xref: /openbmc/linux/kernel/sched/topology.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Scheduler topology setup/handling methods
3  */
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 
7 #include "sched.h"
8 
9 DEFINE_MUTEX(sched_domains_mutex);
10 
11 /* Protected by sched_domains_mutex: */
12 cpumask_var_t sched_domains_tmpmask;
13 
14 #ifdef CONFIG_SCHED_DEBUG
15 
16 static __read_mostly int sched_debug_enabled;
17 
18 static int __init sched_debug_setup(char *str)
19 {
20 	sched_debug_enabled = 1;
21 
22 	return 0;
23 }
24 early_param("sched_debug", sched_debug_setup);
25 
26 static inline bool sched_debug(void)
27 {
28 	return sched_debug_enabled;
29 }
30 
31 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
32 				  struct cpumask *groupmask)
33 {
34 	struct sched_group *group = sd->groups;
35 
36 	cpumask_clear(groupmask);
37 
38 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
39 
40 	if (!(sd->flags & SD_LOAD_BALANCE)) {
41 		printk("does not load-balance\n");
42 		if (sd->parent)
43 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
44 					" has parent");
45 		return -1;
46 	}
47 
48 	printk(KERN_CONT "span %*pbl level %s\n",
49 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
50 
51 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
52 		printk(KERN_ERR "ERROR: domain->span does not contain "
53 				"CPU%d\n", cpu);
54 	}
55 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
56 		printk(KERN_ERR "ERROR: domain->groups does not contain"
57 				" CPU%d\n", cpu);
58 	}
59 
60 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
61 	do {
62 		if (!group) {
63 			printk("\n");
64 			printk(KERN_ERR "ERROR: group is NULL\n");
65 			break;
66 		}
67 
68 		if (!cpumask_weight(sched_group_cpus(group))) {
69 			printk(KERN_CONT "\n");
70 			printk(KERN_ERR "ERROR: empty group\n");
71 			break;
72 		}
73 
74 		if (!(sd->flags & SD_OVERLAP) &&
75 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
76 			printk(KERN_CONT "\n");
77 			printk(KERN_ERR "ERROR: repeated CPUs\n");
78 			break;
79 		}
80 
81 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
82 
83 		printk(KERN_CONT " %*pbl",
84 		       cpumask_pr_args(sched_group_cpus(group)));
85 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
86 			printk(KERN_CONT " (cpu_capacity = %lu)",
87 				group->sgc->capacity);
88 		}
89 
90 		group = group->next;
91 	} while (group != sd->groups);
92 	printk(KERN_CONT "\n");
93 
94 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
95 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
96 
97 	if (sd->parent &&
98 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
99 		printk(KERN_ERR "ERROR: parent span is not a superset "
100 			"of domain->span\n");
101 	return 0;
102 }
103 
104 static void sched_domain_debug(struct sched_domain *sd, int cpu)
105 {
106 	int level = 0;
107 
108 	if (!sched_debug_enabled)
109 		return;
110 
111 	if (!sd) {
112 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
113 		return;
114 	}
115 
116 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
117 
118 	for (;;) {
119 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
120 			break;
121 		level++;
122 		sd = sd->parent;
123 		if (!sd)
124 			break;
125 	}
126 }
127 #else /* !CONFIG_SCHED_DEBUG */
128 
129 # define sched_debug_enabled 0
130 # define sched_domain_debug(sd, cpu) do { } while (0)
131 static inline bool sched_debug(void)
132 {
133 	return false;
134 }
135 #endif /* CONFIG_SCHED_DEBUG */
136 
137 static int sd_degenerate(struct sched_domain *sd)
138 {
139 	if (cpumask_weight(sched_domain_span(sd)) == 1)
140 		return 1;
141 
142 	/* Following flags need at least 2 groups */
143 	if (sd->flags & (SD_LOAD_BALANCE |
144 			 SD_BALANCE_NEWIDLE |
145 			 SD_BALANCE_FORK |
146 			 SD_BALANCE_EXEC |
147 			 SD_SHARE_CPUCAPACITY |
148 			 SD_ASYM_CPUCAPACITY |
149 			 SD_SHARE_PKG_RESOURCES |
150 			 SD_SHARE_POWERDOMAIN)) {
151 		if (sd->groups != sd->groups->next)
152 			return 0;
153 	}
154 
155 	/* Following flags don't use groups */
156 	if (sd->flags & (SD_WAKE_AFFINE))
157 		return 0;
158 
159 	return 1;
160 }
161 
162 static int
163 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
164 {
165 	unsigned long cflags = sd->flags, pflags = parent->flags;
166 
167 	if (sd_degenerate(parent))
168 		return 1;
169 
170 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
171 		return 0;
172 
173 	/* Flags needing groups don't count if only 1 group in parent */
174 	if (parent->groups == parent->groups->next) {
175 		pflags &= ~(SD_LOAD_BALANCE |
176 				SD_BALANCE_NEWIDLE |
177 				SD_BALANCE_FORK |
178 				SD_BALANCE_EXEC |
179 				SD_ASYM_CPUCAPACITY |
180 				SD_SHARE_CPUCAPACITY |
181 				SD_SHARE_PKG_RESOURCES |
182 				SD_PREFER_SIBLING |
183 				SD_SHARE_POWERDOMAIN);
184 		if (nr_node_ids == 1)
185 			pflags &= ~SD_SERIALIZE;
186 	}
187 	if (~cflags & pflags)
188 		return 0;
189 
190 	return 1;
191 }
192 
193 static void free_rootdomain(struct rcu_head *rcu)
194 {
195 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
196 
197 	cpupri_cleanup(&rd->cpupri);
198 	cpudl_cleanup(&rd->cpudl);
199 	free_cpumask_var(rd->dlo_mask);
200 	free_cpumask_var(rd->rto_mask);
201 	free_cpumask_var(rd->online);
202 	free_cpumask_var(rd->span);
203 	kfree(rd);
204 }
205 
206 void rq_attach_root(struct rq *rq, struct root_domain *rd)
207 {
208 	struct root_domain *old_rd = NULL;
209 	unsigned long flags;
210 
211 	raw_spin_lock_irqsave(&rq->lock, flags);
212 
213 	if (rq->rd) {
214 		old_rd = rq->rd;
215 
216 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
217 			set_rq_offline(rq);
218 
219 		cpumask_clear_cpu(rq->cpu, old_rd->span);
220 
221 		/*
222 		 * If we dont want to free the old_rd yet then
223 		 * set old_rd to NULL to skip the freeing later
224 		 * in this function:
225 		 */
226 		if (!atomic_dec_and_test(&old_rd->refcount))
227 			old_rd = NULL;
228 	}
229 
230 	atomic_inc(&rd->refcount);
231 	rq->rd = rd;
232 
233 	cpumask_set_cpu(rq->cpu, rd->span);
234 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
235 		set_rq_online(rq);
236 
237 	raw_spin_unlock_irqrestore(&rq->lock, flags);
238 
239 	if (old_rd)
240 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
241 }
242 
243 static int init_rootdomain(struct root_domain *rd)
244 {
245 	memset(rd, 0, sizeof(*rd));
246 
247 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
248 		goto out;
249 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
250 		goto free_span;
251 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
252 		goto free_online;
253 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
254 		goto free_dlo_mask;
255 
256 	init_dl_bw(&rd->dl_bw);
257 	if (cpudl_init(&rd->cpudl) != 0)
258 		goto free_rto_mask;
259 
260 	if (cpupri_init(&rd->cpupri) != 0)
261 		goto free_cpudl;
262 	return 0;
263 
264 free_cpudl:
265 	cpudl_cleanup(&rd->cpudl);
266 free_rto_mask:
267 	free_cpumask_var(rd->rto_mask);
268 free_dlo_mask:
269 	free_cpumask_var(rd->dlo_mask);
270 free_online:
271 	free_cpumask_var(rd->online);
272 free_span:
273 	free_cpumask_var(rd->span);
274 out:
275 	return -ENOMEM;
276 }
277 
278 /*
279  * By default the system creates a single root-domain with all CPUs as
280  * members (mimicking the global state we have today).
281  */
282 struct root_domain def_root_domain;
283 
284 void init_defrootdomain(void)
285 {
286 	init_rootdomain(&def_root_domain);
287 
288 	atomic_set(&def_root_domain.refcount, 1);
289 }
290 
291 static struct root_domain *alloc_rootdomain(void)
292 {
293 	struct root_domain *rd;
294 
295 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
296 	if (!rd)
297 		return NULL;
298 
299 	if (init_rootdomain(rd) != 0) {
300 		kfree(rd);
301 		return NULL;
302 	}
303 
304 	return rd;
305 }
306 
307 static void free_sched_groups(struct sched_group *sg, int free_sgc)
308 {
309 	struct sched_group *tmp, *first;
310 
311 	if (!sg)
312 		return;
313 
314 	first = sg;
315 	do {
316 		tmp = sg->next;
317 
318 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
319 			kfree(sg->sgc);
320 
321 		kfree(sg);
322 		sg = tmp;
323 	} while (sg != first);
324 }
325 
326 static void destroy_sched_domain(struct sched_domain *sd)
327 {
328 	/*
329 	 * If its an overlapping domain it has private groups, iterate and
330 	 * nuke them all.
331 	 */
332 	if (sd->flags & SD_OVERLAP) {
333 		free_sched_groups(sd->groups, 1);
334 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
335 		kfree(sd->groups->sgc);
336 		kfree(sd->groups);
337 	}
338 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
339 		kfree(sd->shared);
340 	kfree(sd);
341 }
342 
343 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
344 {
345 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
346 
347 	while (sd) {
348 		struct sched_domain *parent = sd->parent;
349 		destroy_sched_domain(sd);
350 		sd = parent;
351 	}
352 }
353 
354 static void destroy_sched_domains(struct sched_domain *sd)
355 {
356 	if (sd)
357 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
358 }
359 
360 /*
361  * Keep a special pointer to the highest sched_domain that has
362  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
363  * allows us to avoid some pointer chasing select_idle_sibling().
364  *
365  * Also keep a unique ID per domain (we use the first CPU number in
366  * the cpumask of the domain), this allows us to quickly tell if
367  * two CPUs are in the same cache domain, see cpus_share_cache().
368  */
369 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
370 DEFINE_PER_CPU(int, sd_llc_size);
371 DEFINE_PER_CPU(int, sd_llc_id);
372 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
373 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
374 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
375 
376 static void update_top_cache_domain(int cpu)
377 {
378 	struct sched_domain_shared *sds = NULL;
379 	struct sched_domain *sd;
380 	int id = cpu;
381 	int size = 1;
382 
383 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
384 	if (sd) {
385 		id = cpumask_first(sched_domain_span(sd));
386 		size = cpumask_weight(sched_domain_span(sd));
387 		sds = sd->shared;
388 	}
389 
390 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
391 	per_cpu(sd_llc_size, cpu) = size;
392 	per_cpu(sd_llc_id, cpu) = id;
393 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
394 
395 	sd = lowest_flag_domain(cpu, SD_NUMA);
396 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
397 
398 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
399 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
400 }
401 
402 /*
403  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
404  * hold the hotplug lock.
405  */
406 static void
407 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
408 {
409 	struct rq *rq = cpu_rq(cpu);
410 	struct sched_domain *tmp;
411 
412 	/* Remove the sched domains which do not contribute to scheduling. */
413 	for (tmp = sd; tmp; ) {
414 		struct sched_domain *parent = tmp->parent;
415 		if (!parent)
416 			break;
417 
418 		if (sd_parent_degenerate(tmp, parent)) {
419 			tmp->parent = parent->parent;
420 			if (parent->parent)
421 				parent->parent->child = tmp;
422 			/*
423 			 * Transfer SD_PREFER_SIBLING down in case of a
424 			 * degenerate parent; the spans match for this
425 			 * so the property transfers.
426 			 */
427 			if (parent->flags & SD_PREFER_SIBLING)
428 				tmp->flags |= SD_PREFER_SIBLING;
429 			destroy_sched_domain(parent);
430 		} else
431 			tmp = tmp->parent;
432 	}
433 
434 	if (sd && sd_degenerate(sd)) {
435 		tmp = sd;
436 		sd = sd->parent;
437 		destroy_sched_domain(tmp);
438 		if (sd)
439 			sd->child = NULL;
440 	}
441 
442 	sched_domain_debug(sd, cpu);
443 
444 	rq_attach_root(rq, rd);
445 	tmp = rq->sd;
446 	rcu_assign_pointer(rq->sd, sd);
447 	destroy_sched_domains(tmp);
448 
449 	update_top_cache_domain(cpu);
450 }
451 
452 /* Setup the mask of CPUs configured for isolated domains */
453 static int __init isolated_cpu_setup(char *str)
454 {
455 	int ret;
456 
457 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
458 	ret = cpulist_parse(str, cpu_isolated_map);
459 	if (ret) {
460 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
461 		return 0;
462 	}
463 	return 1;
464 }
465 __setup("isolcpus=", isolated_cpu_setup);
466 
467 struct s_data {
468 	struct sched_domain ** __percpu sd;
469 	struct root_domain	*rd;
470 };
471 
472 enum s_alloc {
473 	sa_rootdomain,
474 	sa_sd,
475 	sa_sd_storage,
476 	sa_none,
477 };
478 
479 /*
480  * Build an iteration mask that can exclude certain CPUs from the upwards
481  * domain traversal.
482  *
483  * Asymmetric node setups can result in situations where the domain tree is of
484  * unequal depth, make sure to skip domains that already cover the entire
485  * range.
486  *
487  * In that case build_sched_domains() will have terminated the iteration early
488  * and our sibling sd spans will be empty. Domains should always include the
489  * CPU they're built on, so check that.
490  */
491 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
492 {
493 	const struct cpumask *span = sched_domain_span(sd);
494 	struct sd_data *sdd = sd->private;
495 	struct sched_domain *sibling;
496 	int i;
497 
498 	for_each_cpu(i, span) {
499 		sibling = *per_cpu_ptr(sdd->sd, i);
500 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
501 			continue;
502 
503 		cpumask_set_cpu(i, sched_group_mask(sg));
504 	}
505 }
506 
507 /*
508  * Return the canonical balance CPU for this group, this is the first CPU
509  * of this group that's also in the iteration mask.
510  */
511 int group_balance_cpu(struct sched_group *sg)
512 {
513 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
514 }
515 
516 static int
517 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
518 {
519 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
520 	const struct cpumask *span = sched_domain_span(sd);
521 	struct cpumask *covered = sched_domains_tmpmask;
522 	struct sd_data *sdd = sd->private;
523 	struct sched_domain *sibling;
524 	int i;
525 
526 	cpumask_clear(covered);
527 
528 	for_each_cpu(i, span) {
529 		struct cpumask *sg_span;
530 
531 		if (cpumask_test_cpu(i, covered))
532 			continue;
533 
534 		sibling = *per_cpu_ptr(sdd->sd, i);
535 
536 		/* See the comment near build_group_mask(). */
537 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
538 			continue;
539 
540 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
541 				GFP_KERNEL, cpu_to_node(cpu));
542 
543 		if (!sg)
544 			goto fail;
545 
546 		sg_span = sched_group_cpus(sg);
547 		if (sibling->child)
548 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
549 		else
550 			cpumask_set_cpu(i, sg_span);
551 
552 		cpumask_or(covered, covered, sg_span);
553 
554 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
555 		if (atomic_inc_return(&sg->sgc->ref) == 1)
556 			build_group_mask(sd, sg);
557 
558 		/*
559 		 * Initialize sgc->capacity such that even if we mess up the
560 		 * domains and no possible iteration will get us here, we won't
561 		 * die on a /0 trap.
562 		 */
563 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
564 		sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
565 
566 		/*
567 		 * Make sure the first group of this domain contains the
568 		 * canonical balance CPU. Otherwise the sched_domain iteration
569 		 * breaks. See update_sg_lb_stats().
570 		 */
571 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
572 		    group_balance_cpu(sg) == cpu)
573 			groups = sg;
574 
575 		if (!first)
576 			first = sg;
577 		if (last)
578 			last->next = sg;
579 		last = sg;
580 		last->next = first;
581 	}
582 	sd->groups = groups;
583 
584 	return 0;
585 
586 fail:
587 	free_sched_groups(first, 0);
588 
589 	return -ENOMEM;
590 }
591 
592 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
593 {
594 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
595 	struct sched_domain *child = sd->child;
596 
597 	if (child)
598 		cpu = cpumask_first(sched_domain_span(child));
599 
600 	if (sg) {
601 		*sg = *per_cpu_ptr(sdd->sg, cpu);
602 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
603 
604 		/* For claim_allocations: */
605 		atomic_set(&(*sg)->sgc->ref, 1);
606 	}
607 
608 	return cpu;
609 }
610 
611 /*
612  * build_sched_groups will build a circular linked list of the groups
613  * covered by the given span, and will set each group's ->cpumask correctly,
614  * and ->cpu_capacity to 0.
615  *
616  * Assumes the sched_domain tree is fully constructed
617  */
618 static int
619 build_sched_groups(struct sched_domain *sd, int cpu)
620 {
621 	struct sched_group *first = NULL, *last = NULL;
622 	struct sd_data *sdd = sd->private;
623 	const struct cpumask *span = sched_domain_span(sd);
624 	struct cpumask *covered;
625 	int i;
626 
627 	get_group(cpu, sdd, &sd->groups);
628 	atomic_inc(&sd->groups->ref);
629 
630 	if (cpu != cpumask_first(span))
631 		return 0;
632 
633 	lockdep_assert_held(&sched_domains_mutex);
634 	covered = sched_domains_tmpmask;
635 
636 	cpumask_clear(covered);
637 
638 	for_each_cpu(i, span) {
639 		struct sched_group *sg;
640 		int group, j;
641 
642 		if (cpumask_test_cpu(i, covered))
643 			continue;
644 
645 		group = get_group(i, sdd, &sg);
646 		cpumask_setall(sched_group_mask(sg));
647 
648 		for_each_cpu(j, span) {
649 			if (get_group(j, sdd, NULL) != group)
650 				continue;
651 
652 			cpumask_set_cpu(j, covered);
653 			cpumask_set_cpu(j, sched_group_cpus(sg));
654 		}
655 
656 		if (!first)
657 			first = sg;
658 		if (last)
659 			last->next = sg;
660 		last = sg;
661 	}
662 	last->next = first;
663 
664 	return 0;
665 }
666 
667 /*
668  * Initialize sched groups cpu_capacity.
669  *
670  * cpu_capacity indicates the capacity of sched group, which is used while
671  * distributing the load between different sched groups in a sched domain.
672  * Typically cpu_capacity for all the groups in a sched domain will be same
673  * unless there are asymmetries in the topology. If there are asymmetries,
674  * group having more cpu_capacity will pickup more load compared to the
675  * group having less cpu_capacity.
676  */
677 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
678 {
679 	struct sched_group *sg = sd->groups;
680 
681 	WARN_ON(!sg);
682 
683 	do {
684 		int cpu, max_cpu = -1;
685 
686 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
687 
688 		if (!(sd->flags & SD_ASYM_PACKING))
689 			goto next;
690 
691 		for_each_cpu(cpu, sched_group_cpus(sg)) {
692 			if (max_cpu < 0)
693 				max_cpu = cpu;
694 			else if (sched_asym_prefer(cpu, max_cpu))
695 				max_cpu = cpu;
696 		}
697 		sg->asym_prefer_cpu = max_cpu;
698 
699 next:
700 		sg = sg->next;
701 	} while (sg != sd->groups);
702 
703 	if (cpu != group_balance_cpu(sg))
704 		return;
705 
706 	update_group_capacity(sd, cpu);
707 }
708 
709 /*
710  * Initializers for schedule domains
711  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
712  */
713 
714 static int default_relax_domain_level = -1;
715 int sched_domain_level_max;
716 
717 static int __init setup_relax_domain_level(char *str)
718 {
719 	if (kstrtoint(str, 0, &default_relax_domain_level))
720 		pr_warn("Unable to set relax_domain_level\n");
721 
722 	return 1;
723 }
724 __setup("relax_domain_level=", setup_relax_domain_level);
725 
726 static void set_domain_attribute(struct sched_domain *sd,
727 				 struct sched_domain_attr *attr)
728 {
729 	int request;
730 
731 	if (!attr || attr->relax_domain_level < 0) {
732 		if (default_relax_domain_level < 0)
733 			return;
734 		else
735 			request = default_relax_domain_level;
736 	} else
737 		request = attr->relax_domain_level;
738 	if (request < sd->level) {
739 		/* Turn off idle balance on this domain: */
740 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
741 	} else {
742 		/* Turn on idle balance on this domain: */
743 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
744 	}
745 }
746 
747 static void __sdt_free(const struct cpumask *cpu_map);
748 static int __sdt_alloc(const struct cpumask *cpu_map);
749 
750 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
751 				 const struct cpumask *cpu_map)
752 {
753 	switch (what) {
754 	case sa_rootdomain:
755 		if (!atomic_read(&d->rd->refcount))
756 			free_rootdomain(&d->rd->rcu);
757 		/* Fall through */
758 	case sa_sd:
759 		free_percpu(d->sd);
760 		/* Fall through */
761 	case sa_sd_storage:
762 		__sdt_free(cpu_map);
763 		/* Fall through */
764 	case sa_none:
765 		break;
766 	}
767 }
768 
769 static enum s_alloc
770 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
771 {
772 	memset(d, 0, sizeof(*d));
773 
774 	if (__sdt_alloc(cpu_map))
775 		return sa_sd_storage;
776 	d->sd = alloc_percpu(struct sched_domain *);
777 	if (!d->sd)
778 		return sa_sd_storage;
779 	d->rd = alloc_rootdomain();
780 	if (!d->rd)
781 		return sa_sd;
782 	return sa_rootdomain;
783 }
784 
785 /*
786  * NULL the sd_data elements we've used to build the sched_domain and
787  * sched_group structure so that the subsequent __free_domain_allocs()
788  * will not free the data we're using.
789  */
790 static void claim_allocations(int cpu, struct sched_domain *sd)
791 {
792 	struct sd_data *sdd = sd->private;
793 
794 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
795 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
796 
797 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
798 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
799 
800 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
801 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
802 
803 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
804 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
805 }
806 
807 #ifdef CONFIG_NUMA
808 static int sched_domains_numa_levels;
809 enum numa_topology_type sched_numa_topology_type;
810 static int *sched_domains_numa_distance;
811 int sched_max_numa_distance;
812 static struct cpumask ***sched_domains_numa_masks;
813 static int sched_domains_curr_level;
814 #endif
815 
816 /*
817  * SD_flags allowed in topology descriptions.
818  *
819  * These flags are purely descriptive of the topology and do not prescribe
820  * behaviour. Behaviour is artificial and mapped in the below sd_init()
821  * function:
822  *
823  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
824  *   SD_SHARE_PKG_RESOURCES - describes shared caches
825  *   SD_NUMA                - describes NUMA topologies
826  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
827  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
828  *
829  * Odd one out, which beside describing the topology has a quirk also
830  * prescribes the desired behaviour that goes along with it:
831  *
832  *   SD_ASYM_PACKING        - describes SMT quirks
833  */
834 #define TOPOLOGY_SD_FLAGS		\
835 	(SD_SHARE_CPUCAPACITY |		\
836 	 SD_SHARE_PKG_RESOURCES |	\
837 	 SD_NUMA |			\
838 	 SD_ASYM_PACKING |		\
839 	 SD_ASYM_CPUCAPACITY |		\
840 	 SD_SHARE_POWERDOMAIN)
841 
842 static struct sched_domain *
843 sd_init(struct sched_domain_topology_level *tl,
844 	const struct cpumask *cpu_map,
845 	struct sched_domain *child, int cpu)
846 {
847 	struct sd_data *sdd = &tl->data;
848 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
849 	int sd_id, sd_weight, sd_flags = 0;
850 
851 #ifdef CONFIG_NUMA
852 	/*
853 	 * Ugly hack to pass state to sd_numa_mask()...
854 	 */
855 	sched_domains_curr_level = tl->numa_level;
856 #endif
857 
858 	sd_weight = cpumask_weight(tl->mask(cpu));
859 
860 	if (tl->sd_flags)
861 		sd_flags = (*tl->sd_flags)();
862 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
863 			"wrong sd_flags in topology description\n"))
864 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
865 
866 	*sd = (struct sched_domain){
867 		.min_interval		= sd_weight,
868 		.max_interval		= 2*sd_weight,
869 		.busy_factor		= 32,
870 		.imbalance_pct		= 125,
871 
872 		.cache_nice_tries	= 0,
873 		.busy_idx		= 0,
874 		.idle_idx		= 0,
875 		.newidle_idx		= 0,
876 		.wake_idx		= 0,
877 		.forkexec_idx		= 0,
878 
879 		.flags			= 1*SD_LOAD_BALANCE
880 					| 1*SD_BALANCE_NEWIDLE
881 					| 1*SD_BALANCE_EXEC
882 					| 1*SD_BALANCE_FORK
883 					| 0*SD_BALANCE_WAKE
884 					| 1*SD_WAKE_AFFINE
885 					| 0*SD_SHARE_CPUCAPACITY
886 					| 0*SD_SHARE_PKG_RESOURCES
887 					| 0*SD_SERIALIZE
888 					| 0*SD_PREFER_SIBLING
889 					| 0*SD_NUMA
890 					| sd_flags
891 					,
892 
893 		.last_balance		= jiffies,
894 		.balance_interval	= sd_weight,
895 		.smt_gain		= 0,
896 		.max_newidle_lb_cost	= 0,
897 		.next_decay_max_lb_cost	= jiffies,
898 		.child			= child,
899 #ifdef CONFIG_SCHED_DEBUG
900 		.name			= tl->name,
901 #endif
902 	};
903 
904 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
905 	sd_id = cpumask_first(sched_domain_span(sd));
906 
907 	/*
908 	 * Convert topological properties into behaviour.
909 	 */
910 
911 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
912 		struct sched_domain *t = sd;
913 
914 		for_each_lower_domain(t)
915 			t->flags |= SD_BALANCE_WAKE;
916 	}
917 
918 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
919 		sd->flags |= SD_PREFER_SIBLING;
920 		sd->imbalance_pct = 110;
921 		sd->smt_gain = 1178; /* ~15% */
922 
923 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
924 		sd->imbalance_pct = 117;
925 		sd->cache_nice_tries = 1;
926 		sd->busy_idx = 2;
927 
928 #ifdef CONFIG_NUMA
929 	} else if (sd->flags & SD_NUMA) {
930 		sd->cache_nice_tries = 2;
931 		sd->busy_idx = 3;
932 		sd->idle_idx = 2;
933 
934 		sd->flags |= SD_SERIALIZE;
935 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
936 			sd->flags &= ~(SD_BALANCE_EXEC |
937 				       SD_BALANCE_FORK |
938 				       SD_WAKE_AFFINE);
939 		}
940 
941 #endif
942 	} else {
943 		sd->flags |= SD_PREFER_SIBLING;
944 		sd->cache_nice_tries = 1;
945 		sd->busy_idx = 2;
946 		sd->idle_idx = 1;
947 	}
948 
949 	/*
950 	 * For all levels sharing cache; connect a sched_domain_shared
951 	 * instance.
952 	 */
953 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
954 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
955 		atomic_inc(&sd->shared->ref);
956 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
957 	}
958 
959 	sd->private = sdd;
960 
961 	return sd;
962 }
963 
964 /*
965  * Topology list, bottom-up.
966  */
967 static struct sched_domain_topology_level default_topology[] = {
968 #ifdef CONFIG_SCHED_SMT
969 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
970 #endif
971 #ifdef CONFIG_SCHED_MC
972 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
973 #endif
974 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
975 	{ NULL, },
976 };
977 
978 static struct sched_domain_topology_level *sched_domain_topology =
979 	default_topology;
980 
981 #define for_each_sd_topology(tl)			\
982 	for (tl = sched_domain_topology; tl->mask; tl++)
983 
984 void set_sched_topology(struct sched_domain_topology_level *tl)
985 {
986 	if (WARN_ON_ONCE(sched_smp_initialized))
987 		return;
988 
989 	sched_domain_topology = tl;
990 }
991 
992 #ifdef CONFIG_NUMA
993 
994 static const struct cpumask *sd_numa_mask(int cpu)
995 {
996 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
997 }
998 
999 static void sched_numa_warn(const char *str)
1000 {
1001 	static int done = false;
1002 	int i,j;
1003 
1004 	if (done)
1005 		return;
1006 
1007 	done = true;
1008 
1009 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1010 
1011 	for (i = 0; i < nr_node_ids; i++) {
1012 		printk(KERN_WARNING "  ");
1013 		for (j = 0; j < nr_node_ids; j++)
1014 			printk(KERN_CONT "%02d ", node_distance(i,j));
1015 		printk(KERN_CONT "\n");
1016 	}
1017 	printk(KERN_WARNING "\n");
1018 }
1019 
1020 bool find_numa_distance(int distance)
1021 {
1022 	int i;
1023 
1024 	if (distance == node_distance(0, 0))
1025 		return true;
1026 
1027 	for (i = 0; i < sched_domains_numa_levels; i++) {
1028 		if (sched_domains_numa_distance[i] == distance)
1029 			return true;
1030 	}
1031 
1032 	return false;
1033 }
1034 
1035 /*
1036  * A system can have three types of NUMA topology:
1037  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1038  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1039  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1040  *
1041  * The difference between a glueless mesh topology and a backplane
1042  * topology lies in whether communication between not directly
1043  * connected nodes goes through intermediary nodes (where programs
1044  * could run), or through backplane controllers. This affects
1045  * placement of programs.
1046  *
1047  * The type of topology can be discerned with the following tests:
1048  * - If the maximum distance between any nodes is 1 hop, the system
1049  *   is directly connected.
1050  * - If for two nodes A and B, located N > 1 hops away from each other,
1051  *   there is an intermediary node C, which is < N hops away from both
1052  *   nodes A and B, the system is a glueless mesh.
1053  */
1054 static void init_numa_topology_type(void)
1055 {
1056 	int a, b, c, n;
1057 
1058 	n = sched_max_numa_distance;
1059 
1060 	if (sched_domains_numa_levels <= 1) {
1061 		sched_numa_topology_type = NUMA_DIRECT;
1062 		return;
1063 	}
1064 
1065 	for_each_online_node(a) {
1066 		for_each_online_node(b) {
1067 			/* Find two nodes furthest removed from each other. */
1068 			if (node_distance(a, b) < n)
1069 				continue;
1070 
1071 			/* Is there an intermediary node between a and b? */
1072 			for_each_online_node(c) {
1073 				if (node_distance(a, c) < n &&
1074 				    node_distance(b, c) < n) {
1075 					sched_numa_topology_type =
1076 							NUMA_GLUELESS_MESH;
1077 					return;
1078 				}
1079 			}
1080 
1081 			sched_numa_topology_type = NUMA_BACKPLANE;
1082 			return;
1083 		}
1084 	}
1085 }
1086 
1087 void sched_init_numa(void)
1088 {
1089 	int next_distance, curr_distance = node_distance(0, 0);
1090 	struct sched_domain_topology_level *tl;
1091 	int level = 0;
1092 	int i, j, k;
1093 
1094 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1095 	if (!sched_domains_numa_distance)
1096 		return;
1097 
1098 	/*
1099 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1100 	 * unique distances in the node_distance() table.
1101 	 *
1102 	 * Assumes node_distance(0,j) includes all distances in
1103 	 * node_distance(i,j) in order to avoid cubic time.
1104 	 */
1105 	next_distance = curr_distance;
1106 	for (i = 0; i < nr_node_ids; i++) {
1107 		for (j = 0; j < nr_node_ids; j++) {
1108 			for (k = 0; k < nr_node_ids; k++) {
1109 				int distance = node_distance(i, k);
1110 
1111 				if (distance > curr_distance &&
1112 				    (distance < next_distance ||
1113 				     next_distance == curr_distance))
1114 					next_distance = distance;
1115 
1116 				/*
1117 				 * While not a strong assumption it would be nice to know
1118 				 * about cases where if node A is connected to B, B is not
1119 				 * equally connected to A.
1120 				 */
1121 				if (sched_debug() && node_distance(k, i) != distance)
1122 					sched_numa_warn("Node-distance not symmetric");
1123 
1124 				if (sched_debug() && i && !find_numa_distance(distance))
1125 					sched_numa_warn("Node-0 not representative");
1126 			}
1127 			if (next_distance != curr_distance) {
1128 				sched_domains_numa_distance[level++] = next_distance;
1129 				sched_domains_numa_levels = level;
1130 				curr_distance = next_distance;
1131 			} else break;
1132 		}
1133 
1134 		/*
1135 		 * In case of sched_debug() we verify the above assumption.
1136 		 */
1137 		if (!sched_debug())
1138 			break;
1139 	}
1140 
1141 	if (!level)
1142 		return;
1143 
1144 	/*
1145 	 * 'level' contains the number of unique distances, excluding the
1146 	 * identity distance node_distance(i,i).
1147 	 *
1148 	 * The sched_domains_numa_distance[] array includes the actual distance
1149 	 * numbers.
1150 	 */
1151 
1152 	/*
1153 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1154 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1155 	 * the array will contain less then 'level' members. This could be
1156 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1157 	 * in other functions.
1158 	 *
1159 	 * We reset it to 'level' at the end of this function.
1160 	 */
1161 	sched_domains_numa_levels = 0;
1162 
1163 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1164 	if (!sched_domains_numa_masks)
1165 		return;
1166 
1167 	/*
1168 	 * Now for each level, construct a mask per node which contains all
1169 	 * CPUs of nodes that are that many hops away from us.
1170 	 */
1171 	for (i = 0; i < level; i++) {
1172 		sched_domains_numa_masks[i] =
1173 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1174 		if (!sched_domains_numa_masks[i])
1175 			return;
1176 
1177 		for (j = 0; j < nr_node_ids; j++) {
1178 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1179 			if (!mask)
1180 				return;
1181 
1182 			sched_domains_numa_masks[i][j] = mask;
1183 
1184 			for_each_node(k) {
1185 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1186 					continue;
1187 
1188 				cpumask_or(mask, mask, cpumask_of_node(k));
1189 			}
1190 		}
1191 	}
1192 
1193 	/* Compute default topology size */
1194 	for (i = 0; sched_domain_topology[i].mask; i++);
1195 
1196 	tl = kzalloc((i + level + 1) *
1197 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1198 	if (!tl)
1199 		return;
1200 
1201 	/*
1202 	 * Copy the default topology bits..
1203 	 */
1204 	for (i = 0; sched_domain_topology[i].mask; i++)
1205 		tl[i] = sched_domain_topology[i];
1206 
1207 	/*
1208 	 * .. and append 'j' levels of NUMA goodness.
1209 	 */
1210 	for (j = 0; j < level; i++, j++) {
1211 		tl[i] = (struct sched_domain_topology_level){
1212 			.mask = sd_numa_mask,
1213 			.sd_flags = cpu_numa_flags,
1214 			.flags = SDTL_OVERLAP,
1215 			.numa_level = j,
1216 			SD_INIT_NAME(NUMA)
1217 		};
1218 	}
1219 
1220 	sched_domain_topology = tl;
1221 
1222 	sched_domains_numa_levels = level;
1223 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1224 
1225 	init_numa_topology_type();
1226 }
1227 
1228 void sched_domains_numa_masks_set(unsigned int cpu)
1229 {
1230 	int node = cpu_to_node(cpu);
1231 	int i, j;
1232 
1233 	for (i = 0; i < sched_domains_numa_levels; i++) {
1234 		for (j = 0; j < nr_node_ids; j++) {
1235 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
1236 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1237 		}
1238 	}
1239 }
1240 
1241 void sched_domains_numa_masks_clear(unsigned int cpu)
1242 {
1243 	int i, j;
1244 
1245 	for (i = 0; i < sched_domains_numa_levels; i++) {
1246 		for (j = 0; j < nr_node_ids; j++)
1247 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1248 	}
1249 }
1250 
1251 #endif /* CONFIG_NUMA */
1252 
1253 static int __sdt_alloc(const struct cpumask *cpu_map)
1254 {
1255 	struct sched_domain_topology_level *tl;
1256 	int j;
1257 
1258 	for_each_sd_topology(tl) {
1259 		struct sd_data *sdd = &tl->data;
1260 
1261 		sdd->sd = alloc_percpu(struct sched_domain *);
1262 		if (!sdd->sd)
1263 			return -ENOMEM;
1264 
1265 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
1266 		if (!sdd->sds)
1267 			return -ENOMEM;
1268 
1269 		sdd->sg = alloc_percpu(struct sched_group *);
1270 		if (!sdd->sg)
1271 			return -ENOMEM;
1272 
1273 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1274 		if (!sdd->sgc)
1275 			return -ENOMEM;
1276 
1277 		for_each_cpu(j, cpu_map) {
1278 			struct sched_domain *sd;
1279 			struct sched_domain_shared *sds;
1280 			struct sched_group *sg;
1281 			struct sched_group_capacity *sgc;
1282 
1283 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1284 					GFP_KERNEL, cpu_to_node(j));
1285 			if (!sd)
1286 				return -ENOMEM;
1287 
1288 			*per_cpu_ptr(sdd->sd, j) = sd;
1289 
1290 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
1291 					GFP_KERNEL, cpu_to_node(j));
1292 			if (!sds)
1293 				return -ENOMEM;
1294 
1295 			*per_cpu_ptr(sdd->sds, j) = sds;
1296 
1297 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1298 					GFP_KERNEL, cpu_to_node(j));
1299 			if (!sg)
1300 				return -ENOMEM;
1301 
1302 			sg->next = sg;
1303 
1304 			*per_cpu_ptr(sdd->sg, j) = sg;
1305 
1306 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1307 					GFP_KERNEL, cpu_to_node(j));
1308 			if (!sgc)
1309 				return -ENOMEM;
1310 
1311 			*per_cpu_ptr(sdd->sgc, j) = sgc;
1312 		}
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static void __sdt_free(const struct cpumask *cpu_map)
1319 {
1320 	struct sched_domain_topology_level *tl;
1321 	int j;
1322 
1323 	for_each_sd_topology(tl) {
1324 		struct sd_data *sdd = &tl->data;
1325 
1326 		for_each_cpu(j, cpu_map) {
1327 			struct sched_domain *sd;
1328 
1329 			if (sdd->sd) {
1330 				sd = *per_cpu_ptr(sdd->sd, j);
1331 				if (sd && (sd->flags & SD_OVERLAP))
1332 					free_sched_groups(sd->groups, 0);
1333 				kfree(*per_cpu_ptr(sdd->sd, j));
1334 			}
1335 
1336 			if (sdd->sds)
1337 				kfree(*per_cpu_ptr(sdd->sds, j));
1338 			if (sdd->sg)
1339 				kfree(*per_cpu_ptr(sdd->sg, j));
1340 			if (sdd->sgc)
1341 				kfree(*per_cpu_ptr(sdd->sgc, j));
1342 		}
1343 		free_percpu(sdd->sd);
1344 		sdd->sd = NULL;
1345 		free_percpu(sdd->sds);
1346 		sdd->sds = NULL;
1347 		free_percpu(sdd->sg);
1348 		sdd->sg = NULL;
1349 		free_percpu(sdd->sgc);
1350 		sdd->sgc = NULL;
1351 	}
1352 }
1353 
1354 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1355 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1356 		struct sched_domain *child, int cpu)
1357 {
1358 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1359 
1360 	if (child) {
1361 		sd->level = child->level + 1;
1362 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
1363 		child->parent = sd;
1364 
1365 		if (!cpumask_subset(sched_domain_span(child),
1366 				    sched_domain_span(sd))) {
1367 			pr_err("BUG: arch topology borken\n");
1368 #ifdef CONFIG_SCHED_DEBUG
1369 			pr_err("     the %s domain not a subset of the %s domain\n",
1370 					child->name, sd->name);
1371 #endif
1372 			/* Fixup, ensure @sd has at least @child cpus. */
1373 			cpumask_or(sched_domain_span(sd),
1374 				   sched_domain_span(sd),
1375 				   sched_domain_span(child));
1376 		}
1377 
1378 	}
1379 	set_domain_attribute(sd, attr);
1380 
1381 	return sd;
1382 }
1383 
1384 /*
1385  * Build sched domains for a given set of CPUs and attach the sched domains
1386  * to the individual CPUs
1387  */
1388 static int
1389 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1390 {
1391 	enum s_alloc alloc_state;
1392 	struct sched_domain *sd;
1393 	struct s_data d;
1394 	struct rq *rq = NULL;
1395 	int i, ret = -ENOMEM;
1396 
1397 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1398 	if (alloc_state != sa_rootdomain)
1399 		goto error;
1400 
1401 	/* Set up domains for CPUs specified by the cpu_map: */
1402 	for_each_cpu(i, cpu_map) {
1403 		struct sched_domain_topology_level *tl;
1404 
1405 		sd = NULL;
1406 		for_each_sd_topology(tl) {
1407 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1408 			if (tl == sched_domain_topology)
1409 				*per_cpu_ptr(d.sd, i) = sd;
1410 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
1411 				sd->flags |= SD_OVERLAP;
1412 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1413 				break;
1414 		}
1415 	}
1416 
1417 	/* Build the groups for the domains */
1418 	for_each_cpu(i, cpu_map) {
1419 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1420 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
1421 			if (sd->flags & SD_OVERLAP) {
1422 				if (build_overlap_sched_groups(sd, i))
1423 					goto error;
1424 			} else {
1425 				if (build_sched_groups(sd, i))
1426 					goto error;
1427 			}
1428 		}
1429 	}
1430 
1431 	/* Calculate CPU capacity for physical packages and nodes */
1432 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
1433 		if (!cpumask_test_cpu(i, cpu_map))
1434 			continue;
1435 
1436 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1437 			claim_allocations(i, sd);
1438 			init_sched_groups_capacity(i, sd);
1439 		}
1440 	}
1441 
1442 	/* Attach the domains */
1443 	rcu_read_lock();
1444 	for_each_cpu(i, cpu_map) {
1445 		rq = cpu_rq(i);
1446 		sd = *per_cpu_ptr(d.sd, i);
1447 
1448 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1449 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1450 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1451 
1452 		cpu_attach_domain(sd, d.rd, i);
1453 	}
1454 	rcu_read_unlock();
1455 
1456 	if (rq && sched_debug_enabled) {
1457 		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1458 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1459 	}
1460 
1461 	ret = 0;
1462 error:
1463 	__free_domain_allocs(&d, alloc_state, cpu_map);
1464 	return ret;
1465 }
1466 
1467 /* Current sched domains: */
1468 static cpumask_var_t			*doms_cur;
1469 
1470 /* Number of sched domains in 'doms_cur': */
1471 static int				ndoms_cur;
1472 
1473 /* Attribues of custom domains in 'doms_cur' */
1474 static struct sched_domain_attr		*dattr_cur;
1475 
1476 /*
1477  * Special case: If a kmalloc() of a doms_cur partition (array of
1478  * cpumask) fails, then fallback to a single sched domain,
1479  * as determined by the single cpumask fallback_doms.
1480  */
1481 cpumask_var_t				fallback_doms;
1482 
1483 /*
1484  * arch_update_cpu_topology lets virtualized architectures update the
1485  * CPU core maps. It is supposed to return 1 if the topology changed
1486  * or 0 if it stayed the same.
1487  */
1488 int __weak arch_update_cpu_topology(void)
1489 {
1490 	return 0;
1491 }
1492 
1493 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1494 {
1495 	int i;
1496 	cpumask_var_t *doms;
1497 
1498 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1499 	if (!doms)
1500 		return NULL;
1501 	for (i = 0; i < ndoms; i++) {
1502 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1503 			free_sched_domains(doms, i);
1504 			return NULL;
1505 		}
1506 	}
1507 	return doms;
1508 }
1509 
1510 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1511 {
1512 	unsigned int i;
1513 	for (i = 0; i < ndoms; i++)
1514 		free_cpumask_var(doms[i]);
1515 	kfree(doms);
1516 }
1517 
1518 /*
1519  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1520  * For now this just excludes isolated CPUs, but could be used to
1521  * exclude other special cases in the future.
1522  */
1523 int init_sched_domains(const struct cpumask *cpu_map)
1524 {
1525 	int err;
1526 
1527 	arch_update_cpu_topology();
1528 	ndoms_cur = 1;
1529 	doms_cur = alloc_sched_domains(ndoms_cur);
1530 	if (!doms_cur)
1531 		doms_cur = &fallback_doms;
1532 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1533 	err = build_sched_domains(doms_cur[0], NULL);
1534 	register_sched_domain_sysctl();
1535 
1536 	return err;
1537 }
1538 
1539 /*
1540  * Detach sched domains from a group of CPUs specified in cpu_map
1541  * These CPUs will now be attached to the NULL domain
1542  */
1543 static void detach_destroy_domains(const struct cpumask *cpu_map)
1544 {
1545 	int i;
1546 
1547 	rcu_read_lock();
1548 	for_each_cpu(i, cpu_map)
1549 		cpu_attach_domain(NULL, &def_root_domain, i);
1550 	rcu_read_unlock();
1551 }
1552 
1553 /* handle null as "default" */
1554 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1555 			struct sched_domain_attr *new, int idx_new)
1556 {
1557 	struct sched_domain_attr tmp;
1558 
1559 	/* Fast path: */
1560 	if (!new && !cur)
1561 		return 1;
1562 
1563 	tmp = SD_ATTR_INIT;
1564 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
1565 			new ? (new + idx_new) : &tmp,
1566 			sizeof(struct sched_domain_attr));
1567 }
1568 
1569 /*
1570  * Partition sched domains as specified by the 'ndoms_new'
1571  * cpumasks in the array doms_new[] of cpumasks. This compares
1572  * doms_new[] to the current sched domain partitioning, doms_cur[].
1573  * It destroys each deleted domain and builds each new domain.
1574  *
1575  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1576  * The masks don't intersect (don't overlap.) We should setup one
1577  * sched domain for each mask. CPUs not in any of the cpumasks will
1578  * not be load balanced. If the same cpumask appears both in the
1579  * current 'doms_cur' domains and in the new 'doms_new', we can leave
1580  * it as it is.
1581  *
1582  * The passed in 'doms_new' should be allocated using
1583  * alloc_sched_domains.  This routine takes ownership of it and will
1584  * free_sched_domains it when done with it. If the caller failed the
1585  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1586  * and partition_sched_domains() will fallback to the single partition
1587  * 'fallback_doms', it also forces the domains to be rebuilt.
1588  *
1589  * If doms_new == NULL it will be replaced with cpu_online_mask.
1590  * ndoms_new == 0 is a special case for destroying existing domains,
1591  * and it will not create the default domain.
1592  *
1593  * Call with hotplug lock held
1594  */
1595 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1596 			     struct sched_domain_attr *dattr_new)
1597 {
1598 	int i, j, n;
1599 	int new_topology;
1600 
1601 	mutex_lock(&sched_domains_mutex);
1602 
1603 	/* Always unregister in case we don't destroy any domains: */
1604 	unregister_sched_domain_sysctl();
1605 
1606 	/* Let the architecture update CPU core mappings: */
1607 	new_topology = arch_update_cpu_topology();
1608 
1609 	n = doms_new ? ndoms_new : 0;
1610 
1611 	/* Destroy deleted domains: */
1612 	for (i = 0; i < ndoms_cur; i++) {
1613 		for (j = 0; j < n && !new_topology; j++) {
1614 			if (cpumask_equal(doms_cur[i], doms_new[j])
1615 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
1616 				goto match1;
1617 		}
1618 		/* No match - a current sched domain not in new doms_new[] */
1619 		detach_destroy_domains(doms_cur[i]);
1620 match1:
1621 		;
1622 	}
1623 
1624 	n = ndoms_cur;
1625 	if (doms_new == NULL) {
1626 		n = 0;
1627 		doms_new = &fallback_doms;
1628 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1629 		WARN_ON_ONCE(dattr_new);
1630 	}
1631 
1632 	/* Build new domains: */
1633 	for (i = 0; i < ndoms_new; i++) {
1634 		for (j = 0; j < n && !new_topology; j++) {
1635 			if (cpumask_equal(doms_new[i], doms_cur[j])
1636 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
1637 				goto match2;
1638 		}
1639 		/* No match - add a new doms_new */
1640 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1641 match2:
1642 		;
1643 	}
1644 
1645 	/* Remember the new sched domains: */
1646 	if (doms_cur != &fallback_doms)
1647 		free_sched_domains(doms_cur, ndoms_cur);
1648 
1649 	kfree(dattr_cur);
1650 	doms_cur = doms_new;
1651 	dattr_cur = dattr_new;
1652 	ndoms_cur = ndoms_new;
1653 
1654 	register_sched_domain_sysctl();
1655 
1656 	mutex_unlock(&sched_domains_mutex);
1657 }
1658 
1659