xref: /openbmc/linux/kernel/sched/topology.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_enabled = true;
18 
19 	return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_enabled;
26 }
27 
28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29 const struct sd_flag_debug sd_flag_debug[] = {
30 #include <linux/sched/sd_flags.h>
31 };
32 #undef SD_FLAG
33 
34 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
35 				  struct cpumask *groupmask)
36 {
37 	struct sched_group *group = sd->groups;
38 	unsigned long flags = sd->flags;
39 	unsigned int idx;
40 
41 	cpumask_clear(groupmask);
42 
43 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
44 	printk(KERN_CONT "span=%*pbl level=%s\n",
45 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46 
47 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 	}
50 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 	}
53 
54 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
55 		unsigned int flag = BIT(idx);
56 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
57 
58 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
59 		    !(sd->child->flags & flag))
60 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
61 			       sd_flag_debug[idx].name);
62 
63 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
64 		    !(sd->parent->flags & flag))
65 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
66 			       sd_flag_debug[idx].name);
67 	}
68 
69 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
70 	do {
71 		if (!group) {
72 			printk("\n");
73 			printk(KERN_ERR "ERROR: group is NULL\n");
74 			break;
75 		}
76 
77 		if (!cpumask_weight(sched_group_span(group))) {
78 			printk(KERN_CONT "\n");
79 			printk(KERN_ERR "ERROR: empty group\n");
80 			break;
81 		}
82 
83 		if (!(sd->flags & SD_OVERLAP) &&
84 		    cpumask_intersects(groupmask, sched_group_span(group))) {
85 			printk(KERN_CONT "\n");
86 			printk(KERN_ERR "ERROR: repeated CPUs\n");
87 			break;
88 		}
89 
90 		cpumask_or(groupmask, groupmask, sched_group_span(group));
91 
92 		printk(KERN_CONT " %d:{ span=%*pbl",
93 				group->sgc->id,
94 				cpumask_pr_args(sched_group_span(group)));
95 
96 		if ((sd->flags & SD_OVERLAP) &&
97 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
98 			printk(KERN_CONT " mask=%*pbl",
99 				cpumask_pr_args(group_balance_mask(group)));
100 		}
101 
102 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
103 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
104 
105 		if (group == sd->groups && sd->child &&
106 		    !cpumask_equal(sched_domain_span(sd->child),
107 				   sched_group_span(group))) {
108 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
109 		}
110 
111 		printk(KERN_CONT " }");
112 
113 		group = group->next;
114 
115 		if (group != sd->groups)
116 			printk(KERN_CONT ",");
117 
118 	} while (group != sd->groups);
119 	printk(KERN_CONT "\n");
120 
121 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
122 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
123 
124 	if (sd->parent &&
125 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
126 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
127 	return 0;
128 }
129 
130 static void sched_domain_debug(struct sched_domain *sd, int cpu)
131 {
132 	int level = 0;
133 
134 	if (!sched_debug_enabled)
135 		return;
136 
137 	if (!sd) {
138 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
139 		return;
140 	}
141 
142 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
143 
144 	for (;;) {
145 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
146 			break;
147 		level++;
148 		sd = sd->parent;
149 		if (!sd)
150 			break;
151 	}
152 }
153 #else /* !CONFIG_SCHED_DEBUG */
154 
155 # define sched_debug_enabled 0
156 # define sched_domain_debug(sd, cpu) do { } while (0)
157 static inline bool sched_debug(void)
158 {
159 	return false;
160 }
161 #endif /* CONFIG_SCHED_DEBUG */
162 
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166 #include <linux/sched/sd_flags.h>
167 0;
168 #undef SD_FLAG
169 
170 static int sd_degenerate(struct sched_domain *sd)
171 {
172 	if (cpumask_weight(sched_domain_span(sd)) == 1)
173 		return 1;
174 
175 	/* Following flags need at least 2 groups */
176 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 	    (sd->groups != sd->groups->next))
178 		return 0;
179 
180 	/* Following flags don't use groups */
181 	if (sd->flags & (SD_WAKE_AFFINE))
182 		return 0;
183 
184 	return 1;
185 }
186 
187 static int
188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189 {
190 	unsigned long cflags = sd->flags, pflags = parent->flags;
191 
192 	if (sd_degenerate(parent))
193 		return 1;
194 
195 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 		return 0;
197 
198 	/* Flags needing groups don't count if only 1 group in parent */
199 	if (parent->groups == parent->groups->next)
200 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
201 
202 	if (~cflags & pflags)
203 		return 0;
204 
205 	return 1;
206 }
207 
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210 unsigned int sysctl_sched_energy_aware = 1;
211 DEFINE_MUTEX(sched_energy_mutex);
212 bool sched_energy_update;
213 
214 #ifdef CONFIG_PROC_SYSCTL
215 int sched_energy_aware_handler(struct ctl_table *table, int write,
216 		void *buffer, size_t *lenp, loff_t *ppos)
217 {
218 	int ret, state;
219 
220 	if (write && !capable(CAP_SYS_ADMIN))
221 		return -EPERM;
222 
223 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
224 	if (!ret && write) {
225 		state = static_branch_unlikely(&sched_energy_present);
226 		if (state != sysctl_sched_energy_aware) {
227 			mutex_lock(&sched_energy_mutex);
228 			sched_energy_update = 1;
229 			rebuild_sched_domains();
230 			sched_energy_update = 0;
231 			mutex_unlock(&sched_energy_mutex);
232 		}
233 	}
234 
235 	return ret;
236 }
237 #endif
238 
239 static void free_pd(struct perf_domain *pd)
240 {
241 	struct perf_domain *tmp;
242 
243 	while (pd) {
244 		tmp = pd->next;
245 		kfree(pd);
246 		pd = tmp;
247 	}
248 }
249 
250 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
251 {
252 	while (pd) {
253 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
254 			return pd;
255 		pd = pd->next;
256 	}
257 
258 	return NULL;
259 }
260 
261 static struct perf_domain *pd_init(int cpu)
262 {
263 	struct em_perf_domain *obj = em_cpu_get(cpu);
264 	struct perf_domain *pd;
265 
266 	if (!obj) {
267 		if (sched_debug())
268 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
269 		return NULL;
270 	}
271 
272 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
273 	if (!pd)
274 		return NULL;
275 	pd->em_pd = obj;
276 
277 	return pd;
278 }
279 
280 static void perf_domain_debug(const struct cpumask *cpu_map,
281 						struct perf_domain *pd)
282 {
283 	if (!sched_debug() || !pd)
284 		return;
285 
286 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
287 
288 	while (pd) {
289 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
290 				cpumask_first(perf_domain_span(pd)),
291 				cpumask_pr_args(perf_domain_span(pd)),
292 				em_pd_nr_perf_states(pd->em_pd));
293 		pd = pd->next;
294 	}
295 
296 	printk(KERN_CONT "\n");
297 }
298 
299 static void destroy_perf_domain_rcu(struct rcu_head *rp)
300 {
301 	struct perf_domain *pd;
302 
303 	pd = container_of(rp, struct perf_domain, rcu);
304 	free_pd(pd);
305 }
306 
307 static void sched_energy_set(bool has_eas)
308 {
309 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
310 		if (sched_debug())
311 			pr_info("%s: stopping EAS\n", __func__);
312 		static_branch_disable_cpuslocked(&sched_energy_present);
313 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
314 		if (sched_debug())
315 			pr_info("%s: starting EAS\n", __func__);
316 		static_branch_enable_cpuslocked(&sched_energy_present);
317 	}
318 }
319 
320 /*
321  * EAS can be used on a root domain if it meets all the following conditions:
322  *    1. an Energy Model (EM) is available;
323  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
324  *    3. no SMT is detected.
325  *    4. the EM complexity is low enough to keep scheduling overheads low;
326  *    5. schedutil is driving the frequency of all CPUs of the rd;
327  *
328  * The complexity of the Energy Model is defined as:
329  *
330  *              C = nr_pd * (nr_cpus + nr_ps)
331  *
332  * with parameters defined as:
333  *  - nr_pd:    the number of performance domains
334  *  - nr_cpus:  the number of CPUs
335  *  - nr_ps:    the sum of the number of performance states of all performance
336  *              domains (for example, on a system with 2 performance domains,
337  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
338  *
339  * It is generally not a good idea to use such a model in the wake-up path on
340  * very complex platforms because of the associated scheduling overheads. The
341  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
342  * with per-CPU DVFS and less than 8 performance states each, for example.
343  */
344 #define EM_MAX_COMPLEXITY 2048
345 
346 extern struct cpufreq_governor schedutil_gov;
347 static bool build_perf_domains(const struct cpumask *cpu_map)
348 {
349 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
350 	struct perf_domain *pd = NULL, *tmp;
351 	int cpu = cpumask_first(cpu_map);
352 	struct root_domain *rd = cpu_rq(cpu)->rd;
353 	struct cpufreq_policy *policy;
354 	struct cpufreq_governor *gov;
355 
356 	if (!sysctl_sched_energy_aware)
357 		goto free;
358 
359 	/* EAS is enabled for asymmetric CPU capacity topologies. */
360 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
361 		if (sched_debug()) {
362 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
363 					cpumask_pr_args(cpu_map));
364 		}
365 		goto free;
366 	}
367 
368 	/* EAS definitely does *not* handle SMT */
369 	if (sched_smt_active()) {
370 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
371 			cpumask_pr_args(cpu_map));
372 		goto free;
373 	}
374 
375 	for_each_cpu(i, cpu_map) {
376 		/* Skip already covered CPUs. */
377 		if (find_pd(pd, i))
378 			continue;
379 
380 		/* Do not attempt EAS if schedutil is not being used. */
381 		policy = cpufreq_cpu_get(i);
382 		if (!policy)
383 			goto free;
384 		gov = policy->governor;
385 		cpufreq_cpu_put(policy);
386 		if (gov != &schedutil_gov) {
387 			if (rd->pd)
388 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
389 						cpumask_pr_args(cpu_map));
390 			goto free;
391 		}
392 
393 		/* Create the new pd and add it to the local list. */
394 		tmp = pd_init(i);
395 		if (!tmp)
396 			goto free;
397 		tmp->next = pd;
398 		pd = tmp;
399 
400 		/*
401 		 * Count performance domains and performance states for the
402 		 * complexity check.
403 		 */
404 		nr_pd++;
405 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
406 	}
407 
408 	/* Bail out if the Energy Model complexity is too high. */
409 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
410 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
411 						cpumask_pr_args(cpu_map));
412 		goto free;
413 	}
414 
415 	perf_domain_debug(cpu_map, pd);
416 
417 	/* Attach the new list of performance domains to the root domain. */
418 	tmp = rd->pd;
419 	rcu_assign_pointer(rd->pd, pd);
420 	if (tmp)
421 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
422 
423 	return !!pd;
424 
425 free:
426 	free_pd(pd);
427 	tmp = rd->pd;
428 	rcu_assign_pointer(rd->pd, NULL);
429 	if (tmp)
430 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
431 
432 	return false;
433 }
434 #else
435 static void free_pd(struct perf_domain *pd) { }
436 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
437 
438 static void free_rootdomain(struct rcu_head *rcu)
439 {
440 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
441 
442 	cpupri_cleanup(&rd->cpupri);
443 	cpudl_cleanup(&rd->cpudl);
444 	free_cpumask_var(rd->dlo_mask);
445 	free_cpumask_var(rd->rto_mask);
446 	free_cpumask_var(rd->online);
447 	free_cpumask_var(rd->span);
448 	free_pd(rd->pd);
449 	kfree(rd);
450 }
451 
452 void rq_attach_root(struct rq *rq, struct root_domain *rd)
453 {
454 	struct root_domain *old_rd = NULL;
455 	unsigned long flags;
456 
457 	raw_spin_lock_irqsave(&rq->lock, flags);
458 
459 	if (rq->rd) {
460 		old_rd = rq->rd;
461 
462 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
463 			set_rq_offline(rq);
464 
465 		cpumask_clear_cpu(rq->cpu, old_rd->span);
466 
467 		/*
468 		 * If we dont want to free the old_rd yet then
469 		 * set old_rd to NULL to skip the freeing later
470 		 * in this function:
471 		 */
472 		if (!atomic_dec_and_test(&old_rd->refcount))
473 			old_rd = NULL;
474 	}
475 
476 	atomic_inc(&rd->refcount);
477 	rq->rd = rd;
478 
479 	cpumask_set_cpu(rq->cpu, rd->span);
480 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
481 		set_rq_online(rq);
482 
483 	raw_spin_unlock_irqrestore(&rq->lock, flags);
484 
485 	if (old_rd)
486 		call_rcu(&old_rd->rcu, free_rootdomain);
487 }
488 
489 void sched_get_rd(struct root_domain *rd)
490 {
491 	atomic_inc(&rd->refcount);
492 }
493 
494 void sched_put_rd(struct root_domain *rd)
495 {
496 	if (!atomic_dec_and_test(&rd->refcount))
497 		return;
498 
499 	call_rcu(&rd->rcu, free_rootdomain);
500 }
501 
502 static int init_rootdomain(struct root_domain *rd)
503 {
504 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
505 		goto out;
506 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
507 		goto free_span;
508 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
509 		goto free_online;
510 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
511 		goto free_dlo_mask;
512 
513 #ifdef HAVE_RT_PUSH_IPI
514 	rd->rto_cpu = -1;
515 	raw_spin_lock_init(&rd->rto_lock);
516 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
517 #endif
518 
519 	init_dl_bw(&rd->dl_bw);
520 	if (cpudl_init(&rd->cpudl) != 0)
521 		goto free_rto_mask;
522 
523 	if (cpupri_init(&rd->cpupri) != 0)
524 		goto free_cpudl;
525 	return 0;
526 
527 free_cpudl:
528 	cpudl_cleanup(&rd->cpudl);
529 free_rto_mask:
530 	free_cpumask_var(rd->rto_mask);
531 free_dlo_mask:
532 	free_cpumask_var(rd->dlo_mask);
533 free_online:
534 	free_cpumask_var(rd->online);
535 free_span:
536 	free_cpumask_var(rd->span);
537 out:
538 	return -ENOMEM;
539 }
540 
541 /*
542  * By default the system creates a single root-domain with all CPUs as
543  * members (mimicking the global state we have today).
544  */
545 struct root_domain def_root_domain;
546 
547 void init_defrootdomain(void)
548 {
549 	init_rootdomain(&def_root_domain);
550 
551 	atomic_set(&def_root_domain.refcount, 1);
552 }
553 
554 static struct root_domain *alloc_rootdomain(void)
555 {
556 	struct root_domain *rd;
557 
558 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
559 	if (!rd)
560 		return NULL;
561 
562 	if (init_rootdomain(rd) != 0) {
563 		kfree(rd);
564 		return NULL;
565 	}
566 
567 	return rd;
568 }
569 
570 static void free_sched_groups(struct sched_group *sg, int free_sgc)
571 {
572 	struct sched_group *tmp, *first;
573 
574 	if (!sg)
575 		return;
576 
577 	first = sg;
578 	do {
579 		tmp = sg->next;
580 
581 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
582 			kfree(sg->sgc);
583 
584 		if (atomic_dec_and_test(&sg->ref))
585 			kfree(sg);
586 		sg = tmp;
587 	} while (sg != first);
588 }
589 
590 static void destroy_sched_domain(struct sched_domain *sd)
591 {
592 	/*
593 	 * A normal sched domain may have multiple group references, an
594 	 * overlapping domain, having private groups, only one.  Iterate,
595 	 * dropping group/capacity references, freeing where none remain.
596 	 */
597 	free_sched_groups(sd->groups, 1);
598 
599 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
600 		kfree(sd->shared);
601 	kfree(sd);
602 }
603 
604 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
605 {
606 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
607 
608 	while (sd) {
609 		struct sched_domain *parent = sd->parent;
610 		destroy_sched_domain(sd);
611 		sd = parent;
612 	}
613 }
614 
615 static void destroy_sched_domains(struct sched_domain *sd)
616 {
617 	if (sd)
618 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
619 }
620 
621 /*
622  * Keep a special pointer to the highest sched_domain that has
623  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
624  * allows us to avoid some pointer chasing select_idle_sibling().
625  *
626  * Also keep a unique ID per domain (we use the first CPU number in
627  * the cpumask of the domain), this allows us to quickly tell if
628  * two CPUs are in the same cache domain, see cpus_share_cache().
629  */
630 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
631 DEFINE_PER_CPU(int, sd_llc_size);
632 DEFINE_PER_CPU(int, sd_llc_id);
633 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
634 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
635 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
636 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
637 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
638 
639 static void update_top_cache_domain(int cpu)
640 {
641 	struct sched_domain_shared *sds = NULL;
642 	struct sched_domain *sd;
643 	int id = cpu;
644 	int size = 1;
645 
646 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
647 	if (sd) {
648 		id = cpumask_first(sched_domain_span(sd));
649 		size = cpumask_weight(sched_domain_span(sd));
650 		sds = sd->shared;
651 	}
652 
653 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
654 	per_cpu(sd_llc_size, cpu) = size;
655 	per_cpu(sd_llc_id, cpu) = id;
656 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
657 
658 	sd = lowest_flag_domain(cpu, SD_NUMA);
659 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
660 
661 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
662 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
663 
664 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
665 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
666 }
667 
668 /*
669  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
670  * hold the hotplug lock.
671  */
672 static void
673 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
674 {
675 	struct rq *rq = cpu_rq(cpu);
676 	struct sched_domain *tmp;
677 
678 	/* Remove the sched domains which do not contribute to scheduling. */
679 	for (tmp = sd; tmp; ) {
680 		struct sched_domain *parent = tmp->parent;
681 		if (!parent)
682 			break;
683 
684 		if (sd_parent_degenerate(tmp, parent)) {
685 			tmp->parent = parent->parent;
686 			if (parent->parent)
687 				parent->parent->child = tmp;
688 			/*
689 			 * Transfer SD_PREFER_SIBLING down in case of a
690 			 * degenerate parent; the spans match for this
691 			 * so the property transfers.
692 			 */
693 			if (parent->flags & SD_PREFER_SIBLING)
694 				tmp->flags |= SD_PREFER_SIBLING;
695 			destroy_sched_domain(parent);
696 		} else
697 			tmp = tmp->parent;
698 	}
699 
700 	if (sd && sd_degenerate(sd)) {
701 		tmp = sd;
702 		sd = sd->parent;
703 		destroy_sched_domain(tmp);
704 		if (sd)
705 			sd->child = NULL;
706 	}
707 
708 	sched_domain_debug(sd, cpu);
709 
710 	rq_attach_root(rq, rd);
711 	tmp = rq->sd;
712 	rcu_assign_pointer(rq->sd, sd);
713 	dirty_sched_domain_sysctl(cpu);
714 	destroy_sched_domains(tmp);
715 
716 	update_top_cache_domain(cpu);
717 }
718 
719 struct s_data {
720 	struct sched_domain * __percpu *sd;
721 	struct root_domain	*rd;
722 };
723 
724 enum s_alloc {
725 	sa_rootdomain,
726 	sa_sd,
727 	sa_sd_storage,
728 	sa_none,
729 };
730 
731 /*
732  * Return the canonical balance CPU for this group, this is the first CPU
733  * of this group that's also in the balance mask.
734  *
735  * The balance mask are all those CPUs that could actually end up at this
736  * group. See build_balance_mask().
737  *
738  * Also see should_we_balance().
739  */
740 int group_balance_cpu(struct sched_group *sg)
741 {
742 	return cpumask_first(group_balance_mask(sg));
743 }
744 
745 
746 /*
747  * NUMA topology (first read the regular topology blurb below)
748  *
749  * Given a node-distance table, for example:
750  *
751  *   node   0   1   2   3
752  *     0:  10  20  30  20
753  *     1:  20  10  20  30
754  *     2:  30  20  10  20
755  *     3:  20  30  20  10
756  *
757  * which represents a 4 node ring topology like:
758  *
759  *   0 ----- 1
760  *   |       |
761  *   |       |
762  *   |       |
763  *   3 ----- 2
764  *
765  * We want to construct domains and groups to represent this. The way we go
766  * about doing this is to build the domains on 'hops'. For each NUMA level we
767  * construct the mask of all nodes reachable in @level hops.
768  *
769  * For the above NUMA topology that gives 3 levels:
770  *
771  * NUMA-2	0-3		0-3		0-3		0-3
772  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
773  *
774  * NUMA-1	0-1,3		0-2		1-3		0,2-3
775  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
776  *
777  * NUMA-0	0		1		2		3
778  *
779  *
780  * As can be seen; things don't nicely line up as with the regular topology.
781  * When we iterate a domain in child domain chunks some nodes can be
782  * represented multiple times -- hence the "overlap" naming for this part of
783  * the topology.
784  *
785  * In order to minimize this overlap, we only build enough groups to cover the
786  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
787  *
788  * Because:
789  *
790  *  - the first group of each domain is its child domain; this
791  *    gets us the first 0-1,3
792  *  - the only uncovered node is 2, who's child domain is 1-3.
793  *
794  * However, because of the overlap, computing a unique CPU for each group is
795  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
796  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
797  * end up at those groups (they would end up in group: 0-1,3).
798  *
799  * To correct this we have to introduce the group balance mask. This mask
800  * will contain those CPUs in the group that can reach this group given the
801  * (child) domain tree.
802  *
803  * With this we can once again compute balance_cpu and sched_group_capacity
804  * relations.
805  *
806  * XXX include words on how balance_cpu is unique and therefore can be
807  * used for sched_group_capacity links.
808  *
809  *
810  * Another 'interesting' topology is:
811  *
812  *   node   0   1   2   3
813  *     0:  10  20  20  30
814  *     1:  20  10  20  20
815  *     2:  20  20  10  20
816  *     3:  30  20  20  10
817  *
818  * Which looks a little like:
819  *
820  *   0 ----- 1
821  *   |     / |
822  *   |   /   |
823  *   | /     |
824  *   2 ----- 3
825  *
826  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
827  * are not.
828  *
829  * This leads to a few particularly weird cases where the sched_domain's are
830  * not of the same number for each CPU. Consider:
831  *
832  * NUMA-2	0-3						0-3
833  *  groups:	{0-2},{1-3}					{1-3},{0-2}
834  *
835  * NUMA-1	0-2		0-3		0-3		1-3
836  *
837  * NUMA-0	0		1		2		3
838  *
839  */
840 
841 
842 /*
843  * Build the balance mask; it contains only those CPUs that can arrive at this
844  * group and should be considered to continue balancing.
845  *
846  * We do this during the group creation pass, therefore the group information
847  * isn't complete yet, however since each group represents a (child) domain we
848  * can fully construct this using the sched_domain bits (which are already
849  * complete).
850  */
851 static void
852 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
853 {
854 	const struct cpumask *sg_span = sched_group_span(sg);
855 	struct sd_data *sdd = sd->private;
856 	struct sched_domain *sibling;
857 	int i;
858 
859 	cpumask_clear(mask);
860 
861 	for_each_cpu(i, sg_span) {
862 		sibling = *per_cpu_ptr(sdd->sd, i);
863 
864 		/*
865 		 * Can happen in the asymmetric case, where these siblings are
866 		 * unused. The mask will not be empty because those CPUs that
867 		 * do have the top domain _should_ span the domain.
868 		 */
869 		if (!sibling->child)
870 			continue;
871 
872 		/* If we would not end up here, we can't continue from here */
873 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
874 			continue;
875 
876 		cpumask_set_cpu(i, mask);
877 	}
878 
879 	/* We must not have empty masks here */
880 	WARN_ON_ONCE(cpumask_empty(mask));
881 }
882 
883 /*
884  * XXX: This creates per-node group entries; since the load-balancer will
885  * immediately access remote memory to construct this group's load-balance
886  * statistics having the groups node local is of dubious benefit.
887  */
888 static struct sched_group *
889 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
890 {
891 	struct sched_group *sg;
892 	struct cpumask *sg_span;
893 
894 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
895 			GFP_KERNEL, cpu_to_node(cpu));
896 
897 	if (!sg)
898 		return NULL;
899 
900 	sg_span = sched_group_span(sg);
901 	if (sd->child)
902 		cpumask_copy(sg_span, sched_domain_span(sd->child));
903 	else
904 		cpumask_copy(sg_span, sched_domain_span(sd));
905 
906 	atomic_inc(&sg->ref);
907 	return sg;
908 }
909 
910 static void init_overlap_sched_group(struct sched_domain *sd,
911 				     struct sched_group *sg)
912 {
913 	struct cpumask *mask = sched_domains_tmpmask2;
914 	struct sd_data *sdd = sd->private;
915 	struct cpumask *sg_span;
916 	int cpu;
917 
918 	build_balance_mask(sd, sg, mask);
919 	cpu = cpumask_first_and(sched_group_span(sg), mask);
920 
921 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
922 	if (atomic_inc_return(&sg->sgc->ref) == 1)
923 		cpumask_copy(group_balance_mask(sg), mask);
924 	else
925 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
926 
927 	/*
928 	 * Initialize sgc->capacity such that even if we mess up the
929 	 * domains and no possible iteration will get us here, we won't
930 	 * die on a /0 trap.
931 	 */
932 	sg_span = sched_group_span(sg);
933 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
934 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
935 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
936 }
937 
938 static int
939 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
940 {
941 	struct sched_group *first = NULL, *last = NULL, *sg;
942 	const struct cpumask *span = sched_domain_span(sd);
943 	struct cpumask *covered = sched_domains_tmpmask;
944 	struct sd_data *sdd = sd->private;
945 	struct sched_domain *sibling;
946 	int i;
947 
948 	cpumask_clear(covered);
949 
950 	for_each_cpu_wrap(i, span, cpu) {
951 		struct cpumask *sg_span;
952 
953 		if (cpumask_test_cpu(i, covered))
954 			continue;
955 
956 		sibling = *per_cpu_ptr(sdd->sd, i);
957 
958 		/*
959 		 * Asymmetric node setups can result in situations where the
960 		 * domain tree is of unequal depth, make sure to skip domains
961 		 * that already cover the entire range.
962 		 *
963 		 * In that case build_sched_domains() will have terminated the
964 		 * iteration early and our sibling sd spans will be empty.
965 		 * Domains should always include the CPU they're built on, so
966 		 * check that.
967 		 */
968 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
969 			continue;
970 
971 		sg = build_group_from_child_sched_domain(sibling, cpu);
972 		if (!sg)
973 			goto fail;
974 
975 		sg_span = sched_group_span(sg);
976 		cpumask_or(covered, covered, sg_span);
977 
978 		init_overlap_sched_group(sd, sg);
979 
980 		if (!first)
981 			first = sg;
982 		if (last)
983 			last->next = sg;
984 		last = sg;
985 		last->next = first;
986 	}
987 	sd->groups = first;
988 
989 	return 0;
990 
991 fail:
992 	free_sched_groups(first, 0);
993 
994 	return -ENOMEM;
995 }
996 
997 
998 /*
999  * Package topology (also see the load-balance blurb in fair.c)
1000  *
1001  * The scheduler builds a tree structure to represent a number of important
1002  * topology features. By default (default_topology[]) these include:
1003  *
1004  *  - Simultaneous multithreading (SMT)
1005  *  - Multi-Core Cache (MC)
1006  *  - Package (DIE)
1007  *
1008  * Where the last one more or less denotes everything up to a NUMA node.
1009  *
1010  * The tree consists of 3 primary data structures:
1011  *
1012  *	sched_domain -> sched_group -> sched_group_capacity
1013  *	    ^ ^             ^ ^
1014  *          `-'             `-'
1015  *
1016  * The sched_domains are per-CPU and have a two way link (parent & child) and
1017  * denote the ever growing mask of CPUs belonging to that level of topology.
1018  *
1019  * Each sched_domain has a circular (double) linked list of sched_group's, each
1020  * denoting the domains of the level below (or individual CPUs in case of the
1021  * first domain level). The sched_group linked by a sched_domain includes the
1022  * CPU of that sched_domain [*].
1023  *
1024  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1025  *
1026  * CPU   0   1   2   3   4   5   6   7
1027  *
1028  * DIE  [                             ]
1029  * MC   [             ] [             ]
1030  * SMT  [     ] [     ] [     ] [     ]
1031  *
1032  *  - or -
1033  *
1034  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1035  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1036  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1037  *
1038  * CPU   0   1   2   3   4   5   6   7
1039  *
1040  * One way to think about it is: sched_domain moves you up and down among these
1041  * topology levels, while sched_group moves you sideways through it, at child
1042  * domain granularity.
1043  *
1044  * sched_group_capacity ensures each unique sched_group has shared storage.
1045  *
1046  * There are two related construction problems, both require a CPU that
1047  * uniquely identify each group (for a given domain):
1048  *
1049  *  - The first is the balance_cpu (see should_we_balance() and the
1050  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1051  *    continue balancing at a higher domain.
1052  *
1053  *  - The second is the sched_group_capacity; we want all identical groups
1054  *    to share a single sched_group_capacity.
1055  *
1056  * Since these topologies are exclusive by construction. That is, its
1057  * impossible for an SMT thread to belong to multiple cores, and cores to
1058  * be part of multiple caches. There is a very clear and unique location
1059  * for each CPU in the hierarchy.
1060  *
1061  * Therefore computing a unique CPU for each group is trivial (the iteration
1062  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1063  * group), we can simply pick the first CPU in each group.
1064  *
1065  *
1066  * [*] in other words, the first group of each domain is its child domain.
1067  */
1068 
1069 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1070 {
1071 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1072 	struct sched_domain *child = sd->child;
1073 	struct sched_group *sg;
1074 	bool already_visited;
1075 
1076 	if (child)
1077 		cpu = cpumask_first(sched_domain_span(child));
1078 
1079 	sg = *per_cpu_ptr(sdd->sg, cpu);
1080 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1081 
1082 	/* Increase refcounts for claim_allocations: */
1083 	already_visited = atomic_inc_return(&sg->ref) > 1;
1084 	/* sgc visits should follow a similar trend as sg */
1085 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1086 
1087 	/* If we have already visited that group, it's already initialized. */
1088 	if (already_visited)
1089 		return sg;
1090 
1091 	if (child) {
1092 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1093 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1094 	} else {
1095 		cpumask_set_cpu(cpu, sched_group_span(sg));
1096 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1097 	}
1098 
1099 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1100 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1101 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1102 
1103 	return sg;
1104 }
1105 
1106 /*
1107  * build_sched_groups will build a circular linked list of the groups
1108  * covered by the given span, will set each group's ->cpumask correctly,
1109  * and will initialize their ->sgc.
1110  *
1111  * Assumes the sched_domain tree is fully constructed
1112  */
1113 static int
1114 build_sched_groups(struct sched_domain *sd, int cpu)
1115 {
1116 	struct sched_group *first = NULL, *last = NULL;
1117 	struct sd_data *sdd = sd->private;
1118 	const struct cpumask *span = sched_domain_span(sd);
1119 	struct cpumask *covered;
1120 	int i;
1121 
1122 	lockdep_assert_held(&sched_domains_mutex);
1123 	covered = sched_domains_tmpmask;
1124 
1125 	cpumask_clear(covered);
1126 
1127 	for_each_cpu_wrap(i, span, cpu) {
1128 		struct sched_group *sg;
1129 
1130 		if (cpumask_test_cpu(i, covered))
1131 			continue;
1132 
1133 		sg = get_group(i, sdd);
1134 
1135 		cpumask_or(covered, covered, sched_group_span(sg));
1136 
1137 		if (!first)
1138 			first = sg;
1139 		if (last)
1140 			last->next = sg;
1141 		last = sg;
1142 	}
1143 	last->next = first;
1144 	sd->groups = first;
1145 
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Initialize sched groups cpu_capacity.
1151  *
1152  * cpu_capacity indicates the capacity of sched group, which is used while
1153  * distributing the load between different sched groups in a sched domain.
1154  * Typically cpu_capacity for all the groups in a sched domain will be same
1155  * unless there are asymmetries in the topology. If there are asymmetries,
1156  * group having more cpu_capacity will pickup more load compared to the
1157  * group having less cpu_capacity.
1158  */
1159 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1160 {
1161 	struct sched_group *sg = sd->groups;
1162 
1163 	WARN_ON(!sg);
1164 
1165 	do {
1166 		int cpu, max_cpu = -1;
1167 
1168 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1169 
1170 		if (!(sd->flags & SD_ASYM_PACKING))
1171 			goto next;
1172 
1173 		for_each_cpu(cpu, sched_group_span(sg)) {
1174 			if (max_cpu < 0)
1175 				max_cpu = cpu;
1176 			else if (sched_asym_prefer(cpu, max_cpu))
1177 				max_cpu = cpu;
1178 		}
1179 		sg->asym_prefer_cpu = max_cpu;
1180 
1181 next:
1182 		sg = sg->next;
1183 	} while (sg != sd->groups);
1184 
1185 	if (cpu != group_balance_cpu(sg))
1186 		return;
1187 
1188 	update_group_capacity(sd, cpu);
1189 }
1190 
1191 /*
1192  * Initializers for schedule domains
1193  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1194  */
1195 
1196 static int default_relax_domain_level = -1;
1197 int sched_domain_level_max;
1198 
1199 static int __init setup_relax_domain_level(char *str)
1200 {
1201 	if (kstrtoint(str, 0, &default_relax_domain_level))
1202 		pr_warn("Unable to set relax_domain_level\n");
1203 
1204 	return 1;
1205 }
1206 __setup("relax_domain_level=", setup_relax_domain_level);
1207 
1208 static void set_domain_attribute(struct sched_domain *sd,
1209 				 struct sched_domain_attr *attr)
1210 {
1211 	int request;
1212 
1213 	if (!attr || attr->relax_domain_level < 0) {
1214 		if (default_relax_domain_level < 0)
1215 			return;
1216 		request = default_relax_domain_level;
1217 	} else
1218 		request = attr->relax_domain_level;
1219 
1220 	if (sd->level > request) {
1221 		/* Turn off idle balance on this domain: */
1222 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1223 	}
1224 }
1225 
1226 static void __sdt_free(const struct cpumask *cpu_map);
1227 static int __sdt_alloc(const struct cpumask *cpu_map);
1228 
1229 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1230 				 const struct cpumask *cpu_map)
1231 {
1232 	switch (what) {
1233 	case sa_rootdomain:
1234 		if (!atomic_read(&d->rd->refcount))
1235 			free_rootdomain(&d->rd->rcu);
1236 		fallthrough;
1237 	case sa_sd:
1238 		free_percpu(d->sd);
1239 		fallthrough;
1240 	case sa_sd_storage:
1241 		__sdt_free(cpu_map);
1242 		fallthrough;
1243 	case sa_none:
1244 		break;
1245 	}
1246 }
1247 
1248 static enum s_alloc
1249 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1250 {
1251 	memset(d, 0, sizeof(*d));
1252 
1253 	if (__sdt_alloc(cpu_map))
1254 		return sa_sd_storage;
1255 	d->sd = alloc_percpu(struct sched_domain *);
1256 	if (!d->sd)
1257 		return sa_sd_storage;
1258 	d->rd = alloc_rootdomain();
1259 	if (!d->rd)
1260 		return sa_sd;
1261 
1262 	return sa_rootdomain;
1263 }
1264 
1265 /*
1266  * NULL the sd_data elements we've used to build the sched_domain and
1267  * sched_group structure so that the subsequent __free_domain_allocs()
1268  * will not free the data we're using.
1269  */
1270 static void claim_allocations(int cpu, struct sched_domain *sd)
1271 {
1272 	struct sd_data *sdd = sd->private;
1273 
1274 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1275 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1276 
1277 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1278 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1279 
1280 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1281 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1282 
1283 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1284 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1285 }
1286 
1287 #ifdef CONFIG_NUMA
1288 enum numa_topology_type sched_numa_topology_type;
1289 
1290 static int			sched_domains_numa_levels;
1291 static int			sched_domains_curr_level;
1292 
1293 int				sched_max_numa_distance;
1294 static int			*sched_domains_numa_distance;
1295 static struct cpumask		***sched_domains_numa_masks;
1296 int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1297 #endif
1298 
1299 /*
1300  * SD_flags allowed in topology descriptions.
1301  *
1302  * These flags are purely descriptive of the topology and do not prescribe
1303  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1304  * function:
1305  *
1306  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1307  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1308  *   SD_NUMA                - describes NUMA topologies
1309  *
1310  * Odd one out, which beside describing the topology has a quirk also
1311  * prescribes the desired behaviour that goes along with it:
1312  *
1313  *   SD_ASYM_PACKING        - describes SMT quirks
1314  */
1315 #define TOPOLOGY_SD_FLAGS		\
1316 	(SD_SHARE_CPUCAPACITY	|	\
1317 	 SD_SHARE_PKG_RESOURCES |	\
1318 	 SD_NUMA		|	\
1319 	 SD_ASYM_PACKING)
1320 
1321 static struct sched_domain *
1322 sd_init(struct sched_domain_topology_level *tl,
1323 	const struct cpumask *cpu_map,
1324 	struct sched_domain *child, int dflags, int cpu)
1325 {
1326 	struct sd_data *sdd = &tl->data;
1327 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1328 	int sd_id, sd_weight, sd_flags = 0;
1329 
1330 #ifdef CONFIG_NUMA
1331 	/*
1332 	 * Ugly hack to pass state to sd_numa_mask()...
1333 	 */
1334 	sched_domains_curr_level = tl->numa_level;
1335 #endif
1336 
1337 	sd_weight = cpumask_weight(tl->mask(cpu));
1338 
1339 	if (tl->sd_flags)
1340 		sd_flags = (*tl->sd_flags)();
1341 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1342 			"wrong sd_flags in topology description\n"))
1343 		sd_flags &= TOPOLOGY_SD_FLAGS;
1344 
1345 	/* Apply detected topology flags */
1346 	sd_flags |= dflags;
1347 
1348 	*sd = (struct sched_domain){
1349 		.min_interval		= sd_weight,
1350 		.max_interval		= 2*sd_weight,
1351 		.busy_factor		= 16,
1352 		.imbalance_pct		= 117,
1353 
1354 		.cache_nice_tries	= 0,
1355 
1356 		.flags			= 1*SD_BALANCE_NEWIDLE
1357 					| 1*SD_BALANCE_EXEC
1358 					| 1*SD_BALANCE_FORK
1359 					| 0*SD_BALANCE_WAKE
1360 					| 1*SD_WAKE_AFFINE
1361 					| 0*SD_SHARE_CPUCAPACITY
1362 					| 0*SD_SHARE_PKG_RESOURCES
1363 					| 0*SD_SERIALIZE
1364 					| 1*SD_PREFER_SIBLING
1365 					| 0*SD_NUMA
1366 					| sd_flags
1367 					,
1368 
1369 		.last_balance		= jiffies,
1370 		.balance_interval	= sd_weight,
1371 		.max_newidle_lb_cost	= 0,
1372 		.next_decay_max_lb_cost	= jiffies,
1373 		.child			= child,
1374 #ifdef CONFIG_SCHED_DEBUG
1375 		.name			= tl->name,
1376 #endif
1377 	};
1378 
1379 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1380 	sd_id = cpumask_first(sched_domain_span(sd));
1381 
1382 	/*
1383 	 * Convert topological properties into behaviour.
1384 	 */
1385 
1386 	/* Don't attempt to spread across CPUs of different capacities. */
1387 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1388 		sd->child->flags &= ~SD_PREFER_SIBLING;
1389 
1390 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1391 		sd->imbalance_pct = 110;
1392 
1393 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1394 		sd->imbalance_pct = 117;
1395 		sd->cache_nice_tries = 1;
1396 
1397 #ifdef CONFIG_NUMA
1398 	} else if (sd->flags & SD_NUMA) {
1399 		sd->cache_nice_tries = 2;
1400 
1401 		sd->flags &= ~SD_PREFER_SIBLING;
1402 		sd->flags |= SD_SERIALIZE;
1403 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1404 			sd->flags &= ~(SD_BALANCE_EXEC |
1405 				       SD_BALANCE_FORK |
1406 				       SD_WAKE_AFFINE);
1407 		}
1408 
1409 #endif
1410 	} else {
1411 		sd->cache_nice_tries = 1;
1412 	}
1413 
1414 	/*
1415 	 * For all levels sharing cache; connect a sched_domain_shared
1416 	 * instance.
1417 	 */
1418 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1419 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1420 		atomic_inc(&sd->shared->ref);
1421 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1422 	}
1423 
1424 	sd->private = sdd;
1425 
1426 	return sd;
1427 }
1428 
1429 /*
1430  * Topology list, bottom-up.
1431  */
1432 static struct sched_domain_topology_level default_topology[] = {
1433 #ifdef CONFIG_SCHED_SMT
1434 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1435 #endif
1436 #ifdef CONFIG_SCHED_MC
1437 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1438 #endif
1439 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1440 	{ NULL, },
1441 };
1442 
1443 static struct sched_domain_topology_level *sched_domain_topology =
1444 	default_topology;
1445 
1446 #define for_each_sd_topology(tl)			\
1447 	for (tl = sched_domain_topology; tl->mask; tl++)
1448 
1449 void set_sched_topology(struct sched_domain_topology_level *tl)
1450 {
1451 	if (WARN_ON_ONCE(sched_smp_initialized))
1452 		return;
1453 
1454 	sched_domain_topology = tl;
1455 }
1456 
1457 #ifdef CONFIG_NUMA
1458 
1459 static const struct cpumask *sd_numa_mask(int cpu)
1460 {
1461 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1462 }
1463 
1464 static void sched_numa_warn(const char *str)
1465 {
1466 	static int done = false;
1467 	int i,j;
1468 
1469 	if (done)
1470 		return;
1471 
1472 	done = true;
1473 
1474 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1475 
1476 	for (i = 0; i < nr_node_ids; i++) {
1477 		printk(KERN_WARNING "  ");
1478 		for (j = 0; j < nr_node_ids; j++)
1479 			printk(KERN_CONT "%02d ", node_distance(i,j));
1480 		printk(KERN_CONT "\n");
1481 	}
1482 	printk(KERN_WARNING "\n");
1483 }
1484 
1485 bool find_numa_distance(int distance)
1486 {
1487 	int i;
1488 
1489 	if (distance == node_distance(0, 0))
1490 		return true;
1491 
1492 	for (i = 0; i < sched_domains_numa_levels; i++) {
1493 		if (sched_domains_numa_distance[i] == distance)
1494 			return true;
1495 	}
1496 
1497 	return false;
1498 }
1499 
1500 /*
1501  * A system can have three types of NUMA topology:
1502  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1503  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1504  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1505  *
1506  * The difference between a glueless mesh topology and a backplane
1507  * topology lies in whether communication between not directly
1508  * connected nodes goes through intermediary nodes (where programs
1509  * could run), or through backplane controllers. This affects
1510  * placement of programs.
1511  *
1512  * The type of topology can be discerned with the following tests:
1513  * - If the maximum distance between any nodes is 1 hop, the system
1514  *   is directly connected.
1515  * - If for two nodes A and B, located N > 1 hops away from each other,
1516  *   there is an intermediary node C, which is < N hops away from both
1517  *   nodes A and B, the system is a glueless mesh.
1518  */
1519 static void init_numa_topology_type(void)
1520 {
1521 	int a, b, c, n;
1522 
1523 	n = sched_max_numa_distance;
1524 
1525 	if (sched_domains_numa_levels <= 2) {
1526 		sched_numa_topology_type = NUMA_DIRECT;
1527 		return;
1528 	}
1529 
1530 	for_each_online_node(a) {
1531 		for_each_online_node(b) {
1532 			/* Find two nodes furthest removed from each other. */
1533 			if (node_distance(a, b) < n)
1534 				continue;
1535 
1536 			/* Is there an intermediary node between a and b? */
1537 			for_each_online_node(c) {
1538 				if (node_distance(a, c) < n &&
1539 				    node_distance(b, c) < n) {
1540 					sched_numa_topology_type =
1541 							NUMA_GLUELESS_MESH;
1542 					return;
1543 				}
1544 			}
1545 
1546 			sched_numa_topology_type = NUMA_BACKPLANE;
1547 			return;
1548 		}
1549 	}
1550 }
1551 
1552 void sched_init_numa(void)
1553 {
1554 	int next_distance, curr_distance = node_distance(0, 0);
1555 	struct sched_domain_topology_level *tl;
1556 	int level = 0;
1557 	int i, j, k;
1558 
1559 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1560 	if (!sched_domains_numa_distance)
1561 		return;
1562 
1563 	/* Includes NUMA identity node at level 0. */
1564 	sched_domains_numa_distance[level++] = curr_distance;
1565 	sched_domains_numa_levels = level;
1566 
1567 	/*
1568 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1569 	 * unique distances in the node_distance() table.
1570 	 *
1571 	 * Assumes node_distance(0,j) includes all distances in
1572 	 * node_distance(i,j) in order to avoid cubic time.
1573 	 */
1574 	next_distance = curr_distance;
1575 	for (i = 0; i < nr_node_ids; i++) {
1576 		for (j = 0; j < nr_node_ids; j++) {
1577 			for (k = 0; k < nr_node_ids; k++) {
1578 				int distance = node_distance(i, k);
1579 
1580 				if (distance > curr_distance &&
1581 				    (distance < next_distance ||
1582 				     next_distance == curr_distance))
1583 					next_distance = distance;
1584 
1585 				/*
1586 				 * While not a strong assumption it would be nice to know
1587 				 * about cases where if node A is connected to B, B is not
1588 				 * equally connected to A.
1589 				 */
1590 				if (sched_debug() && node_distance(k, i) != distance)
1591 					sched_numa_warn("Node-distance not symmetric");
1592 
1593 				if (sched_debug() && i && !find_numa_distance(distance))
1594 					sched_numa_warn("Node-0 not representative");
1595 			}
1596 			if (next_distance != curr_distance) {
1597 				sched_domains_numa_distance[level++] = next_distance;
1598 				sched_domains_numa_levels = level;
1599 				curr_distance = next_distance;
1600 			} else break;
1601 		}
1602 
1603 		/*
1604 		 * In case of sched_debug() we verify the above assumption.
1605 		 */
1606 		if (!sched_debug())
1607 			break;
1608 	}
1609 
1610 	/*
1611 	 * 'level' contains the number of unique distances
1612 	 *
1613 	 * The sched_domains_numa_distance[] array includes the actual distance
1614 	 * numbers.
1615 	 */
1616 
1617 	/*
1618 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1619 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1620 	 * the array will contain less then 'level' members. This could be
1621 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1622 	 * in other functions.
1623 	 *
1624 	 * We reset it to 'level' at the end of this function.
1625 	 */
1626 	sched_domains_numa_levels = 0;
1627 
1628 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1629 	if (!sched_domains_numa_masks)
1630 		return;
1631 
1632 	/*
1633 	 * Now for each level, construct a mask per node which contains all
1634 	 * CPUs of nodes that are that many hops away from us.
1635 	 */
1636 	for (i = 0; i < level; i++) {
1637 		sched_domains_numa_masks[i] =
1638 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1639 		if (!sched_domains_numa_masks[i])
1640 			return;
1641 
1642 		for (j = 0; j < nr_node_ids; j++) {
1643 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1644 			if (!mask)
1645 				return;
1646 
1647 			sched_domains_numa_masks[i][j] = mask;
1648 
1649 			for_each_node(k) {
1650 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1651 					continue;
1652 
1653 				cpumask_or(mask, mask, cpumask_of_node(k));
1654 			}
1655 		}
1656 	}
1657 
1658 	/* Compute default topology size */
1659 	for (i = 0; sched_domain_topology[i].mask; i++);
1660 
1661 	tl = kzalloc((i + level + 1) *
1662 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1663 	if (!tl)
1664 		return;
1665 
1666 	/*
1667 	 * Copy the default topology bits..
1668 	 */
1669 	for (i = 0; sched_domain_topology[i].mask; i++)
1670 		tl[i] = sched_domain_topology[i];
1671 
1672 	/*
1673 	 * Add the NUMA identity distance, aka single NODE.
1674 	 */
1675 	tl[i++] = (struct sched_domain_topology_level){
1676 		.mask = sd_numa_mask,
1677 		.numa_level = 0,
1678 		SD_INIT_NAME(NODE)
1679 	};
1680 
1681 	/*
1682 	 * .. and append 'j' levels of NUMA goodness.
1683 	 */
1684 	for (j = 1; j < level; i++, j++) {
1685 		tl[i] = (struct sched_domain_topology_level){
1686 			.mask = sd_numa_mask,
1687 			.sd_flags = cpu_numa_flags,
1688 			.flags = SDTL_OVERLAP,
1689 			.numa_level = j,
1690 			SD_INIT_NAME(NUMA)
1691 		};
1692 	}
1693 
1694 	sched_domain_topology = tl;
1695 
1696 	sched_domains_numa_levels = level;
1697 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1698 
1699 	init_numa_topology_type();
1700 }
1701 
1702 void sched_domains_numa_masks_set(unsigned int cpu)
1703 {
1704 	int node = cpu_to_node(cpu);
1705 	int i, j;
1706 
1707 	for (i = 0; i < sched_domains_numa_levels; i++) {
1708 		for (j = 0; j < nr_node_ids; j++) {
1709 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1710 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1711 		}
1712 	}
1713 }
1714 
1715 void sched_domains_numa_masks_clear(unsigned int cpu)
1716 {
1717 	int i, j;
1718 
1719 	for (i = 0; i < sched_domains_numa_levels; i++) {
1720 		for (j = 0; j < nr_node_ids; j++)
1721 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1722 	}
1723 }
1724 
1725 /*
1726  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1727  *                             closest to @cpu from @cpumask.
1728  * cpumask: cpumask to find a cpu from
1729  * cpu: cpu to be close to
1730  *
1731  * returns: cpu, or nr_cpu_ids when nothing found.
1732  */
1733 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1734 {
1735 	int i, j = cpu_to_node(cpu);
1736 
1737 	for (i = 0; i < sched_domains_numa_levels; i++) {
1738 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1739 		if (cpu < nr_cpu_ids)
1740 			return cpu;
1741 	}
1742 	return nr_cpu_ids;
1743 }
1744 
1745 #endif /* CONFIG_NUMA */
1746 
1747 static int __sdt_alloc(const struct cpumask *cpu_map)
1748 {
1749 	struct sched_domain_topology_level *tl;
1750 	int j;
1751 
1752 	for_each_sd_topology(tl) {
1753 		struct sd_data *sdd = &tl->data;
1754 
1755 		sdd->sd = alloc_percpu(struct sched_domain *);
1756 		if (!sdd->sd)
1757 			return -ENOMEM;
1758 
1759 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1760 		if (!sdd->sds)
1761 			return -ENOMEM;
1762 
1763 		sdd->sg = alloc_percpu(struct sched_group *);
1764 		if (!sdd->sg)
1765 			return -ENOMEM;
1766 
1767 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1768 		if (!sdd->sgc)
1769 			return -ENOMEM;
1770 
1771 		for_each_cpu(j, cpu_map) {
1772 			struct sched_domain *sd;
1773 			struct sched_domain_shared *sds;
1774 			struct sched_group *sg;
1775 			struct sched_group_capacity *sgc;
1776 
1777 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1778 					GFP_KERNEL, cpu_to_node(j));
1779 			if (!sd)
1780 				return -ENOMEM;
1781 
1782 			*per_cpu_ptr(sdd->sd, j) = sd;
1783 
1784 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1785 					GFP_KERNEL, cpu_to_node(j));
1786 			if (!sds)
1787 				return -ENOMEM;
1788 
1789 			*per_cpu_ptr(sdd->sds, j) = sds;
1790 
1791 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1792 					GFP_KERNEL, cpu_to_node(j));
1793 			if (!sg)
1794 				return -ENOMEM;
1795 
1796 			sg->next = sg;
1797 
1798 			*per_cpu_ptr(sdd->sg, j) = sg;
1799 
1800 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1801 					GFP_KERNEL, cpu_to_node(j));
1802 			if (!sgc)
1803 				return -ENOMEM;
1804 
1805 #ifdef CONFIG_SCHED_DEBUG
1806 			sgc->id = j;
1807 #endif
1808 
1809 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1810 		}
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 static void __sdt_free(const struct cpumask *cpu_map)
1817 {
1818 	struct sched_domain_topology_level *tl;
1819 	int j;
1820 
1821 	for_each_sd_topology(tl) {
1822 		struct sd_data *sdd = &tl->data;
1823 
1824 		for_each_cpu(j, cpu_map) {
1825 			struct sched_domain *sd;
1826 
1827 			if (sdd->sd) {
1828 				sd = *per_cpu_ptr(sdd->sd, j);
1829 				if (sd && (sd->flags & SD_OVERLAP))
1830 					free_sched_groups(sd->groups, 0);
1831 				kfree(*per_cpu_ptr(sdd->sd, j));
1832 			}
1833 
1834 			if (sdd->sds)
1835 				kfree(*per_cpu_ptr(sdd->sds, j));
1836 			if (sdd->sg)
1837 				kfree(*per_cpu_ptr(sdd->sg, j));
1838 			if (sdd->sgc)
1839 				kfree(*per_cpu_ptr(sdd->sgc, j));
1840 		}
1841 		free_percpu(sdd->sd);
1842 		sdd->sd = NULL;
1843 		free_percpu(sdd->sds);
1844 		sdd->sds = NULL;
1845 		free_percpu(sdd->sg);
1846 		sdd->sg = NULL;
1847 		free_percpu(sdd->sgc);
1848 		sdd->sgc = NULL;
1849 	}
1850 }
1851 
1852 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1853 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1854 		struct sched_domain *child, int dflags, int cpu)
1855 {
1856 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1857 
1858 	if (child) {
1859 		sd->level = child->level + 1;
1860 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1861 		child->parent = sd;
1862 
1863 		if (!cpumask_subset(sched_domain_span(child),
1864 				    sched_domain_span(sd))) {
1865 			pr_err("BUG: arch topology borken\n");
1866 #ifdef CONFIG_SCHED_DEBUG
1867 			pr_err("     the %s domain not a subset of the %s domain\n",
1868 					child->name, sd->name);
1869 #endif
1870 			/* Fixup, ensure @sd has at least @child CPUs. */
1871 			cpumask_or(sched_domain_span(sd),
1872 				   sched_domain_span(sd),
1873 				   sched_domain_span(child));
1874 		}
1875 
1876 	}
1877 	set_domain_attribute(sd, attr);
1878 
1879 	return sd;
1880 }
1881 
1882 /*
1883  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1884  * any two given CPUs at this (non-NUMA) topology level.
1885  */
1886 static bool topology_span_sane(struct sched_domain_topology_level *tl,
1887 			      const struct cpumask *cpu_map, int cpu)
1888 {
1889 	int i;
1890 
1891 	/* NUMA levels are allowed to overlap */
1892 	if (tl->flags & SDTL_OVERLAP)
1893 		return true;
1894 
1895 	/*
1896 	 * Non-NUMA levels cannot partially overlap - they must be either
1897 	 * completely equal or completely disjoint. Otherwise we can end up
1898 	 * breaking the sched_group lists - i.e. a later get_group() pass
1899 	 * breaks the linking done for an earlier span.
1900 	 */
1901 	for_each_cpu(i, cpu_map) {
1902 		if (i == cpu)
1903 			continue;
1904 		/*
1905 		 * We should 'and' all those masks with 'cpu_map' to exactly
1906 		 * match the topology we're about to build, but that can only
1907 		 * remove CPUs, which only lessens our ability to detect
1908 		 * overlaps
1909 		 */
1910 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1911 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1912 			return false;
1913 	}
1914 
1915 	return true;
1916 }
1917 
1918 /*
1919  * Find the sched_domain_topology_level where all CPU capacities are visible
1920  * for all CPUs.
1921  */
1922 static struct sched_domain_topology_level
1923 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1924 {
1925 	int i, j, asym_level = 0;
1926 	bool asym = false;
1927 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1928 	unsigned long cap;
1929 
1930 	/* Is there any asymmetry? */
1931 	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1932 
1933 	for_each_cpu(i, cpu_map) {
1934 		if (arch_scale_cpu_capacity(i) != cap) {
1935 			asym = true;
1936 			break;
1937 		}
1938 	}
1939 
1940 	if (!asym)
1941 		return NULL;
1942 
1943 	/*
1944 	 * Examine topology from all CPU's point of views to detect the lowest
1945 	 * sched_domain_topology_level where a highest capacity CPU is visible
1946 	 * to everyone.
1947 	 */
1948 	for_each_cpu(i, cpu_map) {
1949 		unsigned long max_capacity = arch_scale_cpu_capacity(i);
1950 		int tl_id = 0;
1951 
1952 		for_each_sd_topology(tl) {
1953 			if (tl_id < asym_level)
1954 				goto next_level;
1955 
1956 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
1957 				unsigned long capacity;
1958 
1959 				capacity = arch_scale_cpu_capacity(j);
1960 
1961 				if (capacity <= max_capacity)
1962 					continue;
1963 
1964 				max_capacity = capacity;
1965 				asym_level = tl_id;
1966 				asym_tl = tl;
1967 			}
1968 next_level:
1969 			tl_id++;
1970 		}
1971 	}
1972 
1973 	return asym_tl;
1974 }
1975 
1976 
1977 /*
1978  * Build sched domains for a given set of CPUs and attach the sched domains
1979  * to the individual CPUs
1980  */
1981 static int
1982 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1983 {
1984 	enum s_alloc alloc_state = sa_none;
1985 	struct sched_domain *sd;
1986 	struct s_data d;
1987 	struct rq *rq = NULL;
1988 	int i, ret = -ENOMEM;
1989 	struct sched_domain_topology_level *tl_asym;
1990 	bool has_asym = false;
1991 
1992 	if (WARN_ON(cpumask_empty(cpu_map)))
1993 		goto error;
1994 
1995 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1996 	if (alloc_state != sa_rootdomain)
1997 		goto error;
1998 
1999 	tl_asym = asym_cpu_capacity_level(cpu_map);
2000 
2001 	/* Set up domains for CPUs specified by the cpu_map: */
2002 	for_each_cpu(i, cpu_map) {
2003 		struct sched_domain_topology_level *tl;
2004 		int dflags = 0;
2005 
2006 		sd = NULL;
2007 		for_each_sd_topology(tl) {
2008 			if (tl == tl_asym) {
2009 				dflags |= SD_ASYM_CPUCAPACITY;
2010 				has_asym = true;
2011 			}
2012 
2013 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2014 				goto error;
2015 
2016 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2017 
2018 			if (tl == sched_domain_topology)
2019 				*per_cpu_ptr(d.sd, i) = sd;
2020 			if (tl->flags & SDTL_OVERLAP)
2021 				sd->flags |= SD_OVERLAP;
2022 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2023 				break;
2024 		}
2025 	}
2026 
2027 	/* Build the groups for the domains */
2028 	for_each_cpu(i, cpu_map) {
2029 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2030 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2031 			if (sd->flags & SD_OVERLAP) {
2032 				if (build_overlap_sched_groups(sd, i))
2033 					goto error;
2034 			} else {
2035 				if (build_sched_groups(sd, i))
2036 					goto error;
2037 			}
2038 		}
2039 	}
2040 
2041 	/* Calculate CPU capacity for physical packages and nodes */
2042 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2043 		if (!cpumask_test_cpu(i, cpu_map))
2044 			continue;
2045 
2046 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2047 			claim_allocations(i, sd);
2048 			init_sched_groups_capacity(i, sd);
2049 		}
2050 	}
2051 
2052 	/* Attach the domains */
2053 	rcu_read_lock();
2054 	for_each_cpu(i, cpu_map) {
2055 		rq = cpu_rq(i);
2056 		sd = *per_cpu_ptr(d.sd, i);
2057 
2058 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2059 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2060 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2061 
2062 		cpu_attach_domain(sd, d.rd, i);
2063 	}
2064 	rcu_read_unlock();
2065 
2066 	if (has_asym)
2067 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2068 
2069 	if (rq && sched_debug_enabled) {
2070 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2071 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2072 	}
2073 
2074 	ret = 0;
2075 error:
2076 	__free_domain_allocs(&d, alloc_state, cpu_map);
2077 
2078 	return ret;
2079 }
2080 
2081 /* Current sched domains: */
2082 static cpumask_var_t			*doms_cur;
2083 
2084 /* Number of sched domains in 'doms_cur': */
2085 static int				ndoms_cur;
2086 
2087 /* Attribues of custom domains in 'doms_cur' */
2088 static struct sched_domain_attr		*dattr_cur;
2089 
2090 /*
2091  * Special case: If a kmalloc() of a doms_cur partition (array of
2092  * cpumask) fails, then fallback to a single sched domain,
2093  * as determined by the single cpumask fallback_doms.
2094  */
2095 static cpumask_var_t			fallback_doms;
2096 
2097 /*
2098  * arch_update_cpu_topology lets virtualized architectures update the
2099  * CPU core maps. It is supposed to return 1 if the topology changed
2100  * or 0 if it stayed the same.
2101  */
2102 int __weak arch_update_cpu_topology(void)
2103 {
2104 	return 0;
2105 }
2106 
2107 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2108 {
2109 	int i;
2110 	cpumask_var_t *doms;
2111 
2112 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2113 	if (!doms)
2114 		return NULL;
2115 	for (i = 0; i < ndoms; i++) {
2116 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2117 			free_sched_domains(doms, i);
2118 			return NULL;
2119 		}
2120 	}
2121 	return doms;
2122 }
2123 
2124 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2125 {
2126 	unsigned int i;
2127 	for (i = 0; i < ndoms; i++)
2128 		free_cpumask_var(doms[i]);
2129 	kfree(doms);
2130 }
2131 
2132 /*
2133  * Set up scheduler domains and groups.  For now this just excludes isolated
2134  * CPUs, but could be used to exclude other special cases in the future.
2135  */
2136 int sched_init_domains(const struct cpumask *cpu_map)
2137 {
2138 	int err;
2139 
2140 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2141 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2142 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2143 
2144 	arch_update_cpu_topology();
2145 	ndoms_cur = 1;
2146 	doms_cur = alloc_sched_domains(ndoms_cur);
2147 	if (!doms_cur)
2148 		doms_cur = &fallback_doms;
2149 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2150 	err = build_sched_domains(doms_cur[0], NULL);
2151 	register_sched_domain_sysctl();
2152 
2153 	return err;
2154 }
2155 
2156 /*
2157  * Detach sched domains from a group of CPUs specified in cpu_map
2158  * These CPUs will now be attached to the NULL domain
2159  */
2160 static void detach_destroy_domains(const struct cpumask *cpu_map)
2161 {
2162 	unsigned int cpu = cpumask_any(cpu_map);
2163 	int i;
2164 
2165 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2166 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2167 
2168 	rcu_read_lock();
2169 	for_each_cpu(i, cpu_map)
2170 		cpu_attach_domain(NULL, &def_root_domain, i);
2171 	rcu_read_unlock();
2172 }
2173 
2174 /* handle null as "default" */
2175 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2176 			struct sched_domain_attr *new, int idx_new)
2177 {
2178 	struct sched_domain_attr tmp;
2179 
2180 	/* Fast path: */
2181 	if (!new && !cur)
2182 		return 1;
2183 
2184 	tmp = SD_ATTR_INIT;
2185 
2186 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2187 			new ? (new + idx_new) : &tmp,
2188 			sizeof(struct sched_domain_attr));
2189 }
2190 
2191 /*
2192  * Partition sched domains as specified by the 'ndoms_new'
2193  * cpumasks in the array doms_new[] of cpumasks. This compares
2194  * doms_new[] to the current sched domain partitioning, doms_cur[].
2195  * It destroys each deleted domain and builds each new domain.
2196  *
2197  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2198  * The masks don't intersect (don't overlap.) We should setup one
2199  * sched domain for each mask. CPUs not in any of the cpumasks will
2200  * not be load balanced. If the same cpumask appears both in the
2201  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2202  * it as it is.
2203  *
2204  * The passed in 'doms_new' should be allocated using
2205  * alloc_sched_domains.  This routine takes ownership of it and will
2206  * free_sched_domains it when done with it. If the caller failed the
2207  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2208  * and partition_sched_domains() will fallback to the single partition
2209  * 'fallback_doms', it also forces the domains to be rebuilt.
2210  *
2211  * If doms_new == NULL it will be replaced with cpu_online_mask.
2212  * ndoms_new == 0 is a special case for destroying existing domains,
2213  * and it will not create the default domain.
2214  *
2215  * Call with hotplug lock and sched_domains_mutex held
2216  */
2217 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2218 				    struct sched_domain_attr *dattr_new)
2219 {
2220 	bool __maybe_unused has_eas = false;
2221 	int i, j, n;
2222 	int new_topology;
2223 
2224 	lockdep_assert_held(&sched_domains_mutex);
2225 
2226 	/* Always unregister in case we don't destroy any domains: */
2227 	unregister_sched_domain_sysctl();
2228 
2229 	/* Let the architecture update CPU core mappings: */
2230 	new_topology = arch_update_cpu_topology();
2231 
2232 	if (!doms_new) {
2233 		WARN_ON_ONCE(dattr_new);
2234 		n = 0;
2235 		doms_new = alloc_sched_domains(1);
2236 		if (doms_new) {
2237 			n = 1;
2238 			cpumask_and(doms_new[0], cpu_active_mask,
2239 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2240 		}
2241 	} else {
2242 		n = ndoms_new;
2243 	}
2244 
2245 	/* Destroy deleted domains: */
2246 	for (i = 0; i < ndoms_cur; i++) {
2247 		for (j = 0; j < n && !new_topology; j++) {
2248 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2249 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2250 				struct root_domain *rd;
2251 
2252 				/*
2253 				 * This domain won't be destroyed and as such
2254 				 * its dl_bw->total_bw needs to be cleared.  It
2255 				 * will be recomputed in function
2256 				 * update_tasks_root_domain().
2257 				 */
2258 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2259 				dl_clear_root_domain(rd);
2260 				goto match1;
2261 			}
2262 		}
2263 		/* No match - a current sched domain not in new doms_new[] */
2264 		detach_destroy_domains(doms_cur[i]);
2265 match1:
2266 		;
2267 	}
2268 
2269 	n = ndoms_cur;
2270 	if (!doms_new) {
2271 		n = 0;
2272 		doms_new = &fallback_doms;
2273 		cpumask_and(doms_new[0], cpu_active_mask,
2274 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2275 	}
2276 
2277 	/* Build new domains: */
2278 	for (i = 0; i < ndoms_new; i++) {
2279 		for (j = 0; j < n && !new_topology; j++) {
2280 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2281 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2282 				goto match2;
2283 		}
2284 		/* No match - add a new doms_new */
2285 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2286 match2:
2287 		;
2288 	}
2289 
2290 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2291 	/* Build perf. domains: */
2292 	for (i = 0; i < ndoms_new; i++) {
2293 		for (j = 0; j < n && !sched_energy_update; j++) {
2294 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2295 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2296 				has_eas = true;
2297 				goto match3;
2298 			}
2299 		}
2300 		/* No match - add perf. domains for a new rd */
2301 		has_eas |= build_perf_domains(doms_new[i]);
2302 match3:
2303 		;
2304 	}
2305 	sched_energy_set(has_eas);
2306 #endif
2307 
2308 	/* Remember the new sched domains: */
2309 	if (doms_cur != &fallback_doms)
2310 		free_sched_domains(doms_cur, ndoms_cur);
2311 
2312 	kfree(dattr_cur);
2313 	doms_cur = doms_new;
2314 	dattr_cur = dattr_new;
2315 	ndoms_cur = ndoms_new;
2316 
2317 	register_sched_domain_sysctl();
2318 }
2319 
2320 /*
2321  * Call with hotplug lock held
2322  */
2323 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2324 			     struct sched_domain_attr *dattr_new)
2325 {
2326 	mutex_lock(&sched_domains_mutex);
2327 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2328 	mutex_unlock(&sched_domains_mutex);
2329 }
2330