1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 #include "sched.h" 6 7 DEFINE_MUTEX(sched_domains_mutex); 8 9 /* Protected by sched_domains_mutex: */ 10 cpumask_var_t sched_domains_tmpmask; 11 cpumask_var_t sched_domains_tmpmask2; 12 13 #ifdef CONFIG_SCHED_DEBUG 14 15 static int __init sched_debug_setup(char *str) 16 { 17 sched_debug_enabled = true; 18 19 return 0; 20 } 21 early_param("sched_debug", sched_debug_setup); 22 23 static inline bool sched_debug(void) 24 { 25 return sched_debug_enabled; 26 } 27 28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 29 struct cpumask *groupmask) 30 { 31 struct sched_group *group = sd->groups; 32 33 cpumask_clear(groupmask); 34 35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 36 37 if (!(sd->flags & SD_LOAD_BALANCE)) { 38 printk("does not load-balance\n"); 39 if (sd->parent) 40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); 41 return -1; 42 } 43 44 printk(KERN_CONT "span=%*pbl level=%s\n", 45 cpumask_pr_args(sched_domain_span(sd)), sd->name); 46 47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49 } 50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52 } 53 54 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 55 do { 56 if (!group) { 57 printk("\n"); 58 printk(KERN_ERR "ERROR: group is NULL\n"); 59 break; 60 } 61 62 if (!cpumask_weight(sched_group_span(group))) { 63 printk(KERN_CONT "\n"); 64 printk(KERN_ERR "ERROR: empty group\n"); 65 break; 66 } 67 68 if (!(sd->flags & SD_OVERLAP) && 69 cpumask_intersects(groupmask, sched_group_span(group))) { 70 printk(KERN_CONT "\n"); 71 printk(KERN_ERR "ERROR: repeated CPUs\n"); 72 break; 73 } 74 75 cpumask_or(groupmask, groupmask, sched_group_span(group)); 76 77 printk(KERN_CONT " %d:{ span=%*pbl", 78 group->sgc->id, 79 cpumask_pr_args(sched_group_span(group))); 80 81 if ((sd->flags & SD_OVERLAP) && 82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 83 printk(KERN_CONT " mask=%*pbl", 84 cpumask_pr_args(group_balance_mask(group))); 85 } 86 87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 88 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 89 90 if (group == sd->groups && sd->child && 91 !cpumask_equal(sched_domain_span(sd->child), 92 sched_group_span(group))) { 93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 94 } 95 96 printk(KERN_CONT " }"); 97 98 group = group->next; 99 100 if (group != sd->groups) 101 printk(KERN_CONT ","); 102 103 } while (group != sd->groups); 104 printk(KERN_CONT "\n"); 105 106 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 107 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 108 109 if (sd->parent && 110 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 112 return 0; 113 } 114 115 static void sched_domain_debug(struct sched_domain *sd, int cpu) 116 { 117 int level = 0; 118 119 if (!sched_debug_enabled) 120 return; 121 122 if (!sd) { 123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 124 return; 125 } 126 127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 128 129 for (;;) { 130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 131 break; 132 level++; 133 sd = sd->parent; 134 if (!sd) 135 break; 136 } 137 } 138 #else /* !CONFIG_SCHED_DEBUG */ 139 140 # define sched_debug_enabled 0 141 # define sched_domain_debug(sd, cpu) do { } while (0) 142 static inline bool sched_debug(void) 143 { 144 return false; 145 } 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 static int sd_degenerate(struct sched_domain *sd) 149 { 150 if (cpumask_weight(sched_domain_span(sd)) == 1) 151 return 1; 152 153 /* Following flags need at least 2 groups */ 154 if (sd->flags & (SD_LOAD_BALANCE | 155 SD_BALANCE_NEWIDLE | 156 SD_BALANCE_FORK | 157 SD_BALANCE_EXEC | 158 SD_SHARE_CPUCAPACITY | 159 SD_ASYM_CPUCAPACITY | 160 SD_SHARE_PKG_RESOURCES | 161 SD_SHARE_POWERDOMAIN)) { 162 if (sd->groups != sd->groups->next) 163 return 0; 164 } 165 166 /* Following flags don't use groups */ 167 if (sd->flags & (SD_WAKE_AFFINE)) 168 return 0; 169 170 return 1; 171 } 172 173 static int 174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 175 { 176 unsigned long cflags = sd->flags, pflags = parent->flags; 177 178 if (sd_degenerate(parent)) 179 return 1; 180 181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 182 return 0; 183 184 /* Flags needing groups don't count if only 1 group in parent */ 185 if (parent->groups == parent->groups->next) { 186 pflags &= ~(SD_LOAD_BALANCE | 187 SD_BALANCE_NEWIDLE | 188 SD_BALANCE_FORK | 189 SD_BALANCE_EXEC | 190 SD_ASYM_CPUCAPACITY | 191 SD_SHARE_CPUCAPACITY | 192 SD_SHARE_PKG_RESOURCES | 193 SD_PREFER_SIBLING | 194 SD_SHARE_POWERDOMAIN); 195 if (nr_node_ids == 1) 196 pflags &= ~SD_SERIALIZE; 197 } 198 if (~cflags & pflags) 199 return 0; 200 201 return 1; 202 } 203 204 static void free_rootdomain(struct rcu_head *rcu) 205 { 206 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 207 208 cpupri_cleanup(&rd->cpupri); 209 cpudl_cleanup(&rd->cpudl); 210 free_cpumask_var(rd->dlo_mask); 211 free_cpumask_var(rd->rto_mask); 212 free_cpumask_var(rd->online); 213 free_cpumask_var(rd->span); 214 kfree(rd); 215 } 216 217 void rq_attach_root(struct rq *rq, struct root_domain *rd) 218 { 219 struct root_domain *old_rd = NULL; 220 unsigned long flags; 221 222 raw_spin_lock_irqsave(&rq->lock, flags); 223 224 if (rq->rd) { 225 old_rd = rq->rd; 226 227 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 228 set_rq_offline(rq); 229 230 cpumask_clear_cpu(rq->cpu, old_rd->span); 231 232 /* 233 * If we dont want to free the old_rd yet then 234 * set old_rd to NULL to skip the freeing later 235 * in this function: 236 */ 237 if (!atomic_dec_and_test(&old_rd->refcount)) 238 old_rd = NULL; 239 } 240 241 atomic_inc(&rd->refcount); 242 rq->rd = rd; 243 244 cpumask_set_cpu(rq->cpu, rd->span); 245 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 246 set_rq_online(rq); 247 248 raw_spin_unlock_irqrestore(&rq->lock, flags); 249 250 if (old_rd) 251 call_rcu_sched(&old_rd->rcu, free_rootdomain); 252 } 253 254 void sched_get_rd(struct root_domain *rd) 255 { 256 atomic_inc(&rd->refcount); 257 } 258 259 void sched_put_rd(struct root_domain *rd) 260 { 261 if (!atomic_dec_and_test(&rd->refcount)) 262 return; 263 264 call_rcu_sched(&rd->rcu, free_rootdomain); 265 } 266 267 static int init_rootdomain(struct root_domain *rd) 268 { 269 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 270 goto out; 271 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 272 goto free_span; 273 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 274 goto free_online; 275 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 276 goto free_dlo_mask; 277 278 #ifdef HAVE_RT_PUSH_IPI 279 rd->rto_cpu = -1; 280 raw_spin_lock_init(&rd->rto_lock); 281 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 282 #endif 283 284 init_dl_bw(&rd->dl_bw); 285 if (cpudl_init(&rd->cpudl) != 0) 286 goto free_rto_mask; 287 288 if (cpupri_init(&rd->cpupri) != 0) 289 goto free_cpudl; 290 return 0; 291 292 free_cpudl: 293 cpudl_cleanup(&rd->cpudl); 294 free_rto_mask: 295 free_cpumask_var(rd->rto_mask); 296 free_dlo_mask: 297 free_cpumask_var(rd->dlo_mask); 298 free_online: 299 free_cpumask_var(rd->online); 300 free_span: 301 free_cpumask_var(rd->span); 302 out: 303 return -ENOMEM; 304 } 305 306 /* 307 * By default the system creates a single root-domain with all CPUs as 308 * members (mimicking the global state we have today). 309 */ 310 struct root_domain def_root_domain; 311 312 void init_defrootdomain(void) 313 { 314 init_rootdomain(&def_root_domain); 315 316 atomic_set(&def_root_domain.refcount, 1); 317 } 318 319 static struct root_domain *alloc_rootdomain(void) 320 { 321 struct root_domain *rd; 322 323 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 324 if (!rd) 325 return NULL; 326 327 if (init_rootdomain(rd) != 0) { 328 kfree(rd); 329 return NULL; 330 } 331 332 return rd; 333 } 334 335 static void free_sched_groups(struct sched_group *sg, int free_sgc) 336 { 337 struct sched_group *tmp, *first; 338 339 if (!sg) 340 return; 341 342 first = sg; 343 do { 344 tmp = sg->next; 345 346 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 347 kfree(sg->sgc); 348 349 if (atomic_dec_and_test(&sg->ref)) 350 kfree(sg); 351 sg = tmp; 352 } while (sg != first); 353 } 354 355 static void destroy_sched_domain(struct sched_domain *sd) 356 { 357 /* 358 * A normal sched domain may have multiple group references, an 359 * overlapping domain, having private groups, only one. Iterate, 360 * dropping group/capacity references, freeing where none remain. 361 */ 362 free_sched_groups(sd->groups, 1); 363 364 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 365 kfree(sd->shared); 366 kfree(sd); 367 } 368 369 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 370 { 371 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 372 373 while (sd) { 374 struct sched_domain *parent = sd->parent; 375 destroy_sched_domain(sd); 376 sd = parent; 377 } 378 } 379 380 static void destroy_sched_domains(struct sched_domain *sd) 381 { 382 if (sd) 383 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 384 } 385 386 /* 387 * Keep a special pointer to the highest sched_domain that has 388 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 389 * allows us to avoid some pointer chasing select_idle_sibling(). 390 * 391 * Also keep a unique ID per domain (we use the first CPU number in 392 * the cpumask of the domain), this allows us to quickly tell if 393 * two CPUs are in the same cache domain, see cpus_share_cache(). 394 */ 395 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 396 DEFINE_PER_CPU(int, sd_llc_size); 397 DEFINE_PER_CPU(int, sd_llc_id); 398 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 399 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 400 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 401 402 static void update_top_cache_domain(int cpu) 403 { 404 struct sched_domain_shared *sds = NULL; 405 struct sched_domain *sd; 406 int id = cpu; 407 int size = 1; 408 409 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 410 if (sd) { 411 id = cpumask_first(sched_domain_span(sd)); 412 size = cpumask_weight(sched_domain_span(sd)); 413 sds = sd->shared; 414 } 415 416 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 417 per_cpu(sd_llc_size, cpu) = size; 418 per_cpu(sd_llc_id, cpu) = id; 419 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 420 421 sd = lowest_flag_domain(cpu, SD_NUMA); 422 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 423 424 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 425 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 426 } 427 428 /* 429 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 430 * hold the hotplug lock. 431 */ 432 static void 433 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 434 { 435 struct rq *rq = cpu_rq(cpu); 436 struct sched_domain *tmp; 437 438 /* Remove the sched domains which do not contribute to scheduling. */ 439 for (tmp = sd; tmp; ) { 440 struct sched_domain *parent = tmp->parent; 441 if (!parent) 442 break; 443 444 if (sd_parent_degenerate(tmp, parent)) { 445 tmp->parent = parent->parent; 446 if (parent->parent) 447 parent->parent->child = tmp; 448 /* 449 * Transfer SD_PREFER_SIBLING down in case of a 450 * degenerate parent; the spans match for this 451 * so the property transfers. 452 */ 453 if (parent->flags & SD_PREFER_SIBLING) 454 tmp->flags |= SD_PREFER_SIBLING; 455 destroy_sched_domain(parent); 456 } else 457 tmp = tmp->parent; 458 } 459 460 if (sd && sd_degenerate(sd)) { 461 tmp = sd; 462 sd = sd->parent; 463 destroy_sched_domain(tmp); 464 if (sd) 465 sd->child = NULL; 466 } 467 468 sched_domain_debug(sd, cpu); 469 470 rq_attach_root(rq, rd); 471 tmp = rq->sd; 472 rcu_assign_pointer(rq->sd, sd); 473 dirty_sched_domain_sysctl(cpu); 474 destroy_sched_domains(tmp); 475 476 update_top_cache_domain(cpu); 477 } 478 479 struct s_data { 480 struct sched_domain ** __percpu sd; 481 struct root_domain *rd; 482 }; 483 484 enum s_alloc { 485 sa_rootdomain, 486 sa_sd, 487 sa_sd_storage, 488 sa_none, 489 }; 490 491 /* 492 * Return the canonical balance CPU for this group, this is the first CPU 493 * of this group that's also in the balance mask. 494 * 495 * The balance mask are all those CPUs that could actually end up at this 496 * group. See build_balance_mask(). 497 * 498 * Also see should_we_balance(). 499 */ 500 int group_balance_cpu(struct sched_group *sg) 501 { 502 return cpumask_first(group_balance_mask(sg)); 503 } 504 505 506 /* 507 * NUMA topology (first read the regular topology blurb below) 508 * 509 * Given a node-distance table, for example: 510 * 511 * node 0 1 2 3 512 * 0: 10 20 30 20 513 * 1: 20 10 20 30 514 * 2: 30 20 10 20 515 * 3: 20 30 20 10 516 * 517 * which represents a 4 node ring topology like: 518 * 519 * 0 ----- 1 520 * | | 521 * | | 522 * | | 523 * 3 ----- 2 524 * 525 * We want to construct domains and groups to represent this. The way we go 526 * about doing this is to build the domains on 'hops'. For each NUMA level we 527 * construct the mask of all nodes reachable in @level hops. 528 * 529 * For the above NUMA topology that gives 3 levels: 530 * 531 * NUMA-2 0-3 0-3 0-3 0-3 532 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 533 * 534 * NUMA-1 0-1,3 0-2 1-3 0,2-3 535 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 536 * 537 * NUMA-0 0 1 2 3 538 * 539 * 540 * As can be seen; things don't nicely line up as with the regular topology. 541 * When we iterate a domain in child domain chunks some nodes can be 542 * represented multiple times -- hence the "overlap" naming for this part of 543 * the topology. 544 * 545 * In order to minimize this overlap, we only build enough groups to cover the 546 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 547 * 548 * Because: 549 * 550 * - the first group of each domain is its child domain; this 551 * gets us the first 0-1,3 552 * - the only uncovered node is 2, who's child domain is 1-3. 553 * 554 * However, because of the overlap, computing a unique CPU for each group is 555 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 556 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 557 * end up at those groups (they would end up in group: 0-1,3). 558 * 559 * To correct this we have to introduce the group balance mask. This mask 560 * will contain those CPUs in the group that can reach this group given the 561 * (child) domain tree. 562 * 563 * With this we can once again compute balance_cpu and sched_group_capacity 564 * relations. 565 * 566 * XXX include words on how balance_cpu is unique and therefore can be 567 * used for sched_group_capacity links. 568 * 569 * 570 * Another 'interesting' topology is: 571 * 572 * node 0 1 2 3 573 * 0: 10 20 20 30 574 * 1: 20 10 20 20 575 * 2: 20 20 10 20 576 * 3: 30 20 20 10 577 * 578 * Which looks a little like: 579 * 580 * 0 ----- 1 581 * | / | 582 * | / | 583 * | / | 584 * 2 ----- 3 585 * 586 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 587 * are not. 588 * 589 * This leads to a few particularly weird cases where the sched_domain's are 590 * not of the same number for each CPU. Consider: 591 * 592 * NUMA-2 0-3 0-3 593 * groups: {0-2},{1-3} {1-3},{0-2} 594 * 595 * NUMA-1 0-2 0-3 0-3 1-3 596 * 597 * NUMA-0 0 1 2 3 598 * 599 */ 600 601 602 /* 603 * Build the balance mask; it contains only those CPUs that can arrive at this 604 * group and should be considered to continue balancing. 605 * 606 * We do this during the group creation pass, therefore the group information 607 * isn't complete yet, however since each group represents a (child) domain we 608 * can fully construct this using the sched_domain bits (which are already 609 * complete). 610 */ 611 static void 612 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 613 { 614 const struct cpumask *sg_span = sched_group_span(sg); 615 struct sd_data *sdd = sd->private; 616 struct sched_domain *sibling; 617 int i; 618 619 cpumask_clear(mask); 620 621 for_each_cpu(i, sg_span) { 622 sibling = *per_cpu_ptr(sdd->sd, i); 623 624 /* 625 * Can happen in the asymmetric case, where these siblings are 626 * unused. The mask will not be empty because those CPUs that 627 * do have the top domain _should_ span the domain. 628 */ 629 if (!sibling->child) 630 continue; 631 632 /* If we would not end up here, we can't continue from here */ 633 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 634 continue; 635 636 cpumask_set_cpu(i, mask); 637 } 638 639 /* We must not have empty masks here */ 640 WARN_ON_ONCE(cpumask_empty(mask)); 641 } 642 643 /* 644 * XXX: This creates per-node group entries; since the load-balancer will 645 * immediately access remote memory to construct this group's load-balance 646 * statistics having the groups node local is of dubious benefit. 647 */ 648 static struct sched_group * 649 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 650 { 651 struct sched_group *sg; 652 struct cpumask *sg_span; 653 654 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 655 GFP_KERNEL, cpu_to_node(cpu)); 656 657 if (!sg) 658 return NULL; 659 660 sg_span = sched_group_span(sg); 661 if (sd->child) 662 cpumask_copy(sg_span, sched_domain_span(sd->child)); 663 else 664 cpumask_copy(sg_span, sched_domain_span(sd)); 665 666 atomic_inc(&sg->ref); 667 return sg; 668 } 669 670 static void init_overlap_sched_group(struct sched_domain *sd, 671 struct sched_group *sg) 672 { 673 struct cpumask *mask = sched_domains_tmpmask2; 674 struct sd_data *sdd = sd->private; 675 struct cpumask *sg_span; 676 int cpu; 677 678 build_balance_mask(sd, sg, mask); 679 cpu = cpumask_first_and(sched_group_span(sg), mask); 680 681 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 682 if (atomic_inc_return(&sg->sgc->ref) == 1) 683 cpumask_copy(group_balance_mask(sg), mask); 684 else 685 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 686 687 /* 688 * Initialize sgc->capacity such that even if we mess up the 689 * domains and no possible iteration will get us here, we won't 690 * die on a /0 trap. 691 */ 692 sg_span = sched_group_span(sg); 693 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 694 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 695 } 696 697 static int 698 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 699 { 700 struct sched_group *first = NULL, *last = NULL, *sg; 701 const struct cpumask *span = sched_domain_span(sd); 702 struct cpumask *covered = sched_domains_tmpmask; 703 struct sd_data *sdd = sd->private; 704 struct sched_domain *sibling; 705 int i; 706 707 cpumask_clear(covered); 708 709 for_each_cpu_wrap(i, span, cpu) { 710 struct cpumask *sg_span; 711 712 if (cpumask_test_cpu(i, covered)) 713 continue; 714 715 sibling = *per_cpu_ptr(sdd->sd, i); 716 717 /* 718 * Asymmetric node setups can result in situations where the 719 * domain tree is of unequal depth, make sure to skip domains 720 * that already cover the entire range. 721 * 722 * In that case build_sched_domains() will have terminated the 723 * iteration early and our sibling sd spans will be empty. 724 * Domains should always include the CPU they're built on, so 725 * check that. 726 */ 727 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 728 continue; 729 730 sg = build_group_from_child_sched_domain(sibling, cpu); 731 if (!sg) 732 goto fail; 733 734 sg_span = sched_group_span(sg); 735 cpumask_or(covered, covered, sg_span); 736 737 init_overlap_sched_group(sd, sg); 738 739 if (!first) 740 first = sg; 741 if (last) 742 last->next = sg; 743 last = sg; 744 last->next = first; 745 } 746 sd->groups = first; 747 748 return 0; 749 750 fail: 751 free_sched_groups(first, 0); 752 753 return -ENOMEM; 754 } 755 756 757 /* 758 * Package topology (also see the load-balance blurb in fair.c) 759 * 760 * The scheduler builds a tree structure to represent a number of important 761 * topology features. By default (default_topology[]) these include: 762 * 763 * - Simultaneous multithreading (SMT) 764 * - Multi-Core Cache (MC) 765 * - Package (DIE) 766 * 767 * Where the last one more or less denotes everything up to a NUMA node. 768 * 769 * The tree consists of 3 primary data structures: 770 * 771 * sched_domain -> sched_group -> sched_group_capacity 772 * ^ ^ ^ ^ 773 * `-' `-' 774 * 775 * The sched_domains are per-CPU and have a two way link (parent & child) and 776 * denote the ever growing mask of CPUs belonging to that level of topology. 777 * 778 * Each sched_domain has a circular (double) linked list of sched_group's, each 779 * denoting the domains of the level below (or individual CPUs in case of the 780 * first domain level). The sched_group linked by a sched_domain includes the 781 * CPU of that sched_domain [*]. 782 * 783 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 784 * 785 * CPU 0 1 2 3 4 5 6 7 786 * 787 * DIE [ ] 788 * MC [ ] [ ] 789 * SMT [ ] [ ] [ ] [ ] 790 * 791 * - or - 792 * 793 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 794 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 795 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 796 * 797 * CPU 0 1 2 3 4 5 6 7 798 * 799 * One way to think about it is: sched_domain moves you up and down among these 800 * topology levels, while sched_group moves you sideways through it, at child 801 * domain granularity. 802 * 803 * sched_group_capacity ensures each unique sched_group has shared storage. 804 * 805 * There are two related construction problems, both require a CPU that 806 * uniquely identify each group (for a given domain): 807 * 808 * - The first is the balance_cpu (see should_we_balance() and the 809 * load-balance blub in fair.c); for each group we only want 1 CPU to 810 * continue balancing at a higher domain. 811 * 812 * - The second is the sched_group_capacity; we want all identical groups 813 * to share a single sched_group_capacity. 814 * 815 * Since these topologies are exclusive by construction. That is, its 816 * impossible for an SMT thread to belong to multiple cores, and cores to 817 * be part of multiple caches. There is a very clear and unique location 818 * for each CPU in the hierarchy. 819 * 820 * Therefore computing a unique CPU for each group is trivial (the iteration 821 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 822 * group), we can simply pick the first CPU in each group. 823 * 824 * 825 * [*] in other words, the first group of each domain is its child domain. 826 */ 827 828 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 829 { 830 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 831 struct sched_domain *child = sd->child; 832 struct sched_group *sg; 833 834 if (child) 835 cpu = cpumask_first(sched_domain_span(child)); 836 837 sg = *per_cpu_ptr(sdd->sg, cpu); 838 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 839 840 /* For claim_allocations: */ 841 atomic_inc(&sg->ref); 842 atomic_inc(&sg->sgc->ref); 843 844 if (child) { 845 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 846 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 847 } else { 848 cpumask_set_cpu(cpu, sched_group_span(sg)); 849 cpumask_set_cpu(cpu, group_balance_mask(sg)); 850 } 851 852 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 853 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 854 855 return sg; 856 } 857 858 /* 859 * build_sched_groups will build a circular linked list of the groups 860 * covered by the given span, and will set each group's ->cpumask correctly, 861 * and ->cpu_capacity to 0. 862 * 863 * Assumes the sched_domain tree is fully constructed 864 */ 865 static int 866 build_sched_groups(struct sched_domain *sd, int cpu) 867 { 868 struct sched_group *first = NULL, *last = NULL; 869 struct sd_data *sdd = sd->private; 870 const struct cpumask *span = sched_domain_span(sd); 871 struct cpumask *covered; 872 int i; 873 874 lockdep_assert_held(&sched_domains_mutex); 875 covered = sched_domains_tmpmask; 876 877 cpumask_clear(covered); 878 879 for_each_cpu_wrap(i, span, cpu) { 880 struct sched_group *sg; 881 882 if (cpumask_test_cpu(i, covered)) 883 continue; 884 885 sg = get_group(i, sdd); 886 887 cpumask_or(covered, covered, sched_group_span(sg)); 888 889 if (!first) 890 first = sg; 891 if (last) 892 last->next = sg; 893 last = sg; 894 } 895 last->next = first; 896 sd->groups = first; 897 898 return 0; 899 } 900 901 /* 902 * Initialize sched groups cpu_capacity. 903 * 904 * cpu_capacity indicates the capacity of sched group, which is used while 905 * distributing the load between different sched groups in a sched domain. 906 * Typically cpu_capacity for all the groups in a sched domain will be same 907 * unless there are asymmetries in the topology. If there are asymmetries, 908 * group having more cpu_capacity will pickup more load compared to the 909 * group having less cpu_capacity. 910 */ 911 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 912 { 913 struct sched_group *sg = sd->groups; 914 915 WARN_ON(!sg); 916 917 do { 918 int cpu, max_cpu = -1; 919 920 sg->group_weight = cpumask_weight(sched_group_span(sg)); 921 922 if (!(sd->flags & SD_ASYM_PACKING)) 923 goto next; 924 925 for_each_cpu(cpu, sched_group_span(sg)) { 926 if (max_cpu < 0) 927 max_cpu = cpu; 928 else if (sched_asym_prefer(cpu, max_cpu)) 929 max_cpu = cpu; 930 } 931 sg->asym_prefer_cpu = max_cpu; 932 933 next: 934 sg = sg->next; 935 } while (sg != sd->groups); 936 937 if (cpu != group_balance_cpu(sg)) 938 return; 939 940 update_group_capacity(sd, cpu); 941 } 942 943 /* 944 * Initializers for schedule domains 945 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 946 */ 947 948 static int default_relax_domain_level = -1; 949 int sched_domain_level_max; 950 951 static int __init setup_relax_domain_level(char *str) 952 { 953 if (kstrtoint(str, 0, &default_relax_domain_level)) 954 pr_warn("Unable to set relax_domain_level\n"); 955 956 return 1; 957 } 958 __setup("relax_domain_level=", setup_relax_domain_level); 959 960 static void set_domain_attribute(struct sched_domain *sd, 961 struct sched_domain_attr *attr) 962 { 963 int request; 964 965 if (!attr || attr->relax_domain_level < 0) { 966 if (default_relax_domain_level < 0) 967 return; 968 else 969 request = default_relax_domain_level; 970 } else 971 request = attr->relax_domain_level; 972 if (request < sd->level) { 973 /* Turn off idle balance on this domain: */ 974 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 975 } else { 976 /* Turn on idle balance on this domain: */ 977 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 978 } 979 } 980 981 static void __sdt_free(const struct cpumask *cpu_map); 982 static int __sdt_alloc(const struct cpumask *cpu_map); 983 984 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 985 const struct cpumask *cpu_map) 986 { 987 switch (what) { 988 case sa_rootdomain: 989 if (!atomic_read(&d->rd->refcount)) 990 free_rootdomain(&d->rd->rcu); 991 /* Fall through */ 992 case sa_sd: 993 free_percpu(d->sd); 994 /* Fall through */ 995 case sa_sd_storage: 996 __sdt_free(cpu_map); 997 /* Fall through */ 998 case sa_none: 999 break; 1000 } 1001 } 1002 1003 static enum s_alloc 1004 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1005 { 1006 memset(d, 0, sizeof(*d)); 1007 1008 if (__sdt_alloc(cpu_map)) 1009 return sa_sd_storage; 1010 d->sd = alloc_percpu(struct sched_domain *); 1011 if (!d->sd) 1012 return sa_sd_storage; 1013 d->rd = alloc_rootdomain(); 1014 if (!d->rd) 1015 return sa_sd; 1016 1017 return sa_rootdomain; 1018 } 1019 1020 /* 1021 * NULL the sd_data elements we've used to build the sched_domain and 1022 * sched_group structure so that the subsequent __free_domain_allocs() 1023 * will not free the data we're using. 1024 */ 1025 static void claim_allocations(int cpu, struct sched_domain *sd) 1026 { 1027 struct sd_data *sdd = sd->private; 1028 1029 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1030 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1031 1032 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1033 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1034 1035 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1036 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1037 1038 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1039 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1040 } 1041 1042 #ifdef CONFIG_NUMA 1043 enum numa_topology_type sched_numa_topology_type; 1044 1045 static int sched_domains_numa_levels; 1046 static int sched_domains_curr_level; 1047 1048 int sched_max_numa_distance; 1049 static int *sched_domains_numa_distance; 1050 static struct cpumask ***sched_domains_numa_masks; 1051 #endif 1052 1053 /* 1054 * SD_flags allowed in topology descriptions. 1055 * 1056 * These flags are purely descriptive of the topology and do not prescribe 1057 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1058 * function: 1059 * 1060 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1061 * SD_SHARE_PKG_RESOURCES - describes shared caches 1062 * SD_NUMA - describes NUMA topologies 1063 * SD_SHARE_POWERDOMAIN - describes shared power domain 1064 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 1065 * 1066 * Odd one out, which beside describing the topology has a quirk also 1067 * prescribes the desired behaviour that goes along with it: 1068 * 1069 * SD_ASYM_PACKING - describes SMT quirks 1070 */ 1071 #define TOPOLOGY_SD_FLAGS \ 1072 (SD_SHARE_CPUCAPACITY | \ 1073 SD_SHARE_PKG_RESOURCES | \ 1074 SD_NUMA | \ 1075 SD_ASYM_PACKING | \ 1076 SD_ASYM_CPUCAPACITY | \ 1077 SD_SHARE_POWERDOMAIN) 1078 1079 static struct sched_domain * 1080 sd_init(struct sched_domain_topology_level *tl, 1081 const struct cpumask *cpu_map, 1082 struct sched_domain *child, int cpu) 1083 { 1084 struct sd_data *sdd = &tl->data; 1085 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1086 int sd_id, sd_weight, sd_flags = 0; 1087 1088 #ifdef CONFIG_NUMA 1089 /* 1090 * Ugly hack to pass state to sd_numa_mask()... 1091 */ 1092 sched_domains_curr_level = tl->numa_level; 1093 #endif 1094 1095 sd_weight = cpumask_weight(tl->mask(cpu)); 1096 1097 if (tl->sd_flags) 1098 sd_flags = (*tl->sd_flags)(); 1099 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1100 "wrong sd_flags in topology description\n")) 1101 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1102 1103 *sd = (struct sched_domain){ 1104 .min_interval = sd_weight, 1105 .max_interval = 2*sd_weight, 1106 .busy_factor = 32, 1107 .imbalance_pct = 125, 1108 1109 .cache_nice_tries = 0, 1110 .busy_idx = 0, 1111 .idle_idx = 0, 1112 .newidle_idx = 0, 1113 .wake_idx = 0, 1114 .forkexec_idx = 0, 1115 1116 .flags = 1*SD_LOAD_BALANCE 1117 | 1*SD_BALANCE_NEWIDLE 1118 | 1*SD_BALANCE_EXEC 1119 | 1*SD_BALANCE_FORK 1120 | 0*SD_BALANCE_WAKE 1121 | 1*SD_WAKE_AFFINE 1122 | 0*SD_SHARE_CPUCAPACITY 1123 | 0*SD_SHARE_PKG_RESOURCES 1124 | 0*SD_SERIALIZE 1125 | 0*SD_PREFER_SIBLING 1126 | 0*SD_NUMA 1127 | sd_flags 1128 , 1129 1130 .last_balance = jiffies, 1131 .balance_interval = sd_weight, 1132 .smt_gain = 0, 1133 .max_newidle_lb_cost = 0, 1134 .next_decay_max_lb_cost = jiffies, 1135 .child = child, 1136 #ifdef CONFIG_SCHED_DEBUG 1137 .name = tl->name, 1138 #endif 1139 }; 1140 1141 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1142 sd_id = cpumask_first(sched_domain_span(sd)); 1143 1144 /* 1145 * Convert topological properties into behaviour. 1146 */ 1147 1148 if (sd->flags & SD_ASYM_CPUCAPACITY) { 1149 struct sched_domain *t = sd; 1150 1151 for_each_lower_domain(t) 1152 t->flags |= SD_BALANCE_WAKE; 1153 } 1154 1155 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1156 sd->flags |= SD_PREFER_SIBLING; 1157 sd->imbalance_pct = 110; 1158 sd->smt_gain = 1178; /* ~15% */ 1159 1160 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1161 sd->flags |= SD_PREFER_SIBLING; 1162 sd->imbalance_pct = 117; 1163 sd->cache_nice_tries = 1; 1164 sd->busy_idx = 2; 1165 1166 #ifdef CONFIG_NUMA 1167 } else if (sd->flags & SD_NUMA) { 1168 sd->cache_nice_tries = 2; 1169 sd->busy_idx = 3; 1170 sd->idle_idx = 2; 1171 1172 sd->flags |= SD_SERIALIZE; 1173 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1174 sd->flags &= ~(SD_BALANCE_EXEC | 1175 SD_BALANCE_FORK | 1176 SD_WAKE_AFFINE); 1177 } 1178 1179 #endif 1180 } else { 1181 sd->flags |= SD_PREFER_SIBLING; 1182 sd->cache_nice_tries = 1; 1183 sd->busy_idx = 2; 1184 sd->idle_idx = 1; 1185 } 1186 1187 /* 1188 * For all levels sharing cache; connect a sched_domain_shared 1189 * instance. 1190 */ 1191 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1192 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1193 atomic_inc(&sd->shared->ref); 1194 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1195 } 1196 1197 sd->private = sdd; 1198 1199 return sd; 1200 } 1201 1202 /* 1203 * Topology list, bottom-up. 1204 */ 1205 static struct sched_domain_topology_level default_topology[] = { 1206 #ifdef CONFIG_SCHED_SMT 1207 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1208 #endif 1209 #ifdef CONFIG_SCHED_MC 1210 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1211 #endif 1212 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1213 { NULL, }, 1214 }; 1215 1216 static struct sched_domain_topology_level *sched_domain_topology = 1217 default_topology; 1218 1219 #define for_each_sd_topology(tl) \ 1220 for (tl = sched_domain_topology; tl->mask; tl++) 1221 1222 void set_sched_topology(struct sched_domain_topology_level *tl) 1223 { 1224 if (WARN_ON_ONCE(sched_smp_initialized)) 1225 return; 1226 1227 sched_domain_topology = tl; 1228 } 1229 1230 #ifdef CONFIG_NUMA 1231 1232 static const struct cpumask *sd_numa_mask(int cpu) 1233 { 1234 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1235 } 1236 1237 static void sched_numa_warn(const char *str) 1238 { 1239 static int done = false; 1240 int i,j; 1241 1242 if (done) 1243 return; 1244 1245 done = true; 1246 1247 printk(KERN_WARNING "ERROR: %s\n\n", str); 1248 1249 for (i = 0; i < nr_node_ids; i++) { 1250 printk(KERN_WARNING " "); 1251 for (j = 0; j < nr_node_ids; j++) 1252 printk(KERN_CONT "%02d ", node_distance(i,j)); 1253 printk(KERN_CONT "\n"); 1254 } 1255 printk(KERN_WARNING "\n"); 1256 } 1257 1258 bool find_numa_distance(int distance) 1259 { 1260 int i; 1261 1262 if (distance == node_distance(0, 0)) 1263 return true; 1264 1265 for (i = 0; i < sched_domains_numa_levels; i++) { 1266 if (sched_domains_numa_distance[i] == distance) 1267 return true; 1268 } 1269 1270 return false; 1271 } 1272 1273 /* 1274 * A system can have three types of NUMA topology: 1275 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1276 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1277 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1278 * 1279 * The difference between a glueless mesh topology and a backplane 1280 * topology lies in whether communication between not directly 1281 * connected nodes goes through intermediary nodes (where programs 1282 * could run), or through backplane controllers. This affects 1283 * placement of programs. 1284 * 1285 * The type of topology can be discerned with the following tests: 1286 * - If the maximum distance between any nodes is 1 hop, the system 1287 * is directly connected. 1288 * - If for two nodes A and B, located N > 1 hops away from each other, 1289 * there is an intermediary node C, which is < N hops away from both 1290 * nodes A and B, the system is a glueless mesh. 1291 */ 1292 static void init_numa_topology_type(void) 1293 { 1294 int a, b, c, n; 1295 1296 n = sched_max_numa_distance; 1297 1298 if (sched_domains_numa_levels <= 1) { 1299 sched_numa_topology_type = NUMA_DIRECT; 1300 return; 1301 } 1302 1303 for_each_online_node(a) { 1304 for_each_online_node(b) { 1305 /* Find two nodes furthest removed from each other. */ 1306 if (node_distance(a, b) < n) 1307 continue; 1308 1309 /* Is there an intermediary node between a and b? */ 1310 for_each_online_node(c) { 1311 if (node_distance(a, c) < n && 1312 node_distance(b, c) < n) { 1313 sched_numa_topology_type = 1314 NUMA_GLUELESS_MESH; 1315 return; 1316 } 1317 } 1318 1319 sched_numa_topology_type = NUMA_BACKPLANE; 1320 return; 1321 } 1322 } 1323 } 1324 1325 void sched_init_numa(void) 1326 { 1327 int next_distance, curr_distance = node_distance(0, 0); 1328 struct sched_domain_topology_level *tl; 1329 int level = 0; 1330 int i, j, k; 1331 1332 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 1333 if (!sched_domains_numa_distance) 1334 return; 1335 1336 /* Includes NUMA identity node at level 0. */ 1337 sched_domains_numa_distance[level++] = curr_distance; 1338 sched_domains_numa_levels = level; 1339 1340 /* 1341 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1342 * unique distances in the node_distance() table. 1343 * 1344 * Assumes node_distance(0,j) includes all distances in 1345 * node_distance(i,j) in order to avoid cubic time. 1346 */ 1347 next_distance = curr_distance; 1348 for (i = 0; i < nr_node_ids; i++) { 1349 for (j = 0; j < nr_node_ids; j++) { 1350 for (k = 0; k < nr_node_ids; k++) { 1351 int distance = node_distance(i, k); 1352 1353 if (distance > curr_distance && 1354 (distance < next_distance || 1355 next_distance == curr_distance)) 1356 next_distance = distance; 1357 1358 /* 1359 * While not a strong assumption it would be nice to know 1360 * about cases where if node A is connected to B, B is not 1361 * equally connected to A. 1362 */ 1363 if (sched_debug() && node_distance(k, i) != distance) 1364 sched_numa_warn("Node-distance not symmetric"); 1365 1366 if (sched_debug() && i && !find_numa_distance(distance)) 1367 sched_numa_warn("Node-0 not representative"); 1368 } 1369 if (next_distance != curr_distance) { 1370 sched_domains_numa_distance[level++] = next_distance; 1371 sched_domains_numa_levels = level; 1372 curr_distance = next_distance; 1373 } else break; 1374 } 1375 1376 /* 1377 * In case of sched_debug() we verify the above assumption. 1378 */ 1379 if (!sched_debug()) 1380 break; 1381 } 1382 1383 if (!level) 1384 return; 1385 1386 /* 1387 * 'level' contains the number of unique distances 1388 * 1389 * The sched_domains_numa_distance[] array includes the actual distance 1390 * numbers. 1391 */ 1392 1393 /* 1394 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1395 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1396 * the array will contain less then 'level' members. This could be 1397 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1398 * in other functions. 1399 * 1400 * We reset it to 'level' at the end of this function. 1401 */ 1402 sched_domains_numa_levels = 0; 1403 1404 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1405 if (!sched_domains_numa_masks) 1406 return; 1407 1408 /* 1409 * Now for each level, construct a mask per node which contains all 1410 * CPUs of nodes that are that many hops away from us. 1411 */ 1412 for (i = 0; i < level; i++) { 1413 sched_domains_numa_masks[i] = 1414 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1415 if (!sched_domains_numa_masks[i]) 1416 return; 1417 1418 for (j = 0; j < nr_node_ids; j++) { 1419 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1420 if (!mask) 1421 return; 1422 1423 sched_domains_numa_masks[i][j] = mask; 1424 1425 for_each_node(k) { 1426 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1427 continue; 1428 1429 cpumask_or(mask, mask, cpumask_of_node(k)); 1430 } 1431 } 1432 } 1433 1434 /* Compute default topology size */ 1435 for (i = 0; sched_domain_topology[i].mask; i++); 1436 1437 tl = kzalloc((i + level + 1) * 1438 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1439 if (!tl) 1440 return; 1441 1442 /* 1443 * Copy the default topology bits.. 1444 */ 1445 for (i = 0; sched_domain_topology[i].mask; i++) 1446 tl[i] = sched_domain_topology[i]; 1447 1448 /* 1449 * Add the NUMA identity distance, aka single NODE. 1450 */ 1451 tl[i++] = (struct sched_domain_topology_level){ 1452 .mask = sd_numa_mask, 1453 .numa_level = 0, 1454 SD_INIT_NAME(NODE) 1455 }; 1456 1457 /* 1458 * .. and append 'j' levels of NUMA goodness. 1459 */ 1460 for (j = 1; j < level; i++, j++) { 1461 tl[i] = (struct sched_domain_topology_level){ 1462 .mask = sd_numa_mask, 1463 .sd_flags = cpu_numa_flags, 1464 .flags = SDTL_OVERLAP, 1465 .numa_level = j, 1466 SD_INIT_NAME(NUMA) 1467 }; 1468 } 1469 1470 sched_domain_topology = tl; 1471 1472 sched_domains_numa_levels = level; 1473 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1474 1475 init_numa_topology_type(); 1476 } 1477 1478 void sched_domains_numa_masks_set(unsigned int cpu) 1479 { 1480 int node = cpu_to_node(cpu); 1481 int i, j; 1482 1483 for (i = 0; i < sched_domains_numa_levels; i++) { 1484 for (j = 0; j < nr_node_ids; j++) { 1485 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1486 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1487 } 1488 } 1489 } 1490 1491 void sched_domains_numa_masks_clear(unsigned int cpu) 1492 { 1493 int i, j; 1494 1495 for (i = 0; i < sched_domains_numa_levels; i++) { 1496 for (j = 0; j < nr_node_ids; j++) 1497 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1498 } 1499 } 1500 1501 #endif /* CONFIG_NUMA */ 1502 1503 static int __sdt_alloc(const struct cpumask *cpu_map) 1504 { 1505 struct sched_domain_topology_level *tl; 1506 int j; 1507 1508 for_each_sd_topology(tl) { 1509 struct sd_data *sdd = &tl->data; 1510 1511 sdd->sd = alloc_percpu(struct sched_domain *); 1512 if (!sdd->sd) 1513 return -ENOMEM; 1514 1515 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1516 if (!sdd->sds) 1517 return -ENOMEM; 1518 1519 sdd->sg = alloc_percpu(struct sched_group *); 1520 if (!sdd->sg) 1521 return -ENOMEM; 1522 1523 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1524 if (!sdd->sgc) 1525 return -ENOMEM; 1526 1527 for_each_cpu(j, cpu_map) { 1528 struct sched_domain *sd; 1529 struct sched_domain_shared *sds; 1530 struct sched_group *sg; 1531 struct sched_group_capacity *sgc; 1532 1533 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1534 GFP_KERNEL, cpu_to_node(j)); 1535 if (!sd) 1536 return -ENOMEM; 1537 1538 *per_cpu_ptr(sdd->sd, j) = sd; 1539 1540 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1541 GFP_KERNEL, cpu_to_node(j)); 1542 if (!sds) 1543 return -ENOMEM; 1544 1545 *per_cpu_ptr(sdd->sds, j) = sds; 1546 1547 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1548 GFP_KERNEL, cpu_to_node(j)); 1549 if (!sg) 1550 return -ENOMEM; 1551 1552 sg->next = sg; 1553 1554 *per_cpu_ptr(sdd->sg, j) = sg; 1555 1556 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1557 GFP_KERNEL, cpu_to_node(j)); 1558 if (!sgc) 1559 return -ENOMEM; 1560 1561 #ifdef CONFIG_SCHED_DEBUG 1562 sgc->id = j; 1563 #endif 1564 1565 *per_cpu_ptr(sdd->sgc, j) = sgc; 1566 } 1567 } 1568 1569 return 0; 1570 } 1571 1572 static void __sdt_free(const struct cpumask *cpu_map) 1573 { 1574 struct sched_domain_topology_level *tl; 1575 int j; 1576 1577 for_each_sd_topology(tl) { 1578 struct sd_data *sdd = &tl->data; 1579 1580 for_each_cpu(j, cpu_map) { 1581 struct sched_domain *sd; 1582 1583 if (sdd->sd) { 1584 sd = *per_cpu_ptr(sdd->sd, j); 1585 if (sd && (sd->flags & SD_OVERLAP)) 1586 free_sched_groups(sd->groups, 0); 1587 kfree(*per_cpu_ptr(sdd->sd, j)); 1588 } 1589 1590 if (sdd->sds) 1591 kfree(*per_cpu_ptr(sdd->sds, j)); 1592 if (sdd->sg) 1593 kfree(*per_cpu_ptr(sdd->sg, j)); 1594 if (sdd->sgc) 1595 kfree(*per_cpu_ptr(sdd->sgc, j)); 1596 } 1597 free_percpu(sdd->sd); 1598 sdd->sd = NULL; 1599 free_percpu(sdd->sds); 1600 sdd->sds = NULL; 1601 free_percpu(sdd->sg); 1602 sdd->sg = NULL; 1603 free_percpu(sdd->sgc); 1604 sdd->sgc = NULL; 1605 } 1606 } 1607 1608 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1609 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1610 struct sched_domain *child, int cpu) 1611 { 1612 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 1613 1614 if (child) { 1615 sd->level = child->level + 1; 1616 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1617 child->parent = sd; 1618 1619 if (!cpumask_subset(sched_domain_span(child), 1620 sched_domain_span(sd))) { 1621 pr_err("BUG: arch topology borken\n"); 1622 #ifdef CONFIG_SCHED_DEBUG 1623 pr_err(" the %s domain not a subset of the %s domain\n", 1624 child->name, sd->name); 1625 #endif 1626 /* Fixup, ensure @sd has at least @child CPUs. */ 1627 cpumask_or(sched_domain_span(sd), 1628 sched_domain_span(sd), 1629 sched_domain_span(child)); 1630 } 1631 1632 } 1633 set_domain_attribute(sd, attr); 1634 1635 return sd; 1636 } 1637 1638 /* 1639 * Build sched domains for a given set of CPUs and attach the sched domains 1640 * to the individual CPUs 1641 */ 1642 static int 1643 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1644 { 1645 enum s_alloc alloc_state; 1646 struct sched_domain *sd; 1647 struct s_data d; 1648 struct rq *rq = NULL; 1649 int i, ret = -ENOMEM; 1650 1651 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1652 if (alloc_state != sa_rootdomain) 1653 goto error; 1654 1655 /* Set up domains for CPUs specified by the cpu_map: */ 1656 for_each_cpu(i, cpu_map) { 1657 struct sched_domain_topology_level *tl; 1658 1659 sd = NULL; 1660 for_each_sd_topology(tl) { 1661 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 1662 if (tl == sched_domain_topology) 1663 *per_cpu_ptr(d.sd, i) = sd; 1664 if (tl->flags & SDTL_OVERLAP) 1665 sd->flags |= SD_OVERLAP; 1666 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1667 break; 1668 } 1669 } 1670 1671 /* Build the groups for the domains */ 1672 for_each_cpu(i, cpu_map) { 1673 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1674 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1675 if (sd->flags & SD_OVERLAP) { 1676 if (build_overlap_sched_groups(sd, i)) 1677 goto error; 1678 } else { 1679 if (build_sched_groups(sd, i)) 1680 goto error; 1681 } 1682 } 1683 } 1684 1685 /* Calculate CPU capacity for physical packages and nodes */ 1686 for (i = nr_cpumask_bits-1; i >= 0; i--) { 1687 if (!cpumask_test_cpu(i, cpu_map)) 1688 continue; 1689 1690 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1691 claim_allocations(i, sd); 1692 init_sched_groups_capacity(i, sd); 1693 } 1694 } 1695 1696 /* Attach the domains */ 1697 rcu_read_lock(); 1698 for_each_cpu(i, cpu_map) { 1699 rq = cpu_rq(i); 1700 sd = *per_cpu_ptr(d.sd, i); 1701 1702 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1703 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1704 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1705 1706 cpu_attach_domain(sd, d.rd, i); 1707 } 1708 rcu_read_unlock(); 1709 1710 if (rq && sched_debug_enabled) { 1711 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 1712 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1713 } 1714 1715 ret = 0; 1716 error: 1717 __free_domain_allocs(&d, alloc_state, cpu_map); 1718 1719 return ret; 1720 } 1721 1722 /* Current sched domains: */ 1723 static cpumask_var_t *doms_cur; 1724 1725 /* Number of sched domains in 'doms_cur': */ 1726 static int ndoms_cur; 1727 1728 /* Attribues of custom domains in 'doms_cur' */ 1729 static struct sched_domain_attr *dattr_cur; 1730 1731 /* 1732 * Special case: If a kmalloc() of a doms_cur partition (array of 1733 * cpumask) fails, then fallback to a single sched domain, 1734 * as determined by the single cpumask fallback_doms. 1735 */ 1736 static cpumask_var_t fallback_doms; 1737 1738 /* 1739 * arch_update_cpu_topology lets virtualized architectures update the 1740 * CPU core maps. It is supposed to return 1 if the topology changed 1741 * or 0 if it stayed the same. 1742 */ 1743 int __weak arch_update_cpu_topology(void) 1744 { 1745 return 0; 1746 } 1747 1748 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1749 { 1750 int i; 1751 cpumask_var_t *doms; 1752 1753 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 1754 if (!doms) 1755 return NULL; 1756 for (i = 0; i < ndoms; i++) { 1757 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1758 free_sched_domains(doms, i); 1759 return NULL; 1760 } 1761 } 1762 return doms; 1763 } 1764 1765 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1766 { 1767 unsigned int i; 1768 for (i = 0; i < ndoms; i++) 1769 free_cpumask_var(doms[i]); 1770 kfree(doms); 1771 } 1772 1773 /* 1774 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1775 * For now this just excludes isolated CPUs, but could be used to 1776 * exclude other special cases in the future. 1777 */ 1778 int sched_init_domains(const struct cpumask *cpu_map) 1779 { 1780 int err; 1781 1782 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 1783 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 1784 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 1785 1786 arch_update_cpu_topology(); 1787 ndoms_cur = 1; 1788 doms_cur = alloc_sched_domains(ndoms_cur); 1789 if (!doms_cur) 1790 doms_cur = &fallback_doms; 1791 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 1792 err = build_sched_domains(doms_cur[0], NULL); 1793 register_sched_domain_sysctl(); 1794 1795 return err; 1796 } 1797 1798 /* 1799 * Detach sched domains from a group of CPUs specified in cpu_map 1800 * These CPUs will now be attached to the NULL domain 1801 */ 1802 static void detach_destroy_domains(const struct cpumask *cpu_map) 1803 { 1804 int i; 1805 1806 rcu_read_lock(); 1807 for_each_cpu(i, cpu_map) 1808 cpu_attach_domain(NULL, &def_root_domain, i); 1809 rcu_read_unlock(); 1810 } 1811 1812 /* handle null as "default" */ 1813 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1814 struct sched_domain_attr *new, int idx_new) 1815 { 1816 struct sched_domain_attr tmp; 1817 1818 /* Fast path: */ 1819 if (!new && !cur) 1820 return 1; 1821 1822 tmp = SD_ATTR_INIT; 1823 1824 return !memcmp(cur ? (cur + idx_cur) : &tmp, 1825 new ? (new + idx_new) : &tmp, 1826 sizeof(struct sched_domain_attr)); 1827 } 1828 1829 /* 1830 * Partition sched domains as specified by the 'ndoms_new' 1831 * cpumasks in the array doms_new[] of cpumasks. This compares 1832 * doms_new[] to the current sched domain partitioning, doms_cur[]. 1833 * It destroys each deleted domain and builds each new domain. 1834 * 1835 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1836 * The masks don't intersect (don't overlap.) We should setup one 1837 * sched domain for each mask. CPUs not in any of the cpumasks will 1838 * not be load balanced. If the same cpumask appears both in the 1839 * current 'doms_cur' domains and in the new 'doms_new', we can leave 1840 * it as it is. 1841 * 1842 * The passed in 'doms_new' should be allocated using 1843 * alloc_sched_domains. This routine takes ownership of it and will 1844 * free_sched_domains it when done with it. If the caller failed the 1845 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1846 * and partition_sched_domains() will fallback to the single partition 1847 * 'fallback_doms', it also forces the domains to be rebuilt. 1848 * 1849 * If doms_new == NULL it will be replaced with cpu_online_mask. 1850 * ndoms_new == 0 is a special case for destroying existing domains, 1851 * and it will not create the default domain. 1852 * 1853 * Call with hotplug lock held 1854 */ 1855 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1856 struct sched_domain_attr *dattr_new) 1857 { 1858 int i, j, n; 1859 int new_topology; 1860 1861 mutex_lock(&sched_domains_mutex); 1862 1863 /* Always unregister in case we don't destroy any domains: */ 1864 unregister_sched_domain_sysctl(); 1865 1866 /* Let the architecture update CPU core mappings: */ 1867 new_topology = arch_update_cpu_topology(); 1868 1869 if (!doms_new) { 1870 WARN_ON_ONCE(dattr_new); 1871 n = 0; 1872 doms_new = alloc_sched_domains(1); 1873 if (doms_new) { 1874 n = 1; 1875 cpumask_and(doms_new[0], cpu_active_mask, 1876 housekeeping_cpumask(HK_FLAG_DOMAIN)); 1877 } 1878 } else { 1879 n = ndoms_new; 1880 } 1881 1882 /* Destroy deleted domains: */ 1883 for (i = 0; i < ndoms_cur; i++) { 1884 for (j = 0; j < n && !new_topology; j++) { 1885 if (cpumask_equal(doms_cur[i], doms_new[j]) 1886 && dattrs_equal(dattr_cur, i, dattr_new, j)) 1887 goto match1; 1888 } 1889 /* No match - a current sched domain not in new doms_new[] */ 1890 detach_destroy_domains(doms_cur[i]); 1891 match1: 1892 ; 1893 } 1894 1895 n = ndoms_cur; 1896 if (!doms_new) { 1897 n = 0; 1898 doms_new = &fallback_doms; 1899 cpumask_and(doms_new[0], cpu_active_mask, 1900 housekeeping_cpumask(HK_FLAG_DOMAIN)); 1901 } 1902 1903 /* Build new domains: */ 1904 for (i = 0; i < ndoms_new; i++) { 1905 for (j = 0; j < n && !new_topology; j++) { 1906 if (cpumask_equal(doms_new[i], doms_cur[j]) 1907 && dattrs_equal(dattr_new, i, dattr_cur, j)) 1908 goto match2; 1909 } 1910 /* No match - add a new doms_new */ 1911 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1912 match2: 1913 ; 1914 } 1915 1916 /* Remember the new sched domains: */ 1917 if (doms_cur != &fallback_doms) 1918 free_sched_domains(doms_cur, ndoms_cur); 1919 1920 kfree(dattr_cur); 1921 doms_cur = doms_new; 1922 dattr_cur = dattr_new; 1923 ndoms_cur = ndoms_new; 1924 1925 register_sched_domain_sysctl(); 1926 1927 mutex_unlock(&sched_domains_mutex); 1928 } 1929