141 	} else {
1142 		cpumask_set_cpu(cpu, sched_group_span(sg));
1143 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1144 	}
1145 
1146 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1147 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1148 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1149 
1150 	return sg;
1151 }
1152 
1153 /*
1154  * build_sched_groups will build a circular linked list of the groups
1155  * covered by the given span, will set each group's ->cpumask correctly,
1156  * and will initialize their ->sgc.
1157  *
1158  * Assumes the sched_domain tree is fully constructed
1159  */
1160 static int
1161 build_sched_groups(struct sched_domain *sd, int cpu)
1162 {
1163 	struct sched_group *first = NULL, *last = NULL;
1164 	struct sd_data *sdd = sd->private;
1165 	const struct cpumask *span = sched_domain_span(sd);
1166 	struct cpumask *covered;
1167 	int i;
1168 
1169 	lockdep_assert_held(&sched_domains_mutex);
1170 	covered = sched_domains_tmpmask;
1171 
1172 	cpumask_clear(covered);
1173 
1174 	for_each_cpu_wrap(i, span, cpu) {
1175 		struct sched_group *sg;
1176 
1177 		if (cpumask_test_cpu(i, covered))
1178 			continue;
1179 
1180 		sg = get_group(i, sdd);
1181 
1182 		cpumask_or(covered, covered, sched_group_span(sg));
1183 
1184 		if (!first)
1185 			first = sg;
1186 		if (last)
1187 			last->next = sg;
1188 		last = sg;
1189 	}
1190 	last->next = first;
1191 	sd->groups = first;
1192 
1193 	return 0;
1194 }
1195 
1196 /*
1197  * Initialize sched groups cpu_capacity.
1198  *
1199  * cpu_capacity indicates the capacity of sched group, which is used while
1200  * distributing the load between different sched groups in a sched domain.
1201  * Typically cpu_capacity for all the groups in a sched domain will be same
1202  * unless there are asymmetries in the topology. If there are asymmetries,
1203  * group having more cpu_capacity will pickup more load compared to the
1204  * group having less cpu_capacity.
1205  */
1206 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1207 {
1208 	struct sched_group *sg = sd->groups;
1209 
1210 	WARN_ON(!sg);
1211 
1212 	do {
1213 		int cpu, max_cpu = -1;
1214 
1215 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1216 
1217 		if (!(sd->flags & SD_ASYM_PACKING))
1218 			goto next;
1219 
1220 		for_each_cpu(cpu, sched_group_span(sg)) {
1221 			if (max_cpu < 0)
1222 				max_cpu = cpu;
1223 			else if (sched_asym_prefer(cpu, max_cpu))
1224 				max_cpu = cpu;
1225 		}
1226 		sg->asym_prefer_cpu = max_cpu;
1227 
1228 next:
1229 		sg = sg->next;
1230 	} while (sg != sd->groups);
1231 
1232 	if (cpu != group_balance_cpu(sg))
1233 		return;
1234 
1235 	update_group_capacity(sd, cpu);
1236 }
1237 
1238 /*
1239  * Initializers for schedule domains
1240  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1241  */
1242 
1243 static int default_relax_domain_level = -1;
1244 int sched_domain_level_max;
1245 
1246 static int __init setup_relax_domain_level(char *str)
1247 {
1248 	if (kstrtoint(str, 0, &default_relax_domain_level))
1249 		pr_warn("Unable to set relax_domain_level\n");
1250 
1251 	return 1;
1252 }
1253 __setup("relax_domain_level=", setup_relax_domain_level);
1254 
1255 static void set_domain_attribute(struct sched_domain *sd,
1256 				 struct sched_domain_attr *attr)
1257 {
1258 	int request;
1259 
1260 	if (!attr || attr->relax_domain_level < 0) {
1261 		if (default_relax_domain_level < 0)
1262 			return;
1263 		request = default_relax_domain_level;
1264 	} else
1265 		request = attr->relax_domain_level;
1266 
1267 	if (sd->level > request) {
1268 		/* Turn off idle balance on this domain: */
1269 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1270 	}
1271 }
1272 
1273 static void __sdt_free(const struct cpumask *cpu_map);
1274 static int __sdt_alloc(const struct cpumask *cpu_map);
1275 
1276 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1277 				 const struct cpumask *cpu_map)
1278 {
1279 	switch (what) {
1280 	case sa_rootdomain:
1281 		if (!atomic_read(&d->rd->refcount))
1282 			free_rootdomain(&d->rd->rcu);
1283 		fallthrough;
1284 	case sa_sd:
1285 		free_percpu(d->sd);
1286 		fallthrough;
1287 	case sa_sd_storage:
1288 		__sdt_free(cpu_map);
1289 		fallthrough;
1290 	case sa_none:
1291 		break;
1292 	}
1293 }
1294 
1295 static enum s_alloc
1296 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1297 {
1298 	memset(d, 0, sizeof(*d));
1299 
1300 	if (__sdt_alloc(cpu_map))
1301 		return sa_sd_storage;
1302 	d->sd = alloc_percpu(struct sched_domain *);
1303 	if (!d->sd)
1304 		return sa_sd_storage;
1305 	d->rd = alloc_rootdomain();
1306 	if (!d->rd)
1307 		return sa_sd;
1308 
1309 	return sa_rootdomain;
1310 }
1311 
1312 /*
1313  * NULL the sd_data elements we've used to build the sched_domain and
1314  * sched_group structure so that the subsequent __free_domain_allocs()
1315  * will not free the data we're using.
1316  */
1317 static void claim_allocations(int cpu, struct sched_domain *sd)
1318 {
1319 	struct sd_data *sdd = sd->private;
1320 
1321 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1322 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1323 
1324 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1325 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1326 
1327 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1328 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1329 
1330 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1331 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1332 }
1333 
1334 #ifdef CONFIG_NUMA
1335 enum numa_topology_type sched_numa_topology_type;
1336 
1337 static int			sched_domains_numa_levels;
1338 static int			sched_domains_curr_level;
1339 
1340 int				sched_max_numa_distance;
1341 static int			*sched_domains_numa_distance;
1342 static struct cpumask		***sched_domains_numa_masks;
1343 int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1344 #endif
1345 
1346 /*
1347  * SD_flags allowed in topology descriptions.
1348  *
1349  * These flags are purely descriptive of the topology and do not prescribe
1350  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1351  * function:
1352  *
1353  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1354  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1355  *   SD_NUMA                - describes NUMA topologies
1356  *
1357  * Odd one out, which beside describing the topology has a quirk also
1358  * prescribes the desired behaviour that goes along with it:
1359  *
1360  *   SD_ASYM_PACKING        - describes SMT quirks
1361  */
1362 #define TOPOLOGY_SD_FLAGS		\
1363 	(SD_SHARE_CPUCAPACITY	|	\
1364 	 SD_SHARE_PKG_RESOURCES |	\
1365 	 SD_NUMA		|	\
1366 	 SD_ASYM_PACKING)
1367 
1368 static struct sched_domain *
1369 sd_init(struct sched_domain_topology_level *tl,
1370 	const struct cpumask *cpu_map,
1371 	struct sched_domain *child, int dflags, int cpu)
1372 {
1373 	struct sd_data *sdd = &tl->data;
1374 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1375 	int sd_id, sd_weight, sd_flags = 0;
1376 
1377 #ifdef CONFIG_NUMA
1378 	/*
1379 	 * Ugly hack to pass state to sd_numa_mask()...
1380 	 */
1381 	sched_domains_curr_level = tl->numa_level;
1382 #endif
1383 
1384 	sd_weight = cpumask_weight(tl->mask(cpu));
1385 
1386 	if (tl->sd_flags)
1387 		sd_flags = (*tl->sd_flags)();
1388 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1389 			"wrong sd_flags in topology description\n"))
1390 		sd_flags &= TOPOLOGY_SD_FLAGS;
1391 
1392 	/* Apply detected topology flags */
1393 	sd_flags |= dflags;
1394 
1395 	*sd = (struct sched_domain){
1396 		.min_interval		= sd_weight,
1397 		.max_interval		= 2*sd_weight,
1398 		.busy_factor		= 16,
1399 		.imbalance_pct		= 117,
1400 
1401 		.cache_nice_tries	= 0,
1402 
1403 		.flags			= 1*SD_BALANCE_NEWIDLE
1404 					| 1*SD_BALANCE_EXEC
1405 					| 1*SD_BALANCE_FORK
1406 					| 0*SD_BALANCE_WAKE
1407 					| 1*SD_WAKE_AFFINE
1408 					| 0*SD_SHARE_CPUCAPACITY
1409 					| 0*SD_SHARE_PKG_RESOURCES
1410 					| 0*SD_SERIALIZE
1411 					| 1*SD_PREFER_SIBLING
1412 					| 0*SD_NUMA
1413 					| sd_flags
1414 					,
1415 
1416 		.last_balance		= jiffies,
1417 		.balance_interval	= sd_weight,
1418 		.max_newidle_lb_cost	= 0,
1419 		.next_decay_max_lb_cost	= jiffies,
1420 		.child			= child,
1421 #ifdef CONFIG_SCHED_DEBUG
1422 		.name			= tl->name,
1423 #endif
1424 	};
1425 
1426 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1427 	sd_id = cpumask_first(sched_domain_span(sd));
1428 
1429 	/*
1430 	 * Convert topological properties into behaviour.
1431 	 */
1432 
1433 	/* Don't attempt to spread across CPUs of different capacities. */
1434 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1435 		sd->child->flags &= ~SD_PREFER_SIBLING;
1436 
1437 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1438 		sd->imbalance_pct = 110;
1439 
1440 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1441 		sd->imbalance_pct = 117;
1442 		sd->cache_nice_tries = 1;
1443 
1444 #ifdef CONFIG_NUMA
1445 	} else if (sd->flags & SD_NUMA) {
1446 		sd->cache_nice_tries = 2;
1447 
1448 		sd->flags &= ~SD_PREFER_SIBLING;
1449 		sd->flags |= SD_SERIALIZE;
1450 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1451 			sd->flags &= ~(SD_BALANCE_EXEC |
1452 				       SD_BALANCE_FORK |
1453 				       SD_WAKE_AFFINE);
1454 		}
1455 
1456 #endif
1457 	} else {
1458 		sd->cache_nice_tries = 1;
1459 	}
1460 
1461 	/*
1462 	 * For all levels sharing cache; connect a sched_domain_shared
1463 	 * instance.
1464 	 */
1465 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1466 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1467 		atomic_inc(&sd->shared->ref);
1468 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1469 	}
1470 
1471 	sd->private = sdd;
1472 
1473 	return sd;
1474 }
1475 
1476 /*
1477  * Topology list, bottom-up.
1478  */
1479 static struct sched_domain_topology_level default_topology[] = {
1480 #ifdef CONFIG_SCHED_SMT
1481 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1482 #endif
1483 #ifdef CONFIG_SCHED_MC
1484 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1485 #endif
1486 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1487 	{ NULL, },
1488 };
1489 
1490 static struct sched_domain_topology_level *sched_domain_topology =
1491 	default_topology;
1492 
1493 #define for_each_sd_topology(tl)			\
1494 	for (tl = sched_domain_topology; tl->mask; tl++)
1495 
1496 void set_sched_topology(struct sched_domain_topology_level *tl)
1497 {
1498 	if (WARN_ON_ONCE(sched_smp_initialized))
1499 		return;
1500 
1501 	sched_domain_topology = tl;
1502 }
1503 
1504 #ifdef CONFIG_NUMA
1505 
1506 static const struct cpumask *sd_numa_mask(int cpu)
1507 {
1508 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1509 }
1510 
1511 static void sched_numa_warn(const char *str)
1512 {
1513 	static int done = false;
1514 	int i,j;
1515 
1516 	if (done)
1517 		return;
1518 
1519 	done = true;
1520 
1521 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1522 
1523 	for (i = 0; i < nr_node_ids; i++) {
1524 		printk(KERN_WARNING "  ");
1525 		for (j = 0; j < nr_node_ids; j++)
1526 			printk(KERN_CONT "%02d ", node_distance(i,j));
1527 		printk(KERN_CONT "\n");
1528 	}
1529 	printk(KERN_WARNING "\n");
1530 }
1531 
1532 bool find_numa_distance(int distance)
1533 {
1534 	int i;
1535 
1536 	if (distance == node_distance(0, 0))
1537 		return true;
1538 
1539 	for (i = 0; i < sched_domains_numa_levels; i++) {
1540 		if (sched_domains_numa_distance[i] == distance)
1541 			return true;
1542 	}
1543 
1544 	return false;
1545 }
1546 
1547 /*
1548  * A system can have three types of NUMA topology:
1549  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1550  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1551  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1552  *
1553  * The difference between a glueless mesh topology and a backplane
1554  * topology lies in whether communication between not directly
1555  * connected nodes goes through intermediary nodes (where programs
1556  * could run), or through backplane controllers. This affects
1557  * placement of programs.
1558  *
1559  * The type of topology can be discerned with the following tests:
1560  * - If the maximum distance between any nodes is 1 hop, the system
1561  *   is directly connected.
1562  * - If for two nodes A and B, located N > 1 hops away from each other,
1563  *   there is an intermediary node C, which is < N hops away from both
1564  *   nodes A and B, the system is a glueless mesh.
1565  */
1566 static void init_numa_topology_type(void)
1567 {
1568 	int a, b, c, n;
1569 
1570 	n = sched_max_numa_distance;
1571 
1572 	if (sched_domains_numa_levels <= 2) {
1573 		sched_numa_topology_type = NUMA_DIRECT;
1574 		return;
1575 	}
1576 
1577 	for_each_online_node(a) {
1578 		for_each_online_node(b) {
1579 			/* Find two nodes furthest removed from each other. */
1580 			if (node_distance(a, b) < n)
1581 				continue;
1582 
1583 			/* Is there an intermediary node between a and b? */
1584 			for_each_online_node(c) {
1585 				if (node_distance(a, c) < n &&
1586 				    node_distance(b, c) < n) {
1587 					sched_numa_topology_type =
1588 							NUMA_GLUELESS_MESH;
1589 					return;
1590 				}
1591 			}
1592 
1593 			sched_numa_topology_type = NUMA_BACKPLANE;
1594 			return;
1595 		}
1596 	}
1597 }
1598 
1599 void sched_init_numa(void)
1600 {
1601 	int next_distance, curr_distance = node_distance(0, 0);
1602 	struct sched_domain_topology_level *tl;
1603 	int level = 0;
1604 	int i, j, k;
1605 
1606 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1607 	if (!sched_domains_numa_distance)
1608 		return;
1609 
1610 	/* Includes NUMA identity node at level 0. */
1611 	sched_domains_numa_distance[level++] = curr_distance;
1612 	sched_domains_numa_levels = level;
1613 
1614 	/*
1615 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1616 	 * unique distances in the node_distance() table.
1617 	 *
1618 	 * Assumes node_distance(0,j) includes all distances in
1619 	 * node_distance(i,j) in order to avoid cubic time.
1620 	 */
1621 	next_distance = curr_distance;
1622 	for (i = 0; i < nr_node_ids; i++) {
1623 		for (j = 0; j < nr_node_ids; j++) {
1624 			for (k = 0; k < nr_node_ids; k++) {
1625 				int distance = node_distance(i, k);
1626 
1627 				if (distance > curr_distance &&
1628 				    (distance < next_distance ||
1629 				     next_distance == curr_distance))
1630 					next_distance = distance;
1631 
1632 				/*
1633 				 * While not a strong assumption it would be nice to know
1634 				 * about cases where if node A is connected to B, B is not
1635 				 * equally connected to A.
1636 				 */
1637 				if (sched_debug() && node_distance(k, i) != distance)
1638 					sched_numa_warn("Node-distance not symmetric");
1639 
1640 				if (sched_debug() && i && !find_numa_distance(distance))
1641 					sched_numa_warn("Node-0 not representative");
1642 			}
1643 			if (next_distance != curr_distance) {
1644 				sched_domains_numa_distance[level++] = next_distance;
1645 				sched_domains_numa_levels = level;
1646 				curr_distance = next_distance;
1647 			} else break;
1648 		}
1649 
1650 		/*
1651 		 * In case of sched_debug() we verify the above assumption.
1652 		 */
1653 		if (!sched_debug())
1654 			break;
1655 	}
1656 
1657 	/*
1658 	 * 'level' contains the number of unique distances
1659 	 *
1660 	 * The sched_domains_numa_distance[] array includes the actual distance
1661 	 * numbers.
1662 	 */
1663 
1664 	/*
1665 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1666 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1667 	 * the array will contain less then 'level' members. This could be
1668 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1669 	 * in other functions.
1670 	 *
1671 	 * We reset it to 'level' at the end of this function.
1672 	 */
1673 	sched_domains_numa_levels = 0;
1674 
1675 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1676 	if (!sched_domains_numa_masks)
1677 		return;
1678 
1679 	/*
1680 	 * Now for each level, construct a mask per node which contains all
1681 	 * CPUs of nodes that are that many hops away from us.
1682 	 */
1683 	for (i = 0; i < level; i++) {
1684 		sched_domains_numa_masks[i] =
1685 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1686 		if (!sched_domains_numa_masks[i])
1687 			return;
1688 
1689 		for (j = 0; j < nr_node_ids; j++) {
1690 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1691 			if (!mask)
1692 				return;
1693 
1694 			sched_domains_numa_masks[i][j] = mask;
1695 
1696 			for_each_node(k) {
1697 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1698 					continue;
1699 
1700 				cpumask_or(mask, mask, cpumask_of_node(k));
1701 			}
1702 		}
1703 	}
1704 
1705 	/* Compute default topology size */
1706 	for (i = 0; sched_domain_topology[i].mask; i++);
1707 
1708 	tl = kzalloc((i + level + 1) *
1709 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1710 	if (!tl)
1711 		return;
1712 
1713 	/*
1714 	 * Copy the default topology bits..
1715 	 */
1716 	for (i = 0; sched_domain_topology[i].mask; i++)
1717 		tl[i] = sched_domain_topology[i];
1718 
1719 	/*
1720 	 * Add the NUMA identity distance, aka single NODE.
1721 	 */
1722 	tl[i++] = (struct sched_domain_topology_level){
1723 		.mask = sd_numa_mask,
1724 		.numa_level = 0,
1725 		SD_INIT_NAME(NODE)
1726 	};
1727 
1728 	/*
1729 	 * .. and append 'j' levels of NUMA goodness.
1730 	 */
1731 	for (j = 1; j < level; i++, j++) {
1732 		tl[i] = (struct sched_domain_topology_level){
1733 			.mask = sd_numa_mask,
1734 			.sd_flags = cpu_numa_flags,
1735 			.flags = SDTL_OVERLAP,
1736 			.numa_level = j,
1737 			SD_INIT_NAME(NUMA)
1738 		};
1739 	}
1740 
1741 	sched_domain_topology = tl;
1742 
1743 	sched_domains_numa_levels = level;
1744 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1745 
1746 	init_numa_topology_type();
1747 }
1748 
1749 void sched_domains_numa_masks_set(unsigned int cpu)
1750 {
1751 	int node = cpu_to_node(cpu);
1752 	int i, j;
1753 
1754 	for (i = 0; i < sched_domains_numa_levels; i++) {
1755 		for (j = 0; j < nr_node_ids; j++) {
1756 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1757 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1758 		}
1759 	}
1760 }
1761 
1762 void sched_domains_numa_masks_clear(unsigned int cpu)
1763 {
1764 	int i, j;
1765 
1766 	for (i = 0; i < sched_domains_numa_levels; i++) {
1767 		for (j = 0; j < nr_node_ids; j++)
1768 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1769 	}
1770 }
1771 
1772 /*
1773  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1774  *                             closest to @cpu from @cpumask.
1775  * cpumask: cpumask to find a cpu from
1776  * cpu: cpu to be close to
1777  *
1778  * returns: cpu, or nr_cpu_ids when nothing found.
1779  */
1780 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1781 {
1782 	int i, j = cpu_to_node(cpu);
1783 
1784 	for (i = 0; i < sched_domains_numa_levels; i++) {
1785 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1786 		if (cpu < nr_cpu_ids)
1787 			return cpu;
1788 	}
1789 	return nr_cpu_ids;
1790 }
1791 
1792 #endif /* CONFIG_NUMA */
1793 
1794 static int __sdt_alloc(const struct cpumask *cpu_map)
1795 {
1796 	struct sched_domain_topology_level *tl;
1797 	int j;
1798 
1799 	for_each_sd_topology(tl) {
1800 		struct sd_data *sdd = &tl->data;
1801 
1802 		sdd->sd = alloc_percpu(struct sched_domain *);
1803 		if (!sdd->sd)
1804 			return -ENOMEM;
1805 
1806 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1807 		if (!sdd->sds)
1808 			return -ENOMEM;
1809 
1810 		sdd->sg = alloc_percpu(struct sched_group *);
1811 		if (!sdd->sg)
1812 			return -ENOMEM;
1813 
1814 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1815 		if (!sdd->sgc)
1816 			return -ENOMEM;
1817 
1818 		for_each_cpu(j, cpu_map) {
1819 			struct sched_domain *sd;
1820 			struct sched_domain_shared *sds;
1821 			struct sched_group *sg;
1822 			struct sched_group_capacity *sgc;
1823 
1824 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1825 					GFP_KERNEL, cpu_to_node(j));
1826 			if (!sd)
1827 				return -ENOMEM;
1828 
1829 			*per_cpu_ptr(sdd->sd, j) = sd;
1830 
1831 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1832 					GFP_KERNEL, cpu_to_node(j));
1833 			if (!sds)
1834 				return -ENOMEM;
1835 
1836 			*per_cpu_ptr(sdd->sds, j) = sds;
1837 
1838 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1839 					GFP_KERNEL, cpu_to_node(j));
1840 			if (!sg)
1841 				return -ENOMEM;
1842 
1843 			sg->next = sg;
1844 
1845 			*per_cpu_ptr(sdd->sg, j) = sg;
1846 
1847 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1848 					GFP_KERNEL, cpu_to_node(j));
1849 			if (!sgc)
1850 				return -ENOMEM;
1851 
1852 #ifdef CONFIG_SCHED_DEBUG
1853 			sgc->id = j;
1854 #endif
1855 
1856 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1857 		}
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 static void __sdt_free(const struct cpumask *cpu_map)
1864 {
1865 	struct sched_domain_topology_level *tl;
1866 	int j;
1867 
1868 	for_each_sd_topology(tl) {
1869 		struct sd_data *sdd = &tl->data;
1870 
1871 		for_each_cpu(j, cpu_map) {
1872 			struct sched_domain *sd;
1873 
1874 			if (sdd->sd) {
1875 				sd = *per_cpu_ptr(sdd->sd, j);
1876 				if (sd && (sd->flags & SD_OVERLAP))
1877 					free_sched_groups(sd->groups, 0);
1878 				kfree(*per_cpu_ptr(sdd->sd, j));
1879 			}
1880 
1881 			if (sdd->sds)
1882 				kfree(*per_cpu_ptr(sdd->sds, j));
1883 			if (sdd->sg)
1884 				kfree(*per_cpu_ptr(sdd->sg, j));
1885 			if (sdd->sgc)
1886 				kfree(*per_cpu_ptr(sdd->sgc, j));
1887 		}
1888 		free_percpu(sdd->sd);
1889 		sdd->sd = NULL;
1890 		free_percpu(sdd->sds);
1891 		sdd->sds = NULL;
1892 		free_percpu(sdd->sg);
1893 		sdd->sg = NULL;
1894 		free_percpu(sdd->sgc);
1895 		sdd->sgc = NULL;
1896 	}
1897 }
1898 
1899 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1900 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1901 		struct sched_domain *child, int dflags, int cpu)
1902 {
1903 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1904 
1905 	if (child) {
1906 		sd->level = child->level + 1;
1907 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1908 		child->parent = sd;
1909 
1910 		if (!cpumask_subset(sched_domain_span(child),
1911 				    sched_domain_span(sd))) {
1912 			pr_err("BUG: arch topology borken\n");
1913 #ifdef CONFIG_SCHED_DEBUG
1914 			pr_err("     the %s domain not a subset of the %s domain\n",
1915 					child->name, sd->name);
1916 #endif
1917 			/* Fixup, ensure @sd has at least @child CPUs. */
1918 			cpumask_or(sched_domain_span(sd),
1919 				   sched_domain_span(sd),
1920 				   sched_domain_span(child));
1921 		}
1922 
1923 	}
1924 	set_domain_attribute(sd, attr);
1925 
1926 	return sd;
1927 }
1928 
1929 /*
1930  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1931  * any two given CPUs at this (non-NUMA) topology level.
1932  */
1933 static bool topology_span_sane(struct sched_domain_topology_level *tl,
1934 			      const struct cpumask *cpu_map, int cpu)
1935 {
1936 	int i;
1937 
1938 	/* NUMA levels are allowed to overlap */
1939 	if (tl->flags & SDTL_OVERLAP)
1940 		return true;
1941 
1942 	/*
1943 	 * Non-NUMA levels cannot partially overlap - they must be either
1944 	 * completely equal or completely disjoint. Otherwise we can end up
1945 	 * breaking the sched_group lists - i.e. a later get_group() pass
1946 	 * breaks the linking done for an earlier span.
1947 	 */
1948 	for_each_cpu(i, cpu_map) {
1949 		if (i == cpu)
1950 			continue;
1951 		/*
1952 		 * We should 'and' all those masks with 'cpu_map' to exactly
1953 		 * match the topology we're about to build, but that can only
1954 		 * remove CPUs, which only lessens our ability to detect
1955 		 * overlaps
1956 		 */
1957 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1958 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1959 			return false;
1960 	}
1961 
1962 	return true;
1963 }
1964 
1965 /*
1966  * Find the sched_domain_topology_level where all CPU capacities are visible
1967  * for all CPUs.
1968  */
1969 static struct sched_domain_topology_level
1970 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1971 {
1972 	int i, j, asym_level = 0;
1973 	bool asym = false;
1974 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1975 	unsigned long cap;
1976 
1977 	/* Is there any asymmetry? */
1978 	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1979 
1980 	for_each_cpu(i, cpu_map) {
1981 		if (arch_scale_cpu_capacity(i) != cap) {
1982 			asym = true;
1983 			break;
1984 		}
1985 	}
1986 
1987 	if (!asym)
1988 		return NULL;
1989 
1990 	/*
1991 	 * Examine topology from all CPU's point of views to detect the lowest
1992 	 * sched_domain_topology_level where a highest capacity CPU is visible
1993 	 * to everyone.
1994 	 */
1995 	for_each_cpu(i, cpu_map) {
1996 		unsigned long max_capacity = arch_scale_cpu_capacity(i);
1997 		int tl_id = 0;
1998 
1999 		for_each_sd_topology(tl) {
2000 			if (tl_id < asym_level)
2001 				goto next_level;
2002 
2003 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
2004 				unsigned long capacity;
2005 
2006 				capacity = arch_scale_cpu_capacity(j);
2007 
2008 				if (capacity <= max_capacity)
2009 					continue;
2010 
2011 				max_capacity = capacity;
2012 				asym_level = tl_id;
2013 				asym_tl = tl;
2014 			}
2015 next_level:
2016 			tl_id++;
2017 		}
2018 	}
2019 
2020 	return asym_tl;
2021 }
2022 
2023 
2024 /*
2025  * Build sched domains for a given set of CPUs and attach the sched domains
2026  * to the individual CPUs
2027  */
2028 static int
2029 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2030 {
2031 	enum s_alloc alloc_state = sa_none;
2032 	struct sched_domain *sd;
2033 	struct s_data d;
2034 	struct rq *rq = NULL;
2035 	int i, ret = -ENOMEM;
2036 	struct sched_domain_topology_level *tl_asym;
2037 	bool has_asym = false;
2038 
2039 	if (WARN_ON(cpumask_empty(cpu_map)))
2040 		goto error;
2041 
2042 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2043 	if (alloc_state != sa_rootdomain)
2044 		goto error;
2045 
2046 	tl_asym = asym_cpu_capacity_level(cpu_map);
2047 
2048 	/* Set up domains for CPUs specified by the cpu_map: */
2049 	for_each_cpu(i, cpu_map) {
2050 		struct sched_domain_topology_level *tl;
2051 		int dflags = 0;
2052 
2053 		sd = NULL;
2054 		for_each_sd_topology(tl) {
2055 			if (tl == tl_asym) {
2056 				dflags |= SD_ASYM_CPUCAPACITY;
2057 				has_asym = true;
2058 			}
2059 
2060 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2061 				goto error;
2062 
2063 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2064 
2065 			if (tl == sched_domain_topology)
2066 				*per_cpu_ptr(d.sd, i) = sd;
2067 			if (tl->flags & SDTL_OVERLAP)
2068 				sd->flags |= SD_OVERLAP;
2069 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2070 				break;
2071 		}
2072 	}
2073 
2074 	/* Build the groups for the domains */
2075 	for_each_cpu(i, cpu_map) {
2076 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2077 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2078 			if (sd->flags & SD_OVERLAP) {
2079 				if (build_overlap_sched_groups(sd, i))
2080 					goto error;
2081 			} else {
2082 				if (build_sched_groups(sd, i))
2083 					goto error;
2084 			}
2085 		}
2086 	}
2087 
2088 	/* Calculate CPU capacity for physical packages and nodes */
2089 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2090 		if (!cpumask_test_cpu(i, cpu_map))
2091 			continue;
2092 
2093 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2094 			claim_allocations(i, sd);
2095 			init_sched_groups_capacity(i, sd);
2096 		}
2097 	}
2098 
2099 	/* Attach the domains */
2100 	rcu_read_lock();
2101 	for_each_cpu(i, cpu_map) {
2102 		rq = cpu_rq(i);
2103 		sd = *per_cpu_ptr(d.sd, i);
2104 
2105 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2106 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2107 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2108 
2109 		cpu_attach_domain(sd, d.rd, i);
2110 	}
2111 	rcu_read_unlock();
2112 
2113 	if (has_asym)
2114 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2115 
2116 	if (rq && sched_debug_enabled) {
2117 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2118 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2119 	}
2120 
2121 	ret = 0;
2122 error:
2123 	__free_domain_allocs(&d, alloc_state, cpu_map);
2124 
2125 	return ret;
2126 }
2127 
2128 /* Current sched domains: */
2129 static cpumask_var_t			*doms_cur;
2130 
2131 /* Number of sched domains in 'doms_cur': */
2132 static int				ndoms_cur;
2133 
2134 /* Attribues of custom domains in 'doms_cur' */
2135 static struct sched_domain_attr		*dattr_cur;
2136 
2137 /*
2138  * Special case: If a kmalloc() of a doms_cur partition (array of
2139  * cpumask) fails, then fallback to a single sched domain,
2140  * as determined by the single cpumask fallback_doms.
2141  */
2142 static cpumask_var_t			fallback_doms;
2143 
2144 /*
2145  * arch_update_cpu_topology lets virtualized architectures update the
2146  * CPU core maps. It is supposed to return 1 if the topology changed
2147  * or 0 if it stayed the same.
2148  */
2149 int __weak arch_update_cpu_topology(void)
2150 {
2151 	return 0;
2152 }
2153 
2154 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2155 {
2156 	int i;
2157 	cpumask_var_t *doms;
2158 
2159 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2160 	if (!doms)
2161 		return NULL;
2162 	for (i = 0; i < ndoms; i++) {
2163 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2164 			free_sched_domains(doms, i);
2165 			return NULL;
2166 		}
2167 	}
2168 	return doms;
2169 }
2170 
2171 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2172 {
2173 	unsigned int i;
2174 	for (i = 0; i < ndoms; i++)
2175 		free_cpumask_var(doms[i]);
2176 	kfree(doms);
2177 }
2178 
2179 /*
2180  * Set up scheduler domains and groups.  For now this just excludes isolated
2181  * CPUs, but could be used to exclude other special cases in the future.
2182  */
2183 int sched_init_domains(const struct cpumask *cpu_map)
2184 {
2185 	int err;
2186 
2187 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2188 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2189 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2190 
2191 	arch_update_cpu_topology();
2192 	ndoms_cur = 1;
2193 	doms_cur = alloc_sched_domains(ndoms_cur);
2194 	if (!doms_cur)
2195 		doms_cur = &fallback_doms;
2196 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2197 	err = build_sched_domains(doms_cur[0], NULL);
2198 	register_sched_domain_sysctl();
2199 
2200 	return err;
2201 }
2202 
2203 /*
2204  * Detach sched domains from a group of CPUs specified in cpu_map
2205  * These CPUs will now be attached to the NULL domain
2206  */
2207 static void detach_destroy_domains(const struct cpumask *cpu_map)
2208 {
2209 	unsigned int cpu = cpumask_any(cpu_map);
2210 	int i;
2211 
2212 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2213 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2214 
2215 	rcu_read_lock();
2216 	for_each_cpu(i, cpu_map)
2217 		cpu_attach_domain(NULL, &def_root_domain, i);
2218 	rcu_read_unlock();
2219 }
2220 
2221 /* handle null as "default" */
2222 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2223 			struct sched_domain_attr *new, int idx_new)
2224 {
2225 	struct sched_domain_attr tmp;
2226 
2227 	/* Fast path: */
2228 	if (!new && !cur)
2229 		return 1;
2230 
2231 	tmp = SD_ATTR_INIT;
2232 
2233 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2234 			new ? (new + idx_new) : &tmp,
2235 			sizeof(struct sched_domain_attr));
2236 }
2237 
2238 /*
2239  * Partition sched domains as specified by the 'ndoms_new'
2240  * cpumasks in the array doms_new[] of cpumasks. This compares
2241  * doms_new[] to the current sched domain partitioning, doms_cur[].
2242  * It destroys each deleted domain and builds each new domain.
2243  *
2244  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2245  * The masks don't intersect (don't overlap.) We should setup one
2246  * sched domain for each mask. CPUs not in any of the cpumasks will
2247  * not be load balanced. If the same cpumask appears both in the
2248  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2249  * it as it is.
2250  *
2251  * The passed in 'doms_new' should be allocated using
2252  * alloc_sched_domains.  This routine takes ownership of it and will
2253  * free_sched_domains it when done with it. If the caller failed the
2254  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2255  * and partition_sched_domains() will fallback to the single partition
2256  * 'fallback_doms', it also forces the domains to be rebuilt.
2257  *
2258  * If doms_new == NULL it will be replaced with cpu_online_mask.
2259  * ndoms_new == 0 is a special case for destroying existing domains,
2260  * and it will not create the default domain.
2261  *
2262  * Call with hotplug lock and sched_domains_mutex held
2263  */
2264 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2265 				    struct sched_domain_attr *dattr_new)
2266 {
2267 	bool __maybe_unused has_eas = false;
2268 	int i, j, n;
2269 	int new_topology;
2270 
2271 	lockdep_assert_held(&sched_domains_mutex);
2272 
2273 	/* Always unregister in case we don't destroy any domains: */
2274 	unregister_sched_domain_sysctl();
2275 
2276 	/* Let the architecture update CPU core mappings: */
2277 	new_topology = arch_update_cpu_topology();
2278 
2279 	if (!doms_new) {
2280 		WARN_ON_ONCE(dattr_new);
2281 		n = 0;
2282 		doms_new = alloc_sched_domains(1);
2283 		if (doms_new) {
2284 			n = 1;
2285 			cpumask_and(doms_new[0], cpu_active_mask,
2286 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2287 		}
2288 	} else {
2289 		n = ndoms_new;
2290 	}
2291 
2292 	/* Destroy deleted domains: */
2293 	for (i = 0; i < ndoms_cur; i++) {
2294 		for (j = 0; j < n && !new_topology; j++) {
2295 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2296 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2297 				struct root_domain *rd;
2298 
2299 				/*
2300 				 * This domain won't be destroyed and as such
2301 				 * its dl_bw->total_bw needs to be cleared.  It
2302 				 * will be recomputed in function
2303 				 * update_tasks_root_domain().
2304 				 */
2305 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2306 				dl_clear_root_domain(rd);
2307 				goto match1;
2308 			}
2309 		}
2310 		/* No match - a current sched domain not in new doms_new[] */
2311 		detach_destroy_domains(doms_cur[i]);
2312 match1:
2313 		;
2314 	}
2315 
2316 	n = ndoms_cur;
2317 	if (!doms_new) {
2318 		n = 0;
2319 		doms_new = &fallback_doms;
2320 		cpumask_and(doms_new[0], cpu_active_mask,
2321 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2322 	}
2323 
2324 	/* Build new domains: */
2325 	for (i = 0; i < ndoms_new; i++) {
2326 		for (j = 0; j < n && !new_topology; j++) {
2327 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2328 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2329 				goto match2;
2330 		}
2331 		/* No match - add a new doms_new */
2332 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2333 match2:
2334 		;
2335 	}
2336 
2337 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2338 	/* Build perf. domains: */
2339 	for (i = 0; i < ndoms_new; i++) {
2340 		for (j = 0; j < n && !sched_energy_update; j++) {
2341 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2342 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2343 				has_eas = true;
2344 				goto match3;
2345 			}
2346 		}
2347 		/* No match - add perf. domains for a new rd */
2348 		has_eas |= build_perf_domains(doms_new[i]);
2349 match3:
2350 		;
2351 	}
2352 	sched_energy_set(has_eas);
2353 #endif
2354 
2355 	/* Remember the new sched domains: */
2356 	if (doms_cur != &fallback_doms)
2357 		free_sched_domains(doms_cur, ndoms_cur);
2358 
2359 	kfree(dattr_cur);
2360 	doms_cur = doms_new;
2361 	dattr_cur = dattr_new;
2362 	ndoms_cur = ndoms_new;
2363 
2364 	register_sched_domain_sysctl();
2365 }
2366 
2367 /*
2368  * Call with hotplug lock held
2369  */
2370 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2371 			     struct sched_domain_attr *dattr_new)
2372 {
2373 	mutex_lock(&sched_domains_mutex);
2374 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2375 	mutex_unlock(&sched_domains_mutex);
2376 }
2377