xref: /openbmc/linux/kernel/sched/topology.c (revision d4a96be65423296e42091b0b79973b8d446e7798)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_enabled = true;
18 
19 	return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_enabled;
26 }
27 
28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29 const struct sd_flag_debug sd_flag_debug[] = {
30 #include <linux/sched/sd_flags.h>
31 };
32 #undef SD_FLAG
33 
34 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
35 				  struct cpumask *groupmask)
36 {
37 	struct sched_group *group = sd->groups;
38 	unsigned long flags = sd->flags;
39 	unsigned int idx;
40 
41 	cpumask_clear(groupmask);
42 
43 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
44 	printk(KERN_CONT "span=%*pbl level=%s\n",
45 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46 
47 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 	}
50 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 	}
53 
54 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
55 		unsigned int flag = BIT(idx);
56 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
57 
58 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
59 		    !(sd->child->flags & flag))
60 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
61 			       sd_flag_debug[idx].name);
62 
63 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
64 		    !(sd->parent->flags & flag))
65 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
66 			       sd_flag_debug[idx].name);
67 	}
68 
69 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
70 	do {
71 		if (!group) {
72 			printk("\n");
73 			printk(KERN_ERR "ERROR: group is NULL\n");
74 			break;
75 		}
76 
77 		if (!cpumask_weight(sched_group_span(group))) {
78 			printk(KERN_CONT "\n");
79 			printk(KERN_ERR "ERROR: empty group\n");
80 			break;
81 		}
82 
83 		if (!(sd->flags & SD_OVERLAP) &&
84 		    cpumask_intersects(groupmask, sched_group_span(group))) {
85 			printk(KERN_CONT "\n");
86 			printk(KERN_ERR "ERROR: repeated CPUs\n");
87 			break;
88 		}
89 
90 		cpumask_or(groupmask, groupmask, sched_group_span(group));
91 
92 		printk(KERN_CONT " %d:{ span=%*pbl",
93 				group->sgc->id,
94 				cpumask_pr_args(sched_group_span(group)));
95 
96 		if ((sd->flags & SD_OVERLAP) &&
97 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
98 			printk(KERN_CONT " mask=%*pbl",
99 				cpumask_pr_args(group_balance_mask(group)));
100 		}
101 
102 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
103 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
104 
105 		if (group == sd->groups && sd->child &&
106 		    !cpumask_equal(sched_domain_span(sd->child),
107 				   sched_group_span(group))) {
108 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
109 		}
110 
111 		printk(KERN_CONT " }");
112 
113 		group = group->next;
114 
115 		if (group != sd->groups)
116 			printk(KERN_CONT ",");
117 
118 	} while (group != sd->groups);
119 	printk(KERN_CONT "\n");
120 
121 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
122 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
123 
124 	if (sd->parent &&
125 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
126 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
127 	return 0;
128 }
129 
130 static void sched_domain_debug(struct sched_domain *sd, int cpu)
131 {
132 	int level = 0;
133 
134 	if (!sched_debug_enabled)
135 		return;
136 
137 	if (!sd) {
138 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
139 		return;
140 	}
141 
142 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
143 
144 	for (;;) {
145 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
146 			break;
147 		level++;
148 		sd = sd->parent;
149 		if (!sd)
150 			break;
151 	}
152 }
153 #else /* !CONFIG_SCHED_DEBUG */
154 
155 # define sched_debug_enabled 0
156 # define sched_domain_debug(sd, cpu) do { } while (0)
157 static inline bool sched_debug(void)
158 {
159 	return false;
160 }
161 #endif /* CONFIG_SCHED_DEBUG */
162 
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166 #include <linux/sched/sd_flags.h>
167 0;
168 #undef SD_FLAG
169 
170 static int sd_degenerate(struct sched_domain *sd)
171 {
172 	if (cpumask_weight(sched_domain_span(sd)) == 1)
173 		return 1;
174 
175 	/* Following flags need at least 2 groups */
176 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 	    (sd->groups != sd->groups->next))
178 		return 0;
179 
180 	/* Following flags don't use groups */
181 	if (sd->flags & (SD_WAKE_AFFINE))
182 		return 0;
183 
184 	return 1;
185 }
186 
187 static int
188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189 {
190 	unsigned long cflags = sd->flags, pflags = parent->flags;
191 
192 	if (sd_degenerate(parent))
193 		return 1;
194 
195 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 		return 0;
197 
198 	/* Flags needing groups don't count if only 1 group in parent */
199 	if (parent->groups == parent->groups->next)
200 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
201 
202 	if (~cflags & pflags)
203 		return 0;
204 
205 	return 1;
206 }
207 
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210 unsigned int sysctl_sched_energy_aware = 1;
211 DEFINE_MUTEX(sched_energy_mutex);
212 bool sched_energy_update;
213 
214 void rebuild_sched_domains_energy(void)
215 {
216 	mutex_lock(&sched_energy_mutex);
217 	sched_energy_update = true;
218 	rebuild_sched_domains();
219 	sched_energy_update = false;
220 	mutex_unlock(&sched_energy_mutex);
221 }
222 
223 #ifdef CONFIG_PROC_SYSCTL
224 int sched_energy_aware_handler(struct ctl_table *table, int write,
225 		void *buffer, size_t *lenp, loff_t *ppos)
226 {
227 	int ret, state;
228 
229 	if (write && !capable(CAP_SYS_ADMIN))
230 		return -EPERM;
231 
232 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
233 	if (!ret && write) {
234 		state = static_branch_unlikely(&sched_energy_present);
235 		if (state != sysctl_sched_energy_aware)
236 			rebuild_sched_domains_energy();
237 	}
238 
239 	return ret;
240 }
241 #endif
242 
243 static void free_pd(struct perf_domain *pd)
244 {
245 	struct perf_domain *tmp;
246 
247 	while (pd) {
248 		tmp = pd->next;
249 		kfree(pd);
250 		pd = tmp;
251 	}
252 }
253 
254 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
255 {
256 	while (pd) {
257 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
258 			return pd;
259 		pd = pd->next;
260 	}
261 
262 	return NULL;
263 }
264 
265 static struct perf_domain *pd_init(int cpu)
266 {
267 	struct em_perf_domain *obj = em_cpu_get(cpu);
268 	struct perf_domain *pd;
269 
270 	if (!obj) {
271 		if (sched_debug())
272 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
273 		return NULL;
274 	}
275 
276 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
277 	if (!pd)
278 		return NULL;
279 	pd->em_pd = obj;
280 
281 	return pd;
282 }
283 
284 static void perf_domain_debug(const struct cpumask *cpu_map,
285 						struct perf_domain *pd)
286 {
287 	if (!sched_debug() || !pd)
288 		return;
289 
290 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
291 
292 	while (pd) {
293 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
294 				cpumask_first(perf_domain_span(pd)),
295 				cpumask_pr_args(perf_domain_span(pd)),
296 				em_pd_nr_perf_states(pd->em_pd));
297 		pd = pd->next;
298 	}
299 
300 	printk(KERN_CONT "\n");
301 }
302 
303 static void destroy_perf_domain_rcu(struct rcu_head *rp)
304 {
305 	struct perf_domain *pd;
306 
307 	pd = container_of(rp, struct perf_domain, rcu);
308 	free_pd(pd);
309 }
310 
311 static void sched_energy_set(bool has_eas)
312 {
313 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
314 		if (sched_debug())
315 			pr_info("%s: stopping EAS\n", __func__);
316 		static_branch_disable_cpuslocked(&sched_energy_present);
317 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
318 		if (sched_debug())
319 			pr_info("%s: starting EAS\n", __func__);
320 		static_branch_enable_cpuslocked(&sched_energy_present);
321 	}
322 }
323 
324 /*
325  * EAS can be used on a root domain if it meets all the following conditions:
326  *    1. an Energy Model (EM) is available;
327  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
328  *    3. no SMT is detected.
329  *    4. the EM complexity is low enough to keep scheduling overheads low;
330  *    5. schedutil is driving the frequency of all CPUs of the rd;
331  *    6. frequency invariance support is present;
332  *
333  * The complexity of the Energy Model is defined as:
334  *
335  *              C = nr_pd * (nr_cpus + nr_ps)
336  *
337  * with parameters defined as:
338  *  - nr_pd:    the number of performance domains
339  *  - nr_cpus:  the number of CPUs
340  *  - nr_ps:    the sum of the number of performance states of all performance
341  *              domains (for example, on a system with 2 performance domains,
342  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
343  *
344  * It is generally not a good idea to use such a model in the wake-up path on
345  * very complex platforms because of the associated scheduling overheads. The
346  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
347  * with per-CPU DVFS and less than 8 performance states each, for example.
348  */
349 #define EM_MAX_COMPLEXITY 2048
350 
351 extern struct cpufreq_governor schedutil_gov;
352 static bool build_perf_domains(const struct cpumask *cpu_map)
353 {
354 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
355 	struct perf_domain *pd = NULL, *tmp;
356 	int cpu = cpumask_first(cpu_map);
357 	struct root_domain *rd = cpu_rq(cpu)->rd;
358 	struct cpufreq_policy *policy;
359 	struct cpufreq_governor *gov;
360 
361 	if (!sysctl_sched_energy_aware)
362 		goto free;
363 
364 	/* EAS is enabled for asymmetric CPU capacity topologies. */
365 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
366 		if (sched_debug()) {
367 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
368 					cpumask_pr_args(cpu_map));
369 		}
370 		goto free;
371 	}
372 
373 	/* EAS definitely does *not* handle SMT */
374 	if (sched_smt_active()) {
375 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
376 			cpumask_pr_args(cpu_map));
377 		goto free;
378 	}
379 
380 	if (!arch_scale_freq_invariant()) {
381 		if (sched_debug()) {
382 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
383 				cpumask_pr_args(cpu_map));
384 		}
385 		goto free;
386 	}
387 
388 	for_each_cpu(i, cpu_map) {
389 		/* Skip already covered CPUs. */
390 		if (find_pd(pd, i))
391 			continue;
392 
393 		/* Do not attempt EAS if schedutil is not being used. */
394 		policy = cpufreq_cpu_get(i);
395 		if (!policy)
396 			goto free;
397 		gov = policy->governor;
398 		cpufreq_cpu_put(policy);
399 		if (gov != &schedutil_gov) {
400 			if (rd->pd)
401 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
402 						cpumask_pr_args(cpu_map));
403 			goto free;
404 		}
405 
406 		/* Create the new pd and add it to the local list. */
407 		tmp = pd_init(i);
408 		if (!tmp)
409 			goto free;
410 		tmp->next = pd;
411 		pd = tmp;
412 
413 		/*
414 		 * Count performance domains and performance states for the
415 		 * complexity check.
416 		 */
417 		nr_pd++;
418 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
419 	}
420 
421 	/* Bail out if the Energy Model complexity is too high. */
422 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
423 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
424 						cpumask_pr_args(cpu_map));
425 		goto free;
426 	}
427 
428 	perf_domain_debug(cpu_map, pd);
429 
430 	/* Attach the new list of performance domains to the root domain. */
431 	tmp = rd->pd;
432 	rcu_assign_pointer(rd->pd, pd);
433 	if (tmp)
434 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
435 
436 	return !!pd;
437 
438 free:
439 	free_pd(pd);
440 	tmp = rd->pd;
441 	rcu_assign_pointer(rd->pd, NULL);
442 	if (tmp)
443 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
444 
445 	return false;
446 }
447 #else
448 static void free_pd(struct perf_domain *pd) { }
449 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
450 
451 static void free_rootdomain(struct rcu_head *rcu)
452 {
453 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
454 
455 	cpupri_cleanup(&rd->cpupri);
456 	cpudl_cleanup(&rd->cpudl);
457 	free_cpumask_var(rd->dlo_mask);
458 	free_cpumask_var(rd->rto_mask);
459 	free_cpumask_var(rd->online);
460 	free_cpumask_var(rd->span);
461 	free_pd(rd->pd);
462 	kfree(rd);
463 }
464 
465 void rq_attach_root(struct rq *rq, struct root_domain *rd)
466 {
467 	struct root_domain *old_rd = NULL;
468 	unsigned long flags;
469 
470 	raw_spin_lock_irqsave(&rq->lock, flags);
471 
472 	if (rq->rd) {
473 		old_rd = rq->rd;
474 
475 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
476 			set_rq_offline(rq);
477 
478 		cpumask_clear_cpu(rq->cpu, old_rd->span);
479 
480 		/*
481 		 * If we dont want to free the old_rd yet then
482 		 * set old_rd to NULL to skip the freeing later
483 		 * in this function:
484 		 */
485 		if (!atomic_dec_and_test(&old_rd->refcount))
486 			old_rd = NULL;
487 	}
488 
489 	atomic_inc(&rd->refcount);
490 	rq->rd = rd;
491 
492 	cpumask_set_cpu(rq->cpu, rd->span);
493 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
494 		set_rq_online(rq);
495 
496 	raw_spin_unlock_irqrestore(&rq->lock, flags);
497 
498 	if (old_rd)
499 		call_rcu(&old_rd->rcu, free_rootdomain);
500 }
501 
502 void sched_get_rd(struct root_domain *rd)
503 {
504 	atomic_inc(&rd->refcount);
505 }
506 
507 void sched_put_rd(struct root_domain *rd)
508 {
509 	if (!atomic_dec_and_test(&rd->refcount))
510 		return;
511 
512 	call_rcu(&rd->rcu, free_rootdomain);
513 }
514 
515 static int init_rootdomain(struct root_domain *rd)
516 {
517 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
518 		goto out;
519 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
520 		goto free_span;
521 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
522 		goto free_online;
523 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
524 		goto free_dlo_mask;
525 
526 #ifdef HAVE_RT_PUSH_IPI
527 	rd->rto_cpu = -1;
528 	raw_spin_lock_init(&rd->rto_lock);
529 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
530 #endif
531 
532 	rd->visit_gen = 0;
533 	init_dl_bw(&rd->dl_bw);
534 	if (cpudl_init(&rd->cpudl) != 0)
535 		goto free_rto_mask;
536 
537 	if (cpupri_init(&rd->cpupri) != 0)
538 		goto free_cpudl;
539 	return 0;
540 
541 free_cpudl:
542 	cpudl_cleanup(&rd->cpudl);
543 free_rto_mask:
544 	free_cpumask_var(rd->rto_mask);
545 free_dlo_mask:
546 	free_cpumask_var(rd->dlo_mask);
547 free_online:
548 	free_cpumask_var(rd->online);
549 free_span:
550 	free_cpumask_var(rd->span);
551 out:
552 	return -ENOMEM;
553 }
554 
555 /*
556  * By default the system creates a single root-domain with all CPUs as
557  * members (mimicking the global state we have today).
558  */
559 struct root_domain def_root_domain;
560 
561 void init_defrootdomain(void)
562 {
563 	init_rootdomain(&def_root_domain);
564 
565 	atomic_set(&def_root_domain.refcount, 1);
566 }
567 
568 static struct root_domain *alloc_rootdomain(void)
569 {
570 	struct root_domain *rd;
571 
572 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
573 	if (!rd)
574 		return NULL;
575 
576 	if (init_rootdomain(rd) != 0) {
577 		kfree(rd);
578 		return NULL;
579 	}
580 
581 	return rd;
582 }
583 
584 static void free_sched_groups(struct sched_group *sg, int free_sgc)
585 {
586 	struct sched_group *tmp, *first;
587 
588 	if (!sg)
589 		return;
590 
591 	first = sg;
592 	do {
593 		tmp = sg->next;
594 
595 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
596 			kfree(sg->sgc);
597 
598 		if (atomic_dec_and_test(&sg->ref))
599 			kfree(sg);
600 		sg = tmp;
601 	} while (sg != first);
602 }
603 
604 static void destroy_sched_domain(struct sched_domain *sd)
605 {
606 	/*
607 	 * A normal sched domain may have multiple group references, an
608 	 * overlapping domain, having private groups, only one.  Iterate,
609 	 * dropping group/capacity references, freeing where none remain.
610 	 */
611 	free_sched_groups(sd->groups, 1);
612 
613 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
614 		kfree(sd->shared);
615 	kfree(sd);
616 }
617 
618 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
619 {
620 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
621 
622 	while (sd) {
623 		struct sched_domain *parent = sd->parent;
624 		destroy_sched_domain(sd);
625 		sd = parent;
626 	}
627 }
628 
629 static void destroy_sched_domains(struct sched_domain *sd)
630 {
631 	if (sd)
632 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
633 }
634 
635 /*
636  * Keep a special pointer to the highest sched_domain that has
637  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
638  * allows us to avoid some pointer chasing select_idle_sibling().
639  *
640  * Also keep a unique ID per domain (we use the first CPU number in
641  * the cpumask of the domain), this allows us to quickly tell if
642  * two CPUs are in the same cache domain, see cpus_share_cache().
643  */
644 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
645 DEFINE_PER_CPU(int, sd_llc_size);
646 DEFINE_PER_CPU(int, sd_llc_id);
647 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
648 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
649 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
650 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
651 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
652 
653 static void update_top_cache_domain(int cpu)
654 {
655 	struct sched_domain_shared *sds = NULL;
656 	struct sched_domain *sd;
657 	int id = cpu;
658 	int size = 1;
659 
660 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
661 	if (sd) {
662 		id = cpumask_first(sched_domain_span(sd));
663 		size = cpumask_weight(sched_domain_span(sd));
664 		sds = sd->shared;
665 	}
666 
667 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
668 	per_cpu(sd_llc_size, cpu) = size;
669 	per_cpu(sd_llc_id, cpu) = id;
670 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
671 
672 	sd = lowest_flag_domain(cpu, SD_NUMA);
673 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
674 
675 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
676 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
677 
678 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
679 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
680 }
681 
682 /*
683  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
684  * hold the hotplug lock.
685  */
686 static void
687 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
688 {
689 	struct rq *rq = cpu_rq(cpu);
690 	struct sched_domain *tmp;
691 	int numa_distance = 0;
692 
693 	/* Remove the sched domains which do not contribute to scheduling. */
694 	for (tmp = sd; tmp; ) {
695 		struct sched_domain *parent = tmp->parent;
696 		if (!parent)
697 			break;
698 
699 		if (sd_parent_degenerate(tmp, parent)) {
700 			tmp->parent = parent->parent;
701 			if (parent->parent)
702 				parent->parent->child = tmp;
703 			/*
704 			 * Transfer SD_PREFER_SIBLING down in case of a
705 			 * degenerate parent; the spans match for this
706 			 * so the property transfers.
707 			 */
708 			if (parent->flags & SD_PREFER_SIBLING)
709 				tmp->flags |= SD_PREFER_SIBLING;
710 			destroy_sched_domain(parent);
711 		} else
712 			tmp = tmp->parent;
713 	}
714 
715 	if (sd && sd_degenerate(sd)) {
716 		tmp = sd;
717 		sd = sd->parent;
718 		destroy_sched_domain(tmp);
719 		if (sd)
720 			sd->child = NULL;
721 	}
722 
723 	for (tmp = sd; tmp; tmp = tmp->parent)
724 		numa_distance += !!(tmp->flags & SD_NUMA);
725 
726 	/*
727 	 * FIXME: Diameter >=3 is misrepresented.
728 	 *
729 	 * Smallest diameter=3 topology is:
730 	 *
731 	 *   node   0   1   2   3
732 	 *     0:  10  20  30  40
733 	 *     1:  20  10  20  30
734 	 *     2:  30  20  10  20
735 	 *     3:  40  30  20  10
736 	 *
737 	 *   0 --- 1 --- 2 --- 3
738 	 *
739 	 * NUMA-3	0-3		N/A		N/A		0-3
740 	 *  groups:	{0-2},{1-3}					{1-3},{0-2}
741 	 *
742 	 * NUMA-2	0-2		0-3		0-3		1-3
743 	 *  groups:	{0-1},{1-3}	{0-2},{2-3}	{1-3},{0-1}	{2-3},{0-2}
744 	 *
745 	 * NUMA-1	0-1		0-2		1-3		2-3
746 	 *  groups:	{0},{1}		{1},{2},{0}	{2},{3},{1}	{3},{2}
747 	 *
748 	 * NUMA-0	0		1		2		3
749 	 *
750 	 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
751 	 * group span isn't a subset of the domain span.
752 	 */
753 	WARN_ONCE(numa_distance > 2, "Shortest NUMA path spans too many nodes\n");
754 
755 	sched_domain_debug(sd, cpu);
756 
757 	rq_attach_root(rq, rd);
758 	tmp = rq->sd;
759 	rcu_assign_pointer(rq->sd, sd);
760 	dirty_sched_domain_sysctl(cpu);
761 	destroy_sched_domains(tmp);
762 
763 	update_top_cache_domain(cpu);
764 }
765 
766 struct s_data {
767 	struct sched_domain * __percpu *sd;
768 	struct root_domain	*rd;
769 };
770 
771 enum s_alloc {
772 	sa_rootdomain,
773 	sa_sd,
774 	sa_sd_storage,
775 	sa_none,
776 };
777 
778 /*
779  * Return the canonical balance CPU for this group, this is the first CPU
780  * of this group that's also in the balance mask.
781  *
782  * The balance mask are all those CPUs that could actually end up at this
783  * group. See build_balance_mask().
784  *
785  * Also see should_we_balance().
786  */
787 int group_balance_cpu(struct sched_group *sg)
788 {
789 	return cpumask_first(group_balance_mask(sg));
790 }
791 
792 
793 /*
794  * NUMA topology (first read the regular topology blurb below)
795  *
796  * Given a node-distance table, for example:
797  *
798  *   node   0   1   2   3
799  *     0:  10  20  30  20
800  *     1:  20  10  20  30
801  *     2:  30  20  10  20
802  *     3:  20  30  20  10
803  *
804  * which represents a 4 node ring topology like:
805  *
806  *   0 ----- 1
807  *   |       |
808  *   |       |
809  *   |       |
810  *   3 ----- 2
811  *
812  * We want to construct domains and groups to represent this. The way we go
813  * about doing this is to build the domains on 'hops'. For each NUMA level we
814  * construct the mask of all nodes reachable in @level hops.
815  *
816  * For the above NUMA topology that gives 3 levels:
817  *
818  * NUMA-2	0-3		0-3		0-3		0-3
819  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
820  *
821  * NUMA-1	0-1,3		0-2		1-3		0,2-3
822  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
823  *
824  * NUMA-0	0		1		2		3
825  *
826  *
827  * As can be seen; things don't nicely line up as with the regular topology.
828  * When we iterate a domain in child domain chunks some nodes can be
829  * represented multiple times -- hence the "overlap" naming for this part of
830  * the topology.
831  *
832  * In order to minimize this overlap, we only build enough groups to cover the
833  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
834  *
835  * Because:
836  *
837  *  - the first group of each domain is its child domain; this
838  *    gets us the first 0-1,3
839  *  - the only uncovered node is 2, who's child domain is 1-3.
840  *
841  * However, because of the overlap, computing a unique CPU for each group is
842  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
843  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
844  * end up at those groups (they would end up in group: 0-1,3).
845  *
846  * To correct this we have to introduce the group balance mask. This mask
847  * will contain those CPUs in the group that can reach this group given the
848  * (child) domain tree.
849  *
850  * With this we can once again compute balance_cpu and sched_group_capacity
851  * relations.
852  *
853  * XXX include words on how balance_cpu is unique and therefore can be
854  * used for sched_group_capacity links.
855  *
856  *
857  * Another 'interesting' topology is:
858  *
859  *   node   0   1   2   3
860  *     0:  10  20  20  30
861  *     1:  20  10  20  20
862  *     2:  20  20  10  20
863  *     3:  30  20  20  10
864  *
865  * Which looks a little like:
866  *
867  *   0 ----- 1
868  *   |     / |
869  *   |   /   |
870  *   | /     |
871  *   2 ----- 3
872  *
873  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
874  * are not.
875  *
876  * This leads to a few particularly weird cases where the sched_domain's are
877  * not of the same number for each CPU. Consider:
878  *
879  * NUMA-2	0-3						0-3
880  *  groups:	{0-2},{1-3}					{1-3},{0-2}
881  *
882  * NUMA-1	0-2		0-3		0-3		1-3
883  *
884  * NUMA-0	0		1		2		3
885  *
886  */
887 
888 
889 /*
890  * Build the balance mask; it contains only those CPUs that can arrive at this
891  * group and should be considered to continue balancing.
892  *
893  * We do this during the group creation pass, therefore the group information
894  * isn't complete yet, however since each group represents a (child) domain we
895  * can fully construct this using the sched_domain bits (which are already
896  * complete).
897  */
898 static void
899 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
900 {
901 	const struct cpumask *sg_span = sched_group_span(sg);
902 	struct sd_data *sdd = sd->private;
903 	struct sched_domain *sibling;
904 	int i;
905 
906 	cpumask_clear(mask);
907 
908 	for_each_cpu(i, sg_span) {
909 		sibling = *per_cpu_ptr(sdd->sd, i);
910 
911 		/*
912 		 * Can happen in the asymmetric case, where these siblings are
913 		 * unused. The mask will not be empty because those CPUs that
914 		 * do have the top domain _should_ span the domain.
915 		 */
916 		if (!sibling->child)
917 			continue;
918 
919 		/* If we would not end up here, we can't continue from here */
920 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
921 			continue;
922 
923 		cpumask_set_cpu(i, mask);
924 	}
925 
926 	/* We must not have empty masks here */
927 	WARN_ON_ONCE(cpumask_empty(mask));
928 }
929 
930 /*
931  * XXX: This creates per-node group entries; since the load-balancer will
932  * immediately access remote memory to construct this group's load-balance
933  * statistics having the groups node local is of dubious benefit.
934  */
935 static struct sched_group *
936 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
937 {
938 	struct sched_group *sg;
939 	struct cpumask *sg_span;
940 
941 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
942 			GFP_KERNEL, cpu_to_node(cpu));
943 
944 	if (!sg)
945 		return NULL;
946 
947 	sg_span = sched_group_span(sg);
948 	if (sd->child)
949 		cpumask_copy(sg_span, sched_domain_span(sd->child));
950 	else
951 		cpumask_copy(sg_span, sched_domain_span(sd));
952 
953 	atomic_inc(&sg->ref);
954 	return sg;
955 }
956 
957 static void init_overlap_sched_group(struct sched_domain *sd,
958 				     struct sched_group *sg)
959 {
960 	struct cpumask *mask = sched_domains_tmpmask2;
961 	struct sd_data *sdd = sd->private;
962 	struct cpumask *sg_span;
963 	int cpu;
964 
965 	build_balance_mask(sd, sg, mask);
966 	cpu = cpumask_first_and(sched_group_span(sg), mask);
967 
968 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
969 	if (atomic_inc_return(&sg->sgc->ref) == 1)
970 		cpumask_copy(group_balance_mask(sg), mask);
971 	else
972 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
973 
974 	/*
975 	 * Initialize sgc->capacity such that even if we mess up the
976 	 * domains and no possible iteration will get us here, we won't
977 	 * die on a /0 trap.
978 	 */
979 	sg_span = sched_group_span(sg);
980 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
981 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
982 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
983 }
984 
985 static int
986 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
987 {
988 	struct sched_group *first = NULL, *last = NULL, *sg;
989 	const struct cpumask *span = sched_domain_span(sd);
990 	struct cpumask *covered = sched_domains_tmpmask;
991 	struct sd_data *sdd = sd->private;
992 	struct sched_domain *sibling;
993 	int i;
994 
995 	cpumask_clear(covered);
996 
997 	for_each_cpu_wrap(i, span, cpu) {
998 		struct cpumask *sg_span;
999 
1000 		if (cpumask_test_cpu(i, covered))
1001 			continue;
1002 
1003 		sibling = *per_cpu_ptr(sdd->sd, i);
1004 
1005 		/*
1006 		 * Asymmetric node setups can result in situations where the
1007 		 * domain tree is of unequal depth, make sure to skip domains
1008 		 * that already cover the entire range.
1009 		 *
1010 		 * In that case build_sched_domains() will have terminated the
1011 		 * iteration early and our sibling sd spans will be empty.
1012 		 * Domains should always include the CPU they're built on, so
1013 		 * check that.
1014 		 */
1015 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1016 			continue;
1017 
1018 		sg = build_group_from_child_sched_domain(sibling, cpu);
1019 		if (!sg)
1020 			goto fail;
1021 
1022 		sg_span = sched_group_span(sg);
1023 		cpumask_or(covered, covered, sg_span);
1024 
1025 		init_overlap_sched_group(sd, sg);
1026 
1027 		if (!first)
1028 			first = sg;
1029 		if (last)
1030 			last->next = sg;
1031 		last = sg;
1032 		last->next = first;
1033 	}
1034 	sd->groups = first;
1035 
1036 	return 0;
1037 
1038 fail:
1039 	free_sched_groups(first, 0);
1040 
1041 	return -ENOMEM;
1042 }
1043 
1044 
1045 /*
1046  * Package topology (also see the load-balance blurb in fair.c)
1047  *
1048  * The scheduler builds a tree structure to represent a number of important
1049  * topology features. By default (default_topology[]) these include:
1050  *
1051  *  - Simultaneous multithreading (SMT)
1052  *  - Multi-Core Cache (MC)
1053  *  - Package (DIE)
1054  *
1055  * Where the last one more or less denotes everything up to a NUMA node.
1056  *
1057  * The tree consists of 3 primary data structures:
1058  *
1059  *	sched_domain -> sched_group -> sched_group_capacity
1060  *	    ^ ^             ^ ^
1061  *          `-'             `-'
1062  *
1063  * The sched_domains are per-CPU and have a two way link (parent & child) and
1064  * denote the ever growing mask of CPUs belonging to that level of topology.
1065  *
1066  * Each sched_domain has a circular (double) linked list of sched_group's, each
1067  * denoting the domains of the level below (or individual CPUs in case of the
1068  * first domain level). The sched_group linked by a sched_domain includes the
1069  * CPU of that sched_domain [*].
1070  *
1071  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1072  *
1073  * CPU   0   1   2   3   4   5   6   7
1074  *
1075  * DIE  [                             ]
1076  * MC   [             ] [             ]
1077  * SMT  [     ] [     ] [     ] [     ]
1078  *
1079  *  - or -
1080  *
1081  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1082  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1083  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1084  *
1085  * CPU   0   1   2   3   4   5   6   7
1086  *
1087  * One way to think about it is: sched_domain moves you up and down among these
1088  * topology levels, while sched_group moves you sideways through it, at child
1089  * domain granularity.
1090  *
1091  * sched_group_capacity ensures each unique sched_group has shared storage.
1092  *
1093  * There are two related construction problems, both require a CPU that
1094  * uniquely identify each group (for a given domain):
1095  *
1096  *  - The first is the balance_cpu (see should_we_balance() and the
1097  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1098  *    continue balancing at a higher domain.
1099  *
1100  *  - The second is the sched_group_capacity; we want all identical groups
1101  *    to share a single sched_group_capacity.
1102  *
1103  * Since these topologies are exclusive by construction. That is, its
1104  * impossible for an SMT thread to belong to multiple cores, and cores to
1105  * be part of multiple caches. There is a very clear and unique location
1106  * for each CPU in the hierarchy.
1107  *
1108  * Therefore computing a unique CPU for each group is trivial (the iteration
1109  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1110  * group), we can simply pick the first CPU in each group.
1111  *
1112  *
1113  * [*] in other words, the first group of each domain is its child domain.
1114  */
1115 
1116 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1117 {
1118 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1119 	struct sched_domain *child = sd->child;
1120 	struct sched_group *sg;
1121 	bool already_visited;
1122 
1123 	if (child)
1124 		cpu = cpumask_first(sched_domain_span(child));
1125 
1126 	sg = *per_cpu_ptr(sdd->sg, cpu);
1127 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1128 
1129 	/* Increase refcounts for claim_allocations: */
1130 	already_visited = atomic_inc_return(&sg->ref) > 1;
1131 	/* sgc visits should follow a similar trend as sg */
1132 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1133 
1134 	/* If we have already visited that group, it's already initialized. */
1135 	if (already_visited)
1136 		return sg;
1137 
1138 	if (child) {
1139 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1140 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1141 	} else {
1142 		cpumask_set_cpu(cpu, sched_group_span(sg));
1143 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1144 	}
1145 
1146 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1147 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1148 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1149 
1150 	return sg;
1151 }
1152 
1153 /*
1154  * build_sched_groups will build a circular linked list of the groups
1155  * covered by the given span, will set each group's ->cpumask correctly,
1156  * and will initialize their ->sgc.
1157  *
1158  * Assumes the sched_domain tree is fully constructed
1159  */
1160 static int
1161 build_sched_groups(struct sched_domain *sd, int cpu)
1162 {
1163 	struct sched_group *first = NULL, *last = NULL;
1164 	struct sd_data *sdd = sd->private;
1165 	const struct cpumask *span = sched_domain_span(sd);
1166 	struct cpumask *covered;
1167 	int i;
1168 
1169 	lockdep_assert_held(&sched_domains_mutex);
1170 	covered = sched_domains_tmpmask;
1171 
1172 	cpumask_clear(covered);
1173 
1174 	for_each_cpu_wrap(i, span, cpu) {
1175 		struct sched_group *sg;
1176 
1177 		if (cpumask_test_cpu(i, covered))
1178 			continue;
1179 
1180 		sg = get_group(i, sdd);
1181 
1182 		cpumask_or(covered, covered, sched_group_span(sg));
1183 
1184 		if (!first)
1185 			first = sg;
1186 		if (last)
1187 			last->next = sg;
1188 		last = sg;
1189 	}
1190 	last->next = first;
1191 	sd->groups = first;
1192 
1193 	return 0;
1194 }
1195 
1196 /*
1197  * Initialize sched groups cpu_capacity.
1198  *
1199  * cpu_capacity indicates the capacity of sched group, which is used while
1200  * distributing the load between different sched groups in a sched domain.
1201  * Typically cpu_capacity for all the groups in a sched domain will be same
1202  * unless there are asymmetries in the topology. If there are asymmetries,
1203  * group having more cpu_capacity will pickup more load compared to the
1204  * group having less cpu_capacity.
1205  */
1206 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1207 {
1208 	struct sched_group *sg = sd->groups;
1209 
1210 	WARN_ON(!sg);
1211 
1212 	do {
1213 		int cpu, max_cpu = -1;
1214 
1215 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1216 
1217 		if (!(sd->flags & SD_ASYM_PACKING))
1218 			goto next;
1219 
1220 		for_each_cpu(cpu, sched_group_span(sg)) {
1221 			if (max_cpu < 0)
1222 				max_cpu = cpu;
1223 			else if (sched_asym_prefer(cpu, max_cpu))
1224 				max_cpu = cpu;
1225 		}
1226 		sg->asym_prefer_cpu = max_cpu;
1227 
1228 next:
1229 		sg = sg->next;
1230 	} while (sg != sd->groups);
1231 
1232 	if (cpu != group_balance_cpu(sg))
1233 		return;
1234 
1235 	update_group_capacity(sd, cpu);
1236 }
1237 
1238 /*
1239  * Initializers for schedule domains
1240  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1241  */
1242 
1243 static int default_relax_domain_level = -1;
1244 int sched_domain_level_max;
1245 
1246 static int __init setup_relax_domain_level(char *str)
1247 {
1248 	if (kstrtoint(str, 0, &default_relax_domain_level))
1249 		pr_warn("Unable to set relax_domain_level\n");
1250 
1251 	return 1;
1252 }
1253 __setup("relax_domain_level=", setup_relax_domain_level);
1254 
1255 static void set_domain_attribute(struct sched_domain *sd,
1256 				 struct sched_domain_attr *attr)
1257 {
1258 	int request;
1259 
1260 	if (!attr || attr->relax_domain_level < 0) {
1261 		if (default_relax_domain_level < 0)
1262 			return;
1263 		request = default_relax_domain_level;
1264 	} else
1265 		request = attr->relax_domain_level;
1266 
1267 	if (sd->level > request) {
1268 		/* Turn off idle balance on this domain: */
1269 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1270 	}
1271 }
1272 
1273 static void __sdt_free(const struct cpumask *cpu_map);
1274 static int __sdt_alloc(const struct cpumask *cpu_map);
1275 
1276 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1277 				 const struct cpumask *cpu_map)
1278 {
1279 	switch (what) {
1280 	case sa_rootdomain:
1281 		if (!atomic_read(&d->rd->refcount))
1282 			free_rootdomain(&d->rd->rcu);
1283 		fallthrough;
1284 	case sa_sd:
1285 		free_percpu(d->sd);
1286 		fallthrough;
1287 	case sa_sd_storage:
1288 		__sdt_free(cpu_map);
1289 		fallthrough;
1290 	case sa_none:
1291 		break;
1292 	}
1293 }
1294 
1295 static enum s_alloc
1296 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1297 {
1298 	memset(d, 0, sizeof(*d));
1299 
1300 	if (__sdt_alloc(cpu_map))
1301 		return sa_sd_storage;
1302 	d->sd = alloc_percpu(struct sched_domain *);
1303 	if (!d->sd)
1304 		return sa_sd_storage;
1305 	d->rd = alloc_rootdomain();
1306 	if (!d->rd)
1307 		return sa_sd;
1308 
1309 	return sa_rootdomain;
1310 }
1311 
1312 /*
1313  * NULL the sd_data elements we've used to build the sched_domain and
1314  * sched_group structure so that the subsequent __free_domain_allocs()
1315  * will not free the data we're using.
1316  */
1317 static void claim_allocations(int cpu, struct sched_domain *sd)
1318 {
1319 	struct sd_data *sdd = sd->private;
1320 
1321 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1322 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1323 
1324 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1325 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1326 
1327 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1328 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1329 
1330 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1331 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1332 }
1333 
1334 #ifdef CONFIG_NUMA
1335 enum numa_topology_type sched_numa_topology_type;
1336 
1337 static int			sched_domains_numa_levels;
1338 static int			sched_domains_curr_level;
1339 
1340 int				sched_max_numa_distance;
1341 static int			*sched_domains_numa_distance;
1342 static struct cpumask		***sched_domains_numa_masks;
1343 int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1344 #endif
1345 
1346 /*
1347  * SD_flags allowed in topology descriptions.
1348  *
1349  * These flags are purely descriptive of the topology and do not prescribe
1350  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1351  * function:
1352  *
1353  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1354  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1355  *   SD_NUMA                - describes NUMA topologies
1356  *
1357  * Odd one out, which beside describing the topology has a quirk also
1358  * prescribes the desired behaviour that goes along with it:
1359  *
1360  *   SD_ASYM_PACKING        - describes SMT quirks
1361  */
1362 #define TOPOLOGY_SD_FLAGS		\
1363 	(SD_SHARE_CPUCAPACITY	|	\
1364 	 SD_SHARE_PKG_RESOURCES |	\
1365 	 SD_NUMA		|	\
1366 	 SD_ASYM_PACKING)
1367 
1368 static struct sched_domain *
1369 sd_init(struct sched_domain_topology_level *tl,
1370 	const struct cpumask *cpu_map,
1371 	struct sched_domain *child, int dflags, int cpu)
1372 {
1373 	struct sd_data *sdd = &tl->data;
1374 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1375 	int sd_id, sd_weight, sd_flags = 0;
1376 
1377 #ifdef CONFIG_NUMA
1378 	/*
1379 	 * Ugly hack to pass state to sd_numa_mask()...
1380 	 */
1381 	sched_domains_curr_level = tl->numa_level;
1382 #endif
1383 
1384 	sd_weight = cpumask_weight(tl->mask(cpu));
1385 
1386 	if (tl->sd_flags)
1387 		sd_flags = (*tl->sd_flags)();
1388 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1389 			"wrong sd_flags in topology description\n"))
1390 		sd_flags &= TOPOLOGY_SD_FLAGS;
1391 
1392 	/* Apply detected topology flags */
1393 	sd_flags |= dflags;
1394 
1395 	*sd = (struct sched_domain){
1396 		.min_interval		= sd_weight,
1397 		.max_interval		= 2*sd_weight,
1398 		.busy_factor		= 16,
1399 		.imbalance_pct		= 117,
1400 
1401 		.cache_nice_tries	= 0,
1402 
1403 		.flags			= 1*SD_BALANCE_NEWIDLE
1404 					| 1*SD_BALANCE_EXEC
1405 					| 1*SD_BALANCE_FORK
1406 					| 0*SD_BALANCE_WAKE
1407 					| 1*SD_WAKE_AFFINE
1408 					| 0*SD_SHARE_CPUCAPACITY
1409 					| 0*SD_SHARE_PKG_RESOURCES
1410 					| 0*SD_SERIALIZE
1411 					| 1*SD_PREFER_SIBLING
1412 					| 0*SD_NUMA
1413 					| sd_flags
1414 					,
1415 
1416 		.last_balance		= jiffies,
1417 		.balance_interval	= sd_weight,
1418 		.max_newidle_lb_cost	= 0,
1419 		.next_decay_max_lb_cost	= jiffies,
1420 		.child			= child,
1421 #ifdef CONFIG_SCHED_DEBUG
1422 		.name			= tl->name,
1423 #endif
1424 	};
1425 
1426 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1427 	sd_id = cpumask_first(sched_domain_span(sd));
1428 
1429 	/*
1430 	 * Convert topological properties into behaviour.
1431 	 */
1432 
1433 	/* Don't attempt to spread across CPUs of different capacities. */
1434 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1435 		sd->child->flags &= ~SD_PREFER_SIBLING;
1436 
1437 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1438 		sd->imbalance_pct = 110;
1439 
1440 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1441 		sd->imbalance_pct = 117;
1442 		sd->cache_nice_tries = 1;
1443 
1444 #ifdef CONFIG_NUMA
1445 	} else if (sd->flags & SD_NUMA) {
1446 		sd->cache_nice_tries = 2;
1447 
1448 		sd->flags &= ~SD_PREFER_SIBLING;
1449 		sd->flags |= SD_SERIALIZE;
1450 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1451 			sd->flags &= ~(SD_BALANCE_EXEC |
1452 				       SD_BALANCE_FORK |
1453 				       SD_WAKE_AFFINE);
1454 		}
1455 
1456 #endif
1457 	} else {
1458 		sd->cache_nice_tries = 1;
1459 	}
1460 
1461 	/*
1462 	 * For all levels sharing cache; connect a sched_domain_shared
1463 	 * instance.
1464 	 */
1465 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1466 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1467 		atomic_inc(&sd->shared->ref);
1468 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1469 	}
1470 
1471 	sd->private = sdd;
1472 
1473 	return sd;
1474 }
1475 
1476 /*
1477  * Topology list, bottom-up.
1478  */
1479 static struct sched_domain_topology_level default_topology[] = {
1480 #ifdef CONFIG_SCHED_SMT
1481 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1482 #endif
1483 #ifdef CONFIG_SCHED_MC
1484 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1485 #endif
1486 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1487 	{ NULL, },
1488 };
1489 
1490 static struct sched_domain_topology_level *sched_domain_topology =
1491 	default_topology;
1492 
1493 #define for_each_sd_topology(tl)			\
1494 	for (tl = sched_domain_topology; tl->mask; tl++)
1495 
1496 void set_sched_topology(struct sched_domain_topology_level *tl)
1497 {
1498 	if (WARN_ON_ONCE(sched_smp_initialized))
1499 		return;
1500 
1501 	sched_domain_topology = tl;
1502 }
1503 
1504 #ifdef CONFIG_NUMA
1505 
1506 static const struct cpumask *sd_numa_mask(int cpu)
1507 {
1508 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1509 }
1510 
1511 static void sched_numa_warn(const char *str)
1512 {
1513 	static int done = false;
1514 	int i,j;
1515 
1516 	if (done)
1517 		return;
1518 
1519 	done = true;
1520 
1521 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1522 
1523 	for (i = 0; i < nr_node_ids; i++) {
1524 		printk(KERN_WARNING "  ");
1525 		for (j = 0; j < nr_node_ids; j++)
1526 			printk(KERN_CONT "%02d ", node_distance(i,j));
1527 		printk(KERN_CONT "\n");
1528 	}
1529 	printk(KERN_WARNING "\n");
1530 }
1531 
1532 bool find_numa_distance(int distance)
1533 {
1534 	int i;
1535 
1536 	if (distance == node_distance(0, 0))
1537 		return true;
1538 
1539 	for (i = 0; i < sched_domains_numa_levels; i++) {
1540 		if (sched_domains_numa_distance[i] == distance)
1541 			return true;
1542 	}
1543 
1544 	return false;
1545 }
1546 
1547 /*
1548  * A system can have three types of NUMA topology:
1549  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1550  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1551  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1552  *
1553  * The difference between a glueless mesh topology and a backplane
1554  * topology lies in whether communication between not directly
1555  * connected nodes goes through intermediary nodes (where programs
1556  * could run), or through backplane controllers. This affects
1557  * placement of programs.
1558  *
1559  * The type of topology can be discerned with the following tests:
1560  * - If the maximum distance between any nodes is 1 hop, the system
1561  *   is directly connected.
1562  * - If for two nodes A and B, located N > 1 hops away from each other,
1563  *   there is an intermediary node C, which is < N hops away from both
1564  *   nodes A and B, the system is a glueless mesh.
1565  */
1566 static void init_numa_topology_type(void)
1567 {
1568 	int a, b, c, n;
1569 
1570 	n = sched_max_numa_distance;
1571 
1572 	if (sched_domains_numa_levels <= 2) {
1573 		sched_numa_topology_type = NUMA_DIRECT;
1574 		return;
1575 	}
1576 
1577 	for_each_online_node(a) {
1578 		for_each_online_node(b) {
1579 			/* Find two nodes furthest removed from each other. */
1580 			if (node_distance(a, b) < n)
1581 				continue;
1582 
1583 			/* Is there an intermediary node between a and b? */
1584 			for_each_online_node(c) {
1585 				if (node_distance(a, c) < n &&
1586 				    node_distance(b, c) < n) {
1587 					sched_numa_topology_type =
1588 							NUMA_GLUELESS_MESH;
1589 					return;
1590 				}
1591 			}
1592 
1593 			sched_numa_topology_type = NUMA_BACKPLANE;
1594 			return;
1595 		}
1596 	}
1597 }
1598 
1599 
1600 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1601 
1602 void sched_init_numa(void)
1603 {
1604 	struct sched_domain_topology_level *tl;
1605 	unsigned long *distance_map;
1606 	int nr_levels = 0;
1607 	int i, j;
1608 
1609 	/*
1610 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1611 	 * unique distances in the node_distance() table.
1612 	 */
1613 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1614 	if (!distance_map)
1615 		return;
1616 
1617 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1618 	for (i = 0; i < nr_node_ids; i++) {
1619 		for (j = 0; j < nr_node_ids; j++) {
1620 			int distance = node_distance(i, j);
1621 
1622 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1623 				sched_numa_warn("Invalid distance value range");
1624 				return;
1625 			}
1626 
1627 			bitmap_set(distance_map, distance, 1);
1628 		}
1629 	}
1630 	/*
1631 	 * We can now figure out how many unique distance values there are and
1632 	 * allocate memory accordingly.
1633 	 */
1634 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1635 
1636 	sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1637 	if (!sched_domains_numa_distance) {
1638 		bitmap_free(distance_map);
1639 		return;
1640 	}
1641 
1642 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1643 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1644 		sched_domains_numa_distance[i] = j;
1645 	}
1646 
1647 	bitmap_free(distance_map);
1648 
1649 	/*
1650 	 * 'nr_levels' contains the number of unique distances
1651 	 *
1652 	 * The sched_domains_numa_distance[] array includes the actual distance
1653 	 * numbers.
1654 	 */
1655 
1656 	/*
1657 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1658 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1659 	 * the array will contain less then 'nr_levels' members. This could be
1660 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1661 	 * in other functions.
1662 	 *
1663 	 * We reset it to 'nr_levels' at the end of this function.
1664 	 */
1665 	sched_domains_numa_levels = 0;
1666 
1667 	sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1668 	if (!sched_domains_numa_masks)
1669 		return;
1670 
1671 	/*
1672 	 * Now for each level, construct a mask per node which contains all
1673 	 * CPUs of nodes that are that many hops away from us.
1674 	 */
1675 	for (i = 0; i < nr_levels; i++) {
1676 		sched_domains_numa_masks[i] =
1677 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1678 		if (!sched_domains_numa_masks[i])
1679 			return;
1680 
1681 		for (j = 0; j < nr_node_ids; j++) {
1682 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1683 			int k;
1684 
1685 			if (!mask)
1686 				return;
1687 
1688 			sched_domains_numa_masks[i][j] = mask;
1689 
1690 			for_each_node(k) {
1691 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1692 					sched_numa_warn("Node-distance not symmetric");
1693 
1694 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1695 					continue;
1696 
1697 				cpumask_or(mask, mask, cpumask_of_node(k));
1698 			}
1699 		}
1700 	}
1701 
1702 	/* Compute default topology size */
1703 	for (i = 0; sched_domain_topology[i].mask; i++);
1704 
1705 	tl = kzalloc((i + nr_levels + 1) *
1706 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1707 	if (!tl)
1708 		return;
1709 
1710 	/*
1711 	 * Copy the default topology bits..
1712 	 */
1713 	for (i = 0; sched_domain_topology[i].mask; i++)
1714 		tl[i] = sched_domain_topology[i];
1715 
1716 	/*
1717 	 * Add the NUMA identity distance, aka single NODE.
1718 	 */
1719 	tl[i++] = (struct sched_domain_topology_level){
1720 		.mask = sd_numa_mask,
1721 		.numa_level = 0,
1722 		SD_INIT_NAME(NODE)
1723 	};
1724 
1725 	/*
1726 	 * .. and append 'j' levels of NUMA goodness.
1727 	 */
1728 	for (j = 1; j < nr_levels; i++, j++) {
1729 		tl[i] = (struct sched_domain_topology_level){
1730 			.mask = sd_numa_mask,
1731 			.sd_flags = cpu_numa_flags,
1732 			.flags = SDTL_OVERLAP,
1733 			.numa_level = j,
1734 			SD_INIT_NAME(NUMA)
1735 		};
1736 	}
1737 
1738 	sched_domain_topology = tl;
1739 
1740 	sched_domains_numa_levels = nr_levels;
1741 	sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
1742 
1743 	init_numa_topology_type();
1744 }
1745 
1746 void sched_domains_numa_masks_set(unsigned int cpu)
1747 {
1748 	int node = cpu_to_node(cpu);
1749 	int i, j;
1750 
1751 	for (i = 0; i < sched_domains_numa_levels; i++) {
1752 		for (j = 0; j < nr_node_ids; j++) {
1753 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1754 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1755 		}
1756 	}
1757 }
1758 
1759 void sched_domains_numa_masks_clear(unsigned int cpu)
1760 {
1761 	int i, j;
1762 
1763 	for (i = 0; i < sched_domains_numa_levels; i++) {
1764 		for (j = 0; j < nr_node_ids; j++)
1765 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1766 	}
1767 }
1768 
1769 /*
1770  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1771  *                             closest to @cpu from @cpumask.
1772  * cpumask: cpumask to find a cpu from
1773  * cpu: cpu to be close to
1774  *
1775  * returns: cpu, or nr_cpu_ids when nothing found.
1776  */
1777 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1778 {
1779 	int i, j = cpu_to_node(cpu);
1780 
1781 	for (i = 0; i < sched_domains_numa_levels; i++) {
1782 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1783 		if (cpu < nr_cpu_ids)
1784 			return cpu;
1785 	}
1786 	return nr_cpu_ids;
1787 }
1788 
1789 #endif /* CONFIG_NUMA */
1790 
1791 static int __sdt_alloc(const struct cpumask *cpu_map)
1792 {
1793 	struct sched_domain_topology_level *tl;
1794 	int j;
1795 
1796 	for_each_sd_topology(tl) {
1797 		struct sd_data *sdd = &tl->data;
1798 
1799 		sdd->sd = alloc_percpu(struct sched_domain *);
1800 		if (!sdd->sd)
1801 			return -ENOMEM;
1802 
1803 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1804 		if (!sdd->sds)
1805 			return -ENOMEM;
1806 
1807 		sdd->sg = alloc_percpu(struct sched_group *);
1808 		if (!sdd->sg)
1809 			return -ENOMEM;
1810 
1811 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1812 		if (!sdd->sgc)
1813 			return -ENOMEM;
1814 
1815 		for_each_cpu(j, cpu_map) {
1816 			struct sched_domain *sd;
1817 			struct sched_domain_shared *sds;
1818 			struct sched_group *sg;
1819 			struct sched_group_capacity *sgc;
1820 
1821 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1822 					GFP_KERNEL, cpu_to_node(j));
1823 			if (!sd)
1824 				return -ENOMEM;
1825 
1826 			*per_cpu_ptr(sdd->sd, j) = sd;
1827 
1828 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1829 					GFP_KERNEL, cpu_to_node(j));
1830 			if (!sds)
1831 				return -ENOMEM;
1832 
1833 			*per_cpu_ptr(sdd->sds, j) = sds;
1834 
1835 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1836 					GFP_KERNEL, cpu_to_node(j));
1837 			if (!sg)
1838 				return -ENOMEM;
1839 
1840 			sg->next = sg;
1841 
1842 			*per_cpu_ptr(sdd->sg, j) = sg;
1843 
1844 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1845 					GFP_KERNEL, cpu_to_node(j));
1846 			if (!sgc)
1847 				return -ENOMEM;
1848 
1849 #ifdef CONFIG_SCHED_DEBUG
1850 			sgc->id = j;
1851 #endif
1852 
1853 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1854 		}
1855 	}
1856 
1857 	return 0;
1858 }
1859 
1860 static void __sdt_free(const struct cpumask *cpu_map)
1861 {
1862 	struct sched_domain_topology_level *tl;
1863 	int j;
1864 
1865 	for_each_sd_topology(tl) {
1866 		struct sd_data *sdd = &tl->data;
1867 
1868 		for_each_cpu(j, cpu_map) {
1869 			struct sched_domain *sd;
1870 
1871 			if (sdd->sd) {
1872 				sd = *per_cpu_ptr(sdd->sd, j);
1873 				if (sd && (sd->flags & SD_OVERLAP))
1874 					free_sched_groups(sd->groups, 0);
1875 				kfree(*per_cpu_ptr(sdd->sd, j));
1876 			}
1877 
1878 			if (sdd->sds)
1879 				kfree(*per_cpu_ptr(sdd->sds, j));
1880 			if (sdd->sg)
1881 				kfree(*per_cpu_ptr(sdd->sg, j));
1882 			if (sdd->sgc)
1883 				kfree(*per_cpu_ptr(sdd->sgc, j));
1884 		}
1885 		free_percpu(sdd->sd);
1886 		sdd->sd = NULL;
1887 		free_percpu(sdd->sds);
1888 		sdd->sds = NULL;
1889 		free_percpu(sdd->sg);
1890 		sdd->sg = NULL;
1891 		free_percpu(sdd->sgc);
1892 		sdd->sgc = NULL;
1893 	}
1894 }
1895 
1896 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1897 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1898 		struct sched_domain *child, int dflags, int cpu)
1899 {
1900 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1901 
1902 	if (child) {
1903 		sd->level = child->level + 1;
1904 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1905 		child->parent = sd;
1906 
1907 		if (!cpumask_subset(sched_domain_span(child),
1908 				    sched_domain_span(sd))) {
1909 			pr_err("BUG: arch topology borken\n");
1910 #ifdef CONFIG_SCHED_DEBUG
1911 			pr_err("     the %s domain not a subset of the %s domain\n",
1912 					child->name, sd->name);
1913 #endif
1914 			/* Fixup, ensure @sd has at least @child CPUs. */
1915 			cpumask_or(sched_domain_span(sd),
1916 				   sched_domain_span(sd),
1917 				   sched_domain_span(child));
1918 		}
1919 
1920 	}
1921 	set_domain_attribute(sd, attr);
1922 
1923 	return sd;
1924 }
1925 
1926 /*
1927  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1928  * any two given CPUs at this (non-NUMA) topology level.
1929  */
1930 static bool topology_span_sane(struct sched_domain_topology_level *tl,
1931 			      const struct cpumask *cpu_map, int cpu)
1932 {
1933 	int i;
1934 
1935 	/* NUMA levels are allowed to overlap */
1936 	if (tl->flags & SDTL_OVERLAP)
1937 		return true;
1938 
1939 	/*
1940 	 * Non-NUMA levels cannot partially overlap - they must be either
1941 	 * completely equal or completely disjoint. Otherwise we can end up
1942 	 * breaking the sched_group lists - i.e. a later get_group() pass
1943 	 * breaks the linking done for an earlier span.
1944 	 */
1945 	for_each_cpu(i, cpu_map) {
1946 		if (i == cpu)
1947 			continue;
1948 		/*
1949 		 * We should 'and' all those masks with 'cpu_map' to exactly
1950 		 * match the topology we're about to build, but that can only
1951 		 * remove CPUs, which only lessens our ability to detect
1952 		 * overlaps
1953 		 */
1954 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1955 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1956 			return false;
1957 	}
1958 
1959 	return true;
1960 }
1961 
1962 /*
1963  * Find the sched_domain_topology_level where all CPU capacities are visible
1964  * for all CPUs.
1965  */
1966 static struct sched_domain_topology_level
1967 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1968 {
1969 	int i, j, asym_level = 0;
1970 	bool asym = false;
1971 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1972 	unsigned long cap;
1973 
1974 	/* Is there any asymmetry? */
1975 	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1976 
1977 	for_each_cpu(i, cpu_map) {
1978 		if (arch_scale_cpu_capacity(i) != cap) {
1979 			asym = true;
1980 			break;
1981 		}
1982 	}
1983 
1984 	if (!asym)
1985 		return NULL;
1986 
1987 	/*
1988 	 * Examine topology from all CPU's point of views to detect the lowest
1989 	 * sched_domain_topology_level where a highest capacity CPU is visible
1990 	 * to everyone.
1991 	 */
1992 	for_each_cpu(i, cpu_map) {
1993 		unsigned long max_capacity = arch_scale_cpu_capacity(i);
1994 		int tl_id = 0;
1995 
1996 		for_each_sd_topology(tl) {
1997 			if (tl_id < asym_level)
1998 				goto next_level;
1999 
2000 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
2001 				unsigned long capacity;
2002 
2003 				capacity = arch_scale_cpu_capacity(j);
2004 
2005 				if (capacity <= max_capacity)
2006 					continue;
2007 
2008 				max_capacity = capacity;
2009 				asym_level = tl_id;
2010 				asym_tl = tl;
2011 			}
2012 next_level:
2013 			tl_id++;
2014 		}
2015 	}
2016 
2017 	return asym_tl;
2018 }
2019 
2020 
2021 /*
2022  * Build sched domains for a given set of CPUs and attach the sched domains
2023  * to the individual CPUs
2024  */
2025 static int
2026 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2027 {
2028 	enum s_alloc alloc_state = sa_none;
2029 	struct sched_domain *sd;
2030 	struct s_data d;
2031 	struct rq *rq = NULL;
2032 	int i, ret = -ENOMEM;
2033 	struct sched_domain_topology_level *tl_asym;
2034 	bool has_asym = false;
2035 
2036 	if (WARN_ON(cpumask_empty(cpu_map)))
2037 		goto error;
2038 
2039 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2040 	if (alloc_state != sa_rootdomain)
2041 		goto error;
2042 
2043 	tl_asym = asym_cpu_capacity_level(cpu_map);
2044 
2045 	/* Set up domains for CPUs specified by the cpu_map: */
2046 	for_each_cpu(i, cpu_map) {
2047 		struct sched_domain_topology_level *tl;
2048 		int dflags = 0;
2049 
2050 		sd = NULL;
2051 		for_each_sd_topology(tl) {
2052 			if (tl == tl_asym) {
2053 				dflags |= SD_ASYM_CPUCAPACITY;
2054 				has_asym = true;
2055 			}
2056 
2057 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2058 				goto error;
2059 
2060 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2061 
2062 			if (tl == sched_domain_topology)
2063 				*per_cpu_ptr(d.sd, i) = sd;
2064 			if (tl->flags & SDTL_OVERLAP)
2065 				sd->flags |= SD_OVERLAP;
2066 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2067 				break;
2068 		}
2069 	}
2070 
2071 	/* Build the groups for the domains */
2072 	for_each_cpu(i, cpu_map) {
2073 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2074 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2075 			if (sd->flags & SD_OVERLAP) {
2076 				if (build_overlap_sched_groups(sd, i))
2077 					goto error;
2078 			} else {
2079 				if (build_sched_groups(sd, i))
2080 					goto error;
2081 			}
2082 		}
2083 	}
2084 
2085 	/* Calculate CPU capacity for physical packages and nodes */
2086 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2087 		if (!cpumask_test_cpu(i, cpu_map))
2088 			continue;
2089 
2090 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2091 			claim_allocations(i, sd);
2092 			init_sched_groups_capacity(i, sd);
2093 		}
2094 	}
2095 
2096 	/* Attach the domains */
2097 	rcu_read_lock();
2098 	for_each_cpu(i, cpu_map) {
2099 		rq = cpu_rq(i);
2100 		sd = *per_cpu_ptr(d.sd, i);
2101 
2102 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2103 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2104 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2105 
2106 		cpu_attach_domain(sd, d.rd, i);
2107 	}
2108 	rcu_read_unlock();
2109 
2110 	if (has_asym)
2111 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2112 
2113 	if (rq && sched_debug_enabled) {
2114 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2115 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2116 	}
2117 
2118 	ret = 0;
2119 error:
2120 	__free_domain_allocs(&d, alloc_state, cpu_map);
2121 
2122 	return ret;
2123 }
2124 
2125 /* Current sched domains: */
2126 static cpumask_var_t			*doms_cur;
2127 
2128 /* Number of sched domains in 'doms_cur': */
2129 static int				ndoms_cur;
2130 
2131 /* Attribues of custom domains in 'doms_cur' */
2132 static struct sched_domain_attr		*dattr_cur;
2133 
2134 /*
2135  * Special case: If a kmalloc() of a doms_cur partition (array of
2136  * cpumask) fails, then fallback to a single sched domain,
2137  * as determined by the single cpumask fallback_doms.
2138  */
2139 static cpumask_var_t			fallback_doms;
2140 
2141 /*
2142  * arch_update_cpu_topology lets virtualized architectures update the
2143  * CPU core maps. It is supposed to return 1 if the topology changed
2144  * or 0 if it stayed the same.
2145  */
2146 int __weak arch_update_cpu_topology(void)
2147 {
2148 	return 0;
2149 }
2150 
2151 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2152 {
2153 	int i;
2154 	cpumask_var_t *doms;
2155 
2156 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2157 	if (!doms)
2158 		return NULL;
2159 	for (i = 0; i < ndoms; i++) {
2160 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2161 			free_sched_domains(doms, i);
2162 			return NULL;
2163 		}
2164 	}
2165 	return doms;
2166 }
2167 
2168 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2169 {
2170 	unsigned int i;
2171 	for (i = 0; i < ndoms; i++)
2172 		free_cpumask_var(doms[i]);
2173 	kfree(doms);
2174 }
2175 
2176 /*
2177  * Set up scheduler domains and groups.  For now this just excludes isolated
2178  * CPUs, but could be used to exclude other special cases in the future.
2179  */
2180 int sched_init_domains(const struct cpumask *cpu_map)
2181 {
2182 	int err;
2183 
2184 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2185 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2186 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2187 
2188 	arch_update_cpu_topology();
2189 	ndoms_cur = 1;
2190 	doms_cur = alloc_sched_domains(ndoms_cur);
2191 	if (!doms_cur)
2192 		doms_cur = &fallback_doms;
2193 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2194 	err = build_sched_domains(doms_cur[0], NULL);
2195 	register_sched_domain_sysctl();
2196 
2197 	return err;
2198 }
2199 
2200 /*
2201  * Detach sched domains from a group of CPUs specified in cpu_map
2202  * These CPUs will now be attached to the NULL domain
2203  */
2204 static void detach_destroy_domains(const struct cpumask *cpu_map)
2205 {
2206 	unsigned int cpu = cpumask_any(cpu_map);
2207 	int i;
2208 
2209 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2210 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2211 
2212 	rcu_read_lock();
2213 	for_each_cpu(i, cpu_map)
2214 		cpu_attach_domain(NULL, &def_root_domain, i);
2215 	rcu_read_unlock();
2216 }
2217 
2218 /* handle null as "default" */
2219 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2220 			struct sched_domain_attr *new, int idx_new)
2221 {
2222 	struct sched_domain_attr tmp;
2223 
2224 	/* Fast path: */
2225 	if (!new && !cur)
2226 		return 1;
2227 
2228 	tmp = SD_ATTR_INIT;
2229 
2230 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2231 			new ? (new + idx_new) : &tmp,
2232 			sizeof(struct sched_domain_attr));
2233 }
2234 
2235 /*
2236  * Partition sched domains as specified by the 'ndoms_new'
2237  * cpumasks in the array doms_new[] of cpumasks. This compares
2238  * doms_new[] to the current sched domain partitioning, doms_cur[].
2239  * It destroys each deleted domain and builds each new domain.
2240  *
2241  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2242  * The masks don't intersect (don't overlap.) We should setup one
2243  * sched domain for each mask. CPUs not in any of the cpumasks will
2244  * not be load balanced. If the same cpumask appears both in the
2245  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2246  * it as it is.
2247  *
2248  * The passed in 'doms_new' should be allocated using
2249  * alloc_sched_domains.  This routine takes ownership of it and will
2250  * free_sched_domains it when done with it. If the caller failed the
2251  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2252  * and partition_sched_domains() will fallback to the single partition
2253  * 'fallback_doms', it also forces the domains to be rebuilt.
2254  *
2255  * If doms_new == NULL it will be replaced with cpu_online_mask.
2256  * ndoms_new == 0 is a special case for destroying existing domains,
2257  * and it will not create the default domain.
2258  *
2259  * Call with hotplug lock and sched_domains_mutex held
2260  */
2261 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2262 				    struct sched_domain_attr *dattr_new)
2263 {
2264 	bool __maybe_unused has_eas = false;
2265 	int i, j, n;
2266 	int new_topology;
2267 
2268 	lockdep_assert_held(&sched_domains_mutex);
2269 
2270 	/* Always unregister in case we don't destroy any domains: */
2271 	unregister_sched_domain_sysctl();
2272 
2273 	/* Let the architecture update CPU core mappings: */
2274 	new_topology = arch_update_cpu_topology();
2275 
2276 	if (!doms_new) {
2277 		WARN_ON_ONCE(dattr_new);
2278 		n = 0;
2279 		doms_new = alloc_sched_domains(1);
2280 		if (doms_new) {
2281 			n = 1;
2282 			cpumask_and(doms_new[0], cpu_active_mask,
2283 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2284 		}
2285 	} else {
2286 		n = ndoms_new;
2287 	}
2288 
2289 	/* Destroy deleted domains: */
2290 	for (i = 0; i < ndoms_cur; i++) {
2291 		for (j = 0; j < n && !new_topology; j++) {
2292 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2293 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2294 				struct root_domain *rd;
2295 
2296 				/*
2297 				 * This domain won't be destroyed and as such
2298 				 * its dl_bw->total_bw needs to be cleared.  It
2299 				 * will be recomputed in function
2300 				 * update_tasks_root_domain().
2301 				 */
2302 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2303 				dl_clear_root_domain(rd);
2304 				goto match1;
2305 			}
2306 		}
2307 		/* No match - a current sched domain not in new doms_new[] */
2308 		detach_destroy_domains(doms_cur[i]);
2309 match1:
2310 		;
2311 	}
2312 
2313 	n = ndoms_cur;
2314 	if (!doms_new) {
2315 		n = 0;
2316 		doms_new = &fallback_doms;
2317 		cpumask_and(doms_new[0], cpu_active_mask,
2318 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2319 	}
2320 
2321 	/* Build new domains: */
2322 	for (i = 0; i < ndoms_new; i++) {
2323 		for (j = 0; j < n && !new_topology; j++) {
2324 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2325 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2326 				goto match2;
2327 		}
2328 		/* No match - add a new doms_new */
2329 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2330 match2:
2331 		;
2332 	}
2333 
2334 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2335 	/* Build perf. domains: */
2336 	for (i = 0; i < ndoms_new; i++) {
2337 		for (j = 0; j < n && !sched_energy_update; j++) {
2338 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2339 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2340 				has_eas = true;
2341 				goto match3;
2342 			}
2343 		}
2344 		/* No match - add perf. domains for a new rd */
2345 		has_eas |= build_perf_domains(doms_new[i]);
2346 match3:
2347 		;
2348 	}
2349 	sched_energy_set(has_eas);
2350 #endif
2351 
2352 	/* Remember the new sched domains: */
2353 	if (doms_cur != &fallback_doms)
2354 		free_sched_domains(doms_cur, ndoms_cur);
2355 
2356 	kfree(dattr_cur);
2357 	doms_cur = doms_new;
2358 	dattr_cur = dattr_new;
2359 	ndoms_cur = ndoms_new;
2360 
2361 	register_sched_domain_sysctl();
2362 }
2363 
2364 /*
2365  * Call with hotplug lock held
2366  */
2367 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2368 			     struct sched_domain_attr *dattr_new)
2369 {
2370 	mutex_lock(&sched_domains_mutex);
2371 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2372 	mutex_unlock(&sched_domains_mutex);
2373 }
2374