1 /* 2 * Scheduler topology setup/handling methods 3 */ 4 #include <linux/sched.h> 5 #include <linux/mutex.h> 6 7 #include "sched.h" 8 9 DEFINE_MUTEX(sched_domains_mutex); 10 11 /* Protected by sched_domains_mutex: */ 12 cpumask_var_t sched_domains_tmpmask; 13 cpumask_var_t sched_domains_tmpmask2; 14 15 #ifdef CONFIG_SCHED_DEBUG 16 17 static int __init sched_debug_setup(char *str) 18 { 19 sched_debug_enabled = true; 20 21 return 0; 22 } 23 early_param("sched_debug", sched_debug_setup); 24 25 static inline bool sched_debug(void) 26 { 27 return sched_debug_enabled; 28 } 29 30 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 31 struct cpumask *groupmask) 32 { 33 struct sched_group *group = sd->groups; 34 35 cpumask_clear(groupmask); 36 37 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 38 39 if (!(sd->flags & SD_LOAD_BALANCE)) { 40 printk("does not load-balance\n"); 41 if (sd->parent) 42 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 43 " has parent"); 44 return -1; 45 } 46 47 printk(KERN_CONT "span=%*pbl level=%s\n", 48 cpumask_pr_args(sched_domain_span(sd)), sd->name); 49 50 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 51 printk(KERN_ERR "ERROR: domain->span does not contain " 52 "CPU%d\n", cpu); 53 } 54 if (!cpumask_test_cpu(cpu, sched_group_span(group))) { 55 printk(KERN_ERR "ERROR: domain->groups does not contain" 56 " CPU%d\n", cpu); 57 } 58 59 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 60 do { 61 if (!group) { 62 printk("\n"); 63 printk(KERN_ERR "ERROR: group is NULL\n"); 64 break; 65 } 66 67 if (!cpumask_weight(sched_group_span(group))) { 68 printk(KERN_CONT "\n"); 69 printk(KERN_ERR "ERROR: empty group\n"); 70 break; 71 } 72 73 if (!(sd->flags & SD_OVERLAP) && 74 cpumask_intersects(groupmask, sched_group_span(group))) { 75 printk(KERN_CONT "\n"); 76 printk(KERN_ERR "ERROR: repeated CPUs\n"); 77 break; 78 } 79 80 cpumask_or(groupmask, groupmask, sched_group_span(group)); 81 82 printk(KERN_CONT " %d:{ span=%*pbl", 83 group->sgc->id, 84 cpumask_pr_args(sched_group_span(group))); 85 86 if ((sd->flags & SD_OVERLAP) && 87 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 88 printk(KERN_CONT " mask=%*pbl", 89 cpumask_pr_args(group_balance_mask(group))); 90 } 91 92 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 93 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 94 95 if (group == sd->groups && sd->child && 96 !cpumask_equal(sched_domain_span(sd->child), 97 sched_group_span(group))) { 98 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 99 } 100 101 printk(KERN_CONT " }"); 102 103 group = group->next; 104 105 if (group != sd->groups) 106 printk(KERN_CONT ","); 107 108 } while (group != sd->groups); 109 printk(KERN_CONT "\n"); 110 111 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 112 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 113 114 if (sd->parent && 115 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 116 printk(KERN_ERR "ERROR: parent span is not a superset " 117 "of domain->span\n"); 118 return 0; 119 } 120 121 static void sched_domain_debug(struct sched_domain *sd, int cpu) 122 { 123 int level = 0; 124 125 if (!sched_debug_enabled) 126 return; 127 128 if (!sd) { 129 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 130 return; 131 } 132 133 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 134 135 for (;;) { 136 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 137 break; 138 level++; 139 sd = sd->parent; 140 if (!sd) 141 break; 142 } 143 } 144 #else /* !CONFIG_SCHED_DEBUG */ 145 146 # define sched_debug_enabled 0 147 # define sched_domain_debug(sd, cpu) do { } while (0) 148 static inline bool sched_debug(void) 149 { 150 return false; 151 } 152 #endif /* CONFIG_SCHED_DEBUG */ 153 154 static int sd_degenerate(struct sched_domain *sd) 155 { 156 if (cpumask_weight(sched_domain_span(sd)) == 1) 157 return 1; 158 159 /* Following flags need at least 2 groups */ 160 if (sd->flags & (SD_LOAD_BALANCE | 161 SD_BALANCE_NEWIDLE | 162 SD_BALANCE_FORK | 163 SD_BALANCE_EXEC | 164 SD_SHARE_CPUCAPACITY | 165 SD_ASYM_CPUCAPACITY | 166 SD_SHARE_PKG_RESOURCES | 167 SD_SHARE_POWERDOMAIN)) { 168 if (sd->groups != sd->groups->next) 169 return 0; 170 } 171 172 /* Following flags don't use groups */ 173 if (sd->flags & (SD_WAKE_AFFINE)) 174 return 0; 175 176 return 1; 177 } 178 179 static int 180 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 181 { 182 unsigned long cflags = sd->flags, pflags = parent->flags; 183 184 if (sd_degenerate(parent)) 185 return 1; 186 187 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 188 return 0; 189 190 /* Flags needing groups don't count if only 1 group in parent */ 191 if (parent->groups == parent->groups->next) { 192 pflags &= ~(SD_LOAD_BALANCE | 193 SD_BALANCE_NEWIDLE | 194 SD_BALANCE_FORK | 195 SD_BALANCE_EXEC | 196 SD_ASYM_CPUCAPACITY | 197 SD_SHARE_CPUCAPACITY | 198 SD_SHARE_PKG_RESOURCES | 199 SD_PREFER_SIBLING | 200 SD_SHARE_POWERDOMAIN); 201 if (nr_node_ids == 1) 202 pflags &= ~SD_SERIALIZE; 203 } 204 if (~cflags & pflags) 205 return 0; 206 207 return 1; 208 } 209 210 static void free_rootdomain(struct rcu_head *rcu) 211 { 212 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 213 214 cpupri_cleanup(&rd->cpupri); 215 cpudl_cleanup(&rd->cpudl); 216 free_cpumask_var(rd->dlo_mask); 217 free_cpumask_var(rd->rto_mask); 218 free_cpumask_var(rd->online); 219 free_cpumask_var(rd->span); 220 kfree(rd); 221 } 222 223 void rq_attach_root(struct rq *rq, struct root_domain *rd) 224 { 225 struct root_domain *old_rd = NULL; 226 unsigned long flags; 227 228 raw_spin_lock_irqsave(&rq->lock, flags); 229 230 if (rq->rd) { 231 old_rd = rq->rd; 232 233 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 234 set_rq_offline(rq); 235 236 cpumask_clear_cpu(rq->cpu, old_rd->span); 237 238 /* 239 * If we dont want to free the old_rd yet then 240 * set old_rd to NULL to skip the freeing later 241 * in this function: 242 */ 243 if (!atomic_dec_and_test(&old_rd->refcount)) 244 old_rd = NULL; 245 } 246 247 atomic_inc(&rd->refcount); 248 rq->rd = rd; 249 250 cpumask_set_cpu(rq->cpu, rd->span); 251 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 252 set_rq_online(rq); 253 254 raw_spin_unlock_irqrestore(&rq->lock, flags); 255 256 if (old_rd) 257 call_rcu_sched(&old_rd->rcu, free_rootdomain); 258 } 259 260 static int init_rootdomain(struct root_domain *rd) 261 { 262 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 263 goto out; 264 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 265 goto free_span; 266 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 267 goto free_online; 268 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 269 goto free_dlo_mask; 270 271 init_dl_bw(&rd->dl_bw); 272 if (cpudl_init(&rd->cpudl) != 0) 273 goto free_rto_mask; 274 275 if (cpupri_init(&rd->cpupri) != 0) 276 goto free_cpudl; 277 return 0; 278 279 free_cpudl: 280 cpudl_cleanup(&rd->cpudl); 281 free_rto_mask: 282 free_cpumask_var(rd->rto_mask); 283 free_dlo_mask: 284 free_cpumask_var(rd->dlo_mask); 285 free_online: 286 free_cpumask_var(rd->online); 287 free_span: 288 free_cpumask_var(rd->span); 289 out: 290 return -ENOMEM; 291 } 292 293 /* 294 * By default the system creates a single root-domain with all CPUs as 295 * members (mimicking the global state we have today). 296 */ 297 struct root_domain def_root_domain; 298 299 void init_defrootdomain(void) 300 { 301 init_rootdomain(&def_root_domain); 302 303 atomic_set(&def_root_domain.refcount, 1); 304 } 305 306 static struct root_domain *alloc_rootdomain(void) 307 { 308 struct root_domain *rd; 309 310 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 311 if (!rd) 312 return NULL; 313 314 if (init_rootdomain(rd) != 0) { 315 kfree(rd); 316 return NULL; 317 } 318 319 return rd; 320 } 321 322 static void free_sched_groups(struct sched_group *sg, int free_sgc) 323 { 324 struct sched_group *tmp, *first; 325 326 if (!sg) 327 return; 328 329 first = sg; 330 do { 331 tmp = sg->next; 332 333 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 334 kfree(sg->sgc); 335 336 if (atomic_dec_and_test(&sg->ref)) 337 kfree(sg); 338 sg = tmp; 339 } while (sg != first); 340 } 341 342 static void destroy_sched_domain(struct sched_domain *sd) 343 { 344 /* 345 * A normal sched domain may have multiple group references, an 346 * overlapping domain, having private groups, only one. Iterate, 347 * dropping group/capacity references, freeing where none remain. 348 */ 349 free_sched_groups(sd->groups, 1); 350 351 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 352 kfree(sd->shared); 353 kfree(sd); 354 } 355 356 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 357 { 358 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 359 360 while (sd) { 361 struct sched_domain *parent = sd->parent; 362 destroy_sched_domain(sd); 363 sd = parent; 364 } 365 } 366 367 static void destroy_sched_domains(struct sched_domain *sd) 368 { 369 if (sd) 370 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 371 } 372 373 /* 374 * Keep a special pointer to the highest sched_domain that has 375 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 376 * allows us to avoid some pointer chasing select_idle_sibling(). 377 * 378 * Also keep a unique ID per domain (we use the first CPU number in 379 * the cpumask of the domain), this allows us to quickly tell if 380 * two CPUs are in the same cache domain, see cpus_share_cache(). 381 */ 382 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 383 DEFINE_PER_CPU(int, sd_llc_size); 384 DEFINE_PER_CPU(int, sd_llc_id); 385 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 386 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 387 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 388 389 static void update_top_cache_domain(int cpu) 390 { 391 struct sched_domain_shared *sds = NULL; 392 struct sched_domain *sd; 393 int id = cpu; 394 int size = 1; 395 396 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 397 if (sd) { 398 id = cpumask_first(sched_domain_span(sd)); 399 size = cpumask_weight(sched_domain_span(sd)); 400 sds = sd->shared; 401 } 402 403 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 404 per_cpu(sd_llc_size, cpu) = size; 405 per_cpu(sd_llc_id, cpu) = id; 406 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 407 408 sd = lowest_flag_domain(cpu, SD_NUMA); 409 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 410 411 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 412 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 413 } 414 415 /* 416 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 417 * hold the hotplug lock. 418 */ 419 static void 420 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 421 { 422 struct rq *rq = cpu_rq(cpu); 423 struct sched_domain *tmp; 424 425 /* Remove the sched domains which do not contribute to scheduling. */ 426 for (tmp = sd; tmp; ) { 427 struct sched_domain *parent = tmp->parent; 428 if (!parent) 429 break; 430 431 if (sd_parent_degenerate(tmp, parent)) { 432 tmp->parent = parent->parent; 433 if (parent->parent) 434 parent->parent->child = tmp; 435 /* 436 * Transfer SD_PREFER_SIBLING down in case of a 437 * degenerate parent; the spans match for this 438 * so the property transfers. 439 */ 440 if (parent->flags & SD_PREFER_SIBLING) 441 tmp->flags |= SD_PREFER_SIBLING; 442 destroy_sched_domain(parent); 443 } else 444 tmp = tmp->parent; 445 } 446 447 if (sd && sd_degenerate(sd)) { 448 tmp = sd; 449 sd = sd->parent; 450 destroy_sched_domain(tmp); 451 if (sd) 452 sd->child = NULL; 453 } 454 455 sched_domain_debug(sd, cpu); 456 457 rq_attach_root(rq, rd); 458 tmp = rq->sd; 459 rcu_assign_pointer(rq->sd, sd); 460 dirty_sched_domain_sysctl(cpu); 461 destroy_sched_domains(tmp); 462 463 update_top_cache_domain(cpu); 464 } 465 466 /* Setup the mask of CPUs configured for isolated domains */ 467 static int __init isolated_cpu_setup(char *str) 468 { 469 int ret; 470 471 alloc_bootmem_cpumask_var(&cpu_isolated_map); 472 ret = cpulist_parse(str, cpu_isolated_map); 473 if (ret) { 474 pr_err("sched: Error, all isolcpus= values must be between 0 and %u\n", nr_cpu_ids); 475 return 0; 476 } 477 return 1; 478 } 479 __setup("isolcpus=", isolated_cpu_setup); 480 481 struct s_data { 482 struct sched_domain ** __percpu sd; 483 struct root_domain *rd; 484 }; 485 486 enum s_alloc { 487 sa_rootdomain, 488 sa_sd, 489 sa_sd_storage, 490 sa_none, 491 }; 492 493 /* 494 * Return the canonical balance CPU for this group, this is the first CPU 495 * of this group that's also in the balance mask. 496 * 497 * The balance mask are all those CPUs that could actually end up at this 498 * group. See build_balance_mask(). 499 * 500 * Also see should_we_balance(). 501 */ 502 int group_balance_cpu(struct sched_group *sg) 503 { 504 return cpumask_first(group_balance_mask(sg)); 505 } 506 507 508 /* 509 * NUMA topology (first read the regular topology blurb below) 510 * 511 * Given a node-distance table, for example: 512 * 513 * node 0 1 2 3 514 * 0: 10 20 30 20 515 * 1: 20 10 20 30 516 * 2: 30 20 10 20 517 * 3: 20 30 20 10 518 * 519 * which represents a 4 node ring topology like: 520 * 521 * 0 ----- 1 522 * | | 523 * | | 524 * | | 525 * 3 ----- 2 526 * 527 * We want to construct domains and groups to represent this. The way we go 528 * about doing this is to build the domains on 'hops'. For each NUMA level we 529 * construct the mask of all nodes reachable in @level hops. 530 * 531 * For the above NUMA topology that gives 3 levels: 532 * 533 * NUMA-2 0-3 0-3 0-3 0-3 534 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 535 * 536 * NUMA-1 0-1,3 0-2 1-3 0,2-3 537 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 538 * 539 * NUMA-0 0 1 2 3 540 * 541 * 542 * As can be seen; things don't nicely line up as with the regular topology. 543 * When we iterate a domain in child domain chunks some nodes can be 544 * represented multiple times -- hence the "overlap" naming for this part of 545 * the topology. 546 * 547 * In order to minimize this overlap, we only build enough groups to cover the 548 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 549 * 550 * Because: 551 * 552 * - the first group of each domain is its child domain; this 553 * gets us the first 0-1,3 554 * - the only uncovered node is 2, who's child domain is 1-3. 555 * 556 * However, because of the overlap, computing a unique CPU for each group is 557 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 558 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 559 * end up at those groups (they would end up in group: 0-1,3). 560 * 561 * To correct this we have to introduce the group balance mask. This mask 562 * will contain those CPUs in the group that can reach this group given the 563 * (child) domain tree. 564 * 565 * With this we can once again compute balance_cpu and sched_group_capacity 566 * relations. 567 * 568 * XXX include words on how balance_cpu is unique and therefore can be 569 * used for sched_group_capacity links. 570 * 571 * 572 * Another 'interesting' topology is: 573 * 574 * node 0 1 2 3 575 * 0: 10 20 20 30 576 * 1: 20 10 20 20 577 * 2: 20 20 10 20 578 * 3: 30 20 20 10 579 * 580 * Which looks a little like: 581 * 582 * 0 ----- 1 583 * | / | 584 * | / | 585 * | / | 586 * 2 ----- 3 587 * 588 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 589 * are not. 590 * 591 * This leads to a few particularly weird cases where the sched_domain's are 592 * not of the same number for each cpu. Consider: 593 * 594 * NUMA-2 0-3 0-3 595 * groups: {0-2},{1-3} {1-3},{0-2} 596 * 597 * NUMA-1 0-2 0-3 0-3 1-3 598 * 599 * NUMA-0 0 1 2 3 600 * 601 */ 602 603 604 /* 605 * Build the balance mask; it contains only those CPUs that can arrive at this 606 * group and should be considered to continue balancing. 607 * 608 * We do this during the group creation pass, therefore the group information 609 * isn't complete yet, however since each group represents a (child) domain we 610 * can fully construct this using the sched_domain bits (which are already 611 * complete). 612 */ 613 static void 614 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 615 { 616 const struct cpumask *sg_span = sched_group_span(sg); 617 struct sd_data *sdd = sd->private; 618 struct sched_domain *sibling; 619 int i; 620 621 cpumask_clear(mask); 622 623 for_each_cpu(i, sg_span) { 624 sibling = *per_cpu_ptr(sdd->sd, i); 625 626 /* 627 * Can happen in the asymmetric case, where these siblings are 628 * unused. The mask will not be empty because those CPUs that 629 * do have the top domain _should_ span the domain. 630 */ 631 if (!sibling->child) 632 continue; 633 634 /* If we would not end up here, we can't continue from here */ 635 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 636 continue; 637 638 cpumask_set_cpu(i, mask); 639 } 640 641 /* We must not have empty masks here */ 642 WARN_ON_ONCE(cpumask_empty(mask)); 643 } 644 645 /* 646 * XXX: This creates per-node group entries; since the load-balancer will 647 * immediately access remote memory to construct this group's load-balance 648 * statistics having the groups node local is of dubious benefit. 649 */ 650 static struct sched_group * 651 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 652 { 653 struct sched_group *sg; 654 struct cpumask *sg_span; 655 656 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 657 GFP_KERNEL, cpu_to_node(cpu)); 658 659 if (!sg) 660 return NULL; 661 662 sg_span = sched_group_span(sg); 663 if (sd->child) 664 cpumask_copy(sg_span, sched_domain_span(sd->child)); 665 else 666 cpumask_copy(sg_span, sched_domain_span(sd)); 667 668 atomic_inc(&sg->ref); 669 return sg; 670 } 671 672 static void init_overlap_sched_group(struct sched_domain *sd, 673 struct sched_group *sg) 674 { 675 struct cpumask *mask = sched_domains_tmpmask2; 676 struct sd_data *sdd = sd->private; 677 struct cpumask *sg_span; 678 int cpu; 679 680 build_balance_mask(sd, sg, mask); 681 cpu = cpumask_first_and(sched_group_span(sg), mask); 682 683 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 684 if (atomic_inc_return(&sg->sgc->ref) == 1) 685 cpumask_copy(group_balance_mask(sg), mask); 686 else 687 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 688 689 /* 690 * Initialize sgc->capacity such that even if we mess up the 691 * domains and no possible iteration will get us here, we won't 692 * die on a /0 trap. 693 */ 694 sg_span = sched_group_span(sg); 695 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 696 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 697 } 698 699 static int 700 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 701 { 702 struct sched_group *first = NULL, *last = NULL, *sg; 703 const struct cpumask *span = sched_domain_span(sd); 704 struct cpumask *covered = sched_domains_tmpmask; 705 struct sd_data *sdd = sd->private; 706 struct sched_domain *sibling; 707 int i; 708 709 cpumask_clear(covered); 710 711 for_each_cpu_wrap(i, span, cpu) { 712 struct cpumask *sg_span; 713 714 if (cpumask_test_cpu(i, covered)) 715 continue; 716 717 sibling = *per_cpu_ptr(sdd->sd, i); 718 719 /* 720 * Asymmetric node setups can result in situations where the 721 * domain tree is of unequal depth, make sure to skip domains 722 * that already cover the entire range. 723 * 724 * In that case build_sched_domains() will have terminated the 725 * iteration early and our sibling sd spans will be empty. 726 * Domains should always include the CPU they're built on, so 727 * check that. 728 */ 729 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 730 continue; 731 732 sg = build_group_from_child_sched_domain(sibling, cpu); 733 if (!sg) 734 goto fail; 735 736 sg_span = sched_group_span(sg); 737 cpumask_or(covered, covered, sg_span); 738 739 init_overlap_sched_group(sd, sg); 740 741 if (!first) 742 first = sg; 743 if (last) 744 last->next = sg; 745 last = sg; 746 last->next = first; 747 } 748 sd->groups = first; 749 750 return 0; 751 752 fail: 753 free_sched_groups(first, 0); 754 755 return -ENOMEM; 756 } 757 758 759 /* 760 * Package topology (also see the load-balance blurb in fair.c) 761 * 762 * The scheduler builds a tree structure to represent a number of important 763 * topology features. By default (default_topology[]) these include: 764 * 765 * - Simultaneous multithreading (SMT) 766 * - Multi-Core Cache (MC) 767 * - Package (DIE) 768 * 769 * Where the last one more or less denotes everything up to a NUMA node. 770 * 771 * The tree consists of 3 primary data structures: 772 * 773 * sched_domain -> sched_group -> sched_group_capacity 774 * ^ ^ ^ ^ 775 * `-' `-' 776 * 777 * The sched_domains are per-cpu and have a two way link (parent & child) and 778 * denote the ever growing mask of CPUs belonging to that level of topology. 779 * 780 * Each sched_domain has a circular (double) linked list of sched_group's, each 781 * denoting the domains of the level below (or individual CPUs in case of the 782 * first domain level). The sched_group linked by a sched_domain includes the 783 * CPU of that sched_domain [*]. 784 * 785 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 786 * 787 * CPU 0 1 2 3 4 5 6 7 788 * 789 * DIE [ ] 790 * MC [ ] [ ] 791 * SMT [ ] [ ] [ ] [ ] 792 * 793 * - or - 794 * 795 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 796 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 797 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 798 * 799 * CPU 0 1 2 3 4 5 6 7 800 * 801 * One way to think about it is: sched_domain moves you up and down among these 802 * topology levels, while sched_group moves you sideways through it, at child 803 * domain granularity. 804 * 805 * sched_group_capacity ensures each unique sched_group has shared storage. 806 * 807 * There are two related construction problems, both require a CPU that 808 * uniquely identify each group (for a given domain): 809 * 810 * - The first is the balance_cpu (see should_we_balance() and the 811 * load-balance blub in fair.c); for each group we only want 1 CPU to 812 * continue balancing at a higher domain. 813 * 814 * - The second is the sched_group_capacity; we want all identical groups 815 * to share a single sched_group_capacity. 816 * 817 * Since these topologies are exclusive by construction. That is, its 818 * impossible for an SMT thread to belong to multiple cores, and cores to 819 * be part of multiple caches. There is a very clear and unique location 820 * for each CPU in the hierarchy. 821 * 822 * Therefore computing a unique CPU for each group is trivial (the iteration 823 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 824 * group), we can simply pick the first CPU in each group. 825 * 826 * 827 * [*] in other words, the first group of each domain is its child domain. 828 */ 829 830 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 831 { 832 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 833 struct sched_domain *child = sd->child; 834 struct sched_group *sg; 835 836 if (child) 837 cpu = cpumask_first(sched_domain_span(child)); 838 839 sg = *per_cpu_ptr(sdd->sg, cpu); 840 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 841 842 /* For claim_allocations: */ 843 atomic_inc(&sg->ref); 844 atomic_inc(&sg->sgc->ref); 845 846 if (child) { 847 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 848 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 849 } else { 850 cpumask_set_cpu(cpu, sched_group_span(sg)); 851 cpumask_set_cpu(cpu, group_balance_mask(sg)); 852 } 853 854 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 855 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 856 857 return sg; 858 } 859 860 /* 861 * build_sched_groups will build a circular linked list of the groups 862 * covered by the given span, and will set each group's ->cpumask correctly, 863 * and ->cpu_capacity to 0. 864 * 865 * Assumes the sched_domain tree is fully constructed 866 */ 867 static int 868 build_sched_groups(struct sched_domain *sd, int cpu) 869 { 870 struct sched_group *first = NULL, *last = NULL; 871 struct sd_data *sdd = sd->private; 872 const struct cpumask *span = sched_domain_span(sd); 873 struct cpumask *covered; 874 int i; 875 876 lockdep_assert_held(&sched_domains_mutex); 877 covered = sched_domains_tmpmask; 878 879 cpumask_clear(covered); 880 881 for_each_cpu_wrap(i, span, cpu) { 882 struct sched_group *sg; 883 884 if (cpumask_test_cpu(i, covered)) 885 continue; 886 887 sg = get_group(i, sdd); 888 889 cpumask_or(covered, covered, sched_group_span(sg)); 890 891 if (!first) 892 first = sg; 893 if (last) 894 last->next = sg; 895 last = sg; 896 } 897 last->next = first; 898 sd->groups = first; 899 900 return 0; 901 } 902 903 /* 904 * Initialize sched groups cpu_capacity. 905 * 906 * cpu_capacity indicates the capacity of sched group, which is used while 907 * distributing the load between different sched groups in a sched domain. 908 * Typically cpu_capacity for all the groups in a sched domain will be same 909 * unless there are asymmetries in the topology. If there are asymmetries, 910 * group having more cpu_capacity will pickup more load compared to the 911 * group having less cpu_capacity. 912 */ 913 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 914 { 915 struct sched_group *sg = sd->groups; 916 917 WARN_ON(!sg); 918 919 do { 920 int cpu, max_cpu = -1; 921 922 sg->group_weight = cpumask_weight(sched_group_span(sg)); 923 924 if (!(sd->flags & SD_ASYM_PACKING)) 925 goto next; 926 927 for_each_cpu(cpu, sched_group_span(sg)) { 928 if (max_cpu < 0) 929 max_cpu = cpu; 930 else if (sched_asym_prefer(cpu, max_cpu)) 931 max_cpu = cpu; 932 } 933 sg->asym_prefer_cpu = max_cpu; 934 935 next: 936 sg = sg->next; 937 } while (sg != sd->groups); 938 939 if (cpu != group_balance_cpu(sg)) 940 return; 941 942 update_group_capacity(sd, cpu); 943 } 944 945 /* 946 * Initializers for schedule domains 947 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 948 */ 949 950 static int default_relax_domain_level = -1; 951 int sched_domain_level_max; 952 953 static int __init setup_relax_domain_level(char *str) 954 { 955 if (kstrtoint(str, 0, &default_relax_domain_level)) 956 pr_warn("Unable to set relax_domain_level\n"); 957 958 return 1; 959 } 960 __setup("relax_domain_level=", setup_relax_domain_level); 961 962 static void set_domain_attribute(struct sched_domain *sd, 963 struct sched_domain_attr *attr) 964 { 965 int request; 966 967 if (!attr || attr->relax_domain_level < 0) { 968 if (default_relax_domain_level < 0) 969 return; 970 else 971 request = default_relax_domain_level; 972 } else 973 request = attr->relax_domain_level; 974 if (request < sd->level) { 975 /* Turn off idle balance on this domain: */ 976 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 977 } else { 978 /* Turn on idle balance on this domain: */ 979 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 980 } 981 } 982 983 static void __sdt_free(const struct cpumask *cpu_map); 984 static int __sdt_alloc(const struct cpumask *cpu_map); 985 986 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 987 const struct cpumask *cpu_map) 988 { 989 switch (what) { 990 case sa_rootdomain: 991 if (!atomic_read(&d->rd->refcount)) 992 free_rootdomain(&d->rd->rcu); 993 /* Fall through */ 994 case sa_sd: 995 free_percpu(d->sd); 996 /* Fall through */ 997 case sa_sd_storage: 998 __sdt_free(cpu_map); 999 /* Fall through */ 1000 case sa_none: 1001 break; 1002 } 1003 } 1004 1005 static enum s_alloc 1006 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1007 { 1008 memset(d, 0, sizeof(*d)); 1009 1010 if (__sdt_alloc(cpu_map)) 1011 return sa_sd_storage; 1012 d->sd = alloc_percpu(struct sched_domain *); 1013 if (!d->sd) 1014 return sa_sd_storage; 1015 d->rd = alloc_rootdomain(); 1016 if (!d->rd) 1017 return sa_sd; 1018 return sa_rootdomain; 1019 } 1020 1021 /* 1022 * NULL the sd_data elements we've used to build the sched_domain and 1023 * sched_group structure so that the subsequent __free_domain_allocs() 1024 * will not free the data we're using. 1025 */ 1026 static void claim_allocations(int cpu, struct sched_domain *sd) 1027 { 1028 struct sd_data *sdd = sd->private; 1029 1030 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1031 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1032 1033 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1034 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1035 1036 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1037 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1038 1039 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1040 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1041 } 1042 1043 #ifdef CONFIG_NUMA 1044 static int sched_domains_numa_levels; 1045 enum numa_topology_type sched_numa_topology_type; 1046 static int *sched_domains_numa_distance; 1047 int sched_max_numa_distance; 1048 static struct cpumask ***sched_domains_numa_masks; 1049 static int sched_domains_curr_level; 1050 #endif 1051 1052 /* 1053 * SD_flags allowed in topology descriptions. 1054 * 1055 * These flags are purely descriptive of the topology and do not prescribe 1056 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1057 * function: 1058 * 1059 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1060 * SD_SHARE_PKG_RESOURCES - describes shared caches 1061 * SD_NUMA - describes NUMA topologies 1062 * SD_SHARE_POWERDOMAIN - describes shared power domain 1063 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies 1064 * 1065 * Odd one out, which beside describing the topology has a quirk also 1066 * prescribes the desired behaviour that goes along with it: 1067 * 1068 * SD_ASYM_PACKING - describes SMT quirks 1069 */ 1070 #define TOPOLOGY_SD_FLAGS \ 1071 (SD_SHARE_CPUCAPACITY | \ 1072 SD_SHARE_PKG_RESOURCES | \ 1073 SD_NUMA | \ 1074 SD_ASYM_PACKING | \ 1075 SD_ASYM_CPUCAPACITY | \ 1076 SD_SHARE_POWERDOMAIN) 1077 1078 static struct sched_domain * 1079 sd_init(struct sched_domain_topology_level *tl, 1080 const struct cpumask *cpu_map, 1081 struct sched_domain *child, int cpu) 1082 { 1083 struct sd_data *sdd = &tl->data; 1084 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1085 int sd_id, sd_weight, sd_flags = 0; 1086 1087 #ifdef CONFIG_NUMA 1088 /* 1089 * Ugly hack to pass state to sd_numa_mask()... 1090 */ 1091 sched_domains_curr_level = tl->numa_level; 1092 #endif 1093 1094 sd_weight = cpumask_weight(tl->mask(cpu)); 1095 1096 if (tl->sd_flags) 1097 sd_flags = (*tl->sd_flags)(); 1098 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1099 "wrong sd_flags in topology description\n")) 1100 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1101 1102 *sd = (struct sched_domain){ 1103 .min_interval = sd_weight, 1104 .max_interval = 2*sd_weight, 1105 .busy_factor = 32, 1106 .imbalance_pct = 125, 1107 1108 .cache_nice_tries = 0, 1109 .busy_idx = 0, 1110 .idle_idx = 0, 1111 .newidle_idx = 0, 1112 .wake_idx = 0, 1113 .forkexec_idx = 0, 1114 1115 .flags = 1*SD_LOAD_BALANCE 1116 | 1*SD_BALANCE_NEWIDLE 1117 | 1*SD_BALANCE_EXEC 1118 | 1*SD_BALANCE_FORK 1119 | 0*SD_BALANCE_WAKE 1120 | 1*SD_WAKE_AFFINE 1121 | 0*SD_SHARE_CPUCAPACITY 1122 | 0*SD_SHARE_PKG_RESOURCES 1123 | 0*SD_SERIALIZE 1124 | 0*SD_PREFER_SIBLING 1125 | 0*SD_NUMA 1126 | sd_flags 1127 , 1128 1129 .last_balance = jiffies, 1130 .balance_interval = sd_weight, 1131 .smt_gain = 0, 1132 .max_newidle_lb_cost = 0, 1133 .next_decay_max_lb_cost = jiffies, 1134 .child = child, 1135 #ifdef CONFIG_SCHED_DEBUG 1136 .name = tl->name, 1137 #endif 1138 }; 1139 1140 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1141 sd_id = cpumask_first(sched_domain_span(sd)); 1142 1143 /* 1144 * Convert topological properties into behaviour. 1145 */ 1146 1147 if (sd->flags & SD_ASYM_CPUCAPACITY) { 1148 struct sched_domain *t = sd; 1149 1150 for_each_lower_domain(t) 1151 t->flags |= SD_BALANCE_WAKE; 1152 } 1153 1154 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1155 sd->flags |= SD_PREFER_SIBLING; 1156 sd->imbalance_pct = 110; 1157 sd->smt_gain = 1178; /* ~15% */ 1158 1159 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1160 sd->imbalance_pct = 117; 1161 sd->cache_nice_tries = 1; 1162 sd->busy_idx = 2; 1163 1164 #ifdef CONFIG_NUMA 1165 } else if (sd->flags & SD_NUMA) { 1166 sd->cache_nice_tries = 2; 1167 sd->busy_idx = 3; 1168 sd->idle_idx = 2; 1169 1170 sd->flags |= SD_SERIALIZE; 1171 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1172 sd->flags &= ~(SD_BALANCE_EXEC | 1173 SD_BALANCE_FORK | 1174 SD_WAKE_AFFINE); 1175 } 1176 1177 #endif 1178 } else { 1179 sd->flags |= SD_PREFER_SIBLING; 1180 sd->cache_nice_tries = 1; 1181 sd->busy_idx = 2; 1182 sd->idle_idx = 1; 1183 } 1184 1185 /* 1186 * For all levels sharing cache; connect a sched_domain_shared 1187 * instance. 1188 */ 1189 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1190 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1191 atomic_inc(&sd->shared->ref); 1192 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1193 } 1194 1195 sd->private = sdd; 1196 1197 return sd; 1198 } 1199 1200 /* 1201 * Topology list, bottom-up. 1202 */ 1203 static struct sched_domain_topology_level default_topology[] = { 1204 #ifdef CONFIG_SCHED_SMT 1205 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1206 #endif 1207 #ifdef CONFIG_SCHED_MC 1208 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1209 #endif 1210 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1211 { NULL, }, 1212 }; 1213 1214 static struct sched_domain_topology_level *sched_domain_topology = 1215 default_topology; 1216 1217 #define for_each_sd_topology(tl) \ 1218 for (tl = sched_domain_topology; tl->mask; tl++) 1219 1220 void set_sched_topology(struct sched_domain_topology_level *tl) 1221 { 1222 if (WARN_ON_ONCE(sched_smp_initialized)) 1223 return; 1224 1225 sched_domain_topology = tl; 1226 } 1227 1228 #ifdef CONFIG_NUMA 1229 1230 static const struct cpumask *sd_numa_mask(int cpu) 1231 { 1232 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1233 } 1234 1235 static void sched_numa_warn(const char *str) 1236 { 1237 static int done = false; 1238 int i,j; 1239 1240 if (done) 1241 return; 1242 1243 done = true; 1244 1245 printk(KERN_WARNING "ERROR: %s\n\n", str); 1246 1247 for (i = 0; i < nr_node_ids; i++) { 1248 printk(KERN_WARNING " "); 1249 for (j = 0; j < nr_node_ids; j++) 1250 printk(KERN_CONT "%02d ", node_distance(i,j)); 1251 printk(KERN_CONT "\n"); 1252 } 1253 printk(KERN_WARNING "\n"); 1254 } 1255 1256 bool find_numa_distance(int distance) 1257 { 1258 int i; 1259 1260 if (distance == node_distance(0, 0)) 1261 return true; 1262 1263 for (i = 0; i < sched_domains_numa_levels; i++) { 1264 if (sched_domains_numa_distance[i] == distance) 1265 return true; 1266 } 1267 1268 return false; 1269 } 1270 1271 /* 1272 * A system can have three types of NUMA topology: 1273 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1274 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1275 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1276 * 1277 * The difference between a glueless mesh topology and a backplane 1278 * topology lies in whether communication between not directly 1279 * connected nodes goes through intermediary nodes (where programs 1280 * could run), or through backplane controllers. This affects 1281 * placement of programs. 1282 * 1283 * The type of topology can be discerned with the following tests: 1284 * - If the maximum distance between any nodes is 1 hop, the system 1285 * is directly connected. 1286 * - If for two nodes A and B, located N > 1 hops away from each other, 1287 * there is an intermediary node C, which is < N hops away from both 1288 * nodes A and B, the system is a glueless mesh. 1289 */ 1290 static void init_numa_topology_type(void) 1291 { 1292 int a, b, c, n; 1293 1294 n = sched_max_numa_distance; 1295 1296 if (sched_domains_numa_levels <= 1) { 1297 sched_numa_topology_type = NUMA_DIRECT; 1298 return; 1299 } 1300 1301 for_each_online_node(a) { 1302 for_each_online_node(b) { 1303 /* Find two nodes furthest removed from each other. */ 1304 if (node_distance(a, b) < n) 1305 continue; 1306 1307 /* Is there an intermediary node between a and b? */ 1308 for_each_online_node(c) { 1309 if (node_distance(a, c) < n && 1310 node_distance(b, c) < n) { 1311 sched_numa_topology_type = 1312 NUMA_GLUELESS_MESH; 1313 return; 1314 } 1315 } 1316 1317 sched_numa_topology_type = NUMA_BACKPLANE; 1318 return; 1319 } 1320 } 1321 } 1322 1323 void sched_init_numa(void) 1324 { 1325 int next_distance, curr_distance = node_distance(0, 0); 1326 struct sched_domain_topology_level *tl; 1327 int level = 0; 1328 int i, j, k; 1329 1330 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 1331 if (!sched_domains_numa_distance) 1332 return; 1333 1334 /* 1335 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1336 * unique distances in the node_distance() table. 1337 * 1338 * Assumes node_distance(0,j) includes all distances in 1339 * node_distance(i,j) in order to avoid cubic time. 1340 */ 1341 next_distance = curr_distance; 1342 for (i = 0; i < nr_node_ids; i++) { 1343 for (j = 0; j < nr_node_ids; j++) { 1344 for (k = 0; k < nr_node_ids; k++) { 1345 int distance = node_distance(i, k); 1346 1347 if (distance > curr_distance && 1348 (distance < next_distance || 1349 next_distance == curr_distance)) 1350 next_distance = distance; 1351 1352 /* 1353 * While not a strong assumption it would be nice to know 1354 * about cases where if node A is connected to B, B is not 1355 * equally connected to A. 1356 */ 1357 if (sched_debug() && node_distance(k, i) != distance) 1358 sched_numa_warn("Node-distance not symmetric"); 1359 1360 if (sched_debug() && i && !find_numa_distance(distance)) 1361 sched_numa_warn("Node-0 not representative"); 1362 } 1363 if (next_distance != curr_distance) { 1364 sched_domains_numa_distance[level++] = next_distance; 1365 sched_domains_numa_levels = level; 1366 curr_distance = next_distance; 1367 } else break; 1368 } 1369 1370 /* 1371 * In case of sched_debug() we verify the above assumption. 1372 */ 1373 if (!sched_debug()) 1374 break; 1375 } 1376 1377 if (!level) 1378 return; 1379 1380 /* 1381 * 'level' contains the number of unique distances, excluding the 1382 * identity distance node_distance(i,i). 1383 * 1384 * The sched_domains_numa_distance[] array includes the actual distance 1385 * numbers. 1386 */ 1387 1388 /* 1389 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1390 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1391 * the array will contain less then 'level' members. This could be 1392 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1393 * in other functions. 1394 * 1395 * We reset it to 'level' at the end of this function. 1396 */ 1397 sched_domains_numa_levels = 0; 1398 1399 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1400 if (!sched_domains_numa_masks) 1401 return; 1402 1403 /* 1404 * Now for each level, construct a mask per node which contains all 1405 * CPUs of nodes that are that many hops away from us. 1406 */ 1407 for (i = 0; i < level; i++) { 1408 sched_domains_numa_masks[i] = 1409 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1410 if (!sched_domains_numa_masks[i]) 1411 return; 1412 1413 for (j = 0; j < nr_node_ids; j++) { 1414 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1415 if (!mask) 1416 return; 1417 1418 sched_domains_numa_masks[i][j] = mask; 1419 1420 for_each_node(k) { 1421 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1422 continue; 1423 1424 cpumask_or(mask, mask, cpumask_of_node(k)); 1425 } 1426 } 1427 } 1428 1429 /* Compute default topology size */ 1430 for (i = 0; sched_domain_topology[i].mask; i++); 1431 1432 tl = kzalloc((i + level + 1) * 1433 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1434 if (!tl) 1435 return; 1436 1437 /* 1438 * Copy the default topology bits.. 1439 */ 1440 for (i = 0; sched_domain_topology[i].mask; i++) 1441 tl[i] = sched_domain_topology[i]; 1442 1443 /* 1444 * .. and append 'j' levels of NUMA goodness. 1445 */ 1446 for (j = 0; j < level; i++, j++) { 1447 tl[i] = (struct sched_domain_topology_level){ 1448 .mask = sd_numa_mask, 1449 .sd_flags = cpu_numa_flags, 1450 .flags = SDTL_OVERLAP, 1451 .numa_level = j, 1452 SD_INIT_NAME(NUMA) 1453 }; 1454 } 1455 1456 sched_domain_topology = tl; 1457 1458 sched_domains_numa_levels = level; 1459 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1460 1461 init_numa_topology_type(); 1462 } 1463 1464 void sched_domains_numa_masks_set(unsigned int cpu) 1465 { 1466 int node = cpu_to_node(cpu); 1467 int i, j; 1468 1469 for (i = 0; i < sched_domains_numa_levels; i++) { 1470 for (j = 0; j < nr_node_ids; j++) { 1471 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1472 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1473 } 1474 } 1475 } 1476 1477 void sched_domains_numa_masks_clear(unsigned int cpu) 1478 { 1479 int i, j; 1480 1481 for (i = 0; i < sched_domains_numa_levels; i++) { 1482 for (j = 0; j < nr_node_ids; j++) 1483 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1484 } 1485 } 1486 1487 #endif /* CONFIG_NUMA */ 1488 1489 static int __sdt_alloc(const struct cpumask *cpu_map) 1490 { 1491 struct sched_domain_topology_level *tl; 1492 int j; 1493 1494 for_each_sd_topology(tl) { 1495 struct sd_data *sdd = &tl->data; 1496 1497 sdd->sd = alloc_percpu(struct sched_domain *); 1498 if (!sdd->sd) 1499 return -ENOMEM; 1500 1501 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1502 if (!sdd->sds) 1503 return -ENOMEM; 1504 1505 sdd->sg = alloc_percpu(struct sched_group *); 1506 if (!sdd->sg) 1507 return -ENOMEM; 1508 1509 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1510 if (!sdd->sgc) 1511 return -ENOMEM; 1512 1513 for_each_cpu(j, cpu_map) { 1514 struct sched_domain *sd; 1515 struct sched_domain_shared *sds; 1516 struct sched_group *sg; 1517 struct sched_group_capacity *sgc; 1518 1519 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1520 GFP_KERNEL, cpu_to_node(j)); 1521 if (!sd) 1522 return -ENOMEM; 1523 1524 *per_cpu_ptr(sdd->sd, j) = sd; 1525 1526 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1527 GFP_KERNEL, cpu_to_node(j)); 1528 if (!sds) 1529 return -ENOMEM; 1530 1531 *per_cpu_ptr(sdd->sds, j) = sds; 1532 1533 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1534 GFP_KERNEL, cpu_to_node(j)); 1535 if (!sg) 1536 return -ENOMEM; 1537 1538 sg->next = sg; 1539 1540 *per_cpu_ptr(sdd->sg, j) = sg; 1541 1542 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1543 GFP_KERNEL, cpu_to_node(j)); 1544 if (!sgc) 1545 return -ENOMEM; 1546 1547 #ifdef CONFIG_SCHED_DEBUG 1548 sgc->id = j; 1549 #endif 1550 1551 *per_cpu_ptr(sdd->sgc, j) = sgc; 1552 } 1553 } 1554 1555 return 0; 1556 } 1557 1558 static void __sdt_free(const struct cpumask *cpu_map) 1559 { 1560 struct sched_domain_topology_level *tl; 1561 int j; 1562 1563 for_each_sd_topology(tl) { 1564 struct sd_data *sdd = &tl->data; 1565 1566 for_each_cpu(j, cpu_map) { 1567 struct sched_domain *sd; 1568 1569 if (sdd->sd) { 1570 sd = *per_cpu_ptr(sdd->sd, j); 1571 if (sd && (sd->flags & SD_OVERLAP)) 1572 free_sched_groups(sd->groups, 0); 1573 kfree(*per_cpu_ptr(sdd->sd, j)); 1574 } 1575 1576 if (sdd->sds) 1577 kfree(*per_cpu_ptr(sdd->sds, j)); 1578 if (sdd->sg) 1579 kfree(*per_cpu_ptr(sdd->sg, j)); 1580 if (sdd->sgc) 1581 kfree(*per_cpu_ptr(sdd->sgc, j)); 1582 } 1583 free_percpu(sdd->sd); 1584 sdd->sd = NULL; 1585 free_percpu(sdd->sds); 1586 sdd->sds = NULL; 1587 free_percpu(sdd->sg); 1588 sdd->sg = NULL; 1589 free_percpu(sdd->sgc); 1590 sdd->sgc = NULL; 1591 } 1592 } 1593 1594 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1595 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1596 struct sched_domain *child, int cpu) 1597 { 1598 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 1599 1600 if (child) { 1601 sd->level = child->level + 1; 1602 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1603 child->parent = sd; 1604 1605 if (!cpumask_subset(sched_domain_span(child), 1606 sched_domain_span(sd))) { 1607 pr_err("BUG: arch topology borken\n"); 1608 #ifdef CONFIG_SCHED_DEBUG 1609 pr_err(" the %s domain not a subset of the %s domain\n", 1610 child->name, sd->name); 1611 #endif 1612 /* Fixup, ensure @sd has at least @child cpus. */ 1613 cpumask_or(sched_domain_span(sd), 1614 sched_domain_span(sd), 1615 sched_domain_span(child)); 1616 } 1617 1618 } 1619 set_domain_attribute(sd, attr); 1620 1621 return sd; 1622 } 1623 1624 /* 1625 * Build sched domains for a given set of CPUs and attach the sched domains 1626 * to the individual CPUs 1627 */ 1628 static int 1629 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1630 { 1631 enum s_alloc alloc_state; 1632 struct sched_domain *sd; 1633 struct s_data d; 1634 struct rq *rq = NULL; 1635 int i, ret = -ENOMEM; 1636 1637 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1638 if (alloc_state != sa_rootdomain) 1639 goto error; 1640 1641 /* Set up domains for CPUs specified by the cpu_map: */ 1642 for_each_cpu(i, cpu_map) { 1643 struct sched_domain_topology_level *tl; 1644 1645 sd = NULL; 1646 for_each_sd_topology(tl) { 1647 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 1648 if (tl == sched_domain_topology) 1649 *per_cpu_ptr(d.sd, i) = sd; 1650 if (tl->flags & SDTL_OVERLAP) 1651 sd->flags |= SD_OVERLAP; 1652 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1653 break; 1654 } 1655 } 1656 1657 /* Build the groups for the domains */ 1658 for_each_cpu(i, cpu_map) { 1659 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1660 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1661 if (sd->flags & SD_OVERLAP) { 1662 if (build_overlap_sched_groups(sd, i)) 1663 goto error; 1664 } else { 1665 if (build_sched_groups(sd, i)) 1666 goto error; 1667 } 1668 } 1669 } 1670 1671 /* Calculate CPU capacity for physical packages and nodes */ 1672 for (i = nr_cpumask_bits-1; i >= 0; i--) { 1673 if (!cpumask_test_cpu(i, cpu_map)) 1674 continue; 1675 1676 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1677 claim_allocations(i, sd); 1678 init_sched_groups_capacity(i, sd); 1679 } 1680 } 1681 1682 /* Attach the domains */ 1683 rcu_read_lock(); 1684 for_each_cpu(i, cpu_map) { 1685 rq = cpu_rq(i); 1686 sd = *per_cpu_ptr(d.sd, i); 1687 1688 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1689 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1690 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1691 1692 cpu_attach_domain(sd, d.rd, i); 1693 } 1694 rcu_read_unlock(); 1695 1696 if (rq && sched_debug_enabled) { 1697 pr_info("span: %*pbl (max cpu_capacity = %lu)\n", 1698 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1699 } 1700 1701 ret = 0; 1702 error: 1703 __free_domain_allocs(&d, alloc_state, cpu_map); 1704 return ret; 1705 } 1706 1707 /* Current sched domains: */ 1708 static cpumask_var_t *doms_cur; 1709 1710 /* Number of sched domains in 'doms_cur': */ 1711 static int ndoms_cur; 1712 1713 /* Attribues of custom domains in 'doms_cur' */ 1714 static struct sched_domain_attr *dattr_cur; 1715 1716 /* 1717 * Special case: If a kmalloc() of a doms_cur partition (array of 1718 * cpumask) fails, then fallback to a single sched domain, 1719 * as determined by the single cpumask fallback_doms. 1720 */ 1721 static cpumask_var_t fallback_doms; 1722 1723 /* 1724 * arch_update_cpu_topology lets virtualized architectures update the 1725 * CPU core maps. It is supposed to return 1 if the topology changed 1726 * or 0 if it stayed the same. 1727 */ 1728 int __weak arch_update_cpu_topology(void) 1729 { 1730 return 0; 1731 } 1732 1733 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1734 { 1735 int i; 1736 cpumask_var_t *doms; 1737 1738 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 1739 if (!doms) 1740 return NULL; 1741 for (i = 0; i < ndoms; i++) { 1742 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1743 free_sched_domains(doms, i); 1744 return NULL; 1745 } 1746 } 1747 return doms; 1748 } 1749 1750 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1751 { 1752 unsigned int i; 1753 for (i = 0; i < ndoms; i++) 1754 free_cpumask_var(doms[i]); 1755 kfree(doms); 1756 } 1757 1758 /* 1759 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1760 * For now this just excludes isolated CPUs, but could be used to 1761 * exclude other special cases in the future. 1762 */ 1763 int sched_init_domains(const struct cpumask *cpu_map) 1764 { 1765 int err; 1766 1767 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 1768 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 1769 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 1770 1771 arch_update_cpu_topology(); 1772 ndoms_cur = 1; 1773 doms_cur = alloc_sched_domains(ndoms_cur); 1774 if (!doms_cur) 1775 doms_cur = &fallback_doms; 1776 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 1777 err = build_sched_domains(doms_cur[0], NULL); 1778 register_sched_domain_sysctl(); 1779 1780 return err; 1781 } 1782 1783 /* 1784 * Detach sched domains from a group of CPUs specified in cpu_map 1785 * These CPUs will now be attached to the NULL domain 1786 */ 1787 static void detach_destroy_domains(const struct cpumask *cpu_map) 1788 { 1789 int i; 1790 1791 rcu_read_lock(); 1792 for_each_cpu(i, cpu_map) 1793 cpu_attach_domain(NULL, &def_root_domain, i); 1794 rcu_read_unlock(); 1795 } 1796 1797 /* handle null as "default" */ 1798 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1799 struct sched_domain_attr *new, int idx_new) 1800 { 1801 struct sched_domain_attr tmp; 1802 1803 /* Fast path: */ 1804 if (!new && !cur) 1805 return 1; 1806 1807 tmp = SD_ATTR_INIT; 1808 return !memcmp(cur ? (cur + idx_cur) : &tmp, 1809 new ? (new + idx_new) : &tmp, 1810 sizeof(struct sched_domain_attr)); 1811 } 1812 1813 /* 1814 * Partition sched domains as specified by the 'ndoms_new' 1815 * cpumasks in the array doms_new[] of cpumasks. This compares 1816 * doms_new[] to the current sched domain partitioning, doms_cur[]. 1817 * It destroys each deleted domain and builds each new domain. 1818 * 1819 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1820 * The masks don't intersect (don't overlap.) We should setup one 1821 * sched domain for each mask. CPUs not in any of the cpumasks will 1822 * not be load balanced. If the same cpumask appears both in the 1823 * current 'doms_cur' domains and in the new 'doms_new', we can leave 1824 * it as it is. 1825 * 1826 * The passed in 'doms_new' should be allocated using 1827 * alloc_sched_domains. This routine takes ownership of it and will 1828 * free_sched_domains it when done with it. If the caller failed the 1829 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1830 * and partition_sched_domains() will fallback to the single partition 1831 * 'fallback_doms', it also forces the domains to be rebuilt. 1832 * 1833 * If doms_new == NULL it will be replaced with cpu_online_mask. 1834 * ndoms_new == 0 is a special case for destroying existing domains, 1835 * and it will not create the default domain. 1836 * 1837 * Call with hotplug lock held 1838 */ 1839 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1840 struct sched_domain_attr *dattr_new) 1841 { 1842 int i, j, n; 1843 int new_topology; 1844 1845 mutex_lock(&sched_domains_mutex); 1846 1847 /* Always unregister in case we don't destroy any domains: */ 1848 unregister_sched_domain_sysctl(); 1849 1850 /* Let the architecture update CPU core mappings: */ 1851 new_topology = arch_update_cpu_topology(); 1852 1853 if (!doms_new) { 1854 WARN_ON_ONCE(dattr_new); 1855 n = 0; 1856 doms_new = alloc_sched_domains(1); 1857 if (doms_new) { 1858 n = 1; 1859 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 1860 } 1861 } else { 1862 n = ndoms_new; 1863 } 1864 1865 /* Destroy deleted domains: */ 1866 for (i = 0; i < ndoms_cur; i++) { 1867 for (j = 0; j < n && !new_topology; j++) { 1868 if (cpumask_equal(doms_cur[i], doms_new[j]) 1869 && dattrs_equal(dattr_cur, i, dattr_new, j)) 1870 goto match1; 1871 } 1872 /* No match - a current sched domain not in new doms_new[] */ 1873 detach_destroy_domains(doms_cur[i]); 1874 match1: 1875 ; 1876 } 1877 1878 n = ndoms_cur; 1879 if (!doms_new) { 1880 n = 0; 1881 doms_new = &fallback_doms; 1882 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 1883 } 1884 1885 /* Build new domains: */ 1886 for (i = 0; i < ndoms_new; i++) { 1887 for (j = 0; j < n && !new_topology; j++) { 1888 if (cpumask_equal(doms_new[i], doms_cur[j]) 1889 && dattrs_equal(dattr_new, i, dattr_cur, j)) 1890 goto match2; 1891 } 1892 /* No match - add a new doms_new */ 1893 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1894 match2: 1895 ; 1896 } 1897 1898 /* Remember the new sched domains: */ 1899 if (doms_cur != &fallback_doms) 1900 free_sched_domains(doms_cur, ndoms_cur); 1901 1902 kfree(dattr_cur); 1903 doms_cur = doms_new; 1904 dattr_cur = dattr_new; 1905 ndoms_cur = ndoms_new; 1906 1907 register_sched_domain_sysctl(); 1908 1909 mutex_unlock(&sched_domains_mutex); 1910 } 1911 1912