xref: /openbmc/linux/kernel/sched/topology.c (revision 84c43674)
1 /*
2  * Scheduler topology setup/handling methods
3  */
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 
7 #include "sched.h"
8 
9 DEFINE_MUTEX(sched_domains_mutex);
10 
11 /* Protected by sched_domains_mutex: */
12 cpumask_var_t sched_domains_tmpmask;
13 cpumask_var_t sched_domains_tmpmask2;
14 
15 #ifdef CONFIG_SCHED_DEBUG
16 
17 static int __init sched_debug_setup(char *str)
18 {
19 	sched_debug_enabled = true;
20 
21 	return 0;
22 }
23 early_param("sched_debug", sched_debug_setup);
24 
25 static inline bool sched_debug(void)
26 {
27 	return sched_debug_enabled;
28 }
29 
30 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
31 				  struct cpumask *groupmask)
32 {
33 	struct sched_group *group = sd->groups;
34 
35 	cpumask_clear(groupmask);
36 
37 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
38 
39 	if (!(sd->flags & SD_LOAD_BALANCE)) {
40 		printk("does not load-balance\n");
41 		if (sd->parent)
42 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
43 					" has parent");
44 		return -1;
45 	}
46 
47 	printk(KERN_CONT "span=%*pbl level=%s\n",
48 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
49 
50 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
51 		printk(KERN_ERR "ERROR: domain->span does not contain "
52 				"CPU%d\n", cpu);
53 	}
54 	if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
55 		printk(KERN_ERR "ERROR: domain->groups does not contain"
56 				" CPU%d\n", cpu);
57 	}
58 
59 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
60 	do {
61 		if (!group) {
62 			printk("\n");
63 			printk(KERN_ERR "ERROR: group is NULL\n");
64 			break;
65 		}
66 
67 		if (!cpumask_weight(sched_group_span(group))) {
68 			printk(KERN_CONT "\n");
69 			printk(KERN_ERR "ERROR: empty group\n");
70 			break;
71 		}
72 
73 		if (!(sd->flags & SD_OVERLAP) &&
74 		    cpumask_intersects(groupmask, sched_group_span(group))) {
75 			printk(KERN_CONT "\n");
76 			printk(KERN_ERR "ERROR: repeated CPUs\n");
77 			break;
78 		}
79 
80 		cpumask_or(groupmask, groupmask, sched_group_span(group));
81 
82 		printk(KERN_CONT " %d:{ span=%*pbl",
83 				group->sgc->id,
84 				cpumask_pr_args(sched_group_span(group)));
85 
86 		if ((sd->flags & SD_OVERLAP) &&
87 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
88 			printk(KERN_CONT " mask=%*pbl",
89 				cpumask_pr_args(group_balance_mask(group)));
90 		}
91 
92 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
93 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
94 
95 		if (group == sd->groups && sd->child &&
96 		    !cpumask_equal(sched_domain_span(sd->child),
97 				   sched_group_span(group))) {
98 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
99 		}
100 
101 		printk(KERN_CONT " }");
102 
103 		group = group->next;
104 
105 		if (group != sd->groups)
106 			printk(KERN_CONT ",");
107 
108 	} while (group != sd->groups);
109 	printk(KERN_CONT "\n");
110 
111 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
112 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
113 
114 	if (sd->parent &&
115 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
116 		printk(KERN_ERR "ERROR: parent span is not a superset "
117 			"of domain->span\n");
118 	return 0;
119 }
120 
121 static void sched_domain_debug(struct sched_domain *sd, int cpu)
122 {
123 	int level = 0;
124 
125 	if (!sched_debug_enabled)
126 		return;
127 
128 	if (!sd) {
129 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
130 		return;
131 	}
132 
133 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
134 
135 	for (;;) {
136 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
137 			break;
138 		level++;
139 		sd = sd->parent;
140 		if (!sd)
141 			break;
142 	}
143 }
144 #else /* !CONFIG_SCHED_DEBUG */
145 
146 # define sched_debug_enabled 0
147 # define sched_domain_debug(sd, cpu) do { } while (0)
148 static inline bool sched_debug(void)
149 {
150 	return false;
151 }
152 #endif /* CONFIG_SCHED_DEBUG */
153 
154 static int sd_degenerate(struct sched_domain *sd)
155 {
156 	if (cpumask_weight(sched_domain_span(sd)) == 1)
157 		return 1;
158 
159 	/* Following flags need at least 2 groups */
160 	if (sd->flags & (SD_LOAD_BALANCE |
161 			 SD_BALANCE_NEWIDLE |
162 			 SD_BALANCE_FORK |
163 			 SD_BALANCE_EXEC |
164 			 SD_SHARE_CPUCAPACITY |
165 			 SD_ASYM_CPUCAPACITY |
166 			 SD_SHARE_PKG_RESOURCES |
167 			 SD_SHARE_POWERDOMAIN)) {
168 		if (sd->groups != sd->groups->next)
169 			return 0;
170 	}
171 
172 	/* Following flags don't use groups */
173 	if (sd->flags & (SD_WAKE_AFFINE))
174 		return 0;
175 
176 	return 1;
177 }
178 
179 static int
180 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
181 {
182 	unsigned long cflags = sd->flags, pflags = parent->flags;
183 
184 	if (sd_degenerate(parent))
185 		return 1;
186 
187 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
188 		return 0;
189 
190 	/* Flags needing groups don't count if only 1 group in parent */
191 	if (parent->groups == parent->groups->next) {
192 		pflags &= ~(SD_LOAD_BALANCE |
193 				SD_BALANCE_NEWIDLE |
194 				SD_BALANCE_FORK |
195 				SD_BALANCE_EXEC |
196 				SD_ASYM_CPUCAPACITY |
197 				SD_SHARE_CPUCAPACITY |
198 				SD_SHARE_PKG_RESOURCES |
199 				SD_PREFER_SIBLING |
200 				SD_SHARE_POWERDOMAIN);
201 		if (nr_node_ids == 1)
202 			pflags &= ~SD_SERIALIZE;
203 	}
204 	if (~cflags & pflags)
205 		return 0;
206 
207 	return 1;
208 }
209 
210 static void free_rootdomain(struct rcu_head *rcu)
211 {
212 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
213 
214 	cpupri_cleanup(&rd->cpupri);
215 	cpudl_cleanup(&rd->cpudl);
216 	free_cpumask_var(rd->dlo_mask);
217 	free_cpumask_var(rd->rto_mask);
218 	free_cpumask_var(rd->online);
219 	free_cpumask_var(rd->span);
220 	kfree(rd);
221 }
222 
223 void rq_attach_root(struct rq *rq, struct root_domain *rd)
224 {
225 	struct root_domain *old_rd = NULL;
226 	unsigned long flags;
227 
228 	raw_spin_lock_irqsave(&rq->lock, flags);
229 
230 	if (rq->rd) {
231 		old_rd = rq->rd;
232 
233 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
234 			set_rq_offline(rq);
235 
236 		cpumask_clear_cpu(rq->cpu, old_rd->span);
237 
238 		/*
239 		 * If we dont want to free the old_rd yet then
240 		 * set old_rd to NULL to skip the freeing later
241 		 * in this function:
242 		 */
243 		if (!atomic_dec_and_test(&old_rd->refcount))
244 			old_rd = NULL;
245 	}
246 
247 	atomic_inc(&rd->refcount);
248 	rq->rd = rd;
249 
250 	cpumask_set_cpu(rq->cpu, rd->span);
251 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
252 		set_rq_online(rq);
253 
254 	raw_spin_unlock_irqrestore(&rq->lock, flags);
255 
256 	if (old_rd)
257 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
258 }
259 
260 static int init_rootdomain(struct root_domain *rd)
261 {
262 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
263 		goto out;
264 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
265 		goto free_span;
266 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
267 		goto free_online;
268 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
269 		goto free_dlo_mask;
270 
271 	init_dl_bw(&rd->dl_bw);
272 	if (cpudl_init(&rd->cpudl) != 0)
273 		goto free_rto_mask;
274 
275 	if (cpupri_init(&rd->cpupri) != 0)
276 		goto free_cpudl;
277 	return 0;
278 
279 free_cpudl:
280 	cpudl_cleanup(&rd->cpudl);
281 free_rto_mask:
282 	free_cpumask_var(rd->rto_mask);
283 free_dlo_mask:
284 	free_cpumask_var(rd->dlo_mask);
285 free_online:
286 	free_cpumask_var(rd->online);
287 free_span:
288 	free_cpumask_var(rd->span);
289 out:
290 	return -ENOMEM;
291 }
292 
293 /*
294  * By default the system creates a single root-domain with all CPUs as
295  * members (mimicking the global state we have today).
296  */
297 struct root_domain def_root_domain;
298 
299 void init_defrootdomain(void)
300 {
301 	init_rootdomain(&def_root_domain);
302 
303 	atomic_set(&def_root_domain.refcount, 1);
304 }
305 
306 static struct root_domain *alloc_rootdomain(void)
307 {
308 	struct root_domain *rd;
309 
310 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
311 	if (!rd)
312 		return NULL;
313 
314 	if (init_rootdomain(rd) != 0) {
315 		kfree(rd);
316 		return NULL;
317 	}
318 
319 	return rd;
320 }
321 
322 static void free_sched_groups(struct sched_group *sg, int free_sgc)
323 {
324 	struct sched_group *tmp, *first;
325 
326 	if (!sg)
327 		return;
328 
329 	first = sg;
330 	do {
331 		tmp = sg->next;
332 
333 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
334 			kfree(sg->sgc);
335 
336 		if (atomic_dec_and_test(&sg->ref))
337 			kfree(sg);
338 		sg = tmp;
339 	} while (sg != first);
340 }
341 
342 static void destroy_sched_domain(struct sched_domain *sd)
343 {
344 	/*
345 	 * A normal sched domain may have multiple group references, an
346 	 * overlapping domain, having private groups, only one.  Iterate,
347 	 * dropping group/capacity references, freeing where none remain.
348 	 */
349 	free_sched_groups(sd->groups, 1);
350 
351 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
352 		kfree(sd->shared);
353 	kfree(sd);
354 }
355 
356 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
357 {
358 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
359 
360 	while (sd) {
361 		struct sched_domain *parent = sd->parent;
362 		destroy_sched_domain(sd);
363 		sd = parent;
364 	}
365 }
366 
367 static void destroy_sched_domains(struct sched_domain *sd)
368 {
369 	if (sd)
370 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
371 }
372 
373 /*
374  * Keep a special pointer to the highest sched_domain that has
375  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
376  * allows us to avoid some pointer chasing select_idle_sibling().
377  *
378  * Also keep a unique ID per domain (we use the first CPU number in
379  * the cpumask of the domain), this allows us to quickly tell if
380  * two CPUs are in the same cache domain, see cpus_share_cache().
381  */
382 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
383 DEFINE_PER_CPU(int, sd_llc_size);
384 DEFINE_PER_CPU(int, sd_llc_id);
385 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
386 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
387 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
388 
389 static void update_top_cache_domain(int cpu)
390 {
391 	struct sched_domain_shared *sds = NULL;
392 	struct sched_domain *sd;
393 	int id = cpu;
394 	int size = 1;
395 
396 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
397 	if (sd) {
398 		id = cpumask_first(sched_domain_span(sd));
399 		size = cpumask_weight(sched_domain_span(sd));
400 		sds = sd->shared;
401 	}
402 
403 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
404 	per_cpu(sd_llc_size, cpu) = size;
405 	per_cpu(sd_llc_id, cpu) = id;
406 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
407 
408 	sd = lowest_flag_domain(cpu, SD_NUMA);
409 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
410 
411 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
412 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
413 }
414 
415 /*
416  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
417  * hold the hotplug lock.
418  */
419 static void
420 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
421 {
422 	struct rq *rq = cpu_rq(cpu);
423 	struct sched_domain *tmp;
424 
425 	/* Remove the sched domains which do not contribute to scheduling. */
426 	for (tmp = sd; tmp; ) {
427 		struct sched_domain *parent = tmp->parent;
428 		if (!parent)
429 			break;
430 
431 		if (sd_parent_degenerate(tmp, parent)) {
432 			tmp->parent = parent->parent;
433 			if (parent->parent)
434 				parent->parent->child = tmp;
435 			/*
436 			 * Transfer SD_PREFER_SIBLING down in case of a
437 			 * degenerate parent; the spans match for this
438 			 * so the property transfers.
439 			 */
440 			if (parent->flags & SD_PREFER_SIBLING)
441 				tmp->flags |= SD_PREFER_SIBLING;
442 			destroy_sched_domain(parent);
443 		} else
444 			tmp = tmp->parent;
445 	}
446 
447 	if (sd && sd_degenerate(sd)) {
448 		tmp = sd;
449 		sd = sd->parent;
450 		destroy_sched_domain(tmp);
451 		if (sd)
452 			sd->child = NULL;
453 	}
454 
455 	sched_domain_debug(sd, cpu);
456 
457 	rq_attach_root(rq, rd);
458 	tmp = rq->sd;
459 	rcu_assign_pointer(rq->sd, sd);
460 	dirty_sched_domain_sysctl(cpu);
461 	destroy_sched_domains(tmp);
462 
463 	update_top_cache_domain(cpu);
464 }
465 
466 /* Setup the mask of CPUs configured for isolated domains */
467 static int __init isolated_cpu_setup(char *str)
468 {
469 	int ret;
470 
471 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
472 	ret = cpulist_parse(str, cpu_isolated_map);
473 	if (ret) {
474 		pr_err("sched: Error, all isolcpus= values must be between 0 and %u\n", nr_cpu_ids);
475 		return 0;
476 	}
477 	return 1;
478 }
479 __setup("isolcpus=", isolated_cpu_setup);
480 
481 struct s_data {
482 	struct sched_domain ** __percpu sd;
483 	struct root_domain	*rd;
484 };
485 
486 enum s_alloc {
487 	sa_rootdomain,
488 	sa_sd,
489 	sa_sd_storage,
490 	sa_none,
491 };
492 
493 /*
494  * Return the canonical balance CPU for this group, this is the first CPU
495  * of this group that's also in the balance mask.
496  *
497  * The balance mask are all those CPUs that could actually end up at this
498  * group. See build_balance_mask().
499  *
500  * Also see should_we_balance().
501  */
502 int group_balance_cpu(struct sched_group *sg)
503 {
504 	return cpumask_first(group_balance_mask(sg));
505 }
506 
507 
508 /*
509  * NUMA topology (first read the regular topology blurb below)
510  *
511  * Given a node-distance table, for example:
512  *
513  *   node   0   1   2   3
514  *     0:  10  20  30  20
515  *     1:  20  10  20  30
516  *     2:  30  20  10  20
517  *     3:  20  30  20  10
518  *
519  * which represents a 4 node ring topology like:
520  *
521  *   0 ----- 1
522  *   |       |
523  *   |       |
524  *   |       |
525  *   3 ----- 2
526  *
527  * We want to construct domains and groups to represent this. The way we go
528  * about doing this is to build the domains on 'hops'. For each NUMA level we
529  * construct the mask of all nodes reachable in @level hops.
530  *
531  * For the above NUMA topology that gives 3 levels:
532  *
533  * NUMA-2	0-3		0-3		0-3		0-3
534  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
535  *
536  * NUMA-1	0-1,3		0-2		1-3		0,2-3
537  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
538  *
539  * NUMA-0	0		1		2		3
540  *
541  *
542  * As can be seen; things don't nicely line up as with the regular topology.
543  * When we iterate a domain in child domain chunks some nodes can be
544  * represented multiple times -- hence the "overlap" naming for this part of
545  * the topology.
546  *
547  * In order to minimize this overlap, we only build enough groups to cover the
548  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
549  *
550  * Because:
551  *
552  *  - the first group of each domain is its child domain; this
553  *    gets us the first 0-1,3
554  *  - the only uncovered node is 2, who's child domain is 1-3.
555  *
556  * However, because of the overlap, computing a unique CPU for each group is
557  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
558  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
559  * end up at those groups (they would end up in group: 0-1,3).
560  *
561  * To correct this we have to introduce the group balance mask. This mask
562  * will contain those CPUs in the group that can reach this group given the
563  * (child) domain tree.
564  *
565  * With this we can once again compute balance_cpu and sched_group_capacity
566  * relations.
567  *
568  * XXX include words on how balance_cpu is unique and therefore can be
569  * used for sched_group_capacity links.
570  *
571  *
572  * Another 'interesting' topology is:
573  *
574  *   node   0   1   2   3
575  *     0:  10  20  20  30
576  *     1:  20  10  20  20
577  *     2:  20  20  10  20
578  *     3:  30  20  20  10
579  *
580  * Which looks a little like:
581  *
582  *   0 ----- 1
583  *   |     / |
584  *   |   /   |
585  *   | /     |
586  *   2 ----- 3
587  *
588  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
589  * are not.
590  *
591  * This leads to a few particularly weird cases where the sched_domain's are
592  * not of the same number for each cpu. Consider:
593  *
594  * NUMA-2	0-3						0-3
595  *  groups:	{0-2},{1-3}					{1-3},{0-2}
596  *
597  * NUMA-1	0-2		0-3		0-3		1-3
598  *
599  * NUMA-0	0		1		2		3
600  *
601  */
602 
603 
604 /*
605  * Build the balance mask; it contains only those CPUs that can arrive at this
606  * group and should be considered to continue balancing.
607  *
608  * We do this during the group creation pass, therefore the group information
609  * isn't complete yet, however since each group represents a (child) domain we
610  * can fully construct this using the sched_domain bits (which are already
611  * complete).
612  */
613 static void
614 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
615 {
616 	const struct cpumask *sg_span = sched_group_span(sg);
617 	struct sd_data *sdd = sd->private;
618 	struct sched_domain *sibling;
619 	int i;
620 
621 	cpumask_clear(mask);
622 
623 	for_each_cpu(i, sg_span) {
624 		sibling = *per_cpu_ptr(sdd->sd, i);
625 
626 		/*
627 		 * Can happen in the asymmetric case, where these siblings are
628 		 * unused. The mask will not be empty because those CPUs that
629 		 * do have the top domain _should_ span the domain.
630 		 */
631 		if (!sibling->child)
632 			continue;
633 
634 		/* If we would not end up here, we can't continue from here */
635 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
636 			continue;
637 
638 		cpumask_set_cpu(i, mask);
639 	}
640 
641 	/* We must not have empty masks here */
642 	WARN_ON_ONCE(cpumask_empty(mask));
643 }
644 
645 /*
646  * XXX: This creates per-node group entries; since the load-balancer will
647  * immediately access remote memory to construct this group's load-balance
648  * statistics having the groups node local is of dubious benefit.
649  */
650 static struct sched_group *
651 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
652 {
653 	struct sched_group *sg;
654 	struct cpumask *sg_span;
655 
656 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
657 			GFP_KERNEL, cpu_to_node(cpu));
658 
659 	if (!sg)
660 		return NULL;
661 
662 	sg_span = sched_group_span(sg);
663 	if (sd->child)
664 		cpumask_copy(sg_span, sched_domain_span(sd->child));
665 	else
666 		cpumask_copy(sg_span, sched_domain_span(sd));
667 
668 	atomic_inc(&sg->ref);
669 	return sg;
670 }
671 
672 static void init_overlap_sched_group(struct sched_domain *sd,
673 				     struct sched_group *sg)
674 {
675 	struct cpumask *mask = sched_domains_tmpmask2;
676 	struct sd_data *sdd = sd->private;
677 	struct cpumask *sg_span;
678 	int cpu;
679 
680 	build_balance_mask(sd, sg, mask);
681 	cpu = cpumask_first_and(sched_group_span(sg), mask);
682 
683 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
684 	if (atomic_inc_return(&sg->sgc->ref) == 1)
685 		cpumask_copy(group_balance_mask(sg), mask);
686 	else
687 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
688 
689 	/*
690 	 * Initialize sgc->capacity such that even if we mess up the
691 	 * domains and no possible iteration will get us here, we won't
692 	 * die on a /0 trap.
693 	 */
694 	sg_span = sched_group_span(sg);
695 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
696 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
697 }
698 
699 static int
700 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
701 {
702 	struct sched_group *first = NULL, *last = NULL, *sg;
703 	const struct cpumask *span = sched_domain_span(sd);
704 	struct cpumask *covered = sched_domains_tmpmask;
705 	struct sd_data *sdd = sd->private;
706 	struct sched_domain *sibling;
707 	int i;
708 
709 	cpumask_clear(covered);
710 
711 	for_each_cpu_wrap(i, span, cpu) {
712 		struct cpumask *sg_span;
713 
714 		if (cpumask_test_cpu(i, covered))
715 			continue;
716 
717 		sibling = *per_cpu_ptr(sdd->sd, i);
718 
719 		/*
720 		 * Asymmetric node setups can result in situations where the
721 		 * domain tree is of unequal depth, make sure to skip domains
722 		 * that already cover the entire range.
723 		 *
724 		 * In that case build_sched_domains() will have terminated the
725 		 * iteration early and our sibling sd spans will be empty.
726 		 * Domains should always include the CPU they're built on, so
727 		 * check that.
728 		 */
729 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
730 			continue;
731 
732 		sg = build_group_from_child_sched_domain(sibling, cpu);
733 		if (!sg)
734 			goto fail;
735 
736 		sg_span = sched_group_span(sg);
737 		cpumask_or(covered, covered, sg_span);
738 
739 		init_overlap_sched_group(sd, sg);
740 
741 		if (!first)
742 			first = sg;
743 		if (last)
744 			last->next = sg;
745 		last = sg;
746 		last->next = first;
747 	}
748 	sd->groups = first;
749 
750 	return 0;
751 
752 fail:
753 	free_sched_groups(first, 0);
754 
755 	return -ENOMEM;
756 }
757 
758 
759 /*
760  * Package topology (also see the load-balance blurb in fair.c)
761  *
762  * The scheduler builds a tree structure to represent a number of important
763  * topology features. By default (default_topology[]) these include:
764  *
765  *  - Simultaneous multithreading (SMT)
766  *  - Multi-Core Cache (MC)
767  *  - Package (DIE)
768  *
769  * Where the last one more or less denotes everything up to a NUMA node.
770  *
771  * The tree consists of 3 primary data structures:
772  *
773  *	sched_domain -> sched_group -> sched_group_capacity
774  *	    ^ ^             ^ ^
775  *          `-'             `-'
776  *
777  * The sched_domains are per-cpu and have a two way link (parent & child) and
778  * denote the ever growing mask of CPUs belonging to that level of topology.
779  *
780  * Each sched_domain has a circular (double) linked list of sched_group's, each
781  * denoting the domains of the level below (or individual CPUs in case of the
782  * first domain level). The sched_group linked by a sched_domain includes the
783  * CPU of that sched_domain [*].
784  *
785  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
786  *
787  * CPU   0   1   2   3   4   5   6   7
788  *
789  * DIE  [                             ]
790  * MC   [             ] [             ]
791  * SMT  [     ] [     ] [     ] [     ]
792  *
793  *  - or -
794  *
795  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
796  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
797  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
798  *
799  * CPU   0   1   2   3   4   5   6   7
800  *
801  * One way to think about it is: sched_domain moves you up and down among these
802  * topology levels, while sched_group moves you sideways through it, at child
803  * domain granularity.
804  *
805  * sched_group_capacity ensures each unique sched_group has shared storage.
806  *
807  * There are two related construction problems, both require a CPU that
808  * uniquely identify each group (for a given domain):
809  *
810  *  - The first is the balance_cpu (see should_we_balance() and the
811  *    load-balance blub in fair.c); for each group we only want 1 CPU to
812  *    continue balancing at a higher domain.
813  *
814  *  - The second is the sched_group_capacity; we want all identical groups
815  *    to share a single sched_group_capacity.
816  *
817  * Since these topologies are exclusive by construction. That is, its
818  * impossible for an SMT thread to belong to multiple cores, and cores to
819  * be part of multiple caches. There is a very clear and unique location
820  * for each CPU in the hierarchy.
821  *
822  * Therefore computing a unique CPU for each group is trivial (the iteration
823  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
824  * group), we can simply pick the first CPU in each group.
825  *
826  *
827  * [*] in other words, the first group of each domain is its child domain.
828  */
829 
830 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
831 {
832 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
833 	struct sched_domain *child = sd->child;
834 	struct sched_group *sg;
835 
836 	if (child)
837 		cpu = cpumask_first(sched_domain_span(child));
838 
839 	sg = *per_cpu_ptr(sdd->sg, cpu);
840 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
841 
842 	/* For claim_allocations: */
843 	atomic_inc(&sg->ref);
844 	atomic_inc(&sg->sgc->ref);
845 
846 	if (child) {
847 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
848 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
849 	} else {
850 		cpumask_set_cpu(cpu, sched_group_span(sg));
851 		cpumask_set_cpu(cpu, group_balance_mask(sg));
852 	}
853 
854 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
855 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
856 
857 	return sg;
858 }
859 
860 /*
861  * build_sched_groups will build a circular linked list of the groups
862  * covered by the given span, and will set each group's ->cpumask correctly,
863  * and ->cpu_capacity to 0.
864  *
865  * Assumes the sched_domain tree is fully constructed
866  */
867 static int
868 build_sched_groups(struct sched_domain *sd, int cpu)
869 {
870 	struct sched_group *first = NULL, *last = NULL;
871 	struct sd_data *sdd = sd->private;
872 	const struct cpumask *span = sched_domain_span(sd);
873 	struct cpumask *covered;
874 	int i;
875 
876 	lockdep_assert_held(&sched_domains_mutex);
877 	covered = sched_domains_tmpmask;
878 
879 	cpumask_clear(covered);
880 
881 	for_each_cpu_wrap(i, span, cpu) {
882 		struct sched_group *sg;
883 
884 		if (cpumask_test_cpu(i, covered))
885 			continue;
886 
887 		sg = get_group(i, sdd);
888 
889 		cpumask_or(covered, covered, sched_group_span(sg));
890 
891 		if (!first)
892 			first = sg;
893 		if (last)
894 			last->next = sg;
895 		last = sg;
896 	}
897 	last->next = first;
898 	sd->groups = first;
899 
900 	return 0;
901 }
902 
903 /*
904  * Initialize sched groups cpu_capacity.
905  *
906  * cpu_capacity indicates the capacity of sched group, which is used while
907  * distributing the load between different sched groups in a sched domain.
908  * Typically cpu_capacity for all the groups in a sched domain will be same
909  * unless there are asymmetries in the topology. If there are asymmetries,
910  * group having more cpu_capacity will pickup more load compared to the
911  * group having less cpu_capacity.
912  */
913 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
914 {
915 	struct sched_group *sg = sd->groups;
916 
917 	WARN_ON(!sg);
918 
919 	do {
920 		int cpu, max_cpu = -1;
921 
922 		sg->group_weight = cpumask_weight(sched_group_span(sg));
923 
924 		if (!(sd->flags & SD_ASYM_PACKING))
925 			goto next;
926 
927 		for_each_cpu(cpu, sched_group_span(sg)) {
928 			if (max_cpu < 0)
929 				max_cpu = cpu;
930 			else if (sched_asym_prefer(cpu, max_cpu))
931 				max_cpu = cpu;
932 		}
933 		sg->asym_prefer_cpu = max_cpu;
934 
935 next:
936 		sg = sg->next;
937 	} while (sg != sd->groups);
938 
939 	if (cpu != group_balance_cpu(sg))
940 		return;
941 
942 	update_group_capacity(sd, cpu);
943 }
944 
945 /*
946  * Initializers for schedule domains
947  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
948  */
949 
950 static int default_relax_domain_level = -1;
951 int sched_domain_level_max;
952 
953 static int __init setup_relax_domain_level(char *str)
954 {
955 	if (kstrtoint(str, 0, &default_relax_domain_level))
956 		pr_warn("Unable to set relax_domain_level\n");
957 
958 	return 1;
959 }
960 __setup("relax_domain_level=", setup_relax_domain_level);
961 
962 static void set_domain_attribute(struct sched_domain *sd,
963 				 struct sched_domain_attr *attr)
964 {
965 	int request;
966 
967 	if (!attr || attr->relax_domain_level < 0) {
968 		if (default_relax_domain_level < 0)
969 			return;
970 		else
971 			request = default_relax_domain_level;
972 	} else
973 		request = attr->relax_domain_level;
974 	if (request < sd->level) {
975 		/* Turn off idle balance on this domain: */
976 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
977 	} else {
978 		/* Turn on idle balance on this domain: */
979 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
980 	}
981 }
982 
983 static void __sdt_free(const struct cpumask *cpu_map);
984 static int __sdt_alloc(const struct cpumask *cpu_map);
985 
986 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
987 				 const struct cpumask *cpu_map)
988 {
989 	switch (what) {
990 	case sa_rootdomain:
991 		if (!atomic_read(&d->rd->refcount))
992 			free_rootdomain(&d->rd->rcu);
993 		/* Fall through */
994 	case sa_sd:
995 		free_percpu(d->sd);
996 		/* Fall through */
997 	case sa_sd_storage:
998 		__sdt_free(cpu_map);
999 		/* Fall through */
1000 	case sa_none:
1001 		break;
1002 	}
1003 }
1004 
1005 static enum s_alloc
1006 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1007 {
1008 	memset(d, 0, sizeof(*d));
1009 
1010 	if (__sdt_alloc(cpu_map))
1011 		return sa_sd_storage;
1012 	d->sd = alloc_percpu(struct sched_domain *);
1013 	if (!d->sd)
1014 		return sa_sd_storage;
1015 	d->rd = alloc_rootdomain();
1016 	if (!d->rd)
1017 		return sa_sd;
1018 	return sa_rootdomain;
1019 }
1020 
1021 /*
1022  * NULL the sd_data elements we've used to build the sched_domain and
1023  * sched_group structure so that the subsequent __free_domain_allocs()
1024  * will not free the data we're using.
1025  */
1026 static void claim_allocations(int cpu, struct sched_domain *sd)
1027 {
1028 	struct sd_data *sdd = sd->private;
1029 
1030 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1031 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1032 
1033 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1034 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1035 
1036 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1037 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1038 
1039 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1040 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1041 }
1042 
1043 #ifdef CONFIG_NUMA
1044 static int sched_domains_numa_levels;
1045 enum numa_topology_type sched_numa_topology_type;
1046 static int *sched_domains_numa_distance;
1047 int sched_max_numa_distance;
1048 static struct cpumask ***sched_domains_numa_masks;
1049 static int sched_domains_curr_level;
1050 #endif
1051 
1052 /*
1053  * SD_flags allowed in topology descriptions.
1054  *
1055  * These flags are purely descriptive of the topology and do not prescribe
1056  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1057  * function:
1058  *
1059  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1060  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1061  *   SD_NUMA                - describes NUMA topologies
1062  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1063  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
1064  *
1065  * Odd one out, which beside describing the topology has a quirk also
1066  * prescribes the desired behaviour that goes along with it:
1067  *
1068  *   SD_ASYM_PACKING        - describes SMT quirks
1069  */
1070 #define TOPOLOGY_SD_FLAGS		\
1071 	(SD_SHARE_CPUCAPACITY |		\
1072 	 SD_SHARE_PKG_RESOURCES |	\
1073 	 SD_NUMA |			\
1074 	 SD_ASYM_PACKING |		\
1075 	 SD_ASYM_CPUCAPACITY |		\
1076 	 SD_SHARE_POWERDOMAIN)
1077 
1078 static struct sched_domain *
1079 sd_init(struct sched_domain_topology_level *tl,
1080 	const struct cpumask *cpu_map,
1081 	struct sched_domain *child, int cpu)
1082 {
1083 	struct sd_data *sdd = &tl->data;
1084 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1085 	int sd_id, sd_weight, sd_flags = 0;
1086 
1087 #ifdef CONFIG_NUMA
1088 	/*
1089 	 * Ugly hack to pass state to sd_numa_mask()...
1090 	 */
1091 	sched_domains_curr_level = tl->numa_level;
1092 #endif
1093 
1094 	sd_weight = cpumask_weight(tl->mask(cpu));
1095 
1096 	if (tl->sd_flags)
1097 		sd_flags = (*tl->sd_flags)();
1098 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1099 			"wrong sd_flags in topology description\n"))
1100 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1101 
1102 	*sd = (struct sched_domain){
1103 		.min_interval		= sd_weight,
1104 		.max_interval		= 2*sd_weight,
1105 		.busy_factor		= 32,
1106 		.imbalance_pct		= 125,
1107 
1108 		.cache_nice_tries	= 0,
1109 		.busy_idx		= 0,
1110 		.idle_idx		= 0,
1111 		.newidle_idx		= 0,
1112 		.wake_idx		= 0,
1113 		.forkexec_idx		= 0,
1114 
1115 		.flags			= 1*SD_LOAD_BALANCE
1116 					| 1*SD_BALANCE_NEWIDLE
1117 					| 1*SD_BALANCE_EXEC
1118 					| 1*SD_BALANCE_FORK
1119 					| 0*SD_BALANCE_WAKE
1120 					| 1*SD_WAKE_AFFINE
1121 					| 0*SD_SHARE_CPUCAPACITY
1122 					| 0*SD_SHARE_PKG_RESOURCES
1123 					| 0*SD_SERIALIZE
1124 					| 0*SD_PREFER_SIBLING
1125 					| 0*SD_NUMA
1126 					| sd_flags
1127 					,
1128 
1129 		.last_balance		= jiffies,
1130 		.balance_interval	= sd_weight,
1131 		.smt_gain		= 0,
1132 		.max_newidle_lb_cost	= 0,
1133 		.next_decay_max_lb_cost	= jiffies,
1134 		.child			= child,
1135 #ifdef CONFIG_SCHED_DEBUG
1136 		.name			= tl->name,
1137 #endif
1138 	};
1139 
1140 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1141 	sd_id = cpumask_first(sched_domain_span(sd));
1142 
1143 	/*
1144 	 * Convert topological properties into behaviour.
1145 	 */
1146 
1147 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1148 		struct sched_domain *t = sd;
1149 
1150 		for_each_lower_domain(t)
1151 			t->flags |= SD_BALANCE_WAKE;
1152 	}
1153 
1154 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1155 		sd->flags |= SD_PREFER_SIBLING;
1156 		sd->imbalance_pct = 110;
1157 		sd->smt_gain = 1178; /* ~15% */
1158 
1159 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1160 		sd->imbalance_pct = 117;
1161 		sd->cache_nice_tries = 1;
1162 		sd->busy_idx = 2;
1163 
1164 #ifdef CONFIG_NUMA
1165 	} else if (sd->flags & SD_NUMA) {
1166 		sd->cache_nice_tries = 2;
1167 		sd->busy_idx = 3;
1168 		sd->idle_idx = 2;
1169 
1170 		sd->flags |= SD_SERIALIZE;
1171 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1172 			sd->flags &= ~(SD_BALANCE_EXEC |
1173 				       SD_BALANCE_FORK |
1174 				       SD_WAKE_AFFINE);
1175 		}
1176 
1177 #endif
1178 	} else {
1179 		sd->flags |= SD_PREFER_SIBLING;
1180 		sd->cache_nice_tries = 1;
1181 		sd->busy_idx = 2;
1182 		sd->idle_idx = 1;
1183 	}
1184 
1185 	/*
1186 	 * For all levels sharing cache; connect a sched_domain_shared
1187 	 * instance.
1188 	 */
1189 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1190 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1191 		atomic_inc(&sd->shared->ref);
1192 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1193 	}
1194 
1195 	sd->private = sdd;
1196 
1197 	return sd;
1198 }
1199 
1200 /*
1201  * Topology list, bottom-up.
1202  */
1203 static struct sched_domain_topology_level default_topology[] = {
1204 #ifdef CONFIG_SCHED_SMT
1205 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1206 #endif
1207 #ifdef CONFIG_SCHED_MC
1208 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1209 #endif
1210 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1211 	{ NULL, },
1212 };
1213 
1214 static struct sched_domain_topology_level *sched_domain_topology =
1215 	default_topology;
1216 
1217 #define for_each_sd_topology(tl)			\
1218 	for (tl = sched_domain_topology; tl->mask; tl++)
1219 
1220 void set_sched_topology(struct sched_domain_topology_level *tl)
1221 {
1222 	if (WARN_ON_ONCE(sched_smp_initialized))
1223 		return;
1224 
1225 	sched_domain_topology = tl;
1226 }
1227 
1228 #ifdef CONFIG_NUMA
1229 
1230 static const struct cpumask *sd_numa_mask(int cpu)
1231 {
1232 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1233 }
1234 
1235 static void sched_numa_warn(const char *str)
1236 {
1237 	static int done = false;
1238 	int i,j;
1239 
1240 	if (done)
1241 		return;
1242 
1243 	done = true;
1244 
1245 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1246 
1247 	for (i = 0; i < nr_node_ids; i++) {
1248 		printk(KERN_WARNING "  ");
1249 		for (j = 0; j < nr_node_ids; j++)
1250 			printk(KERN_CONT "%02d ", node_distance(i,j));
1251 		printk(KERN_CONT "\n");
1252 	}
1253 	printk(KERN_WARNING "\n");
1254 }
1255 
1256 bool find_numa_distance(int distance)
1257 {
1258 	int i;
1259 
1260 	if (distance == node_distance(0, 0))
1261 		return true;
1262 
1263 	for (i = 0; i < sched_domains_numa_levels; i++) {
1264 		if (sched_domains_numa_distance[i] == distance)
1265 			return true;
1266 	}
1267 
1268 	return false;
1269 }
1270 
1271 /*
1272  * A system can have three types of NUMA topology:
1273  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1274  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1275  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1276  *
1277  * The difference between a glueless mesh topology and a backplane
1278  * topology lies in whether communication between not directly
1279  * connected nodes goes through intermediary nodes (where programs
1280  * could run), or through backplane controllers. This affects
1281  * placement of programs.
1282  *
1283  * The type of topology can be discerned with the following tests:
1284  * - If the maximum distance between any nodes is 1 hop, the system
1285  *   is directly connected.
1286  * - If for two nodes A and B, located N > 1 hops away from each other,
1287  *   there is an intermediary node C, which is < N hops away from both
1288  *   nodes A and B, the system is a glueless mesh.
1289  */
1290 static void init_numa_topology_type(void)
1291 {
1292 	int a, b, c, n;
1293 
1294 	n = sched_max_numa_distance;
1295 
1296 	if (sched_domains_numa_levels <= 1) {
1297 		sched_numa_topology_type = NUMA_DIRECT;
1298 		return;
1299 	}
1300 
1301 	for_each_online_node(a) {
1302 		for_each_online_node(b) {
1303 			/* Find two nodes furthest removed from each other. */
1304 			if (node_distance(a, b) < n)
1305 				continue;
1306 
1307 			/* Is there an intermediary node between a and b? */
1308 			for_each_online_node(c) {
1309 				if (node_distance(a, c) < n &&
1310 				    node_distance(b, c) < n) {
1311 					sched_numa_topology_type =
1312 							NUMA_GLUELESS_MESH;
1313 					return;
1314 				}
1315 			}
1316 
1317 			sched_numa_topology_type = NUMA_BACKPLANE;
1318 			return;
1319 		}
1320 	}
1321 }
1322 
1323 void sched_init_numa(void)
1324 {
1325 	int next_distance, curr_distance = node_distance(0, 0);
1326 	struct sched_domain_topology_level *tl;
1327 	int level = 0;
1328 	int i, j, k;
1329 
1330 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1331 	if (!sched_domains_numa_distance)
1332 		return;
1333 
1334 	/*
1335 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1336 	 * unique distances in the node_distance() table.
1337 	 *
1338 	 * Assumes node_distance(0,j) includes all distances in
1339 	 * node_distance(i,j) in order to avoid cubic time.
1340 	 */
1341 	next_distance = curr_distance;
1342 	for (i = 0; i < nr_node_ids; i++) {
1343 		for (j = 0; j < nr_node_ids; j++) {
1344 			for (k = 0; k < nr_node_ids; k++) {
1345 				int distance = node_distance(i, k);
1346 
1347 				if (distance > curr_distance &&
1348 				    (distance < next_distance ||
1349 				     next_distance == curr_distance))
1350 					next_distance = distance;
1351 
1352 				/*
1353 				 * While not a strong assumption it would be nice to know
1354 				 * about cases where if node A is connected to B, B is not
1355 				 * equally connected to A.
1356 				 */
1357 				if (sched_debug() && node_distance(k, i) != distance)
1358 					sched_numa_warn("Node-distance not symmetric");
1359 
1360 				if (sched_debug() && i && !find_numa_distance(distance))
1361 					sched_numa_warn("Node-0 not representative");
1362 			}
1363 			if (next_distance != curr_distance) {
1364 				sched_domains_numa_distance[level++] = next_distance;
1365 				sched_domains_numa_levels = level;
1366 				curr_distance = next_distance;
1367 			} else break;
1368 		}
1369 
1370 		/*
1371 		 * In case of sched_debug() we verify the above assumption.
1372 		 */
1373 		if (!sched_debug())
1374 			break;
1375 	}
1376 
1377 	if (!level)
1378 		return;
1379 
1380 	/*
1381 	 * 'level' contains the number of unique distances, excluding the
1382 	 * identity distance node_distance(i,i).
1383 	 *
1384 	 * The sched_domains_numa_distance[] array includes the actual distance
1385 	 * numbers.
1386 	 */
1387 
1388 	/*
1389 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1390 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1391 	 * the array will contain less then 'level' members. This could be
1392 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1393 	 * in other functions.
1394 	 *
1395 	 * We reset it to 'level' at the end of this function.
1396 	 */
1397 	sched_domains_numa_levels = 0;
1398 
1399 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1400 	if (!sched_domains_numa_masks)
1401 		return;
1402 
1403 	/*
1404 	 * Now for each level, construct a mask per node which contains all
1405 	 * CPUs of nodes that are that many hops away from us.
1406 	 */
1407 	for (i = 0; i < level; i++) {
1408 		sched_domains_numa_masks[i] =
1409 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1410 		if (!sched_domains_numa_masks[i])
1411 			return;
1412 
1413 		for (j = 0; j < nr_node_ids; j++) {
1414 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1415 			if (!mask)
1416 				return;
1417 
1418 			sched_domains_numa_masks[i][j] = mask;
1419 
1420 			for_each_node(k) {
1421 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1422 					continue;
1423 
1424 				cpumask_or(mask, mask, cpumask_of_node(k));
1425 			}
1426 		}
1427 	}
1428 
1429 	/* Compute default topology size */
1430 	for (i = 0; sched_domain_topology[i].mask; i++);
1431 
1432 	tl = kzalloc((i + level + 1) *
1433 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1434 	if (!tl)
1435 		return;
1436 
1437 	/*
1438 	 * Copy the default topology bits..
1439 	 */
1440 	for (i = 0; sched_domain_topology[i].mask; i++)
1441 		tl[i] = sched_domain_topology[i];
1442 
1443 	/*
1444 	 * .. and append 'j' levels of NUMA goodness.
1445 	 */
1446 	for (j = 0; j < level; i++, j++) {
1447 		tl[i] = (struct sched_domain_topology_level){
1448 			.mask = sd_numa_mask,
1449 			.sd_flags = cpu_numa_flags,
1450 			.flags = SDTL_OVERLAP,
1451 			.numa_level = j,
1452 			SD_INIT_NAME(NUMA)
1453 		};
1454 	}
1455 
1456 	sched_domain_topology = tl;
1457 
1458 	sched_domains_numa_levels = level;
1459 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1460 
1461 	init_numa_topology_type();
1462 }
1463 
1464 void sched_domains_numa_masks_set(unsigned int cpu)
1465 {
1466 	int node = cpu_to_node(cpu);
1467 	int i, j;
1468 
1469 	for (i = 0; i < sched_domains_numa_levels; i++) {
1470 		for (j = 0; j < nr_node_ids; j++) {
1471 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1472 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1473 		}
1474 	}
1475 }
1476 
1477 void sched_domains_numa_masks_clear(unsigned int cpu)
1478 {
1479 	int i, j;
1480 
1481 	for (i = 0; i < sched_domains_numa_levels; i++) {
1482 		for (j = 0; j < nr_node_ids; j++)
1483 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1484 	}
1485 }
1486 
1487 #endif /* CONFIG_NUMA */
1488 
1489 static int __sdt_alloc(const struct cpumask *cpu_map)
1490 {
1491 	struct sched_domain_topology_level *tl;
1492 	int j;
1493 
1494 	for_each_sd_topology(tl) {
1495 		struct sd_data *sdd = &tl->data;
1496 
1497 		sdd->sd = alloc_percpu(struct sched_domain *);
1498 		if (!sdd->sd)
1499 			return -ENOMEM;
1500 
1501 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1502 		if (!sdd->sds)
1503 			return -ENOMEM;
1504 
1505 		sdd->sg = alloc_percpu(struct sched_group *);
1506 		if (!sdd->sg)
1507 			return -ENOMEM;
1508 
1509 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1510 		if (!sdd->sgc)
1511 			return -ENOMEM;
1512 
1513 		for_each_cpu(j, cpu_map) {
1514 			struct sched_domain *sd;
1515 			struct sched_domain_shared *sds;
1516 			struct sched_group *sg;
1517 			struct sched_group_capacity *sgc;
1518 
1519 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1520 					GFP_KERNEL, cpu_to_node(j));
1521 			if (!sd)
1522 				return -ENOMEM;
1523 
1524 			*per_cpu_ptr(sdd->sd, j) = sd;
1525 
1526 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1527 					GFP_KERNEL, cpu_to_node(j));
1528 			if (!sds)
1529 				return -ENOMEM;
1530 
1531 			*per_cpu_ptr(sdd->sds, j) = sds;
1532 
1533 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1534 					GFP_KERNEL, cpu_to_node(j));
1535 			if (!sg)
1536 				return -ENOMEM;
1537 
1538 			sg->next = sg;
1539 
1540 			*per_cpu_ptr(sdd->sg, j) = sg;
1541 
1542 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1543 					GFP_KERNEL, cpu_to_node(j));
1544 			if (!sgc)
1545 				return -ENOMEM;
1546 
1547 #ifdef CONFIG_SCHED_DEBUG
1548 			sgc->id = j;
1549 #endif
1550 
1551 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1552 		}
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static void __sdt_free(const struct cpumask *cpu_map)
1559 {
1560 	struct sched_domain_topology_level *tl;
1561 	int j;
1562 
1563 	for_each_sd_topology(tl) {
1564 		struct sd_data *sdd = &tl->data;
1565 
1566 		for_each_cpu(j, cpu_map) {
1567 			struct sched_domain *sd;
1568 
1569 			if (sdd->sd) {
1570 				sd = *per_cpu_ptr(sdd->sd, j);
1571 				if (sd && (sd->flags & SD_OVERLAP))
1572 					free_sched_groups(sd->groups, 0);
1573 				kfree(*per_cpu_ptr(sdd->sd, j));
1574 			}
1575 
1576 			if (sdd->sds)
1577 				kfree(*per_cpu_ptr(sdd->sds, j));
1578 			if (sdd->sg)
1579 				kfree(*per_cpu_ptr(sdd->sg, j));
1580 			if (sdd->sgc)
1581 				kfree(*per_cpu_ptr(sdd->sgc, j));
1582 		}
1583 		free_percpu(sdd->sd);
1584 		sdd->sd = NULL;
1585 		free_percpu(sdd->sds);
1586 		sdd->sds = NULL;
1587 		free_percpu(sdd->sg);
1588 		sdd->sg = NULL;
1589 		free_percpu(sdd->sgc);
1590 		sdd->sgc = NULL;
1591 	}
1592 }
1593 
1594 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1595 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1596 		struct sched_domain *child, int cpu)
1597 {
1598 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1599 
1600 	if (child) {
1601 		sd->level = child->level + 1;
1602 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1603 		child->parent = sd;
1604 
1605 		if (!cpumask_subset(sched_domain_span(child),
1606 				    sched_domain_span(sd))) {
1607 			pr_err("BUG: arch topology borken\n");
1608 #ifdef CONFIG_SCHED_DEBUG
1609 			pr_err("     the %s domain not a subset of the %s domain\n",
1610 					child->name, sd->name);
1611 #endif
1612 			/* Fixup, ensure @sd has at least @child cpus. */
1613 			cpumask_or(sched_domain_span(sd),
1614 				   sched_domain_span(sd),
1615 				   sched_domain_span(child));
1616 		}
1617 
1618 	}
1619 	set_domain_attribute(sd, attr);
1620 
1621 	return sd;
1622 }
1623 
1624 /*
1625  * Build sched domains for a given set of CPUs and attach the sched domains
1626  * to the individual CPUs
1627  */
1628 static int
1629 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1630 {
1631 	enum s_alloc alloc_state;
1632 	struct sched_domain *sd;
1633 	struct s_data d;
1634 	struct rq *rq = NULL;
1635 	int i, ret = -ENOMEM;
1636 
1637 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1638 	if (alloc_state != sa_rootdomain)
1639 		goto error;
1640 
1641 	/* Set up domains for CPUs specified by the cpu_map: */
1642 	for_each_cpu(i, cpu_map) {
1643 		struct sched_domain_topology_level *tl;
1644 
1645 		sd = NULL;
1646 		for_each_sd_topology(tl) {
1647 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1648 			if (tl == sched_domain_topology)
1649 				*per_cpu_ptr(d.sd, i) = sd;
1650 			if (tl->flags & SDTL_OVERLAP)
1651 				sd->flags |= SD_OVERLAP;
1652 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1653 				break;
1654 		}
1655 	}
1656 
1657 	/* Build the groups for the domains */
1658 	for_each_cpu(i, cpu_map) {
1659 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1660 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1661 			if (sd->flags & SD_OVERLAP) {
1662 				if (build_overlap_sched_groups(sd, i))
1663 					goto error;
1664 			} else {
1665 				if (build_sched_groups(sd, i))
1666 					goto error;
1667 			}
1668 		}
1669 	}
1670 
1671 	/* Calculate CPU capacity for physical packages and nodes */
1672 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1673 		if (!cpumask_test_cpu(i, cpu_map))
1674 			continue;
1675 
1676 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1677 			claim_allocations(i, sd);
1678 			init_sched_groups_capacity(i, sd);
1679 		}
1680 	}
1681 
1682 	/* Attach the domains */
1683 	rcu_read_lock();
1684 	for_each_cpu(i, cpu_map) {
1685 		rq = cpu_rq(i);
1686 		sd = *per_cpu_ptr(d.sd, i);
1687 
1688 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1689 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1690 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1691 
1692 		cpu_attach_domain(sd, d.rd, i);
1693 	}
1694 	rcu_read_unlock();
1695 
1696 	if (rq && sched_debug_enabled) {
1697 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1698 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1699 	}
1700 
1701 	ret = 0;
1702 error:
1703 	__free_domain_allocs(&d, alloc_state, cpu_map);
1704 	return ret;
1705 }
1706 
1707 /* Current sched domains: */
1708 static cpumask_var_t			*doms_cur;
1709 
1710 /* Number of sched domains in 'doms_cur': */
1711 static int				ndoms_cur;
1712 
1713 /* Attribues of custom domains in 'doms_cur' */
1714 static struct sched_domain_attr		*dattr_cur;
1715 
1716 /*
1717  * Special case: If a kmalloc() of a doms_cur partition (array of
1718  * cpumask) fails, then fallback to a single sched domain,
1719  * as determined by the single cpumask fallback_doms.
1720  */
1721 static cpumask_var_t			fallback_doms;
1722 
1723 /*
1724  * arch_update_cpu_topology lets virtualized architectures update the
1725  * CPU core maps. It is supposed to return 1 if the topology changed
1726  * or 0 if it stayed the same.
1727  */
1728 int __weak arch_update_cpu_topology(void)
1729 {
1730 	return 0;
1731 }
1732 
1733 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1734 {
1735 	int i;
1736 	cpumask_var_t *doms;
1737 
1738 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1739 	if (!doms)
1740 		return NULL;
1741 	for (i = 0; i < ndoms; i++) {
1742 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1743 			free_sched_domains(doms, i);
1744 			return NULL;
1745 		}
1746 	}
1747 	return doms;
1748 }
1749 
1750 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1751 {
1752 	unsigned int i;
1753 	for (i = 0; i < ndoms; i++)
1754 		free_cpumask_var(doms[i]);
1755 	kfree(doms);
1756 }
1757 
1758 /*
1759  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1760  * For now this just excludes isolated CPUs, but could be used to
1761  * exclude other special cases in the future.
1762  */
1763 int sched_init_domains(const struct cpumask *cpu_map)
1764 {
1765 	int err;
1766 
1767 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1768 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1769 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1770 
1771 	arch_update_cpu_topology();
1772 	ndoms_cur = 1;
1773 	doms_cur = alloc_sched_domains(ndoms_cur);
1774 	if (!doms_cur)
1775 		doms_cur = &fallback_doms;
1776 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1777 	err = build_sched_domains(doms_cur[0], NULL);
1778 	register_sched_domain_sysctl();
1779 
1780 	return err;
1781 }
1782 
1783 /*
1784  * Detach sched domains from a group of CPUs specified in cpu_map
1785  * These CPUs will now be attached to the NULL domain
1786  */
1787 static void detach_destroy_domains(const struct cpumask *cpu_map)
1788 {
1789 	int i;
1790 
1791 	rcu_read_lock();
1792 	for_each_cpu(i, cpu_map)
1793 		cpu_attach_domain(NULL, &def_root_domain, i);
1794 	rcu_read_unlock();
1795 }
1796 
1797 /* handle null as "default" */
1798 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1799 			struct sched_domain_attr *new, int idx_new)
1800 {
1801 	struct sched_domain_attr tmp;
1802 
1803 	/* Fast path: */
1804 	if (!new && !cur)
1805 		return 1;
1806 
1807 	tmp = SD_ATTR_INIT;
1808 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1809 			new ? (new + idx_new) : &tmp,
1810 			sizeof(struct sched_domain_attr));
1811 }
1812 
1813 /*
1814  * Partition sched domains as specified by the 'ndoms_new'
1815  * cpumasks in the array doms_new[] of cpumasks. This compares
1816  * doms_new[] to the current sched domain partitioning, doms_cur[].
1817  * It destroys each deleted domain and builds each new domain.
1818  *
1819  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1820  * The masks don't intersect (don't overlap.) We should setup one
1821  * sched domain for each mask. CPUs not in any of the cpumasks will
1822  * not be load balanced. If the same cpumask appears both in the
1823  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1824  * it as it is.
1825  *
1826  * The passed in 'doms_new' should be allocated using
1827  * alloc_sched_domains.  This routine takes ownership of it and will
1828  * free_sched_domains it when done with it. If the caller failed the
1829  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1830  * and partition_sched_domains() will fallback to the single partition
1831  * 'fallback_doms', it also forces the domains to be rebuilt.
1832  *
1833  * If doms_new == NULL it will be replaced with cpu_online_mask.
1834  * ndoms_new == 0 is a special case for destroying existing domains,
1835  * and it will not create the default domain.
1836  *
1837  * Call with hotplug lock held
1838  */
1839 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1840 			     struct sched_domain_attr *dattr_new)
1841 {
1842 	int i, j, n;
1843 	int new_topology;
1844 
1845 	mutex_lock(&sched_domains_mutex);
1846 
1847 	/* Always unregister in case we don't destroy any domains: */
1848 	unregister_sched_domain_sysctl();
1849 
1850 	/* Let the architecture update CPU core mappings: */
1851 	new_topology = arch_update_cpu_topology();
1852 
1853 	if (!doms_new) {
1854 		WARN_ON_ONCE(dattr_new);
1855 		n = 0;
1856 		doms_new = alloc_sched_domains(1);
1857 		if (doms_new) {
1858 			n = 1;
1859 			cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1860 		}
1861 	} else {
1862 		n = ndoms_new;
1863 	}
1864 
1865 	/* Destroy deleted domains: */
1866 	for (i = 0; i < ndoms_cur; i++) {
1867 		for (j = 0; j < n && !new_topology; j++) {
1868 			if (cpumask_equal(doms_cur[i], doms_new[j])
1869 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1870 				goto match1;
1871 		}
1872 		/* No match - a current sched domain not in new doms_new[] */
1873 		detach_destroy_domains(doms_cur[i]);
1874 match1:
1875 		;
1876 	}
1877 
1878 	n = ndoms_cur;
1879 	if (!doms_new) {
1880 		n = 0;
1881 		doms_new = &fallback_doms;
1882 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1883 	}
1884 
1885 	/* Build new domains: */
1886 	for (i = 0; i < ndoms_new; i++) {
1887 		for (j = 0; j < n && !new_topology; j++) {
1888 			if (cpumask_equal(doms_new[i], doms_cur[j])
1889 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1890 				goto match2;
1891 		}
1892 		/* No match - add a new doms_new */
1893 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1894 match2:
1895 		;
1896 	}
1897 
1898 	/* Remember the new sched domains: */
1899 	if (doms_cur != &fallback_doms)
1900 		free_sched_domains(doms_cur, ndoms_cur);
1901 
1902 	kfree(dattr_cur);
1903 	doms_cur = doms_new;
1904 	dattr_cur = dattr_new;
1905 	ndoms_cur = ndoms_new;
1906 
1907 	register_sched_domain_sysctl();
1908 
1909 	mutex_unlock(&sched_domains_mutex);
1910 }
1911 
1912