xref: /openbmc/linux/kernel/sched/topology.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_verbose = true;
18 
19 	return 0;
20 }
21 early_param("sched_verbose", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_verbose;
26 }
27 
28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29 const struct sd_flag_debug sd_flag_debug[] = {
30 #include <linux/sched/sd_flags.h>
31 };
32 #undef SD_FLAG
33 
34 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
35 				  struct cpumask *groupmask)
36 {
37 	struct sched_group *group = sd->groups;
38 	unsigned long flags = sd->flags;
39 	unsigned int idx;
40 
41 	cpumask_clear(groupmask);
42 
43 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
44 	printk(KERN_CONT "span=%*pbl level=%s\n",
45 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46 
47 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 	}
50 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 	}
53 
54 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
55 		unsigned int flag = BIT(idx);
56 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
57 
58 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
59 		    !(sd->child->flags & flag))
60 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
61 			       sd_flag_debug[idx].name);
62 
63 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
64 		    !(sd->parent->flags & flag))
65 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
66 			       sd_flag_debug[idx].name);
67 	}
68 
69 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
70 	do {
71 		if (!group) {
72 			printk("\n");
73 			printk(KERN_ERR "ERROR: group is NULL\n");
74 			break;
75 		}
76 
77 		if (!cpumask_weight(sched_group_span(group))) {
78 			printk(KERN_CONT "\n");
79 			printk(KERN_ERR "ERROR: empty group\n");
80 			break;
81 		}
82 
83 		if (!(sd->flags & SD_OVERLAP) &&
84 		    cpumask_intersects(groupmask, sched_group_span(group))) {
85 			printk(KERN_CONT "\n");
86 			printk(KERN_ERR "ERROR: repeated CPUs\n");
87 			break;
88 		}
89 
90 		cpumask_or(groupmask, groupmask, sched_group_span(group));
91 
92 		printk(KERN_CONT " %d:{ span=%*pbl",
93 				group->sgc->id,
94 				cpumask_pr_args(sched_group_span(group)));
95 
96 		if ((sd->flags & SD_OVERLAP) &&
97 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
98 			printk(KERN_CONT " mask=%*pbl",
99 				cpumask_pr_args(group_balance_mask(group)));
100 		}
101 
102 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
103 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
104 
105 		if (group == sd->groups && sd->child &&
106 		    !cpumask_equal(sched_domain_span(sd->child),
107 				   sched_group_span(group))) {
108 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
109 		}
110 
111 		printk(KERN_CONT " }");
112 
113 		group = group->next;
114 
115 		if (group != sd->groups)
116 			printk(KERN_CONT ",");
117 
118 	} while (group != sd->groups);
119 	printk(KERN_CONT "\n");
120 
121 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
122 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
123 
124 	if (sd->parent &&
125 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
126 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
127 	return 0;
128 }
129 
130 static void sched_domain_debug(struct sched_domain *sd, int cpu)
131 {
132 	int level = 0;
133 
134 	if (!sched_debug_verbose)
135 		return;
136 
137 	if (!sd) {
138 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
139 		return;
140 	}
141 
142 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
143 
144 	for (;;) {
145 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
146 			break;
147 		level++;
148 		sd = sd->parent;
149 		if (!sd)
150 			break;
151 	}
152 }
153 #else /* !CONFIG_SCHED_DEBUG */
154 
155 # define sched_debug_verbose 0
156 # define sched_domain_debug(sd, cpu) do { } while (0)
157 static inline bool sched_debug(void)
158 {
159 	return false;
160 }
161 #endif /* CONFIG_SCHED_DEBUG */
162 
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166 #include <linux/sched/sd_flags.h>
167 0;
168 #undef SD_FLAG
169 
170 static int sd_degenerate(struct sched_domain *sd)
171 {
172 	if (cpumask_weight(sched_domain_span(sd)) == 1)
173 		return 1;
174 
175 	/* Following flags need at least 2 groups */
176 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 	    (sd->groups != sd->groups->next))
178 		return 0;
179 
180 	/* Following flags don't use groups */
181 	if (sd->flags & (SD_WAKE_AFFINE))
182 		return 0;
183 
184 	return 1;
185 }
186 
187 static int
188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189 {
190 	unsigned long cflags = sd->flags, pflags = parent->flags;
191 
192 	if (sd_degenerate(parent))
193 		return 1;
194 
195 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 		return 0;
197 
198 	/* Flags needing groups don't count if only 1 group in parent */
199 	if (parent->groups == parent->groups->next)
200 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
201 
202 	if (~cflags & pflags)
203 		return 0;
204 
205 	return 1;
206 }
207 
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210 unsigned int sysctl_sched_energy_aware = 1;
211 DEFINE_MUTEX(sched_energy_mutex);
212 bool sched_energy_update;
213 
214 void rebuild_sched_domains_energy(void)
215 {
216 	mutex_lock(&sched_energy_mutex);
217 	sched_energy_update = true;
218 	rebuild_sched_domains();
219 	sched_energy_update = false;
220 	mutex_unlock(&sched_energy_mutex);
221 }
222 
223 #ifdef CONFIG_PROC_SYSCTL
224 int sched_energy_aware_handler(struct ctl_table *table, int write,
225 		void *buffer, size_t *lenp, loff_t *ppos)
226 {
227 	int ret, state;
228 
229 	if (write && !capable(CAP_SYS_ADMIN))
230 		return -EPERM;
231 
232 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
233 	if (!ret && write) {
234 		state = static_branch_unlikely(&sched_energy_present);
235 		if (state != sysctl_sched_energy_aware)
236 			rebuild_sched_domains_energy();
237 	}
238 
239 	return ret;
240 }
241 #endif
242 
243 static void free_pd(struct perf_domain *pd)
244 {
245 	struct perf_domain *tmp;
246 
247 	while (pd) {
248 		tmp = pd->next;
249 		kfree(pd);
250 		pd = tmp;
251 	}
252 }
253 
254 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
255 {
256 	while (pd) {
257 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
258 			return pd;
259 		pd = pd->next;
260 	}
261 
262 	return NULL;
263 }
264 
265 static struct perf_domain *pd_init(int cpu)
266 {
267 	struct em_perf_domain *obj = em_cpu_get(cpu);
268 	struct perf_domain *pd;
269 
270 	if (!obj) {
271 		if (sched_debug())
272 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
273 		return NULL;
274 	}
275 
276 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
277 	if (!pd)
278 		return NULL;
279 	pd->em_pd = obj;
280 
281 	return pd;
282 }
283 
284 static void perf_domain_debug(const struct cpumask *cpu_map,
285 						struct perf_domain *pd)
286 {
287 	if (!sched_debug() || !pd)
288 		return;
289 
290 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
291 
292 	while (pd) {
293 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
294 				cpumask_first(perf_domain_span(pd)),
295 				cpumask_pr_args(perf_domain_span(pd)),
296 				em_pd_nr_perf_states(pd->em_pd));
297 		pd = pd->next;
298 	}
299 
300 	printk(KERN_CONT "\n");
301 }
302 
303 static void destroy_perf_domain_rcu(struct rcu_head *rp)
304 {
305 	struct perf_domain *pd;
306 
307 	pd = container_of(rp, struct perf_domain, rcu);
308 	free_pd(pd);
309 }
310 
311 static void sched_energy_set(bool has_eas)
312 {
313 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
314 		if (sched_debug())
315 			pr_info("%s: stopping EAS\n", __func__);
316 		static_branch_disable_cpuslocked(&sched_energy_present);
317 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
318 		if (sched_debug())
319 			pr_info("%s: starting EAS\n", __func__);
320 		static_branch_enable_cpuslocked(&sched_energy_present);
321 	}
322 }
323 
324 /*
325  * EAS can be used on a root domain if it meets all the following conditions:
326  *    1. an Energy Model (EM) is available;
327  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
328  *    3. no SMT is detected.
329  *    4. the EM complexity is low enough to keep scheduling overheads low;
330  *    5. schedutil is driving the frequency of all CPUs of the rd;
331  *    6. frequency invariance support is present;
332  *
333  * The complexity of the Energy Model is defined as:
334  *
335  *              C = nr_pd * (nr_cpus + nr_ps)
336  *
337  * with parameters defined as:
338  *  - nr_pd:    the number of performance domains
339  *  - nr_cpus:  the number of CPUs
340  *  - nr_ps:    the sum of the number of performance states of all performance
341  *              domains (for example, on a system with 2 performance domains,
342  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
343  *
344  * It is generally not a good idea to use such a model in the wake-up path on
345  * very complex platforms because of the associated scheduling overheads. The
346  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
347  * with per-CPU DVFS and less than 8 performance states each, for example.
348  */
349 #define EM_MAX_COMPLEXITY 2048
350 
351 extern struct cpufreq_governor schedutil_gov;
352 static bool build_perf_domains(const struct cpumask *cpu_map)
353 {
354 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
355 	struct perf_domain *pd = NULL, *tmp;
356 	int cpu = cpumask_first(cpu_map);
357 	struct root_domain *rd = cpu_rq(cpu)->rd;
358 	struct cpufreq_policy *policy;
359 	struct cpufreq_governor *gov;
360 
361 	if (!sysctl_sched_energy_aware)
362 		goto free;
363 
364 	/* EAS is enabled for asymmetric CPU capacity topologies. */
365 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
366 		if (sched_debug()) {
367 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
368 					cpumask_pr_args(cpu_map));
369 		}
370 		goto free;
371 	}
372 
373 	/* EAS definitely does *not* handle SMT */
374 	if (sched_smt_active()) {
375 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
376 			cpumask_pr_args(cpu_map));
377 		goto free;
378 	}
379 
380 	if (!arch_scale_freq_invariant()) {
381 		if (sched_debug()) {
382 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
383 				cpumask_pr_args(cpu_map));
384 		}
385 		goto free;
386 	}
387 
388 	for_each_cpu(i, cpu_map) {
389 		/* Skip already covered CPUs. */
390 		if (find_pd(pd, i))
391 			continue;
392 
393 		/* Do not attempt EAS if schedutil is not being used. */
394 		policy = cpufreq_cpu_get(i);
395 		if (!policy)
396 			goto free;
397 		gov = policy->governor;
398 		cpufreq_cpu_put(policy);
399 		if (gov != &schedutil_gov) {
400 			if (rd->pd)
401 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
402 						cpumask_pr_args(cpu_map));
403 			goto free;
404 		}
405 
406 		/* Create the new pd and add it to the local list. */
407 		tmp = pd_init(i);
408 		if (!tmp)
409 			goto free;
410 		tmp->next = pd;
411 		pd = tmp;
412 
413 		/*
414 		 * Count performance domains and performance states for the
415 		 * complexity check.
416 		 */
417 		nr_pd++;
418 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
419 	}
420 
421 	/* Bail out if the Energy Model complexity is too high. */
422 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
423 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
424 						cpumask_pr_args(cpu_map));
425 		goto free;
426 	}
427 
428 	perf_domain_debug(cpu_map, pd);
429 
430 	/* Attach the new list of performance domains to the root domain. */
431 	tmp = rd->pd;
432 	rcu_assign_pointer(rd->pd, pd);
433 	if (tmp)
434 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
435 
436 	return !!pd;
437 
438 free:
439 	free_pd(pd);
440 	tmp = rd->pd;
441 	rcu_assign_pointer(rd->pd, NULL);
442 	if (tmp)
443 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
444 
445 	return false;
446 }
447 #else
448 static void free_pd(struct perf_domain *pd) { }
449 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
450 
451 static void free_rootdomain(struct rcu_head *rcu)
452 {
453 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
454 
455 	cpupri_cleanup(&rd->cpupri);
456 	cpudl_cleanup(&rd->cpudl);
457 	free_cpumask_var(rd->dlo_mask);
458 	free_cpumask_var(rd->rto_mask);
459 	free_cpumask_var(rd->online);
460 	free_cpumask_var(rd->span);
461 	free_pd(rd->pd);
462 	kfree(rd);
463 }
464 
465 void rq_attach_root(struct rq *rq, struct root_domain *rd)
466 {
467 	struct root_domain *old_rd = NULL;
468 	unsigned long flags;
469 
470 	raw_spin_rq_lock_irqsave(rq, flags);
471 
472 	if (rq->rd) {
473 		old_rd = rq->rd;
474 
475 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
476 			set_rq_offline(rq);
477 
478 		cpumask_clear_cpu(rq->cpu, old_rd->span);
479 
480 		/*
481 		 * If we dont want to free the old_rd yet then
482 		 * set old_rd to NULL to skip the freeing later
483 		 * in this function:
484 		 */
485 		if (!atomic_dec_and_test(&old_rd->refcount))
486 			old_rd = NULL;
487 	}
488 
489 	atomic_inc(&rd->refcount);
490 	rq->rd = rd;
491 
492 	cpumask_set_cpu(rq->cpu, rd->span);
493 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
494 		set_rq_online(rq);
495 
496 	raw_spin_rq_unlock_irqrestore(rq, flags);
497 
498 	if (old_rd)
499 		call_rcu(&old_rd->rcu, free_rootdomain);
500 }
501 
502 void sched_get_rd(struct root_domain *rd)
503 {
504 	atomic_inc(&rd->refcount);
505 }
506 
507 void sched_put_rd(struct root_domain *rd)
508 {
509 	if (!atomic_dec_and_test(&rd->refcount))
510 		return;
511 
512 	call_rcu(&rd->rcu, free_rootdomain);
513 }
514 
515 static int init_rootdomain(struct root_domain *rd)
516 {
517 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
518 		goto out;
519 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
520 		goto free_span;
521 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
522 		goto free_online;
523 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
524 		goto free_dlo_mask;
525 
526 #ifdef HAVE_RT_PUSH_IPI
527 	rd->rto_cpu = -1;
528 	raw_spin_lock_init(&rd->rto_lock);
529 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
530 #endif
531 
532 	rd->visit_gen = 0;
533 	init_dl_bw(&rd->dl_bw);
534 	if (cpudl_init(&rd->cpudl) != 0)
535 		goto free_rto_mask;
536 
537 	if (cpupri_init(&rd->cpupri) != 0)
538 		goto free_cpudl;
539 	return 0;
540 
541 free_cpudl:
542 	cpudl_cleanup(&rd->cpudl);
543 free_rto_mask:
544 	free_cpumask_var(rd->rto_mask);
545 free_dlo_mask:
546 	free_cpumask_var(rd->dlo_mask);
547 free_online:
548 	free_cpumask_var(rd->online);
549 free_span:
550 	free_cpumask_var(rd->span);
551 out:
552 	return -ENOMEM;
553 }
554 
555 /*
556  * By default the system creates a single root-domain with all CPUs as
557  * members (mimicking the global state we have today).
558  */
559 struct root_domain def_root_domain;
560 
561 void init_defrootdomain(void)
562 {
563 	init_rootdomain(&def_root_domain);
564 
565 	atomic_set(&def_root_domain.refcount, 1);
566 }
567 
568 static struct root_domain *alloc_rootdomain(void)
569 {
570 	struct root_domain *rd;
571 
572 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
573 	if (!rd)
574 		return NULL;
575 
576 	if (init_rootdomain(rd) != 0) {
577 		kfree(rd);
578 		return NULL;
579 	}
580 
581 	return rd;
582 }
583 
584 static void free_sched_groups(struct sched_group *sg, int free_sgc)
585 {
586 	struct sched_group *tmp, *first;
587 
588 	if (!sg)
589 		return;
590 
591 	first = sg;
592 	do {
593 		tmp = sg->next;
594 
595 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
596 			kfree(sg->sgc);
597 
598 		if (atomic_dec_and_test(&sg->ref))
599 			kfree(sg);
600 		sg = tmp;
601 	} while (sg != first);
602 }
603 
604 static void destroy_sched_domain(struct sched_domain *sd)
605 {
606 	/*
607 	 * A normal sched domain may have multiple group references, an
608 	 * overlapping domain, having private groups, only one.  Iterate,
609 	 * dropping group/capacity references, freeing where none remain.
610 	 */
611 	free_sched_groups(sd->groups, 1);
612 
613 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
614 		kfree(sd->shared);
615 	kfree(sd);
616 }
617 
618 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
619 {
620 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
621 
622 	while (sd) {
623 		struct sched_domain *parent = sd->parent;
624 		destroy_sched_domain(sd);
625 		sd = parent;
626 	}
627 }
628 
629 static void destroy_sched_domains(struct sched_domain *sd)
630 {
631 	if (sd)
632 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
633 }
634 
635 /*
636  * Keep a special pointer to the highest sched_domain that has
637  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
638  * allows us to avoid some pointer chasing select_idle_sibling().
639  *
640  * Also keep a unique ID per domain (we use the first CPU number in
641  * the cpumask of the domain), this allows us to quickly tell if
642  * two CPUs are in the same cache domain, see cpus_share_cache().
643  */
644 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
645 DEFINE_PER_CPU(int, sd_llc_size);
646 DEFINE_PER_CPU(int, sd_llc_id);
647 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
648 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
649 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
650 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
651 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
652 
653 static void update_top_cache_domain(int cpu)
654 {
655 	struct sched_domain_shared *sds = NULL;
656 	struct sched_domain *sd;
657 	int id = cpu;
658 	int size = 1;
659 
660 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
661 	if (sd) {
662 		id = cpumask_first(sched_domain_span(sd));
663 		size = cpumask_weight(sched_domain_span(sd));
664 		sds = sd->shared;
665 	}
666 
667 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
668 	per_cpu(sd_llc_size, cpu) = size;
669 	per_cpu(sd_llc_id, cpu) = id;
670 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
671 
672 	sd = lowest_flag_domain(cpu, SD_NUMA);
673 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
674 
675 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
676 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
677 
678 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
679 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
680 }
681 
682 /*
683  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
684  * hold the hotplug lock.
685  */
686 static void
687 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
688 {
689 	struct rq *rq = cpu_rq(cpu);
690 	struct sched_domain *tmp;
691 	int numa_distance = 0;
692 
693 	/* Remove the sched domains which do not contribute to scheduling. */
694 	for (tmp = sd; tmp; ) {
695 		struct sched_domain *parent = tmp->parent;
696 		if (!parent)
697 			break;
698 
699 		if (sd_parent_degenerate(tmp, parent)) {
700 			tmp->parent = parent->parent;
701 			if (parent->parent)
702 				parent->parent->child = tmp;
703 			/*
704 			 * Transfer SD_PREFER_SIBLING down in case of a
705 			 * degenerate parent; the spans match for this
706 			 * so the property transfers.
707 			 */
708 			if (parent->flags & SD_PREFER_SIBLING)
709 				tmp->flags |= SD_PREFER_SIBLING;
710 			destroy_sched_domain(parent);
711 		} else
712 			tmp = tmp->parent;
713 	}
714 
715 	if (sd && sd_degenerate(sd)) {
716 		tmp = sd;
717 		sd = sd->parent;
718 		destroy_sched_domain(tmp);
719 		if (sd)
720 			sd->child = NULL;
721 	}
722 
723 	for (tmp = sd; tmp; tmp = tmp->parent)
724 		numa_distance += !!(tmp->flags & SD_NUMA);
725 
726 	sched_domain_debug(sd, cpu);
727 
728 	rq_attach_root(rq, rd);
729 	tmp = rq->sd;
730 	rcu_assign_pointer(rq->sd, sd);
731 	dirty_sched_domain_sysctl(cpu);
732 	destroy_sched_domains(tmp);
733 
734 	update_top_cache_domain(cpu);
735 }
736 
737 struct s_data {
738 	struct sched_domain * __percpu *sd;
739 	struct root_domain	*rd;
740 };
741 
742 enum s_alloc {
743 	sa_rootdomain,
744 	sa_sd,
745 	sa_sd_storage,
746 	sa_none,
747 };
748 
749 /*
750  * Return the canonical balance CPU for this group, this is the first CPU
751  * of this group that's also in the balance mask.
752  *
753  * The balance mask are all those CPUs that could actually end up at this
754  * group. See build_balance_mask().
755  *
756  * Also see should_we_balance().
757  */
758 int group_balance_cpu(struct sched_group *sg)
759 {
760 	return cpumask_first(group_balance_mask(sg));
761 }
762 
763 
764 /*
765  * NUMA topology (first read the regular topology blurb below)
766  *
767  * Given a node-distance table, for example:
768  *
769  *   node   0   1   2   3
770  *     0:  10  20  30  20
771  *     1:  20  10  20  30
772  *     2:  30  20  10  20
773  *     3:  20  30  20  10
774  *
775  * which represents a 4 node ring topology like:
776  *
777  *   0 ----- 1
778  *   |       |
779  *   |       |
780  *   |       |
781  *   3 ----- 2
782  *
783  * We want to construct domains and groups to represent this. The way we go
784  * about doing this is to build the domains on 'hops'. For each NUMA level we
785  * construct the mask of all nodes reachable in @level hops.
786  *
787  * For the above NUMA topology that gives 3 levels:
788  *
789  * NUMA-2	0-3		0-3		0-3		0-3
790  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
791  *
792  * NUMA-1	0-1,3		0-2		1-3		0,2-3
793  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
794  *
795  * NUMA-0	0		1		2		3
796  *
797  *
798  * As can be seen; things don't nicely line up as with the regular topology.
799  * When we iterate a domain in child domain chunks some nodes can be
800  * represented multiple times -- hence the "overlap" naming for this part of
801  * the topology.
802  *
803  * In order to minimize this overlap, we only build enough groups to cover the
804  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
805  *
806  * Because:
807  *
808  *  - the first group of each domain is its child domain; this
809  *    gets us the first 0-1,3
810  *  - the only uncovered node is 2, who's child domain is 1-3.
811  *
812  * However, because of the overlap, computing a unique CPU for each group is
813  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
814  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
815  * end up at those groups (they would end up in group: 0-1,3).
816  *
817  * To correct this we have to introduce the group balance mask. This mask
818  * will contain those CPUs in the group that can reach this group given the
819  * (child) domain tree.
820  *
821  * With this we can once again compute balance_cpu and sched_group_capacity
822  * relations.
823  *
824  * XXX include words on how balance_cpu is unique and therefore can be
825  * used for sched_group_capacity links.
826  *
827  *
828  * Another 'interesting' topology is:
829  *
830  *   node   0   1   2   3
831  *     0:  10  20  20  30
832  *     1:  20  10  20  20
833  *     2:  20  20  10  20
834  *     3:  30  20  20  10
835  *
836  * Which looks a little like:
837  *
838  *   0 ----- 1
839  *   |     / |
840  *   |   /   |
841  *   | /     |
842  *   2 ----- 3
843  *
844  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
845  * are not.
846  *
847  * This leads to a few particularly weird cases where the sched_domain's are
848  * not of the same number for each CPU. Consider:
849  *
850  * NUMA-2	0-3						0-3
851  *  groups:	{0-2},{1-3}					{1-3},{0-2}
852  *
853  * NUMA-1	0-2		0-3		0-3		1-3
854  *
855  * NUMA-0	0		1		2		3
856  *
857  */
858 
859 
860 /*
861  * Build the balance mask; it contains only those CPUs that can arrive at this
862  * group and should be considered to continue balancing.
863  *
864  * We do this during the group creation pass, therefore the group information
865  * isn't complete yet, however since each group represents a (child) domain we
866  * can fully construct this using the sched_domain bits (which are already
867  * complete).
868  */
869 static void
870 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
871 {
872 	const struct cpumask *sg_span = sched_group_span(sg);
873 	struct sd_data *sdd = sd->private;
874 	struct sched_domain *sibling;
875 	int i;
876 
877 	cpumask_clear(mask);
878 
879 	for_each_cpu(i, sg_span) {
880 		sibling = *per_cpu_ptr(sdd->sd, i);
881 
882 		/*
883 		 * Can happen in the asymmetric case, where these siblings are
884 		 * unused. The mask will not be empty because those CPUs that
885 		 * do have the top domain _should_ span the domain.
886 		 */
887 		if (!sibling->child)
888 			continue;
889 
890 		/* If we would not end up here, we can't continue from here */
891 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
892 			continue;
893 
894 		cpumask_set_cpu(i, mask);
895 	}
896 
897 	/* We must not have empty masks here */
898 	WARN_ON_ONCE(cpumask_empty(mask));
899 }
900 
901 /*
902  * XXX: This creates per-node group entries; since the load-balancer will
903  * immediately access remote memory to construct this group's load-balance
904  * statistics having the groups node local is of dubious benefit.
905  */
906 static struct sched_group *
907 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
908 {
909 	struct sched_group *sg;
910 	struct cpumask *sg_span;
911 
912 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
913 			GFP_KERNEL, cpu_to_node(cpu));
914 
915 	if (!sg)
916 		return NULL;
917 
918 	sg_span = sched_group_span(sg);
919 	if (sd->child)
920 		cpumask_copy(sg_span, sched_domain_span(sd->child));
921 	else
922 		cpumask_copy(sg_span, sched_domain_span(sd));
923 
924 	atomic_inc(&sg->ref);
925 	return sg;
926 }
927 
928 static void init_overlap_sched_group(struct sched_domain *sd,
929 				     struct sched_group *sg)
930 {
931 	struct cpumask *mask = sched_domains_tmpmask2;
932 	struct sd_data *sdd = sd->private;
933 	struct cpumask *sg_span;
934 	int cpu;
935 
936 	build_balance_mask(sd, sg, mask);
937 	cpu = cpumask_first(mask);
938 
939 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
940 	if (atomic_inc_return(&sg->sgc->ref) == 1)
941 		cpumask_copy(group_balance_mask(sg), mask);
942 	else
943 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
944 
945 	/*
946 	 * Initialize sgc->capacity such that even if we mess up the
947 	 * domains and no possible iteration will get us here, we won't
948 	 * die on a /0 trap.
949 	 */
950 	sg_span = sched_group_span(sg);
951 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
952 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
953 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
954 }
955 
956 static struct sched_domain *
957 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
958 {
959 	/*
960 	 * The proper descendant would be the one whose child won't span out
961 	 * of sd
962 	 */
963 	while (sibling->child &&
964 	       !cpumask_subset(sched_domain_span(sibling->child),
965 			       sched_domain_span(sd)))
966 		sibling = sibling->child;
967 
968 	/*
969 	 * As we are referencing sgc across different topology level, we need
970 	 * to go down to skip those sched_domains which don't contribute to
971 	 * scheduling because they will be degenerated in cpu_attach_domain
972 	 */
973 	while (sibling->child &&
974 	       cpumask_equal(sched_domain_span(sibling->child),
975 			     sched_domain_span(sibling)))
976 		sibling = sibling->child;
977 
978 	return sibling;
979 }
980 
981 static int
982 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
983 {
984 	struct sched_group *first = NULL, *last = NULL, *sg;
985 	const struct cpumask *span = sched_domain_span(sd);
986 	struct cpumask *covered = sched_domains_tmpmask;
987 	struct sd_data *sdd = sd->private;
988 	struct sched_domain *sibling;
989 	int i;
990 
991 	cpumask_clear(covered);
992 
993 	for_each_cpu_wrap(i, span, cpu) {
994 		struct cpumask *sg_span;
995 
996 		if (cpumask_test_cpu(i, covered))
997 			continue;
998 
999 		sibling = *per_cpu_ptr(sdd->sd, i);
1000 
1001 		/*
1002 		 * Asymmetric node setups can result in situations where the
1003 		 * domain tree is of unequal depth, make sure to skip domains
1004 		 * that already cover the entire range.
1005 		 *
1006 		 * In that case build_sched_domains() will have terminated the
1007 		 * iteration early and our sibling sd spans will be empty.
1008 		 * Domains should always include the CPU they're built on, so
1009 		 * check that.
1010 		 */
1011 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1012 			continue;
1013 
1014 		/*
1015 		 * Usually we build sched_group by sibling's child sched_domain
1016 		 * But for machines whose NUMA diameter are 3 or above, we move
1017 		 * to build sched_group by sibling's proper descendant's child
1018 		 * domain because sibling's child sched_domain will span out of
1019 		 * the sched_domain being built as below.
1020 		 *
1021 		 * Smallest diameter=3 topology is:
1022 		 *
1023 		 *   node   0   1   2   3
1024 		 *     0:  10  20  30  40
1025 		 *     1:  20  10  20  30
1026 		 *     2:  30  20  10  20
1027 		 *     3:  40  30  20  10
1028 		 *
1029 		 *   0 --- 1 --- 2 --- 3
1030 		 *
1031 		 * NUMA-3       0-3             N/A             N/A             0-3
1032 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1033 		 *
1034 		 * NUMA-2       0-2             0-3             0-3             1-3
1035 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1036 		 *
1037 		 * NUMA-1       0-1             0-2             1-3             2-3
1038 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1039 		 *
1040 		 * NUMA-0       0               1               2               3
1041 		 *
1042 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1043 		 * group span isn't a subset of the domain span.
1044 		 */
1045 		if (sibling->child &&
1046 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1047 			sibling = find_descended_sibling(sd, sibling);
1048 
1049 		sg = build_group_from_child_sched_domain(sibling, cpu);
1050 		if (!sg)
1051 			goto fail;
1052 
1053 		sg_span = sched_group_span(sg);
1054 		cpumask_or(covered, covered, sg_span);
1055 
1056 		init_overlap_sched_group(sibling, sg);
1057 
1058 		if (!first)
1059 			first = sg;
1060 		if (last)
1061 			last->next = sg;
1062 		last = sg;
1063 		last->next = first;
1064 	}
1065 	sd->groups = first;
1066 
1067 	return 0;
1068 
1069 fail:
1070 	free_sched_groups(first, 0);
1071 
1072 	return -ENOMEM;
1073 }
1074 
1075 
1076 /*
1077  * Package topology (also see the load-balance blurb in fair.c)
1078  *
1079  * The scheduler builds a tree structure to represent a number of important
1080  * topology features. By default (default_topology[]) these include:
1081  *
1082  *  - Simultaneous multithreading (SMT)
1083  *  - Multi-Core Cache (MC)
1084  *  - Package (DIE)
1085  *
1086  * Where the last one more or less denotes everything up to a NUMA node.
1087  *
1088  * The tree consists of 3 primary data structures:
1089  *
1090  *	sched_domain -> sched_group -> sched_group_capacity
1091  *	    ^ ^             ^ ^
1092  *          `-'             `-'
1093  *
1094  * The sched_domains are per-CPU and have a two way link (parent & child) and
1095  * denote the ever growing mask of CPUs belonging to that level of topology.
1096  *
1097  * Each sched_domain has a circular (double) linked list of sched_group's, each
1098  * denoting the domains of the level below (or individual CPUs in case of the
1099  * first domain level). The sched_group linked by a sched_domain includes the
1100  * CPU of that sched_domain [*].
1101  *
1102  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1103  *
1104  * CPU   0   1   2   3   4   5   6   7
1105  *
1106  * DIE  [                             ]
1107  * MC   [             ] [             ]
1108  * SMT  [     ] [     ] [     ] [     ]
1109  *
1110  *  - or -
1111  *
1112  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1113  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1114  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1115  *
1116  * CPU   0   1   2   3   4   5   6   7
1117  *
1118  * One way to think about it is: sched_domain moves you up and down among these
1119  * topology levels, while sched_group moves you sideways through it, at child
1120  * domain granularity.
1121  *
1122  * sched_group_capacity ensures each unique sched_group has shared storage.
1123  *
1124  * There are two related construction problems, both require a CPU that
1125  * uniquely identify each group (for a given domain):
1126  *
1127  *  - The first is the balance_cpu (see should_we_balance() and the
1128  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1129  *    continue balancing at a higher domain.
1130  *
1131  *  - The second is the sched_group_capacity; we want all identical groups
1132  *    to share a single sched_group_capacity.
1133  *
1134  * Since these topologies are exclusive by construction. That is, its
1135  * impossible for an SMT thread to belong to multiple cores, and cores to
1136  * be part of multiple caches. There is a very clear and unique location
1137  * for each CPU in the hierarchy.
1138  *
1139  * Therefore computing a unique CPU for each group is trivial (the iteration
1140  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1141  * group), we can simply pick the first CPU in each group.
1142  *
1143  *
1144  * [*] in other words, the first group of each domain is its child domain.
1145  */
1146 
1147 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1148 {
1149 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1150 	struct sched_domain *child = sd->child;
1151 	struct sched_group *sg;
1152 	bool already_visited;
1153 
1154 	if (child)
1155 		cpu = cpumask_first(sched_domain_span(child));
1156 
1157 	sg = *per_cpu_ptr(sdd->sg, cpu);
1158 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1159 
1160 	/* Increase refcounts for claim_allocations: */
1161 	already_visited = atomic_inc_return(&sg->ref) > 1;
1162 	/* sgc visits should follow a similar trend as sg */
1163 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1164 
1165 	/* If we have already visited that group, it's already initialized. */
1166 	if (already_visited)
1167 		return sg;
1168 
1169 	if (child) {
1170 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1171 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1172 	} else {
1173 		cpumask_set_cpu(cpu, sched_group_span(sg));
1174 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1175 	}
1176 
1177 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1178 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1179 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1180 
1181 	return sg;
1182 }
1183 
1184 /*
1185  * build_sched_groups will build a circular linked list of the groups
1186  * covered by the given span, will set each group's ->cpumask correctly,
1187  * and will initialize their ->sgc.
1188  *
1189  * Assumes the sched_domain tree is fully constructed
1190  */
1191 static int
1192 build_sched_groups(struct sched_domain *sd, int cpu)
1193 {
1194 	struct sched_group *first = NULL, *last = NULL;
1195 	struct sd_data *sdd = sd->private;
1196 	const struct cpumask *span = sched_domain_span(sd);
1197 	struct cpumask *covered;
1198 	int i;
1199 
1200 	lockdep_assert_held(&sched_domains_mutex);
1201 	covered = sched_domains_tmpmask;
1202 
1203 	cpumask_clear(covered);
1204 
1205 	for_each_cpu_wrap(i, span, cpu) {
1206 		struct sched_group *sg;
1207 
1208 		if (cpumask_test_cpu(i, covered))
1209 			continue;
1210 
1211 		sg = get_group(i, sdd);
1212 
1213 		cpumask_or(covered, covered, sched_group_span(sg));
1214 
1215 		if (!first)
1216 			first = sg;
1217 		if (last)
1218 			last->next = sg;
1219 		last = sg;
1220 	}
1221 	last->next = first;
1222 	sd->groups = first;
1223 
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Initialize sched groups cpu_capacity.
1229  *
1230  * cpu_capacity indicates the capacity of sched group, which is used while
1231  * distributing the load between different sched groups in a sched domain.
1232  * Typically cpu_capacity for all the groups in a sched domain will be same
1233  * unless there are asymmetries in the topology. If there are asymmetries,
1234  * group having more cpu_capacity will pickup more load compared to the
1235  * group having less cpu_capacity.
1236  */
1237 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1238 {
1239 	struct sched_group *sg = sd->groups;
1240 
1241 	WARN_ON(!sg);
1242 
1243 	do {
1244 		int cpu, max_cpu = -1;
1245 
1246 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1247 
1248 		if (!(sd->flags & SD_ASYM_PACKING))
1249 			goto next;
1250 
1251 		for_each_cpu(cpu, sched_group_span(sg)) {
1252 			if (max_cpu < 0)
1253 				max_cpu = cpu;
1254 			else if (sched_asym_prefer(cpu, max_cpu))
1255 				max_cpu = cpu;
1256 		}
1257 		sg->asym_prefer_cpu = max_cpu;
1258 
1259 next:
1260 		sg = sg->next;
1261 	} while (sg != sd->groups);
1262 
1263 	if (cpu != group_balance_cpu(sg))
1264 		return;
1265 
1266 	update_group_capacity(sd, cpu);
1267 }
1268 
1269 /*
1270  * Asymmetric CPU capacity bits
1271  */
1272 struct asym_cap_data {
1273 	struct list_head link;
1274 	unsigned long capacity;
1275 	unsigned long cpus[];
1276 };
1277 
1278 /*
1279  * Set of available CPUs grouped by their corresponding capacities
1280  * Each list entry contains a CPU mask reflecting CPUs that share the same
1281  * capacity.
1282  * The lifespan of data is unlimited.
1283  */
1284 static LIST_HEAD(asym_cap_list);
1285 
1286 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1287 
1288 /*
1289  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1290  * Provides sd_flags reflecting the asymmetry scope.
1291  */
1292 static inline int
1293 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1294 			   const struct cpumask *cpu_map)
1295 {
1296 	struct asym_cap_data *entry;
1297 	int count = 0, miss = 0;
1298 
1299 	/*
1300 	 * Count how many unique CPU capacities this domain spans across
1301 	 * (compare sched_domain CPUs mask with ones representing  available
1302 	 * CPUs capacities). Take into account CPUs that might be offline:
1303 	 * skip those.
1304 	 */
1305 	list_for_each_entry(entry, &asym_cap_list, link) {
1306 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1307 			++count;
1308 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1309 			++miss;
1310 	}
1311 
1312 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1313 
1314 	/* No asymmetry detected */
1315 	if (count < 2)
1316 		return 0;
1317 	/* Some of the available CPU capacity values have not been detected */
1318 	if (miss)
1319 		return SD_ASYM_CPUCAPACITY;
1320 
1321 	/* Full asymmetry */
1322 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1323 
1324 }
1325 
1326 static inline void asym_cpu_capacity_update_data(int cpu)
1327 {
1328 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1329 	struct asym_cap_data *entry = NULL;
1330 
1331 	list_for_each_entry(entry, &asym_cap_list, link) {
1332 		if (capacity == entry->capacity)
1333 			goto done;
1334 	}
1335 
1336 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1337 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1338 		return;
1339 	entry->capacity = capacity;
1340 	list_add(&entry->link, &asym_cap_list);
1341 done:
1342 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1343 }
1344 
1345 /*
1346  * Build-up/update list of CPUs grouped by their capacities
1347  * An update requires explicit request to rebuild sched domains
1348  * with state indicating CPU topology changes.
1349  */
1350 static void asym_cpu_capacity_scan(void)
1351 {
1352 	struct asym_cap_data *entry, *next;
1353 	int cpu;
1354 
1355 	list_for_each_entry(entry, &asym_cap_list, link)
1356 		cpumask_clear(cpu_capacity_span(entry));
1357 
1358 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_FLAG_DOMAIN))
1359 		asym_cpu_capacity_update_data(cpu);
1360 
1361 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1362 		if (cpumask_empty(cpu_capacity_span(entry))) {
1363 			list_del(&entry->link);
1364 			kfree(entry);
1365 		}
1366 	}
1367 
1368 	/*
1369 	 * Only one capacity value has been detected i.e. this system is symmetric.
1370 	 * No need to keep this data around.
1371 	 */
1372 	if (list_is_singular(&asym_cap_list)) {
1373 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1374 		list_del(&entry->link);
1375 		kfree(entry);
1376 	}
1377 }
1378 
1379 /*
1380  * Initializers for schedule domains
1381  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1382  */
1383 
1384 static int default_relax_domain_level = -1;
1385 int sched_domain_level_max;
1386 
1387 static int __init setup_relax_domain_level(char *str)
1388 {
1389 	if (kstrtoint(str, 0, &default_relax_domain_level))
1390 		pr_warn("Unable to set relax_domain_level\n");
1391 
1392 	return 1;
1393 }
1394 __setup("relax_domain_level=", setup_relax_domain_level);
1395 
1396 static void set_domain_attribute(struct sched_domain *sd,
1397 				 struct sched_domain_attr *attr)
1398 {
1399 	int request;
1400 
1401 	if (!attr || attr->relax_domain_level < 0) {
1402 		if (default_relax_domain_level < 0)
1403 			return;
1404 		request = default_relax_domain_level;
1405 	} else
1406 		request = attr->relax_domain_level;
1407 
1408 	if (sd->level > request) {
1409 		/* Turn off idle balance on this domain: */
1410 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1411 	}
1412 }
1413 
1414 static void __sdt_free(const struct cpumask *cpu_map);
1415 static int __sdt_alloc(const struct cpumask *cpu_map);
1416 
1417 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1418 				 const struct cpumask *cpu_map)
1419 {
1420 	switch (what) {
1421 	case sa_rootdomain:
1422 		if (!atomic_read(&d->rd->refcount))
1423 			free_rootdomain(&d->rd->rcu);
1424 		fallthrough;
1425 	case sa_sd:
1426 		free_percpu(d->sd);
1427 		fallthrough;
1428 	case sa_sd_storage:
1429 		__sdt_free(cpu_map);
1430 		fallthrough;
1431 	case sa_none:
1432 		break;
1433 	}
1434 }
1435 
1436 static enum s_alloc
1437 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1438 {
1439 	memset(d, 0, sizeof(*d));
1440 
1441 	if (__sdt_alloc(cpu_map))
1442 		return sa_sd_storage;
1443 	d->sd = alloc_percpu(struct sched_domain *);
1444 	if (!d->sd)
1445 		return sa_sd_storage;
1446 	d->rd = alloc_rootdomain();
1447 	if (!d->rd)
1448 		return sa_sd;
1449 
1450 	return sa_rootdomain;
1451 }
1452 
1453 /*
1454  * NULL the sd_data elements we've used to build the sched_domain and
1455  * sched_group structure so that the subsequent __free_domain_allocs()
1456  * will not free the data we're using.
1457  */
1458 static void claim_allocations(int cpu, struct sched_domain *sd)
1459 {
1460 	struct sd_data *sdd = sd->private;
1461 
1462 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1463 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1464 
1465 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1466 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1467 
1468 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1469 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1470 
1471 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1472 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1473 }
1474 
1475 #ifdef CONFIG_NUMA
1476 enum numa_topology_type sched_numa_topology_type;
1477 
1478 static int			sched_domains_numa_levels;
1479 static int			sched_domains_curr_level;
1480 
1481 int				sched_max_numa_distance;
1482 static int			*sched_domains_numa_distance;
1483 static struct cpumask		***sched_domains_numa_masks;
1484 int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1485 #endif
1486 
1487 /*
1488  * SD_flags allowed in topology descriptions.
1489  *
1490  * These flags are purely descriptive of the topology and do not prescribe
1491  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1492  * function:
1493  *
1494  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1495  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1496  *   SD_NUMA                - describes NUMA topologies
1497  *
1498  * Odd one out, which beside describing the topology has a quirk also
1499  * prescribes the desired behaviour that goes along with it:
1500  *
1501  *   SD_ASYM_PACKING        - describes SMT quirks
1502  */
1503 #define TOPOLOGY_SD_FLAGS		\
1504 	(SD_SHARE_CPUCAPACITY	|	\
1505 	 SD_SHARE_PKG_RESOURCES |	\
1506 	 SD_NUMA		|	\
1507 	 SD_ASYM_PACKING)
1508 
1509 static struct sched_domain *
1510 sd_init(struct sched_domain_topology_level *tl,
1511 	const struct cpumask *cpu_map,
1512 	struct sched_domain *child, int cpu)
1513 {
1514 	struct sd_data *sdd = &tl->data;
1515 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1516 	int sd_id, sd_weight, sd_flags = 0;
1517 	struct cpumask *sd_span;
1518 
1519 #ifdef CONFIG_NUMA
1520 	/*
1521 	 * Ugly hack to pass state to sd_numa_mask()...
1522 	 */
1523 	sched_domains_curr_level = tl->numa_level;
1524 #endif
1525 
1526 	sd_weight = cpumask_weight(tl->mask(cpu));
1527 
1528 	if (tl->sd_flags)
1529 		sd_flags = (*tl->sd_flags)();
1530 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1531 			"wrong sd_flags in topology description\n"))
1532 		sd_flags &= TOPOLOGY_SD_FLAGS;
1533 
1534 	*sd = (struct sched_domain){
1535 		.min_interval		= sd_weight,
1536 		.max_interval		= 2*sd_weight,
1537 		.busy_factor		= 16,
1538 		.imbalance_pct		= 117,
1539 
1540 		.cache_nice_tries	= 0,
1541 
1542 		.flags			= 1*SD_BALANCE_NEWIDLE
1543 					| 1*SD_BALANCE_EXEC
1544 					| 1*SD_BALANCE_FORK
1545 					| 0*SD_BALANCE_WAKE
1546 					| 1*SD_WAKE_AFFINE
1547 					| 0*SD_SHARE_CPUCAPACITY
1548 					| 0*SD_SHARE_PKG_RESOURCES
1549 					| 0*SD_SERIALIZE
1550 					| 1*SD_PREFER_SIBLING
1551 					| 0*SD_NUMA
1552 					| sd_flags
1553 					,
1554 
1555 		.last_balance		= jiffies,
1556 		.balance_interval	= sd_weight,
1557 		.max_newidle_lb_cost	= 0,
1558 		.next_decay_max_lb_cost	= jiffies,
1559 		.child			= child,
1560 #ifdef CONFIG_SCHED_DEBUG
1561 		.name			= tl->name,
1562 #endif
1563 	};
1564 
1565 	sd_span = sched_domain_span(sd);
1566 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1567 	sd_id = cpumask_first(sd_span);
1568 
1569 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1570 
1571 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1572 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1573 		  "CPU capacity asymmetry not supported on SMT\n");
1574 
1575 	/*
1576 	 * Convert topological properties into behaviour.
1577 	 */
1578 	/* Don't attempt to spread across CPUs of different capacities. */
1579 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1580 		sd->child->flags &= ~SD_PREFER_SIBLING;
1581 
1582 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1583 		sd->imbalance_pct = 110;
1584 
1585 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1586 		sd->imbalance_pct = 117;
1587 		sd->cache_nice_tries = 1;
1588 
1589 #ifdef CONFIG_NUMA
1590 	} else if (sd->flags & SD_NUMA) {
1591 		sd->cache_nice_tries = 2;
1592 
1593 		sd->flags &= ~SD_PREFER_SIBLING;
1594 		sd->flags |= SD_SERIALIZE;
1595 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1596 			sd->flags &= ~(SD_BALANCE_EXEC |
1597 				       SD_BALANCE_FORK |
1598 				       SD_WAKE_AFFINE);
1599 		}
1600 
1601 #endif
1602 	} else {
1603 		sd->cache_nice_tries = 1;
1604 	}
1605 
1606 	/*
1607 	 * For all levels sharing cache; connect a sched_domain_shared
1608 	 * instance.
1609 	 */
1610 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1611 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1612 		atomic_inc(&sd->shared->ref);
1613 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1614 	}
1615 
1616 	sd->private = sdd;
1617 
1618 	return sd;
1619 }
1620 
1621 /*
1622  * Topology list, bottom-up.
1623  */
1624 static struct sched_domain_topology_level default_topology[] = {
1625 #ifdef CONFIG_SCHED_SMT
1626 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1627 #endif
1628 #ifdef CONFIG_SCHED_MC
1629 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1630 #endif
1631 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1632 	{ NULL, },
1633 };
1634 
1635 static struct sched_domain_topology_level *sched_domain_topology =
1636 	default_topology;
1637 
1638 #define for_each_sd_topology(tl)			\
1639 	for (tl = sched_domain_topology; tl->mask; tl++)
1640 
1641 void set_sched_topology(struct sched_domain_topology_level *tl)
1642 {
1643 	if (WARN_ON_ONCE(sched_smp_initialized))
1644 		return;
1645 
1646 	sched_domain_topology = tl;
1647 }
1648 
1649 #ifdef CONFIG_NUMA
1650 
1651 static const struct cpumask *sd_numa_mask(int cpu)
1652 {
1653 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1654 }
1655 
1656 static void sched_numa_warn(const char *str)
1657 {
1658 	static int done = false;
1659 	int i,j;
1660 
1661 	if (done)
1662 		return;
1663 
1664 	done = true;
1665 
1666 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1667 
1668 	for (i = 0; i < nr_node_ids; i++) {
1669 		printk(KERN_WARNING "  ");
1670 		for (j = 0; j < nr_node_ids; j++)
1671 			printk(KERN_CONT "%02d ", node_distance(i,j));
1672 		printk(KERN_CONT "\n");
1673 	}
1674 	printk(KERN_WARNING "\n");
1675 }
1676 
1677 bool find_numa_distance(int distance)
1678 {
1679 	int i;
1680 
1681 	if (distance == node_distance(0, 0))
1682 		return true;
1683 
1684 	for (i = 0; i < sched_domains_numa_levels; i++) {
1685 		if (sched_domains_numa_distance[i] == distance)
1686 			return true;
1687 	}
1688 
1689 	return false;
1690 }
1691 
1692 /*
1693  * A system can have three types of NUMA topology:
1694  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1695  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1696  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1697  *
1698  * The difference between a glueless mesh topology and a backplane
1699  * topology lies in whether communication between not directly
1700  * connected nodes goes through intermediary nodes (where programs
1701  * could run), or through backplane controllers. This affects
1702  * placement of programs.
1703  *
1704  * The type of topology can be discerned with the following tests:
1705  * - If the maximum distance between any nodes is 1 hop, the system
1706  *   is directly connected.
1707  * - If for two nodes A and B, located N > 1 hops away from each other,
1708  *   there is an intermediary node C, which is < N hops away from both
1709  *   nodes A and B, the system is a glueless mesh.
1710  */
1711 static void init_numa_topology_type(void)
1712 {
1713 	int a, b, c, n;
1714 
1715 	n = sched_max_numa_distance;
1716 
1717 	if (sched_domains_numa_levels <= 2) {
1718 		sched_numa_topology_type = NUMA_DIRECT;
1719 		return;
1720 	}
1721 
1722 	for_each_online_node(a) {
1723 		for_each_online_node(b) {
1724 			/* Find two nodes furthest removed from each other. */
1725 			if (node_distance(a, b) < n)
1726 				continue;
1727 
1728 			/* Is there an intermediary node between a and b? */
1729 			for_each_online_node(c) {
1730 				if (node_distance(a, c) < n &&
1731 				    node_distance(b, c) < n) {
1732 					sched_numa_topology_type =
1733 							NUMA_GLUELESS_MESH;
1734 					return;
1735 				}
1736 			}
1737 
1738 			sched_numa_topology_type = NUMA_BACKPLANE;
1739 			return;
1740 		}
1741 	}
1742 }
1743 
1744 
1745 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1746 
1747 void sched_init_numa(void)
1748 {
1749 	struct sched_domain_topology_level *tl;
1750 	unsigned long *distance_map;
1751 	int nr_levels = 0;
1752 	int i, j;
1753 
1754 	/*
1755 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1756 	 * unique distances in the node_distance() table.
1757 	 */
1758 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1759 	if (!distance_map)
1760 		return;
1761 
1762 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1763 	for (i = 0; i < nr_node_ids; i++) {
1764 		for (j = 0; j < nr_node_ids; j++) {
1765 			int distance = node_distance(i, j);
1766 
1767 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1768 				sched_numa_warn("Invalid distance value range");
1769 				return;
1770 			}
1771 
1772 			bitmap_set(distance_map, distance, 1);
1773 		}
1774 	}
1775 	/*
1776 	 * We can now figure out how many unique distance values there are and
1777 	 * allocate memory accordingly.
1778 	 */
1779 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1780 
1781 	sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1782 	if (!sched_domains_numa_distance) {
1783 		bitmap_free(distance_map);
1784 		return;
1785 	}
1786 
1787 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1788 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1789 		sched_domains_numa_distance[i] = j;
1790 	}
1791 
1792 	bitmap_free(distance_map);
1793 
1794 	/*
1795 	 * 'nr_levels' contains the number of unique distances
1796 	 *
1797 	 * The sched_domains_numa_distance[] array includes the actual distance
1798 	 * numbers.
1799 	 */
1800 
1801 	/*
1802 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1803 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1804 	 * the array will contain less then 'nr_levels' members. This could be
1805 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1806 	 * in other functions.
1807 	 *
1808 	 * We reset it to 'nr_levels' at the end of this function.
1809 	 */
1810 	sched_domains_numa_levels = 0;
1811 
1812 	sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1813 	if (!sched_domains_numa_masks)
1814 		return;
1815 
1816 	/*
1817 	 * Now for each level, construct a mask per node which contains all
1818 	 * CPUs of nodes that are that many hops away from us.
1819 	 */
1820 	for (i = 0; i < nr_levels; i++) {
1821 		sched_domains_numa_masks[i] =
1822 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1823 		if (!sched_domains_numa_masks[i])
1824 			return;
1825 
1826 		for (j = 0; j < nr_node_ids; j++) {
1827 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1828 			int k;
1829 
1830 			if (!mask)
1831 				return;
1832 
1833 			sched_domains_numa_masks[i][j] = mask;
1834 
1835 			for_each_node(k) {
1836 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1837 					sched_numa_warn("Node-distance not symmetric");
1838 
1839 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1840 					continue;
1841 
1842 				cpumask_or(mask, mask, cpumask_of_node(k));
1843 			}
1844 		}
1845 	}
1846 
1847 	/* Compute default topology size */
1848 	for (i = 0; sched_domain_topology[i].mask; i++);
1849 
1850 	tl = kzalloc((i + nr_levels + 1) *
1851 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1852 	if (!tl)
1853 		return;
1854 
1855 	/*
1856 	 * Copy the default topology bits..
1857 	 */
1858 	for (i = 0; sched_domain_topology[i].mask; i++)
1859 		tl[i] = sched_domain_topology[i];
1860 
1861 	/*
1862 	 * Add the NUMA identity distance, aka single NODE.
1863 	 */
1864 	tl[i++] = (struct sched_domain_topology_level){
1865 		.mask = sd_numa_mask,
1866 		.numa_level = 0,
1867 		SD_INIT_NAME(NODE)
1868 	};
1869 
1870 	/*
1871 	 * .. and append 'j' levels of NUMA goodness.
1872 	 */
1873 	for (j = 1; j < nr_levels; i++, j++) {
1874 		tl[i] = (struct sched_domain_topology_level){
1875 			.mask = sd_numa_mask,
1876 			.sd_flags = cpu_numa_flags,
1877 			.flags = SDTL_OVERLAP,
1878 			.numa_level = j,
1879 			SD_INIT_NAME(NUMA)
1880 		};
1881 	}
1882 
1883 	sched_domain_topology = tl;
1884 
1885 	sched_domains_numa_levels = nr_levels;
1886 	sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
1887 
1888 	init_numa_topology_type();
1889 }
1890 
1891 void sched_domains_numa_masks_set(unsigned int cpu)
1892 {
1893 	int node = cpu_to_node(cpu);
1894 	int i, j;
1895 
1896 	for (i = 0; i < sched_domains_numa_levels; i++) {
1897 		for (j = 0; j < nr_node_ids; j++) {
1898 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1899 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1900 		}
1901 	}
1902 }
1903 
1904 void sched_domains_numa_masks_clear(unsigned int cpu)
1905 {
1906 	int i, j;
1907 
1908 	for (i = 0; i < sched_domains_numa_levels; i++) {
1909 		for (j = 0; j < nr_node_ids; j++)
1910 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1911 	}
1912 }
1913 
1914 /*
1915  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1916  *                             closest to @cpu from @cpumask.
1917  * cpumask: cpumask to find a cpu from
1918  * cpu: cpu to be close to
1919  *
1920  * returns: cpu, or nr_cpu_ids when nothing found.
1921  */
1922 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1923 {
1924 	int i, j = cpu_to_node(cpu);
1925 
1926 	for (i = 0; i < sched_domains_numa_levels; i++) {
1927 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1928 		if (cpu < nr_cpu_ids)
1929 			return cpu;
1930 	}
1931 	return nr_cpu_ids;
1932 }
1933 
1934 #endif /* CONFIG_NUMA */
1935 
1936 static int __sdt_alloc(const struct cpumask *cpu_map)
1937 {
1938 	struct sched_domain_topology_level *tl;
1939 	int j;
1940 
1941 	for_each_sd_topology(tl) {
1942 		struct sd_data *sdd = &tl->data;
1943 
1944 		sdd->sd = alloc_percpu(struct sched_domain *);
1945 		if (!sdd->sd)
1946 			return -ENOMEM;
1947 
1948 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1949 		if (!sdd->sds)
1950 			return -ENOMEM;
1951 
1952 		sdd->sg = alloc_percpu(struct sched_group *);
1953 		if (!sdd->sg)
1954 			return -ENOMEM;
1955 
1956 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1957 		if (!sdd->sgc)
1958 			return -ENOMEM;
1959 
1960 		for_each_cpu(j, cpu_map) {
1961 			struct sched_domain *sd;
1962 			struct sched_domain_shared *sds;
1963 			struct sched_group *sg;
1964 			struct sched_group_capacity *sgc;
1965 
1966 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1967 					GFP_KERNEL, cpu_to_node(j));
1968 			if (!sd)
1969 				return -ENOMEM;
1970 
1971 			*per_cpu_ptr(sdd->sd, j) = sd;
1972 
1973 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1974 					GFP_KERNEL, cpu_to_node(j));
1975 			if (!sds)
1976 				return -ENOMEM;
1977 
1978 			*per_cpu_ptr(sdd->sds, j) = sds;
1979 
1980 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1981 					GFP_KERNEL, cpu_to_node(j));
1982 			if (!sg)
1983 				return -ENOMEM;
1984 
1985 			sg->next = sg;
1986 
1987 			*per_cpu_ptr(sdd->sg, j) = sg;
1988 
1989 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1990 					GFP_KERNEL, cpu_to_node(j));
1991 			if (!sgc)
1992 				return -ENOMEM;
1993 
1994 #ifdef CONFIG_SCHED_DEBUG
1995 			sgc->id = j;
1996 #endif
1997 
1998 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1999 		}
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 static void __sdt_free(const struct cpumask *cpu_map)
2006 {
2007 	struct sched_domain_topology_level *tl;
2008 	int j;
2009 
2010 	for_each_sd_topology(tl) {
2011 		struct sd_data *sdd = &tl->data;
2012 
2013 		for_each_cpu(j, cpu_map) {
2014 			struct sched_domain *sd;
2015 
2016 			if (sdd->sd) {
2017 				sd = *per_cpu_ptr(sdd->sd, j);
2018 				if (sd && (sd->flags & SD_OVERLAP))
2019 					free_sched_groups(sd->groups, 0);
2020 				kfree(*per_cpu_ptr(sdd->sd, j));
2021 			}
2022 
2023 			if (sdd->sds)
2024 				kfree(*per_cpu_ptr(sdd->sds, j));
2025 			if (sdd->sg)
2026 				kfree(*per_cpu_ptr(sdd->sg, j));
2027 			if (sdd->sgc)
2028 				kfree(*per_cpu_ptr(sdd->sgc, j));
2029 		}
2030 		free_percpu(sdd->sd);
2031 		sdd->sd = NULL;
2032 		free_percpu(sdd->sds);
2033 		sdd->sds = NULL;
2034 		free_percpu(sdd->sg);
2035 		sdd->sg = NULL;
2036 		free_percpu(sdd->sgc);
2037 		sdd->sgc = NULL;
2038 	}
2039 }
2040 
2041 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2042 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2043 		struct sched_domain *child, int cpu)
2044 {
2045 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2046 
2047 	if (child) {
2048 		sd->level = child->level + 1;
2049 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2050 		child->parent = sd;
2051 
2052 		if (!cpumask_subset(sched_domain_span(child),
2053 				    sched_domain_span(sd))) {
2054 			pr_err("BUG: arch topology borken\n");
2055 #ifdef CONFIG_SCHED_DEBUG
2056 			pr_err("     the %s domain not a subset of the %s domain\n",
2057 					child->name, sd->name);
2058 #endif
2059 			/* Fixup, ensure @sd has at least @child CPUs. */
2060 			cpumask_or(sched_domain_span(sd),
2061 				   sched_domain_span(sd),
2062 				   sched_domain_span(child));
2063 		}
2064 
2065 	}
2066 	set_domain_attribute(sd, attr);
2067 
2068 	return sd;
2069 }
2070 
2071 /*
2072  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2073  * any two given CPUs at this (non-NUMA) topology level.
2074  */
2075 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2076 			      const struct cpumask *cpu_map, int cpu)
2077 {
2078 	int i;
2079 
2080 	/* NUMA levels are allowed to overlap */
2081 	if (tl->flags & SDTL_OVERLAP)
2082 		return true;
2083 
2084 	/*
2085 	 * Non-NUMA levels cannot partially overlap - they must be either
2086 	 * completely equal or completely disjoint. Otherwise we can end up
2087 	 * breaking the sched_group lists - i.e. a later get_group() pass
2088 	 * breaks the linking done for an earlier span.
2089 	 */
2090 	for_each_cpu(i, cpu_map) {
2091 		if (i == cpu)
2092 			continue;
2093 		/*
2094 		 * We should 'and' all those masks with 'cpu_map' to exactly
2095 		 * match the topology we're about to build, but that can only
2096 		 * remove CPUs, which only lessens our ability to detect
2097 		 * overlaps
2098 		 */
2099 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2100 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2101 			return false;
2102 	}
2103 
2104 	return true;
2105 }
2106 
2107 /*
2108  * Build sched domains for a given set of CPUs and attach the sched domains
2109  * to the individual CPUs
2110  */
2111 static int
2112 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2113 {
2114 	enum s_alloc alloc_state = sa_none;
2115 	struct sched_domain *sd;
2116 	struct s_data d;
2117 	struct rq *rq = NULL;
2118 	int i, ret = -ENOMEM;
2119 	bool has_asym = false;
2120 
2121 	if (WARN_ON(cpumask_empty(cpu_map)))
2122 		goto error;
2123 
2124 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2125 	if (alloc_state != sa_rootdomain)
2126 		goto error;
2127 
2128 	/* Set up domains for CPUs specified by the cpu_map: */
2129 	for_each_cpu(i, cpu_map) {
2130 		struct sched_domain_topology_level *tl;
2131 
2132 		sd = NULL;
2133 		for_each_sd_topology(tl) {
2134 
2135 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2136 				goto error;
2137 
2138 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2139 
2140 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2141 
2142 			if (tl == sched_domain_topology)
2143 				*per_cpu_ptr(d.sd, i) = sd;
2144 			if (tl->flags & SDTL_OVERLAP)
2145 				sd->flags |= SD_OVERLAP;
2146 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2147 				break;
2148 		}
2149 	}
2150 
2151 	/* Build the groups for the domains */
2152 	for_each_cpu(i, cpu_map) {
2153 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2154 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2155 			if (sd->flags & SD_OVERLAP) {
2156 				if (build_overlap_sched_groups(sd, i))
2157 					goto error;
2158 			} else {
2159 				if (build_sched_groups(sd, i))
2160 					goto error;
2161 			}
2162 		}
2163 	}
2164 
2165 	/* Calculate CPU capacity for physical packages and nodes */
2166 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2167 		if (!cpumask_test_cpu(i, cpu_map))
2168 			continue;
2169 
2170 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2171 			claim_allocations(i, sd);
2172 			init_sched_groups_capacity(i, sd);
2173 		}
2174 	}
2175 
2176 	/* Attach the domains */
2177 	rcu_read_lock();
2178 	for_each_cpu(i, cpu_map) {
2179 		rq = cpu_rq(i);
2180 		sd = *per_cpu_ptr(d.sd, i);
2181 
2182 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2183 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2184 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2185 
2186 		cpu_attach_domain(sd, d.rd, i);
2187 	}
2188 	rcu_read_unlock();
2189 
2190 	if (has_asym)
2191 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2192 
2193 	if (rq && sched_debug_verbose) {
2194 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2195 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2196 	}
2197 
2198 	ret = 0;
2199 error:
2200 	__free_domain_allocs(&d, alloc_state, cpu_map);
2201 
2202 	return ret;
2203 }
2204 
2205 /* Current sched domains: */
2206 static cpumask_var_t			*doms_cur;
2207 
2208 /* Number of sched domains in 'doms_cur': */
2209 static int				ndoms_cur;
2210 
2211 /* Attributes of custom domains in 'doms_cur' */
2212 static struct sched_domain_attr		*dattr_cur;
2213 
2214 /*
2215  * Special case: If a kmalloc() of a doms_cur partition (array of
2216  * cpumask) fails, then fallback to a single sched domain,
2217  * as determined by the single cpumask fallback_doms.
2218  */
2219 static cpumask_var_t			fallback_doms;
2220 
2221 /*
2222  * arch_update_cpu_topology lets virtualized architectures update the
2223  * CPU core maps. It is supposed to return 1 if the topology changed
2224  * or 0 if it stayed the same.
2225  */
2226 int __weak arch_update_cpu_topology(void)
2227 {
2228 	return 0;
2229 }
2230 
2231 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2232 {
2233 	int i;
2234 	cpumask_var_t *doms;
2235 
2236 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2237 	if (!doms)
2238 		return NULL;
2239 	for (i = 0; i < ndoms; i++) {
2240 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2241 			free_sched_domains(doms, i);
2242 			return NULL;
2243 		}
2244 	}
2245 	return doms;
2246 }
2247 
2248 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2249 {
2250 	unsigned int i;
2251 	for (i = 0; i < ndoms; i++)
2252 		free_cpumask_var(doms[i]);
2253 	kfree(doms);
2254 }
2255 
2256 /*
2257  * Set up scheduler domains and groups.  For now this just excludes isolated
2258  * CPUs, but could be used to exclude other special cases in the future.
2259  */
2260 int sched_init_domains(const struct cpumask *cpu_map)
2261 {
2262 	int err;
2263 
2264 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2265 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2266 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2267 
2268 	arch_update_cpu_topology();
2269 	asym_cpu_capacity_scan();
2270 	ndoms_cur = 1;
2271 	doms_cur = alloc_sched_domains(ndoms_cur);
2272 	if (!doms_cur)
2273 		doms_cur = &fallback_doms;
2274 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2275 	err = build_sched_domains(doms_cur[0], NULL);
2276 
2277 	return err;
2278 }
2279 
2280 /*
2281  * Detach sched domains from a group of CPUs specified in cpu_map
2282  * These CPUs will now be attached to the NULL domain
2283  */
2284 static void detach_destroy_domains(const struct cpumask *cpu_map)
2285 {
2286 	unsigned int cpu = cpumask_any(cpu_map);
2287 	int i;
2288 
2289 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2290 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2291 
2292 	rcu_read_lock();
2293 	for_each_cpu(i, cpu_map)
2294 		cpu_attach_domain(NULL, &def_root_domain, i);
2295 	rcu_read_unlock();
2296 }
2297 
2298 /* handle null as "default" */
2299 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2300 			struct sched_domain_attr *new, int idx_new)
2301 {
2302 	struct sched_domain_attr tmp;
2303 
2304 	/* Fast path: */
2305 	if (!new && !cur)
2306 		return 1;
2307 
2308 	tmp = SD_ATTR_INIT;
2309 
2310 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2311 			new ? (new + idx_new) : &tmp,
2312 			sizeof(struct sched_domain_attr));
2313 }
2314 
2315 /*
2316  * Partition sched domains as specified by the 'ndoms_new'
2317  * cpumasks in the array doms_new[] of cpumasks. This compares
2318  * doms_new[] to the current sched domain partitioning, doms_cur[].
2319  * It destroys each deleted domain and builds each new domain.
2320  *
2321  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2322  * The masks don't intersect (don't overlap.) We should setup one
2323  * sched domain for each mask. CPUs not in any of the cpumasks will
2324  * not be load balanced. If the same cpumask appears both in the
2325  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2326  * it as it is.
2327  *
2328  * The passed in 'doms_new' should be allocated using
2329  * alloc_sched_domains.  This routine takes ownership of it and will
2330  * free_sched_domains it when done with it. If the caller failed the
2331  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2332  * and partition_sched_domains() will fallback to the single partition
2333  * 'fallback_doms', it also forces the domains to be rebuilt.
2334  *
2335  * If doms_new == NULL it will be replaced with cpu_online_mask.
2336  * ndoms_new == 0 is a special case for destroying existing domains,
2337  * and it will not create the default domain.
2338  *
2339  * Call with hotplug lock and sched_domains_mutex held
2340  */
2341 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2342 				    struct sched_domain_attr *dattr_new)
2343 {
2344 	bool __maybe_unused has_eas = false;
2345 	int i, j, n;
2346 	int new_topology;
2347 
2348 	lockdep_assert_held(&sched_domains_mutex);
2349 
2350 	/* Let the architecture update CPU core mappings: */
2351 	new_topology = arch_update_cpu_topology();
2352 	/* Trigger rebuilding CPU capacity asymmetry data */
2353 	if (new_topology)
2354 		asym_cpu_capacity_scan();
2355 
2356 	if (!doms_new) {
2357 		WARN_ON_ONCE(dattr_new);
2358 		n = 0;
2359 		doms_new = alloc_sched_domains(1);
2360 		if (doms_new) {
2361 			n = 1;
2362 			cpumask_and(doms_new[0], cpu_active_mask,
2363 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2364 		}
2365 	} else {
2366 		n = ndoms_new;
2367 	}
2368 
2369 	/* Destroy deleted domains: */
2370 	for (i = 0; i < ndoms_cur; i++) {
2371 		for (j = 0; j < n && !new_topology; j++) {
2372 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2373 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2374 				struct root_domain *rd;
2375 
2376 				/*
2377 				 * This domain won't be destroyed and as such
2378 				 * its dl_bw->total_bw needs to be cleared.  It
2379 				 * will be recomputed in function
2380 				 * update_tasks_root_domain().
2381 				 */
2382 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2383 				dl_clear_root_domain(rd);
2384 				goto match1;
2385 			}
2386 		}
2387 		/* No match - a current sched domain not in new doms_new[] */
2388 		detach_destroy_domains(doms_cur[i]);
2389 match1:
2390 		;
2391 	}
2392 
2393 	n = ndoms_cur;
2394 	if (!doms_new) {
2395 		n = 0;
2396 		doms_new = &fallback_doms;
2397 		cpumask_and(doms_new[0], cpu_active_mask,
2398 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2399 	}
2400 
2401 	/* Build new domains: */
2402 	for (i = 0; i < ndoms_new; i++) {
2403 		for (j = 0; j < n && !new_topology; j++) {
2404 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2405 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2406 				goto match2;
2407 		}
2408 		/* No match - add a new doms_new */
2409 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2410 match2:
2411 		;
2412 	}
2413 
2414 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2415 	/* Build perf. domains: */
2416 	for (i = 0; i < ndoms_new; i++) {
2417 		for (j = 0; j < n && !sched_energy_update; j++) {
2418 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2419 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2420 				has_eas = true;
2421 				goto match3;
2422 			}
2423 		}
2424 		/* No match - add perf. domains for a new rd */
2425 		has_eas |= build_perf_domains(doms_new[i]);
2426 match3:
2427 		;
2428 	}
2429 	sched_energy_set(has_eas);
2430 #endif
2431 
2432 	/* Remember the new sched domains: */
2433 	if (doms_cur != &fallback_doms)
2434 		free_sched_domains(doms_cur, ndoms_cur);
2435 
2436 	kfree(dattr_cur);
2437 	doms_cur = doms_new;
2438 	dattr_cur = dattr_new;
2439 	ndoms_cur = ndoms_new;
2440 
2441 	update_sched_domain_debugfs();
2442 }
2443 
2444 /*
2445  * Call with hotplug lock held
2446  */
2447 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2448 			     struct sched_domain_attr *dattr_new)
2449 {
2450 	mutex_lock(&sched_domains_mutex);
2451 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2452 	mutex_unlock(&sched_domains_mutex);
2453 }
2454