xref: /openbmc/linux/kernel/sched/topology.c (revision 9b12f050)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <linux/bsearch.h>
7 
8 DEFINE_MUTEX(sched_domains_mutex);
9 
10 /* Protected by sched_domains_mutex: */
11 static cpumask_var_t sched_domains_tmpmask;
12 static cpumask_var_t sched_domains_tmpmask2;
13 
14 #ifdef CONFIG_SCHED_DEBUG
15 
16 static int __init sched_debug_setup(char *str)
17 {
18 	sched_debug_verbose = true;
19 
20 	return 0;
21 }
22 early_param("sched_verbose", sched_debug_setup);
23 
24 static inline bool sched_debug(void)
25 {
26 	return sched_debug_verbose;
27 }
28 
29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
30 const struct sd_flag_debug sd_flag_debug[] = {
31 #include <linux/sched/sd_flags.h>
32 };
33 #undef SD_FLAG
34 
35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
36 				  struct cpumask *groupmask)
37 {
38 	struct sched_group *group = sd->groups;
39 	unsigned long flags = sd->flags;
40 	unsigned int idx;
41 
42 	cpumask_clear(groupmask);
43 
44 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
45 	printk(KERN_CONT "span=%*pbl level=%s\n",
46 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
47 
48 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
49 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50 	}
51 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
52 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
53 	}
54 
55 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
56 		unsigned int flag = BIT(idx);
57 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
58 
59 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
60 		    !(sd->child->flags & flag))
61 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
62 			       sd_flag_debug[idx].name);
63 
64 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
65 		    !(sd->parent->flags & flag))
66 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
67 			       sd_flag_debug[idx].name);
68 	}
69 
70 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
71 	do {
72 		if (!group) {
73 			printk("\n");
74 			printk(KERN_ERR "ERROR: group is NULL\n");
75 			break;
76 		}
77 
78 		if (cpumask_empty(sched_group_span(group))) {
79 			printk(KERN_CONT "\n");
80 			printk(KERN_ERR "ERROR: empty group\n");
81 			break;
82 		}
83 
84 		if (!(sd->flags & SD_OVERLAP) &&
85 		    cpumask_intersects(groupmask, sched_group_span(group))) {
86 			printk(KERN_CONT "\n");
87 			printk(KERN_ERR "ERROR: repeated CPUs\n");
88 			break;
89 		}
90 
91 		cpumask_or(groupmask, groupmask, sched_group_span(group));
92 
93 		printk(KERN_CONT " %d:{ span=%*pbl",
94 				group->sgc->id,
95 				cpumask_pr_args(sched_group_span(group)));
96 
97 		if ((sd->flags & SD_OVERLAP) &&
98 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
99 			printk(KERN_CONT " mask=%*pbl",
100 				cpumask_pr_args(group_balance_mask(group)));
101 		}
102 
103 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
104 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
105 
106 		if (group == sd->groups && sd->child &&
107 		    !cpumask_equal(sched_domain_span(sd->child),
108 				   sched_group_span(group))) {
109 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
110 		}
111 
112 		printk(KERN_CONT " }");
113 
114 		group = group->next;
115 
116 		if (group != sd->groups)
117 			printk(KERN_CONT ",");
118 
119 	} while (group != sd->groups);
120 	printk(KERN_CONT "\n");
121 
122 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
123 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
124 
125 	if (sd->parent &&
126 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
127 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
128 	return 0;
129 }
130 
131 static void sched_domain_debug(struct sched_domain *sd, int cpu)
132 {
133 	int level = 0;
134 
135 	if (!sched_debug_verbose)
136 		return;
137 
138 	if (!sd) {
139 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
140 		return;
141 	}
142 
143 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144 
145 	for (;;) {
146 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
147 			break;
148 		level++;
149 		sd = sd->parent;
150 		if (!sd)
151 			break;
152 	}
153 }
154 #else /* !CONFIG_SCHED_DEBUG */
155 
156 # define sched_debug_verbose 0
157 # define sched_domain_debug(sd, cpu) do { } while (0)
158 static inline bool sched_debug(void)
159 {
160 	return false;
161 }
162 #endif /* CONFIG_SCHED_DEBUG */
163 
164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
166 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
167 #include <linux/sched/sd_flags.h>
168 0;
169 #undef SD_FLAG
170 
171 static int sd_degenerate(struct sched_domain *sd)
172 {
173 	if (cpumask_weight(sched_domain_span(sd)) == 1)
174 		return 1;
175 
176 	/* Following flags need at least 2 groups */
177 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
178 	    (sd->groups != sd->groups->next))
179 		return 0;
180 
181 	/* Following flags don't use groups */
182 	if (sd->flags & (SD_WAKE_AFFINE))
183 		return 0;
184 
185 	return 1;
186 }
187 
188 static int
189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
190 {
191 	unsigned long cflags = sd->flags, pflags = parent->flags;
192 
193 	if (sd_degenerate(parent))
194 		return 1;
195 
196 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
197 		return 0;
198 
199 	/* Flags needing groups don't count if only 1 group in parent */
200 	if (parent->groups == parent->groups->next)
201 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
202 
203 	if (~cflags & pflags)
204 		return 0;
205 
206 	return 1;
207 }
208 
209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
210 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
211 static unsigned int sysctl_sched_energy_aware = 1;
212 DEFINE_MUTEX(sched_energy_mutex);
213 bool sched_energy_update;
214 
215 void rebuild_sched_domains_energy(void)
216 {
217 	mutex_lock(&sched_energy_mutex);
218 	sched_energy_update = true;
219 	rebuild_sched_domains();
220 	sched_energy_update = false;
221 	mutex_unlock(&sched_energy_mutex);
222 }
223 
224 #ifdef CONFIG_PROC_SYSCTL
225 static int sched_energy_aware_handler(struct ctl_table *table, int write,
226 		void *buffer, size_t *lenp, loff_t *ppos)
227 {
228 	int ret, state;
229 
230 	if (write && !capable(CAP_SYS_ADMIN))
231 		return -EPERM;
232 
233 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
234 	if (!ret && write) {
235 		state = static_branch_unlikely(&sched_energy_present);
236 		if (state != sysctl_sched_energy_aware)
237 			rebuild_sched_domains_energy();
238 	}
239 
240 	return ret;
241 }
242 
243 static struct ctl_table sched_energy_aware_sysctls[] = {
244 	{
245 		.procname       = "sched_energy_aware",
246 		.data           = &sysctl_sched_energy_aware,
247 		.maxlen         = sizeof(unsigned int),
248 		.mode           = 0644,
249 		.proc_handler   = sched_energy_aware_handler,
250 		.extra1         = SYSCTL_ZERO,
251 		.extra2         = SYSCTL_ONE,
252 	},
253 	{}
254 };
255 
256 static int __init sched_energy_aware_sysctl_init(void)
257 {
258 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
259 	return 0;
260 }
261 
262 late_initcall(sched_energy_aware_sysctl_init);
263 #endif
264 
265 static void free_pd(struct perf_domain *pd)
266 {
267 	struct perf_domain *tmp;
268 
269 	while (pd) {
270 		tmp = pd->next;
271 		kfree(pd);
272 		pd = tmp;
273 	}
274 }
275 
276 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
277 {
278 	while (pd) {
279 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
280 			return pd;
281 		pd = pd->next;
282 	}
283 
284 	return NULL;
285 }
286 
287 static struct perf_domain *pd_init(int cpu)
288 {
289 	struct em_perf_domain *obj = em_cpu_get(cpu);
290 	struct perf_domain *pd;
291 
292 	if (!obj) {
293 		if (sched_debug())
294 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
295 		return NULL;
296 	}
297 
298 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
299 	if (!pd)
300 		return NULL;
301 	pd->em_pd = obj;
302 
303 	return pd;
304 }
305 
306 static void perf_domain_debug(const struct cpumask *cpu_map,
307 						struct perf_domain *pd)
308 {
309 	if (!sched_debug() || !pd)
310 		return;
311 
312 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
313 
314 	while (pd) {
315 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
316 				cpumask_first(perf_domain_span(pd)),
317 				cpumask_pr_args(perf_domain_span(pd)),
318 				em_pd_nr_perf_states(pd->em_pd));
319 		pd = pd->next;
320 	}
321 
322 	printk(KERN_CONT "\n");
323 }
324 
325 static void destroy_perf_domain_rcu(struct rcu_head *rp)
326 {
327 	struct perf_domain *pd;
328 
329 	pd = container_of(rp, struct perf_domain, rcu);
330 	free_pd(pd);
331 }
332 
333 static void sched_energy_set(bool has_eas)
334 {
335 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
336 		if (sched_debug())
337 			pr_info("%s: stopping EAS\n", __func__);
338 		static_branch_disable_cpuslocked(&sched_energy_present);
339 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
340 		if (sched_debug())
341 			pr_info("%s: starting EAS\n", __func__);
342 		static_branch_enable_cpuslocked(&sched_energy_present);
343 	}
344 }
345 
346 /*
347  * EAS can be used on a root domain if it meets all the following conditions:
348  *    1. an Energy Model (EM) is available;
349  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
350  *    3. no SMT is detected.
351  *    4. the EM complexity is low enough to keep scheduling overheads low;
352  *    5. schedutil is driving the frequency of all CPUs of the rd;
353  *    6. frequency invariance support is present;
354  *
355  * The complexity of the Energy Model is defined as:
356  *
357  *              C = nr_pd * (nr_cpus + nr_ps)
358  *
359  * with parameters defined as:
360  *  - nr_pd:    the number of performance domains
361  *  - nr_cpus:  the number of CPUs
362  *  - nr_ps:    the sum of the number of performance states of all performance
363  *              domains (for example, on a system with 2 performance domains,
364  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
365  *
366  * It is generally not a good idea to use such a model in the wake-up path on
367  * very complex platforms because of the associated scheduling overheads. The
368  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
369  * with per-CPU DVFS and less than 8 performance states each, for example.
370  */
371 #define EM_MAX_COMPLEXITY 2048
372 
373 extern struct cpufreq_governor schedutil_gov;
374 static bool build_perf_domains(const struct cpumask *cpu_map)
375 {
376 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
377 	struct perf_domain *pd = NULL, *tmp;
378 	int cpu = cpumask_first(cpu_map);
379 	struct root_domain *rd = cpu_rq(cpu)->rd;
380 	struct cpufreq_policy *policy;
381 	struct cpufreq_governor *gov;
382 
383 	if (!sysctl_sched_energy_aware)
384 		goto free;
385 
386 	/* EAS is enabled for asymmetric CPU capacity topologies. */
387 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
388 		if (sched_debug()) {
389 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
390 					cpumask_pr_args(cpu_map));
391 		}
392 		goto free;
393 	}
394 
395 	/* EAS definitely does *not* handle SMT */
396 	if (sched_smt_active()) {
397 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
398 			cpumask_pr_args(cpu_map));
399 		goto free;
400 	}
401 
402 	if (!arch_scale_freq_invariant()) {
403 		if (sched_debug()) {
404 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
405 				cpumask_pr_args(cpu_map));
406 		}
407 		goto free;
408 	}
409 
410 	for_each_cpu(i, cpu_map) {
411 		/* Skip already covered CPUs. */
412 		if (find_pd(pd, i))
413 			continue;
414 
415 		/* Do not attempt EAS if schedutil is not being used. */
416 		policy = cpufreq_cpu_get(i);
417 		if (!policy)
418 			goto free;
419 		gov = policy->governor;
420 		cpufreq_cpu_put(policy);
421 		if (gov != &schedutil_gov) {
422 			if (rd->pd)
423 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
424 						cpumask_pr_args(cpu_map));
425 			goto free;
426 		}
427 
428 		/* Create the new pd and add it to the local list. */
429 		tmp = pd_init(i);
430 		if (!tmp)
431 			goto free;
432 		tmp->next = pd;
433 		pd = tmp;
434 
435 		/*
436 		 * Count performance domains and performance states for the
437 		 * complexity check.
438 		 */
439 		nr_pd++;
440 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
441 	}
442 
443 	/* Bail out if the Energy Model complexity is too high. */
444 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
445 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
446 						cpumask_pr_args(cpu_map));
447 		goto free;
448 	}
449 
450 	perf_domain_debug(cpu_map, pd);
451 
452 	/* Attach the new list of performance domains to the root domain. */
453 	tmp = rd->pd;
454 	rcu_assign_pointer(rd->pd, pd);
455 	if (tmp)
456 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
457 
458 	return !!pd;
459 
460 free:
461 	free_pd(pd);
462 	tmp = rd->pd;
463 	rcu_assign_pointer(rd->pd, NULL);
464 	if (tmp)
465 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
466 
467 	return false;
468 }
469 #else
470 static void free_pd(struct perf_domain *pd) { }
471 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
472 
473 static void free_rootdomain(struct rcu_head *rcu)
474 {
475 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
476 
477 	cpupri_cleanup(&rd->cpupri);
478 	cpudl_cleanup(&rd->cpudl);
479 	free_cpumask_var(rd->dlo_mask);
480 	free_cpumask_var(rd->rto_mask);
481 	free_cpumask_var(rd->online);
482 	free_cpumask_var(rd->span);
483 	free_pd(rd->pd);
484 	kfree(rd);
485 }
486 
487 void rq_attach_root(struct rq *rq, struct root_domain *rd)
488 {
489 	struct root_domain *old_rd = NULL;
490 	unsigned long flags;
491 
492 	raw_spin_rq_lock_irqsave(rq, flags);
493 
494 	if (rq->rd) {
495 		old_rd = rq->rd;
496 
497 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
498 			set_rq_offline(rq);
499 
500 		cpumask_clear_cpu(rq->cpu, old_rd->span);
501 
502 		/*
503 		 * If we dont want to free the old_rd yet then
504 		 * set old_rd to NULL to skip the freeing later
505 		 * in this function:
506 		 */
507 		if (!atomic_dec_and_test(&old_rd->refcount))
508 			old_rd = NULL;
509 	}
510 
511 	atomic_inc(&rd->refcount);
512 	rq->rd = rd;
513 
514 	cpumask_set_cpu(rq->cpu, rd->span);
515 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
516 		set_rq_online(rq);
517 
518 	raw_spin_rq_unlock_irqrestore(rq, flags);
519 
520 	if (old_rd)
521 		call_rcu(&old_rd->rcu, free_rootdomain);
522 }
523 
524 void sched_get_rd(struct root_domain *rd)
525 {
526 	atomic_inc(&rd->refcount);
527 }
528 
529 void sched_put_rd(struct root_domain *rd)
530 {
531 	if (!atomic_dec_and_test(&rd->refcount))
532 		return;
533 
534 	call_rcu(&rd->rcu, free_rootdomain);
535 }
536 
537 static int init_rootdomain(struct root_domain *rd)
538 {
539 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
540 		goto out;
541 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
542 		goto free_span;
543 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
544 		goto free_online;
545 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
546 		goto free_dlo_mask;
547 
548 #ifdef HAVE_RT_PUSH_IPI
549 	rd->rto_cpu = -1;
550 	raw_spin_lock_init(&rd->rto_lock);
551 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
552 #endif
553 
554 	rd->visit_gen = 0;
555 	init_dl_bw(&rd->dl_bw);
556 	if (cpudl_init(&rd->cpudl) != 0)
557 		goto free_rto_mask;
558 
559 	if (cpupri_init(&rd->cpupri) != 0)
560 		goto free_cpudl;
561 	return 0;
562 
563 free_cpudl:
564 	cpudl_cleanup(&rd->cpudl);
565 free_rto_mask:
566 	free_cpumask_var(rd->rto_mask);
567 free_dlo_mask:
568 	free_cpumask_var(rd->dlo_mask);
569 free_online:
570 	free_cpumask_var(rd->online);
571 free_span:
572 	free_cpumask_var(rd->span);
573 out:
574 	return -ENOMEM;
575 }
576 
577 /*
578  * By default the system creates a single root-domain with all CPUs as
579  * members (mimicking the global state we have today).
580  */
581 struct root_domain def_root_domain;
582 
583 void __init init_defrootdomain(void)
584 {
585 	init_rootdomain(&def_root_domain);
586 
587 	atomic_set(&def_root_domain.refcount, 1);
588 }
589 
590 static struct root_domain *alloc_rootdomain(void)
591 {
592 	struct root_domain *rd;
593 
594 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
595 	if (!rd)
596 		return NULL;
597 
598 	if (init_rootdomain(rd) != 0) {
599 		kfree(rd);
600 		return NULL;
601 	}
602 
603 	return rd;
604 }
605 
606 static void free_sched_groups(struct sched_group *sg, int free_sgc)
607 {
608 	struct sched_group *tmp, *first;
609 
610 	if (!sg)
611 		return;
612 
613 	first = sg;
614 	do {
615 		tmp = sg->next;
616 
617 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
618 			kfree(sg->sgc);
619 
620 		if (atomic_dec_and_test(&sg->ref))
621 			kfree(sg);
622 		sg = tmp;
623 	} while (sg != first);
624 }
625 
626 static void destroy_sched_domain(struct sched_domain *sd)
627 {
628 	/*
629 	 * A normal sched domain may have multiple group references, an
630 	 * overlapping domain, having private groups, only one.  Iterate,
631 	 * dropping group/capacity references, freeing where none remain.
632 	 */
633 	free_sched_groups(sd->groups, 1);
634 
635 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
636 		kfree(sd->shared);
637 	kfree(sd);
638 }
639 
640 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
641 {
642 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
643 
644 	while (sd) {
645 		struct sched_domain *parent = sd->parent;
646 		destroy_sched_domain(sd);
647 		sd = parent;
648 	}
649 }
650 
651 static void destroy_sched_domains(struct sched_domain *sd)
652 {
653 	if (sd)
654 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
655 }
656 
657 /*
658  * Keep a special pointer to the highest sched_domain that has
659  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
660  * allows us to avoid some pointer chasing select_idle_sibling().
661  *
662  * Also keep a unique ID per domain (we use the first CPU number in
663  * the cpumask of the domain), this allows us to quickly tell if
664  * two CPUs are in the same cache domain, see cpus_share_cache().
665  */
666 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
667 DEFINE_PER_CPU(int, sd_llc_size);
668 DEFINE_PER_CPU(int, sd_llc_id);
669 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
670 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
671 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
672 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
673 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
674 
675 static void update_top_cache_domain(int cpu)
676 {
677 	struct sched_domain_shared *sds = NULL;
678 	struct sched_domain *sd;
679 	int id = cpu;
680 	int size = 1;
681 
682 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
683 	if (sd) {
684 		id = cpumask_first(sched_domain_span(sd));
685 		size = cpumask_weight(sched_domain_span(sd));
686 		sds = sd->shared;
687 	}
688 
689 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
690 	per_cpu(sd_llc_size, cpu) = size;
691 	per_cpu(sd_llc_id, cpu) = id;
692 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
693 
694 	sd = lowest_flag_domain(cpu, SD_NUMA);
695 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
696 
697 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
698 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
699 
700 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
701 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
702 }
703 
704 /*
705  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
706  * hold the hotplug lock.
707  */
708 static void
709 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
710 {
711 	struct rq *rq = cpu_rq(cpu);
712 	struct sched_domain *tmp;
713 
714 	/* Remove the sched domains which do not contribute to scheduling. */
715 	for (tmp = sd; tmp; ) {
716 		struct sched_domain *parent = tmp->parent;
717 		if (!parent)
718 			break;
719 
720 		if (sd_parent_degenerate(tmp, parent)) {
721 			tmp->parent = parent->parent;
722 			if (parent->parent)
723 				parent->parent->child = tmp;
724 			/*
725 			 * Transfer SD_PREFER_SIBLING down in case of a
726 			 * degenerate parent; the spans match for this
727 			 * so the property transfers.
728 			 */
729 			if (parent->flags & SD_PREFER_SIBLING)
730 				tmp->flags |= SD_PREFER_SIBLING;
731 			destroy_sched_domain(parent);
732 		} else
733 			tmp = tmp->parent;
734 	}
735 
736 	if (sd && sd_degenerate(sd)) {
737 		tmp = sd;
738 		sd = sd->parent;
739 		destroy_sched_domain(tmp);
740 		if (sd) {
741 			struct sched_group *sg = sd->groups;
742 
743 			/*
744 			 * sched groups hold the flags of the child sched
745 			 * domain for convenience. Clear such flags since
746 			 * the child is being destroyed.
747 			 */
748 			do {
749 				sg->flags = 0;
750 			} while (sg != sd->groups);
751 
752 			sd->child = NULL;
753 		}
754 	}
755 
756 	sched_domain_debug(sd, cpu);
757 
758 	rq_attach_root(rq, rd);
759 	tmp = rq->sd;
760 	rcu_assign_pointer(rq->sd, sd);
761 	dirty_sched_domain_sysctl(cpu);
762 	destroy_sched_domains(tmp);
763 
764 	update_top_cache_domain(cpu);
765 }
766 
767 struct s_data {
768 	struct sched_domain * __percpu *sd;
769 	struct root_domain	*rd;
770 };
771 
772 enum s_alloc {
773 	sa_rootdomain,
774 	sa_sd,
775 	sa_sd_storage,
776 	sa_none,
777 };
778 
779 /*
780  * Return the canonical balance CPU for this group, this is the first CPU
781  * of this group that's also in the balance mask.
782  *
783  * The balance mask are all those CPUs that could actually end up at this
784  * group. See build_balance_mask().
785  *
786  * Also see should_we_balance().
787  */
788 int group_balance_cpu(struct sched_group *sg)
789 {
790 	return cpumask_first(group_balance_mask(sg));
791 }
792 
793 
794 /*
795  * NUMA topology (first read the regular topology blurb below)
796  *
797  * Given a node-distance table, for example:
798  *
799  *   node   0   1   2   3
800  *     0:  10  20  30  20
801  *     1:  20  10  20  30
802  *     2:  30  20  10  20
803  *     3:  20  30  20  10
804  *
805  * which represents a 4 node ring topology like:
806  *
807  *   0 ----- 1
808  *   |       |
809  *   |       |
810  *   |       |
811  *   3 ----- 2
812  *
813  * We want to construct domains and groups to represent this. The way we go
814  * about doing this is to build the domains on 'hops'. For each NUMA level we
815  * construct the mask of all nodes reachable in @level hops.
816  *
817  * For the above NUMA topology that gives 3 levels:
818  *
819  * NUMA-2	0-3		0-3		0-3		0-3
820  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
821  *
822  * NUMA-1	0-1,3		0-2		1-3		0,2-3
823  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
824  *
825  * NUMA-0	0		1		2		3
826  *
827  *
828  * As can be seen; things don't nicely line up as with the regular topology.
829  * When we iterate a domain in child domain chunks some nodes can be
830  * represented multiple times -- hence the "overlap" naming for this part of
831  * the topology.
832  *
833  * In order to minimize this overlap, we only build enough groups to cover the
834  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
835  *
836  * Because:
837  *
838  *  - the first group of each domain is its child domain; this
839  *    gets us the first 0-1,3
840  *  - the only uncovered node is 2, who's child domain is 1-3.
841  *
842  * However, because of the overlap, computing a unique CPU for each group is
843  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
844  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
845  * end up at those groups (they would end up in group: 0-1,3).
846  *
847  * To correct this we have to introduce the group balance mask. This mask
848  * will contain those CPUs in the group that can reach this group given the
849  * (child) domain tree.
850  *
851  * With this we can once again compute balance_cpu and sched_group_capacity
852  * relations.
853  *
854  * XXX include words on how balance_cpu is unique and therefore can be
855  * used for sched_group_capacity links.
856  *
857  *
858  * Another 'interesting' topology is:
859  *
860  *   node   0   1   2   3
861  *     0:  10  20  20  30
862  *     1:  20  10  20  20
863  *     2:  20  20  10  20
864  *     3:  30  20  20  10
865  *
866  * Which looks a little like:
867  *
868  *   0 ----- 1
869  *   |     / |
870  *   |   /   |
871  *   | /     |
872  *   2 ----- 3
873  *
874  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
875  * are not.
876  *
877  * This leads to a few particularly weird cases where the sched_domain's are
878  * not of the same number for each CPU. Consider:
879  *
880  * NUMA-2	0-3						0-3
881  *  groups:	{0-2},{1-3}					{1-3},{0-2}
882  *
883  * NUMA-1	0-2		0-3		0-3		1-3
884  *
885  * NUMA-0	0		1		2		3
886  *
887  */
888 
889 
890 /*
891  * Build the balance mask; it contains only those CPUs that can arrive at this
892  * group and should be considered to continue balancing.
893  *
894  * We do this during the group creation pass, therefore the group information
895  * isn't complete yet, however since each group represents a (child) domain we
896  * can fully construct this using the sched_domain bits (which are already
897  * complete).
898  */
899 static void
900 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
901 {
902 	const struct cpumask *sg_span = sched_group_span(sg);
903 	struct sd_data *sdd = sd->private;
904 	struct sched_domain *sibling;
905 	int i;
906 
907 	cpumask_clear(mask);
908 
909 	for_each_cpu(i, sg_span) {
910 		sibling = *per_cpu_ptr(sdd->sd, i);
911 
912 		/*
913 		 * Can happen in the asymmetric case, where these siblings are
914 		 * unused. The mask will not be empty because those CPUs that
915 		 * do have the top domain _should_ span the domain.
916 		 */
917 		if (!sibling->child)
918 			continue;
919 
920 		/* If we would not end up here, we can't continue from here */
921 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
922 			continue;
923 
924 		cpumask_set_cpu(i, mask);
925 	}
926 
927 	/* We must not have empty masks here */
928 	WARN_ON_ONCE(cpumask_empty(mask));
929 }
930 
931 /*
932  * XXX: This creates per-node group entries; since the load-balancer will
933  * immediately access remote memory to construct this group's load-balance
934  * statistics having the groups node local is of dubious benefit.
935  */
936 static struct sched_group *
937 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
938 {
939 	struct sched_group *sg;
940 	struct cpumask *sg_span;
941 
942 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
943 			GFP_KERNEL, cpu_to_node(cpu));
944 
945 	if (!sg)
946 		return NULL;
947 
948 	sg_span = sched_group_span(sg);
949 	if (sd->child) {
950 		cpumask_copy(sg_span, sched_domain_span(sd->child));
951 		sg->flags = sd->child->flags;
952 	} else {
953 		cpumask_copy(sg_span, sched_domain_span(sd));
954 	}
955 
956 	atomic_inc(&sg->ref);
957 	return sg;
958 }
959 
960 static void init_overlap_sched_group(struct sched_domain *sd,
961 				     struct sched_group *sg)
962 {
963 	struct cpumask *mask = sched_domains_tmpmask2;
964 	struct sd_data *sdd = sd->private;
965 	struct cpumask *sg_span;
966 	int cpu;
967 
968 	build_balance_mask(sd, sg, mask);
969 	cpu = cpumask_first(mask);
970 
971 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
972 	if (atomic_inc_return(&sg->sgc->ref) == 1)
973 		cpumask_copy(group_balance_mask(sg), mask);
974 	else
975 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
976 
977 	/*
978 	 * Initialize sgc->capacity such that even if we mess up the
979 	 * domains and no possible iteration will get us here, we won't
980 	 * die on a /0 trap.
981 	 */
982 	sg_span = sched_group_span(sg);
983 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
984 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
985 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
986 }
987 
988 static struct sched_domain *
989 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
990 {
991 	/*
992 	 * The proper descendant would be the one whose child won't span out
993 	 * of sd
994 	 */
995 	while (sibling->child &&
996 	       !cpumask_subset(sched_domain_span(sibling->child),
997 			       sched_domain_span(sd)))
998 		sibling = sibling->child;
999 
1000 	/*
1001 	 * As we are referencing sgc across different topology level, we need
1002 	 * to go down to skip those sched_domains which don't contribute to
1003 	 * scheduling because they will be degenerated in cpu_attach_domain
1004 	 */
1005 	while (sibling->child &&
1006 	       cpumask_equal(sched_domain_span(sibling->child),
1007 			     sched_domain_span(sibling)))
1008 		sibling = sibling->child;
1009 
1010 	return sibling;
1011 }
1012 
1013 static int
1014 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1015 {
1016 	struct sched_group *first = NULL, *last = NULL, *sg;
1017 	const struct cpumask *span = sched_domain_span(sd);
1018 	struct cpumask *covered = sched_domains_tmpmask;
1019 	struct sd_data *sdd = sd->private;
1020 	struct sched_domain *sibling;
1021 	int i;
1022 
1023 	cpumask_clear(covered);
1024 
1025 	for_each_cpu_wrap(i, span, cpu) {
1026 		struct cpumask *sg_span;
1027 
1028 		if (cpumask_test_cpu(i, covered))
1029 			continue;
1030 
1031 		sibling = *per_cpu_ptr(sdd->sd, i);
1032 
1033 		/*
1034 		 * Asymmetric node setups can result in situations where the
1035 		 * domain tree is of unequal depth, make sure to skip domains
1036 		 * that already cover the entire range.
1037 		 *
1038 		 * In that case build_sched_domains() will have terminated the
1039 		 * iteration early and our sibling sd spans will be empty.
1040 		 * Domains should always include the CPU they're built on, so
1041 		 * check that.
1042 		 */
1043 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1044 			continue;
1045 
1046 		/*
1047 		 * Usually we build sched_group by sibling's child sched_domain
1048 		 * But for machines whose NUMA diameter are 3 or above, we move
1049 		 * to build sched_group by sibling's proper descendant's child
1050 		 * domain because sibling's child sched_domain will span out of
1051 		 * the sched_domain being built as below.
1052 		 *
1053 		 * Smallest diameter=3 topology is:
1054 		 *
1055 		 *   node   0   1   2   3
1056 		 *     0:  10  20  30  40
1057 		 *     1:  20  10  20  30
1058 		 *     2:  30  20  10  20
1059 		 *     3:  40  30  20  10
1060 		 *
1061 		 *   0 --- 1 --- 2 --- 3
1062 		 *
1063 		 * NUMA-3       0-3             N/A             N/A             0-3
1064 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1065 		 *
1066 		 * NUMA-2       0-2             0-3             0-3             1-3
1067 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1068 		 *
1069 		 * NUMA-1       0-1             0-2             1-3             2-3
1070 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1071 		 *
1072 		 * NUMA-0       0               1               2               3
1073 		 *
1074 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1075 		 * group span isn't a subset of the domain span.
1076 		 */
1077 		if (sibling->child &&
1078 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1079 			sibling = find_descended_sibling(sd, sibling);
1080 
1081 		sg = build_group_from_child_sched_domain(sibling, cpu);
1082 		if (!sg)
1083 			goto fail;
1084 
1085 		sg_span = sched_group_span(sg);
1086 		cpumask_or(covered, covered, sg_span);
1087 
1088 		init_overlap_sched_group(sibling, sg);
1089 
1090 		if (!first)
1091 			first = sg;
1092 		if (last)
1093 			last->next = sg;
1094 		last = sg;
1095 		last->next = first;
1096 	}
1097 	sd->groups = first;
1098 
1099 	return 0;
1100 
1101 fail:
1102 	free_sched_groups(first, 0);
1103 
1104 	return -ENOMEM;
1105 }
1106 
1107 
1108 /*
1109  * Package topology (also see the load-balance blurb in fair.c)
1110  *
1111  * The scheduler builds a tree structure to represent a number of important
1112  * topology features. By default (default_topology[]) these include:
1113  *
1114  *  - Simultaneous multithreading (SMT)
1115  *  - Multi-Core Cache (MC)
1116  *  - Package (DIE)
1117  *
1118  * Where the last one more or less denotes everything up to a NUMA node.
1119  *
1120  * The tree consists of 3 primary data structures:
1121  *
1122  *	sched_domain -> sched_group -> sched_group_capacity
1123  *	    ^ ^             ^ ^
1124  *          `-'             `-'
1125  *
1126  * The sched_domains are per-CPU and have a two way link (parent & child) and
1127  * denote the ever growing mask of CPUs belonging to that level of topology.
1128  *
1129  * Each sched_domain has a circular (double) linked list of sched_group's, each
1130  * denoting the domains of the level below (or individual CPUs in case of the
1131  * first domain level). The sched_group linked by a sched_domain includes the
1132  * CPU of that sched_domain [*].
1133  *
1134  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1135  *
1136  * CPU   0   1   2   3   4   5   6   7
1137  *
1138  * DIE  [                             ]
1139  * MC   [             ] [             ]
1140  * SMT  [     ] [     ] [     ] [     ]
1141  *
1142  *  - or -
1143  *
1144  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1145  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1146  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1147  *
1148  * CPU   0   1   2   3   4   5   6   7
1149  *
1150  * One way to think about it is: sched_domain moves you up and down among these
1151  * topology levels, while sched_group moves you sideways through it, at child
1152  * domain granularity.
1153  *
1154  * sched_group_capacity ensures each unique sched_group has shared storage.
1155  *
1156  * There are two related construction problems, both require a CPU that
1157  * uniquely identify each group (for a given domain):
1158  *
1159  *  - The first is the balance_cpu (see should_we_balance() and the
1160  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1161  *    continue balancing at a higher domain.
1162  *
1163  *  - The second is the sched_group_capacity; we want all identical groups
1164  *    to share a single sched_group_capacity.
1165  *
1166  * Since these topologies are exclusive by construction. That is, its
1167  * impossible for an SMT thread to belong to multiple cores, and cores to
1168  * be part of multiple caches. There is a very clear and unique location
1169  * for each CPU in the hierarchy.
1170  *
1171  * Therefore computing a unique CPU for each group is trivial (the iteration
1172  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1173  * group), we can simply pick the first CPU in each group.
1174  *
1175  *
1176  * [*] in other words, the first group of each domain is its child domain.
1177  */
1178 
1179 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1180 {
1181 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1182 	struct sched_domain *child = sd->child;
1183 	struct sched_group *sg;
1184 	bool already_visited;
1185 
1186 	if (child)
1187 		cpu = cpumask_first(sched_domain_span(child));
1188 
1189 	sg = *per_cpu_ptr(sdd->sg, cpu);
1190 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1191 
1192 	/* Increase refcounts for claim_allocations: */
1193 	already_visited = atomic_inc_return(&sg->ref) > 1;
1194 	/* sgc visits should follow a similar trend as sg */
1195 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1196 
1197 	/* If we have already visited that group, it's already initialized. */
1198 	if (already_visited)
1199 		return sg;
1200 
1201 	if (child) {
1202 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1203 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1204 		sg->flags = child->flags;
1205 	} else {
1206 		cpumask_set_cpu(cpu, sched_group_span(sg));
1207 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1208 	}
1209 
1210 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1211 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1212 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1213 
1214 	return sg;
1215 }
1216 
1217 /*
1218  * build_sched_groups will build a circular linked list of the groups
1219  * covered by the given span, will set each group's ->cpumask correctly,
1220  * and will initialize their ->sgc.
1221  *
1222  * Assumes the sched_domain tree is fully constructed
1223  */
1224 static int
1225 build_sched_groups(struct sched_domain *sd, int cpu)
1226 {
1227 	struct sched_group *first = NULL, *last = NULL;
1228 	struct sd_data *sdd = sd->private;
1229 	const struct cpumask *span = sched_domain_span(sd);
1230 	struct cpumask *covered;
1231 	int i;
1232 
1233 	lockdep_assert_held(&sched_domains_mutex);
1234 	covered = sched_domains_tmpmask;
1235 
1236 	cpumask_clear(covered);
1237 
1238 	for_each_cpu_wrap(i, span, cpu) {
1239 		struct sched_group *sg;
1240 
1241 		if (cpumask_test_cpu(i, covered))
1242 			continue;
1243 
1244 		sg = get_group(i, sdd);
1245 
1246 		cpumask_or(covered, covered, sched_group_span(sg));
1247 
1248 		if (!first)
1249 			first = sg;
1250 		if (last)
1251 			last->next = sg;
1252 		last = sg;
1253 	}
1254 	last->next = first;
1255 	sd->groups = first;
1256 
1257 	return 0;
1258 }
1259 
1260 /*
1261  * Initialize sched groups cpu_capacity.
1262  *
1263  * cpu_capacity indicates the capacity of sched group, which is used while
1264  * distributing the load between different sched groups in a sched domain.
1265  * Typically cpu_capacity for all the groups in a sched domain will be same
1266  * unless there are asymmetries in the topology. If there are asymmetries,
1267  * group having more cpu_capacity will pickup more load compared to the
1268  * group having less cpu_capacity.
1269  */
1270 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1271 {
1272 	struct sched_group *sg = sd->groups;
1273 
1274 	WARN_ON(!sg);
1275 
1276 	do {
1277 		int cpu, max_cpu = -1;
1278 
1279 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1280 
1281 		if (!(sd->flags & SD_ASYM_PACKING))
1282 			goto next;
1283 
1284 		for_each_cpu(cpu, sched_group_span(sg)) {
1285 			if (max_cpu < 0)
1286 				max_cpu = cpu;
1287 			else if (sched_asym_prefer(cpu, max_cpu))
1288 				max_cpu = cpu;
1289 		}
1290 		sg->asym_prefer_cpu = max_cpu;
1291 
1292 next:
1293 		sg = sg->next;
1294 	} while (sg != sd->groups);
1295 
1296 	if (cpu != group_balance_cpu(sg))
1297 		return;
1298 
1299 	update_group_capacity(sd, cpu);
1300 }
1301 
1302 /*
1303  * Asymmetric CPU capacity bits
1304  */
1305 struct asym_cap_data {
1306 	struct list_head link;
1307 	unsigned long capacity;
1308 	unsigned long cpus[];
1309 };
1310 
1311 /*
1312  * Set of available CPUs grouped by their corresponding capacities
1313  * Each list entry contains a CPU mask reflecting CPUs that share the same
1314  * capacity.
1315  * The lifespan of data is unlimited.
1316  */
1317 static LIST_HEAD(asym_cap_list);
1318 
1319 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1320 
1321 /*
1322  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1323  * Provides sd_flags reflecting the asymmetry scope.
1324  */
1325 static inline int
1326 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1327 			   const struct cpumask *cpu_map)
1328 {
1329 	struct asym_cap_data *entry;
1330 	int count = 0, miss = 0;
1331 
1332 	/*
1333 	 * Count how many unique CPU capacities this domain spans across
1334 	 * (compare sched_domain CPUs mask with ones representing  available
1335 	 * CPUs capacities). Take into account CPUs that might be offline:
1336 	 * skip those.
1337 	 */
1338 	list_for_each_entry(entry, &asym_cap_list, link) {
1339 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1340 			++count;
1341 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1342 			++miss;
1343 	}
1344 
1345 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1346 
1347 	/* No asymmetry detected */
1348 	if (count < 2)
1349 		return 0;
1350 	/* Some of the available CPU capacity values have not been detected */
1351 	if (miss)
1352 		return SD_ASYM_CPUCAPACITY;
1353 
1354 	/* Full asymmetry */
1355 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1356 
1357 }
1358 
1359 static inline void asym_cpu_capacity_update_data(int cpu)
1360 {
1361 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1362 	struct asym_cap_data *entry = NULL;
1363 
1364 	list_for_each_entry(entry, &asym_cap_list, link) {
1365 		if (capacity == entry->capacity)
1366 			goto done;
1367 	}
1368 
1369 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1370 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1371 		return;
1372 	entry->capacity = capacity;
1373 	list_add(&entry->link, &asym_cap_list);
1374 done:
1375 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1376 }
1377 
1378 /*
1379  * Build-up/update list of CPUs grouped by their capacities
1380  * An update requires explicit request to rebuild sched domains
1381  * with state indicating CPU topology changes.
1382  */
1383 static void asym_cpu_capacity_scan(void)
1384 {
1385 	struct asym_cap_data *entry, *next;
1386 	int cpu;
1387 
1388 	list_for_each_entry(entry, &asym_cap_list, link)
1389 		cpumask_clear(cpu_capacity_span(entry));
1390 
1391 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1392 		asym_cpu_capacity_update_data(cpu);
1393 
1394 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1395 		if (cpumask_empty(cpu_capacity_span(entry))) {
1396 			list_del(&entry->link);
1397 			kfree(entry);
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * Only one capacity value has been detected i.e. this system is symmetric.
1403 	 * No need to keep this data around.
1404 	 */
1405 	if (list_is_singular(&asym_cap_list)) {
1406 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1407 		list_del(&entry->link);
1408 		kfree(entry);
1409 	}
1410 }
1411 
1412 /*
1413  * Initializers for schedule domains
1414  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1415  */
1416 
1417 static int default_relax_domain_level = -1;
1418 int sched_domain_level_max;
1419 
1420 static int __init setup_relax_domain_level(char *str)
1421 {
1422 	if (kstrtoint(str, 0, &default_relax_domain_level))
1423 		pr_warn("Unable to set relax_domain_level\n");
1424 
1425 	return 1;
1426 }
1427 __setup("relax_domain_level=", setup_relax_domain_level);
1428 
1429 static void set_domain_attribute(struct sched_domain *sd,
1430 				 struct sched_domain_attr *attr)
1431 {
1432 	int request;
1433 
1434 	if (!attr || attr->relax_domain_level < 0) {
1435 		if (default_relax_domain_level < 0)
1436 			return;
1437 		request = default_relax_domain_level;
1438 	} else
1439 		request = attr->relax_domain_level;
1440 
1441 	if (sd->level > request) {
1442 		/* Turn off idle balance on this domain: */
1443 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1444 	}
1445 }
1446 
1447 static void __sdt_free(const struct cpumask *cpu_map);
1448 static int __sdt_alloc(const struct cpumask *cpu_map);
1449 
1450 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1451 				 const struct cpumask *cpu_map)
1452 {
1453 	switch (what) {
1454 	case sa_rootdomain:
1455 		if (!atomic_read(&d->rd->refcount))
1456 			free_rootdomain(&d->rd->rcu);
1457 		fallthrough;
1458 	case sa_sd:
1459 		free_percpu(d->sd);
1460 		fallthrough;
1461 	case sa_sd_storage:
1462 		__sdt_free(cpu_map);
1463 		fallthrough;
1464 	case sa_none:
1465 		break;
1466 	}
1467 }
1468 
1469 static enum s_alloc
1470 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1471 {
1472 	memset(d, 0, sizeof(*d));
1473 
1474 	if (__sdt_alloc(cpu_map))
1475 		return sa_sd_storage;
1476 	d->sd = alloc_percpu(struct sched_domain *);
1477 	if (!d->sd)
1478 		return sa_sd_storage;
1479 	d->rd = alloc_rootdomain();
1480 	if (!d->rd)
1481 		return sa_sd;
1482 
1483 	return sa_rootdomain;
1484 }
1485 
1486 /*
1487  * NULL the sd_data elements we've used to build the sched_domain and
1488  * sched_group structure so that the subsequent __free_domain_allocs()
1489  * will not free the data we're using.
1490  */
1491 static void claim_allocations(int cpu, struct sched_domain *sd)
1492 {
1493 	struct sd_data *sdd = sd->private;
1494 
1495 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1496 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1497 
1498 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1499 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1500 
1501 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1502 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1503 
1504 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1505 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1506 }
1507 
1508 #ifdef CONFIG_NUMA
1509 enum numa_topology_type sched_numa_topology_type;
1510 
1511 static int			sched_domains_numa_levels;
1512 static int			sched_domains_curr_level;
1513 
1514 int				sched_max_numa_distance;
1515 static int			*sched_domains_numa_distance;
1516 static struct cpumask		***sched_domains_numa_masks;
1517 #endif
1518 
1519 /*
1520  * SD_flags allowed in topology descriptions.
1521  *
1522  * These flags are purely descriptive of the topology and do not prescribe
1523  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1524  * function:
1525  *
1526  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1527  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1528  *   SD_NUMA                - describes NUMA topologies
1529  *
1530  * Odd one out, which beside describing the topology has a quirk also
1531  * prescribes the desired behaviour that goes along with it:
1532  *
1533  *   SD_ASYM_PACKING        - describes SMT quirks
1534  */
1535 #define TOPOLOGY_SD_FLAGS		\
1536 	(SD_SHARE_CPUCAPACITY	|	\
1537 	 SD_SHARE_PKG_RESOURCES |	\
1538 	 SD_NUMA		|	\
1539 	 SD_ASYM_PACKING)
1540 
1541 static struct sched_domain *
1542 sd_init(struct sched_domain_topology_level *tl,
1543 	const struct cpumask *cpu_map,
1544 	struct sched_domain *child, int cpu)
1545 {
1546 	struct sd_data *sdd = &tl->data;
1547 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1548 	int sd_id, sd_weight, sd_flags = 0;
1549 	struct cpumask *sd_span;
1550 
1551 #ifdef CONFIG_NUMA
1552 	/*
1553 	 * Ugly hack to pass state to sd_numa_mask()...
1554 	 */
1555 	sched_domains_curr_level = tl->numa_level;
1556 #endif
1557 
1558 	sd_weight = cpumask_weight(tl->mask(cpu));
1559 
1560 	if (tl->sd_flags)
1561 		sd_flags = (*tl->sd_flags)();
1562 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1563 			"wrong sd_flags in topology description\n"))
1564 		sd_flags &= TOPOLOGY_SD_FLAGS;
1565 
1566 	*sd = (struct sched_domain){
1567 		.min_interval		= sd_weight,
1568 		.max_interval		= 2*sd_weight,
1569 		.busy_factor		= 16,
1570 		.imbalance_pct		= 117,
1571 
1572 		.cache_nice_tries	= 0,
1573 
1574 		.flags			= 1*SD_BALANCE_NEWIDLE
1575 					| 1*SD_BALANCE_EXEC
1576 					| 1*SD_BALANCE_FORK
1577 					| 0*SD_BALANCE_WAKE
1578 					| 1*SD_WAKE_AFFINE
1579 					| 0*SD_SHARE_CPUCAPACITY
1580 					| 0*SD_SHARE_PKG_RESOURCES
1581 					| 0*SD_SERIALIZE
1582 					| 1*SD_PREFER_SIBLING
1583 					| 0*SD_NUMA
1584 					| sd_flags
1585 					,
1586 
1587 		.last_balance		= jiffies,
1588 		.balance_interval	= sd_weight,
1589 		.max_newidle_lb_cost	= 0,
1590 		.last_decay_max_lb_cost	= jiffies,
1591 		.child			= child,
1592 #ifdef CONFIG_SCHED_DEBUG
1593 		.name			= tl->name,
1594 #endif
1595 	};
1596 
1597 	sd_span = sched_domain_span(sd);
1598 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1599 	sd_id = cpumask_first(sd_span);
1600 
1601 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1602 
1603 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1604 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1605 		  "CPU capacity asymmetry not supported on SMT\n");
1606 
1607 	/*
1608 	 * Convert topological properties into behaviour.
1609 	 */
1610 	/* Don't attempt to spread across CPUs of different capacities. */
1611 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1612 		sd->child->flags &= ~SD_PREFER_SIBLING;
1613 
1614 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1615 		sd->imbalance_pct = 110;
1616 
1617 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1618 		sd->imbalance_pct = 117;
1619 		sd->cache_nice_tries = 1;
1620 
1621 #ifdef CONFIG_NUMA
1622 	} else if (sd->flags & SD_NUMA) {
1623 		sd->cache_nice_tries = 2;
1624 
1625 		sd->flags &= ~SD_PREFER_SIBLING;
1626 		sd->flags |= SD_SERIALIZE;
1627 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1628 			sd->flags &= ~(SD_BALANCE_EXEC |
1629 				       SD_BALANCE_FORK |
1630 				       SD_WAKE_AFFINE);
1631 		}
1632 
1633 #endif
1634 	} else {
1635 		sd->cache_nice_tries = 1;
1636 	}
1637 
1638 	/*
1639 	 * For all levels sharing cache; connect a sched_domain_shared
1640 	 * instance.
1641 	 */
1642 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1643 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1644 		atomic_inc(&sd->shared->ref);
1645 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1646 	}
1647 
1648 	sd->private = sdd;
1649 
1650 	return sd;
1651 }
1652 
1653 /*
1654  * Topology list, bottom-up.
1655  */
1656 static struct sched_domain_topology_level default_topology[] = {
1657 #ifdef CONFIG_SCHED_SMT
1658 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1659 #endif
1660 
1661 #ifdef CONFIG_SCHED_CLUSTER
1662 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1663 #endif
1664 
1665 #ifdef CONFIG_SCHED_MC
1666 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1667 #endif
1668 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1669 	{ NULL, },
1670 };
1671 
1672 static struct sched_domain_topology_level *sched_domain_topology =
1673 	default_topology;
1674 static struct sched_domain_topology_level *sched_domain_topology_saved;
1675 
1676 #define for_each_sd_topology(tl)			\
1677 	for (tl = sched_domain_topology; tl->mask; tl++)
1678 
1679 void set_sched_topology(struct sched_domain_topology_level *tl)
1680 {
1681 	if (WARN_ON_ONCE(sched_smp_initialized))
1682 		return;
1683 
1684 	sched_domain_topology = tl;
1685 	sched_domain_topology_saved = NULL;
1686 }
1687 
1688 #ifdef CONFIG_NUMA
1689 
1690 static const struct cpumask *sd_numa_mask(int cpu)
1691 {
1692 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1693 }
1694 
1695 static void sched_numa_warn(const char *str)
1696 {
1697 	static int done = false;
1698 	int i,j;
1699 
1700 	if (done)
1701 		return;
1702 
1703 	done = true;
1704 
1705 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1706 
1707 	for (i = 0; i < nr_node_ids; i++) {
1708 		printk(KERN_WARNING "  ");
1709 		for (j = 0; j < nr_node_ids; j++) {
1710 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1711 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1712 			else
1713 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1714 		}
1715 		printk(KERN_CONT "\n");
1716 	}
1717 	printk(KERN_WARNING "\n");
1718 }
1719 
1720 bool find_numa_distance(int distance)
1721 {
1722 	bool found = false;
1723 	int i, *distances;
1724 
1725 	if (distance == node_distance(0, 0))
1726 		return true;
1727 
1728 	rcu_read_lock();
1729 	distances = rcu_dereference(sched_domains_numa_distance);
1730 	if (!distances)
1731 		goto unlock;
1732 	for (i = 0; i < sched_domains_numa_levels; i++) {
1733 		if (distances[i] == distance) {
1734 			found = true;
1735 			break;
1736 		}
1737 	}
1738 unlock:
1739 	rcu_read_unlock();
1740 
1741 	return found;
1742 }
1743 
1744 #define for_each_cpu_node_but(n, nbut)		\
1745 	for_each_node_state(n, N_CPU)		\
1746 		if (n == nbut)			\
1747 			continue;		\
1748 		else
1749 
1750 /*
1751  * A system can have three types of NUMA topology:
1752  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1753  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1754  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1755  *
1756  * The difference between a glueless mesh topology and a backplane
1757  * topology lies in whether communication between not directly
1758  * connected nodes goes through intermediary nodes (where programs
1759  * could run), or through backplane controllers. This affects
1760  * placement of programs.
1761  *
1762  * The type of topology can be discerned with the following tests:
1763  * - If the maximum distance between any nodes is 1 hop, the system
1764  *   is directly connected.
1765  * - If for two nodes A and B, located N > 1 hops away from each other,
1766  *   there is an intermediary node C, which is < N hops away from both
1767  *   nodes A and B, the system is a glueless mesh.
1768  */
1769 static void init_numa_topology_type(int offline_node)
1770 {
1771 	int a, b, c, n;
1772 
1773 	n = sched_max_numa_distance;
1774 
1775 	if (sched_domains_numa_levels <= 2) {
1776 		sched_numa_topology_type = NUMA_DIRECT;
1777 		return;
1778 	}
1779 
1780 	for_each_cpu_node_but(a, offline_node) {
1781 		for_each_cpu_node_but(b, offline_node) {
1782 			/* Find two nodes furthest removed from each other. */
1783 			if (node_distance(a, b) < n)
1784 				continue;
1785 
1786 			/* Is there an intermediary node between a and b? */
1787 			for_each_cpu_node_but(c, offline_node) {
1788 				if (node_distance(a, c) < n &&
1789 				    node_distance(b, c) < n) {
1790 					sched_numa_topology_type =
1791 							NUMA_GLUELESS_MESH;
1792 					return;
1793 				}
1794 			}
1795 
1796 			sched_numa_topology_type = NUMA_BACKPLANE;
1797 			return;
1798 		}
1799 	}
1800 
1801 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1802 	sched_numa_topology_type = NUMA_DIRECT;
1803 }
1804 
1805 
1806 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1807 
1808 void sched_init_numa(int offline_node)
1809 {
1810 	struct sched_domain_topology_level *tl;
1811 	unsigned long *distance_map;
1812 	int nr_levels = 0;
1813 	int i, j;
1814 	int *distances;
1815 	struct cpumask ***masks;
1816 
1817 	/*
1818 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1819 	 * unique distances in the node_distance() table.
1820 	 */
1821 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1822 	if (!distance_map)
1823 		return;
1824 
1825 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1826 	for_each_cpu_node_but(i, offline_node) {
1827 		for_each_cpu_node_but(j, offline_node) {
1828 			int distance = node_distance(i, j);
1829 
1830 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1831 				sched_numa_warn("Invalid distance value range");
1832 				bitmap_free(distance_map);
1833 				return;
1834 			}
1835 
1836 			bitmap_set(distance_map, distance, 1);
1837 		}
1838 	}
1839 	/*
1840 	 * We can now figure out how many unique distance values there are and
1841 	 * allocate memory accordingly.
1842 	 */
1843 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1844 
1845 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1846 	if (!distances) {
1847 		bitmap_free(distance_map);
1848 		return;
1849 	}
1850 
1851 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1852 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1853 		distances[i] = j;
1854 	}
1855 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1856 
1857 	bitmap_free(distance_map);
1858 
1859 	/*
1860 	 * 'nr_levels' contains the number of unique distances
1861 	 *
1862 	 * The sched_domains_numa_distance[] array includes the actual distance
1863 	 * numbers.
1864 	 */
1865 
1866 	/*
1867 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1868 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1869 	 * the array will contain less then 'nr_levels' members. This could be
1870 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1871 	 * in other functions.
1872 	 *
1873 	 * We reset it to 'nr_levels' at the end of this function.
1874 	 */
1875 	sched_domains_numa_levels = 0;
1876 
1877 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1878 	if (!masks)
1879 		return;
1880 
1881 	/*
1882 	 * Now for each level, construct a mask per node which contains all
1883 	 * CPUs of nodes that are that many hops away from us.
1884 	 */
1885 	for (i = 0; i < nr_levels; i++) {
1886 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1887 		if (!masks[i])
1888 			return;
1889 
1890 		for_each_cpu_node_but(j, offline_node) {
1891 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1892 			int k;
1893 
1894 			if (!mask)
1895 				return;
1896 
1897 			masks[i][j] = mask;
1898 
1899 			for_each_cpu_node_but(k, offline_node) {
1900 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1901 					sched_numa_warn("Node-distance not symmetric");
1902 
1903 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1904 					continue;
1905 
1906 				cpumask_or(mask, mask, cpumask_of_node(k));
1907 			}
1908 		}
1909 	}
1910 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1911 
1912 	/* Compute default topology size */
1913 	for (i = 0; sched_domain_topology[i].mask; i++);
1914 
1915 	tl = kzalloc((i + nr_levels + 1) *
1916 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1917 	if (!tl)
1918 		return;
1919 
1920 	/*
1921 	 * Copy the default topology bits..
1922 	 */
1923 	for (i = 0; sched_domain_topology[i].mask; i++)
1924 		tl[i] = sched_domain_topology[i];
1925 
1926 	/*
1927 	 * Add the NUMA identity distance, aka single NODE.
1928 	 */
1929 	tl[i++] = (struct sched_domain_topology_level){
1930 		.mask = sd_numa_mask,
1931 		.numa_level = 0,
1932 		SD_INIT_NAME(NODE)
1933 	};
1934 
1935 	/*
1936 	 * .. and append 'j' levels of NUMA goodness.
1937 	 */
1938 	for (j = 1; j < nr_levels; i++, j++) {
1939 		tl[i] = (struct sched_domain_topology_level){
1940 			.mask = sd_numa_mask,
1941 			.sd_flags = cpu_numa_flags,
1942 			.flags = SDTL_OVERLAP,
1943 			.numa_level = j,
1944 			SD_INIT_NAME(NUMA)
1945 		};
1946 	}
1947 
1948 	sched_domain_topology_saved = sched_domain_topology;
1949 	sched_domain_topology = tl;
1950 
1951 	sched_domains_numa_levels = nr_levels;
1952 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1953 
1954 	init_numa_topology_type(offline_node);
1955 }
1956 
1957 
1958 static void sched_reset_numa(void)
1959 {
1960 	int nr_levels, *distances;
1961 	struct cpumask ***masks;
1962 
1963 	nr_levels = sched_domains_numa_levels;
1964 	sched_domains_numa_levels = 0;
1965 	sched_max_numa_distance = 0;
1966 	sched_numa_topology_type = NUMA_DIRECT;
1967 	distances = sched_domains_numa_distance;
1968 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
1969 	masks = sched_domains_numa_masks;
1970 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
1971 	if (distances || masks) {
1972 		int i, j;
1973 
1974 		synchronize_rcu();
1975 		kfree(distances);
1976 		for (i = 0; i < nr_levels && masks; i++) {
1977 			if (!masks[i])
1978 				continue;
1979 			for_each_node(j)
1980 				kfree(masks[i][j]);
1981 			kfree(masks[i]);
1982 		}
1983 		kfree(masks);
1984 	}
1985 	if (sched_domain_topology_saved) {
1986 		kfree(sched_domain_topology);
1987 		sched_domain_topology = sched_domain_topology_saved;
1988 		sched_domain_topology_saved = NULL;
1989 	}
1990 }
1991 
1992 /*
1993  * Call with hotplug lock held
1994  */
1995 void sched_update_numa(int cpu, bool online)
1996 {
1997 	int node;
1998 
1999 	node = cpu_to_node(cpu);
2000 	/*
2001 	 * Scheduler NUMA topology is updated when the first CPU of a
2002 	 * node is onlined or the last CPU of a node is offlined.
2003 	 */
2004 	if (cpumask_weight(cpumask_of_node(node)) != 1)
2005 		return;
2006 
2007 	sched_reset_numa();
2008 	sched_init_numa(online ? NUMA_NO_NODE : node);
2009 }
2010 
2011 void sched_domains_numa_masks_set(unsigned int cpu)
2012 {
2013 	int node = cpu_to_node(cpu);
2014 	int i, j;
2015 
2016 	for (i = 0; i < sched_domains_numa_levels; i++) {
2017 		for (j = 0; j < nr_node_ids; j++) {
2018 			if (!node_state(j, N_CPU))
2019 				continue;
2020 
2021 			/* Set ourselves in the remote node's masks */
2022 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2023 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2024 		}
2025 	}
2026 }
2027 
2028 void sched_domains_numa_masks_clear(unsigned int cpu)
2029 {
2030 	int i, j;
2031 
2032 	for (i = 0; i < sched_domains_numa_levels; i++) {
2033 		for (j = 0; j < nr_node_ids; j++) {
2034 			if (sched_domains_numa_masks[i][j])
2035 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2036 		}
2037 	}
2038 }
2039 
2040 /*
2041  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2042  *                             closest to @cpu from @cpumask.
2043  * cpumask: cpumask to find a cpu from
2044  * cpu: cpu to be close to
2045  *
2046  * returns: cpu, or nr_cpu_ids when nothing found.
2047  */
2048 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2049 {
2050 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2051 	struct cpumask ***masks;
2052 
2053 	rcu_read_lock();
2054 	masks = rcu_dereference(sched_domains_numa_masks);
2055 	if (!masks)
2056 		goto unlock;
2057 	for (i = 0; i < sched_domains_numa_levels; i++) {
2058 		if (!masks[i][j])
2059 			break;
2060 		cpu = cpumask_any_and(cpus, masks[i][j]);
2061 		if (cpu < nr_cpu_ids) {
2062 			found = cpu;
2063 			break;
2064 		}
2065 	}
2066 unlock:
2067 	rcu_read_unlock();
2068 
2069 	return found;
2070 }
2071 
2072 struct __cmp_key {
2073 	const struct cpumask *cpus;
2074 	struct cpumask ***masks;
2075 	int node;
2076 	int cpu;
2077 	int w;
2078 };
2079 
2080 static int hop_cmp(const void *a, const void *b)
2081 {
2082 	struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2083 	struct __cmp_key *k = (struct __cmp_key *)a;
2084 
2085 	if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2086 		return 1;
2087 
2088 	if (b == k->masks) {
2089 		k->w = 0;
2090 		return 0;
2091 	}
2092 
2093 	prev_hop = *((struct cpumask ***)b - 1);
2094 	k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2095 	if (k->w <= k->cpu)
2096 		return 0;
2097 
2098 	return -1;
2099 }
2100 
2101 /*
2102  * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth next cpu
2103  *                             closest to @cpu from @cpumask.
2104  * cpumask: cpumask to find a cpu from
2105  * cpu: Nth cpu to find
2106  *
2107  * returns: cpu, or nr_cpu_ids when nothing found.
2108  */
2109 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2110 {
2111 	struct __cmp_key k = { .cpus = cpus, .node = node, .cpu = cpu };
2112 	struct cpumask ***hop_masks;
2113 	int hop, ret = nr_cpu_ids;
2114 
2115 	rcu_read_lock();
2116 
2117 	k.masks = rcu_dereference(sched_domains_numa_masks);
2118 	if (!k.masks)
2119 		goto unlock;
2120 
2121 	hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2122 	hop = hop_masks	- k.masks;
2123 
2124 	ret = hop ?
2125 		cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2126 		cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2127 unlock:
2128 	rcu_read_unlock();
2129 	return ret;
2130 }
2131 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2132 
2133 /**
2134  * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2135  *                         @node
2136  * @node: The node to count hops from.
2137  * @hops: Include CPUs up to that many hops away. 0 means local node.
2138  *
2139  * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2140  * @node, an error value otherwise.
2141  *
2142  * Requires rcu_lock to be held. Returned cpumask is only valid within that
2143  * read-side section, copy it if required beyond that.
2144  *
2145  * Note that not all hops are equal in distance; see sched_init_numa() for how
2146  * distances and masks are handled.
2147  * Also note that this is a reflection of sched_domains_numa_masks, which may change
2148  * during the lifetime of the system (offline nodes are taken out of the masks).
2149  */
2150 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2151 {
2152 	struct cpumask ***masks;
2153 
2154 	if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2155 		return ERR_PTR(-EINVAL);
2156 
2157 	masks = rcu_dereference(sched_domains_numa_masks);
2158 	if (!masks)
2159 		return ERR_PTR(-EBUSY);
2160 
2161 	return masks[hops][node];
2162 }
2163 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2164 
2165 #endif /* CONFIG_NUMA */
2166 
2167 static int __sdt_alloc(const struct cpumask *cpu_map)
2168 {
2169 	struct sched_domain_topology_level *tl;
2170 	int j;
2171 
2172 	for_each_sd_topology(tl) {
2173 		struct sd_data *sdd = &tl->data;
2174 
2175 		sdd->sd = alloc_percpu(struct sched_domain *);
2176 		if (!sdd->sd)
2177 			return -ENOMEM;
2178 
2179 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2180 		if (!sdd->sds)
2181 			return -ENOMEM;
2182 
2183 		sdd->sg = alloc_percpu(struct sched_group *);
2184 		if (!sdd->sg)
2185 			return -ENOMEM;
2186 
2187 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2188 		if (!sdd->sgc)
2189 			return -ENOMEM;
2190 
2191 		for_each_cpu(j, cpu_map) {
2192 			struct sched_domain *sd;
2193 			struct sched_domain_shared *sds;
2194 			struct sched_group *sg;
2195 			struct sched_group_capacity *sgc;
2196 
2197 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2198 					GFP_KERNEL, cpu_to_node(j));
2199 			if (!sd)
2200 				return -ENOMEM;
2201 
2202 			*per_cpu_ptr(sdd->sd, j) = sd;
2203 
2204 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2205 					GFP_KERNEL, cpu_to_node(j));
2206 			if (!sds)
2207 				return -ENOMEM;
2208 
2209 			*per_cpu_ptr(sdd->sds, j) = sds;
2210 
2211 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2212 					GFP_KERNEL, cpu_to_node(j));
2213 			if (!sg)
2214 				return -ENOMEM;
2215 
2216 			sg->next = sg;
2217 
2218 			*per_cpu_ptr(sdd->sg, j) = sg;
2219 
2220 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2221 					GFP_KERNEL, cpu_to_node(j));
2222 			if (!sgc)
2223 				return -ENOMEM;
2224 
2225 #ifdef CONFIG_SCHED_DEBUG
2226 			sgc->id = j;
2227 #endif
2228 
2229 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2230 		}
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 static void __sdt_free(const struct cpumask *cpu_map)
2237 {
2238 	struct sched_domain_topology_level *tl;
2239 	int j;
2240 
2241 	for_each_sd_topology(tl) {
2242 		struct sd_data *sdd = &tl->data;
2243 
2244 		for_each_cpu(j, cpu_map) {
2245 			struct sched_domain *sd;
2246 
2247 			if (sdd->sd) {
2248 				sd = *per_cpu_ptr(sdd->sd, j);
2249 				if (sd && (sd->flags & SD_OVERLAP))
2250 					free_sched_groups(sd->groups, 0);
2251 				kfree(*per_cpu_ptr(sdd->sd, j));
2252 			}
2253 
2254 			if (sdd->sds)
2255 				kfree(*per_cpu_ptr(sdd->sds, j));
2256 			if (sdd->sg)
2257 				kfree(*per_cpu_ptr(sdd->sg, j));
2258 			if (sdd->sgc)
2259 				kfree(*per_cpu_ptr(sdd->sgc, j));
2260 		}
2261 		free_percpu(sdd->sd);
2262 		sdd->sd = NULL;
2263 		free_percpu(sdd->sds);
2264 		sdd->sds = NULL;
2265 		free_percpu(sdd->sg);
2266 		sdd->sg = NULL;
2267 		free_percpu(sdd->sgc);
2268 		sdd->sgc = NULL;
2269 	}
2270 }
2271 
2272 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2273 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2274 		struct sched_domain *child, int cpu)
2275 {
2276 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2277 
2278 	if (child) {
2279 		sd->level = child->level + 1;
2280 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2281 		child->parent = sd;
2282 
2283 		if (!cpumask_subset(sched_domain_span(child),
2284 				    sched_domain_span(sd))) {
2285 			pr_err("BUG: arch topology borken\n");
2286 #ifdef CONFIG_SCHED_DEBUG
2287 			pr_err("     the %s domain not a subset of the %s domain\n",
2288 					child->name, sd->name);
2289 #endif
2290 			/* Fixup, ensure @sd has at least @child CPUs. */
2291 			cpumask_or(sched_domain_span(sd),
2292 				   sched_domain_span(sd),
2293 				   sched_domain_span(child));
2294 		}
2295 
2296 	}
2297 	set_domain_attribute(sd, attr);
2298 
2299 	return sd;
2300 }
2301 
2302 /*
2303  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2304  * any two given CPUs at this (non-NUMA) topology level.
2305  */
2306 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2307 			      const struct cpumask *cpu_map, int cpu)
2308 {
2309 	int i;
2310 
2311 	/* NUMA levels are allowed to overlap */
2312 	if (tl->flags & SDTL_OVERLAP)
2313 		return true;
2314 
2315 	/*
2316 	 * Non-NUMA levels cannot partially overlap - they must be either
2317 	 * completely equal or completely disjoint. Otherwise we can end up
2318 	 * breaking the sched_group lists - i.e. a later get_group() pass
2319 	 * breaks the linking done for an earlier span.
2320 	 */
2321 	for_each_cpu(i, cpu_map) {
2322 		if (i == cpu)
2323 			continue;
2324 		/*
2325 		 * We should 'and' all those masks with 'cpu_map' to exactly
2326 		 * match the topology we're about to build, but that can only
2327 		 * remove CPUs, which only lessens our ability to detect
2328 		 * overlaps
2329 		 */
2330 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2331 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2332 			return false;
2333 	}
2334 
2335 	return true;
2336 }
2337 
2338 /*
2339  * Build sched domains for a given set of CPUs and attach the sched domains
2340  * to the individual CPUs
2341  */
2342 static int
2343 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2344 {
2345 	enum s_alloc alloc_state = sa_none;
2346 	struct sched_domain *sd;
2347 	struct s_data d;
2348 	struct rq *rq = NULL;
2349 	int i, ret = -ENOMEM;
2350 	bool has_asym = false;
2351 
2352 	if (WARN_ON(cpumask_empty(cpu_map)))
2353 		goto error;
2354 
2355 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2356 	if (alloc_state != sa_rootdomain)
2357 		goto error;
2358 
2359 	/* Set up domains for CPUs specified by the cpu_map: */
2360 	for_each_cpu(i, cpu_map) {
2361 		struct sched_domain_topology_level *tl;
2362 
2363 		sd = NULL;
2364 		for_each_sd_topology(tl) {
2365 
2366 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2367 				goto error;
2368 
2369 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2370 
2371 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2372 
2373 			if (tl == sched_domain_topology)
2374 				*per_cpu_ptr(d.sd, i) = sd;
2375 			if (tl->flags & SDTL_OVERLAP)
2376 				sd->flags |= SD_OVERLAP;
2377 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2378 				break;
2379 		}
2380 	}
2381 
2382 	/* Build the groups for the domains */
2383 	for_each_cpu(i, cpu_map) {
2384 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2385 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2386 			if (sd->flags & SD_OVERLAP) {
2387 				if (build_overlap_sched_groups(sd, i))
2388 					goto error;
2389 			} else {
2390 				if (build_sched_groups(sd, i))
2391 					goto error;
2392 			}
2393 		}
2394 	}
2395 
2396 	/*
2397 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2398 	 * imbalanced.
2399 	 */
2400 	for_each_cpu(i, cpu_map) {
2401 		unsigned int imb = 0;
2402 		unsigned int imb_span = 1;
2403 
2404 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2405 			struct sched_domain *child = sd->child;
2406 
2407 			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2408 			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
2409 				struct sched_domain __rcu *top_p;
2410 				unsigned int nr_llcs;
2411 
2412 				/*
2413 				 * For a single LLC per node, allow an
2414 				 * imbalance up to 12.5% of the node. This is
2415 				 * arbitrary cutoff based two factors -- SMT and
2416 				 * memory channels. For SMT-2, the intent is to
2417 				 * avoid premature sharing of HT resources but
2418 				 * SMT-4 or SMT-8 *may* benefit from a different
2419 				 * cutoff. For memory channels, this is a very
2420 				 * rough estimate of how many channels may be
2421 				 * active and is based on recent CPUs with
2422 				 * many cores.
2423 				 *
2424 				 * For multiple LLCs, allow an imbalance
2425 				 * until multiple tasks would share an LLC
2426 				 * on one node while LLCs on another node
2427 				 * remain idle. This assumes that there are
2428 				 * enough logical CPUs per LLC to avoid SMT
2429 				 * factors and that there is a correlation
2430 				 * between LLCs and memory channels.
2431 				 */
2432 				nr_llcs = sd->span_weight / child->span_weight;
2433 				if (nr_llcs == 1)
2434 					imb = sd->span_weight >> 3;
2435 				else
2436 					imb = nr_llcs;
2437 				imb = max(1U, imb);
2438 				sd->imb_numa_nr = imb;
2439 
2440 				/* Set span based on the first NUMA domain. */
2441 				top_p = sd->parent;
2442 				while (top_p && !(top_p->flags & SD_NUMA)) {
2443 					top_p = top_p->parent;
2444 				}
2445 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2446 			} else {
2447 				int factor = max(1U, (sd->span_weight / imb_span));
2448 
2449 				sd->imb_numa_nr = imb * factor;
2450 			}
2451 		}
2452 	}
2453 
2454 	/* Calculate CPU capacity for physical packages and nodes */
2455 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2456 		if (!cpumask_test_cpu(i, cpu_map))
2457 			continue;
2458 
2459 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2460 			claim_allocations(i, sd);
2461 			init_sched_groups_capacity(i, sd);
2462 		}
2463 	}
2464 
2465 	/* Attach the domains */
2466 	rcu_read_lock();
2467 	for_each_cpu(i, cpu_map) {
2468 		rq = cpu_rq(i);
2469 		sd = *per_cpu_ptr(d.sd, i);
2470 
2471 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2472 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2473 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2474 
2475 		cpu_attach_domain(sd, d.rd, i);
2476 	}
2477 	rcu_read_unlock();
2478 
2479 	if (has_asym)
2480 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2481 
2482 	if (rq && sched_debug_verbose) {
2483 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2484 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2485 	}
2486 
2487 	ret = 0;
2488 error:
2489 	__free_domain_allocs(&d, alloc_state, cpu_map);
2490 
2491 	return ret;
2492 }
2493 
2494 /* Current sched domains: */
2495 static cpumask_var_t			*doms_cur;
2496 
2497 /* Number of sched domains in 'doms_cur': */
2498 static int				ndoms_cur;
2499 
2500 /* Attributes of custom domains in 'doms_cur' */
2501 static struct sched_domain_attr		*dattr_cur;
2502 
2503 /*
2504  * Special case: If a kmalloc() of a doms_cur partition (array of
2505  * cpumask) fails, then fallback to a single sched domain,
2506  * as determined by the single cpumask fallback_doms.
2507  */
2508 static cpumask_var_t			fallback_doms;
2509 
2510 /*
2511  * arch_update_cpu_topology lets virtualized architectures update the
2512  * CPU core maps. It is supposed to return 1 if the topology changed
2513  * or 0 if it stayed the same.
2514  */
2515 int __weak arch_update_cpu_topology(void)
2516 {
2517 	return 0;
2518 }
2519 
2520 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2521 {
2522 	int i;
2523 	cpumask_var_t *doms;
2524 
2525 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2526 	if (!doms)
2527 		return NULL;
2528 	for (i = 0; i < ndoms; i++) {
2529 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2530 			free_sched_domains(doms, i);
2531 			return NULL;
2532 		}
2533 	}
2534 	return doms;
2535 }
2536 
2537 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2538 {
2539 	unsigned int i;
2540 	for (i = 0; i < ndoms; i++)
2541 		free_cpumask_var(doms[i]);
2542 	kfree(doms);
2543 }
2544 
2545 /*
2546  * Set up scheduler domains and groups.  For now this just excludes isolated
2547  * CPUs, but could be used to exclude other special cases in the future.
2548  */
2549 int __init sched_init_domains(const struct cpumask *cpu_map)
2550 {
2551 	int err;
2552 
2553 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2554 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2555 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2556 
2557 	arch_update_cpu_topology();
2558 	asym_cpu_capacity_scan();
2559 	ndoms_cur = 1;
2560 	doms_cur = alloc_sched_domains(ndoms_cur);
2561 	if (!doms_cur)
2562 		doms_cur = &fallback_doms;
2563 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2564 	err = build_sched_domains(doms_cur[0], NULL);
2565 
2566 	return err;
2567 }
2568 
2569 /*
2570  * Detach sched domains from a group of CPUs specified in cpu_map
2571  * These CPUs will now be attached to the NULL domain
2572  */
2573 static void detach_destroy_domains(const struct cpumask *cpu_map)
2574 {
2575 	unsigned int cpu = cpumask_any(cpu_map);
2576 	int i;
2577 
2578 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2579 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2580 
2581 	rcu_read_lock();
2582 	for_each_cpu(i, cpu_map)
2583 		cpu_attach_domain(NULL, &def_root_domain, i);
2584 	rcu_read_unlock();
2585 }
2586 
2587 /* handle null as "default" */
2588 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2589 			struct sched_domain_attr *new, int idx_new)
2590 {
2591 	struct sched_domain_attr tmp;
2592 
2593 	/* Fast path: */
2594 	if (!new && !cur)
2595 		return 1;
2596 
2597 	tmp = SD_ATTR_INIT;
2598 
2599 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2600 			new ? (new + idx_new) : &tmp,
2601 			sizeof(struct sched_domain_attr));
2602 }
2603 
2604 /*
2605  * Partition sched domains as specified by the 'ndoms_new'
2606  * cpumasks in the array doms_new[] of cpumasks. This compares
2607  * doms_new[] to the current sched domain partitioning, doms_cur[].
2608  * It destroys each deleted domain and builds each new domain.
2609  *
2610  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2611  * The masks don't intersect (don't overlap.) We should setup one
2612  * sched domain for each mask. CPUs not in any of the cpumasks will
2613  * not be load balanced. If the same cpumask appears both in the
2614  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2615  * it as it is.
2616  *
2617  * The passed in 'doms_new' should be allocated using
2618  * alloc_sched_domains.  This routine takes ownership of it and will
2619  * free_sched_domains it when done with it. If the caller failed the
2620  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2621  * and partition_sched_domains() will fallback to the single partition
2622  * 'fallback_doms', it also forces the domains to be rebuilt.
2623  *
2624  * If doms_new == NULL it will be replaced with cpu_online_mask.
2625  * ndoms_new == 0 is a special case for destroying existing domains,
2626  * and it will not create the default domain.
2627  *
2628  * Call with hotplug lock and sched_domains_mutex held
2629  */
2630 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2631 				    struct sched_domain_attr *dattr_new)
2632 {
2633 	bool __maybe_unused has_eas = false;
2634 	int i, j, n;
2635 	int new_topology;
2636 
2637 	lockdep_assert_held(&sched_domains_mutex);
2638 
2639 	/* Let the architecture update CPU core mappings: */
2640 	new_topology = arch_update_cpu_topology();
2641 	/* Trigger rebuilding CPU capacity asymmetry data */
2642 	if (new_topology)
2643 		asym_cpu_capacity_scan();
2644 
2645 	if (!doms_new) {
2646 		WARN_ON_ONCE(dattr_new);
2647 		n = 0;
2648 		doms_new = alloc_sched_domains(1);
2649 		if (doms_new) {
2650 			n = 1;
2651 			cpumask_and(doms_new[0], cpu_active_mask,
2652 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2653 		}
2654 	} else {
2655 		n = ndoms_new;
2656 	}
2657 
2658 	/* Destroy deleted domains: */
2659 	for (i = 0; i < ndoms_cur; i++) {
2660 		for (j = 0; j < n && !new_topology; j++) {
2661 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2662 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2663 				struct root_domain *rd;
2664 
2665 				/*
2666 				 * This domain won't be destroyed and as such
2667 				 * its dl_bw->total_bw needs to be cleared.  It
2668 				 * will be recomputed in function
2669 				 * update_tasks_root_domain().
2670 				 */
2671 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2672 				dl_clear_root_domain(rd);
2673 				goto match1;
2674 			}
2675 		}
2676 		/* No match - a current sched domain not in new doms_new[] */
2677 		detach_destroy_domains(doms_cur[i]);
2678 match1:
2679 		;
2680 	}
2681 
2682 	n = ndoms_cur;
2683 	if (!doms_new) {
2684 		n = 0;
2685 		doms_new = &fallback_doms;
2686 		cpumask_and(doms_new[0], cpu_active_mask,
2687 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2688 	}
2689 
2690 	/* Build new domains: */
2691 	for (i = 0; i < ndoms_new; i++) {
2692 		for (j = 0; j < n && !new_topology; j++) {
2693 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2694 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2695 				goto match2;
2696 		}
2697 		/* No match - add a new doms_new */
2698 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2699 match2:
2700 		;
2701 	}
2702 
2703 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2704 	/* Build perf. domains: */
2705 	for (i = 0; i < ndoms_new; i++) {
2706 		for (j = 0; j < n && !sched_energy_update; j++) {
2707 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2708 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2709 				has_eas = true;
2710 				goto match3;
2711 			}
2712 		}
2713 		/* No match - add perf. domains for a new rd */
2714 		has_eas |= build_perf_domains(doms_new[i]);
2715 match3:
2716 		;
2717 	}
2718 	sched_energy_set(has_eas);
2719 #endif
2720 
2721 	/* Remember the new sched domains: */
2722 	if (doms_cur != &fallback_doms)
2723 		free_sched_domains(doms_cur, ndoms_cur);
2724 
2725 	kfree(dattr_cur);
2726 	doms_cur = doms_new;
2727 	dattr_cur = dattr_new;
2728 	ndoms_cur = ndoms_new;
2729 
2730 	update_sched_domain_debugfs();
2731 }
2732 
2733 /*
2734  * Call with hotplug lock held
2735  */
2736 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2737 			     struct sched_domain_attr *dattr_new)
2738 {
2739 	mutex_lock(&sched_domains_mutex);
2740 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2741 	mutex_unlock(&sched_domains_mutex);
2742 }
2743