1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 #include "sched.h" 6 7 DEFINE_MUTEX(sched_domains_mutex); 8 9 /* Protected by sched_domains_mutex: */ 10 static cpumask_var_t sched_domains_tmpmask; 11 static cpumask_var_t sched_domains_tmpmask2; 12 13 #ifdef CONFIG_SCHED_DEBUG 14 15 static int __init sched_debug_setup(char *str) 16 { 17 sched_debug_enabled = true; 18 19 return 0; 20 } 21 early_param("sched_debug", sched_debug_setup); 22 23 static inline bool sched_debug(void) 24 { 25 return sched_debug_enabled; 26 } 27 28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 29 struct cpumask *groupmask) 30 { 31 struct sched_group *group = sd->groups; 32 33 cpumask_clear(groupmask); 34 35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 36 37 if (!(sd->flags & SD_LOAD_BALANCE)) { 38 printk("does not load-balance\n"); 39 if (sd->parent) 40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); 41 return -1; 42 } 43 44 printk(KERN_CONT "span=%*pbl level=%s\n", 45 cpumask_pr_args(sched_domain_span(sd)), sd->name); 46 47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49 } 50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52 } 53 54 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 55 do { 56 if (!group) { 57 printk("\n"); 58 printk(KERN_ERR "ERROR: group is NULL\n"); 59 break; 60 } 61 62 if (!cpumask_weight(sched_group_span(group))) { 63 printk(KERN_CONT "\n"); 64 printk(KERN_ERR "ERROR: empty group\n"); 65 break; 66 } 67 68 if (!(sd->flags & SD_OVERLAP) && 69 cpumask_intersects(groupmask, sched_group_span(group))) { 70 printk(KERN_CONT "\n"); 71 printk(KERN_ERR "ERROR: repeated CPUs\n"); 72 break; 73 } 74 75 cpumask_or(groupmask, groupmask, sched_group_span(group)); 76 77 printk(KERN_CONT " %d:{ span=%*pbl", 78 group->sgc->id, 79 cpumask_pr_args(sched_group_span(group))); 80 81 if ((sd->flags & SD_OVERLAP) && 82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 83 printk(KERN_CONT " mask=%*pbl", 84 cpumask_pr_args(group_balance_mask(group))); 85 } 86 87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 88 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 89 90 if (group == sd->groups && sd->child && 91 !cpumask_equal(sched_domain_span(sd->child), 92 sched_group_span(group))) { 93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 94 } 95 96 printk(KERN_CONT " }"); 97 98 group = group->next; 99 100 if (group != sd->groups) 101 printk(KERN_CONT ","); 102 103 } while (group != sd->groups); 104 printk(KERN_CONT "\n"); 105 106 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 107 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 108 109 if (sd->parent && 110 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 112 return 0; 113 } 114 115 static void sched_domain_debug(struct sched_domain *sd, int cpu) 116 { 117 int level = 0; 118 119 if (!sched_debug_enabled) 120 return; 121 122 if (!sd) { 123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 124 return; 125 } 126 127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 128 129 for (;;) { 130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 131 break; 132 level++; 133 sd = sd->parent; 134 if (!sd) 135 break; 136 } 137 } 138 #else /* !CONFIG_SCHED_DEBUG */ 139 140 # define sched_debug_enabled 0 141 # define sched_domain_debug(sd, cpu) do { } while (0) 142 static inline bool sched_debug(void) 143 { 144 return false; 145 } 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 static int sd_degenerate(struct sched_domain *sd) 149 { 150 if (cpumask_weight(sched_domain_span(sd)) == 1) 151 return 1; 152 153 /* Following flags need at least 2 groups */ 154 if (sd->flags & (SD_LOAD_BALANCE | 155 SD_BALANCE_NEWIDLE | 156 SD_BALANCE_FORK | 157 SD_BALANCE_EXEC | 158 SD_SHARE_CPUCAPACITY | 159 SD_ASYM_CPUCAPACITY | 160 SD_SHARE_PKG_RESOURCES | 161 SD_SHARE_POWERDOMAIN)) { 162 if (sd->groups != sd->groups->next) 163 return 0; 164 } 165 166 /* Following flags don't use groups */ 167 if (sd->flags & (SD_WAKE_AFFINE)) 168 return 0; 169 170 return 1; 171 } 172 173 static int 174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 175 { 176 unsigned long cflags = sd->flags, pflags = parent->flags; 177 178 if (sd_degenerate(parent)) 179 return 1; 180 181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 182 return 0; 183 184 /* Flags needing groups don't count if only 1 group in parent */ 185 if (parent->groups == parent->groups->next) { 186 pflags &= ~(SD_LOAD_BALANCE | 187 SD_BALANCE_NEWIDLE | 188 SD_BALANCE_FORK | 189 SD_BALANCE_EXEC | 190 SD_ASYM_CPUCAPACITY | 191 SD_SHARE_CPUCAPACITY | 192 SD_SHARE_PKG_RESOURCES | 193 SD_PREFER_SIBLING | 194 SD_SHARE_POWERDOMAIN); 195 if (nr_node_ids == 1) 196 pflags &= ~SD_SERIALIZE; 197 } 198 if (~cflags & pflags) 199 return 0; 200 201 return 1; 202 } 203 204 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 205 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 206 DEFINE_MUTEX(sched_energy_mutex); 207 bool sched_energy_update; 208 209 static void free_pd(struct perf_domain *pd) 210 { 211 struct perf_domain *tmp; 212 213 while (pd) { 214 tmp = pd->next; 215 kfree(pd); 216 pd = tmp; 217 } 218 } 219 220 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 221 { 222 while (pd) { 223 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 224 return pd; 225 pd = pd->next; 226 } 227 228 return NULL; 229 } 230 231 static struct perf_domain *pd_init(int cpu) 232 { 233 struct em_perf_domain *obj = em_cpu_get(cpu); 234 struct perf_domain *pd; 235 236 if (!obj) { 237 if (sched_debug()) 238 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 239 return NULL; 240 } 241 242 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 243 if (!pd) 244 return NULL; 245 pd->em_pd = obj; 246 247 return pd; 248 } 249 250 static void perf_domain_debug(const struct cpumask *cpu_map, 251 struct perf_domain *pd) 252 { 253 if (!sched_debug() || !pd) 254 return; 255 256 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 257 258 while (pd) { 259 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }", 260 cpumask_first(perf_domain_span(pd)), 261 cpumask_pr_args(perf_domain_span(pd)), 262 em_pd_nr_cap_states(pd->em_pd)); 263 pd = pd->next; 264 } 265 266 printk(KERN_CONT "\n"); 267 } 268 269 static void destroy_perf_domain_rcu(struct rcu_head *rp) 270 { 271 struct perf_domain *pd; 272 273 pd = container_of(rp, struct perf_domain, rcu); 274 free_pd(pd); 275 } 276 277 static void sched_energy_set(bool has_eas) 278 { 279 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 280 if (sched_debug()) 281 pr_info("%s: stopping EAS\n", __func__); 282 static_branch_disable_cpuslocked(&sched_energy_present); 283 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 284 if (sched_debug()) 285 pr_info("%s: starting EAS\n", __func__); 286 static_branch_enable_cpuslocked(&sched_energy_present); 287 } 288 } 289 290 /* 291 * EAS can be used on a root domain if it meets all the following conditions: 292 * 1. an Energy Model (EM) is available; 293 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 294 * 3. the EM complexity is low enough to keep scheduling overheads low; 295 * 4. schedutil is driving the frequency of all CPUs of the rd; 296 * 297 * The complexity of the Energy Model is defined as: 298 * 299 * C = nr_pd * (nr_cpus + nr_cs) 300 * 301 * with parameters defined as: 302 * - nr_pd: the number of performance domains 303 * - nr_cpus: the number of CPUs 304 * - nr_cs: the sum of the number of capacity states of all performance 305 * domains (for example, on a system with 2 performance domains, 306 * with 10 capacity states each, nr_cs = 2 * 10 = 20). 307 * 308 * It is generally not a good idea to use such a model in the wake-up path on 309 * very complex platforms because of the associated scheduling overheads. The 310 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs 311 * with per-CPU DVFS and less than 8 capacity states each, for example. 312 */ 313 #define EM_MAX_COMPLEXITY 2048 314 315 extern struct cpufreq_governor schedutil_gov; 316 static bool build_perf_domains(const struct cpumask *cpu_map) 317 { 318 int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map); 319 struct perf_domain *pd = NULL, *tmp; 320 int cpu = cpumask_first(cpu_map); 321 struct root_domain *rd = cpu_rq(cpu)->rd; 322 struct cpufreq_policy *policy; 323 struct cpufreq_governor *gov; 324 325 /* EAS is enabled for asymmetric CPU capacity topologies. */ 326 if (!per_cpu(sd_asym_cpucapacity, cpu)) { 327 if (sched_debug()) { 328 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n", 329 cpumask_pr_args(cpu_map)); 330 } 331 goto free; 332 } 333 334 for_each_cpu(i, cpu_map) { 335 /* Skip already covered CPUs. */ 336 if (find_pd(pd, i)) 337 continue; 338 339 /* Do not attempt EAS if schedutil is not being used. */ 340 policy = cpufreq_cpu_get(i); 341 if (!policy) 342 goto free; 343 gov = policy->governor; 344 cpufreq_cpu_put(policy); 345 if (gov != &schedutil_gov) { 346 if (rd->pd) 347 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n", 348 cpumask_pr_args(cpu_map)); 349 goto free; 350 } 351 352 /* Create the new pd and add it to the local list. */ 353 tmp = pd_init(i); 354 if (!tmp) 355 goto free; 356 tmp->next = pd; 357 pd = tmp; 358 359 /* 360 * Count performance domains and capacity states for the 361 * complexity check. 362 */ 363 nr_pd++; 364 nr_cs += em_pd_nr_cap_states(pd->em_pd); 365 } 366 367 /* Bail out if the Energy Model complexity is too high. */ 368 if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) { 369 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n", 370 cpumask_pr_args(cpu_map)); 371 goto free; 372 } 373 374 perf_domain_debug(cpu_map, pd); 375 376 /* Attach the new list of performance domains to the root domain. */ 377 tmp = rd->pd; 378 rcu_assign_pointer(rd->pd, pd); 379 if (tmp) 380 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 381 382 return !!pd; 383 384 free: 385 free_pd(pd); 386 tmp = rd->pd; 387 rcu_assign_pointer(rd->pd, NULL); 388 if (tmp) 389 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 390 391 return false; 392 } 393 #else 394 static void free_pd(struct perf_domain *pd) { } 395 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 396 397 static void free_rootdomain(struct rcu_head *rcu) 398 { 399 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 400 401 cpupri_cleanup(&rd->cpupri); 402 cpudl_cleanup(&rd->cpudl); 403 free_cpumask_var(rd->dlo_mask); 404 free_cpumask_var(rd->rto_mask); 405 free_cpumask_var(rd->online); 406 free_cpumask_var(rd->span); 407 free_pd(rd->pd); 408 kfree(rd); 409 } 410 411 void rq_attach_root(struct rq *rq, struct root_domain *rd) 412 { 413 struct root_domain *old_rd = NULL; 414 unsigned long flags; 415 416 raw_spin_lock_irqsave(&rq->lock, flags); 417 418 if (rq->rd) { 419 old_rd = rq->rd; 420 421 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 422 set_rq_offline(rq); 423 424 cpumask_clear_cpu(rq->cpu, old_rd->span); 425 426 /* 427 * If we dont want to free the old_rd yet then 428 * set old_rd to NULL to skip the freeing later 429 * in this function: 430 */ 431 if (!atomic_dec_and_test(&old_rd->refcount)) 432 old_rd = NULL; 433 } 434 435 atomic_inc(&rd->refcount); 436 rq->rd = rd; 437 438 cpumask_set_cpu(rq->cpu, rd->span); 439 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 440 set_rq_online(rq); 441 442 raw_spin_unlock_irqrestore(&rq->lock, flags); 443 444 if (old_rd) 445 call_rcu_sched(&old_rd->rcu, free_rootdomain); 446 } 447 448 void sched_get_rd(struct root_domain *rd) 449 { 450 atomic_inc(&rd->refcount); 451 } 452 453 void sched_put_rd(struct root_domain *rd) 454 { 455 if (!atomic_dec_and_test(&rd->refcount)) 456 return; 457 458 call_rcu_sched(&rd->rcu, free_rootdomain); 459 } 460 461 static int init_rootdomain(struct root_domain *rd) 462 { 463 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 464 goto out; 465 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 466 goto free_span; 467 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 468 goto free_online; 469 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 470 goto free_dlo_mask; 471 472 #ifdef HAVE_RT_PUSH_IPI 473 rd->rto_cpu = -1; 474 raw_spin_lock_init(&rd->rto_lock); 475 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 476 #endif 477 478 init_dl_bw(&rd->dl_bw); 479 if (cpudl_init(&rd->cpudl) != 0) 480 goto free_rto_mask; 481 482 if (cpupri_init(&rd->cpupri) != 0) 483 goto free_cpudl; 484 return 0; 485 486 free_cpudl: 487 cpudl_cleanup(&rd->cpudl); 488 free_rto_mask: 489 free_cpumask_var(rd->rto_mask); 490 free_dlo_mask: 491 free_cpumask_var(rd->dlo_mask); 492 free_online: 493 free_cpumask_var(rd->online); 494 free_span: 495 free_cpumask_var(rd->span); 496 out: 497 return -ENOMEM; 498 } 499 500 /* 501 * By default the system creates a single root-domain with all CPUs as 502 * members (mimicking the global state we have today). 503 */ 504 struct root_domain def_root_domain; 505 506 void init_defrootdomain(void) 507 { 508 init_rootdomain(&def_root_domain); 509 510 atomic_set(&def_root_domain.refcount, 1); 511 } 512 513 static struct root_domain *alloc_rootdomain(void) 514 { 515 struct root_domain *rd; 516 517 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 518 if (!rd) 519 return NULL; 520 521 if (init_rootdomain(rd) != 0) { 522 kfree(rd); 523 return NULL; 524 } 525 526 return rd; 527 } 528 529 static void free_sched_groups(struct sched_group *sg, int free_sgc) 530 { 531 struct sched_group *tmp, *first; 532 533 if (!sg) 534 return; 535 536 first = sg; 537 do { 538 tmp = sg->next; 539 540 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 541 kfree(sg->sgc); 542 543 if (atomic_dec_and_test(&sg->ref)) 544 kfree(sg); 545 sg = tmp; 546 } while (sg != first); 547 } 548 549 static void destroy_sched_domain(struct sched_domain *sd) 550 { 551 /* 552 * A normal sched domain may have multiple group references, an 553 * overlapping domain, having private groups, only one. Iterate, 554 * dropping group/capacity references, freeing where none remain. 555 */ 556 free_sched_groups(sd->groups, 1); 557 558 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 559 kfree(sd->shared); 560 kfree(sd); 561 } 562 563 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 564 { 565 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 566 567 while (sd) { 568 struct sched_domain *parent = sd->parent; 569 destroy_sched_domain(sd); 570 sd = parent; 571 } 572 } 573 574 static void destroy_sched_domains(struct sched_domain *sd) 575 { 576 if (sd) 577 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 578 } 579 580 /* 581 * Keep a special pointer to the highest sched_domain that has 582 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 583 * allows us to avoid some pointer chasing select_idle_sibling(). 584 * 585 * Also keep a unique ID per domain (we use the first CPU number in 586 * the cpumask of the domain), this allows us to quickly tell if 587 * two CPUs are in the same cache domain, see cpus_share_cache(). 588 */ 589 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 590 DEFINE_PER_CPU(int, sd_llc_size); 591 DEFINE_PER_CPU(int, sd_llc_id); 592 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 593 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 594 DEFINE_PER_CPU(struct sched_domain *, sd_asym_packing); 595 DEFINE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity); 596 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 597 598 static void update_top_cache_domain(int cpu) 599 { 600 struct sched_domain_shared *sds = NULL; 601 struct sched_domain *sd; 602 int id = cpu; 603 int size = 1; 604 605 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 606 if (sd) { 607 id = cpumask_first(sched_domain_span(sd)); 608 size = cpumask_weight(sched_domain_span(sd)); 609 sds = sd->shared; 610 } 611 612 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 613 per_cpu(sd_llc_size, cpu) = size; 614 per_cpu(sd_llc_id, cpu) = id; 615 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 616 617 sd = lowest_flag_domain(cpu, SD_NUMA); 618 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 619 620 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 621 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 622 623 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY); 624 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 625 } 626 627 /* 628 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 629 * hold the hotplug lock. 630 */ 631 static void 632 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 633 { 634 struct rq *rq = cpu_rq(cpu); 635 struct sched_domain *tmp; 636 637 /* Remove the sched domains which do not contribute to scheduling. */ 638 for (tmp = sd; tmp; ) { 639 struct sched_domain *parent = tmp->parent; 640 if (!parent) 641 break; 642 643 if (sd_parent_degenerate(tmp, parent)) { 644 tmp->parent = parent->parent; 645 if (parent->parent) 646 parent->parent->child = tmp; 647 /* 648 * Transfer SD_PREFER_SIBLING down in case of a 649 * degenerate parent; the spans match for this 650 * so the property transfers. 651 */ 652 if (parent->flags & SD_PREFER_SIBLING) 653 tmp->flags |= SD_PREFER_SIBLING; 654 destroy_sched_domain(parent); 655 } else 656 tmp = tmp->parent; 657 } 658 659 if (sd && sd_degenerate(sd)) { 660 tmp = sd; 661 sd = sd->parent; 662 destroy_sched_domain(tmp); 663 if (sd) 664 sd->child = NULL; 665 } 666 667 sched_domain_debug(sd, cpu); 668 669 rq_attach_root(rq, rd); 670 tmp = rq->sd; 671 rcu_assign_pointer(rq->sd, sd); 672 dirty_sched_domain_sysctl(cpu); 673 destroy_sched_domains(tmp); 674 675 update_top_cache_domain(cpu); 676 } 677 678 struct s_data { 679 struct sched_domain ** __percpu sd; 680 struct root_domain *rd; 681 }; 682 683 enum s_alloc { 684 sa_rootdomain, 685 sa_sd, 686 sa_sd_storage, 687 sa_none, 688 }; 689 690 /* 691 * Return the canonical balance CPU for this group, this is the first CPU 692 * of this group that's also in the balance mask. 693 * 694 * The balance mask are all those CPUs that could actually end up at this 695 * group. See build_balance_mask(). 696 * 697 * Also see should_we_balance(). 698 */ 699 int group_balance_cpu(struct sched_group *sg) 700 { 701 return cpumask_first(group_balance_mask(sg)); 702 } 703 704 705 /* 706 * NUMA topology (first read the regular topology blurb below) 707 * 708 * Given a node-distance table, for example: 709 * 710 * node 0 1 2 3 711 * 0: 10 20 30 20 712 * 1: 20 10 20 30 713 * 2: 30 20 10 20 714 * 3: 20 30 20 10 715 * 716 * which represents a 4 node ring topology like: 717 * 718 * 0 ----- 1 719 * | | 720 * | | 721 * | | 722 * 3 ----- 2 723 * 724 * We want to construct domains and groups to represent this. The way we go 725 * about doing this is to build the domains on 'hops'. For each NUMA level we 726 * construct the mask of all nodes reachable in @level hops. 727 * 728 * For the above NUMA topology that gives 3 levels: 729 * 730 * NUMA-2 0-3 0-3 0-3 0-3 731 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 732 * 733 * NUMA-1 0-1,3 0-2 1-3 0,2-3 734 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 735 * 736 * NUMA-0 0 1 2 3 737 * 738 * 739 * As can be seen; things don't nicely line up as with the regular topology. 740 * When we iterate a domain in child domain chunks some nodes can be 741 * represented multiple times -- hence the "overlap" naming for this part of 742 * the topology. 743 * 744 * In order to minimize this overlap, we only build enough groups to cover the 745 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 746 * 747 * Because: 748 * 749 * - the first group of each domain is its child domain; this 750 * gets us the first 0-1,3 751 * - the only uncovered node is 2, who's child domain is 1-3. 752 * 753 * However, because of the overlap, computing a unique CPU for each group is 754 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 755 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 756 * end up at those groups (they would end up in group: 0-1,3). 757 * 758 * To correct this we have to introduce the group balance mask. This mask 759 * will contain those CPUs in the group that can reach this group given the 760 * (child) domain tree. 761 * 762 * With this we can once again compute balance_cpu and sched_group_capacity 763 * relations. 764 * 765 * XXX include words on how balance_cpu is unique and therefore can be 766 * used for sched_group_capacity links. 767 * 768 * 769 * Another 'interesting' topology is: 770 * 771 * node 0 1 2 3 772 * 0: 10 20 20 30 773 * 1: 20 10 20 20 774 * 2: 20 20 10 20 775 * 3: 30 20 20 10 776 * 777 * Which looks a little like: 778 * 779 * 0 ----- 1 780 * | / | 781 * | / | 782 * | / | 783 * 2 ----- 3 784 * 785 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 786 * are not. 787 * 788 * This leads to a few particularly weird cases where the sched_domain's are 789 * not of the same number for each CPU. Consider: 790 * 791 * NUMA-2 0-3 0-3 792 * groups: {0-2},{1-3} {1-3},{0-2} 793 * 794 * NUMA-1 0-2 0-3 0-3 1-3 795 * 796 * NUMA-0 0 1 2 3 797 * 798 */ 799 800 801 /* 802 * Build the balance mask; it contains only those CPUs that can arrive at this 803 * group and should be considered to continue balancing. 804 * 805 * We do this during the group creation pass, therefore the group information 806 * isn't complete yet, however since each group represents a (child) domain we 807 * can fully construct this using the sched_domain bits (which are already 808 * complete). 809 */ 810 static void 811 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 812 { 813 const struct cpumask *sg_span = sched_group_span(sg); 814 struct sd_data *sdd = sd->private; 815 struct sched_domain *sibling; 816 int i; 817 818 cpumask_clear(mask); 819 820 for_each_cpu(i, sg_span) { 821 sibling = *per_cpu_ptr(sdd->sd, i); 822 823 /* 824 * Can happen in the asymmetric case, where these siblings are 825 * unused. The mask will not be empty because those CPUs that 826 * do have the top domain _should_ span the domain. 827 */ 828 if (!sibling->child) 829 continue; 830 831 /* If we would not end up here, we can't continue from here */ 832 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 833 continue; 834 835 cpumask_set_cpu(i, mask); 836 } 837 838 /* We must not have empty masks here */ 839 WARN_ON_ONCE(cpumask_empty(mask)); 840 } 841 842 /* 843 * XXX: This creates per-node group entries; since the load-balancer will 844 * immediately access remote memory to construct this group's load-balance 845 * statistics having the groups node local is of dubious benefit. 846 */ 847 static struct sched_group * 848 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 849 { 850 struct sched_group *sg; 851 struct cpumask *sg_span; 852 853 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 854 GFP_KERNEL, cpu_to_node(cpu)); 855 856 if (!sg) 857 return NULL; 858 859 sg_span = sched_group_span(sg); 860 if (sd->child) 861 cpumask_copy(sg_span, sched_domain_span(sd->child)); 862 else 863 cpumask_copy(sg_span, sched_domain_span(sd)); 864 865 atomic_inc(&sg->ref); 866 return sg; 867 } 868 869 static void init_overlap_sched_group(struct sched_domain *sd, 870 struct sched_group *sg) 871 { 872 struct cpumask *mask = sched_domains_tmpmask2; 873 struct sd_data *sdd = sd->private; 874 struct cpumask *sg_span; 875 int cpu; 876 877 build_balance_mask(sd, sg, mask); 878 cpu = cpumask_first_and(sched_group_span(sg), mask); 879 880 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 881 if (atomic_inc_return(&sg->sgc->ref) == 1) 882 cpumask_copy(group_balance_mask(sg), mask); 883 else 884 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 885 886 /* 887 * Initialize sgc->capacity such that even if we mess up the 888 * domains and no possible iteration will get us here, we won't 889 * die on a /0 trap. 890 */ 891 sg_span = sched_group_span(sg); 892 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 893 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 894 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 895 } 896 897 static int 898 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 899 { 900 struct sched_group *first = NULL, *last = NULL, *sg; 901 const struct cpumask *span = sched_domain_span(sd); 902 struct cpumask *covered = sched_domains_tmpmask; 903 struct sd_data *sdd = sd->private; 904 struct sched_domain *sibling; 905 int i; 906 907 cpumask_clear(covered); 908 909 for_each_cpu_wrap(i, span, cpu) { 910 struct cpumask *sg_span; 911 912 if (cpumask_test_cpu(i, covered)) 913 continue; 914 915 sibling = *per_cpu_ptr(sdd->sd, i); 916 917 /* 918 * Asymmetric node setups can result in situations where the 919 * domain tree is of unequal depth, make sure to skip domains 920 * that already cover the entire range. 921 * 922 * In that case build_sched_domains() will have terminated the 923 * iteration early and our sibling sd spans will be empty. 924 * Domains should always include the CPU they're built on, so 925 * check that. 926 */ 927 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 928 continue; 929 930 sg = build_group_from_child_sched_domain(sibling, cpu); 931 if (!sg) 932 goto fail; 933 934 sg_span = sched_group_span(sg); 935 cpumask_or(covered, covered, sg_span); 936 937 init_overlap_sched_group(sd, sg); 938 939 if (!first) 940 first = sg; 941 if (last) 942 last->next = sg; 943 last = sg; 944 last->next = first; 945 } 946 sd->groups = first; 947 948 return 0; 949 950 fail: 951 free_sched_groups(first, 0); 952 953 return -ENOMEM; 954 } 955 956 957 /* 958 * Package topology (also see the load-balance blurb in fair.c) 959 * 960 * The scheduler builds a tree structure to represent a number of important 961 * topology features. By default (default_topology[]) these include: 962 * 963 * - Simultaneous multithreading (SMT) 964 * - Multi-Core Cache (MC) 965 * - Package (DIE) 966 * 967 * Where the last one more or less denotes everything up to a NUMA node. 968 * 969 * The tree consists of 3 primary data structures: 970 * 971 * sched_domain -> sched_group -> sched_group_capacity 972 * ^ ^ ^ ^ 973 * `-' `-' 974 * 975 * The sched_domains are per-CPU and have a two way link (parent & child) and 976 * denote the ever growing mask of CPUs belonging to that level of topology. 977 * 978 * Each sched_domain has a circular (double) linked list of sched_group's, each 979 * denoting the domains of the level below (or individual CPUs in case of the 980 * first domain level). The sched_group linked by a sched_domain includes the 981 * CPU of that sched_domain [*]. 982 * 983 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 984 * 985 * CPU 0 1 2 3 4 5 6 7 986 * 987 * DIE [ ] 988 * MC [ ] [ ] 989 * SMT [ ] [ ] [ ] [ ] 990 * 991 * - or - 992 * 993 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 994 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 995 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 996 * 997 * CPU 0 1 2 3 4 5 6 7 998 * 999 * One way to think about it is: sched_domain moves you up and down among these 1000 * topology levels, while sched_group moves you sideways through it, at child 1001 * domain granularity. 1002 * 1003 * sched_group_capacity ensures each unique sched_group has shared storage. 1004 * 1005 * There are two related construction problems, both require a CPU that 1006 * uniquely identify each group (for a given domain): 1007 * 1008 * - The first is the balance_cpu (see should_we_balance() and the 1009 * load-balance blub in fair.c); for each group we only want 1 CPU to 1010 * continue balancing at a higher domain. 1011 * 1012 * - The second is the sched_group_capacity; we want all identical groups 1013 * to share a single sched_group_capacity. 1014 * 1015 * Since these topologies are exclusive by construction. That is, its 1016 * impossible for an SMT thread to belong to multiple cores, and cores to 1017 * be part of multiple caches. There is a very clear and unique location 1018 * for each CPU in the hierarchy. 1019 * 1020 * Therefore computing a unique CPU for each group is trivial (the iteration 1021 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1022 * group), we can simply pick the first CPU in each group. 1023 * 1024 * 1025 * [*] in other words, the first group of each domain is its child domain. 1026 */ 1027 1028 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1029 { 1030 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1031 struct sched_domain *child = sd->child; 1032 struct sched_group *sg; 1033 1034 if (child) 1035 cpu = cpumask_first(sched_domain_span(child)); 1036 1037 sg = *per_cpu_ptr(sdd->sg, cpu); 1038 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1039 1040 /* For claim_allocations: */ 1041 atomic_inc(&sg->ref); 1042 atomic_inc(&sg->sgc->ref); 1043 1044 if (child) { 1045 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1046 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1047 } else { 1048 cpumask_set_cpu(cpu, sched_group_span(sg)); 1049 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1050 } 1051 1052 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1053 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1054 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1055 1056 return sg; 1057 } 1058 1059 /* 1060 * build_sched_groups will build a circular linked list of the groups 1061 * covered by the given span, and will set each group's ->cpumask correctly, 1062 * and ->cpu_capacity to 0. 1063 * 1064 * Assumes the sched_domain tree is fully constructed 1065 */ 1066 static int 1067 build_sched_groups(struct sched_domain *sd, int cpu) 1068 { 1069 struct sched_group *first = NULL, *last = NULL; 1070 struct sd_data *sdd = sd->private; 1071 const struct cpumask *span = sched_domain_span(sd); 1072 struct cpumask *covered; 1073 int i; 1074 1075 lockdep_assert_held(&sched_domains_mutex); 1076 covered = sched_domains_tmpmask; 1077 1078 cpumask_clear(covered); 1079 1080 for_each_cpu_wrap(i, span, cpu) { 1081 struct sched_group *sg; 1082 1083 if (cpumask_test_cpu(i, covered)) 1084 continue; 1085 1086 sg = get_group(i, sdd); 1087 1088 cpumask_or(covered, covered, sched_group_span(sg)); 1089 1090 if (!first) 1091 first = sg; 1092 if (last) 1093 last->next = sg; 1094 last = sg; 1095 } 1096 last->next = first; 1097 sd->groups = first; 1098 1099 return 0; 1100 } 1101 1102 /* 1103 * Initialize sched groups cpu_capacity. 1104 * 1105 * cpu_capacity indicates the capacity of sched group, which is used while 1106 * distributing the load between different sched groups in a sched domain. 1107 * Typically cpu_capacity for all the groups in a sched domain will be same 1108 * unless there are asymmetries in the topology. If there are asymmetries, 1109 * group having more cpu_capacity will pickup more load compared to the 1110 * group having less cpu_capacity. 1111 */ 1112 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1113 { 1114 struct sched_group *sg = sd->groups; 1115 1116 WARN_ON(!sg); 1117 1118 do { 1119 int cpu, max_cpu = -1; 1120 1121 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1122 1123 if (!(sd->flags & SD_ASYM_PACKING)) 1124 goto next; 1125 1126 for_each_cpu(cpu, sched_group_span(sg)) { 1127 if (max_cpu < 0) 1128 max_cpu = cpu; 1129 else if (sched_asym_prefer(cpu, max_cpu)) 1130 max_cpu = cpu; 1131 } 1132 sg->asym_prefer_cpu = max_cpu; 1133 1134 next: 1135 sg = sg->next; 1136 } while (sg != sd->groups); 1137 1138 if (cpu != group_balance_cpu(sg)) 1139 return; 1140 1141 update_group_capacity(sd, cpu); 1142 } 1143 1144 /* 1145 * Initializers for schedule domains 1146 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1147 */ 1148 1149 static int default_relax_domain_level = -1; 1150 int sched_domain_level_max; 1151 1152 static int __init setup_relax_domain_level(char *str) 1153 { 1154 if (kstrtoint(str, 0, &default_relax_domain_level)) 1155 pr_warn("Unable to set relax_domain_level\n"); 1156 1157 return 1; 1158 } 1159 __setup("relax_domain_level=", setup_relax_domain_level); 1160 1161 static void set_domain_attribute(struct sched_domain *sd, 1162 struct sched_domain_attr *attr) 1163 { 1164 int request; 1165 1166 if (!attr || attr->relax_domain_level < 0) { 1167 if (default_relax_domain_level < 0) 1168 return; 1169 else 1170 request = default_relax_domain_level; 1171 } else 1172 request = attr->relax_domain_level; 1173 if (request < sd->level) { 1174 /* Turn off idle balance on this domain: */ 1175 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1176 } else { 1177 /* Turn on idle balance on this domain: */ 1178 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1179 } 1180 } 1181 1182 static void __sdt_free(const struct cpumask *cpu_map); 1183 static int __sdt_alloc(const struct cpumask *cpu_map); 1184 1185 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1186 const struct cpumask *cpu_map) 1187 { 1188 switch (what) { 1189 case sa_rootdomain: 1190 if (!atomic_read(&d->rd->refcount)) 1191 free_rootdomain(&d->rd->rcu); 1192 /* Fall through */ 1193 case sa_sd: 1194 free_percpu(d->sd); 1195 /* Fall through */ 1196 case sa_sd_storage: 1197 __sdt_free(cpu_map); 1198 /* Fall through */ 1199 case sa_none: 1200 break; 1201 } 1202 } 1203 1204 static enum s_alloc 1205 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1206 { 1207 memset(d, 0, sizeof(*d)); 1208 1209 if (__sdt_alloc(cpu_map)) 1210 return sa_sd_storage; 1211 d->sd = alloc_percpu(struct sched_domain *); 1212 if (!d->sd) 1213 return sa_sd_storage; 1214 d->rd = alloc_rootdomain(); 1215 if (!d->rd) 1216 return sa_sd; 1217 1218 return sa_rootdomain; 1219 } 1220 1221 /* 1222 * NULL the sd_data elements we've used to build the sched_domain and 1223 * sched_group structure so that the subsequent __free_domain_allocs() 1224 * will not free the data we're using. 1225 */ 1226 static void claim_allocations(int cpu, struct sched_domain *sd) 1227 { 1228 struct sd_data *sdd = sd->private; 1229 1230 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1231 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1232 1233 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1234 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1235 1236 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1237 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1238 1239 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1240 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1241 } 1242 1243 #ifdef CONFIG_NUMA 1244 enum numa_topology_type sched_numa_topology_type; 1245 1246 static int sched_domains_numa_levels; 1247 static int sched_domains_curr_level; 1248 1249 int sched_max_numa_distance; 1250 static int *sched_domains_numa_distance; 1251 static struct cpumask ***sched_domains_numa_masks; 1252 #endif 1253 1254 /* 1255 * SD_flags allowed in topology descriptions. 1256 * 1257 * These flags are purely descriptive of the topology and do not prescribe 1258 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1259 * function: 1260 * 1261 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1262 * SD_SHARE_PKG_RESOURCES - describes shared caches 1263 * SD_NUMA - describes NUMA topologies 1264 * SD_SHARE_POWERDOMAIN - describes shared power domain 1265 * 1266 * Odd one out, which beside describing the topology has a quirk also 1267 * prescribes the desired behaviour that goes along with it: 1268 * 1269 * SD_ASYM_PACKING - describes SMT quirks 1270 */ 1271 #define TOPOLOGY_SD_FLAGS \ 1272 (SD_SHARE_CPUCAPACITY | \ 1273 SD_SHARE_PKG_RESOURCES | \ 1274 SD_NUMA | \ 1275 SD_ASYM_PACKING | \ 1276 SD_SHARE_POWERDOMAIN) 1277 1278 static struct sched_domain * 1279 sd_init(struct sched_domain_topology_level *tl, 1280 const struct cpumask *cpu_map, 1281 struct sched_domain *child, int dflags, int cpu) 1282 { 1283 struct sd_data *sdd = &tl->data; 1284 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1285 int sd_id, sd_weight, sd_flags = 0; 1286 1287 #ifdef CONFIG_NUMA 1288 /* 1289 * Ugly hack to pass state to sd_numa_mask()... 1290 */ 1291 sched_domains_curr_level = tl->numa_level; 1292 #endif 1293 1294 sd_weight = cpumask_weight(tl->mask(cpu)); 1295 1296 if (tl->sd_flags) 1297 sd_flags = (*tl->sd_flags)(); 1298 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1299 "wrong sd_flags in topology description\n")) 1300 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1301 1302 /* Apply detected topology flags */ 1303 sd_flags |= dflags; 1304 1305 *sd = (struct sched_domain){ 1306 .min_interval = sd_weight, 1307 .max_interval = 2*sd_weight, 1308 .busy_factor = 32, 1309 .imbalance_pct = 125, 1310 1311 .cache_nice_tries = 0, 1312 .busy_idx = 0, 1313 .idle_idx = 0, 1314 .newidle_idx = 0, 1315 .wake_idx = 0, 1316 .forkexec_idx = 0, 1317 1318 .flags = 1*SD_LOAD_BALANCE 1319 | 1*SD_BALANCE_NEWIDLE 1320 | 1*SD_BALANCE_EXEC 1321 | 1*SD_BALANCE_FORK 1322 | 0*SD_BALANCE_WAKE 1323 | 1*SD_WAKE_AFFINE 1324 | 0*SD_SHARE_CPUCAPACITY 1325 | 0*SD_SHARE_PKG_RESOURCES 1326 | 0*SD_SERIALIZE 1327 | 1*SD_PREFER_SIBLING 1328 | 0*SD_NUMA 1329 | sd_flags 1330 , 1331 1332 .last_balance = jiffies, 1333 .balance_interval = sd_weight, 1334 .max_newidle_lb_cost = 0, 1335 .next_decay_max_lb_cost = jiffies, 1336 .child = child, 1337 #ifdef CONFIG_SCHED_DEBUG 1338 .name = tl->name, 1339 #endif 1340 }; 1341 1342 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1343 sd_id = cpumask_first(sched_domain_span(sd)); 1344 1345 /* 1346 * Convert topological properties into behaviour. 1347 */ 1348 1349 if (sd->flags & SD_ASYM_CPUCAPACITY) { 1350 struct sched_domain *t = sd; 1351 1352 /* 1353 * Don't attempt to spread across CPUs of different capacities. 1354 */ 1355 if (sd->child) 1356 sd->child->flags &= ~SD_PREFER_SIBLING; 1357 1358 for_each_lower_domain(t) 1359 t->flags |= SD_BALANCE_WAKE; 1360 } 1361 1362 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1363 sd->imbalance_pct = 110; 1364 1365 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1366 sd->imbalance_pct = 117; 1367 sd->cache_nice_tries = 1; 1368 sd->busy_idx = 2; 1369 1370 #ifdef CONFIG_NUMA 1371 } else if (sd->flags & SD_NUMA) { 1372 sd->cache_nice_tries = 2; 1373 sd->busy_idx = 3; 1374 sd->idle_idx = 2; 1375 1376 sd->flags &= ~SD_PREFER_SIBLING; 1377 sd->flags |= SD_SERIALIZE; 1378 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1379 sd->flags &= ~(SD_BALANCE_EXEC | 1380 SD_BALANCE_FORK | 1381 SD_WAKE_AFFINE); 1382 } 1383 1384 #endif 1385 } else { 1386 sd->cache_nice_tries = 1; 1387 sd->busy_idx = 2; 1388 sd->idle_idx = 1; 1389 } 1390 1391 /* 1392 * For all levels sharing cache; connect a sched_domain_shared 1393 * instance. 1394 */ 1395 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1396 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1397 atomic_inc(&sd->shared->ref); 1398 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1399 } 1400 1401 sd->private = sdd; 1402 1403 return sd; 1404 } 1405 1406 /* 1407 * Topology list, bottom-up. 1408 */ 1409 static struct sched_domain_topology_level default_topology[] = { 1410 #ifdef CONFIG_SCHED_SMT 1411 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1412 #endif 1413 #ifdef CONFIG_SCHED_MC 1414 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1415 #endif 1416 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1417 { NULL, }, 1418 }; 1419 1420 static struct sched_domain_topology_level *sched_domain_topology = 1421 default_topology; 1422 1423 #define for_each_sd_topology(tl) \ 1424 for (tl = sched_domain_topology; tl->mask; tl++) 1425 1426 void set_sched_topology(struct sched_domain_topology_level *tl) 1427 { 1428 if (WARN_ON_ONCE(sched_smp_initialized)) 1429 return; 1430 1431 sched_domain_topology = tl; 1432 } 1433 1434 #ifdef CONFIG_NUMA 1435 1436 static const struct cpumask *sd_numa_mask(int cpu) 1437 { 1438 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1439 } 1440 1441 static void sched_numa_warn(const char *str) 1442 { 1443 static int done = false; 1444 int i,j; 1445 1446 if (done) 1447 return; 1448 1449 done = true; 1450 1451 printk(KERN_WARNING "ERROR: %s\n\n", str); 1452 1453 for (i = 0; i < nr_node_ids; i++) { 1454 printk(KERN_WARNING " "); 1455 for (j = 0; j < nr_node_ids; j++) 1456 printk(KERN_CONT "%02d ", node_distance(i,j)); 1457 printk(KERN_CONT "\n"); 1458 } 1459 printk(KERN_WARNING "\n"); 1460 } 1461 1462 bool find_numa_distance(int distance) 1463 { 1464 int i; 1465 1466 if (distance == node_distance(0, 0)) 1467 return true; 1468 1469 for (i = 0; i < sched_domains_numa_levels; i++) { 1470 if (sched_domains_numa_distance[i] == distance) 1471 return true; 1472 } 1473 1474 return false; 1475 } 1476 1477 /* 1478 * A system can have three types of NUMA topology: 1479 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1480 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1481 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1482 * 1483 * The difference between a glueless mesh topology and a backplane 1484 * topology lies in whether communication between not directly 1485 * connected nodes goes through intermediary nodes (where programs 1486 * could run), or through backplane controllers. This affects 1487 * placement of programs. 1488 * 1489 * The type of topology can be discerned with the following tests: 1490 * - If the maximum distance between any nodes is 1 hop, the system 1491 * is directly connected. 1492 * - If for two nodes A and B, located N > 1 hops away from each other, 1493 * there is an intermediary node C, which is < N hops away from both 1494 * nodes A and B, the system is a glueless mesh. 1495 */ 1496 static void init_numa_topology_type(void) 1497 { 1498 int a, b, c, n; 1499 1500 n = sched_max_numa_distance; 1501 1502 if (sched_domains_numa_levels <= 2) { 1503 sched_numa_topology_type = NUMA_DIRECT; 1504 return; 1505 } 1506 1507 for_each_online_node(a) { 1508 for_each_online_node(b) { 1509 /* Find two nodes furthest removed from each other. */ 1510 if (node_distance(a, b) < n) 1511 continue; 1512 1513 /* Is there an intermediary node between a and b? */ 1514 for_each_online_node(c) { 1515 if (node_distance(a, c) < n && 1516 node_distance(b, c) < n) { 1517 sched_numa_topology_type = 1518 NUMA_GLUELESS_MESH; 1519 return; 1520 } 1521 } 1522 1523 sched_numa_topology_type = NUMA_BACKPLANE; 1524 return; 1525 } 1526 } 1527 } 1528 1529 void sched_init_numa(void) 1530 { 1531 int next_distance, curr_distance = node_distance(0, 0); 1532 struct sched_domain_topology_level *tl; 1533 int level = 0; 1534 int i, j, k; 1535 1536 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1537 if (!sched_domains_numa_distance) 1538 return; 1539 1540 /* Includes NUMA identity node at level 0. */ 1541 sched_domains_numa_distance[level++] = curr_distance; 1542 sched_domains_numa_levels = level; 1543 1544 /* 1545 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1546 * unique distances in the node_distance() table. 1547 * 1548 * Assumes node_distance(0,j) includes all distances in 1549 * node_distance(i,j) in order to avoid cubic time. 1550 */ 1551 next_distance = curr_distance; 1552 for (i = 0; i < nr_node_ids; i++) { 1553 for (j = 0; j < nr_node_ids; j++) { 1554 for (k = 0; k < nr_node_ids; k++) { 1555 int distance = node_distance(i, k); 1556 1557 if (distance > curr_distance && 1558 (distance < next_distance || 1559 next_distance == curr_distance)) 1560 next_distance = distance; 1561 1562 /* 1563 * While not a strong assumption it would be nice to know 1564 * about cases where if node A is connected to B, B is not 1565 * equally connected to A. 1566 */ 1567 if (sched_debug() && node_distance(k, i) != distance) 1568 sched_numa_warn("Node-distance not symmetric"); 1569 1570 if (sched_debug() && i && !find_numa_distance(distance)) 1571 sched_numa_warn("Node-0 not representative"); 1572 } 1573 if (next_distance != curr_distance) { 1574 sched_domains_numa_distance[level++] = next_distance; 1575 sched_domains_numa_levels = level; 1576 curr_distance = next_distance; 1577 } else break; 1578 } 1579 1580 /* 1581 * In case of sched_debug() we verify the above assumption. 1582 */ 1583 if (!sched_debug()) 1584 break; 1585 } 1586 1587 /* 1588 * 'level' contains the number of unique distances 1589 * 1590 * The sched_domains_numa_distance[] array includes the actual distance 1591 * numbers. 1592 */ 1593 1594 /* 1595 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1596 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1597 * the array will contain less then 'level' members. This could be 1598 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1599 * in other functions. 1600 * 1601 * We reset it to 'level' at the end of this function. 1602 */ 1603 sched_domains_numa_levels = 0; 1604 1605 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1606 if (!sched_domains_numa_masks) 1607 return; 1608 1609 /* 1610 * Now for each level, construct a mask per node which contains all 1611 * CPUs of nodes that are that many hops away from us. 1612 */ 1613 for (i = 0; i < level; i++) { 1614 sched_domains_numa_masks[i] = 1615 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1616 if (!sched_domains_numa_masks[i]) 1617 return; 1618 1619 for (j = 0; j < nr_node_ids; j++) { 1620 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1621 if (!mask) 1622 return; 1623 1624 sched_domains_numa_masks[i][j] = mask; 1625 1626 for_each_node(k) { 1627 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1628 continue; 1629 1630 cpumask_or(mask, mask, cpumask_of_node(k)); 1631 } 1632 } 1633 } 1634 1635 /* Compute default topology size */ 1636 for (i = 0; sched_domain_topology[i].mask; i++); 1637 1638 tl = kzalloc((i + level + 1) * 1639 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1640 if (!tl) 1641 return; 1642 1643 /* 1644 * Copy the default topology bits.. 1645 */ 1646 for (i = 0; sched_domain_topology[i].mask; i++) 1647 tl[i] = sched_domain_topology[i]; 1648 1649 /* 1650 * Add the NUMA identity distance, aka single NODE. 1651 */ 1652 tl[i++] = (struct sched_domain_topology_level){ 1653 .mask = sd_numa_mask, 1654 .numa_level = 0, 1655 SD_INIT_NAME(NODE) 1656 }; 1657 1658 /* 1659 * .. and append 'j' levels of NUMA goodness. 1660 */ 1661 for (j = 1; j < level; i++, j++) { 1662 tl[i] = (struct sched_domain_topology_level){ 1663 .mask = sd_numa_mask, 1664 .sd_flags = cpu_numa_flags, 1665 .flags = SDTL_OVERLAP, 1666 .numa_level = j, 1667 SD_INIT_NAME(NUMA) 1668 }; 1669 } 1670 1671 sched_domain_topology = tl; 1672 1673 sched_domains_numa_levels = level; 1674 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1675 1676 init_numa_topology_type(); 1677 } 1678 1679 void sched_domains_numa_masks_set(unsigned int cpu) 1680 { 1681 int node = cpu_to_node(cpu); 1682 int i, j; 1683 1684 for (i = 0; i < sched_domains_numa_levels; i++) { 1685 for (j = 0; j < nr_node_ids; j++) { 1686 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1687 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1688 } 1689 } 1690 } 1691 1692 void sched_domains_numa_masks_clear(unsigned int cpu) 1693 { 1694 int i, j; 1695 1696 for (i = 0; i < sched_domains_numa_levels; i++) { 1697 for (j = 0; j < nr_node_ids; j++) 1698 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1699 } 1700 } 1701 1702 #endif /* CONFIG_NUMA */ 1703 1704 static int __sdt_alloc(const struct cpumask *cpu_map) 1705 { 1706 struct sched_domain_topology_level *tl; 1707 int j; 1708 1709 for_each_sd_topology(tl) { 1710 struct sd_data *sdd = &tl->data; 1711 1712 sdd->sd = alloc_percpu(struct sched_domain *); 1713 if (!sdd->sd) 1714 return -ENOMEM; 1715 1716 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1717 if (!sdd->sds) 1718 return -ENOMEM; 1719 1720 sdd->sg = alloc_percpu(struct sched_group *); 1721 if (!sdd->sg) 1722 return -ENOMEM; 1723 1724 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1725 if (!sdd->sgc) 1726 return -ENOMEM; 1727 1728 for_each_cpu(j, cpu_map) { 1729 struct sched_domain *sd; 1730 struct sched_domain_shared *sds; 1731 struct sched_group *sg; 1732 struct sched_group_capacity *sgc; 1733 1734 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1735 GFP_KERNEL, cpu_to_node(j)); 1736 if (!sd) 1737 return -ENOMEM; 1738 1739 *per_cpu_ptr(sdd->sd, j) = sd; 1740 1741 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1742 GFP_KERNEL, cpu_to_node(j)); 1743 if (!sds) 1744 return -ENOMEM; 1745 1746 *per_cpu_ptr(sdd->sds, j) = sds; 1747 1748 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1749 GFP_KERNEL, cpu_to_node(j)); 1750 if (!sg) 1751 return -ENOMEM; 1752 1753 sg->next = sg; 1754 1755 *per_cpu_ptr(sdd->sg, j) = sg; 1756 1757 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1758 GFP_KERNEL, cpu_to_node(j)); 1759 if (!sgc) 1760 return -ENOMEM; 1761 1762 #ifdef CONFIG_SCHED_DEBUG 1763 sgc->id = j; 1764 #endif 1765 1766 *per_cpu_ptr(sdd->sgc, j) = sgc; 1767 } 1768 } 1769 1770 return 0; 1771 } 1772 1773 static void __sdt_free(const struct cpumask *cpu_map) 1774 { 1775 struct sched_domain_topology_level *tl; 1776 int j; 1777 1778 for_each_sd_topology(tl) { 1779 struct sd_data *sdd = &tl->data; 1780 1781 for_each_cpu(j, cpu_map) { 1782 struct sched_domain *sd; 1783 1784 if (sdd->sd) { 1785 sd = *per_cpu_ptr(sdd->sd, j); 1786 if (sd && (sd->flags & SD_OVERLAP)) 1787 free_sched_groups(sd->groups, 0); 1788 kfree(*per_cpu_ptr(sdd->sd, j)); 1789 } 1790 1791 if (sdd->sds) 1792 kfree(*per_cpu_ptr(sdd->sds, j)); 1793 if (sdd->sg) 1794 kfree(*per_cpu_ptr(sdd->sg, j)); 1795 if (sdd->sgc) 1796 kfree(*per_cpu_ptr(sdd->sgc, j)); 1797 } 1798 free_percpu(sdd->sd); 1799 sdd->sd = NULL; 1800 free_percpu(sdd->sds); 1801 sdd->sds = NULL; 1802 free_percpu(sdd->sg); 1803 sdd->sg = NULL; 1804 free_percpu(sdd->sgc); 1805 sdd->sgc = NULL; 1806 } 1807 } 1808 1809 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1810 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1811 struct sched_domain *child, int dflags, int cpu) 1812 { 1813 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1814 1815 if (child) { 1816 sd->level = child->level + 1; 1817 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1818 child->parent = sd; 1819 1820 if (!cpumask_subset(sched_domain_span(child), 1821 sched_domain_span(sd))) { 1822 pr_err("BUG: arch topology borken\n"); 1823 #ifdef CONFIG_SCHED_DEBUG 1824 pr_err(" the %s domain not a subset of the %s domain\n", 1825 child->name, sd->name); 1826 #endif 1827 /* Fixup, ensure @sd has at least @child CPUs. */ 1828 cpumask_or(sched_domain_span(sd), 1829 sched_domain_span(sd), 1830 sched_domain_span(child)); 1831 } 1832 1833 } 1834 set_domain_attribute(sd, attr); 1835 1836 return sd; 1837 } 1838 1839 /* 1840 * Find the sched_domain_topology_level where all CPU capacities are visible 1841 * for all CPUs. 1842 */ 1843 static struct sched_domain_topology_level 1844 *asym_cpu_capacity_level(const struct cpumask *cpu_map) 1845 { 1846 int i, j, asym_level = 0; 1847 bool asym = false; 1848 struct sched_domain_topology_level *tl, *asym_tl = NULL; 1849 unsigned long cap; 1850 1851 /* Is there any asymmetry? */ 1852 cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map)); 1853 1854 for_each_cpu(i, cpu_map) { 1855 if (arch_scale_cpu_capacity(NULL, i) != cap) { 1856 asym = true; 1857 break; 1858 } 1859 } 1860 1861 if (!asym) 1862 return NULL; 1863 1864 /* 1865 * Examine topology from all CPU's point of views to detect the lowest 1866 * sched_domain_topology_level where a highest capacity CPU is visible 1867 * to everyone. 1868 */ 1869 for_each_cpu(i, cpu_map) { 1870 unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i); 1871 int tl_id = 0; 1872 1873 for_each_sd_topology(tl) { 1874 if (tl_id < asym_level) 1875 goto next_level; 1876 1877 for_each_cpu_and(j, tl->mask(i), cpu_map) { 1878 unsigned long capacity; 1879 1880 capacity = arch_scale_cpu_capacity(NULL, j); 1881 1882 if (capacity <= max_capacity) 1883 continue; 1884 1885 max_capacity = capacity; 1886 asym_level = tl_id; 1887 asym_tl = tl; 1888 } 1889 next_level: 1890 tl_id++; 1891 } 1892 } 1893 1894 return asym_tl; 1895 } 1896 1897 1898 /* 1899 * Build sched domains for a given set of CPUs and attach the sched domains 1900 * to the individual CPUs 1901 */ 1902 static int 1903 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1904 { 1905 enum s_alloc alloc_state; 1906 struct sched_domain *sd; 1907 struct s_data d; 1908 struct rq *rq = NULL; 1909 int i, ret = -ENOMEM; 1910 struct sched_domain_topology_level *tl_asym; 1911 bool has_asym = false; 1912 1913 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1914 if (alloc_state != sa_rootdomain) 1915 goto error; 1916 1917 tl_asym = asym_cpu_capacity_level(cpu_map); 1918 1919 /* Set up domains for CPUs specified by the cpu_map: */ 1920 for_each_cpu(i, cpu_map) { 1921 struct sched_domain_topology_level *tl; 1922 1923 sd = NULL; 1924 for_each_sd_topology(tl) { 1925 int dflags = 0; 1926 1927 if (tl == tl_asym) { 1928 dflags |= SD_ASYM_CPUCAPACITY; 1929 has_asym = true; 1930 } 1931 1932 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 1933 1934 if (tl == sched_domain_topology) 1935 *per_cpu_ptr(d.sd, i) = sd; 1936 if (tl->flags & SDTL_OVERLAP) 1937 sd->flags |= SD_OVERLAP; 1938 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1939 break; 1940 } 1941 } 1942 1943 /* Build the groups for the domains */ 1944 for_each_cpu(i, cpu_map) { 1945 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1946 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1947 if (sd->flags & SD_OVERLAP) { 1948 if (build_overlap_sched_groups(sd, i)) 1949 goto error; 1950 } else { 1951 if (build_sched_groups(sd, i)) 1952 goto error; 1953 } 1954 } 1955 } 1956 1957 /* Calculate CPU capacity for physical packages and nodes */ 1958 for (i = nr_cpumask_bits-1; i >= 0; i--) { 1959 if (!cpumask_test_cpu(i, cpu_map)) 1960 continue; 1961 1962 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1963 claim_allocations(i, sd); 1964 init_sched_groups_capacity(i, sd); 1965 } 1966 } 1967 1968 /* Attach the domains */ 1969 rcu_read_lock(); 1970 for_each_cpu(i, cpu_map) { 1971 rq = cpu_rq(i); 1972 sd = *per_cpu_ptr(d.sd, i); 1973 1974 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1975 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1976 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1977 1978 cpu_attach_domain(sd, d.rd, i); 1979 } 1980 rcu_read_unlock(); 1981 1982 if (has_asym) 1983 static_branch_enable_cpuslocked(&sched_asym_cpucapacity); 1984 1985 if (rq && sched_debug_enabled) { 1986 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 1987 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1988 } 1989 1990 ret = 0; 1991 error: 1992 __free_domain_allocs(&d, alloc_state, cpu_map); 1993 1994 return ret; 1995 } 1996 1997 /* Current sched domains: */ 1998 static cpumask_var_t *doms_cur; 1999 2000 /* Number of sched domains in 'doms_cur': */ 2001 static int ndoms_cur; 2002 2003 /* Attribues of custom domains in 'doms_cur' */ 2004 static struct sched_domain_attr *dattr_cur; 2005 2006 /* 2007 * Special case: If a kmalloc() of a doms_cur partition (array of 2008 * cpumask) fails, then fallback to a single sched domain, 2009 * as determined by the single cpumask fallback_doms. 2010 */ 2011 static cpumask_var_t fallback_doms; 2012 2013 /* 2014 * arch_update_cpu_topology lets virtualized architectures update the 2015 * CPU core maps. It is supposed to return 1 if the topology changed 2016 * or 0 if it stayed the same. 2017 */ 2018 int __weak arch_update_cpu_topology(void) 2019 { 2020 return 0; 2021 } 2022 2023 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2024 { 2025 int i; 2026 cpumask_var_t *doms; 2027 2028 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2029 if (!doms) 2030 return NULL; 2031 for (i = 0; i < ndoms; i++) { 2032 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2033 free_sched_domains(doms, i); 2034 return NULL; 2035 } 2036 } 2037 return doms; 2038 } 2039 2040 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2041 { 2042 unsigned int i; 2043 for (i = 0; i < ndoms; i++) 2044 free_cpumask_var(doms[i]); 2045 kfree(doms); 2046 } 2047 2048 /* 2049 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 2050 * For now this just excludes isolated CPUs, but could be used to 2051 * exclude other special cases in the future. 2052 */ 2053 int sched_init_domains(const struct cpumask *cpu_map) 2054 { 2055 int err; 2056 2057 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2058 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2059 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2060 2061 arch_update_cpu_topology(); 2062 ndoms_cur = 1; 2063 doms_cur = alloc_sched_domains(ndoms_cur); 2064 if (!doms_cur) 2065 doms_cur = &fallback_doms; 2066 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 2067 err = build_sched_domains(doms_cur[0], NULL); 2068 register_sched_domain_sysctl(); 2069 2070 return err; 2071 } 2072 2073 /* 2074 * Detach sched domains from a group of CPUs specified in cpu_map 2075 * These CPUs will now be attached to the NULL domain 2076 */ 2077 static void detach_destroy_domains(const struct cpumask *cpu_map) 2078 { 2079 int i; 2080 2081 rcu_read_lock(); 2082 for_each_cpu(i, cpu_map) 2083 cpu_attach_domain(NULL, &def_root_domain, i); 2084 rcu_read_unlock(); 2085 } 2086 2087 /* handle null as "default" */ 2088 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2089 struct sched_domain_attr *new, int idx_new) 2090 { 2091 struct sched_domain_attr tmp; 2092 2093 /* Fast path: */ 2094 if (!new && !cur) 2095 return 1; 2096 2097 tmp = SD_ATTR_INIT; 2098 2099 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2100 new ? (new + idx_new) : &tmp, 2101 sizeof(struct sched_domain_attr)); 2102 } 2103 2104 /* 2105 * Partition sched domains as specified by the 'ndoms_new' 2106 * cpumasks in the array doms_new[] of cpumasks. This compares 2107 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2108 * It destroys each deleted domain and builds each new domain. 2109 * 2110 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2111 * The masks don't intersect (don't overlap.) We should setup one 2112 * sched domain for each mask. CPUs not in any of the cpumasks will 2113 * not be load balanced. If the same cpumask appears both in the 2114 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2115 * it as it is. 2116 * 2117 * The passed in 'doms_new' should be allocated using 2118 * alloc_sched_domains. This routine takes ownership of it and will 2119 * free_sched_domains it when done with it. If the caller failed the 2120 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2121 * and partition_sched_domains() will fallback to the single partition 2122 * 'fallback_doms', it also forces the domains to be rebuilt. 2123 * 2124 * If doms_new == NULL it will be replaced with cpu_online_mask. 2125 * ndoms_new == 0 is a special case for destroying existing domains, 2126 * and it will not create the default domain. 2127 * 2128 * Call with hotplug lock held 2129 */ 2130 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2131 struct sched_domain_attr *dattr_new) 2132 { 2133 bool __maybe_unused has_eas = false; 2134 int i, j, n; 2135 int new_topology; 2136 2137 mutex_lock(&sched_domains_mutex); 2138 2139 /* Always unregister in case we don't destroy any domains: */ 2140 unregister_sched_domain_sysctl(); 2141 2142 /* Let the architecture update CPU core mappings: */ 2143 new_topology = arch_update_cpu_topology(); 2144 2145 if (!doms_new) { 2146 WARN_ON_ONCE(dattr_new); 2147 n = 0; 2148 doms_new = alloc_sched_domains(1); 2149 if (doms_new) { 2150 n = 1; 2151 cpumask_and(doms_new[0], cpu_active_mask, 2152 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2153 } 2154 } else { 2155 n = ndoms_new; 2156 } 2157 2158 /* Destroy deleted domains: */ 2159 for (i = 0; i < ndoms_cur; i++) { 2160 for (j = 0; j < n && !new_topology; j++) { 2161 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2162 dattrs_equal(dattr_cur, i, dattr_new, j)) 2163 goto match1; 2164 } 2165 /* No match - a current sched domain not in new doms_new[] */ 2166 detach_destroy_domains(doms_cur[i]); 2167 match1: 2168 ; 2169 } 2170 2171 n = ndoms_cur; 2172 if (!doms_new) { 2173 n = 0; 2174 doms_new = &fallback_doms; 2175 cpumask_and(doms_new[0], cpu_active_mask, 2176 housekeeping_cpumask(HK_FLAG_DOMAIN)); 2177 } 2178 2179 /* Build new domains: */ 2180 for (i = 0; i < ndoms_new; i++) { 2181 for (j = 0; j < n && !new_topology; j++) { 2182 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2183 dattrs_equal(dattr_new, i, dattr_cur, j)) 2184 goto match2; 2185 } 2186 /* No match - add a new doms_new */ 2187 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2188 match2: 2189 ; 2190 } 2191 2192 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2193 /* Build perf. domains: */ 2194 for (i = 0; i < ndoms_new; i++) { 2195 for (j = 0; j < n && !sched_energy_update; j++) { 2196 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2197 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2198 has_eas = true; 2199 goto match3; 2200 } 2201 } 2202 /* No match - add perf. domains for a new rd */ 2203 has_eas |= build_perf_domains(doms_new[i]); 2204 match3: 2205 ; 2206 } 2207 sched_energy_set(has_eas); 2208 #endif 2209 2210 /* Remember the new sched domains: */ 2211 if (doms_cur != &fallback_doms) 2212 free_sched_domains(doms_cur, ndoms_cur); 2213 2214 kfree(dattr_cur); 2215 doms_cur = doms_new; 2216 dattr_cur = dattr_new; 2217 ndoms_cur = ndoms_new; 2218 2219 register_sched_domain_sysctl(); 2220 2221 mutex_unlock(&sched_domains_mutex); 2222 } 2223