1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 #include "sched.h" 6 7 DEFINE_MUTEX(sched_domains_mutex); 8 9 /* Protected by sched_domains_mutex: */ 10 static cpumask_var_t sched_domains_tmpmask; 11 static cpumask_var_t sched_domains_tmpmask2; 12 13 #ifdef CONFIG_SCHED_DEBUG 14 15 static int __init sched_debug_setup(char *str) 16 { 17 sched_debug_enabled = true; 18 19 return 0; 20 } 21 early_param("sched_debug", sched_debug_setup); 22 23 static inline bool sched_debug(void) 24 { 25 return sched_debug_enabled; 26 } 27 28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 29 struct cpumask *groupmask) 30 { 31 struct sched_group *group = sd->groups; 32 33 cpumask_clear(groupmask); 34 35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 36 37 if (!(sd->flags & SD_LOAD_BALANCE)) { 38 printk("does not load-balance\n"); 39 if (sd->parent) 40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); 41 return -1; 42 } 43 44 printk(KERN_CONT "span=%*pbl level=%s\n", 45 cpumask_pr_args(sched_domain_span(sd)), sd->name); 46 47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 49 } 50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 52 } 53 54 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 55 do { 56 if (!group) { 57 printk("\n"); 58 printk(KERN_ERR "ERROR: group is NULL\n"); 59 break; 60 } 61 62 if (!cpumask_weight(sched_group_span(group))) { 63 printk(KERN_CONT "\n"); 64 printk(KERN_ERR "ERROR: empty group\n"); 65 break; 66 } 67 68 if (!(sd->flags & SD_OVERLAP) && 69 cpumask_intersects(groupmask, sched_group_span(group))) { 70 printk(KERN_CONT "\n"); 71 printk(KERN_ERR "ERROR: repeated CPUs\n"); 72 break; 73 } 74 75 cpumask_or(groupmask, groupmask, sched_group_span(group)); 76 77 printk(KERN_CONT " %d:{ span=%*pbl", 78 group->sgc->id, 79 cpumask_pr_args(sched_group_span(group))); 80 81 if ((sd->flags & SD_OVERLAP) && 82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 83 printk(KERN_CONT " mask=%*pbl", 84 cpumask_pr_args(group_balance_mask(group))); 85 } 86 87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 88 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 89 90 if (group == sd->groups && sd->child && 91 !cpumask_equal(sched_domain_span(sd->child), 92 sched_group_span(group))) { 93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 94 } 95 96 printk(KERN_CONT " }"); 97 98 group = group->next; 99 100 if (group != sd->groups) 101 printk(KERN_CONT ","); 102 103 } while (group != sd->groups); 104 printk(KERN_CONT "\n"); 105 106 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 107 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 108 109 if (sd->parent && 110 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 112 return 0; 113 } 114 115 static void sched_domain_debug(struct sched_domain *sd, int cpu) 116 { 117 int level = 0; 118 119 if (!sched_debug_enabled) 120 return; 121 122 if (!sd) { 123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 124 return; 125 } 126 127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 128 129 for (;;) { 130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 131 break; 132 level++; 133 sd = sd->parent; 134 if (!sd) 135 break; 136 } 137 } 138 #else /* !CONFIG_SCHED_DEBUG */ 139 140 # define sched_debug_enabled 0 141 # define sched_domain_debug(sd, cpu) do { } while (0) 142 static inline bool sched_debug(void) 143 { 144 return false; 145 } 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 static int sd_degenerate(struct sched_domain *sd) 149 { 150 if (cpumask_weight(sched_domain_span(sd)) == 1) 151 return 1; 152 153 /* Following flags need at least 2 groups */ 154 if (sd->flags & (SD_LOAD_BALANCE | 155 SD_BALANCE_NEWIDLE | 156 SD_BALANCE_FORK | 157 SD_BALANCE_EXEC | 158 SD_SHARE_CPUCAPACITY | 159 SD_ASYM_CPUCAPACITY | 160 SD_SHARE_PKG_RESOURCES | 161 SD_SHARE_POWERDOMAIN)) { 162 if (sd->groups != sd->groups->next) 163 return 0; 164 } 165 166 /* Following flags don't use groups */ 167 if (sd->flags & (SD_WAKE_AFFINE)) 168 return 0; 169 170 return 1; 171 } 172 173 static int 174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 175 { 176 unsigned long cflags = sd->flags, pflags = parent->flags; 177 178 if (sd_degenerate(parent)) 179 return 1; 180 181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 182 return 0; 183 184 /* Flags needing groups don't count if only 1 group in parent */ 185 if (parent->groups == parent->groups->next) { 186 pflags &= ~(SD_LOAD_BALANCE | 187 SD_BALANCE_NEWIDLE | 188 SD_BALANCE_FORK | 189 SD_BALANCE_EXEC | 190 SD_ASYM_CPUCAPACITY | 191 SD_SHARE_CPUCAPACITY | 192 SD_SHARE_PKG_RESOURCES | 193 SD_PREFER_SIBLING | 194 SD_SHARE_POWERDOMAIN); 195 if (nr_node_ids == 1) 196 pflags &= ~SD_SERIALIZE; 197 } 198 if (~cflags & pflags) 199 return 0; 200 201 return 1; 202 } 203 204 static void free_rootdomain(struct rcu_head *rcu) 205 { 206 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 207 208 cpupri_cleanup(&rd->cpupri); 209 cpudl_cleanup(&rd->cpudl); 210 free_cpumask_var(rd->dlo_mask); 211 free_cpumask_var(rd->rto_mask); 212 free_cpumask_var(rd->online); 213 free_cpumask_var(rd->span); 214 kfree(rd); 215 } 216 217 void rq_attach_root(struct rq *rq, struct root_domain *rd) 218 { 219 struct root_domain *old_rd = NULL; 220 unsigned long flags; 221 222 raw_spin_lock_irqsave(&rq->lock, flags); 223 224 if (rq->rd) { 225 old_rd = rq->rd; 226 227 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 228 set_rq_offline(rq); 229 230 cpumask_clear_cpu(rq->cpu, old_rd->span); 231 232 /* 233 * If we dont want to free the old_rd yet then 234 * set old_rd to NULL to skip the freeing later 235 * in this function: 236 */ 237 if (!atomic_dec_and_test(&old_rd->refcount)) 238 old_rd = NULL; 239 } 240 241 atomic_inc(&rd->refcount); 242 rq->rd = rd; 243 244 cpumask_set_cpu(rq->cpu, rd->span); 245 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 246 set_rq_online(rq); 247 248 raw_spin_unlock_irqrestore(&rq->lock, flags); 249 250 if (old_rd) 251 call_rcu_sched(&old_rd->rcu, free_rootdomain); 252 } 253 254 void sched_get_rd(struct root_domain *rd) 255 { 256 atomic_inc(&rd->refcount); 257 } 258 259 void sched_put_rd(struct root_domain *rd) 260 { 261 if (!atomic_dec_and_test(&rd->refcount)) 262 return; 263 264 call_rcu_sched(&rd->rcu, free_rootdomain); 265 } 266 267 static int init_rootdomain(struct root_domain *rd) 268 { 269 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 270 goto out; 271 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 272 goto free_span; 273 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 274 goto free_online; 275 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 276 goto free_dlo_mask; 277 278 #ifdef HAVE_RT_PUSH_IPI 279 rd->rto_cpu = -1; 280 raw_spin_lock_init(&rd->rto_lock); 281 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func); 282 #endif 283 284 init_dl_bw(&rd->dl_bw); 285 if (cpudl_init(&rd->cpudl) != 0) 286 goto free_rto_mask; 287 288 if (cpupri_init(&rd->cpupri) != 0) 289 goto free_cpudl; 290 return 0; 291 292 free_cpudl: 293 cpudl_cleanup(&rd->cpudl); 294 free_rto_mask: 295 free_cpumask_var(rd->rto_mask); 296 free_dlo_mask: 297 free_cpumask_var(rd->dlo_mask); 298 free_online: 299 free_cpumask_var(rd->online); 300 free_span: 301 free_cpumask_var(rd->span); 302 out: 303 return -ENOMEM; 304 } 305 306 /* 307 * By default the system creates a single root-domain with all CPUs as 308 * members (mimicking the global state we have today). 309 */ 310 struct root_domain def_root_domain; 311 312 void init_defrootdomain(void) 313 { 314 init_rootdomain(&def_root_domain); 315 316 atomic_set(&def_root_domain.refcount, 1); 317 } 318 319 static struct root_domain *alloc_rootdomain(void) 320 { 321 struct root_domain *rd; 322 323 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 324 if (!rd) 325 return NULL; 326 327 if (init_rootdomain(rd) != 0) { 328 kfree(rd); 329 return NULL; 330 } 331 332 return rd; 333 } 334 335 static void free_sched_groups(struct sched_group *sg, int free_sgc) 336 { 337 struct sched_group *tmp, *first; 338 339 if (!sg) 340 return; 341 342 first = sg; 343 do { 344 tmp = sg->next; 345 346 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 347 kfree(sg->sgc); 348 349 if (atomic_dec_and_test(&sg->ref)) 350 kfree(sg); 351 sg = tmp; 352 } while (sg != first); 353 } 354 355 static void destroy_sched_domain(struct sched_domain *sd) 356 { 357 /* 358 * A normal sched domain may have multiple group references, an 359 * overlapping domain, having private groups, only one. Iterate, 360 * dropping group/capacity references, freeing where none remain. 361 */ 362 free_sched_groups(sd->groups, 1); 363 364 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 365 kfree(sd->shared); 366 kfree(sd); 367 } 368 369 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 370 { 371 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 372 373 while (sd) { 374 struct sched_domain *parent = sd->parent; 375 destroy_sched_domain(sd); 376 sd = parent; 377 } 378 } 379 380 static void destroy_sched_domains(struct sched_domain *sd) 381 { 382 if (sd) 383 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 384 } 385 386 /* 387 * Keep a special pointer to the highest sched_domain that has 388 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 389 * allows us to avoid some pointer chasing select_idle_sibling(). 390 * 391 * Also keep a unique ID per domain (we use the first CPU number in 392 * the cpumask of the domain), this allows us to quickly tell if 393 * two CPUs are in the same cache domain, see cpus_share_cache(). 394 */ 395 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 396 DEFINE_PER_CPU(int, sd_llc_size); 397 DEFINE_PER_CPU(int, sd_llc_id); 398 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); 399 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 400 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 401 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 402 403 static void update_top_cache_domain(int cpu) 404 { 405 struct sched_domain_shared *sds = NULL; 406 struct sched_domain *sd; 407 int id = cpu; 408 int size = 1; 409 410 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 411 if (sd) { 412 id = cpumask_first(sched_domain_span(sd)); 413 size = cpumask_weight(sched_domain_span(sd)); 414 sds = sd->shared; 415 } 416 417 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 418 per_cpu(sd_llc_size, cpu) = size; 419 per_cpu(sd_llc_id, cpu) = id; 420 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 421 422 sd = lowest_flag_domain(cpu, SD_NUMA); 423 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 424 425 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 426 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 427 } 428 429 /* 430 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 431 * hold the hotplug lock. 432 */ 433 static void 434 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 435 { 436 struct rq *rq = cpu_rq(cpu); 437 struct sched_domain *tmp; 438 439 /* Remove the sched domains which do not contribute to scheduling. */ 440 for (tmp = sd; tmp; ) { 441 struct sched_domain *parent = tmp->parent; 442 if (!parent) 443 break; 444 445 if (sd_parent_degenerate(tmp, parent)) { 446 tmp->parent = parent->parent; 447 if (parent->parent) 448 parent->parent->child = tmp; 449 /* 450 * Transfer SD_PREFER_SIBLING down in case of a 451 * degenerate parent; the spans match for this 452 * so the property transfers. 453 */ 454 if (parent->flags & SD_PREFER_SIBLING) 455 tmp->flags |= SD_PREFER_SIBLING; 456 destroy_sched_domain(parent); 457 } else 458 tmp = tmp->parent; 459 } 460 461 if (sd && sd_degenerate(sd)) { 462 tmp = sd; 463 sd = sd->parent; 464 destroy_sched_domain(tmp); 465 if (sd) 466 sd->child = NULL; 467 } 468 469 sched_domain_debug(sd, cpu); 470 471 rq_attach_root(rq, rd); 472 tmp = rq->sd; 473 rcu_assign_pointer(rq->sd, sd); 474 dirty_sched_domain_sysctl(cpu); 475 destroy_sched_domains(tmp); 476 477 update_top_cache_domain(cpu); 478 } 479 480 struct s_data { 481 struct sched_domain ** __percpu sd; 482 struct root_domain *rd; 483 }; 484 485 enum s_alloc { 486 sa_rootdomain, 487 sa_sd, 488 sa_sd_storage, 489 sa_none, 490 }; 491 492 /* 493 * Return the canonical balance CPU for this group, this is the first CPU 494 * of this group that's also in the balance mask. 495 * 496 * The balance mask are all those CPUs that could actually end up at this 497 * group. See build_balance_mask(). 498 * 499 * Also see should_we_balance(). 500 */ 501 int group_balance_cpu(struct sched_group *sg) 502 { 503 return cpumask_first(group_balance_mask(sg)); 504 } 505 506 507 /* 508 * NUMA topology (first read the regular topology blurb below) 509 * 510 * Given a node-distance table, for example: 511 * 512 * node 0 1 2 3 513 * 0: 10 20 30 20 514 * 1: 20 10 20 30 515 * 2: 30 20 10 20 516 * 3: 20 30 20 10 517 * 518 * which represents a 4 node ring topology like: 519 * 520 * 0 ----- 1 521 * | | 522 * | | 523 * | | 524 * 3 ----- 2 525 * 526 * We want to construct domains and groups to represent this. The way we go 527 * about doing this is to build the domains on 'hops'. For each NUMA level we 528 * construct the mask of all nodes reachable in @level hops. 529 * 530 * For the above NUMA topology that gives 3 levels: 531 * 532 * NUMA-2 0-3 0-3 0-3 0-3 533 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 534 * 535 * NUMA-1 0-1,3 0-2 1-3 0,2-3 536 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 537 * 538 * NUMA-0 0 1 2 3 539 * 540 * 541 * As can be seen; things don't nicely line up as with the regular topology. 542 * When we iterate a domain in child domain chunks some nodes can be 543 * represented multiple times -- hence the "overlap" naming for this part of 544 * the topology. 545 * 546 * In order to minimize this overlap, we only build enough groups to cover the 547 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 548 * 549 * Because: 550 * 551 * - the first group of each domain is its child domain; this 552 * gets us the first 0-1,3 553 * - the only uncovered node is 2, who's child domain is 1-3. 554 * 555 * However, because of the overlap, computing a unique CPU for each group is 556 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 557 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 558 * end up at those groups (they would end up in group: 0-1,3). 559 * 560 * To correct this we have to introduce the group balance mask. This mask 561 * will contain those CPUs in the group that can reach this group given the 562 * (child) domain tree. 563 * 564 * With this we can once again compute balance_cpu and sched_group_capacity 565 * relations. 566 * 567 * XXX include words on how balance_cpu is unique and therefore can be 568 * used for sched_group_capacity links. 569 * 570 * 571 * Another 'interesting' topology is: 572 * 573 * node 0 1 2 3 574 * 0: 10 20 20 30 575 * 1: 20 10 20 20 576 * 2: 20 20 10 20 577 * 3: 30 20 20 10 578 * 579 * Which looks a little like: 580 * 581 * 0 ----- 1 582 * | / | 583 * | / | 584 * | / | 585 * 2 ----- 3 586 * 587 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 588 * are not. 589 * 590 * This leads to a few particularly weird cases where the sched_domain's are 591 * not of the same number for each CPU. Consider: 592 * 593 * NUMA-2 0-3 0-3 594 * groups: {0-2},{1-3} {1-3},{0-2} 595 * 596 * NUMA-1 0-2 0-3 0-3 1-3 597 * 598 * NUMA-0 0 1 2 3 599 * 600 */ 601 602 603 /* 604 * Build the balance mask; it contains only those CPUs that can arrive at this 605 * group and should be considered to continue balancing. 606 * 607 * We do this during the group creation pass, therefore the group information 608 * isn't complete yet, however since each group represents a (child) domain we 609 * can fully construct this using the sched_domain bits (which are already 610 * complete). 611 */ 612 static void 613 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 614 { 615 const struct cpumask *sg_span = sched_group_span(sg); 616 struct sd_data *sdd = sd->private; 617 struct sched_domain *sibling; 618 int i; 619 620 cpumask_clear(mask); 621 622 for_each_cpu(i, sg_span) { 623 sibling = *per_cpu_ptr(sdd->sd, i); 624 625 /* 626 * Can happen in the asymmetric case, where these siblings are 627 * unused. The mask will not be empty because those CPUs that 628 * do have the top domain _should_ span the domain. 629 */ 630 if (!sibling->child) 631 continue; 632 633 /* If we would not end up here, we can't continue from here */ 634 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 635 continue; 636 637 cpumask_set_cpu(i, mask); 638 } 639 640 /* We must not have empty masks here */ 641 WARN_ON_ONCE(cpumask_empty(mask)); 642 } 643 644 /* 645 * XXX: This creates per-node group entries; since the load-balancer will 646 * immediately access remote memory to construct this group's load-balance 647 * statistics having the groups node local is of dubious benefit. 648 */ 649 static struct sched_group * 650 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 651 { 652 struct sched_group *sg; 653 struct cpumask *sg_span; 654 655 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 656 GFP_KERNEL, cpu_to_node(cpu)); 657 658 if (!sg) 659 return NULL; 660 661 sg_span = sched_group_span(sg); 662 if (sd->child) 663 cpumask_copy(sg_span, sched_domain_span(sd->child)); 664 else 665 cpumask_copy(sg_span, sched_domain_span(sd)); 666 667 atomic_inc(&sg->ref); 668 return sg; 669 } 670 671 static void init_overlap_sched_group(struct sched_domain *sd, 672 struct sched_group *sg) 673 { 674 struct cpumask *mask = sched_domains_tmpmask2; 675 struct sd_data *sdd = sd->private; 676 struct cpumask *sg_span; 677 int cpu; 678 679 build_balance_mask(sd, sg, mask); 680 cpu = cpumask_first_and(sched_group_span(sg), mask); 681 682 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 683 if (atomic_inc_return(&sg->sgc->ref) == 1) 684 cpumask_copy(group_balance_mask(sg), mask); 685 else 686 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 687 688 /* 689 * Initialize sgc->capacity such that even if we mess up the 690 * domains and no possible iteration will get us here, we won't 691 * die on a /0 trap. 692 */ 693 sg_span = sched_group_span(sg); 694 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 695 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 696 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 697 } 698 699 static int 700 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 701 { 702 struct sched_group *first = NULL, *last = NULL, *sg; 703 const struct cpumask *span = sched_domain_span(sd); 704 struct cpumask *covered = sched_domains_tmpmask; 705 struct sd_data *sdd = sd->private; 706 struct sched_domain *sibling; 707 int i; 708 709 cpumask_clear(covered); 710 711 for_each_cpu_wrap(i, span, cpu) { 712 struct cpumask *sg_span; 713 714 if (cpumask_test_cpu(i, covered)) 715 continue; 716 717 sibling = *per_cpu_ptr(sdd->sd, i); 718 719 /* 720 * Asymmetric node setups can result in situations where the 721 * domain tree is of unequal depth, make sure to skip domains 722 * that already cover the entire range. 723 * 724 * In that case build_sched_domains() will have terminated the 725 * iteration early and our sibling sd spans will be empty. 726 * Domains should always include the CPU they're built on, so 727 * check that. 728 */ 729 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 730 continue; 731 732 sg = build_group_from_child_sched_domain(sibling, cpu); 733 if (!sg) 734 goto fail; 735 736 sg_span = sched_group_span(sg); 737 cpumask_or(covered, covered, sg_span); 738 739 init_overlap_sched_group(sd, sg); 740 741 if (!first) 742 first = sg; 743 if (last) 744 last->next = sg; 745 last = sg; 746 last->next = first; 747 } 748 sd->groups = first; 749 750 return 0; 751 752 fail: 753 free_sched_groups(first, 0); 754 755 return -ENOMEM; 756 } 757 758 759 /* 760 * Package topology (also see the load-balance blurb in fair.c) 761 * 762 * The scheduler builds a tree structure to represent a number of important 763 * topology features. By default (default_topology[]) these include: 764 * 765 * - Simultaneous multithreading (SMT) 766 * - Multi-Core Cache (MC) 767 * - Package (DIE) 768 * 769 * Where the last one more or less denotes everything up to a NUMA node. 770 * 771 * The tree consists of 3 primary data structures: 772 * 773 * sched_domain -> sched_group -> sched_group_capacity 774 * ^ ^ ^ ^ 775 * `-' `-' 776 * 777 * The sched_domains are per-CPU and have a two way link (parent & child) and 778 * denote the ever growing mask of CPUs belonging to that level of topology. 779 * 780 * Each sched_domain has a circular (double) linked list of sched_group's, each 781 * denoting the domains of the level below (or individual CPUs in case of the 782 * first domain level). The sched_group linked by a sched_domain includes the 783 * CPU of that sched_domain [*]. 784 * 785 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 786 * 787 * CPU 0 1 2 3 4 5 6 7 788 * 789 * DIE [ ] 790 * MC [ ] [ ] 791 * SMT [ ] [ ] [ ] [ ] 792 * 793 * - or - 794 * 795 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 796 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 797 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 798 * 799 * CPU 0 1 2 3 4 5 6 7 800 * 801 * One way to think about it is: sched_domain moves you up and down among these 802 * topology levels, while sched_group moves you sideways through it, at child 803 * domain granularity. 804 * 805 * sched_group_capacity ensures each unique sched_group has shared storage. 806 * 807 * There are two related construction problems, both require a CPU that 808 * uniquely identify each group (for a given domain): 809 * 810 * - The first is the balance_cpu (see should_we_balance() and the 811 * load-balance blub in fair.c); for each group we only want 1 CPU to 812 * continue balancing at a higher domain. 813 * 814 * - The second is the sched_group_capacity; we want all identical groups 815 * to share a single sched_group_capacity. 816 * 817 * Since these topologies are exclusive by construction. That is, its 818 * impossible for an SMT thread to belong to multiple cores, and cores to 819 * be part of multiple caches. There is a very clear and unique location 820 * for each CPU in the hierarchy. 821 * 822 * Therefore computing a unique CPU for each group is trivial (the iteration 823 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 824 * group), we can simply pick the first CPU in each group. 825 * 826 * 827 * [*] in other words, the first group of each domain is its child domain. 828 */ 829 830 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 831 { 832 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 833 struct sched_domain *child = sd->child; 834 struct sched_group *sg; 835 836 if (child) 837 cpu = cpumask_first(sched_domain_span(child)); 838 839 sg = *per_cpu_ptr(sdd->sg, cpu); 840 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 841 842 /* For claim_allocations: */ 843 atomic_inc(&sg->ref); 844 atomic_inc(&sg->sgc->ref); 845 846 if (child) { 847 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 848 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 849 } else { 850 cpumask_set_cpu(cpu, sched_group_span(sg)); 851 cpumask_set_cpu(cpu, group_balance_mask(sg)); 852 } 853 854 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 855 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 856 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 857 858 return sg; 859 } 860 861 /* 862 * build_sched_groups will build a circular linked list of the groups 863 * covered by the given span, and will set each group's ->cpumask correctly, 864 * and ->cpu_capacity to 0. 865 * 866 * Assumes the sched_domain tree is fully constructed 867 */ 868 static int 869 build_sched_groups(struct sched_domain *sd, int cpu) 870 { 871 struct sched_group *first = NULL, *last = NULL; 872 struct sd_data *sdd = sd->private; 873 const struct cpumask *span = sched_domain_span(sd); 874 struct cpumask *covered; 875 int i; 876 877 lockdep_assert_held(&sched_domains_mutex); 878 covered = sched_domains_tmpmask; 879 880 cpumask_clear(covered); 881 882 for_each_cpu_wrap(i, span, cpu) { 883 struct sched_group *sg; 884 885 if (cpumask_test_cpu(i, covered)) 886 continue; 887 888 sg = get_group(i, sdd); 889 890 cpumask_or(covered, covered, sched_group_span(sg)); 891 892 if (!first) 893 first = sg; 894 if (last) 895 last->next = sg; 896 last = sg; 897 } 898 last->next = first; 899 sd->groups = first; 900 901 return 0; 902 } 903 904 /* 905 * Initialize sched groups cpu_capacity. 906 * 907 * cpu_capacity indicates the capacity of sched group, which is used while 908 * distributing the load between different sched groups in a sched domain. 909 * Typically cpu_capacity for all the groups in a sched domain will be same 910 * unless there are asymmetries in the topology. If there are asymmetries, 911 * group having more cpu_capacity will pickup more load compared to the 912 * group having less cpu_capacity. 913 */ 914 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 915 { 916 struct sched_group *sg = sd->groups; 917 918 WARN_ON(!sg); 919 920 do { 921 int cpu, max_cpu = -1; 922 923 sg->group_weight = cpumask_weight(sched_group_span(sg)); 924 925 if (!(sd->flags & SD_ASYM_PACKING)) 926 goto next; 927 928 for_each_cpu(cpu, sched_group_span(sg)) { 929 if (max_cpu < 0) 930 max_cpu = cpu; 931 else if (sched_asym_prefer(cpu, max_cpu)) 932 max_cpu = cpu; 933 } 934 sg->asym_prefer_cpu = max_cpu; 935 936 next: 937 sg = sg->next; 938 } while (sg != sd->groups); 939 940 if (cpu != group_balance_cpu(sg)) 941 return; 942 943 update_group_capacity(sd, cpu); 944 } 945 946 /* 947 * Initializers for schedule domains 948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 949 */ 950 951 static int default_relax_domain_level = -1; 952 int sched_domain_level_max; 953 954 static int __init setup_relax_domain_level(char *str) 955 { 956 if (kstrtoint(str, 0, &default_relax_domain_level)) 957 pr_warn("Unable to set relax_domain_level\n"); 958 959 return 1; 960 } 961 __setup("relax_domain_level=", setup_relax_domain_level); 962 963 static void set_domain_attribute(struct sched_domain *sd, 964 struct sched_domain_attr *attr) 965 { 966 int request; 967 968 if (!attr || attr->relax_domain_level < 0) { 969 if (default_relax_domain_level < 0) 970 return; 971 else 972 request = default_relax_domain_level; 973 } else 974 request = attr->relax_domain_level; 975 if (request < sd->level) { 976 /* Turn off idle balance on this domain: */ 977 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 978 } else { 979 /* Turn on idle balance on this domain: */ 980 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 981 } 982 } 983 984 static void __sdt_free(const struct cpumask *cpu_map); 985 static int __sdt_alloc(const struct cpumask *cpu_map); 986 987 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 988 const struct cpumask *cpu_map) 989 { 990 switch (what) { 991 case sa_rootdomain: 992 if (!atomic_read(&d->rd->refcount)) 993 free_rootdomain(&d->rd->rcu); 994 /* Fall through */ 995 case sa_sd: 996 free_percpu(d->sd); 997 /* Fall through */ 998 case sa_sd_storage: 999 __sdt_free(cpu_map); 1000 /* Fall through */ 1001 case sa_none: 1002 break; 1003 } 1004 } 1005 1006 static enum s_alloc 1007 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1008 { 1009 memset(d, 0, sizeof(*d)); 1010 1011 if (__sdt_alloc(cpu_map)) 1012 return sa_sd_storage; 1013 d->sd = alloc_percpu(struct sched_domain *); 1014 if (!d->sd) 1015 return sa_sd_storage; 1016 d->rd = alloc_rootdomain(); 1017 if (!d->rd) 1018 return sa_sd; 1019 1020 return sa_rootdomain; 1021 } 1022 1023 /* 1024 * NULL the sd_data elements we've used to build the sched_domain and 1025 * sched_group structure so that the subsequent __free_domain_allocs() 1026 * will not free the data we're using. 1027 */ 1028 static void claim_allocations(int cpu, struct sched_domain *sd) 1029 { 1030 struct sd_data *sdd = sd->private; 1031 1032 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1033 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1034 1035 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1036 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1037 1038 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1039 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1040 1041 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1042 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1043 } 1044 1045 #ifdef CONFIG_NUMA 1046 enum numa_topology_type sched_numa_topology_type; 1047 1048 static int sched_domains_numa_levels; 1049 static int sched_domains_curr_level; 1050 1051 int sched_max_numa_distance; 1052 static int *sched_domains_numa_distance; 1053 static struct cpumask ***sched_domains_numa_masks; 1054 #endif 1055 1056 /* 1057 * SD_flags allowed in topology descriptions. 1058 * 1059 * These flags are purely descriptive of the topology and do not prescribe 1060 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1061 * function: 1062 * 1063 * SD_SHARE_CPUCAPACITY - describes SMT topologies 1064 * SD_SHARE_PKG_RESOURCES - describes shared caches 1065 * SD_NUMA - describes NUMA topologies 1066 * SD_SHARE_POWERDOMAIN - describes shared power domain 1067 * 1068 * Odd one out, which beside describing the topology has a quirk also 1069 * prescribes the desired behaviour that goes along with it: 1070 * 1071 * SD_ASYM_PACKING - describes SMT quirks 1072 */ 1073 #define TOPOLOGY_SD_FLAGS \ 1074 (SD_SHARE_CPUCAPACITY | \ 1075 SD_SHARE_PKG_RESOURCES | \ 1076 SD_NUMA | \ 1077 SD_ASYM_PACKING | \ 1078 SD_SHARE_POWERDOMAIN) 1079 1080 static struct sched_domain * 1081 sd_init(struct sched_domain_topology_level *tl, 1082 const struct cpumask *cpu_map, 1083 struct sched_domain *child, int dflags, int cpu) 1084 { 1085 struct sd_data *sdd = &tl->data; 1086 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1087 int sd_id, sd_weight, sd_flags = 0; 1088 1089 #ifdef CONFIG_NUMA 1090 /* 1091 * Ugly hack to pass state to sd_numa_mask()... 1092 */ 1093 sched_domains_curr_level = tl->numa_level; 1094 #endif 1095 1096 sd_weight = cpumask_weight(tl->mask(cpu)); 1097 1098 if (tl->sd_flags) 1099 sd_flags = (*tl->sd_flags)(); 1100 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1101 "wrong sd_flags in topology description\n")) 1102 sd_flags &= ~TOPOLOGY_SD_FLAGS; 1103 1104 /* Apply detected topology flags */ 1105 sd_flags |= dflags; 1106 1107 *sd = (struct sched_domain){ 1108 .min_interval = sd_weight, 1109 .max_interval = 2*sd_weight, 1110 .busy_factor = 32, 1111 .imbalance_pct = 125, 1112 1113 .cache_nice_tries = 0, 1114 .busy_idx = 0, 1115 .idle_idx = 0, 1116 .newidle_idx = 0, 1117 .wake_idx = 0, 1118 .forkexec_idx = 0, 1119 1120 .flags = 1*SD_LOAD_BALANCE 1121 | 1*SD_BALANCE_NEWIDLE 1122 | 1*SD_BALANCE_EXEC 1123 | 1*SD_BALANCE_FORK 1124 | 0*SD_BALANCE_WAKE 1125 | 1*SD_WAKE_AFFINE 1126 | 0*SD_SHARE_CPUCAPACITY 1127 | 0*SD_SHARE_PKG_RESOURCES 1128 | 0*SD_SERIALIZE 1129 | 1*SD_PREFER_SIBLING 1130 | 0*SD_NUMA 1131 | sd_flags 1132 , 1133 1134 .last_balance = jiffies, 1135 .balance_interval = sd_weight, 1136 .smt_gain = 0, 1137 .max_newidle_lb_cost = 0, 1138 .next_decay_max_lb_cost = jiffies, 1139 .child = child, 1140 #ifdef CONFIG_SCHED_DEBUG 1141 .name = tl->name, 1142 #endif 1143 }; 1144 1145 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 1146 sd_id = cpumask_first(sched_domain_span(sd)); 1147 1148 /* 1149 * Convert topological properties into behaviour. 1150 */ 1151 1152 if (sd->flags & SD_ASYM_CPUCAPACITY) { 1153 struct sched_domain *t = sd; 1154 1155 /* 1156 * Don't attempt to spread across CPUs of different capacities. 1157 */ 1158 if (sd->child) 1159 sd->child->flags &= ~SD_PREFER_SIBLING; 1160 1161 for_each_lower_domain(t) 1162 t->flags |= SD_BALANCE_WAKE; 1163 } 1164 1165 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1166 sd->imbalance_pct = 110; 1167 sd->smt_gain = 1178; /* ~15% */ 1168 1169 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1170 sd->imbalance_pct = 117; 1171 sd->cache_nice_tries = 1; 1172 sd->busy_idx = 2; 1173 1174 #ifdef CONFIG_NUMA 1175 } else if (sd->flags & SD_NUMA) { 1176 sd->cache_nice_tries = 2; 1177 sd->busy_idx = 3; 1178 sd->idle_idx = 2; 1179 1180 sd->flags &= ~SD_PREFER_SIBLING; 1181 sd->flags |= SD_SERIALIZE; 1182 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 1183 sd->flags &= ~(SD_BALANCE_EXEC | 1184 SD_BALANCE_FORK | 1185 SD_WAKE_AFFINE); 1186 } 1187 1188 #endif 1189 } else { 1190 sd->cache_nice_tries = 1; 1191 sd->busy_idx = 2; 1192 sd->idle_idx = 1; 1193 } 1194 1195 /* 1196 * For all levels sharing cache; connect a sched_domain_shared 1197 * instance. 1198 */ 1199 if (sd->flags & SD_SHARE_PKG_RESOURCES) { 1200 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1201 atomic_inc(&sd->shared->ref); 1202 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1203 } 1204 1205 sd->private = sdd; 1206 1207 return sd; 1208 } 1209 1210 /* 1211 * Topology list, bottom-up. 1212 */ 1213 static struct sched_domain_topology_level default_topology[] = { 1214 #ifdef CONFIG_SCHED_SMT 1215 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1216 #endif 1217 #ifdef CONFIG_SCHED_MC 1218 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1219 #endif 1220 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 1221 { NULL, }, 1222 }; 1223 1224 static struct sched_domain_topology_level *sched_domain_topology = 1225 default_topology; 1226 1227 #define for_each_sd_topology(tl) \ 1228 for (tl = sched_domain_topology; tl->mask; tl++) 1229 1230 void set_sched_topology(struct sched_domain_topology_level *tl) 1231 { 1232 if (WARN_ON_ONCE(sched_smp_initialized)) 1233 return; 1234 1235 sched_domain_topology = tl; 1236 } 1237 1238 #ifdef CONFIG_NUMA 1239 1240 static const struct cpumask *sd_numa_mask(int cpu) 1241 { 1242 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1243 } 1244 1245 static void sched_numa_warn(const char *str) 1246 { 1247 static int done = false; 1248 int i,j; 1249 1250 if (done) 1251 return; 1252 1253 done = true; 1254 1255 printk(KERN_WARNING "ERROR: %s\n\n", str); 1256 1257 for (i = 0; i < nr_node_ids; i++) { 1258 printk(KERN_WARNING " "); 1259 for (j = 0; j < nr_node_ids; j++) 1260 printk(KERN_CONT "%02d ", node_distance(i,j)); 1261 printk(KERN_CONT "\n"); 1262 } 1263 printk(KERN_WARNING "\n"); 1264 } 1265 1266 bool find_numa_distance(int distance) 1267 { 1268 int i; 1269 1270 if (distance == node_distance(0, 0)) 1271 return true; 1272 1273 for (i = 0; i < sched_domains_numa_levels; i++) { 1274 if (sched_domains_numa_distance[i] == distance) 1275 return true; 1276 } 1277 1278 return false; 1279 } 1280 1281 /* 1282 * A system can have three types of NUMA topology: 1283 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1284 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1285 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1286 * 1287 * The difference between a glueless mesh topology and a backplane 1288 * topology lies in whether communication between not directly 1289 * connected nodes goes through intermediary nodes (where programs 1290 * could run), or through backplane controllers. This affects 1291 * placement of programs. 1292 * 1293 * The type of topology can be discerned with the following tests: 1294 * - If the maximum distance between any nodes is 1 hop, the system 1295 * is directly connected. 1296 * - If for two nodes A and B, located N > 1 hops away from each other, 1297 * there is an intermediary node C, which is < N hops away from both 1298 * nodes A and B, the system is a glueless mesh. 1299 */ 1300 static void init_numa_topology_type(void) 1301 { 1302 int a, b, c, n; 1303 1304 n = sched_max_numa_distance; 1305 1306 if (sched_domains_numa_levels <= 2) { 1307 sched_numa_topology_type = NUMA_DIRECT; 1308 return; 1309 } 1310 1311 for_each_online_node(a) { 1312 for_each_online_node(b) { 1313 /* Find two nodes furthest removed from each other. */ 1314 if (node_distance(a, b) < n) 1315 continue; 1316 1317 /* Is there an intermediary node between a and b? */ 1318 for_each_online_node(c) { 1319 if (node_distance(a, c) < n && 1320 node_distance(b, c) < n) { 1321 sched_numa_topology_type = 1322 NUMA_GLUELESS_MESH; 1323 return; 1324 } 1325 } 1326 1327 sched_numa_topology_type = NUMA_BACKPLANE; 1328 return; 1329 } 1330 } 1331 } 1332 1333 void sched_init_numa(void) 1334 { 1335 int next_distance, curr_distance = node_distance(0, 0); 1336 struct sched_domain_topology_level *tl; 1337 int level = 0; 1338 int i, j, k; 1339 1340 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL); 1341 if (!sched_domains_numa_distance) 1342 return; 1343 1344 /* Includes NUMA identity node at level 0. */ 1345 sched_domains_numa_distance[level++] = curr_distance; 1346 sched_domains_numa_levels = level; 1347 1348 /* 1349 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 1350 * unique distances in the node_distance() table. 1351 * 1352 * Assumes node_distance(0,j) includes all distances in 1353 * node_distance(i,j) in order to avoid cubic time. 1354 */ 1355 next_distance = curr_distance; 1356 for (i = 0; i < nr_node_ids; i++) { 1357 for (j = 0; j < nr_node_ids; j++) { 1358 for (k = 0; k < nr_node_ids; k++) { 1359 int distance = node_distance(i, k); 1360 1361 if (distance > curr_distance && 1362 (distance < next_distance || 1363 next_distance == curr_distance)) 1364 next_distance = distance; 1365 1366 /* 1367 * While not a strong assumption it would be nice to know 1368 * about cases where if node A is connected to B, B is not 1369 * equally connected to A. 1370 */ 1371 if (sched_debug() && node_distance(k, i) != distance) 1372 sched_numa_warn("Node-distance not symmetric"); 1373 1374 if (sched_debug() && i && !find_numa_distance(distance)) 1375 sched_numa_warn("Node-0 not representative"); 1376 } 1377 if (next_distance != curr_distance) { 1378 sched_domains_numa_distance[level++] = next_distance; 1379 sched_domains_numa_levels = level; 1380 curr_distance = next_distance; 1381 } else break; 1382 } 1383 1384 /* 1385 * In case of sched_debug() we verify the above assumption. 1386 */ 1387 if (!sched_debug()) 1388 break; 1389 } 1390 1391 /* 1392 * 'level' contains the number of unique distances 1393 * 1394 * The sched_domains_numa_distance[] array includes the actual distance 1395 * numbers. 1396 */ 1397 1398 /* 1399 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1400 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1401 * the array will contain less then 'level' members. This could be 1402 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1403 * in other functions. 1404 * 1405 * We reset it to 'level' at the end of this function. 1406 */ 1407 sched_domains_numa_levels = 0; 1408 1409 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 1410 if (!sched_domains_numa_masks) 1411 return; 1412 1413 /* 1414 * Now for each level, construct a mask per node which contains all 1415 * CPUs of nodes that are that many hops away from us. 1416 */ 1417 for (i = 0; i < level; i++) { 1418 sched_domains_numa_masks[i] = 1419 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1420 if (!sched_domains_numa_masks[i]) 1421 return; 1422 1423 for (j = 0; j < nr_node_ids; j++) { 1424 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1425 if (!mask) 1426 return; 1427 1428 sched_domains_numa_masks[i][j] = mask; 1429 1430 for_each_node(k) { 1431 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1432 continue; 1433 1434 cpumask_or(mask, mask, cpumask_of_node(k)); 1435 } 1436 } 1437 } 1438 1439 /* Compute default topology size */ 1440 for (i = 0; sched_domain_topology[i].mask; i++); 1441 1442 tl = kzalloc((i + level + 1) * 1443 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1444 if (!tl) 1445 return; 1446 1447 /* 1448 * Copy the default topology bits.. 1449 */ 1450 for (i = 0; sched_domain_topology[i].mask; i++) 1451 tl[i] = sched_domain_topology[i]; 1452 1453 /* 1454 * Add the NUMA identity distance, aka single NODE. 1455 */ 1456 tl[i++] = (struct sched_domain_topology_level){ 1457 .mask = sd_numa_mask, 1458 .numa_level = 0, 1459 SD_INIT_NAME(NODE) 1460 }; 1461 1462 /* 1463 * .. and append 'j' levels of NUMA goodness. 1464 */ 1465 for (j = 1; j < level; i++, j++) { 1466 tl[i] = (struct sched_domain_topology_level){ 1467 .mask = sd_numa_mask, 1468 .sd_flags = cpu_numa_flags, 1469 .flags = SDTL_OVERLAP, 1470 .numa_level = j, 1471 SD_INIT_NAME(NUMA) 1472 }; 1473 } 1474 1475 sched_domain_topology = tl; 1476 1477 sched_domains_numa_levels = level; 1478 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 1479 1480 init_numa_topology_type(); 1481 } 1482 1483 void sched_domains_numa_masks_set(unsigned int cpu) 1484 { 1485 int node = cpu_to_node(cpu); 1486 int i, j; 1487 1488 for (i = 0; i < sched_domains_numa_levels; i++) { 1489 for (j = 0; j < nr_node_ids; j++) { 1490 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 1491 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 1492 } 1493 } 1494 } 1495 1496 void sched_domains_numa_masks_clear(unsigned int cpu) 1497 { 1498 int i, j; 1499 1500 for (i = 0; i < sched_domains_numa_levels; i++) { 1501 for (j = 0; j < nr_node_ids; j++) 1502 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 1503 } 1504 } 1505 1506 #endif /* CONFIG_NUMA */ 1507 1508 static int __sdt_alloc(const struct cpumask *cpu_map) 1509 { 1510 struct sched_domain_topology_level *tl; 1511 int j; 1512 1513 for_each_sd_topology(tl) { 1514 struct sd_data *sdd = &tl->data; 1515 1516 sdd->sd = alloc_percpu(struct sched_domain *); 1517 if (!sdd->sd) 1518 return -ENOMEM; 1519 1520 sdd->sds = alloc_percpu(struct sched_domain_shared *); 1521 if (!sdd->sds) 1522 return -ENOMEM; 1523 1524 sdd->sg = alloc_percpu(struct sched_group *); 1525 if (!sdd->sg) 1526 return -ENOMEM; 1527 1528 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 1529 if (!sdd->sgc) 1530 return -ENOMEM; 1531 1532 for_each_cpu(j, cpu_map) { 1533 struct sched_domain *sd; 1534 struct sched_domain_shared *sds; 1535 struct sched_group *sg; 1536 struct sched_group_capacity *sgc; 1537 1538 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 1539 GFP_KERNEL, cpu_to_node(j)); 1540 if (!sd) 1541 return -ENOMEM; 1542 1543 *per_cpu_ptr(sdd->sd, j) = sd; 1544 1545 sds = kzalloc_node(sizeof(struct sched_domain_shared), 1546 GFP_KERNEL, cpu_to_node(j)); 1547 if (!sds) 1548 return -ENOMEM; 1549 1550 *per_cpu_ptr(sdd->sds, j) = sds; 1551 1552 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 1553 GFP_KERNEL, cpu_to_node(j)); 1554 if (!sg) 1555 return -ENOMEM; 1556 1557 sg->next = sg; 1558 1559 *per_cpu_ptr(sdd->sg, j) = sg; 1560 1561 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 1562 GFP_KERNEL, cpu_to_node(j)); 1563 if (!sgc) 1564 return -ENOMEM; 1565 1566 #ifdef CONFIG_SCHED_DEBUG 1567 sgc->id = j; 1568 #endif 1569 1570 *per_cpu_ptr(sdd->sgc, j) = sgc; 1571 } 1572 } 1573 1574 return 0; 1575 } 1576 1577 static void __sdt_free(const struct cpumask *cpu_map) 1578 { 1579 struct sched_domain_topology_level *tl; 1580 int j; 1581 1582 for_each_sd_topology(tl) { 1583 struct sd_data *sdd = &tl->data; 1584 1585 for_each_cpu(j, cpu_map) { 1586 struct sched_domain *sd; 1587 1588 if (sdd->sd) { 1589 sd = *per_cpu_ptr(sdd->sd, j); 1590 if (sd && (sd->flags & SD_OVERLAP)) 1591 free_sched_groups(sd->groups, 0); 1592 kfree(*per_cpu_ptr(sdd->sd, j)); 1593 } 1594 1595 if (sdd->sds) 1596 kfree(*per_cpu_ptr(sdd->sds, j)); 1597 if (sdd->sg) 1598 kfree(*per_cpu_ptr(sdd->sg, j)); 1599 if (sdd->sgc) 1600 kfree(*per_cpu_ptr(sdd->sgc, j)); 1601 } 1602 free_percpu(sdd->sd); 1603 sdd->sd = NULL; 1604 free_percpu(sdd->sds); 1605 sdd->sds = NULL; 1606 free_percpu(sdd->sg); 1607 sdd->sg = NULL; 1608 free_percpu(sdd->sgc); 1609 sdd->sgc = NULL; 1610 } 1611 } 1612 1613 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 1614 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 1615 struct sched_domain *child, int dflags, int cpu) 1616 { 1617 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu); 1618 1619 if (child) { 1620 sd->level = child->level + 1; 1621 sched_domain_level_max = max(sched_domain_level_max, sd->level); 1622 child->parent = sd; 1623 1624 if (!cpumask_subset(sched_domain_span(child), 1625 sched_domain_span(sd))) { 1626 pr_err("BUG: arch topology borken\n"); 1627 #ifdef CONFIG_SCHED_DEBUG 1628 pr_err(" the %s domain not a subset of the %s domain\n", 1629 child->name, sd->name); 1630 #endif 1631 /* Fixup, ensure @sd has at least @child CPUs. */ 1632 cpumask_or(sched_domain_span(sd), 1633 sched_domain_span(sd), 1634 sched_domain_span(child)); 1635 } 1636 1637 } 1638 set_domain_attribute(sd, attr); 1639 1640 return sd; 1641 } 1642 1643 /* 1644 * Find the sched_domain_topology_level where all CPU capacities are visible 1645 * for all CPUs. 1646 */ 1647 static struct sched_domain_topology_level 1648 *asym_cpu_capacity_level(const struct cpumask *cpu_map) 1649 { 1650 int i, j, asym_level = 0; 1651 bool asym = false; 1652 struct sched_domain_topology_level *tl, *asym_tl = NULL; 1653 unsigned long cap; 1654 1655 /* Is there any asymmetry? */ 1656 cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map)); 1657 1658 for_each_cpu(i, cpu_map) { 1659 if (arch_scale_cpu_capacity(NULL, i) != cap) { 1660 asym = true; 1661 break; 1662 } 1663 } 1664 1665 if (!asym) 1666 return NULL; 1667 1668 /* 1669 * Examine topology from all CPU's point of views to detect the lowest 1670 * sched_domain_topology_level where a highest capacity CPU is visible 1671 * to everyone. 1672 */ 1673 for_each_cpu(i, cpu_map) { 1674 unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i); 1675 int tl_id = 0; 1676 1677 for_each_sd_topology(tl) { 1678 if (tl_id < asym_level) 1679 goto next_level; 1680 1681 for_each_cpu_and(j, tl->mask(i), cpu_map) { 1682 unsigned long capacity; 1683 1684 capacity = arch_scale_cpu_capacity(NULL, j); 1685 1686 if (capacity <= max_capacity) 1687 continue; 1688 1689 max_capacity = capacity; 1690 asym_level = tl_id; 1691 asym_tl = tl; 1692 } 1693 next_level: 1694 tl_id++; 1695 } 1696 } 1697 1698 return asym_tl; 1699 } 1700 1701 1702 /* 1703 * Build sched domains for a given set of CPUs and attach the sched domains 1704 * to the individual CPUs 1705 */ 1706 static int 1707 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 1708 { 1709 enum s_alloc alloc_state; 1710 struct sched_domain *sd; 1711 struct s_data d; 1712 struct rq *rq = NULL; 1713 int i, ret = -ENOMEM; 1714 struct sched_domain_topology_level *tl_asym; 1715 bool has_asym = false; 1716 1717 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 1718 if (alloc_state != sa_rootdomain) 1719 goto error; 1720 1721 tl_asym = asym_cpu_capacity_level(cpu_map); 1722 1723 /* Set up domains for CPUs specified by the cpu_map: */ 1724 for_each_cpu(i, cpu_map) { 1725 struct sched_domain_topology_level *tl; 1726 1727 sd = NULL; 1728 for_each_sd_topology(tl) { 1729 int dflags = 0; 1730 1731 if (tl == tl_asym) { 1732 dflags |= SD_ASYM_CPUCAPACITY; 1733 has_asym = true; 1734 } 1735 1736 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i); 1737 1738 if (tl == sched_domain_topology) 1739 *per_cpu_ptr(d.sd, i) = sd; 1740 if (tl->flags & SDTL_OVERLAP) 1741 sd->flags |= SD_OVERLAP; 1742 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 1743 break; 1744 } 1745 } 1746 1747 /* Build the groups for the domains */ 1748 for_each_cpu(i, cpu_map) { 1749 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1750 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 1751 if (sd->flags & SD_OVERLAP) { 1752 if (build_overlap_sched_groups(sd, i)) 1753 goto error; 1754 } else { 1755 if (build_sched_groups(sd, i)) 1756 goto error; 1757 } 1758 } 1759 } 1760 1761 /* Calculate CPU capacity for physical packages and nodes */ 1762 for (i = nr_cpumask_bits-1; i >= 0; i--) { 1763 if (!cpumask_test_cpu(i, cpu_map)) 1764 continue; 1765 1766 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 1767 claim_allocations(i, sd); 1768 init_sched_groups_capacity(i, sd); 1769 } 1770 } 1771 1772 /* Attach the domains */ 1773 rcu_read_lock(); 1774 for_each_cpu(i, cpu_map) { 1775 rq = cpu_rq(i); 1776 sd = *per_cpu_ptr(d.sd, i); 1777 1778 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ 1779 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) 1780 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); 1781 1782 cpu_attach_domain(sd, d.rd, i); 1783 } 1784 rcu_read_unlock(); 1785 1786 if (has_asym) 1787 static_branch_enable_cpuslocked(&sched_asym_cpucapacity); 1788 1789 if (rq && sched_debug_enabled) { 1790 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n", 1791 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); 1792 } 1793 1794 ret = 0; 1795 error: 1796 __free_domain_allocs(&d, alloc_state, cpu_map); 1797 1798 return ret; 1799 } 1800 1801 /* Current sched domains: */ 1802 static cpumask_var_t *doms_cur; 1803 1804 /* Number of sched domains in 'doms_cur': */ 1805 static int ndoms_cur; 1806 1807 /* Attribues of custom domains in 'doms_cur' */ 1808 static struct sched_domain_attr *dattr_cur; 1809 1810 /* 1811 * Special case: If a kmalloc() of a doms_cur partition (array of 1812 * cpumask) fails, then fallback to a single sched domain, 1813 * as determined by the single cpumask fallback_doms. 1814 */ 1815 static cpumask_var_t fallback_doms; 1816 1817 /* 1818 * arch_update_cpu_topology lets virtualized architectures update the 1819 * CPU core maps. It is supposed to return 1 if the topology changed 1820 * or 0 if it stayed the same. 1821 */ 1822 int __weak arch_update_cpu_topology(void) 1823 { 1824 return 0; 1825 } 1826 1827 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 1828 { 1829 int i; 1830 cpumask_var_t *doms; 1831 1832 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 1833 if (!doms) 1834 return NULL; 1835 for (i = 0; i < ndoms; i++) { 1836 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 1837 free_sched_domains(doms, i); 1838 return NULL; 1839 } 1840 } 1841 return doms; 1842 } 1843 1844 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 1845 { 1846 unsigned int i; 1847 for (i = 0; i < ndoms; i++) 1848 free_cpumask_var(doms[i]); 1849 kfree(doms); 1850 } 1851 1852 /* 1853 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 1854 * For now this just excludes isolated CPUs, but could be used to 1855 * exclude other special cases in the future. 1856 */ 1857 int sched_init_domains(const struct cpumask *cpu_map) 1858 { 1859 int err; 1860 1861 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 1862 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 1863 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 1864 1865 arch_update_cpu_topology(); 1866 ndoms_cur = 1; 1867 doms_cur = alloc_sched_domains(ndoms_cur); 1868 if (!doms_cur) 1869 doms_cur = &fallback_doms; 1870 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN)); 1871 err = build_sched_domains(doms_cur[0], NULL); 1872 register_sched_domain_sysctl(); 1873 1874 return err; 1875 } 1876 1877 /* 1878 * Detach sched domains from a group of CPUs specified in cpu_map 1879 * These CPUs will now be attached to the NULL domain 1880 */ 1881 static void detach_destroy_domains(const struct cpumask *cpu_map) 1882 { 1883 int i; 1884 1885 rcu_read_lock(); 1886 for_each_cpu(i, cpu_map) 1887 cpu_attach_domain(NULL, &def_root_domain, i); 1888 rcu_read_unlock(); 1889 } 1890 1891 /* handle null as "default" */ 1892 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 1893 struct sched_domain_attr *new, int idx_new) 1894 { 1895 struct sched_domain_attr tmp; 1896 1897 /* Fast path: */ 1898 if (!new && !cur) 1899 return 1; 1900 1901 tmp = SD_ATTR_INIT; 1902 1903 return !memcmp(cur ? (cur + idx_cur) : &tmp, 1904 new ? (new + idx_new) : &tmp, 1905 sizeof(struct sched_domain_attr)); 1906 } 1907 1908 /* 1909 * Partition sched domains as specified by the 'ndoms_new' 1910 * cpumasks in the array doms_new[] of cpumasks. This compares 1911 * doms_new[] to the current sched domain partitioning, doms_cur[]. 1912 * It destroys each deleted domain and builds each new domain. 1913 * 1914 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 1915 * The masks don't intersect (don't overlap.) We should setup one 1916 * sched domain for each mask. CPUs not in any of the cpumasks will 1917 * not be load balanced. If the same cpumask appears both in the 1918 * current 'doms_cur' domains and in the new 'doms_new', we can leave 1919 * it as it is. 1920 * 1921 * The passed in 'doms_new' should be allocated using 1922 * alloc_sched_domains. This routine takes ownership of it and will 1923 * free_sched_domains it when done with it. If the caller failed the 1924 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 1925 * and partition_sched_domains() will fallback to the single partition 1926 * 'fallback_doms', it also forces the domains to be rebuilt. 1927 * 1928 * If doms_new == NULL it will be replaced with cpu_online_mask. 1929 * ndoms_new == 0 is a special case for destroying existing domains, 1930 * and it will not create the default domain. 1931 * 1932 * Call with hotplug lock held 1933 */ 1934 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1935 struct sched_domain_attr *dattr_new) 1936 { 1937 int i, j, n; 1938 int new_topology; 1939 1940 mutex_lock(&sched_domains_mutex); 1941 1942 /* Always unregister in case we don't destroy any domains: */ 1943 unregister_sched_domain_sysctl(); 1944 1945 /* Let the architecture update CPU core mappings: */ 1946 new_topology = arch_update_cpu_topology(); 1947 1948 if (!doms_new) { 1949 WARN_ON_ONCE(dattr_new); 1950 n = 0; 1951 doms_new = alloc_sched_domains(1); 1952 if (doms_new) { 1953 n = 1; 1954 cpumask_and(doms_new[0], cpu_active_mask, 1955 housekeeping_cpumask(HK_FLAG_DOMAIN)); 1956 } 1957 } else { 1958 n = ndoms_new; 1959 } 1960 1961 /* Destroy deleted domains: */ 1962 for (i = 0; i < ndoms_cur; i++) { 1963 for (j = 0; j < n && !new_topology; j++) { 1964 if (cpumask_equal(doms_cur[i], doms_new[j]) 1965 && dattrs_equal(dattr_cur, i, dattr_new, j)) 1966 goto match1; 1967 } 1968 /* No match - a current sched domain not in new doms_new[] */ 1969 detach_destroy_domains(doms_cur[i]); 1970 match1: 1971 ; 1972 } 1973 1974 n = ndoms_cur; 1975 if (!doms_new) { 1976 n = 0; 1977 doms_new = &fallback_doms; 1978 cpumask_and(doms_new[0], cpu_active_mask, 1979 housekeeping_cpumask(HK_FLAG_DOMAIN)); 1980 } 1981 1982 /* Build new domains: */ 1983 for (i = 0; i < ndoms_new; i++) { 1984 for (j = 0; j < n && !new_topology; j++) { 1985 if (cpumask_equal(doms_new[i], doms_cur[j]) 1986 && dattrs_equal(dattr_new, i, dattr_cur, j)) 1987 goto match2; 1988 } 1989 /* No match - add a new doms_new */ 1990 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 1991 match2: 1992 ; 1993 } 1994 1995 /* Remember the new sched domains: */ 1996 if (doms_cur != &fallback_doms) 1997 free_sched_domains(doms_cur, ndoms_cur); 1998 1999 kfree(dattr_cur); 2000 doms_cur = doms_new; 2001 dattr_cur = dattr_new; 2002 ndoms_cur = ndoms_new; 2003 2004 register_sched_domain_sysctl(); 2005 2006 mutex_unlock(&sched_domains_mutex); 2007 } 2008