xref: /openbmc/linux/kernel/sched/topology.c (revision 52cdded0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6 
7 DEFINE_MUTEX(sched_domains_mutex);
8 
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12 
13 #ifdef CONFIG_SCHED_DEBUG
14 
15 static int __init sched_debug_setup(char *str)
16 {
17 	sched_debug_enabled = true;
18 
19 	return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22 
23 static inline bool sched_debug(void)
24 {
25 	return sched_debug_enabled;
26 }
27 
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 				  struct cpumask *groupmask)
30 {
31 	struct sched_group *group = sd->groups;
32 
33 	cpumask_clear(groupmask);
34 
35 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36 	printk(KERN_CONT "span=%*pbl level=%s\n",
37 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
38 
39 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
40 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
41 	}
42 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
43 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
44 	}
45 
46 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
47 	do {
48 		if (!group) {
49 			printk("\n");
50 			printk(KERN_ERR "ERROR: group is NULL\n");
51 			break;
52 		}
53 
54 		if (!cpumask_weight(sched_group_span(group))) {
55 			printk(KERN_CONT "\n");
56 			printk(KERN_ERR "ERROR: empty group\n");
57 			break;
58 		}
59 
60 		if (!(sd->flags & SD_OVERLAP) &&
61 		    cpumask_intersects(groupmask, sched_group_span(group))) {
62 			printk(KERN_CONT "\n");
63 			printk(KERN_ERR "ERROR: repeated CPUs\n");
64 			break;
65 		}
66 
67 		cpumask_or(groupmask, groupmask, sched_group_span(group));
68 
69 		printk(KERN_CONT " %d:{ span=%*pbl",
70 				group->sgc->id,
71 				cpumask_pr_args(sched_group_span(group)));
72 
73 		if ((sd->flags & SD_OVERLAP) &&
74 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
75 			printk(KERN_CONT " mask=%*pbl",
76 				cpumask_pr_args(group_balance_mask(group)));
77 		}
78 
79 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
80 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
81 
82 		if (group == sd->groups && sd->child &&
83 		    !cpumask_equal(sched_domain_span(sd->child),
84 				   sched_group_span(group))) {
85 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
86 		}
87 
88 		printk(KERN_CONT " }");
89 
90 		group = group->next;
91 
92 		if (group != sd->groups)
93 			printk(KERN_CONT ",");
94 
95 	} while (group != sd->groups);
96 	printk(KERN_CONT "\n");
97 
98 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
99 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
100 
101 	if (sd->parent &&
102 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
103 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
104 	return 0;
105 }
106 
107 static void sched_domain_debug(struct sched_domain *sd, int cpu)
108 {
109 	int level = 0;
110 
111 	if (!sched_debug_enabled)
112 		return;
113 
114 	if (!sd) {
115 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
116 		return;
117 	}
118 
119 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
120 
121 	for (;;) {
122 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
123 			break;
124 		level++;
125 		sd = sd->parent;
126 		if (!sd)
127 			break;
128 	}
129 }
130 #else /* !CONFIG_SCHED_DEBUG */
131 
132 # define sched_debug_enabled 0
133 # define sched_domain_debug(sd, cpu) do { } while (0)
134 static inline bool sched_debug(void)
135 {
136 	return false;
137 }
138 #endif /* CONFIG_SCHED_DEBUG */
139 
140 static int sd_degenerate(struct sched_domain *sd)
141 {
142 	if (cpumask_weight(sched_domain_span(sd)) == 1)
143 		return 1;
144 
145 	/* Following flags need at least 2 groups */
146 	if (sd->flags & (SD_BALANCE_NEWIDLE |
147 			 SD_BALANCE_FORK |
148 			 SD_BALANCE_EXEC |
149 			 SD_SHARE_CPUCAPACITY |
150 			 SD_ASYM_CPUCAPACITY |
151 			 SD_SHARE_PKG_RESOURCES |
152 			 SD_SHARE_POWERDOMAIN)) {
153 		if (sd->groups != sd->groups->next)
154 			return 0;
155 	}
156 
157 	/* Following flags don't use groups */
158 	if (sd->flags & (SD_WAKE_AFFINE))
159 		return 0;
160 
161 	return 1;
162 }
163 
164 static int
165 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
166 {
167 	unsigned long cflags = sd->flags, pflags = parent->flags;
168 
169 	if (sd_degenerate(parent))
170 		return 1;
171 
172 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
173 		return 0;
174 
175 	/* Flags needing groups don't count if only 1 group in parent */
176 	if (parent->groups == parent->groups->next) {
177 		pflags &= ~(SD_BALANCE_NEWIDLE |
178 			    SD_BALANCE_FORK |
179 			    SD_BALANCE_EXEC |
180 			    SD_ASYM_CPUCAPACITY |
181 			    SD_SHARE_CPUCAPACITY |
182 			    SD_SHARE_PKG_RESOURCES |
183 			    SD_PREFER_SIBLING |
184 			    SD_SHARE_POWERDOMAIN);
185 		if (nr_node_ids == 1)
186 			pflags &= ~SD_SERIALIZE;
187 	}
188 	if (~cflags & pflags)
189 		return 0;
190 
191 	return 1;
192 }
193 
194 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
195 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
196 unsigned int sysctl_sched_energy_aware = 1;
197 DEFINE_MUTEX(sched_energy_mutex);
198 bool sched_energy_update;
199 
200 #ifdef CONFIG_PROC_SYSCTL
201 int sched_energy_aware_handler(struct ctl_table *table, int write,
202 		void *buffer, size_t *lenp, loff_t *ppos)
203 {
204 	int ret, state;
205 
206 	if (write && !capable(CAP_SYS_ADMIN))
207 		return -EPERM;
208 
209 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210 	if (!ret && write) {
211 		state = static_branch_unlikely(&sched_energy_present);
212 		if (state != sysctl_sched_energy_aware) {
213 			mutex_lock(&sched_energy_mutex);
214 			sched_energy_update = 1;
215 			rebuild_sched_domains();
216 			sched_energy_update = 0;
217 			mutex_unlock(&sched_energy_mutex);
218 		}
219 	}
220 
221 	return ret;
222 }
223 #endif
224 
225 static void free_pd(struct perf_domain *pd)
226 {
227 	struct perf_domain *tmp;
228 
229 	while (pd) {
230 		tmp = pd->next;
231 		kfree(pd);
232 		pd = tmp;
233 	}
234 }
235 
236 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
237 {
238 	while (pd) {
239 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
240 			return pd;
241 		pd = pd->next;
242 	}
243 
244 	return NULL;
245 }
246 
247 static struct perf_domain *pd_init(int cpu)
248 {
249 	struct em_perf_domain *obj = em_cpu_get(cpu);
250 	struct perf_domain *pd;
251 
252 	if (!obj) {
253 		if (sched_debug())
254 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
255 		return NULL;
256 	}
257 
258 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
259 	if (!pd)
260 		return NULL;
261 	pd->em_pd = obj;
262 
263 	return pd;
264 }
265 
266 static void perf_domain_debug(const struct cpumask *cpu_map,
267 						struct perf_domain *pd)
268 {
269 	if (!sched_debug() || !pd)
270 		return;
271 
272 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
273 
274 	while (pd) {
275 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
276 				cpumask_first(perf_domain_span(pd)),
277 				cpumask_pr_args(perf_domain_span(pd)),
278 				em_pd_nr_perf_states(pd->em_pd));
279 		pd = pd->next;
280 	}
281 
282 	printk(KERN_CONT "\n");
283 }
284 
285 static void destroy_perf_domain_rcu(struct rcu_head *rp)
286 {
287 	struct perf_domain *pd;
288 
289 	pd = container_of(rp, struct perf_domain, rcu);
290 	free_pd(pd);
291 }
292 
293 static void sched_energy_set(bool has_eas)
294 {
295 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
296 		if (sched_debug())
297 			pr_info("%s: stopping EAS\n", __func__);
298 		static_branch_disable_cpuslocked(&sched_energy_present);
299 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
300 		if (sched_debug())
301 			pr_info("%s: starting EAS\n", __func__);
302 		static_branch_enable_cpuslocked(&sched_energy_present);
303 	}
304 }
305 
306 /*
307  * EAS can be used on a root domain if it meets all the following conditions:
308  *    1. an Energy Model (EM) is available;
309  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
310  *    3. no SMT is detected.
311  *    4. the EM complexity is low enough to keep scheduling overheads low;
312  *    5. schedutil is driving the frequency of all CPUs of the rd;
313  *
314  * The complexity of the Energy Model is defined as:
315  *
316  *              C = nr_pd * (nr_cpus + nr_ps)
317  *
318  * with parameters defined as:
319  *  - nr_pd:    the number of performance domains
320  *  - nr_cpus:  the number of CPUs
321  *  - nr_ps:    the sum of the number of performance states of all performance
322  *              domains (for example, on a system with 2 performance domains,
323  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
324  *
325  * It is generally not a good idea to use such a model in the wake-up path on
326  * very complex platforms because of the associated scheduling overheads. The
327  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
328  * with per-CPU DVFS and less than 8 performance states each, for example.
329  */
330 #define EM_MAX_COMPLEXITY 2048
331 
332 extern struct cpufreq_governor schedutil_gov;
333 static bool build_perf_domains(const struct cpumask *cpu_map)
334 {
335 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
336 	struct perf_domain *pd = NULL, *tmp;
337 	int cpu = cpumask_first(cpu_map);
338 	struct root_domain *rd = cpu_rq(cpu)->rd;
339 	struct cpufreq_policy *policy;
340 	struct cpufreq_governor *gov;
341 
342 	if (!sysctl_sched_energy_aware)
343 		goto free;
344 
345 	/* EAS is enabled for asymmetric CPU capacity topologies. */
346 	if (!per_cpu(sd_asym_cpucapacity, cpu)) {
347 		if (sched_debug()) {
348 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
349 					cpumask_pr_args(cpu_map));
350 		}
351 		goto free;
352 	}
353 
354 	/* EAS definitely does *not* handle SMT */
355 	if (sched_smt_active()) {
356 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
357 			cpumask_pr_args(cpu_map));
358 		goto free;
359 	}
360 
361 	for_each_cpu(i, cpu_map) {
362 		/* Skip already covered CPUs. */
363 		if (find_pd(pd, i))
364 			continue;
365 
366 		/* Do not attempt EAS if schedutil is not being used. */
367 		policy = cpufreq_cpu_get(i);
368 		if (!policy)
369 			goto free;
370 		gov = policy->governor;
371 		cpufreq_cpu_put(policy);
372 		if (gov != &schedutil_gov) {
373 			if (rd->pd)
374 				pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
375 						cpumask_pr_args(cpu_map));
376 			goto free;
377 		}
378 
379 		/* Create the new pd and add it to the local list. */
380 		tmp = pd_init(i);
381 		if (!tmp)
382 			goto free;
383 		tmp->next = pd;
384 		pd = tmp;
385 
386 		/*
387 		 * Count performance domains and performance states for the
388 		 * complexity check.
389 		 */
390 		nr_pd++;
391 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
392 	}
393 
394 	/* Bail out if the Energy Model complexity is too high. */
395 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
396 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
397 						cpumask_pr_args(cpu_map));
398 		goto free;
399 	}
400 
401 	perf_domain_debug(cpu_map, pd);
402 
403 	/* Attach the new list of performance domains to the root domain. */
404 	tmp = rd->pd;
405 	rcu_assign_pointer(rd->pd, pd);
406 	if (tmp)
407 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
408 
409 	return !!pd;
410 
411 free:
412 	free_pd(pd);
413 	tmp = rd->pd;
414 	rcu_assign_pointer(rd->pd, NULL);
415 	if (tmp)
416 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
417 
418 	return false;
419 }
420 #else
421 static void free_pd(struct perf_domain *pd) { }
422 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
423 
424 static void free_rootdomain(struct rcu_head *rcu)
425 {
426 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
427 
428 	cpupri_cleanup(&rd->cpupri);
429 	cpudl_cleanup(&rd->cpudl);
430 	free_cpumask_var(rd->dlo_mask);
431 	free_cpumask_var(rd->rto_mask);
432 	free_cpumask_var(rd->online);
433 	free_cpumask_var(rd->span);
434 	free_pd(rd->pd);
435 	kfree(rd);
436 }
437 
438 void rq_attach_root(struct rq *rq, struct root_domain *rd)
439 {
440 	struct root_domain *old_rd = NULL;
441 	unsigned long flags;
442 
443 	raw_spin_lock_irqsave(&rq->lock, flags);
444 
445 	if (rq->rd) {
446 		old_rd = rq->rd;
447 
448 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
449 			set_rq_offline(rq);
450 
451 		cpumask_clear_cpu(rq->cpu, old_rd->span);
452 
453 		/*
454 		 * If we dont want to free the old_rd yet then
455 		 * set old_rd to NULL to skip the freeing later
456 		 * in this function:
457 		 */
458 		if (!atomic_dec_and_test(&old_rd->refcount))
459 			old_rd = NULL;
460 	}
461 
462 	atomic_inc(&rd->refcount);
463 	rq->rd = rd;
464 
465 	cpumask_set_cpu(rq->cpu, rd->span);
466 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
467 		set_rq_online(rq);
468 
469 	raw_spin_unlock_irqrestore(&rq->lock, flags);
470 
471 	if (old_rd)
472 		call_rcu(&old_rd->rcu, free_rootdomain);
473 }
474 
475 void sched_get_rd(struct root_domain *rd)
476 {
477 	atomic_inc(&rd->refcount);
478 }
479 
480 void sched_put_rd(struct root_domain *rd)
481 {
482 	if (!atomic_dec_and_test(&rd->refcount))
483 		return;
484 
485 	call_rcu(&rd->rcu, free_rootdomain);
486 }
487 
488 static int init_rootdomain(struct root_domain *rd)
489 {
490 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
491 		goto out;
492 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
493 		goto free_span;
494 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
495 		goto free_online;
496 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
497 		goto free_dlo_mask;
498 
499 #ifdef HAVE_RT_PUSH_IPI
500 	rd->rto_cpu = -1;
501 	raw_spin_lock_init(&rd->rto_lock);
502 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
503 #endif
504 
505 	init_dl_bw(&rd->dl_bw);
506 	if (cpudl_init(&rd->cpudl) != 0)
507 		goto free_rto_mask;
508 
509 	if (cpupri_init(&rd->cpupri) != 0)
510 		goto free_cpudl;
511 	return 0;
512 
513 free_cpudl:
514 	cpudl_cleanup(&rd->cpudl);
515 free_rto_mask:
516 	free_cpumask_var(rd->rto_mask);
517 free_dlo_mask:
518 	free_cpumask_var(rd->dlo_mask);
519 free_online:
520 	free_cpumask_var(rd->online);
521 free_span:
522 	free_cpumask_var(rd->span);
523 out:
524 	return -ENOMEM;
525 }
526 
527 /*
528  * By default the system creates a single root-domain with all CPUs as
529  * members (mimicking the global state we have today).
530  */
531 struct root_domain def_root_domain;
532 
533 void init_defrootdomain(void)
534 {
535 	init_rootdomain(&def_root_domain);
536 
537 	atomic_set(&def_root_domain.refcount, 1);
538 }
539 
540 static struct root_domain *alloc_rootdomain(void)
541 {
542 	struct root_domain *rd;
543 
544 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
545 	if (!rd)
546 		return NULL;
547 
548 	if (init_rootdomain(rd) != 0) {
549 		kfree(rd);
550 		return NULL;
551 	}
552 
553 	return rd;
554 }
555 
556 static void free_sched_groups(struct sched_group *sg, int free_sgc)
557 {
558 	struct sched_group *tmp, *first;
559 
560 	if (!sg)
561 		return;
562 
563 	first = sg;
564 	do {
565 		tmp = sg->next;
566 
567 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
568 			kfree(sg->sgc);
569 
570 		if (atomic_dec_and_test(&sg->ref))
571 			kfree(sg);
572 		sg = tmp;
573 	} while (sg != first);
574 }
575 
576 static void destroy_sched_domain(struct sched_domain *sd)
577 {
578 	/*
579 	 * A normal sched domain may have multiple group references, an
580 	 * overlapping domain, having private groups, only one.  Iterate,
581 	 * dropping group/capacity references, freeing where none remain.
582 	 */
583 	free_sched_groups(sd->groups, 1);
584 
585 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
586 		kfree(sd->shared);
587 	kfree(sd);
588 }
589 
590 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
591 {
592 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
593 
594 	while (sd) {
595 		struct sched_domain *parent = sd->parent;
596 		destroy_sched_domain(sd);
597 		sd = parent;
598 	}
599 }
600 
601 static void destroy_sched_domains(struct sched_domain *sd)
602 {
603 	if (sd)
604 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
605 }
606 
607 /*
608  * Keep a special pointer to the highest sched_domain that has
609  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
610  * allows us to avoid some pointer chasing select_idle_sibling().
611  *
612  * Also keep a unique ID per domain (we use the first CPU number in
613  * the cpumask of the domain), this allows us to quickly tell if
614  * two CPUs are in the same cache domain, see cpus_share_cache().
615  */
616 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
617 DEFINE_PER_CPU(int, sd_llc_size);
618 DEFINE_PER_CPU(int, sd_llc_id);
619 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
620 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
621 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
622 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
623 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
624 
625 static void update_top_cache_domain(int cpu)
626 {
627 	struct sched_domain_shared *sds = NULL;
628 	struct sched_domain *sd;
629 	int id = cpu;
630 	int size = 1;
631 
632 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
633 	if (sd) {
634 		id = cpumask_first(sched_domain_span(sd));
635 		size = cpumask_weight(sched_domain_span(sd));
636 		sds = sd->shared;
637 	}
638 
639 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
640 	per_cpu(sd_llc_size, cpu) = size;
641 	per_cpu(sd_llc_id, cpu) = id;
642 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
643 
644 	sd = lowest_flag_domain(cpu, SD_NUMA);
645 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
646 
647 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
648 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
649 
650 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
651 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
652 }
653 
654 /*
655  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
656  * hold the hotplug lock.
657  */
658 static void
659 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
660 {
661 	struct rq *rq = cpu_rq(cpu);
662 	struct sched_domain *tmp;
663 
664 	/* Remove the sched domains which do not contribute to scheduling. */
665 	for (tmp = sd; tmp; ) {
666 		struct sched_domain *parent = tmp->parent;
667 		if (!parent)
668 			break;
669 
670 		if (sd_parent_degenerate(tmp, parent)) {
671 			tmp->parent = parent->parent;
672 			if (parent->parent)
673 				parent->parent->child = tmp;
674 			/*
675 			 * Transfer SD_PREFER_SIBLING down in case of a
676 			 * degenerate parent; the spans match for this
677 			 * so the property transfers.
678 			 */
679 			if (parent->flags & SD_PREFER_SIBLING)
680 				tmp->flags |= SD_PREFER_SIBLING;
681 			destroy_sched_domain(parent);
682 		} else
683 			tmp = tmp->parent;
684 	}
685 
686 	if (sd && sd_degenerate(sd)) {
687 		tmp = sd;
688 		sd = sd->parent;
689 		destroy_sched_domain(tmp);
690 		if (sd)
691 			sd->child = NULL;
692 	}
693 
694 	sched_domain_debug(sd, cpu);
695 
696 	rq_attach_root(rq, rd);
697 	tmp = rq->sd;
698 	rcu_assign_pointer(rq->sd, sd);
699 	dirty_sched_domain_sysctl(cpu);
700 	destroy_sched_domains(tmp);
701 
702 	update_top_cache_domain(cpu);
703 }
704 
705 struct s_data {
706 	struct sched_domain * __percpu *sd;
707 	struct root_domain	*rd;
708 };
709 
710 enum s_alloc {
711 	sa_rootdomain,
712 	sa_sd,
713 	sa_sd_storage,
714 	sa_none,
715 };
716 
717 /*
718  * Return the canonical balance CPU for this group, this is the first CPU
719  * of this group that's also in the balance mask.
720  *
721  * The balance mask are all those CPUs that could actually end up at this
722  * group. See build_balance_mask().
723  *
724  * Also see should_we_balance().
725  */
726 int group_balance_cpu(struct sched_group *sg)
727 {
728 	return cpumask_first(group_balance_mask(sg));
729 }
730 
731 
732 /*
733  * NUMA topology (first read the regular topology blurb below)
734  *
735  * Given a node-distance table, for example:
736  *
737  *   node   0   1   2   3
738  *     0:  10  20  30  20
739  *     1:  20  10  20  30
740  *     2:  30  20  10  20
741  *     3:  20  30  20  10
742  *
743  * which represents a 4 node ring topology like:
744  *
745  *   0 ----- 1
746  *   |       |
747  *   |       |
748  *   |       |
749  *   3 ----- 2
750  *
751  * We want to construct domains and groups to represent this. The way we go
752  * about doing this is to build the domains on 'hops'. For each NUMA level we
753  * construct the mask of all nodes reachable in @level hops.
754  *
755  * For the above NUMA topology that gives 3 levels:
756  *
757  * NUMA-2	0-3		0-3		0-3		0-3
758  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
759  *
760  * NUMA-1	0-1,3		0-2		1-3		0,2-3
761  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
762  *
763  * NUMA-0	0		1		2		3
764  *
765  *
766  * As can be seen; things don't nicely line up as with the regular topology.
767  * When we iterate a domain in child domain chunks some nodes can be
768  * represented multiple times -- hence the "overlap" naming for this part of
769  * the topology.
770  *
771  * In order to minimize this overlap, we only build enough groups to cover the
772  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
773  *
774  * Because:
775  *
776  *  - the first group of each domain is its child domain; this
777  *    gets us the first 0-1,3
778  *  - the only uncovered node is 2, who's child domain is 1-3.
779  *
780  * However, because of the overlap, computing a unique CPU for each group is
781  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
782  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
783  * end up at those groups (they would end up in group: 0-1,3).
784  *
785  * To correct this we have to introduce the group balance mask. This mask
786  * will contain those CPUs in the group that can reach this group given the
787  * (child) domain tree.
788  *
789  * With this we can once again compute balance_cpu and sched_group_capacity
790  * relations.
791  *
792  * XXX include words on how balance_cpu is unique and therefore can be
793  * used for sched_group_capacity links.
794  *
795  *
796  * Another 'interesting' topology is:
797  *
798  *   node   0   1   2   3
799  *     0:  10  20  20  30
800  *     1:  20  10  20  20
801  *     2:  20  20  10  20
802  *     3:  30  20  20  10
803  *
804  * Which looks a little like:
805  *
806  *   0 ----- 1
807  *   |     / |
808  *   |   /   |
809  *   | /     |
810  *   2 ----- 3
811  *
812  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
813  * are not.
814  *
815  * This leads to a few particularly weird cases where the sched_domain's are
816  * not of the same number for each CPU. Consider:
817  *
818  * NUMA-2	0-3						0-3
819  *  groups:	{0-2},{1-3}					{1-3},{0-2}
820  *
821  * NUMA-1	0-2		0-3		0-3		1-3
822  *
823  * NUMA-0	0		1		2		3
824  *
825  */
826 
827 
828 /*
829  * Build the balance mask; it contains only those CPUs that can arrive at this
830  * group and should be considered to continue balancing.
831  *
832  * We do this during the group creation pass, therefore the group information
833  * isn't complete yet, however since each group represents a (child) domain we
834  * can fully construct this using the sched_domain bits (which are already
835  * complete).
836  */
837 static void
838 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
839 {
840 	const struct cpumask *sg_span = sched_group_span(sg);
841 	struct sd_data *sdd = sd->private;
842 	struct sched_domain *sibling;
843 	int i;
844 
845 	cpumask_clear(mask);
846 
847 	for_each_cpu(i, sg_span) {
848 		sibling = *per_cpu_ptr(sdd->sd, i);
849 
850 		/*
851 		 * Can happen in the asymmetric case, where these siblings are
852 		 * unused. The mask will not be empty because those CPUs that
853 		 * do have the top domain _should_ span the domain.
854 		 */
855 		if (!sibling->child)
856 			continue;
857 
858 		/* If we would not end up here, we can't continue from here */
859 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
860 			continue;
861 
862 		cpumask_set_cpu(i, mask);
863 	}
864 
865 	/* We must not have empty masks here */
866 	WARN_ON_ONCE(cpumask_empty(mask));
867 }
868 
869 /*
870  * XXX: This creates per-node group entries; since the load-balancer will
871  * immediately access remote memory to construct this group's load-balance
872  * statistics having the groups node local is of dubious benefit.
873  */
874 static struct sched_group *
875 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
876 {
877 	struct sched_group *sg;
878 	struct cpumask *sg_span;
879 
880 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
881 			GFP_KERNEL, cpu_to_node(cpu));
882 
883 	if (!sg)
884 		return NULL;
885 
886 	sg_span = sched_group_span(sg);
887 	if (sd->child)
888 		cpumask_copy(sg_span, sched_domain_span(sd->child));
889 	else
890 		cpumask_copy(sg_span, sched_domain_span(sd));
891 
892 	atomic_inc(&sg->ref);
893 	return sg;
894 }
895 
896 static void init_overlap_sched_group(struct sched_domain *sd,
897 				     struct sched_group *sg)
898 {
899 	struct cpumask *mask = sched_domains_tmpmask2;
900 	struct sd_data *sdd = sd->private;
901 	struct cpumask *sg_span;
902 	int cpu;
903 
904 	build_balance_mask(sd, sg, mask);
905 	cpu = cpumask_first_and(sched_group_span(sg), mask);
906 
907 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
908 	if (atomic_inc_return(&sg->sgc->ref) == 1)
909 		cpumask_copy(group_balance_mask(sg), mask);
910 	else
911 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
912 
913 	/*
914 	 * Initialize sgc->capacity such that even if we mess up the
915 	 * domains and no possible iteration will get us here, we won't
916 	 * die on a /0 trap.
917 	 */
918 	sg_span = sched_group_span(sg);
919 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
920 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
921 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
922 }
923 
924 static int
925 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
926 {
927 	struct sched_group *first = NULL, *last = NULL, *sg;
928 	const struct cpumask *span = sched_domain_span(sd);
929 	struct cpumask *covered = sched_domains_tmpmask;
930 	struct sd_data *sdd = sd->private;
931 	struct sched_domain *sibling;
932 	int i;
933 
934 	cpumask_clear(covered);
935 
936 	for_each_cpu_wrap(i, span, cpu) {
937 		struct cpumask *sg_span;
938 
939 		if (cpumask_test_cpu(i, covered))
940 			continue;
941 
942 		sibling = *per_cpu_ptr(sdd->sd, i);
943 
944 		/*
945 		 * Asymmetric node setups can result in situations where the
946 		 * domain tree is of unequal depth, make sure to skip domains
947 		 * that already cover the entire range.
948 		 *
949 		 * In that case build_sched_domains() will have terminated the
950 		 * iteration early and our sibling sd spans will be empty.
951 		 * Domains should always include the CPU they're built on, so
952 		 * check that.
953 		 */
954 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
955 			continue;
956 
957 		sg = build_group_from_child_sched_domain(sibling, cpu);
958 		if (!sg)
959 			goto fail;
960 
961 		sg_span = sched_group_span(sg);
962 		cpumask_or(covered, covered, sg_span);
963 
964 		init_overlap_sched_group(sd, sg);
965 
966 		if (!first)
967 			first = sg;
968 		if (last)
969 			last->next = sg;
970 		last = sg;
971 		last->next = first;
972 	}
973 	sd->groups = first;
974 
975 	return 0;
976 
977 fail:
978 	free_sched_groups(first, 0);
979 
980 	return -ENOMEM;
981 }
982 
983 
984 /*
985  * Package topology (also see the load-balance blurb in fair.c)
986  *
987  * The scheduler builds a tree structure to represent a number of important
988  * topology features. By default (default_topology[]) these include:
989  *
990  *  - Simultaneous multithreading (SMT)
991  *  - Multi-Core Cache (MC)
992  *  - Package (DIE)
993  *
994  * Where the last one more or less denotes everything up to a NUMA node.
995  *
996  * The tree consists of 3 primary data structures:
997  *
998  *	sched_domain -> sched_group -> sched_group_capacity
999  *	    ^ ^             ^ ^
1000  *          `-'             `-'
1001  *
1002  * The sched_domains are per-CPU and have a two way link (parent & child) and
1003  * denote the ever growing mask of CPUs belonging to that level of topology.
1004  *
1005  * Each sched_domain has a circular (double) linked list of sched_group's, each
1006  * denoting the domains of the level below (or individual CPUs in case of the
1007  * first domain level). The sched_group linked by a sched_domain includes the
1008  * CPU of that sched_domain [*].
1009  *
1010  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1011  *
1012  * CPU   0   1   2   3   4   5   6   7
1013  *
1014  * DIE  [                             ]
1015  * MC   [             ] [             ]
1016  * SMT  [     ] [     ] [     ] [     ]
1017  *
1018  *  - or -
1019  *
1020  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1021  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1022  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1023  *
1024  * CPU   0   1   2   3   4   5   6   7
1025  *
1026  * One way to think about it is: sched_domain moves you up and down among these
1027  * topology levels, while sched_group moves you sideways through it, at child
1028  * domain granularity.
1029  *
1030  * sched_group_capacity ensures each unique sched_group has shared storage.
1031  *
1032  * There are two related construction problems, both require a CPU that
1033  * uniquely identify each group (for a given domain):
1034  *
1035  *  - The first is the balance_cpu (see should_we_balance() and the
1036  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1037  *    continue balancing at a higher domain.
1038  *
1039  *  - The second is the sched_group_capacity; we want all identical groups
1040  *    to share a single sched_group_capacity.
1041  *
1042  * Since these topologies are exclusive by construction. That is, its
1043  * impossible for an SMT thread to belong to multiple cores, and cores to
1044  * be part of multiple caches. There is a very clear and unique location
1045  * for each CPU in the hierarchy.
1046  *
1047  * Therefore computing a unique CPU for each group is trivial (the iteration
1048  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1049  * group), we can simply pick the first CPU in each group.
1050  *
1051  *
1052  * [*] in other words, the first group of each domain is its child domain.
1053  */
1054 
1055 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1056 {
1057 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1058 	struct sched_domain *child = sd->child;
1059 	struct sched_group *sg;
1060 	bool already_visited;
1061 
1062 	if (child)
1063 		cpu = cpumask_first(sched_domain_span(child));
1064 
1065 	sg = *per_cpu_ptr(sdd->sg, cpu);
1066 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1067 
1068 	/* Increase refcounts for claim_allocations: */
1069 	already_visited = atomic_inc_return(&sg->ref) > 1;
1070 	/* sgc visits should follow a similar trend as sg */
1071 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1072 
1073 	/* If we have already visited that group, it's already initialized. */
1074 	if (already_visited)
1075 		return sg;
1076 
1077 	if (child) {
1078 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1079 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1080 	} else {
1081 		cpumask_set_cpu(cpu, sched_group_span(sg));
1082 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1083 	}
1084 
1085 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1086 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1087 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1088 
1089 	return sg;
1090 }
1091 
1092 /*
1093  * build_sched_groups will build a circular linked list of the groups
1094  * covered by the given span, will set each group's ->cpumask correctly,
1095  * and will initialize their ->sgc.
1096  *
1097  * Assumes the sched_domain tree is fully constructed
1098  */
1099 static int
1100 build_sched_groups(struct sched_domain *sd, int cpu)
1101 {
1102 	struct sched_group *first = NULL, *last = NULL;
1103 	struct sd_data *sdd = sd->private;
1104 	const struct cpumask *span = sched_domain_span(sd);
1105 	struct cpumask *covered;
1106 	int i;
1107 
1108 	lockdep_assert_held(&sched_domains_mutex);
1109 	covered = sched_domains_tmpmask;
1110 
1111 	cpumask_clear(covered);
1112 
1113 	for_each_cpu_wrap(i, span, cpu) {
1114 		struct sched_group *sg;
1115 
1116 		if (cpumask_test_cpu(i, covered))
1117 			continue;
1118 
1119 		sg = get_group(i, sdd);
1120 
1121 		cpumask_or(covered, covered, sched_group_span(sg));
1122 
1123 		if (!first)
1124 			first = sg;
1125 		if (last)
1126 			last->next = sg;
1127 		last = sg;
1128 	}
1129 	last->next = first;
1130 	sd->groups = first;
1131 
1132 	return 0;
1133 }
1134 
1135 /*
1136  * Initialize sched groups cpu_capacity.
1137  *
1138  * cpu_capacity indicates the capacity of sched group, which is used while
1139  * distributing the load between different sched groups in a sched domain.
1140  * Typically cpu_capacity for all the groups in a sched domain will be same
1141  * unless there are asymmetries in the topology. If there are asymmetries,
1142  * group having more cpu_capacity will pickup more load compared to the
1143  * group having less cpu_capacity.
1144  */
1145 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1146 {
1147 	struct sched_group *sg = sd->groups;
1148 
1149 	WARN_ON(!sg);
1150 
1151 	do {
1152 		int cpu, max_cpu = -1;
1153 
1154 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1155 
1156 		if (!(sd->flags & SD_ASYM_PACKING))
1157 			goto next;
1158 
1159 		for_each_cpu(cpu, sched_group_span(sg)) {
1160 			if (max_cpu < 0)
1161 				max_cpu = cpu;
1162 			else if (sched_asym_prefer(cpu, max_cpu))
1163 				max_cpu = cpu;
1164 		}
1165 		sg->asym_prefer_cpu = max_cpu;
1166 
1167 next:
1168 		sg = sg->next;
1169 	} while (sg != sd->groups);
1170 
1171 	if (cpu != group_balance_cpu(sg))
1172 		return;
1173 
1174 	update_group_capacity(sd, cpu);
1175 }
1176 
1177 /*
1178  * Initializers for schedule domains
1179  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1180  */
1181 
1182 static int default_relax_domain_level = -1;
1183 int sched_domain_level_max;
1184 
1185 static int __init setup_relax_domain_level(char *str)
1186 {
1187 	if (kstrtoint(str, 0, &default_relax_domain_level))
1188 		pr_warn("Unable to set relax_domain_level\n");
1189 
1190 	return 1;
1191 }
1192 __setup("relax_domain_level=", setup_relax_domain_level);
1193 
1194 static void set_domain_attribute(struct sched_domain *sd,
1195 				 struct sched_domain_attr *attr)
1196 {
1197 	int request;
1198 
1199 	if (!attr || attr->relax_domain_level < 0) {
1200 		if (default_relax_domain_level < 0)
1201 			return;
1202 		request = default_relax_domain_level;
1203 	} else
1204 		request = attr->relax_domain_level;
1205 
1206 	if (sd->level > request) {
1207 		/* Turn off idle balance on this domain: */
1208 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1209 	}
1210 }
1211 
1212 static void __sdt_free(const struct cpumask *cpu_map);
1213 static int __sdt_alloc(const struct cpumask *cpu_map);
1214 
1215 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1216 				 const struct cpumask *cpu_map)
1217 {
1218 	switch (what) {
1219 	case sa_rootdomain:
1220 		if (!atomic_read(&d->rd->refcount))
1221 			free_rootdomain(&d->rd->rcu);
1222 		/* Fall through */
1223 	case sa_sd:
1224 		free_percpu(d->sd);
1225 		/* Fall through */
1226 	case sa_sd_storage:
1227 		__sdt_free(cpu_map);
1228 		/* Fall through */
1229 	case sa_none:
1230 		break;
1231 	}
1232 }
1233 
1234 static enum s_alloc
1235 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1236 {
1237 	memset(d, 0, sizeof(*d));
1238 
1239 	if (__sdt_alloc(cpu_map))
1240 		return sa_sd_storage;
1241 	d->sd = alloc_percpu(struct sched_domain *);
1242 	if (!d->sd)
1243 		return sa_sd_storage;
1244 	d->rd = alloc_rootdomain();
1245 	if (!d->rd)
1246 		return sa_sd;
1247 
1248 	return sa_rootdomain;
1249 }
1250 
1251 /*
1252  * NULL the sd_data elements we've used to build the sched_domain and
1253  * sched_group structure so that the subsequent __free_domain_allocs()
1254  * will not free the data we're using.
1255  */
1256 static void claim_allocations(int cpu, struct sched_domain *sd)
1257 {
1258 	struct sd_data *sdd = sd->private;
1259 
1260 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1261 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1262 
1263 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1264 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1265 
1266 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1267 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1268 
1269 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1270 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1271 }
1272 
1273 #ifdef CONFIG_NUMA
1274 enum numa_topology_type sched_numa_topology_type;
1275 
1276 static int			sched_domains_numa_levels;
1277 static int			sched_domains_curr_level;
1278 
1279 int				sched_max_numa_distance;
1280 static int			*sched_domains_numa_distance;
1281 static struct cpumask		***sched_domains_numa_masks;
1282 int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
1283 #endif
1284 
1285 /*
1286  * SD_flags allowed in topology descriptions.
1287  *
1288  * These flags are purely descriptive of the topology and do not prescribe
1289  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1290  * function:
1291  *
1292  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1293  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1294  *   SD_NUMA                - describes NUMA topologies
1295  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1296  *
1297  * Odd one out, which beside describing the topology has a quirk also
1298  * prescribes the desired behaviour that goes along with it:
1299  *
1300  *   SD_ASYM_PACKING        - describes SMT quirks
1301  */
1302 #define TOPOLOGY_SD_FLAGS		\
1303 	(SD_SHARE_CPUCAPACITY	|	\
1304 	 SD_SHARE_PKG_RESOURCES |	\
1305 	 SD_NUMA		|	\
1306 	 SD_ASYM_PACKING	|	\
1307 	 SD_SHARE_POWERDOMAIN)
1308 
1309 static struct sched_domain *
1310 sd_init(struct sched_domain_topology_level *tl,
1311 	const struct cpumask *cpu_map,
1312 	struct sched_domain *child, int dflags, int cpu)
1313 {
1314 	struct sd_data *sdd = &tl->data;
1315 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1316 	int sd_id, sd_weight, sd_flags = 0;
1317 
1318 #ifdef CONFIG_NUMA
1319 	/*
1320 	 * Ugly hack to pass state to sd_numa_mask()...
1321 	 */
1322 	sched_domains_curr_level = tl->numa_level;
1323 #endif
1324 
1325 	sd_weight = cpumask_weight(tl->mask(cpu));
1326 
1327 	if (tl->sd_flags)
1328 		sd_flags = (*tl->sd_flags)();
1329 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1330 			"wrong sd_flags in topology description\n"))
1331 		sd_flags &= TOPOLOGY_SD_FLAGS;
1332 
1333 	/* Apply detected topology flags */
1334 	sd_flags |= dflags;
1335 
1336 	*sd = (struct sched_domain){
1337 		.min_interval		= sd_weight,
1338 		.max_interval		= 2*sd_weight,
1339 		.busy_factor		= 32,
1340 		.imbalance_pct		= 125,
1341 
1342 		.cache_nice_tries	= 0,
1343 
1344 		.flags			= 1*SD_BALANCE_NEWIDLE
1345 					| 1*SD_BALANCE_EXEC
1346 					| 1*SD_BALANCE_FORK
1347 					| 0*SD_BALANCE_WAKE
1348 					| 1*SD_WAKE_AFFINE
1349 					| 0*SD_SHARE_CPUCAPACITY
1350 					| 0*SD_SHARE_PKG_RESOURCES
1351 					| 0*SD_SERIALIZE
1352 					| 1*SD_PREFER_SIBLING
1353 					| 0*SD_NUMA
1354 					| sd_flags
1355 					,
1356 
1357 		.last_balance		= jiffies,
1358 		.balance_interval	= sd_weight,
1359 		.max_newidle_lb_cost	= 0,
1360 		.next_decay_max_lb_cost	= jiffies,
1361 		.child			= child,
1362 #ifdef CONFIG_SCHED_DEBUG
1363 		.name			= tl->name,
1364 #endif
1365 	};
1366 
1367 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1368 	sd_id = cpumask_first(sched_domain_span(sd));
1369 
1370 	/*
1371 	 * Convert topological properties into behaviour.
1372 	 */
1373 
1374 	/* Don't attempt to spread across CPUs of different capacities. */
1375 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1376 		sd->child->flags &= ~SD_PREFER_SIBLING;
1377 
1378 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1379 		sd->imbalance_pct = 110;
1380 
1381 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1382 		sd->imbalance_pct = 117;
1383 		sd->cache_nice_tries = 1;
1384 
1385 #ifdef CONFIG_NUMA
1386 	} else if (sd->flags & SD_NUMA) {
1387 		sd->cache_nice_tries = 2;
1388 
1389 		sd->flags &= ~SD_PREFER_SIBLING;
1390 		sd->flags |= SD_SERIALIZE;
1391 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1392 			sd->flags &= ~(SD_BALANCE_EXEC |
1393 				       SD_BALANCE_FORK |
1394 				       SD_WAKE_AFFINE);
1395 		}
1396 
1397 #endif
1398 	} else {
1399 		sd->cache_nice_tries = 1;
1400 	}
1401 
1402 	/*
1403 	 * For all levels sharing cache; connect a sched_domain_shared
1404 	 * instance.
1405 	 */
1406 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1407 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1408 		atomic_inc(&sd->shared->ref);
1409 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1410 	}
1411 
1412 	sd->private = sdd;
1413 
1414 	return sd;
1415 }
1416 
1417 /*
1418  * Topology list, bottom-up.
1419  */
1420 static struct sched_domain_topology_level default_topology[] = {
1421 #ifdef CONFIG_SCHED_SMT
1422 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1423 #endif
1424 #ifdef CONFIG_SCHED_MC
1425 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1426 #endif
1427 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1428 	{ NULL, },
1429 };
1430 
1431 static struct sched_domain_topology_level *sched_domain_topology =
1432 	default_topology;
1433 
1434 #define for_each_sd_topology(tl)			\
1435 	for (tl = sched_domain_topology; tl->mask; tl++)
1436 
1437 void set_sched_topology(struct sched_domain_topology_level *tl)
1438 {
1439 	if (WARN_ON_ONCE(sched_smp_initialized))
1440 		return;
1441 
1442 	sched_domain_topology = tl;
1443 }
1444 
1445 #ifdef CONFIG_NUMA
1446 
1447 static const struct cpumask *sd_numa_mask(int cpu)
1448 {
1449 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1450 }
1451 
1452 static void sched_numa_warn(const char *str)
1453 {
1454 	static int done = false;
1455 	int i,j;
1456 
1457 	if (done)
1458 		return;
1459 
1460 	done = true;
1461 
1462 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1463 
1464 	for (i = 0; i < nr_node_ids; i++) {
1465 		printk(KERN_WARNING "  ");
1466 		for (j = 0; j < nr_node_ids; j++)
1467 			printk(KERN_CONT "%02d ", node_distance(i,j));
1468 		printk(KERN_CONT "\n");
1469 	}
1470 	printk(KERN_WARNING "\n");
1471 }
1472 
1473 bool find_numa_distance(int distance)
1474 {
1475 	int i;
1476 
1477 	if (distance == node_distance(0, 0))
1478 		return true;
1479 
1480 	for (i = 0; i < sched_domains_numa_levels; i++) {
1481 		if (sched_domains_numa_distance[i] == distance)
1482 			return true;
1483 	}
1484 
1485 	return false;
1486 }
1487 
1488 /*
1489  * A system can have three types of NUMA topology:
1490  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1491  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1492  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1493  *
1494  * The difference between a glueless mesh topology and a backplane
1495  * topology lies in whether communication between not directly
1496  * connected nodes goes through intermediary nodes (where programs
1497  * could run), or through backplane controllers. This affects
1498  * placement of programs.
1499  *
1500  * The type of topology can be discerned with the following tests:
1501  * - If the maximum distance between any nodes is 1 hop, the system
1502  *   is directly connected.
1503  * - If for two nodes A and B, located N > 1 hops away from each other,
1504  *   there is an intermediary node C, which is < N hops away from both
1505  *   nodes A and B, the system is a glueless mesh.
1506  */
1507 static void init_numa_topology_type(void)
1508 {
1509 	int a, b, c, n;
1510 
1511 	n = sched_max_numa_distance;
1512 
1513 	if (sched_domains_numa_levels <= 2) {
1514 		sched_numa_topology_type = NUMA_DIRECT;
1515 		return;
1516 	}
1517 
1518 	for_each_online_node(a) {
1519 		for_each_online_node(b) {
1520 			/* Find two nodes furthest removed from each other. */
1521 			if (node_distance(a, b) < n)
1522 				continue;
1523 
1524 			/* Is there an intermediary node between a and b? */
1525 			for_each_online_node(c) {
1526 				if (node_distance(a, c) < n &&
1527 				    node_distance(b, c) < n) {
1528 					sched_numa_topology_type =
1529 							NUMA_GLUELESS_MESH;
1530 					return;
1531 				}
1532 			}
1533 
1534 			sched_numa_topology_type = NUMA_BACKPLANE;
1535 			return;
1536 		}
1537 	}
1538 }
1539 
1540 void sched_init_numa(void)
1541 {
1542 	int next_distance, curr_distance = node_distance(0, 0);
1543 	struct sched_domain_topology_level *tl;
1544 	int level = 0;
1545 	int i, j, k;
1546 
1547 	sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1548 	if (!sched_domains_numa_distance)
1549 		return;
1550 
1551 	/* Includes NUMA identity node at level 0. */
1552 	sched_domains_numa_distance[level++] = curr_distance;
1553 	sched_domains_numa_levels = level;
1554 
1555 	/*
1556 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1557 	 * unique distances in the node_distance() table.
1558 	 *
1559 	 * Assumes node_distance(0,j) includes all distances in
1560 	 * node_distance(i,j) in order to avoid cubic time.
1561 	 */
1562 	next_distance = curr_distance;
1563 	for (i = 0; i < nr_node_ids; i++) {
1564 		for (j = 0; j < nr_node_ids; j++) {
1565 			for (k = 0; k < nr_node_ids; k++) {
1566 				int distance = node_distance(i, k);
1567 
1568 				if (distance > curr_distance &&
1569 				    (distance < next_distance ||
1570 				     next_distance == curr_distance))
1571 					next_distance = distance;
1572 
1573 				/*
1574 				 * While not a strong assumption it would be nice to know
1575 				 * about cases where if node A is connected to B, B is not
1576 				 * equally connected to A.
1577 				 */
1578 				if (sched_debug() && node_distance(k, i) != distance)
1579 					sched_numa_warn("Node-distance not symmetric");
1580 
1581 				if (sched_debug() && i && !find_numa_distance(distance))
1582 					sched_numa_warn("Node-0 not representative");
1583 			}
1584 			if (next_distance != curr_distance) {
1585 				sched_domains_numa_distance[level++] = next_distance;
1586 				sched_domains_numa_levels = level;
1587 				curr_distance = next_distance;
1588 			} else break;
1589 		}
1590 
1591 		/*
1592 		 * In case of sched_debug() we verify the above assumption.
1593 		 */
1594 		if (!sched_debug())
1595 			break;
1596 	}
1597 
1598 	/*
1599 	 * 'level' contains the number of unique distances
1600 	 *
1601 	 * The sched_domains_numa_distance[] array includes the actual distance
1602 	 * numbers.
1603 	 */
1604 
1605 	/*
1606 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1607 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1608 	 * the array will contain less then 'level' members. This could be
1609 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1610 	 * in other functions.
1611 	 *
1612 	 * We reset it to 'level' at the end of this function.
1613 	 */
1614 	sched_domains_numa_levels = 0;
1615 
1616 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1617 	if (!sched_domains_numa_masks)
1618 		return;
1619 
1620 	/*
1621 	 * Now for each level, construct a mask per node which contains all
1622 	 * CPUs of nodes that are that many hops away from us.
1623 	 */
1624 	for (i = 0; i < level; i++) {
1625 		sched_domains_numa_masks[i] =
1626 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1627 		if (!sched_domains_numa_masks[i])
1628 			return;
1629 
1630 		for (j = 0; j < nr_node_ids; j++) {
1631 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1632 			if (!mask)
1633 				return;
1634 
1635 			sched_domains_numa_masks[i][j] = mask;
1636 
1637 			for_each_node(k) {
1638 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1639 					continue;
1640 
1641 				cpumask_or(mask, mask, cpumask_of_node(k));
1642 			}
1643 		}
1644 	}
1645 
1646 	/* Compute default topology size */
1647 	for (i = 0; sched_domain_topology[i].mask; i++);
1648 
1649 	tl = kzalloc((i + level + 1) *
1650 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1651 	if (!tl)
1652 		return;
1653 
1654 	/*
1655 	 * Copy the default topology bits..
1656 	 */
1657 	for (i = 0; sched_domain_topology[i].mask; i++)
1658 		tl[i] = sched_domain_topology[i];
1659 
1660 	/*
1661 	 * Add the NUMA identity distance, aka single NODE.
1662 	 */
1663 	tl[i++] = (struct sched_domain_topology_level){
1664 		.mask = sd_numa_mask,
1665 		.numa_level = 0,
1666 		SD_INIT_NAME(NODE)
1667 	};
1668 
1669 	/*
1670 	 * .. and append 'j' levels of NUMA goodness.
1671 	 */
1672 	for (j = 1; j < level; i++, j++) {
1673 		tl[i] = (struct sched_domain_topology_level){
1674 			.mask = sd_numa_mask,
1675 			.sd_flags = cpu_numa_flags,
1676 			.flags = SDTL_OVERLAP,
1677 			.numa_level = j,
1678 			SD_INIT_NAME(NUMA)
1679 		};
1680 	}
1681 
1682 	sched_domain_topology = tl;
1683 
1684 	sched_domains_numa_levels = level;
1685 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1686 
1687 	init_numa_topology_type();
1688 }
1689 
1690 void sched_domains_numa_masks_set(unsigned int cpu)
1691 {
1692 	int node = cpu_to_node(cpu);
1693 	int i, j;
1694 
1695 	for (i = 0; i < sched_domains_numa_levels; i++) {
1696 		for (j = 0; j < nr_node_ids; j++) {
1697 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1698 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1699 		}
1700 	}
1701 }
1702 
1703 void sched_domains_numa_masks_clear(unsigned int cpu)
1704 {
1705 	int i, j;
1706 
1707 	for (i = 0; i < sched_domains_numa_levels; i++) {
1708 		for (j = 0; j < nr_node_ids; j++)
1709 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1710 	}
1711 }
1712 
1713 /*
1714  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1715  *                             closest to @cpu from @cpumask.
1716  * cpumask: cpumask to find a cpu from
1717  * cpu: cpu to be close to
1718  *
1719  * returns: cpu, or nr_cpu_ids when nothing found.
1720  */
1721 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1722 {
1723 	int i, j = cpu_to_node(cpu);
1724 
1725 	for (i = 0; i < sched_domains_numa_levels; i++) {
1726 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1727 		if (cpu < nr_cpu_ids)
1728 			return cpu;
1729 	}
1730 	return nr_cpu_ids;
1731 }
1732 
1733 #endif /* CONFIG_NUMA */
1734 
1735 static int __sdt_alloc(const struct cpumask *cpu_map)
1736 {
1737 	struct sched_domain_topology_level *tl;
1738 	int j;
1739 
1740 	for_each_sd_topology(tl) {
1741 		struct sd_data *sdd = &tl->data;
1742 
1743 		sdd->sd = alloc_percpu(struct sched_domain *);
1744 		if (!sdd->sd)
1745 			return -ENOMEM;
1746 
1747 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1748 		if (!sdd->sds)
1749 			return -ENOMEM;
1750 
1751 		sdd->sg = alloc_percpu(struct sched_group *);
1752 		if (!sdd->sg)
1753 			return -ENOMEM;
1754 
1755 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1756 		if (!sdd->sgc)
1757 			return -ENOMEM;
1758 
1759 		for_each_cpu(j, cpu_map) {
1760 			struct sched_domain *sd;
1761 			struct sched_domain_shared *sds;
1762 			struct sched_group *sg;
1763 			struct sched_group_capacity *sgc;
1764 
1765 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1766 					GFP_KERNEL, cpu_to_node(j));
1767 			if (!sd)
1768 				return -ENOMEM;
1769 
1770 			*per_cpu_ptr(sdd->sd, j) = sd;
1771 
1772 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1773 					GFP_KERNEL, cpu_to_node(j));
1774 			if (!sds)
1775 				return -ENOMEM;
1776 
1777 			*per_cpu_ptr(sdd->sds, j) = sds;
1778 
1779 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1780 					GFP_KERNEL, cpu_to_node(j));
1781 			if (!sg)
1782 				return -ENOMEM;
1783 
1784 			sg->next = sg;
1785 
1786 			*per_cpu_ptr(sdd->sg, j) = sg;
1787 
1788 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1789 					GFP_KERNEL, cpu_to_node(j));
1790 			if (!sgc)
1791 				return -ENOMEM;
1792 
1793 #ifdef CONFIG_SCHED_DEBUG
1794 			sgc->id = j;
1795 #endif
1796 
1797 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1798 		}
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 static void __sdt_free(const struct cpumask *cpu_map)
1805 {
1806 	struct sched_domain_topology_level *tl;
1807 	int j;
1808 
1809 	for_each_sd_topology(tl) {
1810 		struct sd_data *sdd = &tl->data;
1811 
1812 		for_each_cpu(j, cpu_map) {
1813 			struct sched_domain *sd;
1814 
1815 			if (sdd->sd) {
1816 				sd = *per_cpu_ptr(sdd->sd, j);
1817 				if (sd && (sd->flags & SD_OVERLAP))
1818 					free_sched_groups(sd->groups, 0);
1819 				kfree(*per_cpu_ptr(sdd->sd, j));
1820 			}
1821 
1822 			if (sdd->sds)
1823 				kfree(*per_cpu_ptr(sdd->sds, j));
1824 			if (sdd->sg)
1825 				kfree(*per_cpu_ptr(sdd->sg, j));
1826 			if (sdd->sgc)
1827 				kfree(*per_cpu_ptr(sdd->sgc, j));
1828 		}
1829 		free_percpu(sdd->sd);
1830 		sdd->sd = NULL;
1831 		free_percpu(sdd->sds);
1832 		sdd->sds = NULL;
1833 		free_percpu(sdd->sg);
1834 		sdd->sg = NULL;
1835 		free_percpu(sdd->sgc);
1836 		sdd->sgc = NULL;
1837 	}
1838 }
1839 
1840 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1841 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1842 		struct sched_domain *child, int dflags, int cpu)
1843 {
1844 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1845 
1846 	if (child) {
1847 		sd->level = child->level + 1;
1848 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1849 		child->parent = sd;
1850 
1851 		if (!cpumask_subset(sched_domain_span(child),
1852 				    sched_domain_span(sd))) {
1853 			pr_err("BUG: arch topology borken\n");
1854 #ifdef CONFIG_SCHED_DEBUG
1855 			pr_err("     the %s domain not a subset of the %s domain\n",
1856 					child->name, sd->name);
1857 #endif
1858 			/* Fixup, ensure @sd has at least @child CPUs. */
1859 			cpumask_or(sched_domain_span(sd),
1860 				   sched_domain_span(sd),
1861 				   sched_domain_span(child));
1862 		}
1863 
1864 	}
1865 	set_domain_attribute(sd, attr);
1866 
1867 	return sd;
1868 }
1869 
1870 /*
1871  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1872  * any two given CPUs at this (non-NUMA) topology level.
1873  */
1874 static bool topology_span_sane(struct sched_domain_topology_level *tl,
1875 			      const struct cpumask *cpu_map, int cpu)
1876 {
1877 	int i;
1878 
1879 	/* NUMA levels are allowed to overlap */
1880 	if (tl->flags & SDTL_OVERLAP)
1881 		return true;
1882 
1883 	/*
1884 	 * Non-NUMA levels cannot partially overlap - they must be either
1885 	 * completely equal or completely disjoint. Otherwise we can end up
1886 	 * breaking the sched_group lists - i.e. a later get_group() pass
1887 	 * breaks the linking done for an earlier span.
1888 	 */
1889 	for_each_cpu(i, cpu_map) {
1890 		if (i == cpu)
1891 			continue;
1892 		/*
1893 		 * We should 'and' all those masks with 'cpu_map' to exactly
1894 		 * match the topology we're about to build, but that can only
1895 		 * remove CPUs, which only lessens our ability to detect
1896 		 * overlaps
1897 		 */
1898 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1899 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1900 			return false;
1901 	}
1902 
1903 	return true;
1904 }
1905 
1906 /*
1907  * Find the sched_domain_topology_level where all CPU capacities are visible
1908  * for all CPUs.
1909  */
1910 static struct sched_domain_topology_level
1911 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1912 {
1913 	int i, j, asym_level = 0;
1914 	bool asym = false;
1915 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
1916 	unsigned long cap;
1917 
1918 	/* Is there any asymmetry? */
1919 	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1920 
1921 	for_each_cpu(i, cpu_map) {
1922 		if (arch_scale_cpu_capacity(i) != cap) {
1923 			asym = true;
1924 			break;
1925 		}
1926 	}
1927 
1928 	if (!asym)
1929 		return NULL;
1930 
1931 	/*
1932 	 * Examine topology from all CPU's point of views to detect the lowest
1933 	 * sched_domain_topology_level where a highest capacity CPU is visible
1934 	 * to everyone.
1935 	 */
1936 	for_each_cpu(i, cpu_map) {
1937 		unsigned long max_capacity = arch_scale_cpu_capacity(i);
1938 		int tl_id = 0;
1939 
1940 		for_each_sd_topology(tl) {
1941 			if (tl_id < asym_level)
1942 				goto next_level;
1943 
1944 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
1945 				unsigned long capacity;
1946 
1947 				capacity = arch_scale_cpu_capacity(j);
1948 
1949 				if (capacity <= max_capacity)
1950 					continue;
1951 
1952 				max_capacity = capacity;
1953 				asym_level = tl_id;
1954 				asym_tl = tl;
1955 			}
1956 next_level:
1957 			tl_id++;
1958 		}
1959 	}
1960 
1961 	return asym_tl;
1962 }
1963 
1964 
1965 /*
1966  * Build sched domains for a given set of CPUs and attach the sched domains
1967  * to the individual CPUs
1968  */
1969 static int
1970 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1971 {
1972 	enum s_alloc alloc_state = sa_none;
1973 	struct sched_domain *sd;
1974 	struct s_data d;
1975 	struct rq *rq = NULL;
1976 	int i, ret = -ENOMEM;
1977 	struct sched_domain_topology_level *tl_asym;
1978 	bool has_asym = false;
1979 
1980 	if (WARN_ON(cpumask_empty(cpu_map)))
1981 		goto error;
1982 
1983 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1984 	if (alloc_state != sa_rootdomain)
1985 		goto error;
1986 
1987 	tl_asym = asym_cpu_capacity_level(cpu_map);
1988 
1989 	/* Set up domains for CPUs specified by the cpu_map: */
1990 	for_each_cpu(i, cpu_map) {
1991 		struct sched_domain_topology_level *tl;
1992 
1993 		sd = NULL;
1994 		for_each_sd_topology(tl) {
1995 			int dflags = 0;
1996 
1997 			if (tl == tl_asym) {
1998 				dflags |= SD_ASYM_CPUCAPACITY;
1999 				has_asym = true;
2000 			}
2001 
2002 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2003 				goto error;
2004 
2005 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2006 
2007 			if (tl == sched_domain_topology)
2008 				*per_cpu_ptr(d.sd, i) = sd;
2009 			if (tl->flags & SDTL_OVERLAP)
2010 				sd->flags |= SD_OVERLAP;
2011 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2012 				break;
2013 		}
2014 	}
2015 
2016 	/* Build the groups for the domains */
2017 	for_each_cpu(i, cpu_map) {
2018 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2019 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2020 			if (sd->flags & SD_OVERLAP) {
2021 				if (build_overlap_sched_groups(sd, i))
2022 					goto error;
2023 			} else {
2024 				if (build_sched_groups(sd, i))
2025 					goto error;
2026 			}
2027 		}
2028 	}
2029 
2030 	/* Calculate CPU capacity for physical packages and nodes */
2031 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2032 		if (!cpumask_test_cpu(i, cpu_map))
2033 			continue;
2034 
2035 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2036 			claim_allocations(i, sd);
2037 			init_sched_groups_capacity(i, sd);
2038 		}
2039 	}
2040 
2041 	/* Attach the domains */
2042 	rcu_read_lock();
2043 	for_each_cpu(i, cpu_map) {
2044 		rq = cpu_rq(i);
2045 		sd = *per_cpu_ptr(d.sd, i);
2046 
2047 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2048 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2049 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2050 
2051 		cpu_attach_domain(sd, d.rd, i);
2052 	}
2053 	rcu_read_unlock();
2054 
2055 	if (has_asym)
2056 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2057 
2058 	if (rq && sched_debug_enabled) {
2059 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2060 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2061 	}
2062 
2063 	ret = 0;
2064 error:
2065 	__free_domain_allocs(&d, alloc_state, cpu_map);
2066 
2067 	return ret;
2068 }
2069 
2070 /* Current sched domains: */
2071 static cpumask_var_t			*doms_cur;
2072 
2073 /* Number of sched domains in 'doms_cur': */
2074 static int				ndoms_cur;
2075 
2076 /* Attribues of custom domains in 'doms_cur' */
2077 static struct sched_domain_attr		*dattr_cur;
2078 
2079 /*
2080  * Special case: If a kmalloc() of a doms_cur partition (array of
2081  * cpumask) fails, then fallback to a single sched domain,
2082  * as determined by the single cpumask fallback_doms.
2083  */
2084 static cpumask_var_t			fallback_doms;
2085 
2086 /*
2087  * arch_update_cpu_topology lets virtualized architectures update the
2088  * CPU core maps. It is supposed to return 1 if the topology changed
2089  * or 0 if it stayed the same.
2090  */
2091 int __weak arch_update_cpu_topology(void)
2092 {
2093 	return 0;
2094 }
2095 
2096 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2097 {
2098 	int i;
2099 	cpumask_var_t *doms;
2100 
2101 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2102 	if (!doms)
2103 		return NULL;
2104 	for (i = 0; i < ndoms; i++) {
2105 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2106 			free_sched_domains(doms, i);
2107 			return NULL;
2108 		}
2109 	}
2110 	return doms;
2111 }
2112 
2113 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2114 {
2115 	unsigned int i;
2116 	for (i = 0; i < ndoms; i++)
2117 		free_cpumask_var(doms[i]);
2118 	kfree(doms);
2119 }
2120 
2121 /*
2122  * Set up scheduler domains and groups.  For now this just excludes isolated
2123  * CPUs, but could be used to exclude other special cases in the future.
2124  */
2125 int sched_init_domains(const struct cpumask *cpu_map)
2126 {
2127 	int err;
2128 
2129 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2130 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2131 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2132 
2133 	arch_update_cpu_topology();
2134 	ndoms_cur = 1;
2135 	doms_cur = alloc_sched_domains(ndoms_cur);
2136 	if (!doms_cur)
2137 		doms_cur = &fallback_doms;
2138 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2139 	err = build_sched_domains(doms_cur[0], NULL);
2140 	register_sched_domain_sysctl();
2141 
2142 	return err;
2143 }
2144 
2145 /*
2146  * Detach sched domains from a group of CPUs specified in cpu_map
2147  * These CPUs will now be attached to the NULL domain
2148  */
2149 static void detach_destroy_domains(const struct cpumask *cpu_map)
2150 {
2151 	unsigned int cpu = cpumask_any(cpu_map);
2152 	int i;
2153 
2154 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2155 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2156 
2157 	rcu_read_lock();
2158 	for_each_cpu(i, cpu_map)
2159 		cpu_attach_domain(NULL, &def_root_domain, i);
2160 	rcu_read_unlock();
2161 }
2162 
2163 /* handle null as "default" */
2164 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2165 			struct sched_domain_attr *new, int idx_new)
2166 {
2167 	struct sched_domain_attr tmp;
2168 
2169 	/* Fast path: */
2170 	if (!new && !cur)
2171 		return 1;
2172 
2173 	tmp = SD_ATTR_INIT;
2174 
2175 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2176 			new ? (new + idx_new) : &tmp,
2177 			sizeof(struct sched_domain_attr));
2178 }
2179 
2180 /*
2181  * Partition sched domains as specified by the 'ndoms_new'
2182  * cpumasks in the array doms_new[] of cpumasks. This compares
2183  * doms_new[] to the current sched domain partitioning, doms_cur[].
2184  * It destroys each deleted domain and builds each new domain.
2185  *
2186  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2187  * The masks don't intersect (don't overlap.) We should setup one
2188  * sched domain for each mask. CPUs not in any of the cpumasks will
2189  * not be load balanced. If the same cpumask appears both in the
2190  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2191  * it as it is.
2192  *
2193  * The passed in 'doms_new' should be allocated using
2194  * alloc_sched_domains.  This routine takes ownership of it and will
2195  * free_sched_domains it when done with it. If the caller failed the
2196  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2197  * and partition_sched_domains() will fallback to the single partition
2198  * 'fallback_doms', it also forces the domains to be rebuilt.
2199  *
2200  * If doms_new == NULL it will be replaced with cpu_online_mask.
2201  * ndoms_new == 0 is a special case for destroying existing domains,
2202  * and it will not create the default domain.
2203  *
2204  * Call with hotplug lock and sched_domains_mutex held
2205  */
2206 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2207 				    struct sched_domain_attr *dattr_new)
2208 {
2209 	bool __maybe_unused has_eas = false;
2210 	int i, j, n;
2211 	int new_topology;
2212 
2213 	lockdep_assert_held(&sched_domains_mutex);
2214 
2215 	/* Always unregister in case we don't destroy any domains: */
2216 	unregister_sched_domain_sysctl();
2217 
2218 	/* Let the architecture update CPU core mappings: */
2219 	new_topology = arch_update_cpu_topology();
2220 
2221 	if (!doms_new) {
2222 		WARN_ON_ONCE(dattr_new);
2223 		n = 0;
2224 		doms_new = alloc_sched_domains(1);
2225 		if (doms_new) {
2226 			n = 1;
2227 			cpumask_and(doms_new[0], cpu_active_mask,
2228 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
2229 		}
2230 	} else {
2231 		n = ndoms_new;
2232 	}
2233 
2234 	/* Destroy deleted domains: */
2235 	for (i = 0; i < ndoms_cur; i++) {
2236 		for (j = 0; j < n && !new_topology; j++) {
2237 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2238 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2239 				struct root_domain *rd;
2240 
2241 				/*
2242 				 * This domain won't be destroyed and as such
2243 				 * its dl_bw->total_bw needs to be cleared.  It
2244 				 * will be recomputed in function
2245 				 * update_tasks_root_domain().
2246 				 */
2247 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2248 				dl_clear_root_domain(rd);
2249 				goto match1;
2250 			}
2251 		}
2252 		/* No match - a current sched domain not in new doms_new[] */
2253 		detach_destroy_domains(doms_cur[i]);
2254 match1:
2255 		;
2256 	}
2257 
2258 	n = ndoms_cur;
2259 	if (!doms_new) {
2260 		n = 0;
2261 		doms_new = &fallback_doms;
2262 		cpumask_and(doms_new[0], cpu_active_mask,
2263 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
2264 	}
2265 
2266 	/* Build new domains: */
2267 	for (i = 0; i < ndoms_new; i++) {
2268 		for (j = 0; j < n && !new_topology; j++) {
2269 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2270 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2271 				goto match2;
2272 		}
2273 		/* No match - add a new doms_new */
2274 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2275 match2:
2276 		;
2277 	}
2278 
2279 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2280 	/* Build perf. domains: */
2281 	for (i = 0; i < ndoms_new; i++) {
2282 		for (j = 0; j < n && !sched_energy_update; j++) {
2283 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2284 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2285 				has_eas = true;
2286 				goto match3;
2287 			}
2288 		}
2289 		/* No match - add perf. domains for a new rd */
2290 		has_eas |= build_perf_domains(doms_new[i]);
2291 match3:
2292 		;
2293 	}
2294 	sched_energy_set(has_eas);
2295 #endif
2296 
2297 	/* Remember the new sched domains: */
2298 	if (doms_cur != &fallback_doms)
2299 		free_sched_domains(doms_cur, ndoms_cur);
2300 
2301 	kfree(dattr_cur);
2302 	doms_cur = doms_new;
2303 	dattr_cur = dattr_new;
2304 	ndoms_cur = ndoms_new;
2305 
2306 	register_sched_domain_sysctl();
2307 }
2308 
2309 /*
2310  * Call with hotplug lock held
2311  */
2312 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2313 			     struct sched_domain_attr *dattr_new)
2314 {
2315 	mutex_lock(&sched_domains_mutex);
2316 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2317 	mutex_unlock(&sched_domains_mutex);
2318 }
2319