xref: /openbmc/linux/kernel/sched/topology.c (revision 83268fa6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_enabled = true;
18 
19 	return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_enabled;
26 }
27 
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 				  struct cpumask *groupmask)
30 {
31 	struct sched_group *group = sd->groups;
32 
33 	cpumask_clear(groupmask);
34 
35 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36 
37 	if (!(sd->flags & SD_LOAD_BALANCE)) {
38 		printk("does not load-balance\n");
39 		if (sd->parent)
40 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41 		return -1;
42 	}
43 
44 	printk(KERN_CONT "span=%*pbl level=%s\n",
45 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
46 
47 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49 	}
50 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52 	}
53 
54 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 	do {
56 		if (!group) {
57 			printk("\n");
58 			printk(KERN_ERR "ERROR: group is NULL\n");
59 			break;
60 		}
61 
62 		if (!cpumask_weight(sched_group_span(group))) {
63 			printk(KERN_CONT "\n");
64 			printk(KERN_ERR "ERROR: empty group\n");
65 			break;
66 		}
67 
68 		if (!(sd->flags & SD_OVERLAP) &&
69 		    cpumask_intersects(groupmask, sched_group_span(group))) {
70 			printk(KERN_CONT "\n");
71 			printk(KERN_ERR "ERROR: repeated CPUs\n");
72 			break;
73 		}
74 
75 		cpumask_or(groupmask, groupmask, sched_group_span(group));
76 
77 		printk(KERN_CONT " %d:{ span=%*pbl",
78 				group->sgc->id,
79 				cpumask_pr_args(sched_group_span(group)));
80 
81 		if ((sd->flags & SD_OVERLAP) &&
82 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83 			printk(KERN_CONT " mask=%*pbl",
84 				cpumask_pr_args(group_balance_mask(group)));
85 		}
86 
87 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89 
90 		if (group == sd->groups && sd->child &&
91 		    !cpumask_equal(sched_domain_span(sd->child),
92 				   sched_group_span(group))) {
93 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94 		}
95 
96 		printk(KERN_CONT " }");
97 
98 		group = group->next;
99 
100 		if (group != sd->groups)
101 			printk(KERN_CONT ",");
102 
103 	} while (group != sd->groups);
104 	printk(KERN_CONT "\n");
105 
106 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108 
109 	if (sd->parent &&
110 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112 	return 0;
113 }
114 
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
116 {
117 	int level = 0;
118 
119 	if (!sched_debug_enabled)
120 		return;
121 
122 	if (!sd) {
123 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 		return;
125 	}
126 
127 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128 
129 	for (;;) {
130 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 			break;
132 		level++;
133 		sd = sd->parent;
134 		if (!sd)
135 			break;
136 	}
137 }
138 #else /* !CONFIG_SCHED_DEBUG */
139 
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
143 {
144 	return false;
145 }
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 static int sd_degenerate(struct sched_domain *sd)
149 {
150 	if (cpumask_weight(sched_domain_span(sd)) == 1)
151 		return 1;
152 
153 	/* Following flags need at least 2 groups */
154 	if (sd->flags & (SD_LOAD_BALANCE |
155 			 SD_BALANCE_NEWIDLE |
156 			 SD_BALANCE_FORK |
157 			 SD_BALANCE_EXEC |
158 			 SD_SHARE_CPUCAPACITY |
159 			 SD_ASYM_CPUCAPACITY |
160 			 SD_SHARE_PKG_RESOURCES |
161 			 SD_SHARE_POWERDOMAIN)) {
162 		if (sd->groups != sd->groups->next)
163 			return 0;
164 	}
165 
166 	/* Following flags don't use groups */
167 	if (sd->flags & (SD_WAKE_AFFINE))
168 		return 0;
169 
170 	return 1;
171 }
172 
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175 {
176 	unsigned long cflags = sd->flags, pflags = parent->flags;
177 
178 	if (sd_degenerate(parent))
179 		return 1;
180 
181 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 		return 0;
183 
184 	/* Flags needing groups don't count if only 1 group in parent */
185 	if (parent->groups == parent->groups->next) {
186 		pflags &= ~(SD_LOAD_BALANCE |
187 				SD_BALANCE_NEWIDLE |
188 				SD_BALANCE_FORK |
189 				SD_BALANCE_EXEC |
190 				SD_ASYM_CPUCAPACITY |
191 				SD_SHARE_CPUCAPACITY |
192 				SD_SHARE_PKG_RESOURCES |
193 				SD_PREFER_SIBLING |
194 				SD_SHARE_POWERDOMAIN);
195 		if (nr_node_ids == 1)
196 			pflags &= ~SD_SERIALIZE;
197 	}
198 	if (~cflags & pflags)
199 		return 0;
200 
201 	return 1;
202 }
203 
204 static void free_rootdomain(struct rcu_head *rcu)
205 {
206 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
207 
208 	cpupri_cleanup(&rd->cpupri);
209 	cpudl_cleanup(&rd->cpudl);
210 	free_cpumask_var(rd->dlo_mask);
211 	free_cpumask_var(rd->rto_mask);
212 	free_cpumask_var(rd->online);
213 	free_cpumask_var(rd->span);
214 	kfree(rd);
215 }
216 
217 void rq_attach_root(struct rq *rq, struct root_domain *rd)
218 {
219 	struct root_domain *old_rd = NULL;
220 	unsigned long flags;
221 
222 	raw_spin_lock_irqsave(&rq->lock, flags);
223 
224 	if (rq->rd) {
225 		old_rd = rq->rd;
226 
227 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
228 			set_rq_offline(rq);
229 
230 		cpumask_clear_cpu(rq->cpu, old_rd->span);
231 
232 		/*
233 		 * If we dont want to free the old_rd yet then
234 		 * set old_rd to NULL to skip the freeing later
235 		 * in this function:
236 		 */
237 		if (!atomic_dec_and_test(&old_rd->refcount))
238 			old_rd = NULL;
239 	}
240 
241 	atomic_inc(&rd->refcount);
242 	rq->rd = rd;
243 
244 	cpumask_set_cpu(rq->cpu, rd->span);
245 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
246 		set_rq_online(rq);
247 
248 	raw_spin_unlock_irqrestore(&rq->lock, flags);
249 
250 	if (old_rd)
251 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
252 }
253 
254 void sched_get_rd(struct root_domain *rd)
255 {
256 	atomic_inc(&rd->refcount);
257 }
258 
259 void sched_put_rd(struct root_domain *rd)
260 {
261 	if (!atomic_dec_and_test(&rd->refcount))
262 		return;
263 
264 	call_rcu_sched(&rd->rcu, free_rootdomain);
265 }
266 
267 static int init_rootdomain(struct root_domain *rd)
268 {
269 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
270 		goto out;
271 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
272 		goto free_span;
273 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
274 		goto free_online;
275 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
276 		goto free_dlo_mask;
277 
278 #ifdef HAVE_RT_PUSH_IPI
279 	rd->rto_cpu = -1;
280 	raw_spin_lock_init(&rd->rto_lock);
281 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
282 #endif
283 
284 	init_dl_bw(&rd->dl_bw);
285 	if (cpudl_init(&rd->cpudl) != 0)
286 		goto free_rto_mask;
287 
288 	if (cpupri_init(&rd->cpupri) != 0)
289 		goto free_cpudl;
290 	return 0;
291 
292 free_cpudl:
293 	cpudl_cleanup(&rd->cpudl);
294 free_rto_mask:
295 	free_cpumask_var(rd->rto_mask);
296 free_dlo_mask:
297 	free_cpumask_var(rd->dlo_mask);
298 free_online:
299 	free_cpumask_var(rd->online);
300 free_span:
301 	free_cpumask_var(rd->span);
302 out:
303 	return -ENOMEM;
304 }
305 
306 /*
307  * By default the system creates a single root-domain with all CPUs as
308  * members (mimicking the global state we have today).
309  */
310 struct root_domain def_root_domain;
311 
312 void init_defrootdomain(void)
313 {
314 	init_rootdomain(&def_root_domain);
315 
316 	atomic_set(&def_root_domain.refcount, 1);
317 }
318 
319 static struct root_domain *alloc_rootdomain(void)
320 {
321 	struct root_domain *rd;
322 
323 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
324 	if (!rd)
325 		return NULL;
326 
327 	if (init_rootdomain(rd) != 0) {
328 		kfree(rd);
329 		return NULL;
330 	}
331 
332 	return rd;
333 }
334 
335 static void free_sched_groups(struct sched_group *sg, int free_sgc)
336 {
337 	struct sched_group *tmp, *first;
338 
339 	if (!sg)
340 		return;
341 
342 	first = sg;
343 	do {
344 		tmp = sg->next;
345 
346 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
347 			kfree(sg->sgc);
348 
349 		if (atomic_dec_and_test(&sg->ref))
350 			kfree(sg);
351 		sg = tmp;
352 	} while (sg != first);
353 }
354 
355 static void destroy_sched_domain(struct sched_domain *sd)
356 {
357 	/*
358 	 * A normal sched domain may have multiple group references, an
359 	 * overlapping domain, having private groups, only one.  Iterate,
360 	 * dropping group/capacity references, freeing where none remain.
361 	 */
362 	free_sched_groups(sd->groups, 1);
363 
364 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
365 		kfree(sd->shared);
366 	kfree(sd);
367 }
368 
369 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
370 {
371 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
372 
373 	while (sd) {
374 		struct sched_domain *parent = sd->parent;
375 		destroy_sched_domain(sd);
376 		sd = parent;
377 	}
378 }
379 
380 static void destroy_sched_domains(struct sched_domain *sd)
381 {
382 	if (sd)
383 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
384 }
385 
386 /*
387  * Keep a special pointer to the highest sched_domain that has
388  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
389  * allows us to avoid some pointer chasing select_idle_sibling().
390  *
391  * Also keep a unique ID per domain (we use the first CPU number in
392  * the cpumask of the domain), this allows us to quickly tell if
393  * two CPUs are in the same cache domain, see cpus_share_cache().
394  */
395 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
396 DEFINE_PER_CPU(int, sd_llc_size);
397 DEFINE_PER_CPU(int, sd_llc_id);
398 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
399 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
400 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
401 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
402 
403 static void update_top_cache_domain(int cpu)
404 {
405 	struct sched_domain_shared *sds = NULL;
406 	struct sched_domain *sd;
407 	int id = cpu;
408 	int size = 1;
409 
410 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
411 	if (sd) {
412 		id = cpumask_first(sched_domain_span(sd));
413 		size = cpumask_weight(sched_domain_span(sd));
414 		sds = sd->shared;
415 	}
416 
417 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
418 	per_cpu(sd_llc_size, cpu) = size;
419 	per_cpu(sd_llc_id, cpu) = id;
420 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
421 
422 	sd = lowest_flag_domain(cpu, SD_NUMA);
423 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
424 
425 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
426 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
427 }
428 
429 /*
430  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
431  * hold the hotplug lock.
432  */
433 static void
434 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
435 {
436 	struct rq *rq = cpu_rq(cpu);
437 	struct sched_domain *tmp;
438 
439 	/* Remove the sched domains which do not contribute to scheduling. */
440 	for (tmp = sd; tmp; ) {
441 		struct sched_domain *parent = tmp->parent;
442 		if (!parent)
443 			break;
444 
445 		if (sd_parent_degenerate(tmp, parent)) {
446 			tmp->parent = parent->parent;
447 			if (parent->parent)
448 				parent->parent->child = tmp;
449 			/*
450 			 * Transfer SD_PREFER_SIBLING down in case of a
451 			 * degenerate parent; the spans match for this
452 			 * so the property transfers.
453 			 */
454 			if (parent->flags & SD_PREFER_SIBLING)
455 				tmp->flags |= SD_PREFER_SIBLING;
456 			destroy_sched_domain(parent);
457 		} else
458 			tmp = tmp->parent;
459 	}
460 
461 	if (sd && sd_degenerate(sd)) {
462 		tmp = sd;
463 		sd = sd->parent;
464 		destroy_sched_domain(tmp);
465 		if (sd)
466 			sd->child = NULL;
467 	}
468 
469 	sched_domain_debug(sd, cpu);
470 
471 	rq_attach_root(rq, rd);
472 	tmp = rq->sd;
473 	rcu_assign_pointer(rq->sd, sd);
474 	dirty_sched_domain_sysctl(cpu);
475 	destroy_sched_domains(tmp);
476 
477 	update_top_cache_domain(cpu);
478 }
479 
480 struct s_data {
481 	struct sched_domain ** __percpu sd;
482 	struct root_domain	*rd;
483 };
484 
485 enum s_alloc {
486 	sa_rootdomain,
487 	sa_sd,
488 	sa_sd_storage,
489 	sa_none,
490 };
491 
492 /*
493  * Return the canonical balance CPU for this group, this is the first CPU
494  * of this group that's also in the balance mask.
495  *
496  * The balance mask are all those CPUs that could actually end up at this
497  * group. See build_balance_mask().
498  *
499  * Also see should_we_balance().
500  */
501 int group_balance_cpu(struct sched_group *sg)
502 {
503 	return cpumask_first(group_balance_mask(sg));
504 }
505 
506 
507 /*
508  * NUMA topology (first read the regular topology blurb below)
509  *
510  * Given a node-distance table, for example:
511  *
512  *   node   0   1   2   3
513  *     0:  10  20  30  20
514  *     1:  20  10  20  30
515  *     2:  30  20  10  20
516  *     3:  20  30  20  10
517  *
518  * which represents a 4 node ring topology like:
519  *
520  *   0 ----- 1
521  *   |       |
522  *   |       |
523  *   |       |
524  *   3 ----- 2
525  *
526  * We want to construct domains and groups to represent this. The way we go
527  * about doing this is to build the domains on 'hops'. For each NUMA level we
528  * construct the mask of all nodes reachable in @level hops.
529  *
530  * For the above NUMA topology that gives 3 levels:
531  *
532  * NUMA-2	0-3		0-3		0-3		0-3
533  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
534  *
535  * NUMA-1	0-1,3		0-2		1-3		0,2-3
536  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
537  *
538  * NUMA-0	0		1		2		3
539  *
540  *
541  * As can be seen; things don't nicely line up as with the regular topology.
542  * When we iterate a domain in child domain chunks some nodes can be
543  * represented multiple times -- hence the "overlap" naming for this part of
544  * the topology.
545  *
546  * In order to minimize this overlap, we only build enough groups to cover the
547  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
548  *
549  * Because:
550  *
551  *  - the first group of each domain is its child domain; this
552  *    gets us the first 0-1,3
553  *  - the only uncovered node is 2, who's child domain is 1-3.
554  *
555  * However, because of the overlap, computing a unique CPU for each group is
556  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
557  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
558  * end up at those groups (they would end up in group: 0-1,3).
559  *
560  * To correct this we have to introduce the group balance mask. This mask
561  * will contain those CPUs in the group that can reach this group given the
562  * (child) domain tree.
563  *
564  * With this we can once again compute balance_cpu and sched_group_capacity
565  * relations.
566  *
567  * XXX include words on how balance_cpu is unique and therefore can be
568  * used for sched_group_capacity links.
569  *
570  *
571  * Another 'interesting' topology is:
572  *
573  *   node   0   1   2   3
574  *     0:  10  20  20  30
575  *     1:  20  10  20  20
576  *     2:  20  20  10  20
577  *     3:  30  20  20  10
578  *
579  * Which looks a little like:
580  *
581  *   0 ----- 1
582  *   |     / |
583  *   |   /   |
584  *   | /     |
585  *   2 ----- 3
586  *
587  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
588  * are not.
589  *
590  * This leads to a few particularly weird cases where the sched_domain's are
591  * not of the same number for each CPU. Consider:
592  *
593  * NUMA-2	0-3						0-3
594  *  groups:	{0-2},{1-3}					{1-3},{0-2}
595  *
596  * NUMA-1	0-2		0-3		0-3		1-3
597  *
598  * NUMA-0	0		1		2		3
599  *
600  */
601 
602 
603 /*
604  * Build the balance mask; it contains only those CPUs that can arrive at this
605  * group and should be considered to continue balancing.
606  *
607  * We do this during the group creation pass, therefore the group information
608  * isn't complete yet, however since each group represents a (child) domain we
609  * can fully construct this using the sched_domain bits (which are already
610  * complete).
611  */
612 static void
613 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
614 {
615 	const struct cpumask *sg_span = sched_group_span(sg);
616 	struct sd_data *sdd = sd->private;
617 	struct sched_domain *sibling;
618 	int i;
619 
620 	cpumask_clear(mask);
621 
622 	for_each_cpu(i, sg_span) {
623 		sibling = *per_cpu_ptr(sdd->sd, i);
624 
625 		/*
626 		 * Can happen in the asymmetric case, where these siblings are
627 		 * unused. The mask will not be empty because those CPUs that
628 		 * do have the top domain _should_ span the domain.
629 		 */
630 		if (!sibling->child)
631 			continue;
632 
633 		/* If we would not end up here, we can't continue from here */
634 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
635 			continue;
636 
637 		cpumask_set_cpu(i, mask);
638 	}
639 
640 	/* We must not have empty masks here */
641 	WARN_ON_ONCE(cpumask_empty(mask));
642 }
643 
644 /*
645  * XXX: This creates per-node group entries; since the load-balancer will
646  * immediately access remote memory to construct this group's load-balance
647  * statistics having the groups node local is of dubious benefit.
648  */
649 static struct sched_group *
650 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
651 {
652 	struct sched_group *sg;
653 	struct cpumask *sg_span;
654 
655 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
656 			GFP_KERNEL, cpu_to_node(cpu));
657 
658 	if (!sg)
659 		return NULL;
660 
661 	sg_span = sched_group_span(sg);
662 	if (sd->child)
663 		cpumask_copy(sg_span, sched_domain_span(sd->child));
664 	else
665 		cpumask_copy(sg_span, sched_domain_span(sd));
666 
667 	atomic_inc(&sg->ref);
668 	return sg;
669 }
670 
671 static void init_overlap_sched_group(struct sched_domain *sd,
672 				     struct sched_group *sg)
673 {
674 	struct cpumask *mask = sched_domains_tmpmask2;
675 	struct sd_data *sdd = sd->private;
676 	struct cpumask *sg_span;
677 	int cpu;
678 
679 	build_balance_mask(sd, sg, mask);
680 	cpu = cpumask_first_and(sched_group_span(sg), mask);
681 
682 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
683 	if (atomic_inc_return(&sg->sgc->ref) == 1)
684 		cpumask_copy(group_balance_mask(sg), mask);
685 	else
686 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
687 
688 	/*
689 	 * Initialize sgc->capacity such that even if we mess up the
690 	 * domains and no possible iteration will get us here, we won't
691 	 * die on a /0 trap.
692 	 */
693 	sg_span = sched_group_span(sg);
694 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
695 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
696 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
697 }
698 
699 static int
700 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
701 {
702 	struct sched_group *first = NULL, *last = NULL, *sg;
703 	const struct cpumask *span = sched_domain_span(sd);
704 	struct cpumask *covered = sched_domains_tmpmask;
705 	struct sd_data *sdd = sd->private;
706 	struct sched_domain *sibling;
707 	int i;
708 
709 	cpumask_clear(covered);
710 
711 	for_each_cpu_wrap(i, span, cpu) {
712 		struct cpumask *sg_span;
713 
714 		if (cpumask_test_cpu(i, covered))
715 			continue;
716 
717 		sibling = *per_cpu_ptr(sdd->sd, i);
718 
719 		/*
720 		 * Asymmetric node setups can result in situations where the
721 		 * domain tree is of unequal depth, make sure to skip domains
722 		 * that already cover the entire range.
723 		 *
724 		 * In that case build_sched_domains() will have terminated the
725 		 * iteration early and our sibling sd spans will be empty.
726 		 * Domains should always include the CPU they're built on, so
727 		 * check that.
728 		 */
729 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
730 			continue;
731 
732 		sg = build_group_from_child_sched_domain(sibling, cpu);
733 		if (!sg)
734 			goto fail;
735 
736 		sg_span = sched_group_span(sg);
737 		cpumask_or(covered, covered, sg_span);
738 
739 		init_overlap_sched_group(sd, sg);
740 
741 		if (!first)
742 			first = sg;
743 		if (last)
744 			last->next = sg;
745 		last = sg;
746 		last->next = first;
747 	}
748 	sd->groups = first;
749 
750 	return 0;
751 
752 fail:
753 	free_sched_groups(first, 0);
754 
755 	return -ENOMEM;
756 }
757 
758 
759 /*
760  * Package topology (also see the load-balance blurb in fair.c)
761  *
762  * The scheduler builds a tree structure to represent a number of important
763  * topology features. By default (default_topology[]) these include:
764  *
765  *  - Simultaneous multithreading (SMT)
766  *  - Multi-Core Cache (MC)
767  *  - Package (DIE)
768  *
769  * Where the last one more or less denotes everything up to a NUMA node.
770  *
771  * The tree consists of 3 primary data structures:
772  *
773  *	sched_domain -> sched_group -> sched_group_capacity
774  *	    ^ ^             ^ ^
775  *          `-'             `-'
776  *
777  * The sched_domains are per-CPU and have a two way link (parent & child) and
778  * denote the ever growing mask of CPUs belonging to that level of topology.
779  *
780  * Each sched_domain has a circular (double) linked list of sched_group's, each
781  * denoting the domains of the level below (or individual CPUs in case of the
782  * first domain level). The sched_group linked by a sched_domain includes the
783  * CPU of that sched_domain [*].
784  *
785  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
786  *
787  * CPU   0   1   2   3   4   5   6   7
788  *
789  * DIE  [                             ]
790  * MC   [             ] [             ]
791  * SMT  [     ] [     ] [     ] [     ]
792  *
793  *  - or -
794  *
795  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
796  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
797  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
798  *
799  * CPU   0   1   2   3   4   5   6   7
800  *
801  * One way to think about it is: sched_domain moves you up and down among these
802  * topology levels, while sched_group moves you sideways through it, at child
803  * domain granularity.
804  *
805  * sched_group_capacity ensures each unique sched_group has shared storage.
806  *
807  * There are two related construction problems, both require a CPU that
808  * uniquely identify each group (for a given domain):
809  *
810  *  - The first is the balance_cpu (see should_we_balance() and the
811  *    load-balance blub in fair.c); for each group we only want 1 CPU to
812  *    continue balancing at a higher domain.
813  *
814  *  - The second is the sched_group_capacity; we want all identical groups
815  *    to share a single sched_group_capacity.
816  *
817  * Since these topologies are exclusive by construction. That is, its
818  * impossible for an SMT thread to belong to multiple cores, and cores to
819  * be part of multiple caches. There is a very clear and unique location
820  * for each CPU in the hierarchy.
821  *
822  * Therefore computing a unique CPU for each group is trivial (the iteration
823  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
824  * group), we can simply pick the first CPU in each group.
825  *
826  *
827  * [*] in other words, the first group of each domain is its child domain.
828  */
829 
830 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
831 {
832 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
833 	struct sched_domain *child = sd->child;
834 	struct sched_group *sg;
835 
836 	if (child)
837 		cpu = cpumask_first(sched_domain_span(child));
838 
839 	sg = *per_cpu_ptr(sdd->sg, cpu);
840 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
841 
842 	/* For claim_allocations: */
843 	atomic_inc(&sg->ref);
844 	atomic_inc(&sg->sgc->ref);
845 
846 	if (child) {
847 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
848 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
849 	} else {
850 		cpumask_set_cpu(cpu, sched_group_span(sg));
851 		cpumask_set_cpu(cpu, group_balance_mask(sg));
852 	}
853 
854 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
855 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
856 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
857 
858 	return sg;
859 }
860 
861 /*
862  * build_sched_groups will build a circular linked list of the groups
863  * covered by the given span, and will set each group's ->cpumask correctly,
864  * and ->cpu_capacity to 0.
865  *
866  * Assumes the sched_domain tree is fully constructed
867  */
868 static int
869 build_sched_groups(struct sched_domain *sd, int cpu)
870 {
871 	struct sched_group *first = NULL, *last = NULL;
872 	struct sd_data *sdd = sd->private;
873 	const struct cpumask *span = sched_domain_span(sd);
874 	struct cpumask *covered;
875 	int i;
876 
877 	lockdep_assert_held(&sched_domains_mutex);
878 	covered = sched_domains_tmpmask;
879 
880 	cpumask_clear(covered);
881 
882 	for_each_cpu_wrap(i, span, cpu) {
883 		struct sched_group *sg;
884 
885 		if (cpumask_test_cpu(i, covered))
886 			continue;
887 
888 		sg = get_group(i, sdd);
889 
890 		cpumask_or(covered, covered, sched_group_span(sg));
891 
892 		if (!first)
893 			first = sg;
894 		if (last)
895 			last->next = sg;
896 		last = sg;
897 	}
898 	last->next = first;
899 	sd->groups = first;
900 
901 	return 0;
902 }
903 
904 /*
905  * Initialize sched groups cpu_capacity.
906  *
907  * cpu_capacity indicates the capacity of sched group, which is used while
908  * distributing the load between different sched groups in a sched domain.
909  * Typically cpu_capacity for all the groups in a sched domain will be same
910  * unless there are asymmetries in the topology. If there are asymmetries,
911  * group having more cpu_capacity will pickup more load compared to the
912  * group having less cpu_capacity.
913  */
914 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
915 {
916 	struct sched_group *sg = sd->groups;
917 
918 	WARN_ON(!sg);
919 
920 	do {
921 		int cpu, max_cpu = -1;
922 
923 		sg->group_weight = cpumask_weight(sched_group_span(sg));
924 
925 		if (!(sd->flags & SD_ASYM_PACKING))
926 			goto next;
927 
928 		for_each_cpu(cpu, sched_group_span(sg)) {
929 			if (max_cpu < 0)
930 				max_cpu = cpu;
931 			else if (sched_asym_prefer(cpu, max_cpu))
932 				max_cpu = cpu;
933 		}
934 		sg->asym_prefer_cpu = max_cpu;
935 
936 next:
937 		sg = sg->next;
938 	} while (sg != sd->groups);
939 
940 	if (cpu != group_balance_cpu(sg))
941 		return;
942 
943 	update_group_capacity(sd, cpu);
944 }
945 
946 /*
947  * Initializers for schedule domains
948  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
949  */
950 
951 static int default_relax_domain_level = -1;
952 int sched_domain_level_max;
953 
954 static int __init setup_relax_domain_level(char *str)
955 {
956 	if (kstrtoint(str, 0, &default_relax_domain_level))
957 		pr_warn("Unable to set relax_domain_level\n");
958 
959 	return 1;
960 }
961 __setup("relax_domain_level=", setup_relax_domain_level);
962 
963 static void set_domain_attribute(struct sched_domain *sd,
964 				 struct sched_domain_attr *attr)
965 {
966 	int request;
967 
968 	if (!attr || attr->relax_domain_level < 0) {
969 		if (default_relax_domain_level < 0)
970 			return;
971 		else
972 			request = default_relax_domain_level;
973 	} else
974 		request = attr->relax_domain_level;
975 	if (request < sd->level) {
976 		/* Turn off idle balance on this domain: */
977 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
978 	} else {
979 		/* Turn on idle balance on this domain: */
980 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
981 	}
982 }
983 
984 static void __sdt_free(const struct cpumask *cpu_map);
985 static int __sdt_alloc(const struct cpumask *cpu_map);
986 
987 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
988 				 const struct cpumask *cpu_map)
989 {
990 	switch (what) {
991 	case sa_rootdomain:
992 		if (!atomic_read(&d->rd->refcount))
993 			free_rootdomain(&d->rd->rcu);
994 		/* Fall through */
995 	case sa_sd:
996 		free_percpu(d->sd);
997 		/* Fall through */
998 	case sa_sd_storage:
999 		__sdt_free(cpu_map);
1000 		/* Fall through */
1001 	case sa_none:
1002 		break;
1003 	}
1004 }
1005 
1006 static enum s_alloc
1007 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1008 {
1009 	memset(d, 0, sizeof(*d));
1010 
1011 	if (__sdt_alloc(cpu_map))
1012 		return sa_sd_storage;
1013 	d->sd = alloc_percpu(struct sched_domain *);
1014 	if (!d->sd)
1015 		return sa_sd_storage;
1016 	d->rd = alloc_rootdomain();
1017 	if (!d->rd)
1018 		return sa_sd;
1019 
1020 	return sa_rootdomain;
1021 }
1022 
1023 /*
1024  * NULL the sd_data elements we've used to build the sched_domain and
1025  * sched_group structure so that the subsequent __free_domain_allocs()
1026  * will not free the data we're using.
1027  */
1028 static void claim_allocations(int cpu, struct sched_domain *sd)
1029 {
1030 	struct sd_data *sdd = sd->private;
1031 
1032 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1033 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1034 
1035 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1036 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1037 
1038 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1039 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1040 
1041 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1042 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1043 }
1044 
1045 #ifdef CONFIG_NUMA
1046 enum numa_topology_type sched_numa_topology_type;
1047 
1048 static int			sched_domains_numa_levels;
1049 static int			sched_domains_curr_level;
1050 
1051 int				sched_max_numa_distance;
1052 static int			*sched_domains_numa_distance;
1053 static struct cpumask		***sched_domains_numa_masks;
1054 #endif
1055 
1056 /*
1057  * SD_flags allowed in topology descriptions.
1058  *
1059  * These flags are purely descriptive of the topology and do not prescribe
1060  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1061  * function:
1062  *
1063  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1064  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1065  *   SD_NUMA                - describes NUMA topologies
1066  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1067  *
1068  * Odd one out, which beside describing the topology has a quirk also
1069  * prescribes the desired behaviour that goes along with it:
1070  *
1071  *   SD_ASYM_PACKING        - describes SMT quirks
1072  */
1073 #define TOPOLOGY_SD_FLAGS		\
1074 	(SD_SHARE_CPUCAPACITY	|	\
1075 	 SD_SHARE_PKG_RESOURCES |	\
1076 	 SD_NUMA		|	\
1077 	 SD_ASYM_PACKING	|	\
1078 	 SD_SHARE_POWERDOMAIN)
1079 
1080 static struct sched_domain *
1081 sd_init(struct sched_domain_topology_level *tl,
1082 	const struct cpumask *cpu_map,
1083 	struct sched_domain *child, int dflags, int cpu)
1084 {
1085 	struct sd_data *sdd = &tl->data;
1086 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1087 	int sd_id, sd_weight, sd_flags = 0;
1088 
1089 #ifdef CONFIG_NUMA
1090 	/*
1091 	 * Ugly hack to pass state to sd_numa_mask()...
1092 	 */
1093 	sched_domains_curr_level = tl->numa_level;
1094 #endif
1095 
1096 	sd_weight = cpumask_weight(tl->mask(cpu));
1097 
1098 	if (tl->sd_flags)
1099 		sd_flags = (*tl->sd_flags)();
1100 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1101 			"wrong sd_flags in topology description\n"))
1102 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
1103 
1104 	/* Apply detected topology flags */
1105 	sd_flags |= dflags;
1106 
1107 	*sd = (struct sched_domain){
1108 		.min_interval		= sd_weight,
1109 		.max_interval		= 2*sd_weight,
1110 		.busy_factor		= 32,
1111 		.imbalance_pct		= 125,
1112 
1113 		.cache_nice_tries	= 0,
1114 		.busy_idx		= 0,
1115 		.idle_idx		= 0,
1116 		.newidle_idx		= 0,
1117 		.wake_idx		= 0,
1118 		.forkexec_idx		= 0,
1119 
1120 		.flags			= 1*SD_LOAD_BALANCE
1121 					| 1*SD_BALANCE_NEWIDLE
1122 					| 1*SD_BALANCE_EXEC
1123 					| 1*SD_BALANCE_FORK
1124 					| 0*SD_BALANCE_WAKE
1125 					| 1*SD_WAKE_AFFINE
1126 					| 0*SD_SHARE_CPUCAPACITY
1127 					| 0*SD_SHARE_PKG_RESOURCES
1128 					| 0*SD_SERIALIZE
1129 					| 1*SD_PREFER_SIBLING
1130 					| 0*SD_NUMA
1131 					| sd_flags
1132 					,
1133 
1134 		.last_balance		= jiffies,
1135 		.balance_interval	= sd_weight,
1136 		.smt_gain		= 0,
1137 		.max_newidle_lb_cost	= 0,
1138 		.next_decay_max_lb_cost	= jiffies,
1139 		.child			= child,
1140 #ifdef CONFIG_SCHED_DEBUG
1141 		.name			= tl->name,
1142 #endif
1143 	};
1144 
1145 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1146 	sd_id = cpumask_first(sched_domain_span(sd));
1147 
1148 	/*
1149 	 * Convert topological properties into behaviour.
1150 	 */
1151 
1152 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
1153 		struct sched_domain *t = sd;
1154 
1155 		/*
1156 		 * Don't attempt to spread across CPUs of different capacities.
1157 		 */
1158 		if (sd->child)
1159 			sd->child->flags &= ~SD_PREFER_SIBLING;
1160 
1161 		for_each_lower_domain(t)
1162 			t->flags |= SD_BALANCE_WAKE;
1163 	}
1164 
1165 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1166 		sd->imbalance_pct = 110;
1167 		sd->smt_gain = 1178; /* ~15% */
1168 
1169 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1170 		sd->imbalance_pct = 117;
1171 		sd->cache_nice_tries = 1;
1172 		sd->busy_idx = 2;
1173 
1174 #ifdef CONFIG_NUMA
1175 	} else if (sd->flags & SD_NUMA) {
1176 		sd->cache_nice_tries = 2;
1177 		sd->busy_idx = 3;
1178 		sd->idle_idx = 2;
1179 
1180 		sd->flags &= ~SD_PREFER_SIBLING;
1181 		sd->flags |= SD_SERIALIZE;
1182 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1183 			sd->flags &= ~(SD_BALANCE_EXEC |
1184 				       SD_BALANCE_FORK |
1185 				       SD_WAKE_AFFINE);
1186 		}
1187 
1188 #endif
1189 	} else {
1190 		sd->cache_nice_tries = 1;
1191 		sd->busy_idx = 2;
1192 		sd->idle_idx = 1;
1193 	}
1194 
1195 	/*
1196 	 * For all levels sharing cache; connect a sched_domain_shared
1197 	 * instance.
1198 	 */
1199 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1200 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1201 		atomic_inc(&sd->shared->ref);
1202 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1203 	}
1204 
1205 	sd->private = sdd;
1206 
1207 	return sd;
1208 }
1209 
1210 /*
1211  * Topology list, bottom-up.
1212  */
1213 static struct sched_domain_topology_level default_topology[] = {
1214 #ifdef CONFIG_SCHED_SMT
1215 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1216 #endif
1217 #ifdef CONFIG_SCHED_MC
1218 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1219 #endif
1220 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1221 	{ NULL, },
1222 };
1223 
1224 static struct sched_domain_topology_level *sched_domain_topology =
1225 	default_topology;
1226 
1227 #define for_each_sd_topology(tl)			\
1228 	for (tl = sched_domain_topology; tl->mask; tl++)
1229 
1230 void set_sched_topology(struct sched_domain_topology_level *tl)
1231 {
1232 	if (WARN_ON_ONCE(sched_smp_initialized))
1233 		return;
1234 
1235 	sched_domain_topology = tl;
1236 }
1237 
1238 #ifdef CONFIG_NUMA
1239 
1240 static const struct cpumask *sd_numa_mask(int cpu)
1241 {
1242 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1243 }
1244 
1245 static void sched_numa_warn(const char *str)
1246 {
1247 	static int done = false;
1248 	int i,j;
1249 
1250 	if (done)
1251 		return;
1252 
1253 	done = true;
1254 
1255 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1256 
1257 	for (i = 0; i < nr_node_ids; i++) {
1258 		printk(KERN_WARNING "  ");
1259 		for (j = 0; j < nr_node_ids; j++)
1260 			printk(KERN_CONT "%02d ", node_distance(i,j));
1261 		printk(KERN_CONT "\n");
1262 	}
1263 	printk(KERN_WARNING "\n");
1264 }
1265 
1266 bool find_numa_distance(int distance)
1267 {
1268 	int i;
1269 
1270 	if (distance == node_distance(0, 0))
1271 		return true;
1272 
1273 	for (i = 0; i < sched_domains_numa_levels; i++) {
1274 		if (sched_domains_numa_distance[i] == distance)
1275 			return true;
1276 	}
1277 
1278 	return false;
1279 }
1280 
1281 /*
1282  * A system can have three types of NUMA topology:
1283  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1284  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1285  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1286  *
1287  * The difference between a glueless mesh topology and a backplane
1288  * topology lies in whether communication between not directly
1289  * connected nodes goes through intermediary nodes (where programs
1290  * could run), or through backplane controllers. This affects
1291  * placement of programs.
1292  *
1293  * The type of topology can be discerned with the following tests:
1294  * - If the maximum distance between any nodes is 1 hop, the system
1295  *   is directly connected.
1296  * - If for two nodes A and B, located N > 1 hops away from each other,
1297  *   there is an intermediary node C, which is < N hops away from both
1298  *   nodes A and B, the system is a glueless mesh.
1299  */
1300 static void init_numa_topology_type(void)
1301 {
1302 	int a, b, c, n;
1303 
1304 	n = sched_max_numa_distance;
1305 
1306 	if (sched_domains_numa_levels <= 2) {
1307 		sched_numa_topology_type = NUMA_DIRECT;
1308 		return;
1309 	}
1310 
1311 	for_each_online_node(a) {
1312 		for_each_online_node(b) {
1313 			/* Find two nodes furthest removed from each other. */
1314 			if (node_distance(a, b) < n)
1315 				continue;
1316 
1317 			/* Is there an intermediary node between a and b? */
1318 			for_each_online_node(c) {
1319 				if (node_distance(a, c) < n &&
1320 				    node_distance(b, c) < n) {
1321 					sched_numa_topology_type =
1322 							NUMA_GLUELESS_MESH;
1323 					return;
1324 				}
1325 			}
1326 
1327 			sched_numa_topology_type = NUMA_BACKPLANE;
1328 			return;
1329 		}
1330 	}
1331 }
1332 
1333 void sched_init_numa(void)
1334 {
1335 	int next_distance, curr_distance = node_distance(0, 0);
1336 	struct sched_domain_topology_level *tl;
1337 	int level = 0;
1338 	int i, j, k;
1339 
1340 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1341 	if (!sched_domains_numa_distance)
1342 		return;
1343 
1344 	/* Includes NUMA identity node at level 0. */
1345 	sched_domains_numa_distance[level++] = curr_distance;
1346 	sched_domains_numa_levels = level;
1347 
1348 	/*
1349 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1350 	 * unique distances in the node_distance() table.
1351 	 *
1352 	 * Assumes node_distance(0,j) includes all distances in
1353 	 * node_distance(i,j) in order to avoid cubic time.
1354 	 */
1355 	next_distance = curr_distance;
1356 	for (i = 0; i < nr_node_ids; i++) {
1357 		for (j = 0; j < nr_node_ids; j++) {
1358 			for (k = 0; k < nr_node_ids; k++) {
1359 				int distance = node_distance(i, k);
1360 
1361 				if (distance > curr_distance &&
1362 				    (distance < next_distance ||
1363 				     next_distance == curr_distance))
1364 					next_distance = distance;
1365 
1366 				/*
1367 				 * While not a strong assumption it would be nice to know
1368 				 * about cases where if node A is connected to B, B is not
1369 				 * equally connected to A.
1370 				 */
1371 				if (sched_debug() && node_distance(k, i) != distance)
1372 					sched_numa_warn("Node-distance not symmetric");
1373 
1374 				if (sched_debug() && i && !find_numa_distance(distance))
1375 					sched_numa_warn("Node-0 not representative");
1376 			}
1377 			if (next_distance != curr_distance) {
1378 				sched_domains_numa_distance[level++] = next_distance;
1379 				sched_domains_numa_levels = level;
1380 				curr_distance = next_distance;
1381 			} else break;
1382 		}
1383 
1384 		/*
1385 		 * In case of sched_debug() we verify the above assumption.
1386 		 */
1387 		if (!sched_debug())
1388 			break;
1389 	}
1390 
1391 	/*
1392 	 * 'level' contains the number of unique distances
1393 	 *
1394 	 * The sched_domains_numa_distance[] array includes the actual distance
1395 	 * numbers.
1396 	 */
1397 
1398 	/*
1399 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1400 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1401 	 * the array will contain less then 'level' members. This could be
1402 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1403 	 * in other functions.
1404 	 *
1405 	 * We reset it to 'level' at the end of this function.
1406 	 */
1407 	sched_domains_numa_levels = 0;
1408 
1409 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1410 	if (!sched_domains_numa_masks)
1411 		return;
1412 
1413 	/*
1414 	 * Now for each level, construct a mask per node which contains all
1415 	 * CPUs of nodes that are that many hops away from us.
1416 	 */
1417 	for (i = 0; i < level; i++) {
1418 		sched_domains_numa_masks[i] =
1419 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1420 		if (!sched_domains_numa_masks[i])
1421 			return;
1422 
1423 		for (j = 0; j < nr_node_ids; j++) {
1424 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1425 			if (!mask)
1426 				return;
1427 
1428 			sched_domains_numa_masks[i][j] = mask;
1429 
1430 			for_each_node(k) {
1431 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1432 					continue;
1433 
1434 				cpumask_or(mask, mask, cpumask_of_node(k));
1435 			}
1436 		}
1437 	}
1438 
1439 	/* Compute default topology size */
1440 	for (i = 0; sched_domain_topology[i].mask; i++);
1441 
1442 	tl = kzalloc((i + level + 1) *
1443 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1444 	if (!tl)
1445 		return;
1446 
1447 	/*
1448 	 * Copy the default topology bits..
1449 	 */
1450 	for (i = 0; sched_domain_topology[i].mask; i++)
1451 		tl[i] = sched_domain_topology[i];
1452 
1453 	/*
1454 	 * Add the NUMA identity distance, aka single NODE.
1455 	 */
1456 	tl[i++] = (struct sched_domain_topology_level){
1457 		.mask = sd_numa_mask,
1458 		.numa_level = 0,
1459 		SD_INIT_NAME(NODE)
1460 	};
1461 
1462 	/*
1463 	 * .. and append 'j' levels of NUMA goodness.
1464 	 */
1465 	for (j = 1; j < level; i++, j++) {
1466 		tl[i] = (struct sched_domain_topology_level){
1467 			.mask = sd_numa_mask,
1468 			.sd_flags = cpu_numa_flags,
1469 			.flags = SDTL_OVERLAP,
1470 			.numa_level = j,
1471 			SD_INIT_NAME(NUMA)
1472 		};
1473 	}
1474 
1475 	sched_domain_topology = tl;
1476 
1477 	sched_domains_numa_levels = level;
1478 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1479 
1480 	init_numa_topology_type();
1481 }
1482 
1483 void sched_domains_numa_masks_set(unsigned int cpu)
1484 {
1485 	int node = cpu_to_node(cpu);
1486 	int i, j;
1487 
1488 	for (i = 0; i < sched_domains_numa_levels; i++) {
1489 		for (j = 0; j < nr_node_ids; j++) {
1490 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1491 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1492 		}
1493 	}
1494 }
1495 
1496 void sched_domains_numa_masks_clear(unsigned int cpu)
1497 {
1498 	int i, j;
1499 
1500 	for (i = 0; i < sched_domains_numa_levels; i++) {
1501 		for (j = 0; j < nr_node_ids; j++)
1502 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1503 	}
1504 }
1505 
1506 #endif /* CONFIG_NUMA */
1507 
1508 static int __sdt_alloc(const struct cpumask *cpu_map)
1509 {
1510 	struct sched_domain_topology_level *tl;
1511 	int j;
1512 
1513 	for_each_sd_topology(tl) {
1514 		struct sd_data *sdd = &tl->data;
1515 
1516 		sdd->sd = alloc_percpu(struct sched_domain *);
1517 		if (!sdd->sd)
1518 			return -ENOMEM;
1519 
1520 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1521 		if (!sdd->sds)
1522 			return -ENOMEM;
1523 
1524 		sdd->sg = alloc_percpu(struct sched_group *);
1525 		if (!sdd->sg)
1526 			return -ENOMEM;
1527 
1528 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1529 		if (!sdd->sgc)
1530 			return -ENOMEM;
1531 
1532 		for_each_cpu(j, cpu_map) {
1533 			struct sched_domain *sd;
1534 			struct sched_domain_shared *sds;
1535 			struct sched_group *sg;
1536 			struct sched_group_capacity *sgc;
1537 
1538 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1539 					GFP_KERNEL, cpu_to_node(j));
1540 			if (!sd)
1541 				return -ENOMEM;
1542 
1543 			*per_cpu_ptr(sdd->sd, j) = sd;
1544 
1545 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1546 					GFP_KERNEL, cpu_to_node(j));
1547 			if (!sds)
1548 				return -ENOMEM;
1549 
1550 			*per_cpu_ptr(sdd->sds, j) = sds;
1551 
1552 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1553 					GFP_KERNEL, cpu_to_node(j));
1554 			if (!sg)
1555 				return -ENOMEM;
1556 
1557 			sg->next = sg;
1558 
1559 			*per_cpu_ptr(sdd->sg, j) = sg;
1560 
1561 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1562 					GFP_KERNEL, cpu_to_node(j));
1563 			if (!sgc)
1564 				return -ENOMEM;
1565 
1566 #ifdef CONFIG_SCHED_DEBUG
1567 			sgc->id = j;
1568 #endif
1569 
1570 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1571 		}
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 static void __sdt_free(const struct cpumask *cpu_map)
1578 {
1579 	struct sched_domain_topology_level *tl;
1580 	int j;
1581 
1582 	for_each_sd_topology(tl) {
1583 		struct sd_data *sdd = &tl->data;
1584 
1585 		for_each_cpu(j, cpu_map) {
1586 			struct sched_domain *sd;
1587 
1588 			if (sdd->sd) {
1589 				sd = *per_cpu_ptr(sdd->sd, j);
1590 				if (sd && (sd->flags & SD_OVERLAP))
1591 					free_sched_groups(sd->groups, 0);
1592 				kfree(*per_cpu_ptr(sdd->sd, j));
1593 			}
1594 
1595 			if (sdd->sds)
1596 				kfree(*per_cpu_ptr(sdd->sds, j));
1597 			if (sdd->sg)
1598 				kfree(*per_cpu_ptr(sdd->sg, j));
1599 			if (sdd->sgc)
1600 				kfree(*per_cpu_ptr(sdd->sgc, j));
1601 		}
1602 		free_percpu(sdd->sd);
1603 		sdd->sd = NULL;
1604 		free_percpu(sdd->sds);
1605 		sdd->sds = NULL;
1606 		free_percpu(sdd->sg);
1607 		sdd->sg = NULL;
1608 		free_percpu(sdd->sgc);
1609 		sdd->sgc = NULL;
1610 	}
1611 }
1612 
1613 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1614 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1615 		struct sched_domain *child, int dflags, int cpu)
1616 {
1617 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1618 
1619 	if (child) {
1620 		sd->level = child->level + 1;
1621 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1622 		child->parent = sd;
1623 
1624 		if (!cpumask_subset(sched_domain_span(child),
1625 				    sched_domain_span(sd))) {
1626 			pr_err("BUG: arch topology borken\n");
1627 #ifdef CONFIG_SCHED_DEBUG
1628 			pr_err("     the %s domain not a subset of the %s domain\n",
1629 					child->name, sd->name);
1630 #endif
1631 			/* Fixup, ensure @sd has at least @child CPUs. */
1632 			cpumask_or(sched_domain_span(sd),
1633 				   sched_domain_span(sd),
1634 				   sched_domain_span(child));
1635 		}
1636 
1637 	}
1638 	set_domain_attribute(sd, attr);
1639 
1640 	return sd;
1641 }
1642 
1643 /*
1644  * Find the sched_domain_topology_level where all CPU capacities are visible
1645  * for all CPUs.
1646  */
1647 static struct sched_domain_topology_level
1648 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1649 {
1650 	int i, j, asym_level = 0;
1651 	bool asym = false;
1652 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1653 	unsigned long cap;
1654 
1655 	/* Is there any asymmetry? */
1656 	cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
1657 
1658 	for_each_cpu(i, cpu_map) {
1659 		if (arch_scale_cpu_capacity(NULL, i) != cap) {
1660 			asym = true;
1661 			break;
1662 		}
1663 	}
1664 
1665 	if (!asym)
1666 		return NULL;
1667 
1668 	/*
1669 	 * Examine topology from all CPU's point of views to detect the lowest
1670 	 * sched_domain_topology_level where a highest capacity CPU is visible
1671 	 * to everyone.
1672 	 */
1673 	for_each_cpu(i, cpu_map) {
1674 		unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
1675 		int tl_id = 0;
1676 
1677 		for_each_sd_topology(tl) {
1678 			if (tl_id < asym_level)
1679 				goto next_level;
1680 
1681 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
1682 				unsigned long capacity;
1683 
1684 				capacity = arch_scale_cpu_capacity(NULL, j);
1685 
1686 				if (capacity <= max_capacity)
1687 					continue;
1688 
1689 				max_capacity = capacity;
1690 				asym_level = tl_id;
1691 				asym_tl = tl;
1692 			}
1693 next_level:
1694 			tl_id++;
1695 		}
1696 	}
1697 
1698 	return asym_tl;
1699 }
1700 
1701 
1702 /*
1703  * Build sched domains for a given set of CPUs and attach the sched domains
1704  * to the individual CPUs
1705  */
1706 static int
1707 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1708 {
1709 	enum s_alloc alloc_state;
1710 	struct sched_domain *sd;
1711 	struct s_data d;
1712 	struct rq *rq = NULL;
1713 	int i, ret = -ENOMEM;
1714 	struct sched_domain_topology_level *tl_asym;
1715 	bool has_asym = false;
1716 
1717 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1718 	if (alloc_state != sa_rootdomain)
1719 		goto error;
1720 
1721 	tl_asym = asym_cpu_capacity_level(cpu_map);
1722 
1723 	/* Set up domains for CPUs specified by the cpu_map: */
1724 	for_each_cpu(i, cpu_map) {
1725 		struct sched_domain_topology_level *tl;
1726 
1727 		sd = NULL;
1728 		for_each_sd_topology(tl) {
1729 			int dflags = 0;
1730 
1731 			if (tl == tl_asym) {
1732 				dflags |= SD_ASYM_CPUCAPACITY;
1733 				has_asym = true;
1734 			}
1735 
1736 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1737 
1738 			if (tl == sched_domain_topology)
1739 				*per_cpu_ptr(d.sd, i) = sd;
1740 			if (tl->flags & SDTL_OVERLAP)
1741 				sd->flags |= SD_OVERLAP;
1742 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1743 				break;
1744 		}
1745 	}
1746 
1747 	/* Build the groups for the domains */
1748 	for_each_cpu(i, cpu_map) {
1749 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1750 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1751 			if (sd->flags & SD_OVERLAP) {
1752 				if (build_overlap_sched_groups(sd, i))
1753 					goto error;
1754 			} else {
1755 				if (build_sched_groups(sd, i))
1756 					goto error;
1757 			}
1758 		}
1759 	}
1760 
1761 	/* Calculate CPU capacity for physical packages and nodes */
1762 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1763 		if (!cpumask_test_cpu(i, cpu_map))
1764 			continue;
1765 
1766 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1767 			claim_allocations(i, sd);
1768 			init_sched_groups_capacity(i, sd);
1769 		}
1770 	}
1771 
1772 	/* Attach the domains */
1773 	rcu_read_lock();
1774 	for_each_cpu(i, cpu_map) {
1775 		rq = cpu_rq(i);
1776 		sd = *per_cpu_ptr(d.sd, i);
1777 
1778 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1779 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1780 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1781 
1782 		cpu_attach_domain(sd, d.rd, i);
1783 	}
1784 	rcu_read_unlock();
1785 
1786 	if (has_asym)
1787 		static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
1788 
1789 	if (rq && sched_debug_enabled) {
1790 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1791 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1792 	}
1793 
1794 	ret = 0;
1795 error:
1796 	__free_domain_allocs(&d, alloc_state, cpu_map);
1797 
1798 	return ret;
1799 }
1800 
1801 /* Current sched domains: */
1802 static cpumask_var_t			*doms_cur;
1803 
1804 /* Number of sched domains in 'doms_cur': */
1805 static int				ndoms_cur;
1806 
1807 /* Attribues of custom domains in 'doms_cur' */
1808 static struct sched_domain_attr		*dattr_cur;
1809 
1810 /*
1811  * Special case: If a kmalloc() of a doms_cur partition (array of
1812  * cpumask) fails, then fallback to a single sched domain,
1813  * as determined by the single cpumask fallback_doms.
1814  */
1815 static cpumask_var_t			fallback_doms;
1816 
1817 /*
1818  * arch_update_cpu_topology lets virtualized architectures update the
1819  * CPU core maps. It is supposed to return 1 if the topology changed
1820  * or 0 if it stayed the same.
1821  */
1822 int __weak arch_update_cpu_topology(void)
1823 {
1824 	return 0;
1825 }
1826 
1827 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1828 {
1829 	int i;
1830 	cpumask_var_t *doms;
1831 
1832 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
1833 	if (!doms)
1834 		return NULL;
1835 	for (i = 0; i < ndoms; i++) {
1836 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1837 			free_sched_domains(doms, i);
1838 			return NULL;
1839 		}
1840 	}
1841 	return doms;
1842 }
1843 
1844 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1845 {
1846 	unsigned int i;
1847 	for (i = 0; i < ndoms; i++)
1848 		free_cpumask_var(doms[i]);
1849 	kfree(doms);
1850 }
1851 
1852 /*
1853  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1854  * For now this just excludes isolated CPUs, but could be used to
1855  * exclude other special cases in the future.
1856  */
1857 int sched_init_domains(const struct cpumask *cpu_map)
1858 {
1859 	int err;
1860 
1861 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1862 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1863 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1864 
1865 	arch_update_cpu_topology();
1866 	ndoms_cur = 1;
1867 	doms_cur = alloc_sched_domains(ndoms_cur);
1868 	if (!doms_cur)
1869 		doms_cur = &fallback_doms;
1870 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
1871 	err = build_sched_domains(doms_cur[0], NULL);
1872 	register_sched_domain_sysctl();
1873 
1874 	return err;
1875 }
1876 
1877 /*
1878  * Detach sched domains from a group of CPUs specified in cpu_map
1879  * These CPUs will now be attached to the NULL domain
1880  */
1881 static void detach_destroy_domains(const struct cpumask *cpu_map)
1882 {
1883 	int i;
1884 
1885 	rcu_read_lock();
1886 	for_each_cpu(i, cpu_map)
1887 		cpu_attach_domain(NULL, &def_root_domain, i);
1888 	rcu_read_unlock();
1889 }
1890 
1891 /* handle null as "default" */
1892 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1893 			struct sched_domain_attr *new, int idx_new)
1894 {
1895 	struct sched_domain_attr tmp;
1896 
1897 	/* Fast path: */
1898 	if (!new && !cur)
1899 		return 1;
1900 
1901 	tmp = SD_ATTR_INIT;
1902 
1903 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1904 			new ? (new + idx_new) : &tmp,
1905 			sizeof(struct sched_domain_attr));
1906 }
1907 
1908 /*
1909  * Partition sched domains as specified by the 'ndoms_new'
1910  * cpumasks in the array doms_new[] of cpumasks. This compares
1911  * doms_new[] to the current sched domain partitioning, doms_cur[].
1912  * It destroys each deleted domain and builds each new domain.
1913  *
1914  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1915  * The masks don't intersect (don't overlap.) We should setup one
1916  * sched domain for each mask. CPUs not in any of the cpumasks will
1917  * not be load balanced. If the same cpumask appears both in the
1918  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1919  * it as it is.
1920  *
1921  * The passed in 'doms_new' should be allocated using
1922  * alloc_sched_domains.  This routine takes ownership of it and will
1923  * free_sched_domains it when done with it. If the caller failed the
1924  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1925  * and partition_sched_domains() will fallback to the single partition
1926  * 'fallback_doms', it also forces the domains to be rebuilt.
1927  *
1928  * If doms_new == NULL it will be replaced with cpu_online_mask.
1929  * ndoms_new == 0 is a special case for destroying existing domains,
1930  * and it will not create the default domain.
1931  *
1932  * Call with hotplug lock held
1933  */
1934 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1935 			     struct sched_domain_attr *dattr_new)
1936 {
1937 	int i, j, n;
1938 	int new_topology;
1939 
1940 	mutex_lock(&sched_domains_mutex);
1941 
1942 	/* Always unregister in case we don't destroy any domains: */
1943 	unregister_sched_domain_sysctl();
1944 
1945 	/* Let the architecture update CPU core mappings: */
1946 	new_topology = arch_update_cpu_topology();
1947 
1948 	if (!doms_new) {
1949 		WARN_ON_ONCE(dattr_new);
1950 		n = 0;
1951 		doms_new = alloc_sched_domains(1);
1952 		if (doms_new) {
1953 			n = 1;
1954 			cpumask_and(doms_new[0], cpu_active_mask,
1955 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
1956 		}
1957 	} else {
1958 		n = ndoms_new;
1959 	}
1960 
1961 	/* Destroy deleted domains: */
1962 	for (i = 0; i < ndoms_cur; i++) {
1963 		for (j = 0; j < n && !new_topology; j++) {
1964 			if (cpumask_equal(doms_cur[i], doms_new[j])
1965 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1966 				goto match1;
1967 		}
1968 		/* No match - a current sched domain not in new doms_new[] */
1969 		detach_destroy_domains(doms_cur[i]);
1970 match1:
1971 		;
1972 	}
1973 
1974 	n = ndoms_cur;
1975 	if (!doms_new) {
1976 		n = 0;
1977 		doms_new = &fallback_doms;
1978 		cpumask_and(doms_new[0], cpu_active_mask,
1979 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
1980 	}
1981 
1982 	/* Build new domains: */
1983 	for (i = 0; i < ndoms_new; i++) {
1984 		for (j = 0; j < n && !new_topology; j++) {
1985 			if (cpumask_equal(doms_new[i], doms_cur[j])
1986 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1987 				goto match2;
1988 		}
1989 		/* No match - add a new doms_new */
1990 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1991 match2:
1992 		;
1993 	}
1994 
1995 	/* Remember the new sched domains: */
1996 	if (doms_cur != &fallback_doms)
1997 		free_sched_domains(doms_cur, ndoms_cur);
1998 
1999 	kfree(dattr_cur);
2000 	doms_cur = doms_new;
2001 	dattr_cur = dattr_new;
2002 	ndoms_cur = ndoms_new;
2003 
2004 	register_sched_domain_sysctl();
2005 
2006 	mutex_unlock(&sched_domains_mutex);
2007 }
2008