1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 6 #include <linux/bsearch.h> 7 8 DEFINE_MUTEX(sched_domains_mutex); 9 10 /* Protected by sched_domains_mutex: */ 11 static cpumask_var_t sched_domains_tmpmask; 12 static cpumask_var_t sched_domains_tmpmask2; 13 14 #ifdef CONFIG_SCHED_DEBUG 15 16 static int __init sched_debug_setup(char *str) 17 { 18 sched_debug_verbose = true; 19 20 return 0; 21 } 22 early_param("sched_verbose", sched_debug_setup); 23 24 static inline bool sched_debug(void) 25 { 26 return sched_debug_verbose; 27 } 28 29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 30 const struct sd_flag_debug sd_flag_debug[] = { 31 #include <linux/sched/sd_flags.h> 32 }; 33 #undef SD_FLAG 34 35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 36 struct cpumask *groupmask) 37 { 38 struct sched_group *group = sd->groups; 39 unsigned long flags = sd->flags; 40 unsigned int idx; 41 42 cpumask_clear(groupmask); 43 44 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 45 printk(KERN_CONT "span=%*pbl level=%s\n", 46 cpumask_pr_args(sched_domain_span(sd)), sd->name); 47 48 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 49 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 50 } 51 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 52 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 53 } 54 55 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 56 unsigned int flag = BIT(idx); 57 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 58 59 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 60 !(sd->child->flags & flag)) 61 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 62 sd_flag_debug[idx].name); 63 64 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 65 !(sd->parent->flags & flag)) 66 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 67 sd_flag_debug[idx].name); 68 } 69 70 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 71 do { 72 if (!group) { 73 printk("\n"); 74 printk(KERN_ERR "ERROR: group is NULL\n"); 75 break; 76 } 77 78 if (cpumask_empty(sched_group_span(group))) { 79 printk(KERN_CONT "\n"); 80 printk(KERN_ERR "ERROR: empty group\n"); 81 break; 82 } 83 84 if (!(sd->flags & SD_OVERLAP) && 85 cpumask_intersects(groupmask, sched_group_span(group))) { 86 printk(KERN_CONT "\n"); 87 printk(KERN_ERR "ERROR: repeated CPUs\n"); 88 break; 89 } 90 91 cpumask_or(groupmask, groupmask, sched_group_span(group)); 92 93 printk(KERN_CONT " %d:{ span=%*pbl", 94 group->sgc->id, 95 cpumask_pr_args(sched_group_span(group))); 96 97 if ((sd->flags & SD_OVERLAP) && 98 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 99 printk(KERN_CONT " mask=%*pbl", 100 cpumask_pr_args(group_balance_mask(group))); 101 } 102 103 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 104 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 105 106 if (group == sd->groups && sd->child && 107 !cpumask_equal(sched_domain_span(sd->child), 108 sched_group_span(group))) { 109 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 110 } 111 112 printk(KERN_CONT " }"); 113 114 group = group->next; 115 116 if (group != sd->groups) 117 printk(KERN_CONT ","); 118 119 } while (group != sd->groups); 120 printk(KERN_CONT "\n"); 121 122 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 123 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 124 125 if (sd->parent && 126 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 127 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 128 return 0; 129 } 130 131 static void sched_domain_debug(struct sched_domain *sd, int cpu) 132 { 133 int level = 0; 134 135 if (!sched_debug_verbose) 136 return; 137 138 if (!sd) { 139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 140 return; 141 } 142 143 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 144 145 for (;;) { 146 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 147 break; 148 level++; 149 sd = sd->parent; 150 if (!sd) 151 break; 152 } 153 } 154 #else /* !CONFIG_SCHED_DEBUG */ 155 156 # define sched_debug_verbose 0 157 # define sched_domain_debug(sd, cpu) do { } while (0) 158 static inline bool sched_debug(void) 159 { 160 return false; 161 } 162 #endif /* CONFIG_SCHED_DEBUG */ 163 164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 166 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 167 #include <linux/sched/sd_flags.h> 168 0; 169 #undef SD_FLAG 170 171 static int sd_degenerate(struct sched_domain *sd) 172 { 173 if (cpumask_weight(sched_domain_span(sd)) == 1) 174 return 1; 175 176 /* Following flags need at least 2 groups */ 177 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 178 (sd->groups != sd->groups->next)) 179 return 0; 180 181 /* Following flags don't use groups */ 182 if (sd->flags & (SD_WAKE_AFFINE)) 183 return 0; 184 185 return 1; 186 } 187 188 static int 189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 190 { 191 unsigned long cflags = sd->flags, pflags = parent->flags; 192 193 if (sd_degenerate(parent)) 194 return 1; 195 196 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 197 return 0; 198 199 /* Flags needing groups don't count if only 1 group in parent */ 200 if (parent->groups == parent->groups->next) 201 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 202 203 if (~cflags & pflags) 204 return 0; 205 206 return 1; 207 } 208 209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 210 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 211 static unsigned int sysctl_sched_energy_aware = 1; 212 static DEFINE_MUTEX(sched_energy_mutex); 213 static bool sched_energy_update; 214 215 void rebuild_sched_domains_energy(void) 216 { 217 mutex_lock(&sched_energy_mutex); 218 sched_energy_update = true; 219 rebuild_sched_domains(); 220 sched_energy_update = false; 221 mutex_unlock(&sched_energy_mutex); 222 } 223 224 #ifdef CONFIG_PROC_SYSCTL 225 static int sched_energy_aware_handler(struct ctl_table *table, int write, 226 void *buffer, size_t *lenp, loff_t *ppos) 227 { 228 int ret, state; 229 230 if (write && !capable(CAP_SYS_ADMIN)) 231 return -EPERM; 232 233 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 234 if (!ret && write) { 235 state = static_branch_unlikely(&sched_energy_present); 236 if (state != sysctl_sched_energy_aware) 237 rebuild_sched_domains_energy(); 238 } 239 240 return ret; 241 } 242 243 static struct ctl_table sched_energy_aware_sysctls[] = { 244 { 245 .procname = "sched_energy_aware", 246 .data = &sysctl_sched_energy_aware, 247 .maxlen = sizeof(unsigned int), 248 .mode = 0644, 249 .proc_handler = sched_energy_aware_handler, 250 .extra1 = SYSCTL_ZERO, 251 .extra2 = SYSCTL_ONE, 252 }, 253 {} 254 }; 255 256 static int __init sched_energy_aware_sysctl_init(void) 257 { 258 register_sysctl_init("kernel", sched_energy_aware_sysctls); 259 return 0; 260 } 261 262 late_initcall(sched_energy_aware_sysctl_init); 263 #endif 264 265 static void free_pd(struct perf_domain *pd) 266 { 267 struct perf_domain *tmp; 268 269 while (pd) { 270 tmp = pd->next; 271 kfree(pd); 272 pd = tmp; 273 } 274 } 275 276 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 277 { 278 while (pd) { 279 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 280 return pd; 281 pd = pd->next; 282 } 283 284 return NULL; 285 } 286 287 static struct perf_domain *pd_init(int cpu) 288 { 289 struct em_perf_domain *obj = em_cpu_get(cpu); 290 struct perf_domain *pd; 291 292 if (!obj) { 293 if (sched_debug()) 294 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 295 return NULL; 296 } 297 298 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 299 if (!pd) 300 return NULL; 301 pd->em_pd = obj; 302 303 return pd; 304 } 305 306 static void perf_domain_debug(const struct cpumask *cpu_map, 307 struct perf_domain *pd) 308 { 309 if (!sched_debug() || !pd) 310 return; 311 312 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 313 314 while (pd) { 315 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 316 cpumask_first(perf_domain_span(pd)), 317 cpumask_pr_args(perf_domain_span(pd)), 318 em_pd_nr_perf_states(pd->em_pd)); 319 pd = pd->next; 320 } 321 322 printk(KERN_CONT "\n"); 323 } 324 325 static void destroy_perf_domain_rcu(struct rcu_head *rp) 326 { 327 struct perf_domain *pd; 328 329 pd = container_of(rp, struct perf_domain, rcu); 330 free_pd(pd); 331 } 332 333 static void sched_energy_set(bool has_eas) 334 { 335 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 336 if (sched_debug()) 337 pr_info("%s: stopping EAS\n", __func__); 338 static_branch_disable_cpuslocked(&sched_energy_present); 339 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 340 if (sched_debug()) 341 pr_info("%s: starting EAS\n", __func__); 342 static_branch_enable_cpuslocked(&sched_energy_present); 343 } 344 } 345 346 /* 347 * EAS can be used on a root domain if it meets all the following conditions: 348 * 1. an Energy Model (EM) is available; 349 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 350 * 3. no SMT is detected. 351 * 4. the EM complexity is low enough to keep scheduling overheads low; 352 * 5. schedutil is driving the frequency of all CPUs of the rd; 353 * 6. frequency invariance support is present; 354 * 355 * The complexity of the Energy Model is defined as: 356 * 357 * C = nr_pd * (nr_cpus + nr_ps) 358 * 359 * with parameters defined as: 360 * - nr_pd: the number of performance domains 361 * - nr_cpus: the number of CPUs 362 * - nr_ps: the sum of the number of performance states of all performance 363 * domains (for example, on a system with 2 performance domains, 364 * with 10 performance states each, nr_ps = 2 * 10 = 20). 365 * 366 * It is generally not a good idea to use such a model in the wake-up path on 367 * very complex platforms because of the associated scheduling overheads. The 368 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 369 * with per-CPU DVFS and less than 8 performance states each, for example. 370 */ 371 #define EM_MAX_COMPLEXITY 2048 372 373 extern struct cpufreq_governor schedutil_gov; 374 static bool build_perf_domains(const struct cpumask *cpu_map) 375 { 376 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 377 struct perf_domain *pd = NULL, *tmp; 378 int cpu = cpumask_first(cpu_map); 379 struct root_domain *rd = cpu_rq(cpu)->rd; 380 struct cpufreq_policy *policy; 381 struct cpufreq_governor *gov; 382 383 if (!sysctl_sched_energy_aware) 384 goto free; 385 386 /* EAS is enabled for asymmetric CPU capacity topologies. */ 387 if (!per_cpu(sd_asym_cpucapacity, cpu)) { 388 if (sched_debug()) { 389 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 390 cpumask_pr_args(cpu_map)); 391 } 392 goto free; 393 } 394 395 /* EAS definitely does *not* handle SMT */ 396 if (sched_smt_active()) { 397 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 398 cpumask_pr_args(cpu_map)); 399 goto free; 400 } 401 402 if (!arch_scale_freq_invariant()) { 403 if (sched_debug()) { 404 pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported", 405 cpumask_pr_args(cpu_map)); 406 } 407 goto free; 408 } 409 410 for_each_cpu(i, cpu_map) { 411 /* Skip already covered CPUs. */ 412 if (find_pd(pd, i)) 413 continue; 414 415 /* Do not attempt EAS if schedutil is not being used. */ 416 policy = cpufreq_cpu_get(i); 417 if (!policy) 418 goto free; 419 gov = policy->governor; 420 cpufreq_cpu_put(policy); 421 if (gov != &schedutil_gov) { 422 if (rd->pd) 423 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 424 cpumask_pr_args(cpu_map)); 425 goto free; 426 } 427 428 /* Create the new pd and add it to the local list. */ 429 tmp = pd_init(i); 430 if (!tmp) 431 goto free; 432 tmp->next = pd; 433 pd = tmp; 434 435 /* 436 * Count performance domains and performance states for the 437 * complexity check. 438 */ 439 nr_pd++; 440 nr_ps += em_pd_nr_perf_states(pd->em_pd); 441 } 442 443 /* Bail out if the Energy Model complexity is too high. */ 444 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 445 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 446 cpumask_pr_args(cpu_map)); 447 goto free; 448 } 449 450 perf_domain_debug(cpu_map, pd); 451 452 /* Attach the new list of performance domains to the root domain. */ 453 tmp = rd->pd; 454 rcu_assign_pointer(rd->pd, pd); 455 if (tmp) 456 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 457 458 return !!pd; 459 460 free: 461 free_pd(pd); 462 tmp = rd->pd; 463 rcu_assign_pointer(rd->pd, NULL); 464 if (tmp) 465 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 466 467 return false; 468 } 469 #else 470 static void free_pd(struct perf_domain *pd) { } 471 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 472 473 static void free_rootdomain(struct rcu_head *rcu) 474 { 475 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 476 477 cpupri_cleanup(&rd->cpupri); 478 cpudl_cleanup(&rd->cpudl); 479 free_cpumask_var(rd->dlo_mask); 480 free_cpumask_var(rd->rto_mask); 481 free_cpumask_var(rd->online); 482 free_cpumask_var(rd->span); 483 free_pd(rd->pd); 484 kfree(rd); 485 } 486 487 void rq_attach_root(struct rq *rq, struct root_domain *rd) 488 { 489 struct root_domain *old_rd = NULL; 490 struct rq_flags rf; 491 492 rq_lock_irqsave(rq, &rf); 493 494 if (rq->rd) { 495 old_rd = rq->rd; 496 497 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 498 set_rq_offline(rq); 499 500 cpumask_clear_cpu(rq->cpu, old_rd->span); 501 502 /* 503 * If we dont want to free the old_rd yet then 504 * set old_rd to NULL to skip the freeing later 505 * in this function: 506 */ 507 if (!atomic_dec_and_test(&old_rd->refcount)) 508 old_rd = NULL; 509 } 510 511 atomic_inc(&rd->refcount); 512 rq->rd = rd; 513 514 cpumask_set_cpu(rq->cpu, rd->span); 515 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 516 set_rq_online(rq); 517 518 rq_unlock_irqrestore(rq, &rf); 519 520 if (old_rd) 521 call_rcu(&old_rd->rcu, free_rootdomain); 522 } 523 524 void sched_get_rd(struct root_domain *rd) 525 { 526 atomic_inc(&rd->refcount); 527 } 528 529 void sched_put_rd(struct root_domain *rd) 530 { 531 if (!atomic_dec_and_test(&rd->refcount)) 532 return; 533 534 call_rcu(&rd->rcu, free_rootdomain); 535 } 536 537 static int init_rootdomain(struct root_domain *rd) 538 { 539 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 540 goto out; 541 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 542 goto free_span; 543 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 544 goto free_online; 545 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 546 goto free_dlo_mask; 547 548 #ifdef HAVE_RT_PUSH_IPI 549 rd->rto_cpu = -1; 550 raw_spin_lock_init(&rd->rto_lock); 551 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); 552 #endif 553 554 rd->visit_gen = 0; 555 init_dl_bw(&rd->dl_bw); 556 if (cpudl_init(&rd->cpudl) != 0) 557 goto free_rto_mask; 558 559 if (cpupri_init(&rd->cpupri) != 0) 560 goto free_cpudl; 561 return 0; 562 563 free_cpudl: 564 cpudl_cleanup(&rd->cpudl); 565 free_rto_mask: 566 free_cpumask_var(rd->rto_mask); 567 free_dlo_mask: 568 free_cpumask_var(rd->dlo_mask); 569 free_online: 570 free_cpumask_var(rd->online); 571 free_span: 572 free_cpumask_var(rd->span); 573 out: 574 return -ENOMEM; 575 } 576 577 /* 578 * By default the system creates a single root-domain with all CPUs as 579 * members (mimicking the global state we have today). 580 */ 581 struct root_domain def_root_domain; 582 583 void __init init_defrootdomain(void) 584 { 585 init_rootdomain(&def_root_domain); 586 587 atomic_set(&def_root_domain.refcount, 1); 588 } 589 590 static struct root_domain *alloc_rootdomain(void) 591 { 592 struct root_domain *rd; 593 594 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 595 if (!rd) 596 return NULL; 597 598 if (init_rootdomain(rd) != 0) { 599 kfree(rd); 600 return NULL; 601 } 602 603 return rd; 604 } 605 606 static void free_sched_groups(struct sched_group *sg, int free_sgc) 607 { 608 struct sched_group *tmp, *first; 609 610 if (!sg) 611 return; 612 613 first = sg; 614 do { 615 tmp = sg->next; 616 617 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 618 kfree(sg->sgc); 619 620 if (atomic_dec_and_test(&sg->ref)) 621 kfree(sg); 622 sg = tmp; 623 } while (sg != first); 624 } 625 626 static void destroy_sched_domain(struct sched_domain *sd) 627 { 628 /* 629 * A normal sched domain may have multiple group references, an 630 * overlapping domain, having private groups, only one. Iterate, 631 * dropping group/capacity references, freeing where none remain. 632 */ 633 free_sched_groups(sd->groups, 1); 634 635 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 636 kfree(sd->shared); 637 kfree(sd); 638 } 639 640 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 641 { 642 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 643 644 while (sd) { 645 struct sched_domain *parent = sd->parent; 646 destroy_sched_domain(sd); 647 sd = parent; 648 } 649 } 650 651 static void destroy_sched_domains(struct sched_domain *sd) 652 { 653 if (sd) 654 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 655 } 656 657 /* 658 * Keep a special pointer to the highest sched_domain that has 659 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 660 * allows us to avoid some pointer chasing select_idle_sibling(). 661 * 662 * Also keep a unique ID per domain (we use the first CPU number in 663 * the cpumask of the domain), this allows us to quickly tell if 664 * two CPUs are in the same cache domain, see cpus_share_cache(). 665 */ 666 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 667 DEFINE_PER_CPU(int, sd_llc_size); 668 DEFINE_PER_CPU(int, sd_llc_id); 669 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 670 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 671 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 672 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 673 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 674 675 static void update_top_cache_domain(int cpu) 676 { 677 struct sched_domain_shared *sds = NULL; 678 struct sched_domain *sd; 679 int id = cpu; 680 int size = 1; 681 682 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 683 if (sd) { 684 id = cpumask_first(sched_domain_span(sd)); 685 size = cpumask_weight(sched_domain_span(sd)); 686 sds = sd->shared; 687 } 688 689 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 690 per_cpu(sd_llc_size, cpu) = size; 691 per_cpu(sd_llc_id, cpu) = id; 692 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 693 694 sd = lowest_flag_domain(cpu, SD_NUMA); 695 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 696 697 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 698 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 699 700 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 701 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 702 } 703 704 /* 705 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 706 * hold the hotplug lock. 707 */ 708 static void 709 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 710 { 711 struct rq *rq = cpu_rq(cpu); 712 struct sched_domain *tmp; 713 714 /* Remove the sched domains which do not contribute to scheduling. */ 715 for (tmp = sd; tmp; ) { 716 struct sched_domain *parent = tmp->parent; 717 if (!parent) 718 break; 719 720 if (sd_parent_degenerate(tmp, parent)) { 721 tmp->parent = parent->parent; 722 723 if (parent->parent) { 724 parent->parent->child = tmp; 725 parent->parent->groups->flags = tmp->flags; 726 } 727 728 /* 729 * Transfer SD_PREFER_SIBLING down in case of a 730 * degenerate parent; the spans match for this 731 * so the property transfers. 732 */ 733 if (parent->flags & SD_PREFER_SIBLING) 734 tmp->flags |= SD_PREFER_SIBLING; 735 destroy_sched_domain(parent); 736 } else 737 tmp = tmp->parent; 738 } 739 740 if (sd && sd_degenerate(sd)) { 741 tmp = sd; 742 sd = sd->parent; 743 destroy_sched_domain(tmp); 744 if (sd) { 745 struct sched_group *sg = sd->groups; 746 747 /* 748 * sched groups hold the flags of the child sched 749 * domain for convenience. Clear such flags since 750 * the child is being destroyed. 751 */ 752 do { 753 sg->flags = 0; 754 } while (sg != sd->groups); 755 756 sd->child = NULL; 757 } 758 } 759 760 sched_domain_debug(sd, cpu); 761 762 rq_attach_root(rq, rd); 763 tmp = rq->sd; 764 rcu_assign_pointer(rq->sd, sd); 765 dirty_sched_domain_sysctl(cpu); 766 destroy_sched_domains(tmp); 767 768 update_top_cache_domain(cpu); 769 } 770 771 struct s_data { 772 struct sched_domain * __percpu *sd; 773 struct root_domain *rd; 774 }; 775 776 enum s_alloc { 777 sa_rootdomain, 778 sa_sd, 779 sa_sd_storage, 780 sa_none, 781 }; 782 783 /* 784 * Return the canonical balance CPU for this group, this is the first CPU 785 * of this group that's also in the balance mask. 786 * 787 * The balance mask are all those CPUs that could actually end up at this 788 * group. See build_balance_mask(). 789 * 790 * Also see should_we_balance(). 791 */ 792 int group_balance_cpu(struct sched_group *sg) 793 { 794 return cpumask_first(group_balance_mask(sg)); 795 } 796 797 798 /* 799 * NUMA topology (first read the regular topology blurb below) 800 * 801 * Given a node-distance table, for example: 802 * 803 * node 0 1 2 3 804 * 0: 10 20 30 20 805 * 1: 20 10 20 30 806 * 2: 30 20 10 20 807 * 3: 20 30 20 10 808 * 809 * which represents a 4 node ring topology like: 810 * 811 * 0 ----- 1 812 * | | 813 * | | 814 * | | 815 * 3 ----- 2 816 * 817 * We want to construct domains and groups to represent this. The way we go 818 * about doing this is to build the domains on 'hops'. For each NUMA level we 819 * construct the mask of all nodes reachable in @level hops. 820 * 821 * For the above NUMA topology that gives 3 levels: 822 * 823 * NUMA-2 0-3 0-3 0-3 0-3 824 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 825 * 826 * NUMA-1 0-1,3 0-2 1-3 0,2-3 827 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 828 * 829 * NUMA-0 0 1 2 3 830 * 831 * 832 * As can be seen; things don't nicely line up as with the regular topology. 833 * When we iterate a domain in child domain chunks some nodes can be 834 * represented multiple times -- hence the "overlap" naming for this part of 835 * the topology. 836 * 837 * In order to minimize this overlap, we only build enough groups to cover the 838 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 839 * 840 * Because: 841 * 842 * - the first group of each domain is its child domain; this 843 * gets us the first 0-1,3 844 * - the only uncovered node is 2, who's child domain is 1-3. 845 * 846 * However, because of the overlap, computing a unique CPU for each group is 847 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 848 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 849 * end up at those groups (they would end up in group: 0-1,3). 850 * 851 * To correct this we have to introduce the group balance mask. This mask 852 * will contain those CPUs in the group that can reach this group given the 853 * (child) domain tree. 854 * 855 * With this we can once again compute balance_cpu and sched_group_capacity 856 * relations. 857 * 858 * XXX include words on how balance_cpu is unique and therefore can be 859 * used for sched_group_capacity links. 860 * 861 * 862 * Another 'interesting' topology is: 863 * 864 * node 0 1 2 3 865 * 0: 10 20 20 30 866 * 1: 20 10 20 20 867 * 2: 20 20 10 20 868 * 3: 30 20 20 10 869 * 870 * Which looks a little like: 871 * 872 * 0 ----- 1 873 * | / | 874 * | / | 875 * | / | 876 * 2 ----- 3 877 * 878 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 879 * are not. 880 * 881 * This leads to a few particularly weird cases where the sched_domain's are 882 * not of the same number for each CPU. Consider: 883 * 884 * NUMA-2 0-3 0-3 885 * groups: {0-2},{1-3} {1-3},{0-2} 886 * 887 * NUMA-1 0-2 0-3 0-3 1-3 888 * 889 * NUMA-0 0 1 2 3 890 * 891 */ 892 893 894 /* 895 * Build the balance mask; it contains only those CPUs that can arrive at this 896 * group and should be considered to continue balancing. 897 * 898 * We do this during the group creation pass, therefore the group information 899 * isn't complete yet, however since each group represents a (child) domain we 900 * can fully construct this using the sched_domain bits (which are already 901 * complete). 902 */ 903 static void 904 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 905 { 906 const struct cpumask *sg_span = sched_group_span(sg); 907 struct sd_data *sdd = sd->private; 908 struct sched_domain *sibling; 909 int i; 910 911 cpumask_clear(mask); 912 913 for_each_cpu(i, sg_span) { 914 sibling = *per_cpu_ptr(sdd->sd, i); 915 916 /* 917 * Can happen in the asymmetric case, where these siblings are 918 * unused. The mask will not be empty because those CPUs that 919 * do have the top domain _should_ span the domain. 920 */ 921 if (!sibling->child) 922 continue; 923 924 /* If we would not end up here, we can't continue from here */ 925 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 926 continue; 927 928 cpumask_set_cpu(i, mask); 929 } 930 931 /* We must not have empty masks here */ 932 WARN_ON_ONCE(cpumask_empty(mask)); 933 } 934 935 /* 936 * XXX: This creates per-node group entries; since the load-balancer will 937 * immediately access remote memory to construct this group's load-balance 938 * statistics having the groups node local is of dubious benefit. 939 */ 940 static struct sched_group * 941 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 942 { 943 struct sched_group *sg; 944 struct cpumask *sg_span; 945 946 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 947 GFP_KERNEL, cpu_to_node(cpu)); 948 949 if (!sg) 950 return NULL; 951 952 sg_span = sched_group_span(sg); 953 if (sd->child) { 954 cpumask_copy(sg_span, sched_domain_span(sd->child)); 955 sg->flags = sd->child->flags; 956 } else { 957 cpumask_copy(sg_span, sched_domain_span(sd)); 958 } 959 960 atomic_inc(&sg->ref); 961 return sg; 962 } 963 964 static void init_overlap_sched_group(struct sched_domain *sd, 965 struct sched_group *sg) 966 { 967 struct cpumask *mask = sched_domains_tmpmask2; 968 struct sd_data *sdd = sd->private; 969 struct cpumask *sg_span; 970 int cpu; 971 972 build_balance_mask(sd, sg, mask); 973 cpu = cpumask_first(mask); 974 975 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 976 if (atomic_inc_return(&sg->sgc->ref) == 1) 977 cpumask_copy(group_balance_mask(sg), mask); 978 else 979 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 980 981 /* 982 * Initialize sgc->capacity such that even if we mess up the 983 * domains and no possible iteration will get us here, we won't 984 * die on a /0 trap. 985 */ 986 sg_span = sched_group_span(sg); 987 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 988 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 989 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 990 } 991 992 static struct sched_domain * 993 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 994 { 995 /* 996 * The proper descendant would be the one whose child won't span out 997 * of sd 998 */ 999 while (sibling->child && 1000 !cpumask_subset(sched_domain_span(sibling->child), 1001 sched_domain_span(sd))) 1002 sibling = sibling->child; 1003 1004 /* 1005 * As we are referencing sgc across different topology level, we need 1006 * to go down to skip those sched_domains which don't contribute to 1007 * scheduling because they will be degenerated in cpu_attach_domain 1008 */ 1009 while (sibling->child && 1010 cpumask_equal(sched_domain_span(sibling->child), 1011 sched_domain_span(sibling))) 1012 sibling = sibling->child; 1013 1014 return sibling; 1015 } 1016 1017 static int 1018 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 1019 { 1020 struct sched_group *first = NULL, *last = NULL, *sg; 1021 const struct cpumask *span = sched_domain_span(sd); 1022 struct cpumask *covered = sched_domains_tmpmask; 1023 struct sd_data *sdd = sd->private; 1024 struct sched_domain *sibling; 1025 int i; 1026 1027 cpumask_clear(covered); 1028 1029 for_each_cpu_wrap(i, span, cpu) { 1030 struct cpumask *sg_span; 1031 1032 if (cpumask_test_cpu(i, covered)) 1033 continue; 1034 1035 sibling = *per_cpu_ptr(sdd->sd, i); 1036 1037 /* 1038 * Asymmetric node setups can result in situations where the 1039 * domain tree is of unequal depth, make sure to skip domains 1040 * that already cover the entire range. 1041 * 1042 * In that case build_sched_domains() will have terminated the 1043 * iteration early and our sibling sd spans will be empty. 1044 * Domains should always include the CPU they're built on, so 1045 * check that. 1046 */ 1047 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1048 continue; 1049 1050 /* 1051 * Usually we build sched_group by sibling's child sched_domain 1052 * But for machines whose NUMA diameter are 3 or above, we move 1053 * to build sched_group by sibling's proper descendant's child 1054 * domain because sibling's child sched_domain will span out of 1055 * the sched_domain being built as below. 1056 * 1057 * Smallest diameter=3 topology is: 1058 * 1059 * node 0 1 2 3 1060 * 0: 10 20 30 40 1061 * 1: 20 10 20 30 1062 * 2: 30 20 10 20 1063 * 3: 40 30 20 10 1064 * 1065 * 0 --- 1 --- 2 --- 3 1066 * 1067 * NUMA-3 0-3 N/A N/A 0-3 1068 * groups: {0-2},{1-3} {1-3},{0-2} 1069 * 1070 * NUMA-2 0-2 0-3 0-3 1-3 1071 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1072 * 1073 * NUMA-1 0-1 0-2 1-3 2-3 1074 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1075 * 1076 * NUMA-0 0 1 2 3 1077 * 1078 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1079 * group span isn't a subset of the domain span. 1080 */ 1081 if (sibling->child && 1082 !cpumask_subset(sched_domain_span(sibling->child), span)) 1083 sibling = find_descended_sibling(sd, sibling); 1084 1085 sg = build_group_from_child_sched_domain(sibling, cpu); 1086 if (!sg) 1087 goto fail; 1088 1089 sg_span = sched_group_span(sg); 1090 cpumask_or(covered, covered, sg_span); 1091 1092 init_overlap_sched_group(sibling, sg); 1093 1094 if (!first) 1095 first = sg; 1096 if (last) 1097 last->next = sg; 1098 last = sg; 1099 last->next = first; 1100 } 1101 sd->groups = first; 1102 1103 return 0; 1104 1105 fail: 1106 free_sched_groups(first, 0); 1107 1108 return -ENOMEM; 1109 } 1110 1111 1112 /* 1113 * Package topology (also see the load-balance blurb in fair.c) 1114 * 1115 * The scheduler builds a tree structure to represent a number of important 1116 * topology features. By default (default_topology[]) these include: 1117 * 1118 * - Simultaneous multithreading (SMT) 1119 * - Multi-Core Cache (MC) 1120 * - Package (DIE) 1121 * 1122 * Where the last one more or less denotes everything up to a NUMA node. 1123 * 1124 * The tree consists of 3 primary data structures: 1125 * 1126 * sched_domain -> sched_group -> sched_group_capacity 1127 * ^ ^ ^ ^ 1128 * `-' `-' 1129 * 1130 * The sched_domains are per-CPU and have a two way link (parent & child) and 1131 * denote the ever growing mask of CPUs belonging to that level of topology. 1132 * 1133 * Each sched_domain has a circular (double) linked list of sched_group's, each 1134 * denoting the domains of the level below (or individual CPUs in case of the 1135 * first domain level). The sched_group linked by a sched_domain includes the 1136 * CPU of that sched_domain [*]. 1137 * 1138 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1139 * 1140 * CPU 0 1 2 3 4 5 6 7 1141 * 1142 * DIE [ ] 1143 * MC [ ] [ ] 1144 * SMT [ ] [ ] [ ] [ ] 1145 * 1146 * - or - 1147 * 1148 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1149 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1150 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1151 * 1152 * CPU 0 1 2 3 4 5 6 7 1153 * 1154 * One way to think about it is: sched_domain moves you up and down among these 1155 * topology levels, while sched_group moves you sideways through it, at child 1156 * domain granularity. 1157 * 1158 * sched_group_capacity ensures each unique sched_group has shared storage. 1159 * 1160 * There are two related construction problems, both require a CPU that 1161 * uniquely identify each group (for a given domain): 1162 * 1163 * - The first is the balance_cpu (see should_we_balance() and the 1164 * load-balance blub in fair.c); for each group we only want 1 CPU to 1165 * continue balancing at a higher domain. 1166 * 1167 * - The second is the sched_group_capacity; we want all identical groups 1168 * to share a single sched_group_capacity. 1169 * 1170 * Since these topologies are exclusive by construction. That is, its 1171 * impossible for an SMT thread to belong to multiple cores, and cores to 1172 * be part of multiple caches. There is a very clear and unique location 1173 * for each CPU in the hierarchy. 1174 * 1175 * Therefore computing a unique CPU for each group is trivial (the iteration 1176 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1177 * group), we can simply pick the first CPU in each group. 1178 * 1179 * 1180 * [*] in other words, the first group of each domain is its child domain. 1181 */ 1182 1183 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1184 { 1185 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1186 struct sched_domain *child = sd->child; 1187 struct sched_group *sg; 1188 bool already_visited; 1189 1190 if (child) 1191 cpu = cpumask_first(sched_domain_span(child)); 1192 1193 sg = *per_cpu_ptr(sdd->sg, cpu); 1194 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1195 1196 /* Increase refcounts for claim_allocations: */ 1197 already_visited = atomic_inc_return(&sg->ref) > 1; 1198 /* sgc visits should follow a similar trend as sg */ 1199 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1200 1201 /* If we have already visited that group, it's already initialized. */ 1202 if (already_visited) 1203 return sg; 1204 1205 if (child) { 1206 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1207 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1208 sg->flags = child->flags; 1209 } else { 1210 cpumask_set_cpu(cpu, sched_group_span(sg)); 1211 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1212 } 1213 1214 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1215 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1216 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1217 1218 return sg; 1219 } 1220 1221 /* 1222 * build_sched_groups will build a circular linked list of the groups 1223 * covered by the given span, will set each group's ->cpumask correctly, 1224 * and will initialize their ->sgc. 1225 * 1226 * Assumes the sched_domain tree is fully constructed 1227 */ 1228 static int 1229 build_sched_groups(struct sched_domain *sd, int cpu) 1230 { 1231 struct sched_group *first = NULL, *last = NULL; 1232 struct sd_data *sdd = sd->private; 1233 const struct cpumask *span = sched_domain_span(sd); 1234 struct cpumask *covered; 1235 int i; 1236 1237 lockdep_assert_held(&sched_domains_mutex); 1238 covered = sched_domains_tmpmask; 1239 1240 cpumask_clear(covered); 1241 1242 for_each_cpu_wrap(i, span, cpu) { 1243 struct sched_group *sg; 1244 1245 if (cpumask_test_cpu(i, covered)) 1246 continue; 1247 1248 sg = get_group(i, sdd); 1249 1250 cpumask_or(covered, covered, sched_group_span(sg)); 1251 1252 if (!first) 1253 first = sg; 1254 if (last) 1255 last->next = sg; 1256 last = sg; 1257 } 1258 last->next = first; 1259 sd->groups = first; 1260 1261 return 0; 1262 } 1263 1264 /* 1265 * Initialize sched groups cpu_capacity. 1266 * 1267 * cpu_capacity indicates the capacity of sched group, which is used while 1268 * distributing the load between different sched groups in a sched domain. 1269 * Typically cpu_capacity for all the groups in a sched domain will be same 1270 * unless there are asymmetries in the topology. If there are asymmetries, 1271 * group having more cpu_capacity will pickup more load compared to the 1272 * group having less cpu_capacity. 1273 */ 1274 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1275 { 1276 struct sched_group *sg = sd->groups; 1277 struct cpumask *mask = sched_domains_tmpmask2; 1278 1279 WARN_ON(!sg); 1280 1281 do { 1282 int cpu, cores = 0, max_cpu = -1; 1283 1284 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1285 1286 cpumask_copy(mask, sched_group_span(sg)); 1287 for_each_cpu(cpu, mask) { 1288 cores++; 1289 #ifdef CONFIG_SCHED_SMT 1290 cpumask_andnot(mask, mask, cpu_smt_mask(cpu)); 1291 #endif 1292 } 1293 sg->cores = cores; 1294 1295 if (!(sd->flags & SD_ASYM_PACKING)) 1296 goto next; 1297 1298 for_each_cpu(cpu, sched_group_span(sg)) { 1299 if (max_cpu < 0) 1300 max_cpu = cpu; 1301 else if (sched_asym_prefer(cpu, max_cpu)) 1302 max_cpu = cpu; 1303 } 1304 sg->asym_prefer_cpu = max_cpu; 1305 1306 next: 1307 sg = sg->next; 1308 } while (sg != sd->groups); 1309 1310 if (cpu != group_balance_cpu(sg)) 1311 return; 1312 1313 update_group_capacity(sd, cpu); 1314 } 1315 1316 /* 1317 * Asymmetric CPU capacity bits 1318 */ 1319 struct asym_cap_data { 1320 struct list_head link; 1321 unsigned long capacity; 1322 unsigned long cpus[]; 1323 }; 1324 1325 /* 1326 * Set of available CPUs grouped by their corresponding capacities 1327 * Each list entry contains a CPU mask reflecting CPUs that share the same 1328 * capacity. 1329 * The lifespan of data is unlimited. 1330 */ 1331 static LIST_HEAD(asym_cap_list); 1332 1333 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 1334 1335 /* 1336 * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1337 * Provides sd_flags reflecting the asymmetry scope. 1338 */ 1339 static inline int 1340 asym_cpu_capacity_classify(const struct cpumask *sd_span, 1341 const struct cpumask *cpu_map) 1342 { 1343 struct asym_cap_data *entry; 1344 int count = 0, miss = 0; 1345 1346 /* 1347 * Count how many unique CPU capacities this domain spans across 1348 * (compare sched_domain CPUs mask with ones representing available 1349 * CPUs capacities). Take into account CPUs that might be offline: 1350 * skip those. 1351 */ 1352 list_for_each_entry(entry, &asym_cap_list, link) { 1353 if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1354 ++count; 1355 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1356 ++miss; 1357 } 1358 1359 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1360 1361 /* No asymmetry detected */ 1362 if (count < 2) 1363 return 0; 1364 /* Some of the available CPU capacity values have not been detected */ 1365 if (miss) 1366 return SD_ASYM_CPUCAPACITY; 1367 1368 /* Full asymmetry */ 1369 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1370 1371 } 1372 1373 static inline void asym_cpu_capacity_update_data(int cpu) 1374 { 1375 unsigned long capacity = arch_scale_cpu_capacity(cpu); 1376 struct asym_cap_data *entry = NULL; 1377 1378 list_for_each_entry(entry, &asym_cap_list, link) { 1379 if (capacity == entry->capacity) 1380 goto done; 1381 } 1382 1383 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1384 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1385 return; 1386 entry->capacity = capacity; 1387 list_add(&entry->link, &asym_cap_list); 1388 done: 1389 __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1390 } 1391 1392 /* 1393 * Build-up/update list of CPUs grouped by their capacities 1394 * An update requires explicit request to rebuild sched domains 1395 * with state indicating CPU topology changes. 1396 */ 1397 static void asym_cpu_capacity_scan(void) 1398 { 1399 struct asym_cap_data *entry, *next; 1400 int cpu; 1401 1402 list_for_each_entry(entry, &asym_cap_list, link) 1403 cpumask_clear(cpu_capacity_span(entry)); 1404 1405 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) 1406 asym_cpu_capacity_update_data(cpu); 1407 1408 list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1409 if (cpumask_empty(cpu_capacity_span(entry))) { 1410 list_del(&entry->link); 1411 kfree(entry); 1412 } 1413 } 1414 1415 /* 1416 * Only one capacity value has been detected i.e. this system is symmetric. 1417 * No need to keep this data around. 1418 */ 1419 if (list_is_singular(&asym_cap_list)) { 1420 entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1421 list_del(&entry->link); 1422 kfree(entry); 1423 } 1424 } 1425 1426 /* 1427 * Initializers for schedule domains 1428 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1429 */ 1430 1431 static int default_relax_domain_level = -1; 1432 int sched_domain_level_max; 1433 1434 static int __init setup_relax_domain_level(char *str) 1435 { 1436 if (kstrtoint(str, 0, &default_relax_domain_level)) 1437 pr_warn("Unable to set relax_domain_level\n"); 1438 1439 return 1; 1440 } 1441 __setup("relax_domain_level=", setup_relax_domain_level); 1442 1443 static void set_domain_attribute(struct sched_domain *sd, 1444 struct sched_domain_attr *attr) 1445 { 1446 int request; 1447 1448 if (!attr || attr->relax_domain_level < 0) { 1449 if (default_relax_domain_level < 0) 1450 return; 1451 request = default_relax_domain_level; 1452 } else 1453 request = attr->relax_domain_level; 1454 1455 if (sd->level > request) { 1456 /* Turn off idle balance on this domain: */ 1457 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1458 } 1459 } 1460 1461 static void __sdt_free(const struct cpumask *cpu_map); 1462 static int __sdt_alloc(const struct cpumask *cpu_map); 1463 1464 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1465 const struct cpumask *cpu_map) 1466 { 1467 switch (what) { 1468 case sa_rootdomain: 1469 if (!atomic_read(&d->rd->refcount)) 1470 free_rootdomain(&d->rd->rcu); 1471 fallthrough; 1472 case sa_sd: 1473 free_percpu(d->sd); 1474 fallthrough; 1475 case sa_sd_storage: 1476 __sdt_free(cpu_map); 1477 fallthrough; 1478 case sa_none: 1479 break; 1480 } 1481 } 1482 1483 static enum s_alloc 1484 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1485 { 1486 memset(d, 0, sizeof(*d)); 1487 1488 if (__sdt_alloc(cpu_map)) 1489 return sa_sd_storage; 1490 d->sd = alloc_percpu(struct sched_domain *); 1491 if (!d->sd) 1492 return sa_sd_storage; 1493 d->rd = alloc_rootdomain(); 1494 if (!d->rd) 1495 return sa_sd; 1496 1497 return sa_rootdomain; 1498 } 1499 1500 /* 1501 * NULL the sd_data elements we've used to build the sched_domain and 1502 * sched_group structure so that the subsequent __free_domain_allocs() 1503 * will not free the data we're using. 1504 */ 1505 static void claim_allocations(int cpu, struct sched_domain *sd) 1506 { 1507 struct sd_data *sdd = sd->private; 1508 1509 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1510 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1511 1512 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1513 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1514 1515 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1516 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1517 1518 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1519 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1520 } 1521 1522 #ifdef CONFIG_NUMA 1523 enum numa_topology_type sched_numa_topology_type; 1524 1525 static int sched_domains_numa_levels; 1526 static int sched_domains_curr_level; 1527 1528 int sched_max_numa_distance; 1529 static int *sched_domains_numa_distance; 1530 static struct cpumask ***sched_domains_numa_masks; 1531 #endif 1532 1533 /* 1534 * SD_flags allowed in topology descriptions. 1535 * 1536 * These flags are purely descriptive of the topology and do not prescribe 1537 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1538 * function: 1539 * 1540 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1541 * SD_SHARE_PKG_RESOURCES - describes shared caches 1542 * SD_NUMA - describes NUMA topologies 1543 * 1544 * Odd one out, which beside describing the topology has a quirk also 1545 * prescribes the desired behaviour that goes along with it: 1546 * 1547 * SD_ASYM_PACKING - describes SMT quirks 1548 */ 1549 #define TOPOLOGY_SD_FLAGS \ 1550 (SD_SHARE_CPUCAPACITY | \ 1551 SD_SHARE_PKG_RESOURCES | \ 1552 SD_NUMA | \ 1553 SD_ASYM_PACKING) 1554 1555 static struct sched_domain * 1556 sd_init(struct sched_domain_topology_level *tl, 1557 const struct cpumask *cpu_map, 1558 struct sched_domain *child, int cpu) 1559 { 1560 struct sd_data *sdd = &tl->data; 1561 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1562 int sd_id, sd_weight, sd_flags = 0; 1563 struct cpumask *sd_span; 1564 1565 #ifdef CONFIG_NUMA 1566 /* 1567 * Ugly hack to pass state to sd_numa_mask()... 1568 */ 1569 sched_domains_curr_level = tl->numa_level; 1570 #endif 1571 1572 sd_weight = cpumask_weight(tl->mask(cpu)); 1573 1574 if (tl->sd_flags) 1575 sd_flags = (*tl->sd_flags)(); 1576 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1577 "wrong sd_flags in topology description\n")) 1578 sd_flags &= TOPOLOGY_SD_FLAGS; 1579 1580 *sd = (struct sched_domain){ 1581 .min_interval = sd_weight, 1582 .max_interval = 2*sd_weight, 1583 .busy_factor = 16, 1584 .imbalance_pct = 117, 1585 1586 .cache_nice_tries = 0, 1587 1588 .flags = 1*SD_BALANCE_NEWIDLE 1589 | 1*SD_BALANCE_EXEC 1590 | 1*SD_BALANCE_FORK 1591 | 0*SD_BALANCE_WAKE 1592 | 1*SD_WAKE_AFFINE 1593 | 0*SD_SHARE_CPUCAPACITY 1594 | 0*SD_SHARE_PKG_RESOURCES 1595 | 0*SD_SERIALIZE 1596 | 1*SD_PREFER_SIBLING 1597 | 0*SD_NUMA 1598 | sd_flags 1599 , 1600 1601 .last_balance = jiffies, 1602 .balance_interval = sd_weight, 1603 .max_newidle_lb_cost = 0, 1604 .last_decay_max_lb_cost = jiffies, 1605 .child = child, 1606 #ifdef CONFIG_SCHED_DEBUG 1607 .name = tl->name, 1608 #endif 1609 }; 1610 1611 sd_span = sched_domain_span(sd); 1612 cpumask_and(sd_span, cpu_map, tl->mask(cpu)); 1613 sd_id = cpumask_first(sd_span); 1614 1615 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1616 1617 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1618 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1619 "CPU capacity asymmetry not supported on SMT\n"); 1620 1621 /* 1622 * Convert topological properties into behaviour. 1623 */ 1624 /* Don't attempt to spread across CPUs of different capacities. */ 1625 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1626 sd->child->flags &= ~SD_PREFER_SIBLING; 1627 1628 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1629 sd->imbalance_pct = 110; 1630 1631 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1632 sd->imbalance_pct = 117; 1633 sd->cache_nice_tries = 1; 1634 1635 #ifdef CONFIG_NUMA 1636 } else if (sd->flags & SD_NUMA) { 1637 sd->cache_nice_tries = 2; 1638 1639 sd->flags &= ~SD_PREFER_SIBLING; 1640 sd->flags |= SD_SERIALIZE; 1641 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1642 sd->flags &= ~(SD_BALANCE_EXEC | 1643 SD_BALANCE_FORK | 1644 SD_WAKE_AFFINE); 1645 } 1646 1647 #endif 1648 } else { 1649 sd->cache_nice_tries = 1; 1650 } 1651 1652 /* 1653 * For all levels sharing cache; connect a sched_domain_shared 1654 * instance. 1655 */ 1656 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1657 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1658 atomic_inc(&sd->shared->ref); 1659 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1660 } 1661 1662 sd->private = sdd; 1663 1664 return sd; 1665 } 1666 1667 /* 1668 * Topology list, bottom-up. 1669 */ 1670 static struct sched_domain_topology_level default_topology[] = { 1671 #ifdef CONFIG_SCHED_SMT 1672 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1673 #endif 1674 1675 #ifdef CONFIG_SCHED_CLUSTER 1676 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) }, 1677 #endif 1678 1679 #ifdef CONFIG_SCHED_MC 1680 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1681 #endif 1682 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1683 { NULL, }, 1684 }; 1685 1686 static struct sched_domain_topology_level *sched_domain_topology = 1687 default_topology; 1688 static struct sched_domain_topology_level *sched_domain_topology_saved; 1689 1690 #define for_each_sd_topology(tl) \ 1691 for (tl = sched_domain_topology; tl->mask; tl++) 1692 1693 void __init set_sched_topology(struct sched_domain_topology_level *tl) 1694 { 1695 if (WARN_ON_ONCE(sched_smp_initialized)) 1696 return; 1697 1698 sched_domain_topology = tl; 1699 sched_domain_topology_saved = NULL; 1700 } 1701 1702 #ifdef CONFIG_NUMA 1703 1704 static const struct cpumask *sd_numa_mask(int cpu) 1705 { 1706 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1707 } 1708 1709 static void sched_numa_warn(const char *str) 1710 { 1711 static int done = false; 1712 int i,j; 1713 1714 if (done) 1715 return; 1716 1717 done = true; 1718 1719 printk(KERN_WARNING "ERROR: %s\n\n", str); 1720 1721 for (i = 0; i < nr_node_ids; i++) { 1722 printk(KERN_WARNING " "); 1723 for (j = 0; j < nr_node_ids; j++) { 1724 if (!node_state(i, N_CPU) || !node_state(j, N_CPU)) 1725 printk(KERN_CONT "(%02d) ", node_distance(i,j)); 1726 else 1727 printk(KERN_CONT " %02d ", node_distance(i,j)); 1728 } 1729 printk(KERN_CONT "\n"); 1730 } 1731 printk(KERN_WARNING "\n"); 1732 } 1733 1734 bool find_numa_distance(int distance) 1735 { 1736 bool found = false; 1737 int i, *distances; 1738 1739 if (distance == node_distance(0, 0)) 1740 return true; 1741 1742 rcu_read_lock(); 1743 distances = rcu_dereference(sched_domains_numa_distance); 1744 if (!distances) 1745 goto unlock; 1746 for (i = 0; i < sched_domains_numa_levels; i++) { 1747 if (distances[i] == distance) { 1748 found = true; 1749 break; 1750 } 1751 } 1752 unlock: 1753 rcu_read_unlock(); 1754 1755 return found; 1756 } 1757 1758 #define for_each_cpu_node_but(n, nbut) \ 1759 for_each_node_state(n, N_CPU) \ 1760 if (n == nbut) \ 1761 continue; \ 1762 else 1763 1764 /* 1765 * A system can have three types of NUMA topology: 1766 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1767 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1768 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1769 * 1770 * The difference between a glueless mesh topology and a backplane 1771 * topology lies in whether communication between not directly 1772 * connected nodes goes through intermediary nodes (where programs 1773 * could run), or through backplane controllers. This affects 1774 * placement of programs. 1775 * 1776 * The type of topology can be discerned with the following tests: 1777 * - If the maximum distance between any nodes is 1 hop, the system 1778 * is directly connected. 1779 * - If for two nodes A and B, located N > 1 hops away from each other, 1780 * there is an intermediary node C, which is < N hops away from both 1781 * nodes A and B, the system is a glueless mesh. 1782 */ 1783 static void init_numa_topology_type(int offline_node) 1784 { 1785 int a, b, c, n; 1786 1787 n = sched_max_numa_distance; 1788 1789 if (sched_domains_numa_levels <= 2) { 1790 sched_numa_topology_type = NUMA_DIRECT; 1791 return; 1792 } 1793 1794 for_each_cpu_node_but(a, offline_node) { 1795 for_each_cpu_node_but(b, offline_node) { 1796 /* Find two nodes furthest removed from each other. */ 1797 if (node_distance(a, b) < n) 1798 continue; 1799 1800 /* Is there an intermediary node between a and b? */ 1801 for_each_cpu_node_but(c, offline_node) { 1802 if (node_distance(a, c) < n && 1803 node_distance(b, c) < n) { 1804 sched_numa_topology_type = 1805 NUMA_GLUELESS_MESH; 1806 return; 1807 } 1808 } 1809 1810 sched_numa_topology_type = NUMA_BACKPLANE; 1811 return; 1812 } 1813 } 1814 1815 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n"); 1816 sched_numa_topology_type = NUMA_DIRECT; 1817 } 1818 1819 1820 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1821 1822 void sched_init_numa(int offline_node) 1823 { 1824 struct sched_domain_topology_level *tl; 1825 unsigned long *distance_map; 1826 int nr_levels = 0; 1827 int i, j; 1828 int *distances; 1829 struct cpumask ***masks; 1830 1831 /* 1832 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1833 * unique distances in the node_distance() table. 1834 */ 1835 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1836 if (!distance_map) 1837 return; 1838 1839 bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1840 for_each_cpu_node_but(i, offline_node) { 1841 for_each_cpu_node_but(j, offline_node) { 1842 int distance = node_distance(i, j); 1843 1844 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1845 sched_numa_warn("Invalid distance value range"); 1846 bitmap_free(distance_map); 1847 return; 1848 } 1849 1850 bitmap_set(distance_map, distance, 1); 1851 } 1852 } 1853 /* 1854 * We can now figure out how many unique distance values there are and 1855 * allocate memory accordingly. 1856 */ 1857 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 1858 1859 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 1860 if (!distances) { 1861 bitmap_free(distance_map); 1862 return; 1863 } 1864 1865 for (i = 0, j = 0; i < nr_levels; i++, j++) { 1866 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 1867 distances[i] = j; 1868 } 1869 rcu_assign_pointer(sched_domains_numa_distance, distances); 1870 1871 bitmap_free(distance_map); 1872 1873 /* 1874 * 'nr_levels' contains the number of unique distances 1875 * 1876 * The sched_domains_numa_distance[] array includes the actual distance 1877 * numbers. 1878 */ 1879 1880 /* 1881 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1882 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1883 * the array will contain less then 'nr_levels' members. This could be 1884 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1885 * in other functions. 1886 * 1887 * We reset it to 'nr_levels' at the end of this function. 1888 */ 1889 sched_domains_numa_levels = 0; 1890 1891 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 1892 if (!masks) 1893 return; 1894 1895 /* 1896 * Now for each level, construct a mask per node which contains all 1897 * CPUs of nodes that are that many hops away from us. 1898 */ 1899 for (i = 0; i < nr_levels; i++) { 1900 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1901 if (!masks[i]) 1902 return; 1903 1904 for_each_cpu_node_but(j, offline_node) { 1905 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1906 int k; 1907 1908 if (!mask) 1909 return; 1910 1911 masks[i][j] = mask; 1912 1913 for_each_cpu_node_but(k, offline_node) { 1914 if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) 1915 sched_numa_warn("Node-distance not symmetric"); 1916 1917 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1918 continue; 1919 1920 cpumask_or(mask, mask, cpumask_of_node(k)); 1921 } 1922 } 1923 } 1924 rcu_assign_pointer(sched_domains_numa_masks, masks); 1925 1926 /* Compute default topology size */ 1927 for (i = 0; sched_domain_topology[i].mask; i++); 1928 1929 tl = kzalloc((i + nr_levels + 1) * 1930 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1931 if (!tl) 1932 return; 1933 1934 /* 1935 * Copy the default topology bits.. 1936 */ 1937 for (i = 0; sched_domain_topology[i].mask; i++) 1938 tl[i] = sched_domain_topology[i]; 1939 1940 /* 1941 * Add the NUMA identity distance, aka single NODE. 1942 */ 1943 tl[i++] = (struct sched_domain_topology_level){ 1944 .mask = sd_numa_mask, 1945 .numa_level = 0, 1946 SD_INIT_NAME(NODE) 1947 }; 1948 1949 /* 1950 * .. and append 'j' levels of NUMA goodness. 1951 */ 1952 for (j = 1; j < nr_levels; i++, j++) { 1953 tl[i] = (struct sched_domain_topology_level){ 1954 .mask = sd_numa_mask, 1955 .sd_flags = cpu_numa_flags, 1956 .flags = SDTL_OVERLAP, 1957 .numa_level = j, 1958 SD_INIT_NAME(NUMA) 1959 }; 1960 } 1961 1962 sched_domain_topology_saved = sched_domain_topology; 1963 sched_domain_topology = tl; 1964 1965 sched_domains_numa_levels = nr_levels; 1966 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]); 1967 1968 init_numa_topology_type(offline_node); 1969 } 1970 1971 1972 static void sched_reset_numa(void) 1973 { 1974 int nr_levels, *distances; 1975 struct cpumask ***masks; 1976 1977 nr_levels = sched_domains_numa_levels; 1978 sched_domains_numa_levels = 0; 1979 sched_max_numa_distance = 0; 1980 sched_numa_topology_type = NUMA_DIRECT; 1981 distances = sched_domains_numa_distance; 1982 rcu_assign_pointer(sched_domains_numa_distance, NULL); 1983 masks = sched_domains_numa_masks; 1984 rcu_assign_pointer(sched_domains_numa_masks, NULL); 1985 if (distances || masks) { 1986 int i, j; 1987 1988 synchronize_rcu(); 1989 kfree(distances); 1990 for (i = 0; i < nr_levels && masks; i++) { 1991 if (!masks[i]) 1992 continue; 1993 for_each_node(j) 1994 kfree(masks[i][j]); 1995 kfree(masks[i]); 1996 } 1997 kfree(masks); 1998 } 1999 if (sched_domain_topology_saved) { 2000 kfree(sched_domain_topology); 2001 sched_domain_topology = sched_domain_topology_saved; 2002 sched_domain_topology_saved = NULL; 2003 } 2004 } 2005 2006 /* 2007 * Call with hotplug lock held 2008 */ 2009 void sched_update_numa(int cpu, bool online) 2010 { 2011 int node; 2012 2013 node = cpu_to_node(cpu); 2014 /* 2015 * Scheduler NUMA topology is updated when the first CPU of a 2016 * node is onlined or the last CPU of a node is offlined. 2017 */ 2018 if (cpumask_weight(cpumask_of_node(node)) != 1) 2019 return; 2020 2021 sched_reset_numa(); 2022 sched_init_numa(online ? NUMA_NO_NODE : node); 2023 } 2024 2025 void sched_domains_numa_masks_set(unsigned int cpu) 2026 { 2027 int node = cpu_to_node(cpu); 2028 int i, j; 2029 2030 for (i = 0; i < sched_domains_numa_levels; i++) { 2031 for (j = 0; j < nr_node_ids; j++) { 2032 if (!node_state(j, N_CPU)) 2033 continue; 2034 2035 /* Set ourselves in the remote node's masks */ 2036 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 2037 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 2038 } 2039 } 2040 } 2041 2042 void sched_domains_numa_masks_clear(unsigned int cpu) 2043 { 2044 int i, j; 2045 2046 for (i = 0; i < sched_domains_numa_levels; i++) { 2047 for (j = 0; j < nr_node_ids; j++) { 2048 if (sched_domains_numa_masks[i][j]) 2049 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 2050 } 2051 } 2052 } 2053 2054 /* 2055 * sched_numa_find_closest() - given the NUMA topology, find the cpu 2056 * closest to @cpu from @cpumask. 2057 * cpumask: cpumask to find a cpu from 2058 * cpu: cpu to be close to 2059 * 2060 * returns: cpu, or nr_cpu_ids when nothing found. 2061 */ 2062 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 2063 { 2064 int i, j = cpu_to_node(cpu), found = nr_cpu_ids; 2065 struct cpumask ***masks; 2066 2067 rcu_read_lock(); 2068 masks = rcu_dereference(sched_domains_numa_masks); 2069 if (!masks) 2070 goto unlock; 2071 for (i = 0; i < sched_domains_numa_levels; i++) { 2072 if (!masks[i][j]) 2073 break; 2074 cpu = cpumask_any_and(cpus, masks[i][j]); 2075 if (cpu < nr_cpu_ids) { 2076 found = cpu; 2077 break; 2078 } 2079 } 2080 unlock: 2081 rcu_read_unlock(); 2082 2083 return found; 2084 } 2085 2086 struct __cmp_key { 2087 const struct cpumask *cpus; 2088 struct cpumask ***masks; 2089 int node; 2090 int cpu; 2091 int w; 2092 }; 2093 2094 static int hop_cmp(const void *a, const void *b) 2095 { 2096 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b; 2097 struct __cmp_key *k = (struct __cmp_key *)a; 2098 2099 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu) 2100 return 1; 2101 2102 if (b == k->masks) { 2103 k->w = 0; 2104 return 0; 2105 } 2106 2107 prev_hop = *((struct cpumask ***)b - 1); 2108 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]); 2109 if (k->w <= k->cpu) 2110 return 0; 2111 2112 return -1; 2113 } 2114 2115 /* 2116 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth next cpu 2117 * closest to @cpu from @cpumask. 2118 * cpumask: cpumask to find a cpu from 2119 * cpu: Nth cpu to find 2120 * 2121 * returns: cpu, or nr_cpu_ids when nothing found. 2122 */ 2123 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node) 2124 { 2125 struct __cmp_key k = { .cpus = cpus, .cpu = cpu }; 2126 struct cpumask ***hop_masks; 2127 int hop, ret = nr_cpu_ids; 2128 2129 rcu_read_lock(); 2130 2131 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */ 2132 node = numa_nearest_node(node, N_CPU); 2133 k.node = node; 2134 2135 k.masks = rcu_dereference(sched_domains_numa_masks); 2136 if (!k.masks) 2137 goto unlock; 2138 2139 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp); 2140 hop = hop_masks - k.masks; 2141 2142 ret = hop ? 2143 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) : 2144 cpumask_nth_and(cpu, cpus, k.masks[0][node]); 2145 unlock: 2146 rcu_read_unlock(); 2147 return ret; 2148 } 2149 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu); 2150 2151 /** 2152 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from 2153 * @node 2154 * @node: The node to count hops from. 2155 * @hops: Include CPUs up to that many hops away. 0 means local node. 2156 * 2157 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from 2158 * @node, an error value otherwise. 2159 * 2160 * Requires rcu_lock to be held. Returned cpumask is only valid within that 2161 * read-side section, copy it if required beyond that. 2162 * 2163 * Note that not all hops are equal in distance; see sched_init_numa() for how 2164 * distances and masks are handled. 2165 * Also note that this is a reflection of sched_domains_numa_masks, which may change 2166 * during the lifetime of the system (offline nodes are taken out of the masks). 2167 */ 2168 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops) 2169 { 2170 struct cpumask ***masks; 2171 2172 if (node >= nr_node_ids || hops >= sched_domains_numa_levels) 2173 return ERR_PTR(-EINVAL); 2174 2175 masks = rcu_dereference(sched_domains_numa_masks); 2176 if (!masks) 2177 return ERR_PTR(-EBUSY); 2178 2179 return masks[hops][node]; 2180 } 2181 EXPORT_SYMBOL_GPL(sched_numa_hop_mask); 2182 2183 #endif /* CONFIG_NUMA */ 2184 2185 static int __sdt_alloc(const struct cpumask *cpu_map) 2186 { 2187 struct sched_domain_topology_level *tl; 2188 int j; 2189 2190 for_each_sd_topology(tl) { 2191 struct sd_data *sdd = &tl->data; 2192 2193 sdd->sd = alloc_percpu(struct sched_domain *); 2194 if (!sdd->sd) 2195 return -ENOMEM; 2196 2197 sdd->sds = alloc_percpu(struct sched_domain_shared *); 2198 if (!sdd->sds) 2199 return -ENOMEM; 2200 2201 sdd->sg = alloc_percpu(struct sched_group *); 2202 if (!sdd->sg) 2203 return -ENOMEM; 2204 2205 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2206 if (!sdd->sgc) 2207 return -ENOMEM; 2208 2209 for_each_cpu(j, cpu_map) { 2210 struct sched_domain *sd; 2211 struct sched_domain_shared *sds; 2212 struct sched_group *sg; 2213 struct sched_group_capacity *sgc; 2214 2215 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2216 GFP_KERNEL, cpu_to_node(j)); 2217 if (!sd) 2218 return -ENOMEM; 2219 2220 *per_cpu_ptr(sdd->sd, j) = sd; 2221 2222 sds = kzalloc_node(sizeof(struct sched_domain_shared), 2223 GFP_KERNEL, cpu_to_node(j)); 2224 if (!sds) 2225 return -ENOMEM; 2226 2227 *per_cpu_ptr(sdd->sds, j) = sds; 2228 2229 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2230 GFP_KERNEL, cpu_to_node(j)); 2231 if (!sg) 2232 return -ENOMEM; 2233 2234 sg->next = sg; 2235 2236 *per_cpu_ptr(sdd->sg, j) = sg; 2237 2238 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2239 GFP_KERNEL, cpu_to_node(j)); 2240 if (!sgc) 2241 return -ENOMEM; 2242 2243 #ifdef CONFIG_SCHED_DEBUG 2244 sgc->id = j; 2245 #endif 2246 2247 *per_cpu_ptr(sdd->sgc, j) = sgc; 2248 } 2249 } 2250 2251 return 0; 2252 } 2253 2254 static void __sdt_free(const struct cpumask *cpu_map) 2255 { 2256 struct sched_domain_topology_level *tl; 2257 int j; 2258 2259 for_each_sd_topology(tl) { 2260 struct sd_data *sdd = &tl->data; 2261 2262 for_each_cpu(j, cpu_map) { 2263 struct sched_domain *sd; 2264 2265 if (sdd->sd) { 2266 sd = *per_cpu_ptr(sdd->sd, j); 2267 if (sd && (sd->flags & SD_OVERLAP)) 2268 free_sched_groups(sd->groups, 0); 2269 kfree(*per_cpu_ptr(sdd->sd, j)); 2270 } 2271 2272 if (sdd->sds) 2273 kfree(*per_cpu_ptr(sdd->sds, j)); 2274 if (sdd->sg) 2275 kfree(*per_cpu_ptr(sdd->sg, j)); 2276 if (sdd->sgc) 2277 kfree(*per_cpu_ptr(sdd->sgc, j)); 2278 } 2279 free_percpu(sdd->sd); 2280 sdd->sd = NULL; 2281 free_percpu(sdd->sds); 2282 sdd->sds = NULL; 2283 free_percpu(sdd->sg); 2284 sdd->sg = NULL; 2285 free_percpu(sdd->sgc); 2286 sdd->sgc = NULL; 2287 } 2288 } 2289 2290 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2291 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2292 struct sched_domain *child, int cpu) 2293 { 2294 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2295 2296 if (child) { 2297 sd->level = child->level + 1; 2298 sched_domain_level_max = max(sched_domain_level_max, sd->level); 2299 child->parent = sd; 2300 2301 if (!cpumask_subset(sched_domain_span(child), 2302 sched_domain_span(sd))) { 2303 pr_err("BUG: arch topology borken\n"); 2304 #ifdef CONFIG_SCHED_DEBUG 2305 pr_err(" the %s domain not a subset of the %s domain\n", 2306 child->name, sd->name); 2307 #endif 2308 /* Fixup, ensure @sd has at least @child CPUs. */ 2309 cpumask_or(sched_domain_span(sd), 2310 sched_domain_span(sd), 2311 sched_domain_span(child)); 2312 } 2313 2314 } 2315 set_domain_attribute(sd, attr); 2316 2317 return sd; 2318 } 2319 2320 /* 2321 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2322 * any two given CPUs at this (non-NUMA) topology level. 2323 */ 2324 static bool topology_span_sane(struct sched_domain_topology_level *tl, 2325 const struct cpumask *cpu_map, int cpu) 2326 { 2327 int i; 2328 2329 /* NUMA levels are allowed to overlap */ 2330 if (tl->flags & SDTL_OVERLAP) 2331 return true; 2332 2333 /* 2334 * Non-NUMA levels cannot partially overlap - they must be either 2335 * completely equal or completely disjoint. Otherwise we can end up 2336 * breaking the sched_group lists - i.e. a later get_group() pass 2337 * breaks the linking done for an earlier span. 2338 */ 2339 for_each_cpu(i, cpu_map) { 2340 if (i == cpu) 2341 continue; 2342 /* 2343 * We should 'and' all those masks with 'cpu_map' to exactly 2344 * match the topology we're about to build, but that can only 2345 * remove CPUs, which only lessens our ability to detect 2346 * overlaps 2347 */ 2348 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 2349 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 2350 return false; 2351 } 2352 2353 return true; 2354 } 2355 2356 /* 2357 * Build sched domains for a given set of CPUs and attach the sched domains 2358 * to the individual CPUs 2359 */ 2360 static int 2361 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2362 { 2363 enum s_alloc alloc_state = sa_none; 2364 struct sched_domain *sd; 2365 struct s_data d; 2366 struct rq *rq = NULL; 2367 int i, ret = -ENOMEM; 2368 bool has_asym = false; 2369 2370 if (WARN_ON(cpumask_empty(cpu_map))) 2371 goto error; 2372 2373 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2374 if (alloc_state != sa_rootdomain) 2375 goto error; 2376 2377 /* Set up domains for CPUs specified by the cpu_map: */ 2378 for_each_cpu(i, cpu_map) { 2379 struct sched_domain_topology_level *tl; 2380 2381 sd = NULL; 2382 for_each_sd_topology(tl) { 2383 2384 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2385 goto error; 2386 2387 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2388 2389 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 2390 2391 if (tl == sched_domain_topology) 2392 *per_cpu_ptr(d.sd, i) = sd; 2393 if (tl->flags & SDTL_OVERLAP) 2394 sd->flags |= SD_OVERLAP; 2395 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2396 break; 2397 } 2398 } 2399 2400 /* Build the groups for the domains */ 2401 for_each_cpu(i, cpu_map) { 2402 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2403 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2404 if (sd->flags & SD_OVERLAP) { 2405 if (build_overlap_sched_groups(sd, i)) 2406 goto error; 2407 } else { 2408 if (build_sched_groups(sd, i)) 2409 goto error; 2410 } 2411 } 2412 } 2413 2414 /* 2415 * Calculate an allowed NUMA imbalance such that LLCs do not get 2416 * imbalanced. 2417 */ 2418 for_each_cpu(i, cpu_map) { 2419 unsigned int imb = 0; 2420 unsigned int imb_span = 1; 2421 2422 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2423 struct sched_domain *child = sd->child; 2424 2425 if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child && 2426 (child->flags & SD_SHARE_PKG_RESOURCES)) { 2427 struct sched_domain __rcu *top_p; 2428 unsigned int nr_llcs; 2429 2430 /* 2431 * For a single LLC per node, allow an 2432 * imbalance up to 12.5% of the node. This is 2433 * arbitrary cutoff based two factors -- SMT and 2434 * memory channels. For SMT-2, the intent is to 2435 * avoid premature sharing of HT resources but 2436 * SMT-4 or SMT-8 *may* benefit from a different 2437 * cutoff. For memory channels, this is a very 2438 * rough estimate of how many channels may be 2439 * active and is based on recent CPUs with 2440 * many cores. 2441 * 2442 * For multiple LLCs, allow an imbalance 2443 * until multiple tasks would share an LLC 2444 * on one node while LLCs on another node 2445 * remain idle. This assumes that there are 2446 * enough logical CPUs per LLC to avoid SMT 2447 * factors and that there is a correlation 2448 * between LLCs and memory channels. 2449 */ 2450 nr_llcs = sd->span_weight / child->span_weight; 2451 if (nr_llcs == 1) 2452 imb = sd->span_weight >> 3; 2453 else 2454 imb = nr_llcs; 2455 imb = max(1U, imb); 2456 sd->imb_numa_nr = imb; 2457 2458 /* Set span based on the first NUMA domain. */ 2459 top_p = sd->parent; 2460 while (top_p && !(top_p->flags & SD_NUMA)) { 2461 top_p = top_p->parent; 2462 } 2463 imb_span = top_p ? top_p->span_weight : sd->span_weight; 2464 } else { 2465 int factor = max(1U, (sd->span_weight / imb_span)); 2466 2467 sd->imb_numa_nr = imb * factor; 2468 } 2469 } 2470 } 2471 2472 /* Calculate CPU capacity for physical packages and nodes */ 2473 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2474 if (!cpumask_test_cpu(i, cpu_map)) 2475 continue; 2476 2477 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2478 claim_allocations(i, sd); 2479 init_sched_groups_capacity(i, sd); 2480 } 2481 } 2482 2483 /* Attach the domains */ 2484 rcu_read_lock(); 2485 for_each_cpu(i, cpu_map) { 2486 rq = cpu_rq(i); 2487 sd = *per_cpu_ptr(d.sd, i); 2488 2489 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2490 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2491 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2492 2493 cpu_attach_domain(sd, d.rd, i); 2494 } 2495 rcu_read_unlock(); 2496 2497 if (has_asym) 2498 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2499 2500 if (rq && sched_debug_verbose) { 2501 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2502 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2503 } 2504 2505 ret = 0; 2506 error: 2507 __free_domain_allocs(&d, alloc_state, cpu_map); 2508 2509 return ret; 2510 } 2511 2512 /* Current sched domains: */ 2513 static cpumask_var_t *doms_cur; 2514 2515 /* Number of sched domains in 'doms_cur': */ 2516 static int ndoms_cur; 2517 2518 /* Attributes of custom domains in 'doms_cur' */ 2519 static struct sched_domain_attr *dattr_cur; 2520 2521 /* 2522 * Special case: If a kmalloc() of a doms_cur partition (array of 2523 * cpumask) fails, then fallback to a single sched domain, 2524 * as determined by the single cpumask fallback_doms. 2525 */ 2526 static cpumask_var_t fallback_doms; 2527 2528 /* 2529 * arch_update_cpu_topology lets virtualized architectures update the 2530 * CPU core maps. It is supposed to return 1 if the topology changed 2531 * or 0 if it stayed the same. 2532 */ 2533 int __weak arch_update_cpu_topology(void) 2534 { 2535 return 0; 2536 } 2537 2538 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2539 { 2540 int i; 2541 cpumask_var_t *doms; 2542 2543 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2544 if (!doms) 2545 return NULL; 2546 for (i = 0; i < ndoms; i++) { 2547 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2548 free_sched_domains(doms, i); 2549 return NULL; 2550 } 2551 } 2552 return doms; 2553 } 2554 2555 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2556 { 2557 unsigned int i; 2558 for (i = 0; i < ndoms; i++) 2559 free_cpumask_var(doms[i]); 2560 kfree(doms); 2561 } 2562 2563 /* 2564 * Set up scheduler domains and groups. For now this just excludes isolated 2565 * CPUs, but could be used to exclude other special cases in the future. 2566 */ 2567 int __init sched_init_domains(const struct cpumask *cpu_map) 2568 { 2569 int err; 2570 2571 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2572 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2573 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2574 2575 arch_update_cpu_topology(); 2576 asym_cpu_capacity_scan(); 2577 ndoms_cur = 1; 2578 doms_cur = alloc_sched_domains(ndoms_cur); 2579 if (!doms_cur) 2580 doms_cur = &fallback_doms; 2581 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN)); 2582 err = build_sched_domains(doms_cur[0], NULL); 2583 2584 return err; 2585 } 2586 2587 /* 2588 * Detach sched domains from a group of CPUs specified in cpu_map 2589 * These CPUs will now be attached to the NULL domain 2590 */ 2591 static void detach_destroy_domains(const struct cpumask *cpu_map) 2592 { 2593 unsigned int cpu = cpumask_any(cpu_map); 2594 int i; 2595 2596 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2597 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2598 2599 rcu_read_lock(); 2600 for_each_cpu(i, cpu_map) 2601 cpu_attach_domain(NULL, &def_root_domain, i); 2602 rcu_read_unlock(); 2603 } 2604 2605 /* handle null as "default" */ 2606 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2607 struct sched_domain_attr *new, int idx_new) 2608 { 2609 struct sched_domain_attr tmp; 2610 2611 /* Fast path: */ 2612 if (!new && !cur) 2613 return 1; 2614 2615 tmp = SD_ATTR_INIT; 2616 2617 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2618 new ? (new + idx_new) : &tmp, 2619 sizeof(struct sched_domain_attr)); 2620 } 2621 2622 /* 2623 * Partition sched domains as specified by the 'ndoms_new' 2624 * cpumasks in the array doms_new[] of cpumasks. This compares 2625 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2626 * It destroys each deleted domain and builds each new domain. 2627 * 2628 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2629 * The masks don't intersect (don't overlap.) We should setup one 2630 * sched domain for each mask. CPUs not in any of the cpumasks will 2631 * not be load balanced. If the same cpumask appears both in the 2632 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2633 * it as it is. 2634 * 2635 * The passed in 'doms_new' should be allocated using 2636 * alloc_sched_domains. This routine takes ownership of it and will 2637 * free_sched_domains it when done with it. If the caller failed the 2638 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2639 * and partition_sched_domains() will fallback to the single partition 2640 * 'fallback_doms', it also forces the domains to be rebuilt. 2641 * 2642 * If doms_new == NULL it will be replaced with cpu_online_mask. 2643 * ndoms_new == 0 is a special case for destroying existing domains, 2644 * and it will not create the default domain. 2645 * 2646 * Call with hotplug lock and sched_domains_mutex held 2647 */ 2648 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2649 struct sched_domain_attr *dattr_new) 2650 { 2651 bool __maybe_unused has_eas = false; 2652 int i, j, n; 2653 int new_topology; 2654 2655 lockdep_assert_held(&sched_domains_mutex); 2656 2657 /* Let the architecture update CPU core mappings: */ 2658 new_topology = arch_update_cpu_topology(); 2659 /* Trigger rebuilding CPU capacity asymmetry data */ 2660 if (new_topology) 2661 asym_cpu_capacity_scan(); 2662 2663 if (!doms_new) { 2664 WARN_ON_ONCE(dattr_new); 2665 n = 0; 2666 doms_new = alloc_sched_domains(1); 2667 if (doms_new) { 2668 n = 1; 2669 cpumask_and(doms_new[0], cpu_active_mask, 2670 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2671 } 2672 } else { 2673 n = ndoms_new; 2674 } 2675 2676 /* Destroy deleted domains: */ 2677 for (i = 0; i < ndoms_cur; i++) { 2678 for (j = 0; j < n && !new_topology; j++) { 2679 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2680 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2681 struct root_domain *rd; 2682 2683 /* 2684 * This domain won't be destroyed and as such 2685 * its dl_bw->total_bw needs to be cleared. It 2686 * will be recomputed in function 2687 * update_tasks_root_domain(). 2688 */ 2689 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2690 dl_clear_root_domain(rd); 2691 goto match1; 2692 } 2693 } 2694 /* No match - a current sched domain not in new doms_new[] */ 2695 detach_destroy_domains(doms_cur[i]); 2696 match1: 2697 ; 2698 } 2699 2700 n = ndoms_cur; 2701 if (!doms_new) { 2702 n = 0; 2703 doms_new = &fallback_doms; 2704 cpumask_and(doms_new[0], cpu_active_mask, 2705 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2706 } 2707 2708 /* Build new domains: */ 2709 for (i = 0; i < ndoms_new; i++) { 2710 for (j = 0; j < n && !new_topology; j++) { 2711 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2712 dattrs_equal(dattr_new, i, dattr_cur, j)) 2713 goto match2; 2714 } 2715 /* No match - add a new doms_new */ 2716 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2717 match2: 2718 ; 2719 } 2720 2721 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2722 /* Build perf. domains: */ 2723 for (i = 0; i < ndoms_new; i++) { 2724 for (j = 0; j < n && !sched_energy_update; j++) { 2725 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2726 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2727 has_eas = true; 2728 goto match3; 2729 } 2730 } 2731 /* No match - add perf. domains for a new rd */ 2732 has_eas |= build_perf_domains(doms_new[i]); 2733 match3: 2734 ; 2735 } 2736 sched_energy_set(has_eas); 2737 #endif 2738 2739 /* Remember the new sched domains: */ 2740 if (doms_cur != &fallback_doms) 2741 free_sched_domains(doms_cur, ndoms_cur); 2742 2743 kfree(dattr_cur); 2744 doms_cur = doms_new; 2745 dattr_cur = dattr_new; 2746 ndoms_cur = ndoms_new; 2747 2748 update_sched_domain_debugfs(); 2749 } 2750 2751 /* 2752 * Call with hotplug lock held 2753 */ 2754 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2755 struct sched_domain_attr *dattr_new) 2756 { 2757 mutex_lock(&sched_domains_mutex); 2758 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2759 mutex_unlock(&sched_domains_mutex); 2760 } 2761