1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 6 DEFINE_MUTEX(sched_domains_mutex); 7 8 /* Protected by sched_domains_mutex: */ 9 static cpumask_var_t sched_domains_tmpmask; 10 static cpumask_var_t sched_domains_tmpmask2; 11 12 #ifdef CONFIG_SCHED_DEBUG 13 14 static int __init sched_debug_setup(char *str) 15 { 16 sched_debug_verbose = true; 17 18 return 0; 19 } 20 early_param("sched_verbose", sched_debug_setup); 21 22 static inline bool sched_debug(void) 23 { 24 return sched_debug_verbose; 25 } 26 27 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 28 const struct sd_flag_debug sd_flag_debug[] = { 29 #include <linux/sched/sd_flags.h> 30 }; 31 #undef SD_FLAG 32 33 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 34 struct cpumask *groupmask) 35 { 36 struct sched_group *group = sd->groups; 37 unsigned long flags = sd->flags; 38 unsigned int idx; 39 40 cpumask_clear(groupmask); 41 42 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 43 printk(KERN_CONT "span=%*pbl level=%s\n", 44 cpumask_pr_args(sched_domain_span(sd)), sd->name); 45 46 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 47 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 48 } 49 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 50 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 51 } 52 53 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 54 unsigned int flag = BIT(idx); 55 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 56 57 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 58 !(sd->child->flags & flag)) 59 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 60 sd_flag_debug[idx].name); 61 62 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 63 !(sd->parent->flags & flag)) 64 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 65 sd_flag_debug[idx].name); 66 } 67 68 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 69 do { 70 if (!group) { 71 printk("\n"); 72 printk(KERN_ERR "ERROR: group is NULL\n"); 73 break; 74 } 75 76 if (cpumask_empty(sched_group_span(group))) { 77 printk(KERN_CONT "\n"); 78 printk(KERN_ERR "ERROR: empty group\n"); 79 break; 80 } 81 82 if (!(sd->flags & SD_OVERLAP) && 83 cpumask_intersects(groupmask, sched_group_span(group))) { 84 printk(KERN_CONT "\n"); 85 printk(KERN_ERR "ERROR: repeated CPUs\n"); 86 break; 87 } 88 89 cpumask_or(groupmask, groupmask, sched_group_span(group)); 90 91 printk(KERN_CONT " %d:{ span=%*pbl", 92 group->sgc->id, 93 cpumask_pr_args(sched_group_span(group))); 94 95 if ((sd->flags & SD_OVERLAP) && 96 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 97 printk(KERN_CONT " mask=%*pbl", 98 cpumask_pr_args(group_balance_mask(group))); 99 } 100 101 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 102 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 103 104 if (group == sd->groups && sd->child && 105 !cpumask_equal(sched_domain_span(sd->child), 106 sched_group_span(group))) { 107 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 108 } 109 110 printk(KERN_CONT " }"); 111 112 group = group->next; 113 114 if (group != sd->groups) 115 printk(KERN_CONT ","); 116 117 } while (group != sd->groups); 118 printk(KERN_CONT "\n"); 119 120 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 121 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 122 123 if (sd->parent && 124 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 125 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 126 return 0; 127 } 128 129 static void sched_domain_debug(struct sched_domain *sd, int cpu) 130 { 131 int level = 0; 132 133 if (!sched_debug_verbose) 134 return; 135 136 if (!sd) { 137 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 138 return; 139 } 140 141 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 142 143 for (;;) { 144 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 145 break; 146 level++; 147 sd = sd->parent; 148 if (!sd) 149 break; 150 } 151 } 152 #else /* !CONFIG_SCHED_DEBUG */ 153 154 # define sched_debug_verbose 0 155 # define sched_domain_debug(sd, cpu) do { } while (0) 156 static inline bool sched_debug(void) 157 { 158 return false; 159 } 160 #endif /* CONFIG_SCHED_DEBUG */ 161 162 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 163 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 164 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 165 #include <linux/sched/sd_flags.h> 166 0; 167 #undef SD_FLAG 168 169 static int sd_degenerate(struct sched_domain *sd) 170 { 171 if (cpumask_weight(sched_domain_span(sd)) == 1) 172 return 1; 173 174 /* Following flags need at least 2 groups */ 175 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 176 (sd->groups != sd->groups->next)) 177 return 0; 178 179 /* Following flags don't use groups */ 180 if (sd->flags & (SD_WAKE_AFFINE)) 181 return 0; 182 183 return 1; 184 } 185 186 static int 187 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 188 { 189 unsigned long cflags = sd->flags, pflags = parent->flags; 190 191 if (sd_degenerate(parent)) 192 return 1; 193 194 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 195 return 0; 196 197 /* Flags needing groups don't count if only 1 group in parent */ 198 if (parent->groups == parent->groups->next) 199 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 200 201 if (~cflags & pflags) 202 return 0; 203 204 return 1; 205 } 206 207 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 208 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 209 static unsigned int sysctl_sched_energy_aware = 1; 210 DEFINE_MUTEX(sched_energy_mutex); 211 bool sched_energy_update; 212 213 void rebuild_sched_domains_energy(void) 214 { 215 mutex_lock(&sched_energy_mutex); 216 sched_energy_update = true; 217 rebuild_sched_domains(); 218 sched_energy_update = false; 219 mutex_unlock(&sched_energy_mutex); 220 } 221 222 #ifdef CONFIG_PROC_SYSCTL 223 static int sched_energy_aware_handler(struct ctl_table *table, int write, 224 void *buffer, size_t *lenp, loff_t *ppos) 225 { 226 int ret, state; 227 228 if (write && !capable(CAP_SYS_ADMIN)) 229 return -EPERM; 230 231 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 232 if (!ret && write) { 233 state = static_branch_unlikely(&sched_energy_present); 234 if (state != sysctl_sched_energy_aware) 235 rebuild_sched_domains_energy(); 236 } 237 238 return ret; 239 } 240 241 static struct ctl_table sched_energy_aware_sysctls[] = { 242 { 243 .procname = "sched_energy_aware", 244 .data = &sysctl_sched_energy_aware, 245 .maxlen = sizeof(unsigned int), 246 .mode = 0644, 247 .proc_handler = sched_energy_aware_handler, 248 .extra1 = SYSCTL_ZERO, 249 .extra2 = SYSCTL_ONE, 250 }, 251 {} 252 }; 253 254 static int __init sched_energy_aware_sysctl_init(void) 255 { 256 register_sysctl_init("kernel", sched_energy_aware_sysctls); 257 return 0; 258 } 259 260 late_initcall(sched_energy_aware_sysctl_init); 261 #endif 262 263 static void free_pd(struct perf_domain *pd) 264 { 265 struct perf_domain *tmp; 266 267 while (pd) { 268 tmp = pd->next; 269 kfree(pd); 270 pd = tmp; 271 } 272 } 273 274 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 275 { 276 while (pd) { 277 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 278 return pd; 279 pd = pd->next; 280 } 281 282 return NULL; 283 } 284 285 static struct perf_domain *pd_init(int cpu) 286 { 287 struct em_perf_domain *obj = em_cpu_get(cpu); 288 struct perf_domain *pd; 289 290 if (!obj) { 291 if (sched_debug()) 292 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 293 return NULL; 294 } 295 296 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 297 if (!pd) 298 return NULL; 299 pd->em_pd = obj; 300 301 return pd; 302 } 303 304 static void perf_domain_debug(const struct cpumask *cpu_map, 305 struct perf_domain *pd) 306 { 307 if (!sched_debug() || !pd) 308 return; 309 310 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 311 312 while (pd) { 313 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 314 cpumask_first(perf_domain_span(pd)), 315 cpumask_pr_args(perf_domain_span(pd)), 316 em_pd_nr_perf_states(pd->em_pd)); 317 pd = pd->next; 318 } 319 320 printk(KERN_CONT "\n"); 321 } 322 323 static void destroy_perf_domain_rcu(struct rcu_head *rp) 324 { 325 struct perf_domain *pd; 326 327 pd = container_of(rp, struct perf_domain, rcu); 328 free_pd(pd); 329 } 330 331 static void sched_energy_set(bool has_eas) 332 { 333 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 334 if (sched_debug()) 335 pr_info("%s: stopping EAS\n", __func__); 336 static_branch_disable_cpuslocked(&sched_energy_present); 337 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 338 if (sched_debug()) 339 pr_info("%s: starting EAS\n", __func__); 340 static_branch_enable_cpuslocked(&sched_energy_present); 341 } 342 } 343 344 /* 345 * EAS can be used on a root domain if it meets all the following conditions: 346 * 1. an Energy Model (EM) is available; 347 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 348 * 3. no SMT is detected. 349 * 4. the EM complexity is low enough to keep scheduling overheads low; 350 * 5. schedutil is driving the frequency of all CPUs of the rd; 351 * 6. frequency invariance support is present; 352 * 353 * The complexity of the Energy Model is defined as: 354 * 355 * C = nr_pd * (nr_cpus + nr_ps) 356 * 357 * with parameters defined as: 358 * - nr_pd: the number of performance domains 359 * - nr_cpus: the number of CPUs 360 * - nr_ps: the sum of the number of performance states of all performance 361 * domains (for example, on a system with 2 performance domains, 362 * with 10 performance states each, nr_ps = 2 * 10 = 20). 363 * 364 * It is generally not a good idea to use such a model in the wake-up path on 365 * very complex platforms because of the associated scheduling overheads. The 366 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 367 * with per-CPU DVFS and less than 8 performance states each, for example. 368 */ 369 #define EM_MAX_COMPLEXITY 2048 370 371 extern struct cpufreq_governor schedutil_gov; 372 static bool build_perf_domains(const struct cpumask *cpu_map) 373 { 374 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map); 375 struct perf_domain *pd = NULL, *tmp; 376 int cpu = cpumask_first(cpu_map); 377 struct root_domain *rd = cpu_rq(cpu)->rd; 378 struct cpufreq_policy *policy; 379 struct cpufreq_governor *gov; 380 381 if (!sysctl_sched_energy_aware) 382 goto free; 383 384 /* EAS is enabled for asymmetric CPU capacity topologies. */ 385 if (!per_cpu(sd_asym_cpucapacity, cpu)) { 386 if (sched_debug()) { 387 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 388 cpumask_pr_args(cpu_map)); 389 } 390 goto free; 391 } 392 393 /* EAS definitely does *not* handle SMT */ 394 if (sched_smt_active()) { 395 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n", 396 cpumask_pr_args(cpu_map)); 397 goto free; 398 } 399 400 if (!arch_scale_freq_invariant()) { 401 if (sched_debug()) { 402 pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported", 403 cpumask_pr_args(cpu_map)); 404 } 405 goto free; 406 } 407 408 for_each_cpu(i, cpu_map) { 409 /* Skip already covered CPUs. */ 410 if (find_pd(pd, i)) 411 continue; 412 413 /* Do not attempt EAS if schedutil is not being used. */ 414 policy = cpufreq_cpu_get(i); 415 if (!policy) 416 goto free; 417 gov = policy->governor; 418 cpufreq_cpu_put(policy); 419 if (gov != &schedutil_gov) { 420 if (rd->pd) 421 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 422 cpumask_pr_args(cpu_map)); 423 goto free; 424 } 425 426 /* Create the new pd and add it to the local list. */ 427 tmp = pd_init(i); 428 if (!tmp) 429 goto free; 430 tmp->next = pd; 431 pd = tmp; 432 433 /* 434 * Count performance domains and performance states for the 435 * complexity check. 436 */ 437 nr_pd++; 438 nr_ps += em_pd_nr_perf_states(pd->em_pd); 439 } 440 441 /* Bail out if the Energy Model complexity is too high. */ 442 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) { 443 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 444 cpumask_pr_args(cpu_map)); 445 goto free; 446 } 447 448 perf_domain_debug(cpu_map, pd); 449 450 /* Attach the new list of performance domains to the root domain. */ 451 tmp = rd->pd; 452 rcu_assign_pointer(rd->pd, pd); 453 if (tmp) 454 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 455 456 return !!pd; 457 458 free: 459 free_pd(pd); 460 tmp = rd->pd; 461 rcu_assign_pointer(rd->pd, NULL); 462 if (tmp) 463 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 464 465 return false; 466 } 467 #else 468 static void free_pd(struct perf_domain *pd) { } 469 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 470 471 static void free_rootdomain(struct rcu_head *rcu) 472 { 473 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 474 475 cpupri_cleanup(&rd->cpupri); 476 cpudl_cleanup(&rd->cpudl); 477 free_cpumask_var(rd->dlo_mask); 478 free_cpumask_var(rd->rto_mask); 479 free_cpumask_var(rd->online); 480 free_cpumask_var(rd->span); 481 free_pd(rd->pd); 482 kfree(rd); 483 } 484 485 void rq_attach_root(struct rq *rq, struct root_domain *rd) 486 { 487 struct root_domain *old_rd = NULL; 488 unsigned long flags; 489 490 raw_spin_rq_lock_irqsave(rq, flags); 491 492 if (rq->rd) { 493 old_rd = rq->rd; 494 495 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 496 set_rq_offline(rq); 497 498 cpumask_clear_cpu(rq->cpu, old_rd->span); 499 500 /* 501 * If we dont want to free the old_rd yet then 502 * set old_rd to NULL to skip the freeing later 503 * in this function: 504 */ 505 if (!atomic_dec_and_test(&old_rd->refcount)) 506 old_rd = NULL; 507 } 508 509 atomic_inc(&rd->refcount); 510 rq->rd = rd; 511 512 cpumask_set_cpu(rq->cpu, rd->span); 513 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 514 set_rq_online(rq); 515 516 raw_spin_rq_unlock_irqrestore(rq, flags); 517 518 if (old_rd) 519 call_rcu(&old_rd->rcu, free_rootdomain); 520 } 521 522 void sched_get_rd(struct root_domain *rd) 523 { 524 atomic_inc(&rd->refcount); 525 } 526 527 void sched_put_rd(struct root_domain *rd) 528 { 529 if (!atomic_dec_and_test(&rd->refcount)) 530 return; 531 532 call_rcu(&rd->rcu, free_rootdomain); 533 } 534 535 static int init_rootdomain(struct root_domain *rd) 536 { 537 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 538 goto out; 539 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 540 goto free_span; 541 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 542 goto free_online; 543 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 544 goto free_dlo_mask; 545 546 #ifdef HAVE_RT_PUSH_IPI 547 rd->rto_cpu = -1; 548 raw_spin_lock_init(&rd->rto_lock); 549 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); 550 #endif 551 552 rd->visit_gen = 0; 553 init_dl_bw(&rd->dl_bw); 554 if (cpudl_init(&rd->cpudl) != 0) 555 goto free_rto_mask; 556 557 if (cpupri_init(&rd->cpupri) != 0) 558 goto free_cpudl; 559 return 0; 560 561 free_cpudl: 562 cpudl_cleanup(&rd->cpudl); 563 free_rto_mask: 564 free_cpumask_var(rd->rto_mask); 565 free_dlo_mask: 566 free_cpumask_var(rd->dlo_mask); 567 free_online: 568 free_cpumask_var(rd->online); 569 free_span: 570 free_cpumask_var(rd->span); 571 out: 572 return -ENOMEM; 573 } 574 575 /* 576 * By default the system creates a single root-domain with all CPUs as 577 * members (mimicking the global state we have today). 578 */ 579 struct root_domain def_root_domain; 580 581 void init_defrootdomain(void) 582 { 583 init_rootdomain(&def_root_domain); 584 585 atomic_set(&def_root_domain.refcount, 1); 586 } 587 588 static struct root_domain *alloc_rootdomain(void) 589 { 590 struct root_domain *rd; 591 592 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 593 if (!rd) 594 return NULL; 595 596 if (init_rootdomain(rd) != 0) { 597 kfree(rd); 598 return NULL; 599 } 600 601 return rd; 602 } 603 604 static void free_sched_groups(struct sched_group *sg, int free_sgc) 605 { 606 struct sched_group *tmp, *first; 607 608 if (!sg) 609 return; 610 611 first = sg; 612 do { 613 tmp = sg->next; 614 615 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 616 kfree(sg->sgc); 617 618 if (atomic_dec_and_test(&sg->ref)) 619 kfree(sg); 620 sg = tmp; 621 } while (sg != first); 622 } 623 624 static void destroy_sched_domain(struct sched_domain *sd) 625 { 626 /* 627 * A normal sched domain may have multiple group references, an 628 * overlapping domain, having private groups, only one. Iterate, 629 * dropping group/capacity references, freeing where none remain. 630 */ 631 free_sched_groups(sd->groups, 1); 632 633 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 634 kfree(sd->shared); 635 kfree(sd); 636 } 637 638 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 639 { 640 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 641 642 while (sd) { 643 struct sched_domain *parent = sd->parent; 644 destroy_sched_domain(sd); 645 sd = parent; 646 } 647 } 648 649 static void destroy_sched_domains(struct sched_domain *sd) 650 { 651 if (sd) 652 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 653 } 654 655 /* 656 * Keep a special pointer to the highest sched_domain that has 657 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 658 * allows us to avoid some pointer chasing select_idle_sibling(). 659 * 660 * Also keep a unique ID per domain (we use the first CPU number in 661 * the cpumask of the domain), this allows us to quickly tell if 662 * two CPUs are in the same cache domain, see cpus_share_cache(). 663 */ 664 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 665 DEFINE_PER_CPU(int, sd_llc_size); 666 DEFINE_PER_CPU(int, sd_llc_id); 667 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 668 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 669 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 670 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 671 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 672 673 static void update_top_cache_domain(int cpu) 674 { 675 struct sched_domain_shared *sds = NULL; 676 struct sched_domain *sd; 677 int id = cpu; 678 int size = 1; 679 680 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 681 if (sd) { 682 id = cpumask_first(sched_domain_span(sd)); 683 size = cpumask_weight(sched_domain_span(sd)); 684 sds = sd->shared; 685 } 686 687 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 688 per_cpu(sd_llc_size, cpu) = size; 689 per_cpu(sd_llc_id, cpu) = id; 690 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 691 692 sd = lowest_flag_domain(cpu, SD_NUMA); 693 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 694 695 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 696 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 697 698 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 699 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 700 } 701 702 /* 703 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 704 * hold the hotplug lock. 705 */ 706 static void 707 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 708 { 709 struct rq *rq = cpu_rq(cpu); 710 struct sched_domain *tmp; 711 712 /* Remove the sched domains which do not contribute to scheduling. */ 713 for (tmp = sd; tmp; ) { 714 struct sched_domain *parent = tmp->parent; 715 if (!parent) 716 break; 717 718 if (sd_parent_degenerate(tmp, parent)) { 719 tmp->parent = parent->parent; 720 if (parent->parent) 721 parent->parent->child = tmp; 722 /* 723 * Transfer SD_PREFER_SIBLING down in case of a 724 * degenerate parent; the spans match for this 725 * so the property transfers. 726 */ 727 if (parent->flags & SD_PREFER_SIBLING) 728 tmp->flags |= SD_PREFER_SIBLING; 729 destroy_sched_domain(parent); 730 } else 731 tmp = tmp->parent; 732 } 733 734 if (sd && sd_degenerate(sd)) { 735 tmp = sd; 736 sd = sd->parent; 737 destroy_sched_domain(tmp); 738 if (sd) { 739 struct sched_group *sg = sd->groups; 740 741 /* 742 * sched groups hold the flags of the child sched 743 * domain for convenience. Clear such flags since 744 * the child is being destroyed. 745 */ 746 do { 747 sg->flags = 0; 748 } while (sg != sd->groups); 749 750 sd->child = NULL; 751 } 752 } 753 754 sched_domain_debug(sd, cpu); 755 756 rq_attach_root(rq, rd); 757 tmp = rq->sd; 758 rcu_assign_pointer(rq->sd, sd); 759 dirty_sched_domain_sysctl(cpu); 760 destroy_sched_domains(tmp); 761 762 update_top_cache_domain(cpu); 763 } 764 765 struct s_data { 766 struct sched_domain * __percpu *sd; 767 struct root_domain *rd; 768 }; 769 770 enum s_alloc { 771 sa_rootdomain, 772 sa_sd, 773 sa_sd_storage, 774 sa_none, 775 }; 776 777 /* 778 * Return the canonical balance CPU for this group, this is the first CPU 779 * of this group that's also in the balance mask. 780 * 781 * The balance mask are all those CPUs that could actually end up at this 782 * group. See build_balance_mask(). 783 * 784 * Also see should_we_balance(). 785 */ 786 int group_balance_cpu(struct sched_group *sg) 787 { 788 return cpumask_first(group_balance_mask(sg)); 789 } 790 791 792 /* 793 * NUMA topology (first read the regular topology blurb below) 794 * 795 * Given a node-distance table, for example: 796 * 797 * node 0 1 2 3 798 * 0: 10 20 30 20 799 * 1: 20 10 20 30 800 * 2: 30 20 10 20 801 * 3: 20 30 20 10 802 * 803 * which represents a 4 node ring topology like: 804 * 805 * 0 ----- 1 806 * | | 807 * | | 808 * | | 809 * 3 ----- 2 810 * 811 * We want to construct domains and groups to represent this. The way we go 812 * about doing this is to build the domains on 'hops'. For each NUMA level we 813 * construct the mask of all nodes reachable in @level hops. 814 * 815 * For the above NUMA topology that gives 3 levels: 816 * 817 * NUMA-2 0-3 0-3 0-3 0-3 818 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 819 * 820 * NUMA-1 0-1,3 0-2 1-3 0,2-3 821 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 822 * 823 * NUMA-0 0 1 2 3 824 * 825 * 826 * As can be seen; things don't nicely line up as with the regular topology. 827 * When we iterate a domain in child domain chunks some nodes can be 828 * represented multiple times -- hence the "overlap" naming for this part of 829 * the topology. 830 * 831 * In order to minimize this overlap, we only build enough groups to cover the 832 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 833 * 834 * Because: 835 * 836 * - the first group of each domain is its child domain; this 837 * gets us the first 0-1,3 838 * - the only uncovered node is 2, who's child domain is 1-3. 839 * 840 * However, because of the overlap, computing a unique CPU for each group is 841 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 842 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 843 * end up at those groups (they would end up in group: 0-1,3). 844 * 845 * To correct this we have to introduce the group balance mask. This mask 846 * will contain those CPUs in the group that can reach this group given the 847 * (child) domain tree. 848 * 849 * With this we can once again compute balance_cpu and sched_group_capacity 850 * relations. 851 * 852 * XXX include words on how balance_cpu is unique and therefore can be 853 * used for sched_group_capacity links. 854 * 855 * 856 * Another 'interesting' topology is: 857 * 858 * node 0 1 2 3 859 * 0: 10 20 20 30 860 * 1: 20 10 20 20 861 * 2: 20 20 10 20 862 * 3: 30 20 20 10 863 * 864 * Which looks a little like: 865 * 866 * 0 ----- 1 867 * | / | 868 * | / | 869 * | / | 870 * 2 ----- 3 871 * 872 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 873 * are not. 874 * 875 * This leads to a few particularly weird cases where the sched_domain's are 876 * not of the same number for each CPU. Consider: 877 * 878 * NUMA-2 0-3 0-3 879 * groups: {0-2},{1-3} {1-3},{0-2} 880 * 881 * NUMA-1 0-2 0-3 0-3 1-3 882 * 883 * NUMA-0 0 1 2 3 884 * 885 */ 886 887 888 /* 889 * Build the balance mask; it contains only those CPUs that can arrive at this 890 * group and should be considered to continue balancing. 891 * 892 * We do this during the group creation pass, therefore the group information 893 * isn't complete yet, however since each group represents a (child) domain we 894 * can fully construct this using the sched_domain bits (which are already 895 * complete). 896 */ 897 static void 898 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 899 { 900 const struct cpumask *sg_span = sched_group_span(sg); 901 struct sd_data *sdd = sd->private; 902 struct sched_domain *sibling; 903 int i; 904 905 cpumask_clear(mask); 906 907 for_each_cpu(i, sg_span) { 908 sibling = *per_cpu_ptr(sdd->sd, i); 909 910 /* 911 * Can happen in the asymmetric case, where these siblings are 912 * unused. The mask will not be empty because those CPUs that 913 * do have the top domain _should_ span the domain. 914 */ 915 if (!sibling->child) 916 continue; 917 918 /* If we would not end up here, we can't continue from here */ 919 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 920 continue; 921 922 cpumask_set_cpu(i, mask); 923 } 924 925 /* We must not have empty masks here */ 926 WARN_ON_ONCE(cpumask_empty(mask)); 927 } 928 929 /* 930 * XXX: This creates per-node group entries; since the load-balancer will 931 * immediately access remote memory to construct this group's load-balance 932 * statistics having the groups node local is of dubious benefit. 933 */ 934 static struct sched_group * 935 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 936 { 937 struct sched_group *sg; 938 struct cpumask *sg_span; 939 940 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 941 GFP_KERNEL, cpu_to_node(cpu)); 942 943 if (!sg) 944 return NULL; 945 946 sg_span = sched_group_span(sg); 947 if (sd->child) { 948 cpumask_copy(sg_span, sched_domain_span(sd->child)); 949 sg->flags = sd->child->flags; 950 } else { 951 cpumask_copy(sg_span, sched_domain_span(sd)); 952 } 953 954 atomic_inc(&sg->ref); 955 return sg; 956 } 957 958 static void init_overlap_sched_group(struct sched_domain *sd, 959 struct sched_group *sg) 960 { 961 struct cpumask *mask = sched_domains_tmpmask2; 962 struct sd_data *sdd = sd->private; 963 struct cpumask *sg_span; 964 int cpu; 965 966 build_balance_mask(sd, sg, mask); 967 cpu = cpumask_first(mask); 968 969 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 970 if (atomic_inc_return(&sg->sgc->ref) == 1) 971 cpumask_copy(group_balance_mask(sg), mask); 972 else 973 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 974 975 /* 976 * Initialize sgc->capacity such that even if we mess up the 977 * domains and no possible iteration will get us here, we won't 978 * die on a /0 trap. 979 */ 980 sg_span = sched_group_span(sg); 981 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 982 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 983 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 984 } 985 986 static struct sched_domain * 987 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 988 { 989 /* 990 * The proper descendant would be the one whose child won't span out 991 * of sd 992 */ 993 while (sibling->child && 994 !cpumask_subset(sched_domain_span(sibling->child), 995 sched_domain_span(sd))) 996 sibling = sibling->child; 997 998 /* 999 * As we are referencing sgc across different topology level, we need 1000 * to go down to skip those sched_domains which don't contribute to 1001 * scheduling because they will be degenerated in cpu_attach_domain 1002 */ 1003 while (sibling->child && 1004 cpumask_equal(sched_domain_span(sibling->child), 1005 sched_domain_span(sibling))) 1006 sibling = sibling->child; 1007 1008 return sibling; 1009 } 1010 1011 static int 1012 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 1013 { 1014 struct sched_group *first = NULL, *last = NULL, *sg; 1015 const struct cpumask *span = sched_domain_span(sd); 1016 struct cpumask *covered = sched_domains_tmpmask; 1017 struct sd_data *sdd = sd->private; 1018 struct sched_domain *sibling; 1019 int i; 1020 1021 cpumask_clear(covered); 1022 1023 for_each_cpu_wrap(i, span, cpu) { 1024 struct cpumask *sg_span; 1025 1026 if (cpumask_test_cpu(i, covered)) 1027 continue; 1028 1029 sibling = *per_cpu_ptr(sdd->sd, i); 1030 1031 /* 1032 * Asymmetric node setups can result in situations where the 1033 * domain tree is of unequal depth, make sure to skip domains 1034 * that already cover the entire range. 1035 * 1036 * In that case build_sched_domains() will have terminated the 1037 * iteration early and our sibling sd spans will be empty. 1038 * Domains should always include the CPU they're built on, so 1039 * check that. 1040 */ 1041 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1042 continue; 1043 1044 /* 1045 * Usually we build sched_group by sibling's child sched_domain 1046 * But for machines whose NUMA diameter are 3 or above, we move 1047 * to build sched_group by sibling's proper descendant's child 1048 * domain because sibling's child sched_domain will span out of 1049 * the sched_domain being built as below. 1050 * 1051 * Smallest diameter=3 topology is: 1052 * 1053 * node 0 1 2 3 1054 * 0: 10 20 30 40 1055 * 1: 20 10 20 30 1056 * 2: 30 20 10 20 1057 * 3: 40 30 20 10 1058 * 1059 * 0 --- 1 --- 2 --- 3 1060 * 1061 * NUMA-3 0-3 N/A N/A 0-3 1062 * groups: {0-2},{1-3} {1-3},{0-2} 1063 * 1064 * NUMA-2 0-2 0-3 0-3 1-3 1065 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1066 * 1067 * NUMA-1 0-1 0-2 1-3 2-3 1068 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1069 * 1070 * NUMA-0 0 1 2 3 1071 * 1072 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1073 * group span isn't a subset of the domain span. 1074 */ 1075 if (sibling->child && 1076 !cpumask_subset(sched_domain_span(sibling->child), span)) 1077 sibling = find_descended_sibling(sd, sibling); 1078 1079 sg = build_group_from_child_sched_domain(sibling, cpu); 1080 if (!sg) 1081 goto fail; 1082 1083 sg_span = sched_group_span(sg); 1084 cpumask_or(covered, covered, sg_span); 1085 1086 init_overlap_sched_group(sibling, sg); 1087 1088 if (!first) 1089 first = sg; 1090 if (last) 1091 last->next = sg; 1092 last = sg; 1093 last->next = first; 1094 } 1095 sd->groups = first; 1096 1097 return 0; 1098 1099 fail: 1100 free_sched_groups(first, 0); 1101 1102 return -ENOMEM; 1103 } 1104 1105 1106 /* 1107 * Package topology (also see the load-balance blurb in fair.c) 1108 * 1109 * The scheduler builds a tree structure to represent a number of important 1110 * topology features. By default (default_topology[]) these include: 1111 * 1112 * - Simultaneous multithreading (SMT) 1113 * - Multi-Core Cache (MC) 1114 * - Package (DIE) 1115 * 1116 * Where the last one more or less denotes everything up to a NUMA node. 1117 * 1118 * The tree consists of 3 primary data structures: 1119 * 1120 * sched_domain -> sched_group -> sched_group_capacity 1121 * ^ ^ ^ ^ 1122 * `-' `-' 1123 * 1124 * The sched_domains are per-CPU and have a two way link (parent & child) and 1125 * denote the ever growing mask of CPUs belonging to that level of topology. 1126 * 1127 * Each sched_domain has a circular (double) linked list of sched_group's, each 1128 * denoting the domains of the level below (or individual CPUs in case of the 1129 * first domain level). The sched_group linked by a sched_domain includes the 1130 * CPU of that sched_domain [*]. 1131 * 1132 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1133 * 1134 * CPU 0 1 2 3 4 5 6 7 1135 * 1136 * DIE [ ] 1137 * MC [ ] [ ] 1138 * SMT [ ] [ ] [ ] [ ] 1139 * 1140 * - or - 1141 * 1142 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1143 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1144 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1145 * 1146 * CPU 0 1 2 3 4 5 6 7 1147 * 1148 * One way to think about it is: sched_domain moves you up and down among these 1149 * topology levels, while sched_group moves you sideways through it, at child 1150 * domain granularity. 1151 * 1152 * sched_group_capacity ensures each unique sched_group has shared storage. 1153 * 1154 * There are two related construction problems, both require a CPU that 1155 * uniquely identify each group (for a given domain): 1156 * 1157 * - The first is the balance_cpu (see should_we_balance() and the 1158 * load-balance blub in fair.c); for each group we only want 1 CPU to 1159 * continue balancing at a higher domain. 1160 * 1161 * - The second is the sched_group_capacity; we want all identical groups 1162 * to share a single sched_group_capacity. 1163 * 1164 * Since these topologies are exclusive by construction. That is, its 1165 * impossible for an SMT thread to belong to multiple cores, and cores to 1166 * be part of multiple caches. There is a very clear and unique location 1167 * for each CPU in the hierarchy. 1168 * 1169 * Therefore computing a unique CPU for each group is trivial (the iteration 1170 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1171 * group), we can simply pick the first CPU in each group. 1172 * 1173 * 1174 * [*] in other words, the first group of each domain is its child domain. 1175 */ 1176 1177 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1178 { 1179 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1180 struct sched_domain *child = sd->child; 1181 struct sched_group *sg; 1182 bool already_visited; 1183 1184 if (child) 1185 cpu = cpumask_first(sched_domain_span(child)); 1186 1187 sg = *per_cpu_ptr(sdd->sg, cpu); 1188 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1189 1190 /* Increase refcounts for claim_allocations: */ 1191 already_visited = atomic_inc_return(&sg->ref) > 1; 1192 /* sgc visits should follow a similar trend as sg */ 1193 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1194 1195 /* If we have already visited that group, it's already initialized. */ 1196 if (already_visited) 1197 return sg; 1198 1199 if (child) { 1200 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1201 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1202 sg->flags = child->flags; 1203 } else { 1204 cpumask_set_cpu(cpu, sched_group_span(sg)); 1205 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1206 } 1207 1208 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1209 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1210 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1211 1212 return sg; 1213 } 1214 1215 /* 1216 * build_sched_groups will build a circular linked list of the groups 1217 * covered by the given span, will set each group's ->cpumask correctly, 1218 * and will initialize their ->sgc. 1219 * 1220 * Assumes the sched_domain tree is fully constructed 1221 */ 1222 static int 1223 build_sched_groups(struct sched_domain *sd, int cpu) 1224 { 1225 struct sched_group *first = NULL, *last = NULL; 1226 struct sd_data *sdd = sd->private; 1227 const struct cpumask *span = sched_domain_span(sd); 1228 struct cpumask *covered; 1229 int i; 1230 1231 lockdep_assert_held(&sched_domains_mutex); 1232 covered = sched_domains_tmpmask; 1233 1234 cpumask_clear(covered); 1235 1236 for_each_cpu_wrap(i, span, cpu) { 1237 struct sched_group *sg; 1238 1239 if (cpumask_test_cpu(i, covered)) 1240 continue; 1241 1242 sg = get_group(i, sdd); 1243 1244 cpumask_or(covered, covered, sched_group_span(sg)); 1245 1246 if (!first) 1247 first = sg; 1248 if (last) 1249 last->next = sg; 1250 last = sg; 1251 } 1252 last->next = first; 1253 sd->groups = first; 1254 1255 return 0; 1256 } 1257 1258 /* 1259 * Initialize sched groups cpu_capacity. 1260 * 1261 * cpu_capacity indicates the capacity of sched group, which is used while 1262 * distributing the load between different sched groups in a sched domain. 1263 * Typically cpu_capacity for all the groups in a sched domain will be same 1264 * unless there are asymmetries in the topology. If there are asymmetries, 1265 * group having more cpu_capacity will pickup more load compared to the 1266 * group having less cpu_capacity. 1267 */ 1268 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1269 { 1270 struct sched_group *sg = sd->groups; 1271 1272 WARN_ON(!sg); 1273 1274 do { 1275 int cpu, max_cpu = -1; 1276 1277 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1278 1279 if (!(sd->flags & SD_ASYM_PACKING)) 1280 goto next; 1281 1282 for_each_cpu(cpu, sched_group_span(sg)) { 1283 if (max_cpu < 0) 1284 max_cpu = cpu; 1285 else if (sched_asym_prefer(cpu, max_cpu)) 1286 max_cpu = cpu; 1287 } 1288 sg->asym_prefer_cpu = max_cpu; 1289 1290 next: 1291 sg = sg->next; 1292 } while (sg != sd->groups); 1293 1294 if (cpu != group_balance_cpu(sg)) 1295 return; 1296 1297 update_group_capacity(sd, cpu); 1298 } 1299 1300 /* 1301 * Asymmetric CPU capacity bits 1302 */ 1303 struct asym_cap_data { 1304 struct list_head link; 1305 unsigned long capacity; 1306 unsigned long cpus[]; 1307 }; 1308 1309 /* 1310 * Set of available CPUs grouped by their corresponding capacities 1311 * Each list entry contains a CPU mask reflecting CPUs that share the same 1312 * capacity. 1313 * The lifespan of data is unlimited. 1314 */ 1315 static LIST_HEAD(asym_cap_list); 1316 1317 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 1318 1319 /* 1320 * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1321 * Provides sd_flags reflecting the asymmetry scope. 1322 */ 1323 static inline int 1324 asym_cpu_capacity_classify(const struct cpumask *sd_span, 1325 const struct cpumask *cpu_map) 1326 { 1327 struct asym_cap_data *entry; 1328 int count = 0, miss = 0; 1329 1330 /* 1331 * Count how many unique CPU capacities this domain spans across 1332 * (compare sched_domain CPUs mask with ones representing available 1333 * CPUs capacities). Take into account CPUs that might be offline: 1334 * skip those. 1335 */ 1336 list_for_each_entry(entry, &asym_cap_list, link) { 1337 if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1338 ++count; 1339 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1340 ++miss; 1341 } 1342 1343 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1344 1345 /* No asymmetry detected */ 1346 if (count < 2) 1347 return 0; 1348 /* Some of the available CPU capacity values have not been detected */ 1349 if (miss) 1350 return SD_ASYM_CPUCAPACITY; 1351 1352 /* Full asymmetry */ 1353 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1354 1355 } 1356 1357 static inline void asym_cpu_capacity_update_data(int cpu) 1358 { 1359 unsigned long capacity = arch_scale_cpu_capacity(cpu); 1360 struct asym_cap_data *entry = NULL; 1361 1362 list_for_each_entry(entry, &asym_cap_list, link) { 1363 if (capacity == entry->capacity) 1364 goto done; 1365 } 1366 1367 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1368 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1369 return; 1370 entry->capacity = capacity; 1371 list_add(&entry->link, &asym_cap_list); 1372 done: 1373 __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1374 } 1375 1376 /* 1377 * Build-up/update list of CPUs grouped by their capacities 1378 * An update requires explicit request to rebuild sched domains 1379 * with state indicating CPU topology changes. 1380 */ 1381 static void asym_cpu_capacity_scan(void) 1382 { 1383 struct asym_cap_data *entry, *next; 1384 int cpu; 1385 1386 list_for_each_entry(entry, &asym_cap_list, link) 1387 cpumask_clear(cpu_capacity_span(entry)); 1388 1389 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) 1390 asym_cpu_capacity_update_data(cpu); 1391 1392 list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1393 if (cpumask_empty(cpu_capacity_span(entry))) { 1394 list_del(&entry->link); 1395 kfree(entry); 1396 } 1397 } 1398 1399 /* 1400 * Only one capacity value has been detected i.e. this system is symmetric. 1401 * No need to keep this data around. 1402 */ 1403 if (list_is_singular(&asym_cap_list)) { 1404 entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1405 list_del(&entry->link); 1406 kfree(entry); 1407 } 1408 } 1409 1410 /* 1411 * Initializers for schedule domains 1412 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1413 */ 1414 1415 static int default_relax_domain_level = -1; 1416 int sched_domain_level_max; 1417 1418 static int __init setup_relax_domain_level(char *str) 1419 { 1420 if (kstrtoint(str, 0, &default_relax_domain_level)) 1421 pr_warn("Unable to set relax_domain_level\n"); 1422 1423 return 1; 1424 } 1425 __setup("relax_domain_level=", setup_relax_domain_level); 1426 1427 static void set_domain_attribute(struct sched_domain *sd, 1428 struct sched_domain_attr *attr) 1429 { 1430 int request; 1431 1432 if (!attr || attr->relax_domain_level < 0) { 1433 if (default_relax_domain_level < 0) 1434 return; 1435 request = default_relax_domain_level; 1436 } else 1437 request = attr->relax_domain_level; 1438 1439 if (sd->level > request) { 1440 /* Turn off idle balance on this domain: */ 1441 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1442 } 1443 } 1444 1445 static void __sdt_free(const struct cpumask *cpu_map); 1446 static int __sdt_alloc(const struct cpumask *cpu_map); 1447 1448 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1449 const struct cpumask *cpu_map) 1450 { 1451 switch (what) { 1452 case sa_rootdomain: 1453 if (!atomic_read(&d->rd->refcount)) 1454 free_rootdomain(&d->rd->rcu); 1455 fallthrough; 1456 case sa_sd: 1457 free_percpu(d->sd); 1458 fallthrough; 1459 case sa_sd_storage: 1460 __sdt_free(cpu_map); 1461 fallthrough; 1462 case sa_none: 1463 break; 1464 } 1465 } 1466 1467 static enum s_alloc 1468 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1469 { 1470 memset(d, 0, sizeof(*d)); 1471 1472 if (__sdt_alloc(cpu_map)) 1473 return sa_sd_storage; 1474 d->sd = alloc_percpu(struct sched_domain *); 1475 if (!d->sd) 1476 return sa_sd_storage; 1477 d->rd = alloc_rootdomain(); 1478 if (!d->rd) 1479 return sa_sd; 1480 1481 return sa_rootdomain; 1482 } 1483 1484 /* 1485 * NULL the sd_data elements we've used to build the sched_domain and 1486 * sched_group structure so that the subsequent __free_domain_allocs() 1487 * will not free the data we're using. 1488 */ 1489 static void claim_allocations(int cpu, struct sched_domain *sd) 1490 { 1491 struct sd_data *sdd = sd->private; 1492 1493 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1494 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1495 1496 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1497 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1498 1499 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1500 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1501 1502 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1503 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1504 } 1505 1506 #ifdef CONFIG_NUMA 1507 enum numa_topology_type sched_numa_topology_type; 1508 1509 static int sched_domains_numa_levels; 1510 static int sched_domains_curr_level; 1511 1512 int sched_max_numa_distance; 1513 static int *sched_domains_numa_distance; 1514 static struct cpumask ***sched_domains_numa_masks; 1515 #endif 1516 1517 /* 1518 * SD_flags allowed in topology descriptions. 1519 * 1520 * These flags are purely descriptive of the topology and do not prescribe 1521 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1522 * function: 1523 * 1524 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1525 * SD_SHARE_PKG_RESOURCES - describes shared caches 1526 * SD_NUMA - describes NUMA topologies 1527 * 1528 * Odd one out, which beside describing the topology has a quirk also 1529 * prescribes the desired behaviour that goes along with it: 1530 * 1531 * SD_ASYM_PACKING - describes SMT quirks 1532 */ 1533 #define TOPOLOGY_SD_FLAGS \ 1534 (SD_SHARE_CPUCAPACITY | \ 1535 SD_SHARE_PKG_RESOURCES | \ 1536 SD_NUMA | \ 1537 SD_ASYM_PACKING) 1538 1539 static struct sched_domain * 1540 sd_init(struct sched_domain_topology_level *tl, 1541 const struct cpumask *cpu_map, 1542 struct sched_domain *child, int cpu) 1543 { 1544 struct sd_data *sdd = &tl->data; 1545 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1546 int sd_id, sd_weight, sd_flags = 0; 1547 struct cpumask *sd_span; 1548 1549 #ifdef CONFIG_NUMA 1550 /* 1551 * Ugly hack to pass state to sd_numa_mask()... 1552 */ 1553 sched_domains_curr_level = tl->numa_level; 1554 #endif 1555 1556 sd_weight = cpumask_weight(tl->mask(cpu)); 1557 1558 if (tl->sd_flags) 1559 sd_flags = (*tl->sd_flags)(); 1560 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1561 "wrong sd_flags in topology description\n")) 1562 sd_flags &= TOPOLOGY_SD_FLAGS; 1563 1564 *sd = (struct sched_domain){ 1565 .min_interval = sd_weight, 1566 .max_interval = 2*sd_weight, 1567 .busy_factor = 16, 1568 .imbalance_pct = 117, 1569 1570 .cache_nice_tries = 0, 1571 1572 .flags = 1*SD_BALANCE_NEWIDLE 1573 | 1*SD_BALANCE_EXEC 1574 | 1*SD_BALANCE_FORK 1575 | 0*SD_BALANCE_WAKE 1576 | 1*SD_WAKE_AFFINE 1577 | 0*SD_SHARE_CPUCAPACITY 1578 | 0*SD_SHARE_PKG_RESOURCES 1579 | 0*SD_SERIALIZE 1580 | 1*SD_PREFER_SIBLING 1581 | 0*SD_NUMA 1582 | sd_flags 1583 , 1584 1585 .last_balance = jiffies, 1586 .balance_interval = sd_weight, 1587 .max_newidle_lb_cost = 0, 1588 .last_decay_max_lb_cost = jiffies, 1589 .child = child, 1590 #ifdef CONFIG_SCHED_DEBUG 1591 .name = tl->name, 1592 #endif 1593 }; 1594 1595 sd_span = sched_domain_span(sd); 1596 cpumask_and(sd_span, cpu_map, tl->mask(cpu)); 1597 sd_id = cpumask_first(sd_span); 1598 1599 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1600 1601 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1602 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1603 "CPU capacity asymmetry not supported on SMT\n"); 1604 1605 /* 1606 * Convert topological properties into behaviour. 1607 */ 1608 /* Don't attempt to spread across CPUs of different capacities. */ 1609 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1610 sd->child->flags &= ~SD_PREFER_SIBLING; 1611 1612 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1613 sd->imbalance_pct = 110; 1614 1615 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1616 sd->imbalance_pct = 117; 1617 sd->cache_nice_tries = 1; 1618 1619 #ifdef CONFIG_NUMA 1620 } else if (sd->flags & SD_NUMA) { 1621 sd->cache_nice_tries = 2; 1622 1623 sd->flags &= ~SD_PREFER_SIBLING; 1624 sd->flags |= SD_SERIALIZE; 1625 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1626 sd->flags &= ~(SD_BALANCE_EXEC | 1627 SD_BALANCE_FORK | 1628 SD_WAKE_AFFINE); 1629 } 1630 1631 #endif 1632 } else { 1633 sd->cache_nice_tries = 1; 1634 } 1635 1636 /* 1637 * For all levels sharing cache; connect a sched_domain_shared 1638 * instance. 1639 */ 1640 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1641 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1642 atomic_inc(&sd->shared->ref); 1643 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1644 } 1645 1646 sd->private = sdd; 1647 1648 return sd; 1649 } 1650 1651 /* 1652 * Topology list, bottom-up. 1653 */ 1654 static struct sched_domain_topology_level default_topology[] = { 1655 #ifdef CONFIG_SCHED_SMT 1656 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1657 #endif 1658 1659 #ifdef CONFIG_SCHED_CLUSTER 1660 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) }, 1661 #endif 1662 1663 #ifdef CONFIG_SCHED_MC 1664 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1665 #endif 1666 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1667 { NULL, }, 1668 }; 1669 1670 static struct sched_domain_topology_level *sched_domain_topology = 1671 default_topology; 1672 static struct sched_domain_topology_level *sched_domain_topology_saved; 1673 1674 #define for_each_sd_topology(tl) \ 1675 for (tl = sched_domain_topology; tl->mask; tl++) 1676 1677 void set_sched_topology(struct sched_domain_topology_level *tl) 1678 { 1679 if (WARN_ON_ONCE(sched_smp_initialized)) 1680 return; 1681 1682 sched_domain_topology = tl; 1683 sched_domain_topology_saved = NULL; 1684 } 1685 1686 #ifdef CONFIG_NUMA 1687 1688 static const struct cpumask *sd_numa_mask(int cpu) 1689 { 1690 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1691 } 1692 1693 static void sched_numa_warn(const char *str) 1694 { 1695 static int done = false; 1696 int i,j; 1697 1698 if (done) 1699 return; 1700 1701 done = true; 1702 1703 printk(KERN_WARNING "ERROR: %s\n\n", str); 1704 1705 for (i = 0; i < nr_node_ids; i++) { 1706 printk(KERN_WARNING " "); 1707 for (j = 0; j < nr_node_ids; j++) { 1708 if (!node_state(i, N_CPU) || !node_state(j, N_CPU)) 1709 printk(KERN_CONT "(%02d) ", node_distance(i,j)); 1710 else 1711 printk(KERN_CONT " %02d ", node_distance(i,j)); 1712 } 1713 printk(KERN_CONT "\n"); 1714 } 1715 printk(KERN_WARNING "\n"); 1716 } 1717 1718 bool find_numa_distance(int distance) 1719 { 1720 bool found = false; 1721 int i, *distances; 1722 1723 if (distance == node_distance(0, 0)) 1724 return true; 1725 1726 rcu_read_lock(); 1727 distances = rcu_dereference(sched_domains_numa_distance); 1728 if (!distances) 1729 goto unlock; 1730 for (i = 0; i < sched_domains_numa_levels; i++) { 1731 if (distances[i] == distance) { 1732 found = true; 1733 break; 1734 } 1735 } 1736 unlock: 1737 rcu_read_unlock(); 1738 1739 return found; 1740 } 1741 1742 #define for_each_cpu_node_but(n, nbut) \ 1743 for_each_node_state(n, N_CPU) \ 1744 if (n == nbut) \ 1745 continue; \ 1746 else 1747 1748 /* 1749 * A system can have three types of NUMA topology: 1750 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1751 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1752 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1753 * 1754 * The difference between a glueless mesh topology and a backplane 1755 * topology lies in whether communication between not directly 1756 * connected nodes goes through intermediary nodes (where programs 1757 * could run), or through backplane controllers. This affects 1758 * placement of programs. 1759 * 1760 * The type of topology can be discerned with the following tests: 1761 * - If the maximum distance between any nodes is 1 hop, the system 1762 * is directly connected. 1763 * - If for two nodes A and B, located N > 1 hops away from each other, 1764 * there is an intermediary node C, which is < N hops away from both 1765 * nodes A and B, the system is a glueless mesh. 1766 */ 1767 static void init_numa_topology_type(int offline_node) 1768 { 1769 int a, b, c, n; 1770 1771 n = sched_max_numa_distance; 1772 1773 if (sched_domains_numa_levels <= 2) { 1774 sched_numa_topology_type = NUMA_DIRECT; 1775 return; 1776 } 1777 1778 for_each_cpu_node_but(a, offline_node) { 1779 for_each_cpu_node_but(b, offline_node) { 1780 /* Find two nodes furthest removed from each other. */ 1781 if (node_distance(a, b) < n) 1782 continue; 1783 1784 /* Is there an intermediary node between a and b? */ 1785 for_each_cpu_node_but(c, offline_node) { 1786 if (node_distance(a, c) < n && 1787 node_distance(b, c) < n) { 1788 sched_numa_topology_type = 1789 NUMA_GLUELESS_MESH; 1790 return; 1791 } 1792 } 1793 1794 sched_numa_topology_type = NUMA_BACKPLANE; 1795 return; 1796 } 1797 } 1798 1799 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n"); 1800 sched_numa_topology_type = NUMA_DIRECT; 1801 } 1802 1803 1804 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1805 1806 void sched_init_numa(int offline_node) 1807 { 1808 struct sched_domain_topology_level *tl; 1809 unsigned long *distance_map; 1810 int nr_levels = 0; 1811 int i, j; 1812 int *distances; 1813 struct cpumask ***masks; 1814 1815 /* 1816 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1817 * unique distances in the node_distance() table. 1818 */ 1819 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1820 if (!distance_map) 1821 return; 1822 1823 bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1824 for_each_cpu_node_but(i, offline_node) { 1825 for_each_cpu_node_but(j, offline_node) { 1826 int distance = node_distance(i, j); 1827 1828 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1829 sched_numa_warn("Invalid distance value range"); 1830 bitmap_free(distance_map); 1831 return; 1832 } 1833 1834 bitmap_set(distance_map, distance, 1); 1835 } 1836 } 1837 /* 1838 * We can now figure out how many unique distance values there are and 1839 * allocate memory accordingly. 1840 */ 1841 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 1842 1843 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 1844 if (!distances) { 1845 bitmap_free(distance_map); 1846 return; 1847 } 1848 1849 for (i = 0, j = 0; i < nr_levels; i++, j++) { 1850 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 1851 distances[i] = j; 1852 } 1853 rcu_assign_pointer(sched_domains_numa_distance, distances); 1854 1855 bitmap_free(distance_map); 1856 1857 /* 1858 * 'nr_levels' contains the number of unique distances 1859 * 1860 * The sched_domains_numa_distance[] array includes the actual distance 1861 * numbers. 1862 */ 1863 1864 /* 1865 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1866 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1867 * the array will contain less then 'nr_levels' members. This could be 1868 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1869 * in other functions. 1870 * 1871 * We reset it to 'nr_levels' at the end of this function. 1872 */ 1873 sched_domains_numa_levels = 0; 1874 1875 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 1876 if (!masks) 1877 return; 1878 1879 /* 1880 * Now for each level, construct a mask per node which contains all 1881 * CPUs of nodes that are that many hops away from us. 1882 */ 1883 for (i = 0; i < nr_levels; i++) { 1884 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1885 if (!masks[i]) 1886 return; 1887 1888 for_each_cpu_node_but(j, offline_node) { 1889 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1890 int k; 1891 1892 if (!mask) 1893 return; 1894 1895 masks[i][j] = mask; 1896 1897 for_each_cpu_node_but(k, offline_node) { 1898 if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) 1899 sched_numa_warn("Node-distance not symmetric"); 1900 1901 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1902 continue; 1903 1904 cpumask_or(mask, mask, cpumask_of_node(k)); 1905 } 1906 } 1907 } 1908 rcu_assign_pointer(sched_domains_numa_masks, masks); 1909 1910 /* Compute default topology size */ 1911 for (i = 0; sched_domain_topology[i].mask; i++); 1912 1913 tl = kzalloc((i + nr_levels + 1) * 1914 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1915 if (!tl) 1916 return; 1917 1918 /* 1919 * Copy the default topology bits.. 1920 */ 1921 for (i = 0; sched_domain_topology[i].mask; i++) 1922 tl[i] = sched_domain_topology[i]; 1923 1924 /* 1925 * Add the NUMA identity distance, aka single NODE. 1926 */ 1927 tl[i++] = (struct sched_domain_topology_level){ 1928 .mask = sd_numa_mask, 1929 .numa_level = 0, 1930 SD_INIT_NAME(NODE) 1931 }; 1932 1933 /* 1934 * .. and append 'j' levels of NUMA goodness. 1935 */ 1936 for (j = 1; j < nr_levels; i++, j++) { 1937 tl[i] = (struct sched_domain_topology_level){ 1938 .mask = sd_numa_mask, 1939 .sd_flags = cpu_numa_flags, 1940 .flags = SDTL_OVERLAP, 1941 .numa_level = j, 1942 SD_INIT_NAME(NUMA) 1943 }; 1944 } 1945 1946 sched_domain_topology_saved = sched_domain_topology; 1947 sched_domain_topology = tl; 1948 1949 sched_domains_numa_levels = nr_levels; 1950 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]); 1951 1952 init_numa_topology_type(offline_node); 1953 } 1954 1955 1956 static void sched_reset_numa(void) 1957 { 1958 int nr_levels, *distances; 1959 struct cpumask ***masks; 1960 1961 nr_levels = sched_domains_numa_levels; 1962 sched_domains_numa_levels = 0; 1963 sched_max_numa_distance = 0; 1964 sched_numa_topology_type = NUMA_DIRECT; 1965 distances = sched_domains_numa_distance; 1966 rcu_assign_pointer(sched_domains_numa_distance, NULL); 1967 masks = sched_domains_numa_masks; 1968 rcu_assign_pointer(sched_domains_numa_masks, NULL); 1969 if (distances || masks) { 1970 int i, j; 1971 1972 synchronize_rcu(); 1973 kfree(distances); 1974 for (i = 0; i < nr_levels && masks; i++) { 1975 if (!masks[i]) 1976 continue; 1977 for_each_node(j) 1978 kfree(masks[i][j]); 1979 kfree(masks[i]); 1980 } 1981 kfree(masks); 1982 } 1983 if (sched_domain_topology_saved) { 1984 kfree(sched_domain_topology); 1985 sched_domain_topology = sched_domain_topology_saved; 1986 sched_domain_topology_saved = NULL; 1987 } 1988 } 1989 1990 /* 1991 * Call with hotplug lock held 1992 */ 1993 void sched_update_numa(int cpu, bool online) 1994 { 1995 int node; 1996 1997 node = cpu_to_node(cpu); 1998 /* 1999 * Scheduler NUMA topology is updated when the first CPU of a 2000 * node is onlined or the last CPU of a node is offlined. 2001 */ 2002 if (cpumask_weight(cpumask_of_node(node)) != 1) 2003 return; 2004 2005 sched_reset_numa(); 2006 sched_init_numa(online ? NUMA_NO_NODE : node); 2007 } 2008 2009 void sched_domains_numa_masks_set(unsigned int cpu) 2010 { 2011 int node = cpu_to_node(cpu); 2012 int i, j; 2013 2014 for (i = 0; i < sched_domains_numa_levels; i++) { 2015 for (j = 0; j < nr_node_ids; j++) { 2016 if (!node_state(j, N_CPU)) 2017 continue; 2018 2019 /* Set ourselves in the remote node's masks */ 2020 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 2021 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 2022 } 2023 } 2024 } 2025 2026 void sched_domains_numa_masks_clear(unsigned int cpu) 2027 { 2028 int i, j; 2029 2030 for (i = 0; i < sched_domains_numa_levels; i++) { 2031 for (j = 0; j < nr_node_ids; j++) { 2032 if (sched_domains_numa_masks[i][j]) 2033 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 2034 } 2035 } 2036 } 2037 2038 /* 2039 * sched_numa_find_closest() - given the NUMA topology, find the cpu 2040 * closest to @cpu from @cpumask. 2041 * cpumask: cpumask to find a cpu from 2042 * cpu: cpu to be close to 2043 * 2044 * returns: cpu, or nr_cpu_ids when nothing found. 2045 */ 2046 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 2047 { 2048 int i, j = cpu_to_node(cpu), found = nr_cpu_ids; 2049 struct cpumask ***masks; 2050 2051 rcu_read_lock(); 2052 masks = rcu_dereference(sched_domains_numa_masks); 2053 if (!masks) 2054 goto unlock; 2055 for (i = 0; i < sched_domains_numa_levels; i++) { 2056 if (!masks[i][j]) 2057 break; 2058 cpu = cpumask_any_and(cpus, masks[i][j]); 2059 if (cpu < nr_cpu_ids) { 2060 found = cpu; 2061 break; 2062 } 2063 } 2064 unlock: 2065 rcu_read_unlock(); 2066 2067 return found; 2068 } 2069 2070 #endif /* CONFIG_NUMA */ 2071 2072 static int __sdt_alloc(const struct cpumask *cpu_map) 2073 { 2074 struct sched_domain_topology_level *tl; 2075 int j; 2076 2077 for_each_sd_topology(tl) { 2078 struct sd_data *sdd = &tl->data; 2079 2080 sdd->sd = alloc_percpu(struct sched_domain *); 2081 if (!sdd->sd) 2082 return -ENOMEM; 2083 2084 sdd->sds = alloc_percpu(struct sched_domain_shared *); 2085 if (!sdd->sds) 2086 return -ENOMEM; 2087 2088 sdd->sg = alloc_percpu(struct sched_group *); 2089 if (!sdd->sg) 2090 return -ENOMEM; 2091 2092 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2093 if (!sdd->sgc) 2094 return -ENOMEM; 2095 2096 for_each_cpu(j, cpu_map) { 2097 struct sched_domain *sd; 2098 struct sched_domain_shared *sds; 2099 struct sched_group *sg; 2100 struct sched_group_capacity *sgc; 2101 2102 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2103 GFP_KERNEL, cpu_to_node(j)); 2104 if (!sd) 2105 return -ENOMEM; 2106 2107 *per_cpu_ptr(sdd->sd, j) = sd; 2108 2109 sds = kzalloc_node(sizeof(struct sched_domain_shared), 2110 GFP_KERNEL, cpu_to_node(j)); 2111 if (!sds) 2112 return -ENOMEM; 2113 2114 *per_cpu_ptr(sdd->sds, j) = sds; 2115 2116 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2117 GFP_KERNEL, cpu_to_node(j)); 2118 if (!sg) 2119 return -ENOMEM; 2120 2121 sg->next = sg; 2122 2123 *per_cpu_ptr(sdd->sg, j) = sg; 2124 2125 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2126 GFP_KERNEL, cpu_to_node(j)); 2127 if (!sgc) 2128 return -ENOMEM; 2129 2130 #ifdef CONFIG_SCHED_DEBUG 2131 sgc->id = j; 2132 #endif 2133 2134 *per_cpu_ptr(sdd->sgc, j) = sgc; 2135 } 2136 } 2137 2138 return 0; 2139 } 2140 2141 static void __sdt_free(const struct cpumask *cpu_map) 2142 { 2143 struct sched_domain_topology_level *tl; 2144 int j; 2145 2146 for_each_sd_topology(tl) { 2147 struct sd_data *sdd = &tl->data; 2148 2149 for_each_cpu(j, cpu_map) { 2150 struct sched_domain *sd; 2151 2152 if (sdd->sd) { 2153 sd = *per_cpu_ptr(sdd->sd, j); 2154 if (sd && (sd->flags & SD_OVERLAP)) 2155 free_sched_groups(sd->groups, 0); 2156 kfree(*per_cpu_ptr(sdd->sd, j)); 2157 } 2158 2159 if (sdd->sds) 2160 kfree(*per_cpu_ptr(sdd->sds, j)); 2161 if (sdd->sg) 2162 kfree(*per_cpu_ptr(sdd->sg, j)); 2163 if (sdd->sgc) 2164 kfree(*per_cpu_ptr(sdd->sgc, j)); 2165 } 2166 free_percpu(sdd->sd); 2167 sdd->sd = NULL; 2168 free_percpu(sdd->sds); 2169 sdd->sds = NULL; 2170 free_percpu(sdd->sg); 2171 sdd->sg = NULL; 2172 free_percpu(sdd->sgc); 2173 sdd->sgc = NULL; 2174 } 2175 } 2176 2177 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2178 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2179 struct sched_domain *child, int cpu) 2180 { 2181 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2182 2183 if (child) { 2184 sd->level = child->level + 1; 2185 sched_domain_level_max = max(sched_domain_level_max, sd->level); 2186 child->parent = sd; 2187 2188 if (!cpumask_subset(sched_domain_span(child), 2189 sched_domain_span(sd))) { 2190 pr_err("BUG: arch topology borken\n"); 2191 #ifdef CONFIG_SCHED_DEBUG 2192 pr_err(" the %s domain not a subset of the %s domain\n", 2193 child->name, sd->name); 2194 #endif 2195 /* Fixup, ensure @sd has at least @child CPUs. */ 2196 cpumask_or(sched_domain_span(sd), 2197 sched_domain_span(sd), 2198 sched_domain_span(child)); 2199 } 2200 2201 } 2202 set_domain_attribute(sd, attr); 2203 2204 return sd; 2205 } 2206 2207 /* 2208 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2209 * any two given CPUs at this (non-NUMA) topology level. 2210 */ 2211 static bool topology_span_sane(struct sched_domain_topology_level *tl, 2212 const struct cpumask *cpu_map, int cpu) 2213 { 2214 int i; 2215 2216 /* NUMA levels are allowed to overlap */ 2217 if (tl->flags & SDTL_OVERLAP) 2218 return true; 2219 2220 /* 2221 * Non-NUMA levels cannot partially overlap - they must be either 2222 * completely equal or completely disjoint. Otherwise we can end up 2223 * breaking the sched_group lists - i.e. a later get_group() pass 2224 * breaks the linking done for an earlier span. 2225 */ 2226 for_each_cpu(i, cpu_map) { 2227 if (i == cpu) 2228 continue; 2229 /* 2230 * We should 'and' all those masks with 'cpu_map' to exactly 2231 * match the topology we're about to build, but that can only 2232 * remove CPUs, which only lessens our ability to detect 2233 * overlaps 2234 */ 2235 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 2236 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 2237 return false; 2238 } 2239 2240 return true; 2241 } 2242 2243 /* 2244 * Build sched domains for a given set of CPUs and attach the sched domains 2245 * to the individual CPUs 2246 */ 2247 static int 2248 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2249 { 2250 enum s_alloc alloc_state = sa_none; 2251 struct sched_domain *sd; 2252 struct s_data d; 2253 struct rq *rq = NULL; 2254 int i, ret = -ENOMEM; 2255 bool has_asym = false; 2256 2257 if (WARN_ON(cpumask_empty(cpu_map))) 2258 goto error; 2259 2260 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2261 if (alloc_state != sa_rootdomain) 2262 goto error; 2263 2264 /* Set up domains for CPUs specified by the cpu_map: */ 2265 for_each_cpu(i, cpu_map) { 2266 struct sched_domain_topology_level *tl; 2267 2268 sd = NULL; 2269 for_each_sd_topology(tl) { 2270 2271 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2272 goto error; 2273 2274 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2275 2276 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 2277 2278 if (tl == sched_domain_topology) 2279 *per_cpu_ptr(d.sd, i) = sd; 2280 if (tl->flags & SDTL_OVERLAP) 2281 sd->flags |= SD_OVERLAP; 2282 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2283 break; 2284 } 2285 } 2286 2287 /* Build the groups for the domains */ 2288 for_each_cpu(i, cpu_map) { 2289 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2290 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2291 if (sd->flags & SD_OVERLAP) { 2292 if (build_overlap_sched_groups(sd, i)) 2293 goto error; 2294 } else { 2295 if (build_sched_groups(sd, i)) 2296 goto error; 2297 } 2298 } 2299 } 2300 2301 /* 2302 * Calculate an allowed NUMA imbalance such that LLCs do not get 2303 * imbalanced. 2304 */ 2305 for_each_cpu(i, cpu_map) { 2306 unsigned int imb = 0; 2307 unsigned int imb_span = 1; 2308 2309 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2310 struct sched_domain *child = sd->child; 2311 2312 if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child && 2313 (child->flags & SD_SHARE_PKG_RESOURCES)) { 2314 struct sched_domain __rcu *top_p; 2315 unsigned int nr_llcs; 2316 2317 /* 2318 * For a single LLC per node, allow an 2319 * imbalance up to 25% of the node. This is an 2320 * arbitrary cutoff based on SMT-2 to balance 2321 * between memory bandwidth and avoiding 2322 * premature sharing of HT resources and SMT-4 2323 * or SMT-8 *may* benefit from a different 2324 * cutoff. 2325 * 2326 * For multiple LLCs, allow an imbalance 2327 * until multiple tasks would share an LLC 2328 * on one node while LLCs on another node 2329 * remain idle. 2330 */ 2331 nr_llcs = sd->span_weight / child->span_weight; 2332 if (nr_llcs == 1) 2333 imb = sd->span_weight >> 2; 2334 else 2335 imb = nr_llcs; 2336 sd->imb_numa_nr = imb; 2337 2338 /* Set span based on the first NUMA domain. */ 2339 top_p = sd->parent; 2340 while (top_p && !(top_p->flags & SD_NUMA)) { 2341 top_p = top_p->parent; 2342 } 2343 imb_span = top_p ? top_p->span_weight : sd->span_weight; 2344 } else { 2345 int factor = max(1U, (sd->span_weight / imb_span)); 2346 2347 sd->imb_numa_nr = imb * factor; 2348 } 2349 } 2350 } 2351 2352 /* Calculate CPU capacity for physical packages and nodes */ 2353 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2354 if (!cpumask_test_cpu(i, cpu_map)) 2355 continue; 2356 2357 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2358 claim_allocations(i, sd); 2359 init_sched_groups_capacity(i, sd); 2360 } 2361 } 2362 2363 /* Attach the domains */ 2364 rcu_read_lock(); 2365 for_each_cpu(i, cpu_map) { 2366 rq = cpu_rq(i); 2367 sd = *per_cpu_ptr(d.sd, i); 2368 2369 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 2370 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 2371 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 2372 2373 cpu_attach_domain(sd, d.rd, i); 2374 } 2375 rcu_read_unlock(); 2376 2377 if (has_asym) 2378 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2379 2380 if (rq && sched_debug_verbose) { 2381 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 2382 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 2383 } 2384 2385 ret = 0; 2386 error: 2387 __free_domain_allocs(&d, alloc_state, cpu_map); 2388 2389 return ret; 2390 } 2391 2392 /* Current sched domains: */ 2393 static cpumask_var_t *doms_cur; 2394 2395 /* Number of sched domains in 'doms_cur': */ 2396 static int ndoms_cur; 2397 2398 /* Attributes of custom domains in 'doms_cur' */ 2399 static struct sched_domain_attr *dattr_cur; 2400 2401 /* 2402 * Special case: If a kmalloc() of a doms_cur partition (array of 2403 * cpumask) fails, then fallback to a single sched domain, 2404 * as determined by the single cpumask fallback_doms. 2405 */ 2406 static cpumask_var_t fallback_doms; 2407 2408 /* 2409 * arch_update_cpu_topology lets virtualized architectures update the 2410 * CPU core maps. It is supposed to return 1 if the topology changed 2411 * or 0 if it stayed the same. 2412 */ 2413 int __weak arch_update_cpu_topology(void) 2414 { 2415 return 0; 2416 } 2417 2418 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2419 { 2420 int i; 2421 cpumask_var_t *doms; 2422 2423 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2424 if (!doms) 2425 return NULL; 2426 for (i = 0; i < ndoms; i++) { 2427 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2428 free_sched_domains(doms, i); 2429 return NULL; 2430 } 2431 } 2432 return doms; 2433 } 2434 2435 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2436 { 2437 unsigned int i; 2438 for (i = 0; i < ndoms; i++) 2439 free_cpumask_var(doms[i]); 2440 kfree(doms); 2441 } 2442 2443 /* 2444 * Set up scheduler domains and groups. For now this just excludes isolated 2445 * CPUs, but could be used to exclude other special cases in the future. 2446 */ 2447 int sched_init_domains(const struct cpumask *cpu_map) 2448 { 2449 int err; 2450 2451 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2452 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2453 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2454 2455 arch_update_cpu_topology(); 2456 asym_cpu_capacity_scan(); 2457 ndoms_cur = 1; 2458 doms_cur = alloc_sched_domains(ndoms_cur); 2459 if (!doms_cur) 2460 doms_cur = &fallback_doms; 2461 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN)); 2462 err = build_sched_domains(doms_cur[0], NULL); 2463 2464 return err; 2465 } 2466 2467 /* 2468 * Detach sched domains from a group of CPUs specified in cpu_map 2469 * These CPUs will now be attached to the NULL domain 2470 */ 2471 static void detach_destroy_domains(const struct cpumask *cpu_map) 2472 { 2473 unsigned int cpu = cpumask_any(cpu_map); 2474 int i; 2475 2476 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2477 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2478 2479 rcu_read_lock(); 2480 for_each_cpu(i, cpu_map) 2481 cpu_attach_domain(NULL, &def_root_domain, i); 2482 rcu_read_unlock(); 2483 } 2484 2485 /* handle null as "default" */ 2486 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2487 struct sched_domain_attr *new, int idx_new) 2488 { 2489 struct sched_domain_attr tmp; 2490 2491 /* Fast path: */ 2492 if (!new && !cur) 2493 return 1; 2494 2495 tmp = SD_ATTR_INIT; 2496 2497 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2498 new ? (new + idx_new) : &tmp, 2499 sizeof(struct sched_domain_attr)); 2500 } 2501 2502 /* 2503 * Partition sched domains as specified by the 'ndoms_new' 2504 * cpumasks in the array doms_new[] of cpumasks. This compares 2505 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2506 * It destroys each deleted domain and builds each new domain. 2507 * 2508 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2509 * The masks don't intersect (don't overlap.) We should setup one 2510 * sched domain for each mask. CPUs not in any of the cpumasks will 2511 * not be load balanced. If the same cpumask appears both in the 2512 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2513 * it as it is. 2514 * 2515 * The passed in 'doms_new' should be allocated using 2516 * alloc_sched_domains. This routine takes ownership of it and will 2517 * free_sched_domains it when done with it. If the caller failed the 2518 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2519 * and partition_sched_domains() will fallback to the single partition 2520 * 'fallback_doms', it also forces the domains to be rebuilt. 2521 * 2522 * If doms_new == NULL it will be replaced with cpu_online_mask. 2523 * ndoms_new == 0 is a special case for destroying existing domains, 2524 * and it will not create the default domain. 2525 * 2526 * Call with hotplug lock and sched_domains_mutex held 2527 */ 2528 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2529 struct sched_domain_attr *dattr_new) 2530 { 2531 bool __maybe_unused has_eas = false; 2532 int i, j, n; 2533 int new_topology; 2534 2535 lockdep_assert_held(&sched_domains_mutex); 2536 2537 /* Let the architecture update CPU core mappings: */ 2538 new_topology = arch_update_cpu_topology(); 2539 /* Trigger rebuilding CPU capacity asymmetry data */ 2540 if (new_topology) 2541 asym_cpu_capacity_scan(); 2542 2543 if (!doms_new) { 2544 WARN_ON_ONCE(dattr_new); 2545 n = 0; 2546 doms_new = alloc_sched_domains(1); 2547 if (doms_new) { 2548 n = 1; 2549 cpumask_and(doms_new[0], cpu_active_mask, 2550 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2551 } 2552 } else { 2553 n = ndoms_new; 2554 } 2555 2556 /* Destroy deleted domains: */ 2557 for (i = 0; i < ndoms_cur; i++) { 2558 for (j = 0; j < n && !new_topology; j++) { 2559 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2560 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2561 struct root_domain *rd; 2562 2563 /* 2564 * This domain won't be destroyed and as such 2565 * its dl_bw->total_bw needs to be cleared. It 2566 * will be recomputed in function 2567 * update_tasks_root_domain(). 2568 */ 2569 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2570 dl_clear_root_domain(rd); 2571 goto match1; 2572 } 2573 } 2574 /* No match - a current sched domain not in new doms_new[] */ 2575 detach_destroy_domains(doms_cur[i]); 2576 match1: 2577 ; 2578 } 2579 2580 n = ndoms_cur; 2581 if (!doms_new) { 2582 n = 0; 2583 doms_new = &fallback_doms; 2584 cpumask_and(doms_new[0], cpu_active_mask, 2585 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2586 } 2587 2588 /* Build new domains: */ 2589 for (i = 0; i < ndoms_new; i++) { 2590 for (j = 0; j < n && !new_topology; j++) { 2591 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2592 dattrs_equal(dattr_new, i, dattr_cur, j)) 2593 goto match2; 2594 } 2595 /* No match - add a new doms_new */ 2596 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2597 match2: 2598 ; 2599 } 2600 2601 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2602 /* Build perf. domains: */ 2603 for (i = 0; i < ndoms_new; i++) { 2604 for (j = 0; j < n && !sched_energy_update; j++) { 2605 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2606 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2607 has_eas = true; 2608 goto match3; 2609 } 2610 } 2611 /* No match - add perf. domains for a new rd */ 2612 has_eas |= build_perf_domains(doms_new[i]); 2613 match3: 2614 ; 2615 } 2616 sched_energy_set(has_eas); 2617 #endif 2618 2619 /* Remember the new sched domains: */ 2620 if (doms_cur != &fallback_doms) 2621 free_sched_domains(doms_cur, ndoms_cur); 2622 2623 kfree(dattr_cur); 2624 doms_cur = doms_new; 2625 dattr_cur = dattr_new; 2626 ndoms_cur = ndoms_new; 2627 2628 update_sched_domain_debugfs(); 2629 } 2630 2631 /* 2632 * Call with hotplug lock held 2633 */ 2634 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2635 struct sched_domain_attr *dattr_new) 2636 { 2637 mutex_lock(&sched_domains_mutex); 2638 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2639 mutex_unlock(&sched_domains_mutex); 2640 } 2641